Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- llmeval-env/lib/python3.10/site-packages/sympy/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/__pycache__/abc.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/__pycache__/conftest.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/__pycache__/galgebra.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/__pycache__/release.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/__pycache__/this.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/benchmarks/__init__.py +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/benchmarks/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/benchmarks/__pycache__/bench_discrete_log.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/benchmarks/__pycache__/bench_meijerint.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/benchmarks/__pycache__/bench_symbench.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/benchmarks/bench_discrete_log.py +83 -0
- llmeval-env/lib/python3.10/site-packages/sympy/benchmarks/bench_meijerint.py +261 -0
- llmeval-env/lib/python3.10/site-packages/sympy/benchmarks/bench_symbench.py +134 -0
- llmeval-env/lib/python3.10/site-packages/sympy/crypto/__init__.py +35 -0
- llmeval-env/lib/python3.10/site-packages/sympy/crypto/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/crypto/__pycache__/crypto.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/crypto/crypto.py +3360 -0
- llmeval-env/lib/python3.10/site-packages/sympy/crypto/tests/__init__.py +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/crypto/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/crypto/tests/__pycache__/test_crypto.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/crypto/tests/test_crypto.py +562 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/__init__.py +129 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/appellseqs.py +269 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/compatibility.py +1134 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/constructor.py +387 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/densearith.py +1875 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/densebasic.py +1881 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/densetools.py +1309 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/dispersion.py +212 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/distributedmodules.py +739 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/domainmatrix.py +12 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/domains/algebraicfield.py +605 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/domains/complexfield.py +151 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/domains/domain.py +1304 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/domains/field.py +104 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/domains/gmpyintegerring.py +104 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/domains/modularinteger.py +205 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/domains/old_fractionfield.py +185 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/domains/old_polynomialring.py +462 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/domains/pythonfinitefield.py +16 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/domains/rationalfield.py +163 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/domains/ring.py +118 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/euclidtools.py +1893 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/factortools.py +1502 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/fglmtools.py +153 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/fields.py +631 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/galoistools.py +2363 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/groebnertools.py +862 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/heuristicgcd.py +149 -0
llmeval-env/lib/python3.10/site-packages/sympy/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (28.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/__pycache__/abc.cpython-310.pyc
ADDED
Binary file (3.53 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/__pycache__/conftest.cpython-310.pyc
ADDED
Binary file (2.55 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/__pycache__/galgebra.cpython-310.pyc
ADDED
Binary file (290 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/__pycache__/release.cpython-310.pyc
ADDED
Binary file (197 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/__pycache__/this.cpython-310.pyc
ADDED
Binary file (738 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/benchmarks/__init__.py
ADDED
File without changes
|
llmeval-env/lib/python3.10/site-packages/sympy/benchmarks/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (189 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/benchmarks/__pycache__/bench_discrete_log.cpython-310.pyc
ADDED
Binary file (2.01 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/benchmarks/__pycache__/bench_meijerint.cpython-310.pyc
ADDED
Binary file (10.8 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/benchmarks/__pycache__/bench_symbench.cpython-310.pyc
ADDED
Binary file (5.15 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/benchmarks/bench_discrete_log.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
from time import time
|
3 |
+
from sympy.ntheory.residue_ntheory import (discrete_log,
|
4 |
+
_discrete_log_trial_mul, _discrete_log_shanks_steps,
|
5 |
+
_discrete_log_pollard_rho, _discrete_log_pohlig_hellman)
|
6 |
+
|
7 |
+
|
8 |
+
# Cyclic group (Z/pZ)* with p prime, order p - 1 and generator g
|
9 |
+
data_set_1 = [
|
10 |
+
# p, p - 1, g
|
11 |
+
[191, 190, 19],
|
12 |
+
[46639, 46638, 6],
|
13 |
+
[14789363, 14789362, 2],
|
14 |
+
[4254225211, 4254225210, 2],
|
15 |
+
[432751500361, 432751500360, 7],
|
16 |
+
[158505390797053, 158505390797052, 2],
|
17 |
+
[6575202655312007, 6575202655312006, 5],
|
18 |
+
[8430573471995353769, 8430573471995353768, 3],
|
19 |
+
[3938471339744997827267, 3938471339744997827266, 2],
|
20 |
+
[875260951364705563393093, 875260951364705563393092, 5],
|
21 |
+
]
|
22 |
+
|
23 |
+
|
24 |
+
# Cyclic sub-groups of (Z/nZ)* with prime order p and generator g
|
25 |
+
# (n, p are primes and n = 2 * p + 1)
|
26 |
+
data_set_2 = [
|
27 |
+
# n, p, g
|
28 |
+
[227, 113, 3],
|
29 |
+
[2447, 1223, 2],
|
30 |
+
[24527, 12263, 2],
|
31 |
+
[245639, 122819, 2],
|
32 |
+
[2456747, 1228373, 3],
|
33 |
+
[24567899, 12283949, 3],
|
34 |
+
[245679023, 122839511, 2],
|
35 |
+
[2456791307, 1228395653, 3],
|
36 |
+
[24567913439, 12283956719, 2],
|
37 |
+
[245679135407, 122839567703, 2],
|
38 |
+
[2456791354763, 1228395677381, 3],
|
39 |
+
[24567913550903, 12283956775451, 2],
|
40 |
+
[245679135509519, 122839567754759, 2],
|
41 |
+
]
|
42 |
+
|
43 |
+
|
44 |
+
# Cyclic sub-groups of (Z/nZ)* with smooth order o and generator g
|
45 |
+
data_set_3 = [
|
46 |
+
# n, o, g
|
47 |
+
[2**118, 2**116, 3],
|
48 |
+
]
|
49 |
+
|
50 |
+
|
51 |
+
def bench_discrete_log(data_set, algo=None):
|
52 |
+
if algo is None:
|
53 |
+
f = discrete_log
|
54 |
+
elif algo == 'trial':
|
55 |
+
f = _discrete_log_trial_mul
|
56 |
+
elif algo == 'shanks':
|
57 |
+
f = _discrete_log_shanks_steps
|
58 |
+
elif algo == 'rho':
|
59 |
+
f = _discrete_log_pollard_rho
|
60 |
+
elif algo == 'ph':
|
61 |
+
f = _discrete_log_pohlig_hellman
|
62 |
+
else:
|
63 |
+
raise ValueError("Argument 'algo' should be one"
|
64 |
+
" of ('trial', 'shanks', 'rho' or 'ph')")
|
65 |
+
|
66 |
+
for i, data in enumerate(data_set):
|
67 |
+
for j, (n, p, g) in enumerate(data):
|
68 |
+
t = time()
|
69 |
+
l = f(n, pow(g, p - 1, n), g, p)
|
70 |
+
t = time() - t
|
71 |
+
print('[%02d-%03d] %15.10f' % (i, j, t))
|
72 |
+
assert l == p - 1
|
73 |
+
|
74 |
+
|
75 |
+
if __name__ == '__main__':
|
76 |
+
algo = sys.argv[1] \
|
77 |
+
if len(sys.argv) > 1 else None
|
78 |
+
data_set = [
|
79 |
+
data_set_1,
|
80 |
+
data_set_2,
|
81 |
+
data_set_3,
|
82 |
+
]
|
83 |
+
bench_discrete_log(data_set, algo)
|
llmeval-env/lib/python3.10/site-packages/sympy/benchmarks/bench_meijerint.py
ADDED
@@ -0,0 +1,261 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# conceal the implicit import from the code quality tester
|
2 |
+
from sympy.core.numbers import (oo, pi)
|
3 |
+
from sympy.core.symbol import (Symbol, symbols)
|
4 |
+
from sympy.functions.elementary.exponential import exp
|
5 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
6 |
+
from sympy.functions.special.bessel import besseli
|
7 |
+
from sympy.functions.special.gamma_functions import gamma
|
8 |
+
from sympy.integrals.integrals import integrate
|
9 |
+
from sympy.integrals.transforms import (mellin_transform,
|
10 |
+
inverse_fourier_transform, inverse_mellin_transform,
|
11 |
+
laplace_transform, inverse_laplace_transform, fourier_transform)
|
12 |
+
|
13 |
+
LT = laplace_transform
|
14 |
+
FT = fourier_transform
|
15 |
+
MT = mellin_transform
|
16 |
+
IFT = inverse_fourier_transform
|
17 |
+
ILT = inverse_laplace_transform
|
18 |
+
IMT = inverse_mellin_transform
|
19 |
+
|
20 |
+
from sympy.abc import x, y
|
21 |
+
nu, beta, rho = symbols('nu beta rho')
|
22 |
+
|
23 |
+
apos, bpos, cpos, dpos, posk, p = symbols('a b c d k p', positive=True)
|
24 |
+
k = Symbol('k', real=True)
|
25 |
+
negk = Symbol('k', negative=True)
|
26 |
+
|
27 |
+
mu1, mu2 = symbols('mu1 mu2', real=True, nonzero=True, finite=True)
|
28 |
+
sigma1, sigma2 = symbols('sigma1 sigma2', real=True, nonzero=True,
|
29 |
+
finite=True, positive=True)
|
30 |
+
rate = Symbol('lambda', positive=True)
|
31 |
+
|
32 |
+
|
33 |
+
def normal(x, mu, sigma):
|
34 |
+
return 1/sqrt(2*pi*sigma**2)*exp(-(x - mu)**2/2/sigma**2)
|
35 |
+
|
36 |
+
|
37 |
+
def exponential(x, rate):
|
38 |
+
return rate*exp(-rate*x)
|
39 |
+
alpha, beta = symbols('alpha beta', positive=True)
|
40 |
+
betadist = x**(alpha - 1)*(1 + x)**(-alpha - beta)*gamma(alpha + beta) \
|
41 |
+
/gamma(alpha)/gamma(beta)
|
42 |
+
kint = Symbol('k', integer=True, positive=True)
|
43 |
+
chi = 2**(1 - kint/2)*x**(kint - 1)*exp(-x**2/2)/gamma(kint/2)
|
44 |
+
chisquared = 2**(-k/2)/gamma(k/2)*x**(k/2 - 1)*exp(-x/2)
|
45 |
+
dagum = apos*p/x*(x/bpos)**(apos*p)/(1 + x**apos/bpos**apos)**(p + 1)
|
46 |
+
d1, d2 = symbols('d1 d2', positive=True)
|
47 |
+
f = sqrt(((d1*x)**d1 * d2**d2)/(d1*x + d2)**(d1 + d2))/x \
|
48 |
+
/gamma(d1/2)/gamma(d2/2)*gamma((d1 + d2)/2)
|
49 |
+
nupos, sigmapos = symbols('nu sigma', positive=True)
|
50 |
+
rice = x/sigmapos**2*exp(-(x**2 + nupos**2)/2/sigmapos**2)*besseli(0, x*
|
51 |
+
nupos/sigmapos**2)
|
52 |
+
mu = Symbol('mu', real=True)
|
53 |
+
laplace = exp(-abs(x - mu)/bpos)/2/bpos
|
54 |
+
|
55 |
+
u = Symbol('u', polar=True)
|
56 |
+
tpos = Symbol('t', positive=True)
|
57 |
+
|
58 |
+
|
59 |
+
def E(expr):
|
60 |
+
integrate(expr*exponential(x, rate)*normal(y, mu1, sigma1),
|
61 |
+
(x, 0, oo), (y, -oo, oo), meijerg=True)
|
62 |
+
integrate(expr*exponential(x, rate)*normal(y, mu1, sigma1),
|
63 |
+
(y, -oo, oo), (x, 0, oo), meijerg=True)
|
64 |
+
|
65 |
+
bench = [
|
66 |
+
'MT(x**nu*Heaviside(x - 1), x, s)',
|
67 |
+
'MT(x**nu*Heaviside(1 - x), x, s)',
|
68 |
+
'MT((1-x)**(beta - 1)*Heaviside(1-x), x, s)',
|
69 |
+
'MT((x-1)**(beta - 1)*Heaviside(x-1), x, s)',
|
70 |
+
'MT((1+x)**(-rho), x, s)',
|
71 |
+
'MT(abs(1-x)**(-rho), x, s)',
|
72 |
+
'MT((1-x)**(beta-1)*Heaviside(1-x) + a*(x-1)**(beta-1)*Heaviside(x-1), x, s)',
|
73 |
+
'MT((x**a-b**a)/(x-b), x, s)',
|
74 |
+
'MT((x**a-bpos**a)/(x-bpos), x, s)',
|
75 |
+
'MT(exp(-x), x, s)',
|
76 |
+
'MT(exp(-1/x), x, s)',
|
77 |
+
'MT(log(x)**4*Heaviside(1-x), x, s)',
|
78 |
+
'MT(log(x)**3*Heaviside(x-1), x, s)',
|
79 |
+
'MT(log(x + 1), x, s)',
|
80 |
+
'MT(log(1/x + 1), x, s)',
|
81 |
+
'MT(log(abs(1 - x)), x, s)',
|
82 |
+
'MT(log(abs(1 - 1/x)), x, s)',
|
83 |
+
'MT(log(x)/(x+1), x, s)',
|
84 |
+
'MT(log(x)**2/(x+1), x, s)',
|
85 |
+
'MT(log(x)/(x+1)**2, x, s)',
|
86 |
+
'MT(erf(sqrt(x)), x, s)',
|
87 |
+
|
88 |
+
'MT(besselj(a, 2*sqrt(x)), x, s)',
|
89 |
+
'MT(sin(sqrt(x))*besselj(a, sqrt(x)), x, s)',
|
90 |
+
'MT(cos(sqrt(x))*besselj(a, sqrt(x)), x, s)',
|
91 |
+
'MT(besselj(a, sqrt(x))**2, x, s)',
|
92 |
+
'MT(besselj(a, sqrt(x))*besselj(-a, sqrt(x)), x, s)',
|
93 |
+
'MT(besselj(a - 1, sqrt(x))*besselj(a, sqrt(x)), x, s)',
|
94 |
+
'MT(besselj(a, sqrt(x))*besselj(b, sqrt(x)), x, s)',
|
95 |
+
'MT(besselj(a, sqrt(x))**2 + besselj(-a, sqrt(x))**2, x, s)',
|
96 |
+
'MT(bessely(a, 2*sqrt(x)), x, s)',
|
97 |
+
'MT(sin(sqrt(x))*bessely(a, sqrt(x)), x, s)',
|
98 |
+
'MT(cos(sqrt(x))*bessely(a, sqrt(x)), x, s)',
|
99 |
+
'MT(besselj(a, sqrt(x))*bessely(a, sqrt(x)), x, s)',
|
100 |
+
'MT(besselj(a, sqrt(x))*bessely(b, sqrt(x)), x, s)',
|
101 |
+
'MT(bessely(a, sqrt(x))**2, x, s)',
|
102 |
+
|
103 |
+
'MT(besselk(a, 2*sqrt(x)), x, s)',
|
104 |
+
'MT(besselj(a, 2*sqrt(2*sqrt(x)))*besselk(a, 2*sqrt(2*sqrt(x))), x, s)',
|
105 |
+
'MT(besseli(a, sqrt(x))*besselk(a, sqrt(x)), x, s)',
|
106 |
+
'MT(besseli(b, sqrt(x))*besselk(a, sqrt(x)), x, s)',
|
107 |
+
'MT(exp(-x/2)*besselk(a, x/2), x, s)',
|
108 |
+
|
109 |
+
# later: ILT, IMT
|
110 |
+
|
111 |
+
'LT((t-apos)**bpos*exp(-cpos*(t-apos))*Heaviside(t-apos), t, s)',
|
112 |
+
'LT(t**apos, t, s)',
|
113 |
+
'LT(Heaviside(t), t, s)',
|
114 |
+
'LT(Heaviside(t - apos), t, s)',
|
115 |
+
'LT(1 - exp(-apos*t), t, s)',
|
116 |
+
'LT((exp(2*t)-1)*exp(-bpos - t)*Heaviside(t)/2, t, s, noconds=True)',
|
117 |
+
'LT(exp(t), t, s)',
|
118 |
+
'LT(exp(2*t), t, s)',
|
119 |
+
'LT(exp(apos*t), t, s)',
|
120 |
+
'LT(log(t/apos), t, s)',
|
121 |
+
'LT(erf(t), t, s)',
|
122 |
+
'LT(sin(apos*t), t, s)',
|
123 |
+
'LT(cos(apos*t), t, s)',
|
124 |
+
'LT(exp(-apos*t)*sin(bpos*t), t, s)',
|
125 |
+
'LT(exp(-apos*t)*cos(bpos*t), t, s)',
|
126 |
+
'LT(besselj(0, t), t, s, noconds=True)',
|
127 |
+
'LT(besselj(1, t), t, s, noconds=True)',
|
128 |
+
|
129 |
+
'FT(Heaviside(1 - abs(2*apos*x)), x, k)',
|
130 |
+
'FT(Heaviside(1-abs(apos*x))*(1-abs(apos*x)), x, k)',
|
131 |
+
'FT(exp(-apos*x)*Heaviside(x), x, k)',
|
132 |
+
'IFT(1/(apos + 2*pi*I*x), x, posk, noconds=False)',
|
133 |
+
'IFT(1/(apos + 2*pi*I*x), x, -posk, noconds=False)',
|
134 |
+
'IFT(1/(apos + 2*pi*I*x), x, negk)',
|
135 |
+
'FT(x*exp(-apos*x)*Heaviside(x), x, k)',
|
136 |
+
'FT(exp(-apos*x)*sin(bpos*x)*Heaviside(x), x, k)',
|
137 |
+
'FT(exp(-apos*x**2), x, k)',
|
138 |
+
'IFT(sqrt(pi/apos)*exp(-(pi*k)**2/apos), k, x)',
|
139 |
+
'FT(exp(-apos*abs(x)), x, k)',
|
140 |
+
|
141 |
+
'integrate(normal(x, mu1, sigma1), (x, -oo, oo), meijerg=True)',
|
142 |
+
'integrate(x*normal(x, mu1, sigma1), (x, -oo, oo), meijerg=True)',
|
143 |
+
'integrate(x**2*normal(x, mu1, sigma1), (x, -oo, oo), meijerg=True)',
|
144 |
+
'integrate(x**3*normal(x, mu1, sigma1), (x, -oo, oo), meijerg=True)',
|
145 |
+
'integrate(normal(x, mu1, sigma1)*normal(y, mu2, sigma2),'
|
146 |
+
' (x, -oo, oo), (y, -oo, oo), meijerg=True)',
|
147 |
+
'integrate(x*normal(x, mu1, sigma1)*normal(y, mu2, sigma2),'
|
148 |
+
' (x, -oo, oo), (y, -oo, oo), meijerg=True)',
|
149 |
+
'integrate(y*normal(x, mu1, sigma1)*normal(y, mu2, sigma2),'
|
150 |
+
' (x, -oo, oo), (y, -oo, oo), meijerg=True)',
|
151 |
+
'integrate(x*y*normal(x, mu1, sigma1)*normal(y, mu2, sigma2),'
|
152 |
+
' (x, -oo, oo), (y, -oo, oo), meijerg=True)',
|
153 |
+
'integrate((x+y+1)*normal(x, mu1, sigma1)*normal(y, mu2, sigma2),'
|
154 |
+
' (x, -oo, oo), (y, -oo, oo), meijerg=True)',
|
155 |
+
'integrate((x+y-1)*normal(x, mu1, sigma1)*normal(y, mu2, sigma2),'
|
156 |
+
' (x, -oo, oo), (y, -oo, oo), meijerg=True)',
|
157 |
+
'integrate(x**2*normal(x, mu1, sigma1)*normal(y, mu2, sigma2),'
|
158 |
+
' (x, -oo, oo), (y, -oo, oo), meijerg=True)',
|
159 |
+
'integrate(y**2*normal(x, mu1, sigma1)*normal(y, mu2, sigma2),'
|
160 |
+
' (x, -oo, oo), (y, -oo, oo), meijerg=True)',
|
161 |
+
'integrate(exponential(x, rate), (x, 0, oo), meijerg=True)',
|
162 |
+
'integrate(x*exponential(x, rate), (x, 0, oo), meijerg=True)',
|
163 |
+
'integrate(x**2*exponential(x, rate), (x, 0, oo), meijerg=True)',
|
164 |
+
'E(1)',
|
165 |
+
'E(x*y)',
|
166 |
+
'E(x*y**2)',
|
167 |
+
'E((x+y+1)**2)',
|
168 |
+
'E(x+y+1)',
|
169 |
+
'E((x+y-1)**2)',
|
170 |
+
'integrate(betadist, (x, 0, oo), meijerg=True)',
|
171 |
+
'integrate(x*betadist, (x, 0, oo), meijerg=True)',
|
172 |
+
'integrate(x**2*betadist, (x, 0, oo), meijerg=True)',
|
173 |
+
'integrate(chi, (x, 0, oo), meijerg=True)',
|
174 |
+
'integrate(x*chi, (x, 0, oo), meijerg=True)',
|
175 |
+
'integrate(x**2*chi, (x, 0, oo), meijerg=True)',
|
176 |
+
'integrate(chisquared, (x, 0, oo), meijerg=True)',
|
177 |
+
'integrate(x*chisquared, (x, 0, oo), meijerg=True)',
|
178 |
+
'integrate(x**2*chisquared, (x, 0, oo), meijerg=True)',
|
179 |
+
'integrate(((x-k)/sqrt(2*k))**3*chisquared, (x, 0, oo), meijerg=True)',
|
180 |
+
'integrate(dagum, (x, 0, oo), meijerg=True)',
|
181 |
+
'integrate(x*dagum, (x, 0, oo), meijerg=True)',
|
182 |
+
'integrate(x**2*dagum, (x, 0, oo), meijerg=True)',
|
183 |
+
'integrate(f, (x, 0, oo), meijerg=True)',
|
184 |
+
'integrate(x*f, (x, 0, oo), meijerg=True)',
|
185 |
+
'integrate(x**2*f, (x, 0, oo), meijerg=True)',
|
186 |
+
'integrate(rice, (x, 0, oo), meijerg=True)',
|
187 |
+
'integrate(laplace, (x, -oo, oo), meijerg=True)',
|
188 |
+
'integrate(x*laplace, (x, -oo, oo), meijerg=True)',
|
189 |
+
'integrate(x**2*laplace, (x, -oo, oo), meijerg=True)',
|
190 |
+
'integrate(log(x) * x**(k-1) * exp(-x) / gamma(k), (x, 0, oo))',
|
191 |
+
|
192 |
+
'integrate(sin(z*x)*(x**2-1)**(-(y+S(1)/2)), (x, 1, oo), meijerg=True)',
|
193 |
+
'integrate(besselj(0,x)*besselj(1,x)*exp(-x**2), (x, 0, oo), meijerg=True)',
|
194 |
+
'integrate(besselj(0,x)*besselj(1,x)*besselk(0,x), (x, 0, oo), meijerg=True)',
|
195 |
+
'integrate(besselj(0,x)*besselj(1,x)*exp(-x**2), (x, 0, oo), meijerg=True)',
|
196 |
+
'integrate(besselj(a,x)*besselj(b,x)/x, (x,0,oo), meijerg=True)',
|
197 |
+
|
198 |
+
'hyperexpand(meijerg((-s - a/2 + 1, -s + a/2 + 1), (-a/2 - S(1)/2, -s + a/2 + S(3)/2), (a/2, -a/2), (-a/2 - S(1)/2, -s + a/2 + S(3)/2), 1))',
|
199 |
+
"gammasimp(S('2**(2*s)*(-pi*gamma(-a + 1)*gamma(a + 1)*gamma(-a - s + 1)*gamma(-a + s - 1/2)*gamma(a - s + 3/2)*gamma(a + s + 1)/(a*(a + s)) - gamma(-a - 1/2)*gamma(-a + 1)*gamma(a + 1)*gamma(a + 3/2)*gamma(-s + 3/2)*gamma(s - 1/2)*gamma(-a + s + 1)*gamma(a - s + 1)/(a*(-a + s)))*gamma(-2*s + 1)*gamma(s + 1)/(pi*s*gamma(-a - 1/2)*gamma(a + 3/2)*gamma(-s + 1)*gamma(-s + 3/2)*gamma(s - 1/2)*gamma(-a - s + 1)*gamma(-a + s - 1/2)*gamma(a - s + 1)*gamma(a - s + 3/2))'))",
|
200 |
+
|
201 |
+
'mellin_transform(E1(x), x, s)',
|
202 |
+
'inverse_mellin_transform(gamma(s)/s, s, x, (0, oo))',
|
203 |
+
'mellin_transform(expint(a, x), x, s)',
|
204 |
+
'mellin_transform(Si(x), x, s)',
|
205 |
+
'inverse_mellin_transform(-2**s*sqrt(pi)*gamma((s + 1)/2)/(2*s*gamma(-s/2 + 1)), s, x, (-1, 0))',
|
206 |
+
'mellin_transform(Ci(sqrt(x)), x, s)',
|
207 |
+
'inverse_mellin_transform(-4**s*sqrt(pi)*gamma(s)/(2*s*gamma(-s + S(1)/2)),s, u, (0, 1))',
|
208 |
+
'laplace_transform(Ci(x), x, s)',
|
209 |
+
'laplace_transform(expint(a, x), x, s)',
|
210 |
+
'laplace_transform(expint(1, x), x, s)',
|
211 |
+
'laplace_transform(expint(2, x), x, s)',
|
212 |
+
'inverse_laplace_transform(-log(1 + s**2)/2/s, s, u)',
|
213 |
+
'inverse_laplace_transform(log(s + 1)/s, s, x)',
|
214 |
+
'inverse_laplace_transform((s - log(s + 1))/s**2, s, x)',
|
215 |
+
'laplace_transform(Chi(x), x, s)',
|
216 |
+
'laplace_transform(Shi(x), x, s)',
|
217 |
+
|
218 |
+
'integrate(exp(-z*x)/x, (x, 1, oo), meijerg=True, conds="none")',
|
219 |
+
'integrate(exp(-z*x)/x**2, (x, 1, oo), meijerg=True, conds="none")',
|
220 |
+
'integrate(exp(-z*x)/x**3, (x, 1, oo), meijerg=True,conds="none")',
|
221 |
+
'integrate(-cos(x)/x, (x, tpos, oo), meijerg=True)',
|
222 |
+
'integrate(-sin(x)/x, (x, tpos, oo), meijerg=True)',
|
223 |
+
'integrate(sin(x)/x, (x, 0, z), meijerg=True)',
|
224 |
+
'integrate(sinh(x)/x, (x, 0, z), meijerg=True)',
|
225 |
+
'integrate(exp(-x)/x, x, meijerg=True)',
|
226 |
+
'integrate(exp(-x)/x**2, x, meijerg=True)',
|
227 |
+
'integrate(cos(u)/u, u, meijerg=True)',
|
228 |
+
'integrate(cosh(u)/u, u, meijerg=True)',
|
229 |
+
'integrate(expint(1, x), x, meijerg=True)',
|
230 |
+
'integrate(expint(2, x), x, meijerg=True)',
|
231 |
+
'integrate(Si(x), x, meijerg=True)',
|
232 |
+
'integrate(Ci(u), u, meijerg=True)',
|
233 |
+
'integrate(Shi(x), x, meijerg=True)',
|
234 |
+
'integrate(Chi(u), u, meijerg=True)',
|
235 |
+
'integrate(Si(x)*exp(-x), (x, 0, oo), meijerg=True)',
|
236 |
+
'integrate(expint(1, x)*sin(x), (x, 0, oo), meijerg=True)'
|
237 |
+
]
|
238 |
+
|
239 |
+
from time import time
|
240 |
+
from sympy.core.cache import clear_cache
|
241 |
+
import sys
|
242 |
+
|
243 |
+
timings = []
|
244 |
+
|
245 |
+
if __name__ == '__main__':
|
246 |
+
for n, string in enumerate(bench):
|
247 |
+
clear_cache()
|
248 |
+
_t = time()
|
249 |
+
exec(string)
|
250 |
+
_t = time() - _t
|
251 |
+
timings += [(_t, string)]
|
252 |
+
sys.stdout.write('.')
|
253 |
+
sys.stdout.flush()
|
254 |
+
if n % (len(bench) // 10) == 0:
|
255 |
+
sys.stdout.write('%s' % (10*n // len(bench)))
|
256 |
+
print()
|
257 |
+
|
258 |
+
timings.sort(key=lambda x: -x[0])
|
259 |
+
|
260 |
+
for ti, string in timings:
|
261 |
+
print('%.2fs %s' % (ti, string))
|
llmeval-env/lib/python3.10/site-packages/sympy/benchmarks/bench_symbench.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
from sympy.core.random import random
|
3 |
+
from sympy.core.numbers import (I, Integer, pi)
|
4 |
+
from sympy.core.symbol import Symbol
|
5 |
+
from sympy.core.sympify import sympify
|
6 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
7 |
+
from sympy.functions.elementary.trigonometric import sin
|
8 |
+
from sympy.polys.polytools import factor
|
9 |
+
from sympy.simplify.simplify import simplify
|
10 |
+
from sympy.abc import x, y, z
|
11 |
+
from timeit import default_timer as clock
|
12 |
+
|
13 |
+
|
14 |
+
def bench_R1():
|
15 |
+
"real(f(f(f(f(f(f(f(f(f(f(i/2)))))))))))"
|
16 |
+
def f(z):
|
17 |
+
return sqrt(Integer(1)/3)*z**2 + I/3
|
18 |
+
f(f(f(f(f(f(f(f(f(f(I/2)))))))))).as_real_imag()[0]
|
19 |
+
|
20 |
+
|
21 |
+
def bench_R2():
|
22 |
+
"Hermite polynomial hermite(15, y)"
|
23 |
+
def hermite(n, y):
|
24 |
+
if n == 1:
|
25 |
+
return 2*y
|
26 |
+
if n == 0:
|
27 |
+
return 1
|
28 |
+
return (2*y*hermite(n - 1, y) - 2*(n - 1)*hermite(n - 2, y)).expand()
|
29 |
+
|
30 |
+
hermite(15, y)
|
31 |
+
|
32 |
+
|
33 |
+
def bench_R3():
|
34 |
+
"a = [bool(f==f) for _ in range(10)]"
|
35 |
+
f = x + y + z
|
36 |
+
[bool(f == f) for _ in range(10)]
|
37 |
+
|
38 |
+
|
39 |
+
def bench_R4():
|
40 |
+
# we don't have Tuples
|
41 |
+
pass
|
42 |
+
|
43 |
+
|
44 |
+
def bench_R5():
|
45 |
+
"blowup(L, 8); L=uniq(L)"
|
46 |
+
def blowup(L, n):
|
47 |
+
for i in range(n):
|
48 |
+
L.append( (L[i] + L[i + 1]) * L[i + 2] )
|
49 |
+
|
50 |
+
def uniq(x):
|
51 |
+
v = set(x)
|
52 |
+
return v
|
53 |
+
L = [x, y, z]
|
54 |
+
blowup(L, 8)
|
55 |
+
L = uniq(L)
|
56 |
+
|
57 |
+
|
58 |
+
def bench_R6():
|
59 |
+
"sum(simplify((x+sin(i))/x+(x-sin(i))/x) for i in range(100))"
|
60 |
+
sum(simplify((x + sin(i))/x + (x - sin(i))/x) for i in range(100))
|
61 |
+
|
62 |
+
|
63 |
+
def bench_R7():
|
64 |
+
"[f.subs(x, random()) for _ in range(10**4)]"
|
65 |
+
f = x**24 + 34*x**12 + 45*x**3 + 9*x**18 + 34*x**10 + 32*x**21
|
66 |
+
[f.subs(x, random()) for _ in range(10**4)]
|
67 |
+
|
68 |
+
|
69 |
+
def bench_R8():
|
70 |
+
"right(x^2,0,5,10^4)"
|
71 |
+
def right(f, a, b, n):
|
72 |
+
a = sympify(a)
|
73 |
+
b = sympify(b)
|
74 |
+
n = sympify(n)
|
75 |
+
x = f.atoms(Symbol).pop()
|
76 |
+
Deltax = (b - a)/n
|
77 |
+
c = a
|
78 |
+
est = 0
|
79 |
+
for i in range(n):
|
80 |
+
c += Deltax
|
81 |
+
est += f.subs(x, c)
|
82 |
+
return est*Deltax
|
83 |
+
|
84 |
+
right(x**2, 0, 5, 10**4)
|
85 |
+
|
86 |
+
|
87 |
+
def _bench_R9():
|
88 |
+
"factor(x^20 - pi^5*y^20)"
|
89 |
+
factor(x**20 - pi**5*y**20)
|
90 |
+
|
91 |
+
|
92 |
+
def bench_R10():
|
93 |
+
"v = [-pi,-pi+1/10..,pi]"
|
94 |
+
def srange(min, max, step):
|
95 |
+
v = [min]
|
96 |
+
while (max - v[-1]).evalf() > 0:
|
97 |
+
v.append(v[-1] + step)
|
98 |
+
return v[:-1]
|
99 |
+
srange(-pi, pi, sympify(1)/10)
|
100 |
+
|
101 |
+
|
102 |
+
def bench_R11():
|
103 |
+
"a = [random() + random()*I for w in [0..1000]]"
|
104 |
+
[random() + random()*I for w in range(1000)]
|
105 |
+
|
106 |
+
|
107 |
+
def bench_S1():
|
108 |
+
"e=(x+y+z+1)**7;f=e*(e+1);f.expand()"
|
109 |
+
e = (x + y + z + 1)**7
|
110 |
+
f = e*(e + 1)
|
111 |
+
f.expand()
|
112 |
+
|
113 |
+
|
114 |
+
if __name__ == '__main__':
|
115 |
+
benchmarks = [
|
116 |
+
bench_R1,
|
117 |
+
bench_R2,
|
118 |
+
bench_R3,
|
119 |
+
bench_R5,
|
120 |
+
bench_R6,
|
121 |
+
bench_R7,
|
122 |
+
bench_R8,
|
123 |
+
#_bench_R9,
|
124 |
+
bench_R10,
|
125 |
+
bench_R11,
|
126 |
+
#bench_S1,
|
127 |
+
]
|
128 |
+
|
129 |
+
report = []
|
130 |
+
for b in benchmarks:
|
131 |
+
t = clock()
|
132 |
+
b()
|
133 |
+
t = clock() - t
|
134 |
+
print("%s%65s: %f" % (b.__name__, b.__doc__, t))
|
llmeval-env/lib/python3.10/site-packages/sympy/crypto/__init__.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.crypto.crypto import (cycle_list,
|
2 |
+
encipher_shift, encipher_affine, encipher_substitution,
|
3 |
+
check_and_join, encipher_vigenere, decipher_vigenere, bifid5_square,
|
4 |
+
bifid6_square, encipher_hill, decipher_hill,
|
5 |
+
encipher_bifid5, encipher_bifid6, decipher_bifid5,
|
6 |
+
decipher_bifid6, encipher_kid_rsa, decipher_kid_rsa,
|
7 |
+
kid_rsa_private_key, kid_rsa_public_key, decipher_rsa, rsa_private_key,
|
8 |
+
rsa_public_key, encipher_rsa, lfsr_connection_polynomial,
|
9 |
+
lfsr_autocorrelation, lfsr_sequence, encode_morse, decode_morse,
|
10 |
+
elgamal_private_key, elgamal_public_key, decipher_elgamal,
|
11 |
+
encipher_elgamal, dh_private_key, dh_public_key, dh_shared_key,
|
12 |
+
padded_key, encipher_bifid, decipher_bifid, bifid_square, bifid5,
|
13 |
+
bifid6, bifid10, decipher_gm, encipher_gm, gm_public_key,
|
14 |
+
gm_private_key, bg_private_key, bg_public_key, encipher_bg, decipher_bg,
|
15 |
+
encipher_rot13, decipher_rot13, encipher_atbash, decipher_atbash,
|
16 |
+
encipher_railfence, decipher_railfence)
|
17 |
+
|
18 |
+
__all__ = [
|
19 |
+
'cycle_list', 'encipher_shift', 'encipher_affine',
|
20 |
+
'encipher_substitution', 'check_and_join', 'encipher_vigenere',
|
21 |
+
'decipher_vigenere', 'bifid5_square', 'bifid6_square', 'encipher_hill',
|
22 |
+
'decipher_hill', 'encipher_bifid5', 'encipher_bifid6', 'decipher_bifid5',
|
23 |
+
'decipher_bifid6', 'encipher_kid_rsa', 'decipher_kid_rsa',
|
24 |
+
'kid_rsa_private_key', 'kid_rsa_public_key', 'decipher_rsa',
|
25 |
+
'rsa_private_key', 'rsa_public_key', 'encipher_rsa',
|
26 |
+
'lfsr_connection_polynomial', 'lfsr_autocorrelation', 'lfsr_sequence',
|
27 |
+
'encode_morse', 'decode_morse', 'elgamal_private_key',
|
28 |
+
'elgamal_public_key', 'decipher_elgamal', 'encipher_elgamal',
|
29 |
+
'dh_private_key', 'dh_public_key', 'dh_shared_key', 'padded_key',
|
30 |
+
'encipher_bifid', 'decipher_bifid', 'bifid_square', 'bifid5', 'bifid6',
|
31 |
+
'bifid10', 'decipher_gm', 'encipher_gm', 'gm_public_key',
|
32 |
+
'gm_private_key', 'bg_private_key', 'bg_public_key', 'encipher_bg',
|
33 |
+
'decipher_bg', 'encipher_rot13', 'decipher_rot13', 'encipher_atbash',
|
34 |
+
'decipher_atbash', 'encipher_railfence', 'decipher_railfence',
|
35 |
+
]
|
llmeval-env/lib/python3.10/site-packages/sympy/crypto/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.65 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/crypto/__pycache__/crypto.cpython-310.pyc
ADDED
Binary file (93.8 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/crypto/crypto.py
ADDED
@@ -0,0 +1,3360 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This file contains some classical ciphers and routines
|
3 |
+
implementing a linear-feedback shift register (LFSR)
|
4 |
+
and the Diffie-Hellman key exchange.
|
5 |
+
|
6 |
+
.. warning::
|
7 |
+
|
8 |
+
This module is intended for educational purposes only. Do not use the
|
9 |
+
functions in this module for real cryptographic applications. If you wish
|
10 |
+
to encrypt real data, we recommend using something like the `cryptography
|
11 |
+
<https://cryptography.io/en/latest/>`_ module.
|
12 |
+
|
13 |
+
"""
|
14 |
+
|
15 |
+
from string import whitespace, ascii_uppercase as uppercase, printable
|
16 |
+
from functools import reduce
|
17 |
+
import warnings
|
18 |
+
|
19 |
+
from itertools import cycle
|
20 |
+
|
21 |
+
from sympy.core import Symbol
|
22 |
+
from sympy.core.numbers import igcdex, mod_inverse, igcd, Rational
|
23 |
+
from sympy.core.random import _randrange, _randint
|
24 |
+
from sympy.matrices import Matrix
|
25 |
+
from sympy.ntheory import isprime, primitive_root, factorint
|
26 |
+
from sympy.ntheory import totient as _euler
|
27 |
+
from sympy.ntheory import reduced_totient as _carmichael
|
28 |
+
from sympy.ntheory.generate import nextprime
|
29 |
+
from sympy.ntheory.modular import crt
|
30 |
+
from sympy.polys.domains import FF
|
31 |
+
from sympy.polys.polytools import gcd, Poly
|
32 |
+
from sympy.utilities.misc import as_int, filldedent, translate
|
33 |
+
from sympy.utilities.iterables import uniq, multiset
|
34 |
+
|
35 |
+
|
36 |
+
class NonInvertibleCipherWarning(RuntimeWarning):
|
37 |
+
"""A warning raised if the cipher is not invertible."""
|
38 |
+
def __init__(self, msg):
|
39 |
+
self.fullMessage = msg
|
40 |
+
|
41 |
+
def __str__(self):
|
42 |
+
return '\n\t' + self.fullMessage
|
43 |
+
|
44 |
+
def warn(self, stacklevel=3):
|
45 |
+
warnings.warn(self, stacklevel=stacklevel)
|
46 |
+
|
47 |
+
|
48 |
+
def AZ(s=None):
|
49 |
+
"""Return the letters of ``s`` in uppercase. In case more than
|
50 |
+
one string is passed, each of them will be processed and a list
|
51 |
+
of upper case strings will be returned.
|
52 |
+
|
53 |
+
Examples
|
54 |
+
========
|
55 |
+
|
56 |
+
>>> from sympy.crypto.crypto import AZ
|
57 |
+
>>> AZ('Hello, world!')
|
58 |
+
'HELLOWORLD'
|
59 |
+
>>> AZ('Hello, world!'.split())
|
60 |
+
['HELLO', 'WORLD']
|
61 |
+
|
62 |
+
See Also
|
63 |
+
========
|
64 |
+
|
65 |
+
check_and_join
|
66 |
+
|
67 |
+
"""
|
68 |
+
if not s:
|
69 |
+
return uppercase
|
70 |
+
t = isinstance(s, str)
|
71 |
+
if t:
|
72 |
+
s = [s]
|
73 |
+
rv = [check_and_join(i.upper().split(), uppercase, filter=True)
|
74 |
+
for i in s]
|
75 |
+
if t:
|
76 |
+
return rv[0]
|
77 |
+
return rv
|
78 |
+
|
79 |
+
bifid5 = AZ().replace('J', '')
|
80 |
+
bifid6 = AZ() + '0123456789'
|
81 |
+
bifid10 = printable
|
82 |
+
|
83 |
+
|
84 |
+
def padded_key(key, symbols):
|
85 |
+
"""Return a string of the distinct characters of ``symbols`` with
|
86 |
+
those of ``key`` appearing first. A ValueError is raised if
|
87 |
+
a) there are duplicate characters in ``symbols`` or
|
88 |
+
b) there are characters in ``key`` that are not in ``symbols``.
|
89 |
+
|
90 |
+
Examples
|
91 |
+
========
|
92 |
+
|
93 |
+
>>> from sympy.crypto.crypto import padded_key
|
94 |
+
>>> padded_key('PUPPY', 'OPQRSTUVWXY')
|
95 |
+
'PUYOQRSTVWX'
|
96 |
+
>>> padded_key('RSA', 'ARTIST')
|
97 |
+
Traceback (most recent call last):
|
98 |
+
...
|
99 |
+
ValueError: duplicate characters in symbols: T
|
100 |
+
|
101 |
+
"""
|
102 |
+
syms = list(uniq(symbols))
|
103 |
+
if len(syms) != len(symbols):
|
104 |
+
extra = ''.join(sorted({
|
105 |
+
i for i in symbols if symbols.count(i) > 1}))
|
106 |
+
raise ValueError('duplicate characters in symbols: %s' % extra)
|
107 |
+
extra = set(key) - set(syms)
|
108 |
+
if extra:
|
109 |
+
raise ValueError(
|
110 |
+
'characters in key but not symbols: %s' % ''.join(
|
111 |
+
sorted(extra)))
|
112 |
+
key0 = ''.join(list(uniq(key)))
|
113 |
+
# remove from syms characters in key0
|
114 |
+
return key0 + translate(''.join(syms), None, key0)
|
115 |
+
|
116 |
+
|
117 |
+
def check_and_join(phrase, symbols=None, filter=None):
|
118 |
+
"""
|
119 |
+
Joins characters of ``phrase`` and if ``symbols`` is given, raises
|
120 |
+
an error if any character in ``phrase`` is not in ``symbols``.
|
121 |
+
|
122 |
+
Parameters
|
123 |
+
==========
|
124 |
+
|
125 |
+
phrase
|
126 |
+
String or list of strings to be returned as a string.
|
127 |
+
|
128 |
+
symbols
|
129 |
+
Iterable of characters allowed in ``phrase``.
|
130 |
+
|
131 |
+
If ``symbols`` is ``None``, no checking is performed.
|
132 |
+
|
133 |
+
Examples
|
134 |
+
========
|
135 |
+
|
136 |
+
>>> from sympy.crypto.crypto import check_and_join
|
137 |
+
>>> check_and_join('a phrase')
|
138 |
+
'a phrase'
|
139 |
+
>>> check_and_join('a phrase'.upper().split())
|
140 |
+
'APHRASE'
|
141 |
+
>>> check_and_join('a phrase!'.upper().split(), 'ARE', filter=True)
|
142 |
+
'ARAE'
|
143 |
+
>>> check_and_join('a phrase!'.upper().split(), 'ARE')
|
144 |
+
Traceback (most recent call last):
|
145 |
+
...
|
146 |
+
ValueError: characters in phrase but not symbols: "!HPS"
|
147 |
+
|
148 |
+
"""
|
149 |
+
rv = ''.join(''.join(phrase))
|
150 |
+
if symbols is not None:
|
151 |
+
symbols = check_and_join(symbols)
|
152 |
+
missing = ''.join(sorted(set(rv) - set(symbols)))
|
153 |
+
if missing:
|
154 |
+
if not filter:
|
155 |
+
raise ValueError(
|
156 |
+
'characters in phrase but not symbols: "%s"' % missing)
|
157 |
+
rv = translate(rv, None, missing)
|
158 |
+
return rv
|
159 |
+
|
160 |
+
|
161 |
+
def _prep(msg, key, alp, default=None):
|
162 |
+
if not alp:
|
163 |
+
if not default:
|
164 |
+
alp = AZ()
|
165 |
+
msg = AZ(msg)
|
166 |
+
key = AZ(key)
|
167 |
+
else:
|
168 |
+
alp = default
|
169 |
+
else:
|
170 |
+
alp = ''.join(alp)
|
171 |
+
key = check_and_join(key, alp, filter=True)
|
172 |
+
msg = check_and_join(msg, alp, filter=True)
|
173 |
+
return msg, key, alp
|
174 |
+
|
175 |
+
|
176 |
+
def cycle_list(k, n):
|
177 |
+
"""
|
178 |
+
Returns the elements of the list ``range(n)`` shifted to the
|
179 |
+
left by ``k`` (so the list starts with ``k`` (mod ``n``)).
|
180 |
+
|
181 |
+
Examples
|
182 |
+
========
|
183 |
+
|
184 |
+
>>> from sympy.crypto.crypto import cycle_list
|
185 |
+
>>> cycle_list(3, 10)
|
186 |
+
[3, 4, 5, 6, 7, 8, 9, 0, 1, 2]
|
187 |
+
|
188 |
+
"""
|
189 |
+
k = k % n
|
190 |
+
return list(range(k, n)) + list(range(k))
|
191 |
+
|
192 |
+
|
193 |
+
######## shift cipher examples ############
|
194 |
+
|
195 |
+
|
196 |
+
def encipher_shift(msg, key, symbols=None):
|
197 |
+
"""
|
198 |
+
Performs shift cipher encryption on plaintext msg, and returns the
|
199 |
+
ciphertext.
|
200 |
+
|
201 |
+
Parameters
|
202 |
+
==========
|
203 |
+
|
204 |
+
key : int
|
205 |
+
The secret key.
|
206 |
+
|
207 |
+
msg : str
|
208 |
+
Plaintext of upper-case letters.
|
209 |
+
|
210 |
+
Returns
|
211 |
+
=======
|
212 |
+
|
213 |
+
str
|
214 |
+
Ciphertext of upper-case letters.
|
215 |
+
|
216 |
+
Examples
|
217 |
+
========
|
218 |
+
|
219 |
+
>>> from sympy.crypto.crypto import encipher_shift, decipher_shift
|
220 |
+
>>> msg = "GONAVYBEATARMY"
|
221 |
+
>>> ct = encipher_shift(msg, 1); ct
|
222 |
+
'HPOBWZCFBUBSNZ'
|
223 |
+
|
224 |
+
To decipher the shifted text, change the sign of the key:
|
225 |
+
|
226 |
+
>>> encipher_shift(ct, -1)
|
227 |
+
'GONAVYBEATARMY'
|
228 |
+
|
229 |
+
There is also a convenience function that does this with the
|
230 |
+
original key:
|
231 |
+
|
232 |
+
>>> decipher_shift(ct, 1)
|
233 |
+
'GONAVYBEATARMY'
|
234 |
+
|
235 |
+
Notes
|
236 |
+
=====
|
237 |
+
|
238 |
+
ALGORITHM:
|
239 |
+
|
240 |
+
STEPS:
|
241 |
+
0. Number the letters of the alphabet from 0, ..., N
|
242 |
+
1. Compute from the string ``msg`` a list ``L1`` of
|
243 |
+
corresponding integers.
|
244 |
+
2. Compute from the list ``L1`` a new list ``L2``, given by
|
245 |
+
adding ``(k mod 26)`` to each element in ``L1``.
|
246 |
+
3. Compute from the list ``L2`` a string ``ct`` of
|
247 |
+
corresponding letters.
|
248 |
+
|
249 |
+
The shift cipher is also called the Caesar cipher, after
|
250 |
+
Julius Caesar, who, according to Suetonius, used it with a
|
251 |
+
shift of three to protect messages of military significance.
|
252 |
+
Caesar's nephew Augustus reportedly used a similar cipher, but
|
253 |
+
with a right shift of 1.
|
254 |
+
|
255 |
+
References
|
256 |
+
==========
|
257 |
+
|
258 |
+
.. [1] https://en.wikipedia.org/wiki/Caesar_cipher
|
259 |
+
.. [2] https://mathworld.wolfram.com/CaesarsMethod.html
|
260 |
+
|
261 |
+
See Also
|
262 |
+
========
|
263 |
+
|
264 |
+
decipher_shift
|
265 |
+
|
266 |
+
"""
|
267 |
+
msg, _, A = _prep(msg, '', symbols)
|
268 |
+
shift = len(A) - key % len(A)
|
269 |
+
key = A[shift:] + A[:shift]
|
270 |
+
return translate(msg, key, A)
|
271 |
+
|
272 |
+
|
273 |
+
def decipher_shift(msg, key, symbols=None):
|
274 |
+
"""
|
275 |
+
Return the text by shifting the characters of ``msg`` to the
|
276 |
+
left by the amount given by ``key``.
|
277 |
+
|
278 |
+
Examples
|
279 |
+
========
|
280 |
+
|
281 |
+
>>> from sympy.crypto.crypto import encipher_shift, decipher_shift
|
282 |
+
>>> msg = "GONAVYBEATARMY"
|
283 |
+
>>> ct = encipher_shift(msg, 1); ct
|
284 |
+
'HPOBWZCFBUBSNZ'
|
285 |
+
|
286 |
+
To decipher the shifted text, change the sign of the key:
|
287 |
+
|
288 |
+
>>> encipher_shift(ct, -1)
|
289 |
+
'GONAVYBEATARMY'
|
290 |
+
|
291 |
+
Or use this function with the original key:
|
292 |
+
|
293 |
+
>>> decipher_shift(ct, 1)
|
294 |
+
'GONAVYBEATARMY'
|
295 |
+
|
296 |
+
"""
|
297 |
+
return encipher_shift(msg, -key, symbols)
|
298 |
+
|
299 |
+
def encipher_rot13(msg, symbols=None):
|
300 |
+
"""
|
301 |
+
Performs the ROT13 encryption on a given plaintext ``msg``.
|
302 |
+
|
303 |
+
Explanation
|
304 |
+
===========
|
305 |
+
|
306 |
+
ROT13 is a substitution cipher which substitutes each letter
|
307 |
+
in the plaintext message for the letter furthest away from it
|
308 |
+
in the English alphabet.
|
309 |
+
|
310 |
+
Equivalently, it is just a Caeser (shift) cipher with a shift
|
311 |
+
key of 13 (midway point of the alphabet).
|
312 |
+
|
313 |
+
References
|
314 |
+
==========
|
315 |
+
|
316 |
+
.. [1] https://en.wikipedia.org/wiki/ROT13
|
317 |
+
|
318 |
+
See Also
|
319 |
+
========
|
320 |
+
|
321 |
+
decipher_rot13
|
322 |
+
encipher_shift
|
323 |
+
|
324 |
+
"""
|
325 |
+
return encipher_shift(msg, 13, symbols)
|
326 |
+
|
327 |
+
def decipher_rot13(msg, symbols=None):
|
328 |
+
"""
|
329 |
+
Performs the ROT13 decryption on a given plaintext ``msg``.
|
330 |
+
|
331 |
+
Explanation
|
332 |
+
============
|
333 |
+
|
334 |
+
``decipher_rot13`` is equivalent to ``encipher_rot13`` as both
|
335 |
+
``decipher_shift`` with a key of 13 and ``encipher_shift`` key with a
|
336 |
+
key of 13 will return the same results. Nonetheless,
|
337 |
+
``decipher_rot13`` has nonetheless been explicitly defined here for
|
338 |
+
consistency.
|
339 |
+
|
340 |
+
Examples
|
341 |
+
========
|
342 |
+
|
343 |
+
>>> from sympy.crypto.crypto import encipher_rot13, decipher_rot13
|
344 |
+
>>> msg = 'GONAVYBEATARMY'
|
345 |
+
>>> ciphertext = encipher_rot13(msg);ciphertext
|
346 |
+
'TBANILORNGNEZL'
|
347 |
+
>>> decipher_rot13(ciphertext)
|
348 |
+
'GONAVYBEATARMY'
|
349 |
+
>>> encipher_rot13(msg) == decipher_rot13(msg)
|
350 |
+
True
|
351 |
+
>>> msg == decipher_rot13(ciphertext)
|
352 |
+
True
|
353 |
+
|
354 |
+
"""
|
355 |
+
return decipher_shift(msg, 13, symbols)
|
356 |
+
|
357 |
+
######## affine cipher examples ############
|
358 |
+
|
359 |
+
|
360 |
+
def encipher_affine(msg, key, symbols=None, _inverse=False):
|
361 |
+
r"""
|
362 |
+
Performs the affine cipher encryption on plaintext ``msg``, and
|
363 |
+
returns the ciphertext.
|
364 |
+
|
365 |
+
Explanation
|
366 |
+
===========
|
367 |
+
|
368 |
+
Encryption is based on the map `x \rightarrow ax+b` (mod `N`)
|
369 |
+
where ``N`` is the number of characters in the alphabet.
|
370 |
+
Decryption is based on the map `x \rightarrow cx+d` (mod `N`),
|
371 |
+
where `c = a^{-1}` (mod `N`) and `d = -a^{-1}b` (mod `N`).
|
372 |
+
In particular, for the map to be invertible, we need
|
373 |
+
`\mathrm{gcd}(a, N) = 1` and an error will be raised if this is
|
374 |
+
not true.
|
375 |
+
|
376 |
+
Parameters
|
377 |
+
==========
|
378 |
+
|
379 |
+
msg : str
|
380 |
+
Characters that appear in ``symbols``.
|
381 |
+
|
382 |
+
a, b : int, int
|
383 |
+
A pair integers, with ``gcd(a, N) = 1`` (the secret key).
|
384 |
+
|
385 |
+
symbols
|
386 |
+
String of characters (default = uppercase letters).
|
387 |
+
|
388 |
+
When no symbols are given, ``msg`` is converted to upper case
|
389 |
+
letters and all other characters are ignored.
|
390 |
+
|
391 |
+
Returns
|
392 |
+
=======
|
393 |
+
|
394 |
+
ct
|
395 |
+
String of characters (the ciphertext message)
|
396 |
+
|
397 |
+
Notes
|
398 |
+
=====
|
399 |
+
|
400 |
+
ALGORITHM:
|
401 |
+
|
402 |
+
STEPS:
|
403 |
+
0. Number the letters of the alphabet from 0, ..., N
|
404 |
+
1. Compute from the string ``msg`` a list ``L1`` of
|
405 |
+
corresponding integers.
|
406 |
+
2. Compute from the list ``L1`` a new list ``L2``, given by
|
407 |
+
replacing ``x`` by ``a*x + b (mod N)``, for each element
|
408 |
+
``x`` in ``L1``.
|
409 |
+
3. Compute from the list ``L2`` a string ``ct`` of
|
410 |
+
corresponding letters.
|
411 |
+
|
412 |
+
This is a straightforward generalization of the shift cipher with
|
413 |
+
the added complexity of requiring 2 characters to be deciphered in
|
414 |
+
order to recover the key.
|
415 |
+
|
416 |
+
References
|
417 |
+
==========
|
418 |
+
|
419 |
+
.. [1] https://en.wikipedia.org/wiki/Affine_cipher
|
420 |
+
|
421 |
+
See Also
|
422 |
+
========
|
423 |
+
|
424 |
+
decipher_affine
|
425 |
+
|
426 |
+
"""
|
427 |
+
msg, _, A = _prep(msg, '', symbols)
|
428 |
+
N = len(A)
|
429 |
+
a, b = key
|
430 |
+
assert gcd(a, N) == 1
|
431 |
+
if _inverse:
|
432 |
+
c = mod_inverse(a, N)
|
433 |
+
d = -b*c
|
434 |
+
a, b = c, d
|
435 |
+
B = ''.join([A[(a*i + b) % N] for i in range(N)])
|
436 |
+
return translate(msg, A, B)
|
437 |
+
|
438 |
+
|
439 |
+
def decipher_affine(msg, key, symbols=None):
|
440 |
+
r"""
|
441 |
+
Return the deciphered text that was made from the mapping,
|
442 |
+
`x \rightarrow ax+b` (mod `N`), where ``N`` is the
|
443 |
+
number of characters in the alphabet. Deciphering is done by
|
444 |
+
reciphering with a new key: `x \rightarrow cx+d` (mod `N`),
|
445 |
+
where `c = a^{-1}` (mod `N`) and `d = -a^{-1}b` (mod `N`).
|
446 |
+
|
447 |
+
Examples
|
448 |
+
========
|
449 |
+
|
450 |
+
>>> from sympy.crypto.crypto import encipher_affine, decipher_affine
|
451 |
+
>>> msg = "GO NAVY BEAT ARMY"
|
452 |
+
>>> key = (3, 1)
|
453 |
+
>>> encipher_affine(msg, key)
|
454 |
+
'TROBMVENBGBALV'
|
455 |
+
>>> decipher_affine(_, key)
|
456 |
+
'GONAVYBEATARMY'
|
457 |
+
|
458 |
+
See Also
|
459 |
+
========
|
460 |
+
|
461 |
+
encipher_affine
|
462 |
+
|
463 |
+
"""
|
464 |
+
return encipher_affine(msg, key, symbols, _inverse=True)
|
465 |
+
|
466 |
+
|
467 |
+
def encipher_atbash(msg, symbols=None):
|
468 |
+
r"""
|
469 |
+
Enciphers a given ``msg`` into its Atbash ciphertext and returns it.
|
470 |
+
|
471 |
+
Explanation
|
472 |
+
===========
|
473 |
+
|
474 |
+
Atbash is a substitution cipher originally used to encrypt the Hebrew
|
475 |
+
alphabet. Atbash works on the principle of mapping each alphabet to its
|
476 |
+
reverse / counterpart (i.e. a would map to z, b to y etc.)
|
477 |
+
|
478 |
+
Atbash is functionally equivalent to the affine cipher with ``a = 25``
|
479 |
+
and ``b = 25``
|
480 |
+
|
481 |
+
See Also
|
482 |
+
========
|
483 |
+
|
484 |
+
decipher_atbash
|
485 |
+
|
486 |
+
"""
|
487 |
+
return encipher_affine(msg, (25, 25), symbols)
|
488 |
+
|
489 |
+
|
490 |
+
def decipher_atbash(msg, symbols=None):
|
491 |
+
r"""
|
492 |
+
Deciphers a given ``msg`` using Atbash cipher and returns it.
|
493 |
+
|
494 |
+
Explanation
|
495 |
+
===========
|
496 |
+
|
497 |
+
``decipher_atbash`` is functionally equivalent to ``encipher_atbash``.
|
498 |
+
However, it has still been added as a separate function to maintain
|
499 |
+
consistency.
|
500 |
+
|
501 |
+
Examples
|
502 |
+
========
|
503 |
+
|
504 |
+
>>> from sympy.crypto.crypto import encipher_atbash, decipher_atbash
|
505 |
+
>>> msg = 'GONAVYBEATARMY'
|
506 |
+
>>> encipher_atbash(msg)
|
507 |
+
'TLMZEBYVZGZINB'
|
508 |
+
>>> decipher_atbash(msg)
|
509 |
+
'TLMZEBYVZGZINB'
|
510 |
+
>>> encipher_atbash(msg) == decipher_atbash(msg)
|
511 |
+
True
|
512 |
+
>>> msg == encipher_atbash(encipher_atbash(msg))
|
513 |
+
True
|
514 |
+
|
515 |
+
References
|
516 |
+
==========
|
517 |
+
|
518 |
+
.. [1] https://en.wikipedia.org/wiki/Atbash
|
519 |
+
|
520 |
+
See Also
|
521 |
+
========
|
522 |
+
|
523 |
+
encipher_atbash
|
524 |
+
|
525 |
+
"""
|
526 |
+
return decipher_affine(msg, (25, 25), symbols)
|
527 |
+
|
528 |
+
#################### substitution cipher ###########################
|
529 |
+
|
530 |
+
|
531 |
+
def encipher_substitution(msg, old, new=None):
|
532 |
+
r"""
|
533 |
+
Returns the ciphertext obtained by replacing each character that
|
534 |
+
appears in ``old`` with the corresponding character in ``new``.
|
535 |
+
If ``old`` is a mapping, then new is ignored and the replacements
|
536 |
+
defined by ``old`` are used.
|
537 |
+
|
538 |
+
Explanation
|
539 |
+
===========
|
540 |
+
|
541 |
+
This is a more general than the affine cipher in that the key can
|
542 |
+
only be recovered by determining the mapping for each symbol.
|
543 |
+
Though in practice, once a few symbols are recognized the mappings
|
544 |
+
for other characters can be quickly guessed.
|
545 |
+
|
546 |
+
Examples
|
547 |
+
========
|
548 |
+
|
549 |
+
>>> from sympy.crypto.crypto import encipher_substitution, AZ
|
550 |
+
>>> old = 'OEYAG'
|
551 |
+
>>> new = '034^6'
|
552 |
+
>>> msg = AZ("go navy! beat army!")
|
553 |
+
>>> ct = encipher_substitution(msg, old, new); ct
|
554 |
+
'60N^V4B3^T^RM4'
|
555 |
+
|
556 |
+
To decrypt a substitution, reverse the last two arguments:
|
557 |
+
|
558 |
+
>>> encipher_substitution(ct, new, old)
|
559 |
+
'GONAVYBEATARMY'
|
560 |
+
|
561 |
+
In the special case where ``old`` and ``new`` are a permutation of
|
562 |
+
order 2 (representing a transposition of characters) their order
|
563 |
+
is immaterial:
|
564 |
+
|
565 |
+
>>> old = 'NAVY'
|
566 |
+
>>> new = 'ANYV'
|
567 |
+
>>> encipher = lambda x: encipher_substitution(x, old, new)
|
568 |
+
>>> encipher('NAVY')
|
569 |
+
'ANYV'
|
570 |
+
>>> encipher(_)
|
571 |
+
'NAVY'
|
572 |
+
|
573 |
+
The substitution cipher, in general, is a method
|
574 |
+
whereby "units" (not necessarily single characters) of plaintext
|
575 |
+
are replaced with ciphertext according to a regular system.
|
576 |
+
|
577 |
+
>>> ords = dict(zip('abc', ['\\%i' % ord(i) for i in 'abc']))
|
578 |
+
>>> print(encipher_substitution('abc', ords))
|
579 |
+
\97\98\99
|
580 |
+
|
581 |
+
References
|
582 |
+
==========
|
583 |
+
|
584 |
+
.. [1] https://en.wikipedia.org/wiki/Substitution_cipher
|
585 |
+
|
586 |
+
"""
|
587 |
+
return translate(msg, old, new)
|
588 |
+
|
589 |
+
|
590 |
+
######################################################################
|
591 |
+
#################### Vigenere cipher examples ########################
|
592 |
+
######################################################################
|
593 |
+
|
594 |
+
def encipher_vigenere(msg, key, symbols=None):
|
595 |
+
"""
|
596 |
+
Performs the Vigenere cipher encryption on plaintext ``msg``, and
|
597 |
+
returns the ciphertext.
|
598 |
+
|
599 |
+
Examples
|
600 |
+
========
|
601 |
+
|
602 |
+
>>> from sympy.crypto.crypto import encipher_vigenere, AZ
|
603 |
+
>>> key = "encrypt"
|
604 |
+
>>> msg = "meet me on monday"
|
605 |
+
>>> encipher_vigenere(msg, key)
|
606 |
+
'QRGKKTHRZQEBPR'
|
607 |
+
|
608 |
+
Section 1 of the Kryptos sculpture at the CIA headquarters
|
609 |
+
uses this cipher and also changes the order of the
|
610 |
+
alphabet [2]_. Here is the first line of that section of
|
611 |
+
the sculpture:
|
612 |
+
|
613 |
+
>>> from sympy.crypto.crypto import decipher_vigenere, padded_key
|
614 |
+
>>> alp = padded_key('KRYPTOS', AZ())
|
615 |
+
>>> key = 'PALIMPSEST'
|
616 |
+
>>> msg = 'EMUFPHZLRFAXYUSDJKZLDKRNSHGNFIVJ'
|
617 |
+
>>> decipher_vigenere(msg, key, alp)
|
618 |
+
'BETWEENSUBTLESHADINGANDTHEABSENC'
|
619 |
+
|
620 |
+
Explanation
|
621 |
+
===========
|
622 |
+
|
623 |
+
The Vigenere cipher is named after Blaise de Vigenere, a sixteenth
|
624 |
+
century diplomat and cryptographer, by a historical accident.
|
625 |
+
Vigenere actually invented a different and more complicated cipher.
|
626 |
+
The so-called *Vigenere cipher* was actually invented
|
627 |
+
by Giovan Batista Belaso in 1553.
|
628 |
+
|
629 |
+
This cipher was used in the 1800's, for example, during the American
|
630 |
+
Civil War. The Confederacy used a brass cipher disk to implement the
|
631 |
+
Vigenere cipher (now on display in the NSA Museum in Fort
|
632 |
+
Meade) [1]_.
|
633 |
+
|
634 |
+
The Vigenere cipher is a generalization of the shift cipher.
|
635 |
+
Whereas the shift cipher shifts each letter by the same amount
|
636 |
+
(that amount being the key of the shift cipher) the Vigenere
|
637 |
+
cipher shifts a letter by an amount determined by the key (which is
|
638 |
+
a word or phrase known only to the sender and receiver).
|
639 |
+
|
640 |
+
For example, if the key was a single letter, such as "C", then the
|
641 |
+
so-called Vigenere cipher is actually a shift cipher with a
|
642 |
+
shift of `2` (since "C" is the 2nd letter of the alphabet, if
|
643 |
+
you start counting at `0`). If the key was a word with two
|
644 |
+
letters, such as "CA", then the so-called Vigenere cipher will
|
645 |
+
shift letters in even positions by `2` and letters in odd positions
|
646 |
+
are left alone (shifted by `0`, since "A" is the 0th letter, if
|
647 |
+
you start counting at `0`).
|
648 |
+
|
649 |
+
|
650 |
+
ALGORITHM:
|
651 |
+
|
652 |
+
INPUT:
|
653 |
+
|
654 |
+
``msg``: string of characters that appear in ``symbols``
|
655 |
+
(the plaintext)
|
656 |
+
|
657 |
+
``key``: a string of characters that appear in ``symbols``
|
658 |
+
(the secret key)
|
659 |
+
|
660 |
+
``symbols``: a string of letters defining the alphabet
|
661 |
+
|
662 |
+
|
663 |
+
OUTPUT:
|
664 |
+
|
665 |
+
``ct``: string of characters (the ciphertext message)
|
666 |
+
|
667 |
+
STEPS:
|
668 |
+
0. Number the letters of the alphabet from 0, ..., N
|
669 |
+
1. Compute from the string ``key`` a list ``L1`` of
|
670 |
+
corresponding integers. Let ``n1 = len(L1)``.
|
671 |
+
2. Compute from the string ``msg`` a list ``L2`` of
|
672 |
+
corresponding integers. Let ``n2 = len(L2)``.
|
673 |
+
3. Break ``L2`` up sequentially into sublists of size
|
674 |
+
``n1``; the last sublist may be smaller than ``n1``
|
675 |
+
4. For each of these sublists ``L`` of ``L2``, compute a
|
676 |
+
new list ``C`` given by ``C[i] = L[i] + L1[i] (mod N)``
|
677 |
+
to the ``i``-th element in the sublist, for each ``i``.
|
678 |
+
5. Assemble these lists ``C`` by concatenation into a new
|
679 |
+
list of length ``n2``.
|
680 |
+
6. Compute from the new list a string ``ct`` of
|
681 |
+
corresponding letters.
|
682 |
+
|
683 |
+
Once it is known that the key is, say, `n` characters long,
|
684 |
+
frequency analysis can be applied to every `n`-th letter of
|
685 |
+
the ciphertext to determine the plaintext. This method is
|
686 |
+
called *Kasiski examination* (although it was first discovered
|
687 |
+
by Babbage). If they key is as long as the message and is
|
688 |
+
comprised of randomly selected characters -- a one-time pad -- the
|
689 |
+
message is theoretically unbreakable.
|
690 |
+
|
691 |
+
The cipher Vigenere actually discovered is an "auto-key" cipher
|
692 |
+
described as follows.
|
693 |
+
|
694 |
+
ALGORITHM:
|
695 |
+
|
696 |
+
INPUT:
|
697 |
+
|
698 |
+
``key``: a string of letters (the secret key)
|
699 |
+
|
700 |
+
``msg``: string of letters (the plaintext message)
|
701 |
+
|
702 |
+
OUTPUT:
|
703 |
+
|
704 |
+
``ct``: string of upper-case letters (the ciphertext message)
|
705 |
+
|
706 |
+
STEPS:
|
707 |
+
0. Number the letters of the alphabet from 0, ..., N
|
708 |
+
1. Compute from the string ``msg`` a list ``L2`` of
|
709 |
+
corresponding integers. Let ``n2 = len(L2)``.
|
710 |
+
2. Let ``n1`` be the length of the key. Append to the
|
711 |
+
string ``key`` the first ``n2 - n1`` characters of
|
712 |
+
the plaintext message. Compute from this string (also of
|
713 |
+
length ``n2``) a list ``L1`` of integers corresponding
|
714 |
+
to the letter numbers in the first step.
|
715 |
+
3. Compute a new list ``C`` given by
|
716 |
+
``C[i] = L1[i] + L2[i] (mod N)``.
|
717 |
+
4. Compute from the new list a string ``ct`` of letters
|
718 |
+
corresponding to the new integers.
|
719 |
+
|
720 |
+
To decipher the auto-key ciphertext, the key is used to decipher
|
721 |
+
the first ``n1`` characters and then those characters become the
|
722 |
+
key to decipher the next ``n1`` characters, etc...:
|
723 |
+
|
724 |
+
>>> m = AZ('go navy, beat army! yes you can'); m
|
725 |
+
'GONAVYBEATARMYYESYOUCAN'
|
726 |
+
>>> key = AZ('gold bug'); n1 = len(key); n2 = len(m)
|
727 |
+
>>> auto_key = key + m[:n2 - n1]; auto_key
|
728 |
+
'GOLDBUGGONAVYBEATARMYYE'
|
729 |
+
>>> ct = encipher_vigenere(m, auto_key); ct
|
730 |
+
'MCYDWSHKOGAMKZCELYFGAYR'
|
731 |
+
>>> n1 = len(key)
|
732 |
+
>>> pt = []
|
733 |
+
>>> while ct:
|
734 |
+
... part, ct = ct[:n1], ct[n1:]
|
735 |
+
... pt.append(decipher_vigenere(part, key))
|
736 |
+
... key = pt[-1]
|
737 |
+
...
|
738 |
+
>>> ''.join(pt) == m
|
739 |
+
True
|
740 |
+
|
741 |
+
References
|
742 |
+
==========
|
743 |
+
|
744 |
+
.. [1] https://en.wikipedia.org/wiki/Vigenere_cipher
|
745 |
+
.. [2] https://web.archive.org/web/20071116100808/https://filebox.vt.edu/users/batman/kryptos.html
|
746 |
+
(short URL: https://goo.gl/ijr22d)
|
747 |
+
|
748 |
+
"""
|
749 |
+
msg, key, A = _prep(msg, key, symbols)
|
750 |
+
map = {c: i for i, c in enumerate(A)}
|
751 |
+
key = [map[c] for c in key]
|
752 |
+
N = len(map)
|
753 |
+
k = len(key)
|
754 |
+
rv = []
|
755 |
+
for i, m in enumerate(msg):
|
756 |
+
rv.append(A[(map[m] + key[i % k]) % N])
|
757 |
+
rv = ''.join(rv)
|
758 |
+
return rv
|
759 |
+
|
760 |
+
|
761 |
+
def decipher_vigenere(msg, key, symbols=None):
|
762 |
+
"""
|
763 |
+
Decode using the Vigenere cipher.
|
764 |
+
|
765 |
+
Examples
|
766 |
+
========
|
767 |
+
|
768 |
+
>>> from sympy.crypto.crypto import decipher_vigenere
|
769 |
+
>>> key = "encrypt"
|
770 |
+
>>> ct = "QRGK kt HRZQE BPR"
|
771 |
+
>>> decipher_vigenere(ct, key)
|
772 |
+
'MEETMEONMONDAY'
|
773 |
+
|
774 |
+
"""
|
775 |
+
msg, key, A = _prep(msg, key, symbols)
|
776 |
+
map = {c: i for i, c in enumerate(A)}
|
777 |
+
N = len(A) # normally, 26
|
778 |
+
K = [map[c] for c in key]
|
779 |
+
n = len(K)
|
780 |
+
C = [map[c] for c in msg]
|
781 |
+
rv = ''.join([A[(-K[i % n] + c) % N] for i, c in enumerate(C)])
|
782 |
+
return rv
|
783 |
+
|
784 |
+
|
785 |
+
#################### Hill cipher ########################
|
786 |
+
|
787 |
+
|
788 |
+
def encipher_hill(msg, key, symbols=None, pad="Q"):
|
789 |
+
r"""
|
790 |
+
Return the Hill cipher encryption of ``msg``.
|
791 |
+
|
792 |
+
Explanation
|
793 |
+
===========
|
794 |
+
|
795 |
+
The Hill cipher [1]_, invented by Lester S. Hill in the 1920's [2]_,
|
796 |
+
was the first polygraphic cipher in which it was practical
|
797 |
+
(though barely) to operate on more than three symbols at once.
|
798 |
+
The following discussion assumes an elementary knowledge of
|
799 |
+
matrices.
|
800 |
+
|
801 |
+
First, each letter is first encoded as a number starting with 0.
|
802 |
+
Suppose your message `msg` consists of `n` capital letters, with no
|
803 |
+
spaces. This may be regarded an `n`-tuple M of elements of
|
804 |
+
`Z_{26}` (if the letters are those of the English alphabet). A key
|
805 |
+
in the Hill cipher is a `k x k` matrix `K`, all of whose entries
|
806 |
+
are in `Z_{26}`, such that the matrix `K` is invertible (i.e., the
|
807 |
+
linear transformation `K: Z_{N}^k \rightarrow Z_{N}^k`
|
808 |
+
is one-to-one).
|
809 |
+
|
810 |
+
|
811 |
+
Parameters
|
812 |
+
==========
|
813 |
+
|
814 |
+
msg
|
815 |
+
Plaintext message of `n` upper-case letters.
|
816 |
+
|
817 |
+
key
|
818 |
+
A `k \times k` invertible matrix `K`, all of whose entries are
|
819 |
+
in `Z_{26}` (or whatever number of symbols are being used).
|
820 |
+
|
821 |
+
pad
|
822 |
+
Character (default "Q") to use to make length of text be a
|
823 |
+
multiple of ``k``.
|
824 |
+
|
825 |
+
Returns
|
826 |
+
=======
|
827 |
+
|
828 |
+
ct
|
829 |
+
Ciphertext of upper-case letters.
|
830 |
+
|
831 |
+
Notes
|
832 |
+
=====
|
833 |
+
|
834 |
+
ALGORITHM:
|
835 |
+
|
836 |
+
STEPS:
|
837 |
+
0. Number the letters of the alphabet from 0, ..., N
|
838 |
+
1. Compute from the string ``msg`` a list ``L`` of
|
839 |
+
corresponding integers. Let ``n = len(L)``.
|
840 |
+
2. Break the list ``L`` up into ``t = ceiling(n/k)``
|
841 |
+
sublists ``L_1``, ..., ``L_t`` of size ``k`` (with
|
842 |
+
the last list "padded" to ensure its size is
|
843 |
+
``k``).
|
844 |
+
3. Compute new list ``C_1``, ..., ``C_t`` given by
|
845 |
+
``C[i] = K*L_i`` (arithmetic is done mod N), for each
|
846 |
+
``i``.
|
847 |
+
4. Concatenate these into a list ``C = C_1 + ... + C_t``.
|
848 |
+
5. Compute from ``C`` a string ``ct`` of corresponding
|
849 |
+
letters. This has length ``k*t``.
|
850 |
+
|
851 |
+
References
|
852 |
+
==========
|
853 |
+
|
854 |
+
.. [1] https://en.wikipedia.org/wiki/Hill_cipher
|
855 |
+
.. [2] Lester S. Hill, Cryptography in an Algebraic Alphabet,
|
856 |
+
The American Mathematical Monthly Vol.36, June-July 1929,
|
857 |
+
pp.306-312.
|
858 |
+
|
859 |
+
See Also
|
860 |
+
========
|
861 |
+
|
862 |
+
decipher_hill
|
863 |
+
|
864 |
+
"""
|
865 |
+
assert key.is_square
|
866 |
+
assert len(pad) == 1
|
867 |
+
msg, pad, A = _prep(msg, pad, symbols)
|
868 |
+
map = {c: i for i, c in enumerate(A)}
|
869 |
+
P = [map[c] for c in msg]
|
870 |
+
N = len(A)
|
871 |
+
k = key.cols
|
872 |
+
n = len(P)
|
873 |
+
m, r = divmod(n, k)
|
874 |
+
if r:
|
875 |
+
P = P + [map[pad]]*(k - r)
|
876 |
+
m += 1
|
877 |
+
rv = ''.join([A[c % N] for j in range(m) for c in
|
878 |
+
list(key*Matrix(k, 1, [P[i]
|
879 |
+
for i in range(k*j, k*(j + 1))]))])
|
880 |
+
return rv
|
881 |
+
|
882 |
+
|
883 |
+
def decipher_hill(msg, key, symbols=None):
|
884 |
+
"""
|
885 |
+
Deciphering is the same as enciphering but using the inverse of the
|
886 |
+
key matrix.
|
887 |
+
|
888 |
+
Examples
|
889 |
+
========
|
890 |
+
|
891 |
+
>>> from sympy.crypto.crypto import encipher_hill, decipher_hill
|
892 |
+
>>> from sympy import Matrix
|
893 |
+
|
894 |
+
>>> key = Matrix([[1, 2], [3, 5]])
|
895 |
+
>>> encipher_hill("meet me on monday", key)
|
896 |
+
'UEQDUEODOCTCWQ'
|
897 |
+
>>> decipher_hill(_, key)
|
898 |
+
'MEETMEONMONDAY'
|
899 |
+
|
900 |
+
When the length of the plaintext (stripped of invalid characters)
|
901 |
+
is not a multiple of the key dimension, extra characters will
|
902 |
+
appear at the end of the enciphered and deciphered text. In order to
|
903 |
+
decipher the text, those characters must be included in the text to
|
904 |
+
be deciphered. In the following, the key has a dimension of 4 but
|
905 |
+
the text is 2 short of being a multiple of 4 so two characters will
|
906 |
+
be added.
|
907 |
+
|
908 |
+
>>> key = Matrix([[1, 1, 1, 2], [0, 1, 1, 0],
|
909 |
+
... [2, 2, 3, 4], [1, 1, 0, 1]])
|
910 |
+
>>> msg = "ST"
|
911 |
+
>>> encipher_hill(msg, key)
|
912 |
+
'HJEB'
|
913 |
+
>>> decipher_hill(_, key)
|
914 |
+
'STQQ'
|
915 |
+
>>> encipher_hill(msg, key, pad="Z")
|
916 |
+
'ISPK'
|
917 |
+
>>> decipher_hill(_, key)
|
918 |
+
'STZZ'
|
919 |
+
|
920 |
+
If the last two characters of the ciphertext were ignored in
|
921 |
+
either case, the wrong plaintext would be recovered:
|
922 |
+
|
923 |
+
>>> decipher_hill("HD", key)
|
924 |
+
'ORMV'
|
925 |
+
>>> decipher_hill("IS", key)
|
926 |
+
'UIKY'
|
927 |
+
|
928 |
+
See Also
|
929 |
+
========
|
930 |
+
|
931 |
+
encipher_hill
|
932 |
+
|
933 |
+
"""
|
934 |
+
assert key.is_square
|
935 |
+
msg, _, A = _prep(msg, '', symbols)
|
936 |
+
map = {c: i for i, c in enumerate(A)}
|
937 |
+
C = [map[c] for c in msg]
|
938 |
+
N = len(A)
|
939 |
+
k = key.cols
|
940 |
+
n = len(C)
|
941 |
+
m, r = divmod(n, k)
|
942 |
+
if r:
|
943 |
+
C = C + [0]*(k - r)
|
944 |
+
m += 1
|
945 |
+
key_inv = key.inv_mod(N)
|
946 |
+
rv = ''.join([A[p % N] for j in range(m) for p in
|
947 |
+
list(key_inv*Matrix(
|
948 |
+
k, 1, [C[i] for i in range(k*j, k*(j + 1))]))])
|
949 |
+
return rv
|
950 |
+
|
951 |
+
|
952 |
+
#################### Bifid cipher ########################
|
953 |
+
|
954 |
+
|
955 |
+
def encipher_bifid(msg, key, symbols=None):
|
956 |
+
r"""
|
957 |
+
Performs the Bifid cipher encryption on plaintext ``msg``, and
|
958 |
+
returns the ciphertext.
|
959 |
+
|
960 |
+
This is the version of the Bifid cipher that uses an `n \times n`
|
961 |
+
Polybius square.
|
962 |
+
|
963 |
+
Parameters
|
964 |
+
==========
|
965 |
+
|
966 |
+
msg
|
967 |
+
Plaintext string.
|
968 |
+
|
969 |
+
key
|
970 |
+
Short string for key.
|
971 |
+
|
972 |
+
Duplicate characters are ignored and then it is padded with the
|
973 |
+
characters in ``symbols`` that were not in the short key.
|
974 |
+
|
975 |
+
symbols
|
976 |
+
`n \times n` characters defining the alphabet.
|
977 |
+
|
978 |
+
(default is string.printable)
|
979 |
+
|
980 |
+
Returns
|
981 |
+
=======
|
982 |
+
|
983 |
+
ciphertext
|
984 |
+
Ciphertext using Bifid5 cipher without spaces.
|
985 |
+
|
986 |
+
See Also
|
987 |
+
========
|
988 |
+
|
989 |
+
decipher_bifid, encipher_bifid5, encipher_bifid6
|
990 |
+
|
991 |
+
References
|
992 |
+
==========
|
993 |
+
|
994 |
+
.. [1] https://en.wikipedia.org/wiki/Bifid_cipher
|
995 |
+
|
996 |
+
"""
|
997 |
+
msg, key, A = _prep(msg, key, symbols, bifid10)
|
998 |
+
long_key = ''.join(uniq(key)) or A
|
999 |
+
|
1000 |
+
n = len(A)**.5
|
1001 |
+
if n != int(n):
|
1002 |
+
raise ValueError(
|
1003 |
+
'Length of alphabet (%s) is not a square number.' % len(A))
|
1004 |
+
N = int(n)
|
1005 |
+
if len(long_key) < N**2:
|
1006 |
+
long_key = list(long_key) + [x for x in A if x not in long_key]
|
1007 |
+
|
1008 |
+
# the fractionalization
|
1009 |
+
row_col = {ch: divmod(i, N) for i, ch in enumerate(long_key)}
|
1010 |
+
r, c = zip(*[row_col[x] for x in msg])
|
1011 |
+
rc = r + c
|
1012 |
+
ch = {i: ch for ch, i in row_col.items()}
|
1013 |
+
rv = ''.join(ch[i] for i in zip(rc[::2], rc[1::2]))
|
1014 |
+
return rv
|
1015 |
+
|
1016 |
+
|
1017 |
+
def decipher_bifid(msg, key, symbols=None):
|
1018 |
+
r"""
|
1019 |
+
Performs the Bifid cipher decryption on ciphertext ``msg``, and
|
1020 |
+
returns the plaintext.
|
1021 |
+
|
1022 |
+
This is the version of the Bifid cipher that uses the `n \times n`
|
1023 |
+
Polybius square.
|
1024 |
+
|
1025 |
+
Parameters
|
1026 |
+
==========
|
1027 |
+
|
1028 |
+
msg
|
1029 |
+
Ciphertext string.
|
1030 |
+
|
1031 |
+
key
|
1032 |
+
Short string for key.
|
1033 |
+
|
1034 |
+
Duplicate characters are ignored and then it is padded with the
|
1035 |
+
characters in symbols that were not in the short key.
|
1036 |
+
|
1037 |
+
symbols
|
1038 |
+
`n \times n` characters defining the alphabet.
|
1039 |
+
|
1040 |
+
(default=string.printable, a `10 \times 10` matrix)
|
1041 |
+
|
1042 |
+
Returns
|
1043 |
+
=======
|
1044 |
+
|
1045 |
+
deciphered
|
1046 |
+
Deciphered text.
|
1047 |
+
|
1048 |
+
Examples
|
1049 |
+
========
|
1050 |
+
|
1051 |
+
>>> from sympy.crypto.crypto import (
|
1052 |
+
... encipher_bifid, decipher_bifid, AZ)
|
1053 |
+
|
1054 |
+
Do an encryption using the bifid5 alphabet:
|
1055 |
+
|
1056 |
+
>>> alp = AZ().replace('J', '')
|
1057 |
+
>>> ct = AZ("meet me on monday!")
|
1058 |
+
>>> key = AZ("gold bug")
|
1059 |
+
>>> encipher_bifid(ct, key, alp)
|
1060 |
+
'IEILHHFSTSFQYE'
|
1061 |
+
|
1062 |
+
When entering the text or ciphertext, spaces are ignored so it
|
1063 |
+
can be formatted as desired. Re-entering the ciphertext from the
|
1064 |
+
preceding, putting 4 characters per line and padding with an extra
|
1065 |
+
J, does not cause problems for the deciphering:
|
1066 |
+
|
1067 |
+
>>> decipher_bifid('''
|
1068 |
+
... IEILH
|
1069 |
+
... HFSTS
|
1070 |
+
... FQYEJ''', key, alp)
|
1071 |
+
'MEETMEONMONDAY'
|
1072 |
+
|
1073 |
+
When no alphabet is given, all 100 printable characters will be
|
1074 |
+
used:
|
1075 |
+
|
1076 |
+
>>> key = ''
|
1077 |
+
>>> encipher_bifid('hello world!', key)
|
1078 |
+
'bmtwmg-bIo*w'
|
1079 |
+
>>> decipher_bifid(_, key)
|
1080 |
+
'hello world!'
|
1081 |
+
|
1082 |
+
If the key is changed, a different encryption is obtained:
|
1083 |
+
|
1084 |
+
>>> key = 'gold bug'
|
1085 |
+
>>> encipher_bifid('hello world!', 'gold_bug')
|
1086 |
+
'hg2sfuei7t}w'
|
1087 |
+
|
1088 |
+
And if the key used to decrypt the message is not exact, the
|
1089 |
+
original text will not be perfectly obtained:
|
1090 |
+
|
1091 |
+
>>> decipher_bifid(_, 'gold pug')
|
1092 |
+
'heldo~wor6d!'
|
1093 |
+
|
1094 |
+
"""
|
1095 |
+
msg, _, A = _prep(msg, '', symbols, bifid10)
|
1096 |
+
long_key = ''.join(uniq(key)) or A
|
1097 |
+
|
1098 |
+
n = len(A)**.5
|
1099 |
+
if n != int(n):
|
1100 |
+
raise ValueError(
|
1101 |
+
'Length of alphabet (%s) is not a square number.' % len(A))
|
1102 |
+
N = int(n)
|
1103 |
+
if len(long_key) < N**2:
|
1104 |
+
long_key = list(long_key) + [x for x in A if x not in long_key]
|
1105 |
+
|
1106 |
+
# the reverse fractionalization
|
1107 |
+
row_col = {
|
1108 |
+
ch: divmod(i, N) for i, ch in enumerate(long_key)}
|
1109 |
+
rc = [i for c in msg for i in row_col[c]]
|
1110 |
+
n = len(msg)
|
1111 |
+
rc = zip(*(rc[:n], rc[n:]))
|
1112 |
+
ch = {i: ch for ch, i in row_col.items()}
|
1113 |
+
rv = ''.join(ch[i] for i in rc)
|
1114 |
+
return rv
|
1115 |
+
|
1116 |
+
|
1117 |
+
def bifid_square(key):
|
1118 |
+
"""Return characters of ``key`` arranged in a square.
|
1119 |
+
|
1120 |
+
Examples
|
1121 |
+
========
|
1122 |
+
|
1123 |
+
>>> from sympy.crypto.crypto import (
|
1124 |
+
... bifid_square, AZ, padded_key, bifid5)
|
1125 |
+
>>> bifid_square(AZ().replace('J', ''))
|
1126 |
+
Matrix([
|
1127 |
+
[A, B, C, D, E],
|
1128 |
+
[F, G, H, I, K],
|
1129 |
+
[L, M, N, O, P],
|
1130 |
+
[Q, R, S, T, U],
|
1131 |
+
[V, W, X, Y, Z]])
|
1132 |
+
|
1133 |
+
>>> bifid_square(padded_key(AZ('gold bug!'), bifid5))
|
1134 |
+
Matrix([
|
1135 |
+
[G, O, L, D, B],
|
1136 |
+
[U, A, C, E, F],
|
1137 |
+
[H, I, K, M, N],
|
1138 |
+
[P, Q, R, S, T],
|
1139 |
+
[V, W, X, Y, Z]])
|
1140 |
+
|
1141 |
+
See Also
|
1142 |
+
========
|
1143 |
+
|
1144 |
+
padded_key
|
1145 |
+
|
1146 |
+
"""
|
1147 |
+
A = ''.join(uniq(''.join(key)))
|
1148 |
+
n = len(A)**.5
|
1149 |
+
if n != int(n):
|
1150 |
+
raise ValueError(
|
1151 |
+
'Length of alphabet (%s) is not a square number.' % len(A))
|
1152 |
+
n = int(n)
|
1153 |
+
f = lambda i, j: Symbol(A[n*i + j])
|
1154 |
+
rv = Matrix(n, n, f)
|
1155 |
+
return rv
|
1156 |
+
|
1157 |
+
|
1158 |
+
def encipher_bifid5(msg, key):
|
1159 |
+
r"""
|
1160 |
+
Performs the Bifid cipher encryption on plaintext ``msg``, and
|
1161 |
+
returns the ciphertext.
|
1162 |
+
|
1163 |
+
Explanation
|
1164 |
+
===========
|
1165 |
+
|
1166 |
+
This is the version of the Bifid cipher that uses the `5 \times 5`
|
1167 |
+
Polybius square. The letter "J" is ignored so it must be replaced
|
1168 |
+
with something else (traditionally an "I") before encryption.
|
1169 |
+
|
1170 |
+
ALGORITHM: (5x5 case)
|
1171 |
+
|
1172 |
+
STEPS:
|
1173 |
+
0. Create the `5 \times 5` Polybius square ``S`` associated
|
1174 |
+
to ``key`` as follows:
|
1175 |
+
|
1176 |
+
a) moving from left-to-right, top-to-bottom,
|
1177 |
+
place the letters of the key into a `5 \times 5`
|
1178 |
+
matrix,
|
1179 |
+
b) if the key has less than 25 letters, add the
|
1180 |
+
letters of the alphabet not in the key until the
|
1181 |
+
`5 \times 5` square is filled.
|
1182 |
+
|
1183 |
+
1. Create a list ``P`` of pairs of numbers which are the
|
1184 |
+
coordinates in the Polybius square of the letters in
|
1185 |
+
``msg``.
|
1186 |
+
2. Let ``L1`` be the list of all first coordinates of ``P``
|
1187 |
+
(length of ``L1 = n``), let ``L2`` be the list of all
|
1188 |
+
second coordinates of ``P`` (so the length of ``L2``
|
1189 |
+
is also ``n``).
|
1190 |
+
3. Let ``L`` be the concatenation of ``L1`` and ``L2``
|
1191 |
+
(length ``L = 2*n``), except that consecutive numbers
|
1192 |
+
are paired ``(L[2*i], L[2*i + 1])``. You can regard
|
1193 |
+
``L`` as a list of pairs of length ``n``.
|
1194 |
+
4. Let ``C`` be the list of all letters which are of the
|
1195 |
+
form ``S[i, j]``, for all ``(i, j)`` in ``L``. As a
|
1196 |
+
string, this is the ciphertext of ``msg``.
|
1197 |
+
|
1198 |
+
Parameters
|
1199 |
+
==========
|
1200 |
+
|
1201 |
+
msg : str
|
1202 |
+
Plaintext string.
|
1203 |
+
|
1204 |
+
Converted to upper case and filtered of anything but all letters
|
1205 |
+
except J.
|
1206 |
+
|
1207 |
+
key
|
1208 |
+
Short string for key; non-alphabetic letters, J and duplicated
|
1209 |
+
characters are ignored and then, if the length is less than 25
|
1210 |
+
characters, it is padded with other letters of the alphabet
|
1211 |
+
(in alphabetical order).
|
1212 |
+
|
1213 |
+
Returns
|
1214 |
+
=======
|
1215 |
+
|
1216 |
+
ct
|
1217 |
+
Ciphertext (all caps, no spaces).
|
1218 |
+
|
1219 |
+
Examples
|
1220 |
+
========
|
1221 |
+
|
1222 |
+
>>> from sympy.crypto.crypto import (
|
1223 |
+
... encipher_bifid5, decipher_bifid5)
|
1224 |
+
|
1225 |
+
"J" will be omitted unless it is replaced with something else:
|
1226 |
+
|
1227 |
+
>>> round_trip = lambda m, k: \
|
1228 |
+
... decipher_bifid5(encipher_bifid5(m, k), k)
|
1229 |
+
>>> key = 'a'
|
1230 |
+
>>> msg = "JOSIE"
|
1231 |
+
>>> round_trip(msg, key)
|
1232 |
+
'OSIE'
|
1233 |
+
>>> round_trip(msg.replace("J", "I"), key)
|
1234 |
+
'IOSIE'
|
1235 |
+
>>> j = "QIQ"
|
1236 |
+
>>> round_trip(msg.replace("J", j), key).replace(j, "J")
|
1237 |
+
'JOSIE'
|
1238 |
+
|
1239 |
+
|
1240 |
+
Notes
|
1241 |
+
=====
|
1242 |
+
|
1243 |
+
The Bifid cipher was invented around 1901 by Felix Delastelle.
|
1244 |
+
It is a *fractional substitution* cipher, where letters are
|
1245 |
+
replaced by pairs of symbols from a smaller alphabet. The
|
1246 |
+
cipher uses a `5 \times 5` square filled with some ordering of the
|
1247 |
+
alphabet, except that "J" is replaced with "I" (this is a so-called
|
1248 |
+
Polybius square; there is a `6 \times 6` analog if you add back in
|
1249 |
+
"J" and also append onto the usual 26 letter alphabet, the digits
|
1250 |
+
0, 1, ..., 9).
|
1251 |
+
According to Helen Gaines' book *Cryptanalysis*, this type of cipher
|
1252 |
+
was used in the field by the German Army during World War I.
|
1253 |
+
|
1254 |
+
See Also
|
1255 |
+
========
|
1256 |
+
|
1257 |
+
decipher_bifid5, encipher_bifid
|
1258 |
+
|
1259 |
+
"""
|
1260 |
+
msg, key, _ = _prep(msg.upper(), key.upper(), None, bifid5)
|
1261 |
+
key = padded_key(key, bifid5)
|
1262 |
+
return encipher_bifid(msg, '', key)
|
1263 |
+
|
1264 |
+
|
1265 |
+
def decipher_bifid5(msg, key):
|
1266 |
+
r"""
|
1267 |
+
Return the Bifid cipher decryption of ``msg``.
|
1268 |
+
|
1269 |
+
Explanation
|
1270 |
+
===========
|
1271 |
+
|
1272 |
+
This is the version of the Bifid cipher that uses the `5 \times 5`
|
1273 |
+
Polybius square; the letter "J" is ignored unless a ``key`` of
|
1274 |
+
length 25 is used.
|
1275 |
+
|
1276 |
+
Parameters
|
1277 |
+
==========
|
1278 |
+
|
1279 |
+
msg
|
1280 |
+
Ciphertext string.
|
1281 |
+
|
1282 |
+
key
|
1283 |
+
Short string for key; duplicated characters are ignored and if
|
1284 |
+
the length is less then 25 characters, it will be padded with
|
1285 |
+
other letters from the alphabet omitting "J".
|
1286 |
+
Non-alphabetic characters are ignored.
|
1287 |
+
|
1288 |
+
Returns
|
1289 |
+
=======
|
1290 |
+
|
1291 |
+
plaintext
|
1292 |
+
Plaintext from Bifid5 cipher (all caps, no spaces).
|
1293 |
+
|
1294 |
+
Examples
|
1295 |
+
========
|
1296 |
+
|
1297 |
+
>>> from sympy.crypto.crypto import encipher_bifid5, decipher_bifid5
|
1298 |
+
>>> key = "gold bug"
|
1299 |
+
>>> encipher_bifid5('meet me on friday', key)
|
1300 |
+
'IEILEHFSTSFXEE'
|
1301 |
+
>>> encipher_bifid5('meet me on monday', key)
|
1302 |
+
'IEILHHFSTSFQYE'
|
1303 |
+
>>> decipher_bifid5(_, key)
|
1304 |
+
'MEETMEONMONDAY'
|
1305 |
+
|
1306 |
+
"""
|
1307 |
+
msg, key, _ = _prep(msg.upper(), key.upper(), None, bifid5)
|
1308 |
+
key = padded_key(key, bifid5)
|
1309 |
+
return decipher_bifid(msg, '', key)
|
1310 |
+
|
1311 |
+
|
1312 |
+
def bifid5_square(key=None):
|
1313 |
+
r"""
|
1314 |
+
5x5 Polybius square.
|
1315 |
+
|
1316 |
+
Produce the Polybius square for the `5 \times 5` Bifid cipher.
|
1317 |
+
|
1318 |
+
Examples
|
1319 |
+
========
|
1320 |
+
|
1321 |
+
>>> from sympy.crypto.crypto import bifid5_square
|
1322 |
+
>>> bifid5_square("gold bug")
|
1323 |
+
Matrix([
|
1324 |
+
[G, O, L, D, B],
|
1325 |
+
[U, A, C, E, F],
|
1326 |
+
[H, I, K, M, N],
|
1327 |
+
[P, Q, R, S, T],
|
1328 |
+
[V, W, X, Y, Z]])
|
1329 |
+
|
1330 |
+
"""
|
1331 |
+
if not key:
|
1332 |
+
key = bifid5
|
1333 |
+
else:
|
1334 |
+
_, key, _ = _prep('', key.upper(), None, bifid5)
|
1335 |
+
key = padded_key(key, bifid5)
|
1336 |
+
return bifid_square(key)
|
1337 |
+
|
1338 |
+
|
1339 |
+
def encipher_bifid6(msg, key):
|
1340 |
+
r"""
|
1341 |
+
Performs the Bifid cipher encryption on plaintext ``msg``, and
|
1342 |
+
returns the ciphertext.
|
1343 |
+
|
1344 |
+
This is the version of the Bifid cipher that uses the `6 \times 6`
|
1345 |
+
Polybius square.
|
1346 |
+
|
1347 |
+
Parameters
|
1348 |
+
==========
|
1349 |
+
|
1350 |
+
msg
|
1351 |
+
Plaintext string (digits okay).
|
1352 |
+
|
1353 |
+
key
|
1354 |
+
Short string for key (digits okay).
|
1355 |
+
|
1356 |
+
If ``key`` is less than 36 characters long, the square will be
|
1357 |
+
filled with letters A through Z and digits 0 through 9.
|
1358 |
+
|
1359 |
+
Returns
|
1360 |
+
=======
|
1361 |
+
|
1362 |
+
ciphertext
|
1363 |
+
Ciphertext from Bifid cipher (all caps, no spaces).
|
1364 |
+
|
1365 |
+
See Also
|
1366 |
+
========
|
1367 |
+
|
1368 |
+
decipher_bifid6, encipher_bifid
|
1369 |
+
|
1370 |
+
"""
|
1371 |
+
msg, key, _ = _prep(msg.upper(), key.upper(), None, bifid6)
|
1372 |
+
key = padded_key(key, bifid6)
|
1373 |
+
return encipher_bifid(msg, '', key)
|
1374 |
+
|
1375 |
+
|
1376 |
+
def decipher_bifid6(msg, key):
|
1377 |
+
r"""
|
1378 |
+
Performs the Bifid cipher decryption on ciphertext ``msg``, and
|
1379 |
+
returns the plaintext.
|
1380 |
+
|
1381 |
+
This is the version of the Bifid cipher that uses the `6 \times 6`
|
1382 |
+
Polybius square.
|
1383 |
+
|
1384 |
+
Parameters
|
1385 |
+
==========
|
1386 |
+
|
1387 |
+
msg
|
1388 |
+
Ciphertext string (digits okay); converted to upper case
|
1389 |
+
|
1390 |
+
key
|
1391 |
+
Short string for key (digits okay).
|
1392 |
+
|
1393 |
+
If ``key`` is less than 36 characters long, the square will be
|
1394 |
+
filled with letters A through Z and digits 0 through 9.
|
1395 |
+
All letters are converted to uppercase.
|
1396 |
+
|
1397 |
+
Returns
|
1398 |
+
=======
|
1399 |
+
|
1400 |
+
plaintext
|
1401 |
+
Plaintext from Bifid cipher (all caps, no spaces).
|
1402 |
+
|
1403 |
+
Examples
|
1404 |
+
========
|
1405 |
+
|
1406 |
+
>>> from sympy.crypto.crypto import encipher_bifid6, decipher_bifid6
|
1407 |
+
>>> key = "gold bug"
|
1408 |
+
>>> encipher_bifid6('meet me on monday at 8am', key)
|
1409 |
+
'KFKLJJHF5MMMKTFRGPL'
|
1410 |
+
>>> decipher_bifid6(_, key)
|
1411 |
+
'MEETMEONMONDAYAT8AM'
|
1412 |
+
|
1413 |
+
"""
|
1414 |
+
msg, key, _ = _prep(msg.upper(), key.upper(), None, bifid6)
|
1415 |
+
key = padded_key(key, bifid6)
|
1416 |
+
return decipher_bifid(msg, '', key)
|
1417 |
+
|
1418 |
+
|
1419 |
+
def bifid6_square(key=None):
|
1420 |
+
r"""
|
1421 |
+
6x6 Polybius square.
|
1422 |
+
|
1423 |
+
Produces the Polybius square for the `6 \times 6` Bifid cipher.
|
1424 |
+
Assumes alphabet of symbols is "A", ..., "Z", "0", ..., "9".
|
1425 |
+
|
1426 |
+
Examples
|
1427 |
+
========
|
1428 |
+
|
1429 |
+
>>> from sympy.crypto.crypto import bifid6_square
|
1430 |
+
>>> key = "gold bug"
|
1431 |
+
>>> bifid6_square(key)
|
1432 |
+
Matrix([
|
1433 |
+
[G, O, L, D, B, U],
|
1434 |
+
[A, C, E, F, H, I],
|
1435 |
+
[J, K, M, N, P, Q],
|
1436 |
+
[R, S, T, V, W, X],
|
1437 |
+
[Y, Z, 0, 1, 2, 3],
|
1438 |
+
[4, 5, 6, 7, 8, 9]])
|
1439 |
+
|
1440 |
+
"""
|
1441 |
+
if not key:
|
1442 |
+
key = bifid6
|
1443 |
+
else:
|
1444 |
+
_, key, _ = _prep('', key.upper(), None, bifid6)
|
1445 |
+
key = padded_key(key, bifid6)
|
1446 |
+
return bifid_square(key)
|
1447 |
+
|
1448 |
+
|
1449 |
+
#################### RSA #############################
|
1450 |
+
|
1451 |
+
def _decipher_rsa_crt(i, d, factors):
|
1452 |
+
"""Decipher RSA using chinese remainder theorem from the information
|
1453 |
+
of the relatively-prime factors of the modulus.
|
1454 |
+
|
1455 |
+
Parameters
|
1456 |
+
==========
|
1457 |
+
|
1458 |
+
i : integer
|
1459 |
+
Ciphertext
|
1460 |
+
|
1461 |
+
d : integer
|
1462 |
+
The exponent component.
|
1463 |
+
|
1464 |
+
factors : list of relatively-prime integers
|
1465 |
+
The integers given must be coprime and the product must equal
|
1466 |
+
the modulus component of the original RSA key.
|
1467 |
+
|
1468 |
+
Examples
|
1469 |
+
========
|
1470 |
+
|
1471 |
+
How to decrypt RSA with CRT:
|
1472 |
+
|
1473 |
+
>>> from sympy.crypto.crypto import rsa_public_key, rsa_private_key
|
1474 |
+
>>> primes = [61, 53]
|
1475 |
+
>>> e = 17
|
1476 |
+
>>> args = primes + [e]
|
1477 |
+
>>> puk = rsa_public_key(*args)
|
1478 |
+
>>> prk = rsa_private_key(*args)
|
1479 |
+
|
1480 |
+
>>> from sympy.crypto.crypto import encipher_rsa, _decipher_rsa_crt
|
1481 |
+
>>> msg = 65
|
1482 |
+
>>> crt_primes = primes
|
1483 |
+
>>> encrypted = encipher_rsa(msg, puk)
|
1484 |
+
>>> decrypted = _decipher_rsa_crt(encrypted, prk[1], primes)
|
1485 |
+
>>> decrypted
|
1486 |
+
65
|
1487 |
+
"""
|
1488 |
+
moduluses = [pow(i, d, p) for p in factors]
|
1489 |
+
|
1490 |
+
result = crt(factors, moduluses)
|
1491 |
+
if not result:
|
1492 |
+
raise ValueError("CRT failed")
|
1493 |
+
return result[0]
|
1494 |
+
|
1495 |
+
|
1496 |
+
def _rsa_key(*args, public=True, private=True, totient='Euler', index=None, multipower=None):
|
1497 |
+
r"""A private subroutine to generate RSA key
|
1498 |
+
|
1499 |
+
Parameters
|
1500 |
+
==========
|
1501 |
+
|
1502 |
+
public, private : bool, optional
|
1503 |
+
Flag to generate either a public key, a private key.
|
1504 |
+
|
1505 |
+
totient : 'Euler' or 'Carmichael'
|
1506 |
+
Different notation used for totient.
|
1507 |
+
|
1508 |
+
multipower : bool, optional
|
1509 |
+
Flag to bypass warning for multipower RSA.
|
1510 |
+
"""
|
1511 |
+
|
1512 |
+
if len(args) < 2:
|
1513 |
+
return False
|
1514 |
+
|
1515 |
+
if totient not in ('Euler', 'Carmichael'):
|
1516 |
+
raise ValueError(
|
1517 |
+
"The argument totient={} should either be " \
|
1518 |
+
"'Euler', 'Carmichalel'." \
|
1519 |
+
.format(totient))
|
1520 |
+
|
1521 |
+
if totient == 'Euler':
|
1522 |
+
_totient = _euler
|
1523 |
+
else:
|
1524 |
+
_totient = _carmichael
|
1525 |
+
|
1526 |
+
if index is not None:
|
1527 |
+
index = as_int(index)
|
1528 |
+
if totient != 'Carmichael':
|
1529 |
+
raise ValueError(
|
1530 |
+
"Setting the 'index' keyword argument requires totient"
|
1531 |
+
"notation to be specified as 'Carmichael'.")
|
1532 |
+
|
1533 |
+
primes, e = args[:-1], args[-1]
|
1534 |
+
|
1535 |
+
if not all(isprime(p) for p in primes):
|
1536 |
+
new_primes = []
|
1537 |
+
for i in primes:
|
1538 |
+
new_primes.extend(factorint(i, multiple=True))
|
1539 |
+
primes = new_primes
|
1540 |
+
|
1541 |
+
n = reduce(lambda i, j: i*j, primes)
|
1542 |
+
|
1543 |
+
tally = multiset(primes)
|
1544 |
+
if all(v == 1 for v in tally.values()):
|
1545 |
+
multiple = list(tally.keys())
|
1546 |
+
phi = _totient._from_distinct_primes(*multiple)
|
1547 |
+
|
1548 |
+
else:
|
1549 |
+
if not multipower:
|
1550 |
+
NonInvertibleCipherWarning(
|
1551 |
+
'Non-distinctive primes found in the factors {}. '
|
1552 |
+
'The cipher may not be decryptable for some numbers '
|
1553 |
+
'in the complete residue system Z[{}], but the cipher '
|
1554 |
+
'can still be valid if you restrict the domain to be '
|
1555 |
+
'the reduced residue system Z*[{}]. You can pass '
|
1556 |
+
'the flag multipower=True if you want to suppress this '
|
1557 |
+
'warning.'
|
1558 |
+
.format(primes, n, n)
|
1559 |
+
# stacklevel=4 because most users will call a function that
|
1560 |
+
# calls this function
|
1561 |
+
).warn(stacklevel=4)
|
1562 |
+
phi = _totient._from_factors(tally)
|
1563 |
+
|
1564 |
+
if igcd(e, phi) == 1:
|
1565 |
+
if public and not private:
|
1566 |
+
if isinstance(index, int):
|
1567 |
+
e = e % phi
|
1568 |
+
e += index * phi
|
1569 |
+
return n, e
|
1570 |
+
|
1571 |
+
if private and not public:
|
1572 |
+
d = mod_inverse(e, phi)
|
1573 |
+
if isinstance(index, int):
|
1574 |
+
d += index * phi
|
1575 |
+
return n, d
|
1576 |
+
|
1577 |
+
return False
|
1578 |
+
|
1579 |
+
|
1580 |
+
def rsa_public_key(*args, **kwargs):
|
1581 |
+
r"""Return the RSA *public key* pair, `(n, e)`
|
1582 |
+
|
1583 |
+
Parameters
|
1584 |
+
==========
|
1585 |
+
|
1586 |
+
args : naturals
|
1587 |
+
If specified as `p, q, e` where `p` and `q` are distinct primes
|
1588 |
+
and `e` is a desired public exponent of the RSA, `n = p q` and
|
1589 |
+
`e` will be verified against the totient
|
1590 |
+
`\phi(n)` (Euler totient) or `\lambda(n)` (Carmichael totient)
|
1591 |
+
to be `\gcd(e, \phi(n)) = 1` or `\gcd(e, \lambda(n)) = 1`.
|
1592 |
+
|
1593 |
+
If specified as `p_1, p_2, \dots, p_n, e` where
|
1594 |
+
`p_1, p_2, \dots, p_n` are specified as primes,
|
1595 |
+
and `e` is specified as a desired public exponent of the RSA,
|
1596 |
+
it will be able to form a multi-prime RSA, which is a more
|
1597 |
+
generalized form of the popular 2-prime RSA.
|
1598 |
+
|
1599 |
+
It can also be possible to form a single-prime RSA by specifying
|
1600 |
+
the argument as `p, e`, which can be considered a trivial case
|
1601 |
+
of a multiprime RSA.
|
1602 |
+
|
1603 |
+
Furthermore, it can be possible to form a multi-power RSA by
|
1604 |
+
specifying two or more pairs of the primes to be same.
|
1605 |
+
However, unlike the two-distinct prime RSA or multi-prime
|
1606 |
+
RSA, not every numbers in the complete residue system
|
1607 |
+
(`\mathbb{Z}_n`) will be decryptable since the mapping
|
1608 |
+
`\mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n}`
|
1609 |
+
will not be bijective.
|
1610 |
+
(Only except for the trivial case when
|
1611 |
+
`e = 1`
|
1612 |
+
or more generally,
|
1613 |
+
|
1614 |
+
.. math::
|
1615 |
+
e \in \left \{ 1 + k \lambda(n)
|
1616 |
+
\mid k \in \mathbb{Z} \land k \geq 0 \right \}
|
1617 |
+
|
1618 |
+
when RSA reduces to the identity.)
|
1619 |
+
However, the RSA can still be decryptable for the numbers in the
|
1620 |
+
reduced residue system (`\mathbb{Z}_n^{\times}`), since the
|
1621 |
+
mapping
|
1622 |
+
`\mathbb{Z}_{n}^{\times} \rightarrow \mathbb{Z}_{n}^{\times}`
|
1623 |
+
can still be bijective.
|
1624 |
+
|
1625 |
+
If you pass a non-prime integer to the arguments
|
1626 |
+
`p_1, p_2, \dots, p_n`, the particular number will be
|
1627 |
+
prime-factored and it will become either a multi-prime RSA or a
|
1628 |
+
multi-power RSA in its canonical form, depending on whether the
|
1629 |
+
product equals its radical or not.
|
1630 |
+
`p_1 p_2 \dots p_n = \text{rad}(p_1 p_2 \dots p_n)`
|
1631 |
+
|
1632 |
+
totient : bool, optional
|
1633 |
+
If ``'Euler'``, it uses Euler's totient `\phi(n)` which is
|
1634 |
+
:meth:`sympy.ntheory.factor_.totient` in SymPy.
|
1635 |
+
|
1636 |
+
If ``'Carmichael'``, it uses Carmichael's totient `\lambda(n)`
|
1637 |
+
which is :meth:`sympy.ntheory.factor_.reduced_totient` in SymPy.
|
1638 |
+
|
1639 |
+
Unlike private key generation, this is a trivial keyword for
|
1640 |
+
public key generation because
|
1641 |
+
`\gcd(e, \phi(n)) = 1 \iff \gcd(e, \lambda(n)) = 1`.
|
1642 |
+
|
1643 |
+
index : nonnegative integer, optional
|
1644 |
+
Returns an arbitrary solution of a RSA public key at the index
|
1645 |
+
specified at `0, 1, 2, \dots`. This parameter needs to be
|
1646 |
+
specified along with ``totient='Carmichael'``.
|
1647 |
+
|
1648 |
+
Similarly to the non-uniquenss of a RSA private key as described
|
1649 |
+
in the ``index`` parameter documentation in
|
1650 |
+
:meth:`rsa_private_key`, RSA public key is also not unique and
|
1651 |
+
there is an infinite number of RSA public exponents which
|
1652 |
+
can behave in the same manner.
|
1653 |
+
|
1654 |
+
From any given RSA public exponent `e`, there are can be an
|
1655 |
+
another RSA public exponent `e + k \lambda(n)` where `k` is an
|
1656 |
+
integer, `\lambda` is a Carmichael's totient function.
|
1657 |
+
|
1658 |
+
However, considering only the positive cases, there can be
|
1659 |
+
a principal solution of a RSA public exponent `e_0` in
|
1660 |
+
`0 < e_0 < \lambda(n)`, and all the other solutions
|
1661 |
+
can be canonicalzed in a form of `e_0 + k \lambda(n)`.
|
1662 |
+
|
1663 |
+
``index`` specifies the `k` notation to yield any possible value
|
1664 |
+
an RSA public key can have.
|
1665 |
+
|
1666 |
+
An example of computing any arbitrary RSA public key:
|
1667 |
+
|
1668 |
+
>>> from sympy.crypto.crypto import rsa_public_key
|
1669 |
+
>>> rsa_public_key(61, 53, 17, totient='Carmichael', index=0)
|
1670 |
+
(3233, 17)
|
1671 |
+
>>> rsa_public_key(61, 53, 17, totient='Carmichael', index=1)
|
1672 |
+
(3233, 797)
|
1673 |
+
>>> rsa_public_key(61, 53, 17, totient='Carmichael', index=2)
|
1674 |
+
(3233, 1577)
|
1675 |
+
|
1676 |
+
multipower : bool, optional
|
1677 |
+
Any pair of non-distinct primes found in the RSA specification
|
1678 |
+
will restrict the domain of the cryptosystem, as noted in the
|
1679 |
+
explanation of the parameter ``args``.
|
1680 |
+
|
1681 |
+
SymPy RSA key generator may give a warning before dispatching it
|
1682 |
+
as a multi-power RSA, however, you can disable the warning if
|
1683 |
+
you pass ``True`` to this keyword.
|
1684 |
+
|
1685 |
+
Returns
|
1686 |
+
=======
|
1687 |
+
|
1688 |
+
(n, e) : int, int
|
1689 |
+
`n` is a product of any arbitrary number of primes given as
|
1690 |
+
the argument.
|
1691 |
+
|
1692 |
+
`e` is relatively prime (coprime) to the Euler totient
|
1693 |
+
`\phi(n)`.
|
1694 |
+
|
1695 |
+
False
|
1696 |
+
Returned if less than two arguments are given, or `e` is
|
1697 |
+
not relatively prime to the modulus.
|
1698 |
+
|
1699 |
+
Examples
|
1700 |
+
========
|
1701 |
+
|
1702 |
+
>>> from sympy.crypto.crypto import rsa_public_key
|
1703 |
+
|
1704 |
+
A public key of a two-prime RSA:
|
1705 |
+
|
1706 |
+
>>> p, q, e = 3, 5, 7
|
1707 |
+
>>> rsa_public_key(p, q, e)
|
1708 |
+
(15, 7)
|
1709 |
+
>>> rsa_public_key(p, q, 30)
|
1710 |
+
False
|
1711 |
+
|
1712 |
+
A public key of a multiprime RSA:
|
1713 |
+
|
1714 |
+
>>> primes = [2, 3, 5, 7, 11, 13]
|
1715 |
+
>>> e = 7
|
1716 |
+
>>> args = primes + [e]
|
1717 |
+
>>> rsa_public_key(*args)
|
1718 |
+
(30030, 7)
|
1719 |
+
|
1720 |
+
Notes
|
1721 |
+
=====
|
1722 |
+
|
1723 |
+
Although the RSA can be generalized over any modulus `n`, using
|
1724 |
+
two large primes had became the most popular specification because a
|
1725 |
+
product of two large primes is usually the hardest to factor
|
1726 |
+
relatively to the digits of `n` can have.
|
1727 |
+
|
1728 |
+
However, it may need further understanding of the time complexities
|
1729 |
+
of each prime-factoring algorithms to verify the claim.
|
1730 |
+
|
1731 |
+
See Also
|
1732 |
+
========
|
1733 |
+
|
1734 |
+
rsa_private_key
|
1735 |
+
encipher_rsa
|
1736 |
+
decipher_rsa
|
1737 |
+
|
1738 |
+
References
|
1739 |
+
==========
|
1740 |
+
|
1741 |
+
.. [1] https://en.wikipedia.org/wiki/RSA_%28cryptosystem%29
|
1742 |
+
|
1743 |
+
.. [2] https://cacr.uwaterloo.ca/techreports/2006/cacr2006-16.pdf
|
1744 |
+
|
1745 |
+
.. [3] https://link.springer.com/content/pdf/10.1007/BFb0055738.pdf
|
1746 |
+
|
1747 |
+
.. [4] https://www.itiis.org/digital-library/manuscript/1381
|
1748 |
+
"""
|
1749 |
+
return _rsa_key(*args, public=True, private=False, **kwargs)
|
1750 |
+
|
1751 |
+
|
1752 |
+
def rsa_private_key(*args, **kwargs):
|
1753 |
+
r"""Return the RSA *private key* pair, `(n, d)`
|
1754 |
+
|
1755 |
+
Parameters
|
1756 |
+
==========
|
1757 |
+
|
1758 |
+
args : naturals
|
1759 |
+
The keyword is identical to the ``args`` in
|
1760 |
+
:meth:`rsa_public_key`.
|
1761 |
+
|
1762 |
+
totient : bool, optional
|
1763 |
+
If ``'Euler'``, it uses Euler's totient convention `\phi(n)`
|
1764 |
+
which is :meth:`sympy.ntheory.factor_.totient` in SymPy.
|
1765 |
+
|
1766 |
+
If ``'Carmichael'``, it uses Carmichael's totient convention
|
1767 |
+
`\lambda(n)` which is
|
1768 |
+
:meth:`sympy.ntheory.factor_.reduced_totient` in SymPy.
|
1769 |
+
|
1770 |
+
There can be some output differences for private key generation
|
1771 |
+
as examples below.
|
1772 |
+
|
1773 |
+
Example using Euler's totient:
|
1774 |
+
|
1775 |
+
>>> from sympy.crypto.crypto import rsa_private_key
|
1776 |
+
>>> rsa_private_key(61, 53, 17, totient='Euler')
|
1777 |
+
(3233, 2753)
|
1778 |
+
|
1779 |
+
Example using Carmichael's totient:
|
1780 |
+
|
1781 |
+
>>> from sympy.crypto.crypto import rsa_private_key
|
1782 |
+
>>> rsa_private_key(61, 53, 17, totient='Carmichael')
|
1783 |
+
(3233, 413)
|
1784 |
+
|
1785 |
+
index : nonnegative integer, optional
|
1786 |
+
Returns an arbitrary solution of a RSA private key at the index
|
1787 |
+
specified at `0, 1, 2, \dots`. This parameter needs to be
|
1788 |
+
specified along with ``totient='Carmichael'``.
|
1789 |
+
|
1790 |
+
RSA private exponent is a non-unique solution of
|
1791 |
+
`e d \mod \lambda(n) = 1` and it is possible in any form of
|
1792 |
+
`d + k \lambda(n)`, where `d` is an another
|
1793 |
+
already-computed private exponent, and `\lambda` is a
|
1794 |
+
Carmichael's totient function, and `k` is any integer.
|
1795 |
+
|
1796 |
+
However, considering only the positive cases, there can be
|
1797 |
+
a principal solution of a RSA private exponent `d_0` in
|
1798 |
+
`0 < d_0 < \lambda(n)`, and all the other solutions
|
1799 |
+
can be canonicalzed in a form of `d_0 + k \lambda(n)`.
|
1800 |
+
|
1801 |
+
``index`` specifies the `k` notation to yield any possible value
|
1802 |
+
an RSA private key can have.
|
1803 |
+
|
1804 |
+
An example of computing any arbitrary RSA private key:
|
1805 |
+
|
1806 |
+
>>> from sympy.crypto.crypto import rsa_private_key
|
1807 |
+
>>> rsa_private_key(61, 53, 17, totient='Carmichael', index=0)
|
1808 |
+
(3233, 413)
|
1809 |
+
>>> rsa_private_key(61, 53, 17, totient='Carmichael', index=1)
|
1810 |
+
(3233, 1193)
|
1811 |
+
>>> rsa_private_key(61, 53, 17, totient='Carmichael', index=2)
|
1812 |
+
(3233, 1973)
|
1813 |
+
|
1814 |
+
multipower : bool, optional
|
1815 |
+
The keyword is identical to the ``multipower`` in
|
1816 |
+
:meth:`rsa_public_key`.
|
1817 |
+
|
1818 |
+
Returns
|
1819 |
+
=======
|
1820 |
+
|
1821 |
+
(n, d) : int, int
|
1822 |
+
`n` is a product of any arbitrary number of primes given as
|
1823 |
+
the argument.
|
1824 |
+
|
1825 |
+
`d` is the inverse of `e` (mod `\phi(n)`) where `e` is the
|
1826 |
+
exponent given, and `\phi` is a Euler totient.
|
1827 |
+
|
1828 |
+
False
|
1829 |
+
Returned if less than two arguments are given, or `e` is
|
1830 |
+
not relatively prime to the totient of the modulus.
|
1831 |
+
|
1832 |
+
Examples
|
1833 |
+
========
|
1834 |
+
|
1835 |
+
>>> from sympy.crypto.crypto import rsa_private_key
|
1836 |
+
|
1837 |
+
A private key of a two-prime RSA:
|
1838 |
+
|
1839 |
+
>>> p, q, e = 3, 5, 7
|
1840 |
+
>>> rsa_private_key(p, q, e)
|
1841 |
+
(15, 7)
|
1842 |
+
>>> rsa_private_key(p, q, 30)
|
1843 |
+
False
|
1844 |
+
|
1845 |
+
A private key of a multiprime RSA:
|
1846 |
+
|
1847 |
+
>>> primes = [2, 3, 5, 7, 11, 13]
|
1848 |
+
>>> e = 7
|
1849 |
+
>>> args = primes + [e]
|
1850 |
+
>>> rsa_private_key(*args)
|
1851 |
+
(30030, 823)
|
1852 |
+
|
1853 |
+
See Also
|
1854 |
+
========
|
1855 |
+
|
1856 |
+
rsa_public_key
|
1857 |
+
encipher_rsa
|
1858 |
+
decipher_rsa
|
1859 |
+
|
1860 |
+
References
|
1861 |
+
==========
|
1862 |
+
|
1863 |
+
.. [1] https://en.wikipedia.org/wiki/RSA_%28cryptosystem%29
|
1864 |
+
|
1865 |
+
.. [2] https://cacr.uwaterloo.ca/techreports/2006/cacr2006-16.pdf
|
1866 |
+
|
1867 |
+
.. [3] https://link.springer.com/content/pdf/10.1007/BFb0055738.pdf
|
1868 |
+
|
1869 |
+
.. [4] https://www.itiis.org/digital-library/manuscript/1381
|
1870 |
+
"""
|
1871 |
+
return _rsa_key(*args, public=False, private=True, **kwargs)
|
1872 |
+
|
1873 |
+
|
1874 |
+
def _encipher_decipher_rsa(i, key, factors=None):
|
1875 |
+
n, d = key
|
1876 |
+
if not factors:
|
1877 |
+
return pow(i, d, n)
|
1878 |
+
|
1879 |
+
def _is_coprime_set(l):
|
1880 |
+
is_coprime_set = True
|
1881 |
+
for i in range(len(l)):
|
1882 |
+
for j in range(i+1, len(l)):
|
1883 |
+
if igcd(l[i], l[j]) != 1:
|
1884 |
+
is_coprime_set = False
|
1885 |
+
break
|
1886 |
+
return is_coprime_set
|
1887 |
+
|
1888 |
+
prod = reduce(lambda i, j: i*j, factors)
|
1889 |
+
if prod == n and _is_coprime_set(factors):
|
1890 |
+
return _decipher_rsa_crt(i, d, factors)
|
1891 |
+
return _encipher_decipher_rsa(i, key, factors=None)
|
1892 |
+
|
1893 |
+
|
1894 |
+
def encipher_rsa(i, key, factors=None):
|
1895 |
+
r"""Encrypt the plaintext with RSA.
|
1896 |
+
|
1897 |
+
Parameters
|
1898 |
+
==========
|
1899 |
+
|
1900 |
+
i : integer
|
1901 |
+
The plaintext to be encrypted for.
|
1902 |
+
|
1903 |
+
key : (n, e) where n, e are integers
|
1904 |
+
`n` is the modulus of the key and `e` is the exponent of the
|
1905 |
+
key. The encryption is computed by `i^e \bmod n`.
|
1906 |
+
|
1907 |
+
The key can either be a public key or a private key, however,
|
1908 |
+
the message encrypted by a public key can only be decrypted by
|
1909 |
+
a private key, and vice versa, as RSA is an asymmetric
|
1910 |
+
cryptography system.
|
1911 |
+
|
1912 |
+
factors : list of coprime integers
|
1913 |
+
This is identical to the keyword ``factors`` in
|
1914 |
+
:meth:`decipher_rsa`.
|
1915 |
+
|
1916 |
+
Notes
|
1917 |
+
=====
|
1918 |
+
|
1919 |
+
Some specifications may make the RSA not cryptographically
|
1920 |
+
meaningful.
|
1921 |
+
|
1922 |
+
For example, `0`, `1` will remain always same after taking any
|
1923 |
+
number of exponentiation, thus, should be avoided.
|
1924 |
+
|
1925 |
+
Furthermore, if `i^e < n`, `i` may easily be figured out by taking
|
1926 |
+
`e` th root.
|
1927 |
+
|
1928 |
+
And also, specifying the exponent as `1` or in more generalized form
|
1929 |
+
as `1 + k \lambda(n)` where `k` is an nonnegative integer,
|
1930 |
+
`\lambda` is a carmichael totient, the RSA becomes an identity
|
1931 |
+
mapping.
|
1932 |
+
|
1933 |
+
Examples
|
1934 |
+
========
|
1935 |
+
|
1936 |
+
>>> from sympy.crypto.crypto import encipher_rsa
|
1937 |
+
>>> from sympy.crypto.crypto import rsa_public_key, rsa_private_key
|
1938 |
+
|
1939 |
+
Public Key Encryption:
|
1940 |
+
|
1941 |
+
>>> p, q, e = 3, 5, 7
|
1942 |
+
>>> puk = rsa_public_key(p, q, e)
|
1943 |
+
>>> msg = 12
|
1944 |
+
>>> encipher_rsa(msg, puk)
|
1945 |
+
3
|
1946 |
+
|
1947 |
+
Private Key Encryption:
|
1948 |
+
|
1949 |
+
>>> p, q, e = 3, 5, 7
|
1950 |
+
>>> prk = rsa_private_key(p, q, e)
|
1951 |
+
>>> msg = 12
|
1952 |
+
>>> encipher_rsa(msg, prk)
|
1953 |
+
3
|
1954 |
+
|
1955 |
+
Encryption using chinese remainder theorem:
|
1956 |
+
|
1957 |
+
>>> encipher_rsa(msg, prk, factors=[p, q])
|
1958 |
+
3
|
1959 |
+
"""
|
1960 |
+
return _encipher_decipher_rsa(i, key, factors=factors)
|
1961 |
+
|
1962 |
+
|
1963 |
+
def decipher_rsa(i, key, factors=None):
|
1964 |
+
r"""Decrypt the ciphertext with RSA.
|
1965 |
+
|
1966 |
+
Parameters
|
1967 |
+
==========
|
1968 |
+
|
1969 |
+
i : integer
|
1970 |
+
The ciphertext to be decrypted for.
|
1971 |
+
|
1972 |
+
key : (n, d) where n, d are integers
|
1973 |
+
`n` is the modulus of the key and `d` is the exponent of the
|
1974 |
+
key. The decryption is computed by `i^d \bmod n`.
|
1975 |
+
|
1976 |
+
The key can either be a public key or a private key, however,
|
1977 |
+
the message encrypted by a public key can only be decrypted by
|
1978 |
+
a private key, and vice versa, as RSA is an asymmetric
|
1979 |
+
cryptography system.
|
1980 |
+
|
1981 |
+
factors : list of coprime integers
|
1982 |
+
As the modulus `n` created from RSA key generation is composed
|
1983 |
+
of arbitrary prime factors
|
1984 |
+
`n = {p_1}^{k_1}{p_2}^{k_2}\dots{p_n}^{k_n}` where
|
1985 |
+
`p_1, p_2, \dots, p_n` are distinct primes and
|
1986 |
+
`k_1, k_2, \dots, k_n` are positive integers, chinese remainder
|
1987 |
+
theorem can be used to compute `i^d \bmod n` from the
|
1988 |
+
fragmented modulo operations like
|
1989 |
+
|
1990 |
+
.. math::
|
1991 |
+
i^d \bmod {p_1}^{k_1}, i^d \bmod {p_2}^{k_2}, \dots,
|
1992 |
+
i^d \bmod {p_n}^{k_n}
|
1993 |
+
|
1994 |
+
or like
|
1995 |
+
|
1996 |
+
.. math::
|
1997 |
+
i^d \bmod {p_1}^{k_1}{p_2}^{k_2},
|
1998 |
+
i^d \bmod {p_3}^{k_3}, \dots ,
|
1999 |
+
i^d \bmod {p_n}^{k_n}
|
2000 |
+
|
2001 |
+
as long as every moduli does not share any common divisor each
|
2002 |
+
other.
|
2003 |
+
|
2004 |
+
The raw primes used in generating the RSA key pair can be a good
|
2005 |
+
option.
|
2006 |
+
|
2007 |
+
Note that the speed advantage of using this is only viable for
|
2008 |
+
very large cases (Like 2048-bit RSA keys) since the
|
2009 |
+
overhead of using pure Python implementation of
|
2010 |
+
:meth:`sympy.ntheory.modular.crt` may overcompensate the
|
2011 |
+
theoretical speed advantage.
|
2012 |
+
|
2013 |
+
Notes
|
2014 |
+
=====
|
2015 |
+
|
2016 |
+
See the ``Notes`` section in the documentation of
|
2017 |
+
:meth:`encipher_rsa`
|
2018 |
+
|
2019 |
+
Examples
|
2020 |
+
========
|
2021 |
+
|
2022 |
+
>>> from sympy.crypto.crypto import decipher_rsa, encipher_rsa
|
2023 |
+
>>> from sympy.crypto.crypto import rsa_public_key, rsa_private_key
|
2024 |
+
|
2025 |
+
Public Key Encryption and Decryption:
|
2026 |
+
|
2027 |
+
>>> p, q, e = 3, 5, 7
|
2028 |
+
>>> prk = rsa_private_key(p, q, e)
|
2029 |
+
>>> puk = rsa_public_key(p, q, e)
|
2030 |
+
>>> msg = 12
|
2031 |
+
>>> new_msg = encipher_rsa(msg, prk)
|
2032 |
+
>>> new_msg
|
2033 |
+
3
|
2034 |
+
>>> decipher_rsa(new_msg, puk)
|
2035 |
+
12
|
2036 |
+
|
2037 |
+
Private Key Encryption and Decryption:
|
2038 |
+
|
2039 |
+
>>> p, q, e = 3, 5, 7
|
2040 |
+
>>> prk = rsa_private_key(p, q, e)
|
2041 |
+
>>> puk = rsa_public_key(p, q, e)
|
2042 |
+
>>> msg = 12
|
2043 |
+
>>> new_msg = encipher_rsa(msg, puk)
|
2044 |
+
>>> new_msg
|
2045 |
+
3
|
2046 |
+
>>> decipher_rsa(new_msg, prk)
|
2047 |
+
12
|
2048 |
+
|
2049 |
+
Decryption using chinese remainder theorem:
|
2050 |
+
|
2051 |
+
>>> decipher_rsa(new_msg, prk, factors=[p, q])
|
2052 |
+
12
|
2053 |
+
|
2054 |
+
See Also
|
2055 |
+
========
|
2056 |
+
|
2057 |
+
encipher_rsa
|
2058 |
+
"""
|
2059 |
+
return _encipher_decipher_rsa(i, key, factors=factors)
|
2060 |
+
|
2061 |
+
|
2062 |
+
#################### kid krypto (kid RSA) #############################
|
2063 |
+
|
2064 |
+
|
2065 |
+
def kid_rsa_public_key(a, b, A, B):
|
2066 |
+
r"""
|
2067 |
+
Kid RSA is a version of RSA useful to teach grade school children
|
2068 |
+
since it does not involve exponentiation.
|
2069 |
+
|
2070 |
+
Explanation
|
2071 |
+
===========
|
2072 |
+
|
2073 |
+
Alice wants to talk to Bob. Bob generates keys as follows.
|
2074 |
+
Key generation:
|
2075 |
+
|
2076 |
+
* Select positive integers `a, b, A, B` at random.
|
2077 |
+
* Compute `M = a b - 1`, `e = A M + a`, `d = B M + b`,
|
2078 |
+
`n = (e d - 1)//M`.
|
2079 |
+
* The *public key* is `(n, e)`. Bob sends these to Alice.
|
2080 |
+
* The *private key* is `(n, d)`, which Bob keeps secret.
|
2081 |
+
|
2082 |
+
Encryption: If `p` is the plaintext message then the
|
2083 |
+
ciphertext is `c = p e \pmod n`.
|
2084 |
+
|
2085 |
+
Decryption: If `c` is the ciphertext message then the
|
2086 |
+
plaintext is `p = c d \pmod n`.
|
2087 |
+
|
2088 |
+
Examples
|
2089 |
+
========
|
2090 |
+
|
2091 |
+
>>> from sympy.crypto.crypto import kid_rsa_public_key
|
2092 |
+
>>> a, b, A, B = 3, 4, 5, 6
|
2093 |
+
>>> kid_rsa_public_key(a, b, A, B)
|
2094 |
+
(369, 58)
|
2095 |
+
|
2096 |
+
"""
|
2097 |
+
M = a*b - 1
|
2098 |
+
e = A*M + a
|
2099 |
+
d = B*M + b
|
2100 |
+
n = (e*d - 1)//M
|
2101 |
+
return n, e
|
2102 |
+
|
2103 |
+
|
2104 |
+
def kid_rsa_private_key(a, b, A, B):
|
2105 |
+
"""
|
2106 |
+
Compute `M = a b - 1`, `e = A M + a`, `d = B M + b`,
|
2107 |
+
`n = (e d - 1) / M`. The *private key* is `d`, which Bob
|
2108 |
+
keeps secret.
|
2109 |
+
|
2110 |
+
Examples
|
2111 |
+
========
|
2112 |
+
|
2113 |
+
>>> from sympy.crypto.crypto import kid_rsa_private_key
|
2114 |
+
>>> a, b, A, B = 3, 4, 5, 6
|
2115 |
+
>>> kid_rsa_private_key(a, b, A, B)
|
2116 |
+
(369, 70)
|
2117 |
+
|
2118 |
+
"""
|
2119 |
+
M = a*b - 1
|
2120 |
+
e = A*M + a
|
2121 |
+
d = B*M + b
|
2122 |
+
n = (e*d - 1)//M
|
2123 |
+
return n, d
|
2124 |
+
|
2125 |
+
|
2126 |
+
def encipher_kid_rsa(msg, key):
|
2127 |
+
"""
|
2128 |
+
Here ``msg`` is the plaintext and ``key`` is the public key.
|
2129 |
+
|
2130 |
+
Examples
|
2131 |
+
========
|
2132 |
+
|
2133 |
+
>>> from sympy.crypto.crypto import (
|
2134 |
+
... encipher_kid_rsa, kid_rsa_public_key)
|
2135 |
+
>>> msg = 200
|
2136 |
+
>>> a, b, A, B = 3, 4, 5, 6
|
2137 |
+
>>> key = kid_rsa_public_key(a, b, A, B)
|
2138 |
+
>>> encipher_kid_rsa(msg, key)
|
2139 |
+
161
|
2140 |
+
|
2141 |
+
"""
|
2142 |
+
n, e = key
|
2143 |
+
return (msg*e) % n
|
2144 |
+
|
2145 |
+
|
2146 |
+
def decipher_kid_rsa(msg, key):
|
2147 |
+
"""
|
2148 |
+
Here ``msg`` is the plaintext and ``key`` is the private key.
|
2149 |
+
|
2150 |
+
Examples
|
2151 |
+
========
|
2152 |
+
|
2153 |
+
>>> from sympy.crypto.crypto import (
|
2154 |
+
... kid_rsa_public_key, kid_rsa_private_key,
|
2155 |
+
... decipher_kid_rsa, encipher_kid_rsa)
|
2156 |
+
>>> a, b, A, B = 3, 4, 5, 6
|
2157 |
+
>>> d = kid_rsa_private_key(a, b, A, B)
|
2158 |
+
>>> msg = 200
|
2159 |
+
>>> pub = kid_rsa_public_key(a, b, A, B)
|
2160 |
+
>>> pri = kid_rsa_private_key(a, b, A, B)
|
2161 |
+
>>> ct = encipher_kid_rsa(msg, pub)
|
2162 |
+
>>> decipher_kid_rsa(ct, pri)
|
2163 |
+
200
|
2164 |
+
|
2165 |
+
"""
|
2166 |
+
n, d = key
|
2167 |
+
return (msg*d) % n
|
2168 |
+
|
2169 |
+
|
2170 |
+
#################### Morse Code ######################################
|
2171 |
+
|
2172 |
+
morse_char = {
|
2173 |
+
".-": "A", "-...": "B",
|
2174 |
+
"-.-.": "C", "-..": "D",
|
2175 |
+
".": "E", "..-.": "F",
|
2176 |
+
"--.": "G", "....": "H",
|
2177 |
+
"..": "I", ".---": "J",
|
2178 |
+
"-.-": "K", ".-..": "L",
|
2179 |
+
"--": "M", "-.": "N",
|
2180 |
+
"---": "O", ".--.": "P",
|
2181 |
+
"--.-": "Q", ".-.": "R",
|
2182 |
+
"...": "S", "-": "T",
|
2183 |
+
"..-": "U", "...-": "V",
|
2184 |
+
".--": "W", "-..-": "X",
|
2185 |
+
"-.--": "Y", "--..": "Z",
|
2186 |
+
"-----": "0", ".----": "1",
|
2187 |
+
"..---": "2", "...--": "3",
|
2188 |
+
"....-": "4", ".....": "5",
|
2189 |
+
"-....": "6", "--...": "7",
|
2190 |
+
"---..": "8", "----.": "9",
|
2191 |
+
".-.-.-": ".", "--..--": ",",
|
2192 |
+
"---...": ":", "-.-.-.": ";",
|
2193 |
+
"..--..": "?", "-....-": "-",
|
2194 |
+
"..--.-": "_", "-.--.": "(",
|
2195 |
+
"-.--.-": ")", ".----.": "'",
|
2196 |
+
"-...-": "=", ".-.-.": "+",
|
2197 |
+
"-..-.": "/", ".--.-.": "@",
|
2198 |
+
"...-..-": "$", "-.-.--": "!"}
|
2199 |
+
char_morse = {v: k for k, v in morse_char.items()}
|
2200 |
+
|
2201 |
+
|
2202 |
+
def encode_morse(msg, sep='|', mapping=None):
|
2203 |
+
"""
|
2204 |
+
Encodes a plaintext into popular Morse Code with letters
|
2205 |
+
separated by ``sep`` and words by a double ``sep``.
|
2206 |
+
|
2207 |
+
Examples
|
2208 |
+
========
|
2209 |
+
|
2210 |
+
>>> from sympy.crypto.crypto import encode_morse
|
2211 |
+
>>> msg = 'ATTACK RIGHT FLANK'
|
2212 |
+
>>> encode_morse(msg)
|
2213 |
+
'.-|-|-|.-|-.-.|-.-||.-.|..|--.|....|-||..-.|.-..|.-|-.|-.-'
|
2214 |
+
|
2215 |
+
References
|
2216 |
+
==========
|
2217 |
+
|
2218 |
+
.. [1] https://en.wikipedia.org/wiki/Morse_code
|
2219 |
+
|
2220 |
+
"""
|
2221 |
+
|
2222 |
+
mapping = mapping or char_morse
|
2223 |
+
assert sep not in mapping
|
2224 |
+
word_sep = 2*sep
|
2225 |
+
mapping[" "] = word_sep
|
2226 |
+
suffix = msg and msg[-1] in whitespace
|
2227 |
+
|
2228 |
+
# normalize whitespace
|
2229 |
+
msg = (' ' if word_sep else '').join(msg.split())
|
2230 |
+
# omit unmapped chars
|
2231 |
+
chars = set(''.join(msg.split()))
|
2232 |
+
ok = set(mapping.keys())
|
2233 |
+
msg = translate(msg, None, ''.join(chars - ok))
|
2234 |
+
|
2235 |
+
morsestring = []
|
2236 |
+
words = msg.split()
|
2237 |
+
for word in words:
|
2238 |
+
morseword = []
|
2239 |
+
for letter in word:
|
2240 |
+
morseletter = mapping[letter]
|
2241 |
+
morseword.append(morseletter)
|
2242 |
+
|
2243 |
+
word = sep.join(morseword)
|
2244 |
+
morsestring.append(word)
|
2245 |
+
|
2246 |
+
return word_sep.join(morsestring) + (word_sep if suffix else '')
|
2247 |
+
|
2248 |
+
|
2249 |
+
def decode_morse(msg, sep='|', mapping=None):
|
2250 |
+
"""
|
2251 |
+
Decodes a Morse Code with letters separated by ``sep``
|
2252 |
+
(default is '|') and words by `word_sep` (default is '||)
|
2253 |
+
into plaintext.
|
2254 |
+
|
2255 |
+
Examples
|
2256 |
+
========
|
2257 |
+
|
2258 |
+
>>> from sympy.crypto.crypto import decode_morse
|
2259 |
+
>>> mc = '--|---|...-|.||.|.-|...|-'
|
2260 |
+
>>> decode_morse(mc)
|
2261 |
+
'MOVE EAST'
|
2262 |
+
|
2263 |
+
References
|
2264 |
+
==========
|
2265 |
+
|
2266 |
+
.. [1] https://en.wikipedia.org/wiki/Morse_code
|
2267 |
+
|
2268 |
+
"""
|
2269 |
+
|
2270 |
+
mapping = mapping or morse_char
|
2271 |
+
word_sep = 2*sep
|
2272 |
+
characterstring = []
|
2273 |
+
words = msg.strip(word_sep).split(word_sep)
|
2274 |
+
for word in words:
|
2275 |
+
letters = word.split(sep)
|
2276 |
+
chars = [mapping[c] for c in letters]
|
2277 |
+
word = ''.join(chars)
|
2278 |
+
characterstring.append(word)
|
2279 |
+
rv = " ".join(characterstring)
|
2280 |
+
return rv
|
2281 |
+
|
2282 |
+
|
2283 |
+
#################### LFSRs ##########################################
|
2284 |
+
|
2285 |
+
|
2286 |
+
def lfsr_sequence(key, fill, n):
|
2287 |
+
r"""
|
2288 |
+
This function creates an LFSR sequence.
|
2289 |
+
|
2290 |
+
Parameters
|
2291 |
+
==========
|
2292 |
+
|
2293 |
+
key : list
|
2294 |
+
A list of finite field elements, `[c_0, c_1, \ldots, c_k].`
|
2295 |
+
|
2296 |
+
fill : list
|
2297 |
+
The list of the initial terms of the LFSR sequence,
|
2298 |
+
`[x_0, x_1, \ldots, x_k].`
|
2299 |
+
|
2300 |
+
n
|
2301 |
+
Number of terms of the sequence that the function returns.
|
2302 |
+
|
2303 |
+
Returns
|
2304 |
+
=======
|
2305 |
+
|
2306 |
+
L
|
2307 |
+
The LFSR sequence defined by
|
2308 |
+
`x_{n+1} = c_k x_n + \ldots + c_0 x_{n-k}`, for
|
2309 |
+
`n \leq k`.
|
2310 |
+
|
2311 |
+
Notes
|
2312 |
+
=====
|
2313 |
+
|
2314 |
+
S. Golomb [G]_ gives a list of three statistical properties a
|
2315 |
+
sequence of numbers `a = \{a_n\}_{n=1}^\infty`,
|
2316 |
+
`a_n \in \{0,1\}`, should display to be considered
|
2317 |
+
"random". Define the autocorrelation of `a` to be
|
2318 |
+
|
2319 |
+
.. math::
|
2320 |
+
|
2321 |
+
C(k) = C(k,a) = \lim_{N\rightarrow \infty} {1\over N}\sum_{n=1}^N (-1)^{a_n + a_{n+k}}.
|
2322 |
+
|
2323 |
+
In the case where `a` is periodic with period
|
2324 |
+
`P` then this reduces to
|
2325 |
+
|
2326 |
+
.. math::
|
2327 |
+
|
2328 |
+
C(k) = {1\over P}\sum_{n=1}^P (-1)^{a_n + a_{n+k}}.
|
2329 |
+
|
2330 |
+
Assume `a` is periodic with period `P`.
|
2331 |
+
|
2332 |
+
- balance:
|
2333 |
+
|
2334 |
+
.. math::
|
2335 |
+
|
2336 |
+
\left|\sum_{n=1}^P(-1)^{a_n}\right| \leq 1.
|
2337 |
+
|
2338 |
+
- low autocorrelation:
|
2339 |
+
|
2340 |
+
.. math::
|
2341 |
+
|
2342 |
+
C(k) = \left\{ \begin{array}{cc} 1,& k = 0,\\ \epsilon, & k \ne 0. \end{array} \right.
|
2343 |
+
|
2344 |
+
(For sequences satisfying these first two properties, it is known
|
2345 |
+
that `\epsilon = -1/P` must hold.)
|
2346 |
+
|
2347 |
+
- proportional runs property: In each period, half the runs have
|
2348 |
+
length `1`, one-fourth have length `2`, etc.
|
2349 |
+
Moreover, there are as many runs of `1`'s as there are of
|
2350 |
+
`0`'s.
|
2351 |
+
|
2352 |
+
Examples
|
2353 |
+
========
|
2354 |
+
|
2355 |
+
>>> from sympy.crypto.crypto import lfsr_sequence
|
2356 |
+
>>> from sympy.polys.domains import FF
|
2357 |
+
>>> F = FF(2)
|
2358 |
+
>>> fill = [F(1), F(1), F(0), F(1)]
|
2359 |
+
>>> key = [F(1), F(0), F(0), F(1)]
|
2360 |
+
>>> lfsr_sequence(key, fill, 10)
|
2361 |
+
[1 mod 2, 1 mod 2, 0 mod 2, 1 mod 2, 0 mod 2,
|
2362 |
+
1 mod 2, 1 mod 2, 0 mod 2, 0 mod 2, 1 mod 2]
|
2363 |
+
|
2364 |
+
References
|
2365 |
+
==========
|
2366 |
+
|
2367 |
+
.. [G] Solomon Golomb, Shift register sequences, Aegean Park Press,
|
2368 |
+
Laguna Hills, Ca, 1967
|
2369 |
+
|
2370 |
+
"""
|
2371 |
+
if not isinstance(key, list):
|
2372 |
+
raise TypeError("key must be a list")
|
2373 |
+
if not isinstance(fill, list):
|
2374 |
+
raise TypeError("fill must be a list")
|
2375 |
+
p = key[0].mod
|
2376 |
+
F = FF(p)
|
2377 |
+
s = fill
|
2378 |
+
k = len(fill)
|
2379 |
+
L = []
|
2380 |
+
for i in range(n):
|
2381 |
+
s0 = s[:]
|
2382 |
+
L.append(s[0])
|
2383 |
+
s = s[1:k]
|
2384 |
+
x = sum([int(key[i]*s0[i]) for i in range(k)])
|
2385 |
+
s.append(F(x))
|
2386 |
+
return L # use [x.to_int() for x in L] for int version
|
2387 |
+
|
2388 |
+
|
2389 |
+
def lfsr_autocorrelation(L, P, k):
|
2390 |
+
"""
|
2391 |
+
This function computes the LFSR autocorrelation function.
|
2392 |
+
|
2393 |
+
Parameters
|
2394 |
+
==========
|
2395 |
+
|
2396 |
+
L
|
2397 |
+
A periodic sequence of elements of `GF(2)`.
|
2398 |
+
L must have length larger than P.
|
2399 |
+
|
2400 |
+
P
|
2401 |
+
The period of L.
|
2402 |
+
|
2403 |
+
k : int
|
2404 |
+
An integer `k` (`0 < k < P`).
|
2405 |
+
|
2406 |
+
Returns
|
2407 |
+
=======
|
2408 |
+
|
2409 |
+
autocorrelation
|
2410 |
+
The k-th value of the autocorrelation of the LFSR L.
|
2411 |
+
|
2412 |
+
Examples
|
2413 |
+
========
|
2414 |
+
|
2415 |
+
>>> from sympy.crypto.crypto import (
|
2416 |
+
... lfsr_sequence, lfsr_autocorrelation)
|
2417 |
+
>>> from sympy.polys.domains import FF
|
2418 |
+
>>> F = FF(2)
|
2419 |
+
>>> fill = [F(1), F(1), F(0), F(1)]
|
2420 |
+
>>> key = [F(1), F(0), F(0), F(1)]
|
2421 |
+
>>> s = lfsr_sequence(key, fill, 20)
|
2422 |
+
>>> lfsr_autocorrelation(s, 15, 7)
|
2423 |
+
-1/15
|
2424 |
+
>>> lfsr_autocorrelation(s, 15, 0)
|
2425 |
+
1
|
2426 |
+
|
2427 |
+
"""
|
2428 |
+
if not isinstance(L, list):
|
2429 |
+
raise TypeError("L (=%s) must be a list" % L)
|
2430 |
+
P = int(P)
|
2431 |
+
k = int(k)
|
2432 |
+
L0 = L[:P] # slices makes a copy
|
2433 |
+
L1 = L0 + L0[:k]
|
2434 |
+
L2 = [(-1)**(L1[i].to_int() + L1[i + k].to_int()) for i in range(P)]
|
2435 |
+
tot = sum(L2)
|
2436 |
+
return Rational(tot, P)
|
2437 |
+
|
2438 |
+
|
2439 |
+
def lfsr_connection_polynomial(s):
|
2440 |
+
"""
|
2441 |
+
This function computes the LFSR connection polynomial.
|
2442 |
+
|
2443 |
+
Parameters
|
2444 |
+
==========
|
2445 |
+
|
2446 |
+
s
|
2447 |
+
A sequence of elements of even length, with entries in a finite
|
2448 |
+
field.
|
2449 |
+
|
2450 |
+
Returns
|
2451 |
+
=======
|
2452 |
+
|
2453 |
+
C(x)
|
2454 |
+
The connection polynomial of a minimal LFSR yielding s.
|
2455 |
+
|
2456 |
+
This implements the algorithm in section 3 of J. L. Massey's
|
2457 |
+
article [M]_.
|
2458 |
+
|
2459 |
+
Examples
|
2460 |
+
========
|
2461 |
+
|
2462 |
+
>>> from sympy.crypto.crypto import (
|
2463 |
+
... lfsr_sequence, lfsr_connection_polynomial)
|
2464 |
+
>>> from sympy.polys.domains import FF
|
2465 |
+
>>> F = FF(2)
|
2466 |
+
>>> fill = [F(1), F(1), F(0), F(1)]
|
2467 |
+
>>> key = [F(1), F(0), F(0), F(1)]
|
2468 |
+
>>> s = lfsr_sequence(key, fill, 20)
|
2469 |
+
>>> lfsr_connection_polynomial(s)
|
2470 |
+
x**4 + x + 1
|
2471 |
+
>>> fill = [F(1), F(0), F(0), F(1)]
|
2472 |
+
>>> key = [F(1), F(1), F(0), F(1)]
|
2473 |
+
>>> s = lfsr_sequence(key, fill, 20)
|
2474 |
+
>>> lfsr_connection_polynomial(s)
|
2475 |
+
x**3 + 1
|
2476 |
+
>>> fill = [F(1), F(0), F(1)]
|
2477 |
+
>>> key = [F(1), F(1), F(0)]
|
2478 |
+
>>> s = lfsr_sequence(key, fill, 20)
|
2479 |
+
>>> lfsr_connection_polynomial(s)
|
2480 |
+
x**3 + x**2 + 1
|
2481 |
+
>>> fill = [F(1), F(0), F(1)]
|
2482 |
+
>>> key = [F(1), F(0), F(1)]
|
2483 |
+
>>> s = lfsr_sequence(key, fill, 20)
|
2484 |
+
>>> lfsr_connection_polynomial(s)
|
2485 |
+
x**3 + x + 1
|
2486 |
+
|
2487 |
+
References
|
2488 |
+
==========
|
2489 |
+
|
2490 |
+
.. [M] James L. Massey, "Shift-Register Synthesis and BCH Decoding."
|
2491 |
+
IEEE Trans. on Information Theory, vol. 15(1), pp. 122-127,
|
2492 |
+
Jan 1969.
|
2493 |
+
|
2494 |
+
"""
|
2495 |
+
# Initialization:
|
2496 |
+
p = s[0].mod
|
2497 |
+
x = Symbol("x")
|
2498 |
+
C = 1*x**0
|
2499 |
+
B = 1*x**0
|
2500 |
+
m = 1
|
2501 |
+
b = 1*x**0
|
2502 |
+
L = 0
|
2503 |
+
N = 0
|
2504 |
+
while N < len(s):
|
2505 |
+
if L > 0:
|
2506 |
+
dC = Poly(C).degree()
|
2507 |
+
r = min(L + 1, dC + 1)
|
2508 |
+
coeffsC = [C.subs(x, 0)] + [C.coeff(x**i)
|
2509 |
+
for i in range(1, dC + 1)]
|
2510 |
+
d = (s[N].to_int() + sum([coeffsC[i]*s[N - i].to_int()
|
2511 |
+
for i in range(1, r)])) % p
|
2512 |
+
if L == 0:
|
2513 |
+
d = s[N].to_int()*x**0
|
2514 |
+
if d == 0:
|
2515 |
+
m += 1
|
2516 |
+
N += 1
|
2517 |
+
if d > 0:
|
2518 |
+
if 2*L > N:
|
2519 |
+
C = (C - d*((b**(p - 2)) % p)*x**m*B).expand()
|
2520 |
+
m += 1
|
2521 |
+
N += 1
|
2522 |
+
else:
|
2523 |
+
T = C
|
2524 |
+
C = (C - d*((b**(p - 2)) % p)*x**m*B).expand()
|
2525 |
+
L = N + 1 - L
|
2526 |
+
m = 1
|
2527 |
+
b = d
|
2528 |
+
B = T
|
2529 |
+
N += 1
|
2530 |
+
dC = Poly(C).degree()
|
2531 |
+
coeffsC = [C.subs(x, 0)] + [C.coeff(x**i) for i in range(1, dC + 1)]
|
2532 |
+
return sum([coeffsC[i] % p*x**i for i in range(dC + 1)
|
2533 |
+
if coeffsC[i] is not None])
|
2534 |
+
|
2535 |
+
|
2536 |
+
#################### ElGamal #############################
|
2537 |
+
|
2538 |
+
|
2539 |
+
def elgamal_private_key(digit=10, seed=None):
|
2540 |
+
r"""
|
2541 |
+
Return three number tuple as private key.
|
2542 |
+
|
2543 |
+
Explanation
|
2544 |
+
===========
|
2545 |
+
|
2546 |
+
Elgamal encryption is based on the mathematical problem
|
2547 |
+
called the Discrete Logarithm Problem (DLP). For example,
|
2548 |
+
|
2549 |
+
`a^{b} \equiv c \pmod p`
|
2550 |
+
|
2551 |
+
In general, if ``a`` and ``b`` are known, ``ct`` is easily
|
2552 |
+
calculated. If ``b`` is unknown, it is hard to use
|
2553 |
+
``a`` and ``ct`` to get ``b``.
|
2554 |
+
|
2555 |
+
Parameters
|
2556 |
+
==========
|
2557 |
+
|
2558 |
+
digit : int
|
2559 |
+
Minimum number of binary digits for key.
|
2560 |
+
|
2561 |
+
Returns
|
2562 |
+
=======
|
2563 |
+
|
2564 |
+
tuple : (p, r, d)
|
2565 |
+
p = prime number.
|
2566 |
+
|
2567 |
+
r = primitive root.
|
2568 |
+
|
2569 |
+
d = random number.
|
2570 |
+
|
2571 |
+
Notes
|
2572 |
+
=====
|
2573 |
+
|
2574 |
+
For testing purposes, the ``seed`` parameter may be set to control
|
2575 |
+
the output of this routine. See sympy.core.random._randrange.
|
2576 |
+
|
2577 |
+
Examples
|
2578 |
+
========
|
2579 |
+
|
2580 |
+
>>> from sympy.crypto.crypto import elgamal_private_key
|
2581 |
+
>>> from sympy.ntheory import is_primitive_root, isprime
|
2582 |
+
>>> a, b, _ = elgamal_private_key()
|
2583 |
+
>>> isprime(a)
|
2584 |
+
True
|
2585 |
+
>>> is_primitive_root(b, a)
|
2586 |
+
True
|
2587 |
+
|
2588 |
+
"""
|
2589 |
+
randrange = _randrange(seed)
|
2590 |
+
p = nextprime(2**digit)
|
2591 |
+
return p, primitive_root(p), randrange(2, p)
|
2592 |
+
|
2593 |
+
|
2594 |
+
def elgamal_public_key(key):
|
2595 |
+
r"""
|
2596 |
+
Return three number tuple as public key.
|
2597 |
+
|
2598 |
+
Parameters
|
2599 |
+
==========
|
2600 |
+
|
2601 |
+
key : (p, r, e)
|
2602 |
+
Tuple generated by ``elgamal_private_key``.
|
2603 |
+
|
2604 |
+
Returns
|
2605 |
+
=======
|
2606 |
+
|
2607 |
+
tuple : (p, r, e)
|
2608 |
+
`e = r**d \bmod p`
|
2609 |
+
|
2610 |
+
`d` is a random number in private key.
|
2611 |
+
|
2612 |
+
Examples
|
2613 |
+
========
|
2614 |
+
|
2615 |
+
>>> from sympy.crypto.crypto import elgamal_public_key
|
2616 |
+
>>> elgamal_public_key((1031, 14, 636))
|
2617 |
+
(1031, 14, 212)
|
2618 |
+
|
2619 |
+
"""
|
2620 |
+
p, r, e = key
|
2621 |
+
return p, r, pow(r, e, p)
|
2622 |
+
|
2623 |
+
|
2624 |
+
def encipher_elgamal(i, key, seed=None):
|
2625 |
+
r"""
|
2626 |
+
Encrypt message with public key.
|
2627 |
+
|
2628 |
+
Explanation
|
2629 |
+
===========
|
2630 |
+
|
2631 |
+
``i`` is a plaintext message expressed as an integer.
|
2632 |
+
``key`` is public key (p, r, e). In order to encrypt
|
2633 |
+
a message, a random number ``a`` in ``range(2, p)``
|
2634 |
+
is generated and the encryped message is returned as
|
2635 |
+
`c_{1}` and `c_{2}` where:
|
2636 |
+
|
2637 |
+
`c_{1} \equiv r^{a} \pmod p`
|
2638 |
+
|
2639 |
+
`c_{2} \equiv m e^{a} \pmod p`
|
2640 |
+
|
2641 |
+
Parameters
|
2642 |
+
==========
|
2643 |
+
|
2644 |
+
msg
|
2645 |
+
int of encoded message.
|
2646 |
+
|
2647 |
+
key
|
2648 |
+
Public key.
|
2649 |
+
|
2650 |
+
Returns
|
2651 |
+
=======
|
2652 |
+
|
2653 |
+
tuple : (c1, c2)
|
2654 |
+
Encipher into two number.
|
2655 |
+
|
2656 |
+
Notes
|
2657 |
+
=====
|
2658 |
+
|
2659 |
+
For testing purposes, the ``seed`` parameter may be set to control
|
2660 |
+
the output of this routine. See sympy.core.random._randrange.
|
2661 |
+
|
2662 |
+
Examples
|
2663 |
+
========
|
2664 |
+
|
2665 |
+
>>> from sympy.crypto.crypto import encipher_elgamal, elgamal_private_key, elgamal_public_key
|
2666 |
+
>>> pri = elgamal_private_key(5, seed=[3]); pri
|
2667 |
+
(37, 2, 3)
|
2668 |
+
>>> pub = elgamal_public_key(pri); pub
|
2669 |
+
(37, 2, 8)
|
2670 |
+
>>> msg = 36
|
2671 |
+
>>> encipher_elgamal(msg, pub, seed=[3])
|
2672 |
+
(8, 6)
|
2673 |
+
|
2674 |
+
"""
|
2675 |
+
p, r, e = key
|
2676 |
+
if i < 0 or i >= p:
|
2677 |
+
raise ValueError(
|
2678 |
+
'Message (%s) should be in range(%s)' % (i, p))
|
2679 |
+
randrange = _randrange(seed)
|
2680 |
+
a = randrange(2, p)
|
2681 |
+
return pow(r, a, p), i*pow(e, a, p) % p
|
2682 |
+
|
2683 |
+
|
2684 |
+
def decipher_elgamal(msg, key):
|
2685 |
+
r"""
|
2686 |
+
Decrypt message with private key.
|
2687 |
+
|
2688 |
+
`msg = (c_{1}, c_{2})`
|
2689 |
+
|
2690 |
+
`key = (p, r, d)`
|
2691 |
+
|
2692 |
+
According to extended Eucliden theorem,
|
2693 |
+
`u c_{1}^{d} + p n = 1`
|
2694 |
+
|
2695 |
+
`u \equiv 1/{{c_{1}}^d} \pmod p`
|
2696 |
+
|
2697 |
+
`u c_{2} \equiv \frac{1}{c_{1}^d} c_{2} \equiv \frac{1}{r^{ad}} c_{2} \pmod p`
|
2698 |
+
|
2699 |
+
`\frac{1}{r^{ad}} m e^a \equiv \frac{1}{r^{ad}} m {r^{d a}} \equiv m \pmod p`
|
2700 |
+
|
2701 |
+
Examples
|
2702 |
+
========
|
2703 |
+
|
2704 |
+
>>> from sympy.crypto.crypto import decipher_elgamal
|
2705 |
+
>>> from sympy.crypto.crypto import encipher_elgamal
|
2706 |
+
>>> from sympy.crypto.crypto import elgamal_private_key
|
2707 |
+
>>> from sympy.crypto.crypto import elgamal_public_key
|
2708 |
+
|
2709 |
+
>>> pri = elgamal_private_key(5, seed=[3])
|
2710 |
+
>>> pub = elgamal_public_key(pri); pub
|
2711 |
+
(37, 2, 8)
|
2712 |
+
>>> msg = 17
|
2713 |
+
>>> decipher_elgamal(encipher_elgamal(msg, pub), pri) == msg
|
2714 |
+
True
|
2715 |
+
|
2716 |
+
"""
|
2717 |
+
p, _, d = key
|
2718 |
+
c1, c2 = msg
|
2719 |
+
u = igcdex(c1**d, p)[0]
|
2720 |
+
return u * c2 % p
|
2721 |
+
|
2722 |
+
|
2723 |
+
################ Diffie-Hellman Key Exchange #########################
|
2724 |
+
|
2725 |
+
def dh_private_key(digit=10, seed=None):
|
2726 |
+
r"""
|
2727 |
+
Return three integer tuple as private key.
|
2728 |
+
|
2729 |
+
Explanation
|
2730 |
+
===========
|
2731 |
+
|
2732 |
+
Diffie-Hellman key exchange is based on the mathematical problem
|
2733 |
+
called the Discrete Logarithm Problem (see ElGamal).
|
2734 |
+
|
2735 |
+
Diffie-Hellman key exchange is divided into the following steps:
|
2736 |
+
|
2737 |
+
* Alice and Bob agree on a base that consist of a prime ``p``
|
2738 |
+
and a primitive root of ``p`` called ``g``
|
2739 |
+
* Alice choses a number ``a`` and Bob choses a number ``b`` where
|
2740 |
+
``a`` and ``b`` are random numbers in range `[2, p)`. These are
|
2741 |
+
their private keys.
|
2742 |
+
* Alice then publicly sends Bob `g^{a} \pmod p` while Bob sends
|
2743 |
+
Alice `g^{b} \pmod p`
|
2744 |
+
* They both raise the received value to their secretly chosen
|
2745 |
+
number (``a`` or ``b``) and now have both as their shared key
|
2746 |
+
`g^{ab} \pmod p`
|
2747 |
+
|
2748 |
+
Parameters
|
2749 |
+
==========
|
2750 |
+
|
2751 |
+
digit
|
2752 |
+
Minimum number of binary digits required in key.
|
2753 |
+
|
2754 |
+
Returns
|
2755 |
+
=======
|
2756 |
+
|
2757 |
+
tuple : (p, g, a)
|
2758 |
+
p = prime number.
|
2759 |
+
|
2760 |
+
g = primitive root of p.
|
2761 |
+
|
2762 |
+
a = random number from 2 through p - 1.
|
2763 |
+
|
2764 |
+
Notes
|
2765 |
+
=====
|
2766 |
+
|
2767 |
+
For testing purposes, the ``seed`` parameter may be set to control
|
2768 |
+
the output of this routine. See sympy.core.random._randrange.
|
2769 |
+
|
2770 |
+
Examples
|
2771 |
+
========
|
2772 |
+
|
2773 |
+
>>> from sympy.crypto.crypto import dh_private_key
|
2774 |
+
>>> from sympy.ntheory import isprime, is_primitive_root
|
2775 |
+
>>> p, g, _ = dh_private_key()
|
2776 |
+
>>> isprime(p)
|
2777 |
+
True
|
2778 |
+
>>> is_primitive_root(g, p)
|
2779 |
+
True
|
2780 |
+
>>> p, g, _ = dh_private_key(5)
|
2781 |
+
>>> isprime(p)
|
2782 |
+
True
|
2783 |
+
>>> is_primitive_root(g, p)
|
2784 |
+
True
|
2785 |
+
|
2786 |
+
"""
|
2787 |
+
p = nextprime(2**digit)
|
2788 |
+
g = primitive_root(p)
|
2789 |
+
randrange = _randrange(seed)
|
2790 |
+
a = randrange(2, p)
|
2791 |
+
return p, g, a
|
2792 |
+
|
2793 |
+
|
2794 |
+
def dh_public_key(key):
|
2795 |
+
r"""
|
2796 |
+
Return three number tuple as public key.
|
2797 |
+
|
2798 |
+
This is the tuple that Alice sends to Bob.
|
2799 |
+
|
2800 |
+
Parameters
|
2801 |
+
==========
|
2802 |
+
|
2803 |
+
key : (p, g, a)
|
2804 |
+
A tuple generated by ``dh_private_key``.
|
2805 |
+
|
2806 |
+
Returns
|
2807 |
+
=======
|
2808 |
+
|
2809 |
+
tuple : int, int, int
|
2810 |
+
A tuple of `(p, g, g^a \mod p)` with `p`, `g` and `a` given as
|
2811 |
+
parameters.s
|
2812 |
+
|
2813 |
+
Examples
|
2814 |
+
========
|
2815 |
+
|
2816 |
+
>>> from sympy.crypto.crypto import dh_private_key, dh_public_key
|
2817 |
+
>>> p, g, a = dh_private_key();
|
2818 |
+
>>> _p, _g, x = dh_public_key((p, g, a))
|
2819 |
+
>>> p == _p and g == _g
|
2820 |
+
True
|
2821 |
+
>>> x == pow(g, a, p)
|
2822 |
+
True
|
2823 |
+
|
2824 |
+
"""
|
2825 |
+
p, g, a = key
|
2826 |
+
return p, g, pow(g, a, p)
|
2827 |
+
|
2828 |
+
|
2829 |
+
def dh_shared_key(key, b):
|
2830 |
+
"""
|
2831 |
+
Return an integer that is the shared key.
|
2832 |
+
|
2833 |
+
This is what Bob and Alice can both calculate using the public
|
2834 |
+
keys they received from each other and their private keys.
|
2835 |
+
|
2836 |
+
Parameters
|
2837 |
+
==========
|
2838 |
+
|
2839 |
+
key : (p, g, x)
|
2840 |
+
Tuple `(p, g, x)` generated by ``dh_public_key``.
|
2841 |
+
|
2842 |
+
b
|
2843 |
+
Random number in the range of `2` to `p - 1`
|
2844 |
+
(Chosen by second key exchange member (Bob)).
|
2845 |
+
|
2846 |
+
Returns
|
2847 |
+
=======
|
2848 |
+
|
2849 |
+
int
|
2850 |
+
A shared key.
|
2851 |
+
|
2852 |
+
Examples
|
2853 |
+
========
|
2854 |
+
|
2855 |
+
>>> from sympy.crypto.crypto import (
|
2856 |
+
... dh_private_key, dh_public_key, dh_shared_key)
|
2857 |
+
>>> prk = dh_private_key();
|
2858 |
+
>>> p, g, x = dh_public_key(prk);
|
2859 |
+
>>> sk = dh_shared_key((p, g, x), 1000)
|
2860 |
+
>>> sk == pow(x, 1000, p)
|
2861 |
+
True
|
2862 |
+
|
2863 |
+
"""
|
2864 |
+
p, _, x = key
|
2865 |
+
if 1 >= b or b >= p:
|
2866 |
+
raise ValueError(filldedent('''
|
2867 |
+
Value of b should be greater 1 and less
|
2868 |
+
than prime %s.''' % p))
|
2869 |
+
|
2870 |
+
return pow(x, b, p)
|
2871 |
+
|
2872 |
+
|
2873 |
+
################ Goldwasser-Micali Encryption #########################
|
2874 |
+
|
2875 |
+
|
2876 |
+
def _legendre(a, p):
|
2877 |
+
"""
|
2878 |
+
Returns the legendre symbol of a and p
|
2879 |
+
assuming that p is a prime.
|
2880 |
+
|
2881 |
+
i.e. 1 if a is a quadratic residue mod p
|
2882 |
+
-1 if a is not a quadratic residue mod p
|
2883 |
+
0 if a is divisible by p
|
2884 |
+
|
2885 |
+
Parameters
|
2886 |
+
==========
|
2887 |
+
|
2888 |
+
a : int
|
2889 |
+
The number to test.
|
2890 |
+
|
2891 |
+
p : prime
|
2892 |
+
The prime to test ``a`` against.
|
2893 |
+
|
2894 |
+
Returns
|
2895 |
+
=======
|
2896 |
+
|
2897 |
+
int
|
2898 |
+
Legendre symbol (a / p).
|
2899 |
+
|
2900 |
+
"""
|
2901 |
+
sig = pow(a, (p - 1)//2, p)
|
2902 |
+
if sig == 1:
|
2903 |
+
return 1
|
2904 |
+
elif sig == 0:
|
2905 |
+
return 0
|
2906 |
+
else:
|
2907 |
+
return -1
|
2908 |
+
|
2909 |
+
|
2910 |
+
def _random_coprime_stream(n, seed=None):
|
2911 |
+
randrange = _randrange(seed)
|
2912 |
+
while True:
|
2913 |
+
y = randrange(n)
|
2914 |
+
if gcd(y, n) == 1:
|
2915 |
+
yield y
|
2916 |
+
|
2917 |
+
|
2918 |
+
def gm_private_key(p, q, a=None):
|
2919 |
+
r"""
|
2920 |
+
Check if ``p`` and ``q`` can be used as private keys for
|
2921 |
+
the Goldwasser-Micali encryption. The method works
|
2922 |
+
roughly as follows.
|
2923 |
+
|
2924 |
+
Explanation
|
2925 |
+
===========
|
2926 |
+
|
2927 |
+
#. Pick two large primes $p$ and $q$.
|
2928 |
+
#. Call their product $N$.
|
2929 |
+
#. Given a message as an integer $i$, write $i$ in its bit representation $b_0, \dots, b_n$.
|
2930 |
+
#. For each $k$,
|
2931 |
+
|
2932 |
+
if $b_k = 0$:
|
2933 |
+
let $a_k$ be a random square
|
2934 |
+
(quadratic residue) modulo $p q$
|
2935 |
+
such that ``jacobi_symbol(a, p*q) = 1``
|
2936 |
+
if $b_k = 1$:
|
2937 |
+
let $a_k$ be a random non-square
|
2938 |
+
(non-quadratic residue) modulo $p q$
|
2939 |
+
such that ``jacobi_symbol(a, p*q) = 1``
|
2940 |
+
|
2941 |
+
returns $\left[a_1, a_2, \dots\right]$
|
2942 |
+
|
2943 |
+
$b_k$ can be recovered by checking whether or not
|
2944 |
+
$a_k$ is a residue. And from the $b_k$'s, the message
|
2945 |
+
can be reconstructed.
|
2946 |
+
|
2947 |
+
The idea is that, while ``jacobi_symbol(a, p*q)``
|
2948 |
+
can be easily computed (and when it is equal to $-1$ will
|
2949 |
+
tell you that $a$ is not a square mod $p q$), quadratic
|
2950 |
+
residuosity modulo a composite number is hard to compute
|
2951 |
+
without knowing its factorization.
|
2952 |
+
|
2953 |
+
Moreover, approximately half the numbers coprime to $p q$ have
|
2954 |
+
:func:`~.jacobi_symbol` equal to $1$ . And among those, approximately half
|
2955 |
+
are residues and approximately half are not. This maximizes the
|
2956 |
+
entropy of the code.
|
2957 |
+
|
2958 |
+
Parameters
|
2959 |
+
==========
|
2960 |
+
|
2961 |
+
p, q, a
|
2962 |
+
Initialization variables.
|
2963 |
+
|
2964 |
+
Returns
|
2965 |
+
=======
|
2966 |
+
|
2967 |
+
tuple : (p, q)
|
2968 |
+
The input value ``p`` and ``q``.
|
2969 |
+
|
2970 |
+
Raises
|
2971 |
+
======
|
2972 |
+
|
2973 |
+
ValueError
|
2974 |
+
If ``p`` and ``q`` are not distinct odd primes.
|
2975 |
+
|
2976 |
+
"""
|
2977 |
+
if p == q:
|
2978 |
+
raise ValueError("expected distinct primes, "
|
2979 |
+
"got two copies of %i" % p)
|
2980 |
+
elif not isprime(p) or not isprime(q):
|
2981 |
+
raise ValueError("first two arguments must be prime, "
|
2982 |
+
"got %i of %i" % (p, q))
|
2983 |
+
elif p == 2 or q == 2:
|
2984 |
+
raise ValueError("first two arguments must not be even, "
|
2985 |
+
"got %i of %i" % (p, q))
|
2986 |
+
return p, q
|
2987 |
+
|
2988 |
+
|
2989 |
+
def gm_public_key(p, q, a=None, seed=None):
|
2990 |
+
"""
|
2991 |
+
Compute public keys for ``p`` and ``q``.
|
2992 |
+
Note that in Goldwasser-Micali Encryption,
|
2993 |
+
public keys are randomly selected.
|
2994 |
+
|
2995 |
+
Parameters
|
2996 |
+
==========
|
2997 |
+
|
2998 |
+
p, q, a : int, int, int
|
2999 |
+
Initialization variables.
|
3000 |
+
|
3001 |
+
Returns
|
3002 |
+
=======
|
3003 |
+
|
3004 |
+
tuple : (a, N)
|
3005 |
+
``a`` is the input ``a`` if it is not ``None`` otherwise
|
3006 |
+
some random integer coprime to ``p`` and ``q``.
|
3007 |
+
|
3008 |
+
``N`` is the product of ``p`` and ``q``.
|
3009 |
+
|
3010 |
+
"""
|
3011 |
+
|
3012 |
+
p, q = gm_private_key(p, q)
|
3013 |
+
N = p * q
|
3014 |
+
|
3015 |
+
if a is None:
|
3016 |
+
randrange = _randrange(seed)
|
3017 |
+
while True:
|
3018 |
+
a = randrange(N)
|
3019 |
+
if _legendre(a, p) == _legendre(a, q) == -1:
|
3020 |
+
break
|
3021 |
+
else:
|
3022 |
+
if _legendre(a, p) != -1 or _legendre(a, q) != -1:
|
3023 |
+
return False
|
3024 |
+
return (a, N)
|
3025 |
+
|
3026 |
+
|
3027 |
+
def encipher_gm(i, key, seed=None):
|
3028 |
+
"""
|
3029 |
+
Encrypt integer 'i' using public_key 'key'
|
3030 |
+
Note that gm uses random encryption.
|
3031 |
+
|
3032 |
+
Parameters
|
3033 |
+
==========
|
3034 |
+
|
3035 |
+
i : int
|
3036 |
+
The message to encrypt.
|
3037 |
+
|
3038 |
+
key : (a, N)
|
3039 |
+
The public key.
|
3040 |
+
|
3041 |
+
Returns
|
3042 |
+
=======
|
3043 |
+
|
3044 |
+
list : list of int
|
3045 |
+
The randomized encrypted message.
|
3046 |
+
|
3047 |
+
"""
|
3048 |
+
if i < 0:
|
3049 |
+
raise ValueError(
|
3050 |
+
"message must be a non-negative "
|
3051 |
+
"integer: got %d instead" % i)
|
3052 |
+
a, N = key
|
3053 |
+
bits = []
|
3054 |
+
while i > 0:
|
3055 |
+
bits.append(i % 2)
|
3056 |
+
i //= 2
|
3057 |
+
|
3058 |
+
gen = _random_coprime_stream(N, seed)
|
3059 |
+
rev = reversed(bits)
|
3060 |
+
encode = lambda b: next(gen)**2*pow(a, b) % N
|
3061 |
+
return [ encode(b) for b in rev ]
|
3062 |
+
|
3063 |
+
|
3064 |
+
|
3065 |
+
def decipher_gm(message, key):
|
3066 |
+
"""
|
3067 |
+
Decrypt message 'message' using public_key 'key'.
|
3068 |
+
|
3069 |
+
Parameters
|
3070 |
+
==========
|
3071 |
+
|
3072 |
+
message : list of int
|
3073 |
+
The randomized encrypted message.
|
3074 |
+
|
3075 |
+
key : (p, q)
|
3076 |
+
The private key.
|
3077 |
+
|
3078 |
+
Returns
|
3079 |
+
=======
|
3080 |
+
|
3081 |
+
int
|
3082 |
+
The encrypted message.
|
3083 |
+
|
3084 |
+
"""
|
3085 |
+
p, q = key
|
3086 |
+
res = lambda m, p: _legendre(m, p) > 0
|
3087 |
+
bits = [res(m, p) * res(m, q) for m in message]
|
3088 |
+
m = 0
|
3089 |
+
for b in bits:
|
3090 |
+
m <<= 1
|
3091 |
+
m += not b
|
3092 |
+
return m
|
3093 |
+
|
3094 |
+
|
3095 |
+
|
3096 |
+
########### RailFence Cipher #############
|
3097 |
+
|
3098 |
+
def encipher_railfence(message,rails):
|
3099 |
+
"""
|
3100 |
+
Performs Railfence Encryption on plaintext and returns ciphertext
|
3101 |
+
|
3102 |
+
Examples
|
3103 |
+
========
|
3104 |
+
|
3105 |
+
>>> from sympy.crypto.crypto import encipher_railfence
|
3106 |
+
>>> message = "hello world"
|
3107 |
+
>>> encipher_railfence(message,3)
|
3108 |
+
'horel ollwd'
|
3109 |
+
|
3110 |
+
Parameters
|
3111 |
+
==========
|
3112 |
+
|
3113 |
+
message : string, the message to encrypt.
|
3114 |
+
rails : int, the number of rails.
|
3115 |
+
|
3116 |
+
Returns
|
3117 |
+
=======
|
3118 |
+
|
3119 |
+
The Encrypted string message.
|
3120 |
+
|
3121 |
+
References
|
3122 |
+
==========
|
3123 |
+
.. [1] https://en.wikipedia.org/wiki/Rail_fence_cipher
|
3124 |
+
|
3125 |
+
"""
|
3126 |
+
r = list(range(rails))
|
3127 |
+
p = cycle(r + r[-2:0:-1])
|
3128 |
+
return ''.join(sorted(message, key=lambda i: next(p)))
|
3129 |
+
|
3130 |
+
|
3131 |
+
def decipher_railfence(ciphertext,rails):
|
3132 |
+
"""
|
3133 |
+
Decrypt the message using the given rails
|
3134 |
+
|
3135 |
+
Examples
|
3136 |
+
========
|
3137 |
+
|
3138 |
+
>>> from sympy.crypto.crypto import decipher_railfence
|
3139 |
+
>>> decipher_railfence("horel ollwd",3)
|
3140 |
+
'hello world'
|
3141 |
+
|
3142 |
+
Parameters
|
3143 |
+
==========
|
3144 |
+
|
3145 |
+
message : string, the message to encrypt.
|
3146 |
+
rails : int, the number of rails.
|
3147 |
+
|
3148 |
+
Returns
|
3149 |
+
=======
|
3150 |
+
|
3151 |
+
The Decrypted string message.
|
3152 |
+
|
3153 |
+
"""
|
3154 |
+
r = list(range(rails))
|
3155 |
+
p = cycle(r + r[-2:0:-1])
|
3156 |
+
|
3157 |
+
idx = sorted(range(len(ciphertext)), key=lambda i: next(p))
|
3158 |
+
res = [''] * len(ciphertext)
|
3159 |
+
for i, c in zip(idx, ciphertext):
|
3160 |
+
res[i] = c
|
3161 |
+
return ''.join(res)
|
3162 |
+
|
3163 |
+
|
3164 |
+
################ Blum-Goldwasser cryptosystem #########################
|
3165 |
+
|
3166 |
+
def bg_private_key(p, q):
|
3167 |
+
"""
|
3168 |
+
Check if p and q can be used as private keys for
|
3169 |
+
the Blum-Goldwasser cryptosystem.
|
3170 |
+
|
3171 |
+
Explanation
|
3172 |
+
===========
|
3173 |
+
|
3174 |
+
The three necessary checks for p and q to pass
|
3175 |
+
so that they can be used as private keys:
|
3176 |
+
|
3177 |
+
1. p and q must both be prime
|
3178 |
+
2. p and q must be distinct
|
3179 |
+
3. p and q must be congruent to 3 mod 4
|
3180 |
+
|
3181 |
+
Parameters
|
3182 |
+
==========
|
3183 |
+
|
3184 |
+
p, q
|
3185 |
+
The keys to be checked.
|
3186 |
+
|
3187 |
+
Returns
|
3188 |
+
=======
|
3189 |
+
|
3190 |
+
p, q
|
3191 |
+
Input values.
|
3192 |
+
|
3193 |
+
Raises
|
3194 |
+
======
|
3195 |
+
|
3196 |
+
ValueError
|
3197 |
+
If p and q do not pass the above conditions.
|
3198 |
+
|
3199 |
+
"""
|
3200 |
+
|
3201 |
+
if not isprime(p) or not isprime(q):
|
3202 |
+
raise ValueError("the two arguments must be prime, "
|
3203 |
+
"got %i and %i" %(p, q))
|
3204 |
+
elif p == q:
|
3205 |
+
raise ValueError("the two arguments must be distinct, "
|
3206 |
+
"got two copies of %i. " %p)
|
3207 |
+
elif (p - 3) % 4 != 0 or (q - 3) % 4 != 0:
|
3208 |
+
raise ValueError("the two arguments must be congruent to 3 mod 4, "
|
3209 |
+
"got %i and %i" %(p, q))
|
3210 |
+
return p, q
|
3211 |
+
|
3212 |
+
def bg_public_key(p, q):
|
3213 |
+
"""
|
3214 |
+
Calculates public keys from private keys.
|
3215 |
+
|
3216 |
+
Explanation
|
3217 |
+
===========
|
3218 |
+
|
3219 |
+
The function first checks the validity of
|
3220 |
+
private keys passed as arguments and
|
3221 |
+
then returns their product.
|
3222 |
+
|
3223 |
+
Parameters
|
3224 |
+
==========
|
3225 |
+
|
3226 |
+
p, q
|
3227 |
+
The private keys.
|
3228 |
+
|
3229 |
+
Returns
|
3230 |
+
=======
|
3231 |
+
|
3232 |
+
N
|
3233 |
+
The public key.
|
3234 |
+
|
3235 |
+
"""
|
3236 |
+
p, q = bg_private_key(p, q)
|
3237 |
+
N = p * q
|
3238 |
+
return N
|
3239 |
+
|
3240 |
+
def encipher_bg(i, key, seed=None):
|
3241 |
+
"""
|
3242 |
+
Encrypts the message using public key and seed.
|
3243 |
+
|
3244 |
+
Explanation
|
3245 |
+
===========
|
3246 |
+
|
3247 |
+
ALGORITHM:
|
3248 |
+
1. Encodes i as a string of L bits, m.
|
3249 |
+
2. Select a random element r, where 1 < r < key, and computes
|
3250 |
+
x = r^2 mod key.
|
3251 |
+
3. Use BBS pseudo-random number generator to generate L random bits, b,
|
3252 |
+
using the initial seed as x.
|
3253 |
+
4. Encrypted message, c_i = m_i XOR b_i, 1 <= i <= L.
|
3254 |
+
5. x_L = x^(2^L) mod key.
|
3255 |
+
6. Return (c, x_L)
|
3256 |
+
|
3257 |
+
Parameters
|
3258 |
+
==========
|
3259 |
+
|
3260 |
+
i
|
3261 |
+
Message, a non-negative integer
|
3262 |
+
|
3263 |
+
key
|
3264 |
+
The public key
|
3265 |
+
|
3266 |
+
Returns
|
3267 |
+
=======
|
3268 |
+
|
3269 |
+
Tuple
|
3270 |
+
(encrypted_message, x_L)
|
3271 |
+
|
3272 |
+
Raises
|
3273 |
+
======
|
3274 |
+
|
3275 |
+
ValueError
|
3276 |
+
If i is negative.
|
3277 |
+
|
3278 |
+
"""
|
3279 |
+
|
3280 |
+
if i < 0:
|
3281 |
+
raise ValueError(
|
3282 |
+
"message must be a non-negative "
|
3283 |
+
"integer: got %d instead" % i)
|
3284 |
+
|
3285 |
+
enc_msg = []
|
3286 |
+
while i > 0:
|
3287 |
+
enc_msg.append(i % 2)
|
3288 |
+
i //= 2
|
3289 |
+
enc_msg.reverse()
|
3290 |
+
L = len(enc_msg)
|
3291 |
+
|
3292 |
+
r = _randint(seed)(2, key - 1)
|
3293 |
+
x = r**2 % key
|
3294 |
+
x_L = pow(int(x), int(2**L), int(key))
|
3295 |
+
|
3296 |
+
rand_bits = []
|
3297 |
+
for _ in range(L):
|
3298 |
+
rand_bits.append(x % 2)
|
3299 |
+
x = x**2 % key
|
3300 |
+
|
3301 |
+
encrypt_msg = [m ^ b for (m, b) in zip(enc_msg, rand_bits)]
|
3302 |
+
|
3303 |
+
return (encrypt_msg, x_L)
|
3304 |
+
|
3305 |
+
def decipher_bg(message, key):
|
3306 |
+
"""
|
3307 |
+
Decrypts the message using private keys.
|
3308 |
+
|
3309 |
+
Explanation
|
3310 |
+
===========
|
3311 |
+
|
3312 |
+
ALGORITHM:
|
3313 |
+
1. Let, c be the encrypted message, y the second number received,
|
3314 |
+
and p and q be the private keys.
|
3315 |
+
2. Compute, r_p = y^((p+1)/4 ^ L) mod p and
|
3316 |
+
r_q = y^((q+1)/4 ^ L) mod q.
|
3317 |
+
3. Compute x_0 = (q(q^-1 mod p)r_p + p(p^-1 mod q)r_q) mod N.
|
3318 |
+
4. From, recompute the bits using the BBS generator, as in the
|
3319 |
+
encryption algorithm.
|
3320 |
+
5. Compute original message by XORing c and b.
|
3321 |
+
|
3322 |
+
Parameters
|
3323 |
+
==========
|
3324 |
+
|
3325 |
+
message
|
3326 |
+
Tuple of encrypted message and a non-negative integer.
|
3327 |
+
|
3328 |
+
key
|
3329 |
+
Tuple of private keys.
|
3330 |
+
|
3331 |
+
Returns
|
3332 |
+
=======
|
3333 |
+
|
3334 |
+
orig_msg
|
3335 |
+
The original message
|
3336 |
+
|
3337 |
+
"""
|
3338 |
+
|
3339 |
+
p, q = key
|
3340 |
+
encrypt_msg, y = message
|
3341 |
+
public_key = p * q
|
3342 |
+
L = len(encrypt_msg)
|
3343 |
+
p_t = ((p + 1)/4)**L
|
3344 |
+
q_t = ((q + 1)/4)**L
|
3345 |
+
r_p = pow(int(y), int(p_t), int(p))
|
3346 |
+
r_q = pow(int(y), int(q_t), int(q))
|
3347 |
+
|
3348 |
+
x = (q * mod_inverse(q, p) * r_p + p * mod_inverse(p, q) * r_q) % public_key
|
3349 |
+
|
3350 |
+
orig_bits = []
|
3351 |
+
for _ in range(L):
|
3352 |
+
orig_bits.append(x % 2)
|
3353 |
+
x = x**2 % public_key
|
3354 |
+
|
3355 |
+
orig_msg = 0
|
3356 |
+
for (m, b) in zip(encrypt_msg, orig_bits):
|
3357 |
+
orig_msg = orig_msg * 2
|
3358 |
+
orig_msg += (m ^ b)
|
3359 |
+
|
3360 |
+
return orig_msg
|
llmeval-env/lib/python3.10/site-packages/sympy/crypto/tests/__init__.py
ADDED
File without changes
|
llmeval-env/lib/python3.10/site-packages/sympy/crypto/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (191 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/crypto/tests/__pycache__/test_crypto.cpython-310.pyc
ADDED
Binary file (21 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/crypto/tests/test_crypto.py
ADDED
@@ -0,0 +1,562 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core import symbols
|
2 |
+
from sympy.crypto.crypto import (cycle_list,
|
3 |
+
encipher_shift, encipher_affine, encipher_substitution,
|
4 |
+
check_and_join, encipher_vigenere, decipher_vigenere,
|
5 |
+
encipher_hill, decipher_hill, encipher_bifid5, encipher_bifid6,
|
6 |
+
bifid5_square, bifid6_square, bifid5, bifid6,
|
7 |
+
decipher_bifid5, decipher_bifid6, encipher_kid_rsa,
|
8 |
+
decipher_kid_rsa, kid_rsa_private_key, kid_rsa_public_key,
|
9 |
+
decipher_rsa, rsa_private_key, rsa_public_key, encipher_rsa,
|
10 |
+
lfsr_connection_polynomial, lfsr_autocorrelation, lfsr_sequence,
|
11 |
+
encode_morse, decode_morse, elgamal_private_key, elgamal_public_key,
|
12 |
+
encipher_elgamal, decipher_elgamal, dh_private_key, dh_public_key,
|
13 |
+
dh_shared_key, decipher_shift, decipher_affine, encipher_bifid,
|
14 |
+
decipher_bifid, bifid_square, padded_key, uniq, decipher_gm,
|
15 |
+
encipher_gm, gm_public_key, gm_private_key, encipher_bg, decipher_bg,
|
16 |
+
bg_private_key, bg_public_key, encipher_rot13, decipher_rot13,
|
17 |
+
encipher_atbash, decipher_atbash, NonInvertibleCipherWarning,
|
18 |
+
encipher_railfence, decipher_railfence)
|
19 |
+
from sympy.matrices import Matrix
|
20 |
+
from sympy.ntheory import isprime, is_primitive_root
|
21 |
+
from sympy.polys.domains import FF
|
22 |
+
|
23 |
+
from sympy.testing.pytest import raises, warns
|
24 |
+
|
25 |
+
from sympy.core.random import randrange
|
26 |
+
|
27 |
+
def test_encipher_railfence():
|
28 |
+
assert encipher_railfence("hello world",2) == "hlowrdel ol"
|
29 |
+
assert encipher_railfence("hello world",3) == "horel ollwd"
|
30 |
+
assert encipher_railfence("hello world",4) == "hwe olordll"
|
31 |
+
|
32 |
+
def test_decipher_railfence():
|
33 |
+
assert decipher_railfence("hlowrdel ol",2) == "hello world"
|
34 |
+
assert decipher_railfence("horel ollwd",3) == "hello world"
|
35 |
+
assert decipher_railfence("hwe olordll",4) == "hello world"
|
36 |
+
|
37 |
+
|
38 |
+
def test_cycle_list():
|
39 |
+
assert cycle_list(3, 4) == [3, 0, 1, 2]
|
40 |
+
assert cycle_list(-1, 4) == [3, 0, 1, 2]
|
41 |
+
assert cycle_list(1, 4) == [1, 2, 3, 0]
|
42 |
+
|
43 |
+
|
44 |
+
def test_encipher_shift():
|
45 |
+
assert encipher_shift("ABC", 0) == "ABC"
|
46 |
+
assert encipher_shift("ABC", 1) == "BCD"
|
47 |
+
assert encipher_shift("ABC", -1) == "ZAB"
|
48 |
+
assert decipher_shift("ZAB", -1) == "ABC"
|
49 |
+
|
50 |
+
def test_encipher_rot13():
|
51 |
+
assert encipher_rot13("ABC") == "NOP"
|
52 |
+
assert encipher_rot13("NOP") == "ABC"
|
53 |
+
assert decipher_rot13("ABC") == "NOP"
|
54 |
+
assert decipher_rot13("NOP") == "ABC"
|
55 |
+
|
56 |
+
|
57 |
+
def test_encipher_affine():
|
58 |
+
assert encipher_affine("ABC", (1, 0)) == "ABC"
|
59 |
+
assert encipher_affine("ABC", (1, 1)) == "BCD"
|
60 |
+
assert encipher_affine("ABC", (-1, 0)) == "AZY"
|
61 |
+
assert encipher_affine("ABC", (-1, 1), symbols="ABCD") == "BAD"
|
62 |
+
assert encipher_affine("123", (-1, 1), symbols="1234") == "214"
|
63 |
+
assert encipher_affine("ABC", (3, 16)) == "QTW"
|
64 |
+
assert decipher_affine("QTW", (3, 16)) == "ABC"
|
65 |
+
|
66 |
+
def test_encipher_atbash():
|
67 |
+
assert encipher_atbash("ABC") == "ZYX"
|
68 |
+
assert encipher_atbash("ZYX") == "ABC"
|
69 |
+
assert decipher_atbash("ABC") == "ZYX"
|
70 |
+
assert decipher_atbash("ZYX") == "ABC"
|
71 |
+
|
72 |
+
def test_encipher_substitution():
|
73 |
+
assert encipher_substitution("ABC", "BAC", "ABC") == "BAC"
|
74 |
+
assert encipher_substitution("123", "1243", "1234") == "124"
|
75 |
+
|
76 |
+
|
77 |
+
def test_check_and_join():
|
78 |
+
assert check_and_join("abc") == "abc"
|
79 |
+
assert check_and_join(uniq("aaabc")) == "abc"
|
80 |
+
assert check_and_join("ab c".split()) == "abc"
|
81 |
+
assert check_and_join("abc", "a", filter=True) == "a"
|
82 |
+
raises(ValueError, lambda: check_and_join('ab', 'a'))
|
83 |
+
|
84 |
+
|
85 |
+
def test_encipher_vigenere():
|
86 |
+
assert encipher_vigenere("ABC", "ABC") == "ACE"
|
87 |
+
assert encipher_vigenere("ABC", "ABC", symbols="ABCD") == "ACA"
|
88 |
+
assert encipher_vigenere("ABC", "AB", symbols="ABCD") == "ACC"
|
89 |
+
assert encipher_vigenere("AB", "ABC", symbols="ABCD") == "AC"
|
90 |
+
assert encipher_vigenere("A", "ABC", symbols="ABCD") == "A"
|
91 |
+
|
92 |
+
|
93 |
+
def test_decipher_vigenere():
|
94 |
+
assert decipher_vigenere("ABC", "ABC") == "AAA"
|
95 |
+
assert decipher_vigenere("ABC", "ABC", symbols="ABCD") == "AAA"
|
96 |
+
assert decipher_vigenere("ABC", "AB", symbols="ABCD") == "AAC"
|
97 |
+
assert decipher_vigenere("AB", "ABC", symbols="ABCD") == "AA"
|
98 |
+
assert decipher_vigenere("A", "ABC", symbols="ABCD") == "A"
|
99 |
+
|
100 |
+
|
101 |
+
def test_encipher_hill():
|
102 |
+
A = Matrix(2, 2, [1, 2, 3, 5])
|
103 |
+
assert encipher_hill("ABCD", A) == "CFIV"
|
104 |
+
A = Matrix(2, 2, [1, 0, 0, 1])
|
105 |
+
assert encipher_hill("ABCD", A) == "ABCD"
|
106 |
+
assert encipher_hill("ABCD", A, symbols="ABCD") == "ABCD"
|
107 |
+
A = Matrix(2, 2, [1, 2, 3, 5])
|
108 |
+
assert encipher_hill("ABCD", A, symbols="ABCD") == "CBAB"
|
109 |
+
assert encipher_hill("AB", A, symbols="ABCD") == "CB"
|
110 |
+
# message length, n, does not need to be a multiple of k;
|
111 |
+
# it is padded
|
112 |
+
assert encipher_hill("ABA", A) == "CFGC"
|
113 |
+
assert encipher_hill("ABA", A, pad="Z") == "CFYV"
|
114 |
+
|
115 |
+
|
116 |
+
def test_decipher_hill():
|
117 |
+
A = Matrix(2, 2, [1, 2, 3, 5])
|
118 |
+
assert decipher_hill("CFIV", A) == "ABCD"
|
119 |
+
A = Matrix(2, 2, [1, 0, 0, 1])
|
120 |
+
assert decipher_hill("ABCD", A) == "ABCD"
|
121 |
+
assert decipher_hill("ABCD", A, symbols="ABCD") == "ABCD"
|
122 |
+
A = Matrix(2, 2, [1, 2, 3, 5])
|
123 |
+
assert decipher_hill("CBAB", A, symbols="ABCD") == "ABCD"
|
124 |
+
assert decipher_hill("CB", A, symbols="ABCD") == "AB"
|
125 |
+
# n does not need to be a multiple of k
|
126 |
+
assert decipher_hill("CFA", A) == "ABAA"
|
127 |
+
|
128 |
+
|
129 |
+
def test_encipher_bifid5():
|
130 |
+
assert encipher_bifid5("AB", "AB") == "AB"
|
131 |
+
assert encipher_bifid5("AB", "CD") == "CO"
|
132 |
+
assert encipher_bifid5("ab", "c") == "CH"
|
133 |
+
assert encipher_bifid5("a bc", "b") == "BAC"
|
134 |
+
|
135 |
+
|
136 |
+
def test_bifid5_square():
|
137 |
+
A = bifid5
|
138 |
+
f = lambda i, j: symbols(A[5*i + j])
|
139 |
+
M = Matrix(5, 5, f)
|
140 |
+
assert bifid5_square("") == M
|
141 |
+
|
142 |
+
|
143 |
+
def test_decipher_bifid5():
|
144 |
+
assert decipher_bifid5("AB", "AB") == "AB"
|
145 |
+
assert decipher_bifid5("CO", "CD") == "AB"
|
146 |
+
assert decipher_bifid5("ch", "c") == "AB"
|
147 |
+
assert decipher_bifid5("b ac", "b") == "ABC"
|
148 |
+
|
149 |
+
|
150 |
+
def test_encipher_bifid6():
|
151 |
+
assert encipher_bifid6("AB", "AB") == "AB"
|
152 |
+
assert encipher_bifid6("AB", "CD") == "CP"
|
153 |
+
assert encipher_bifid6("ab", "c") == "CI"
|
154 |
+
assert encipher_bifid6("a bc", "b") == "BAC"
|
155 |
+
|
156 |
+
|
157 |
+
def test_decipher_bifid6():
|
158 |
+
assert decipher_bifid6("AB", "AB") == "AB"
|
159 |
+
assert decipher_bifid6("CP", "CD") == "AB"
|
160 |
+
assert decipher_bifid6("ci", "c") == "AB"
|
161 |
+
assert decipher_bifid6("b ac", "b") == "ABC"
|
162 |
+
|
163 |
+
|
164 |
+
def test_bifid6_square():
|
165 |
+
A = bifid6
|
166 |
+
f = lambda i, j: symbols(A[6*i + j])
|
167 |
+
M = Matrix(6, 6, f)
|
168 |
+
assert bifid6_square("") == M
|
169 |
+
|
170 |
+
|
171 |
+
def test_rsa_public_key():
|
172 |
+
assert rsa_public_key(2, 3, 1) == (6, 1)
|
173 |
+
assert rsa_public_key(5, 3, 3) == (15, 3)
|
174 |
+
|
175 |
+
with warns(NonInvertibleCipherWarning):
|
176 |
+
assert rsa_public_key(2, 2, 1) == (4, 1)
|
177 |
+
assert rsa_public_key(8, 8, 8) is False
|
178 |
+
|
179 |
+
|
180 |
+
def test_rsa_private_key():
|
181 |
+
assert rsa_private_key(2, 3, 1) == (6, 1)
|
182 |
+
assert rsa_private_key(5, 3, 3) == (15, 3)
|
183 |
+
assert rsa_private_key(23,29,5) == (667,493)
|
184 |
+
|
185 |
+
with warns(NonInvertibleCipherWarning):
|
186 |
+
assert rsa_private_key(2, 2, 1) == (4, 1)
|
187 |
+
assert rsa_private_key(8, 8, 8) is False
|
188 |
+
|
189 |
+
|
190 |
+
def test_rsa_large_key():
|
191 |
+
# Sample from
|
192 |
+
# http://www.herongyang.com/Cryptography/JCE-Public-Key-RSA-Private-Public-Key-Pair-Sample.html
|
193 |
+
p = int('101565610013301240713207239558950144682174355406589305284428666'\
|
194 |
+
'903702505233009')
|
195 |
+
q = int('894687191887545488935455605955948413812376003053143521429242133'\
|
196 |
+
'12069293984003')
|
197 |
+
e = int('65537')
|
198 |
+
d = int('893650581832704239530398858744759129594796235440844479456143566'\
|
199 |
+
'6999402846577625762582824202269399672579058991442587406384754958587'\
|
200 |
+
'400493169361356902030209')
|
201 |
+
assert rsa_public_key(p, q, e) == (p*q, e)
|
202 |
+
assert rsa_private_key(p, q, e) == (p*q, d)
|
203 |
+
|
204 |
+
|
205 |
+
def test_encipher_rsa():
|
206 |
+
puk = rsa_public_key(2, 3, 1)
|
207 |
+
assert encipher_rsa(2, puk) == 2
|
208 |
+
puk = rsa_public_key(5, 3, 3)
|
209 |
+
assert encipher_rsa(2, puk) == 8
|
210 |
+
|
211 |
+
with warns(NonInvertibleCipherWarning):
|
212 |
+
puk = rsa_public_key(2, 2, 1)
|
213 |
+
assert encipher_rsa(2, puk) == 2
|
214 |
+
|
215 |
+
|
216 |
+
def test_decipher_rsa():
|
217 |
+
prk = rsa_private_key(2, 3, 1)
|
218 |
+
assert decipher_rsa(2, prk) == 2
|
219 |
+
prk = rsa_private_key(5, 3, 3)
|
220 |
+
assert decipher_rsa(8, prk) == 2
|
221 |
+
|
222 |
+
with warns(NonInvertibleCipherWarning):
|
223 |
+
prk = rsa_private_key(2, 2, 1)
|
224 |
+
assert decipher_rsa(2, prk) == 2
|
225 |
+
|
226 |
+
|
227 |
+
def test_mutltiprime_rsa_full_example():
|
228 |
+
# Test example from
|
229 |
+
# https://iopscience.iop.org/article/10.1088/1742-6596/995/1/012030
|
230 |
+
puk = rsa_public_key(2, 3, 5, 7, 11, 13, 7)
|
231 |
+
prk = rsa_private_key(2, 3, 5, 7, 11, 13, 7)
|
232 |
+
assert puk == (30030, 7)
|
233 |
+
assert prk == (30030, 823)
|
234 |
+
|
235 |
+
msg = 10
|
236 |
+
encrypted = encipher_rsa(2 * msg - 15, puk)
|
237 |
+
assert encrypted == 18065
|
238 |
+
decrypted = (decipher_rsa(encrypted, prk) + 15) / 2
|
239 |
+
assert decrypted == msg
|
240 |
+
|
241 |
+
# Test example from
|
242 |
+
# https://www.scirp.org/pdf/JCC_2018032215502008.pdf
|
243 |
+
puk1 = rsa_public_key(53, 41, 43, 47, 41)
|
244 |
+
prk1 = rsa_private_key(53, 41, 43, 47, 41)
|
245 |
+
puk2 = rsa_public_key(53, 41, 43, 47, 97)
|
246 |
+
prk2 = rsa_private_key(53, 41, 43, 47, 97)
|
247 |
+
|
248 |
+
assert puk1 == (4391633, 41)
|
249 |
+
assert prk1 == (4391633, 294041)
|
250 |
+
assert puk2 == (4391633, 97)
|
251 |
+
assert prk2 == (4391633, 455713)
|
252 |
+
|
253 |
+
msg = 12321
|
254 |
+
encrypted = encipher_rsa(encipher_rsa(msg, puk1), puk2)
|
255 |
+
assert encrypted == 1081588
|
256 |
+
decrypted = decipher_rsa(decipher_rsa(encrypted, prk2), prk1)
|
257 |
+
assert decrypted == msg
|
258 |
+
|
259 |
+
|
260 |
+
def test_rsa_crt_extreme():
|
261 |
+
p = int(
|
262 |
+
'10177157607154245068023861503693082120906487143725062283406501' \
|
263 |
+
'54082258226204046999838297167140821364638180697194879500245557' \
|
264 |
+
'65445186962893346463841419427008800341257468600224049986260471' \
|
265 |
+
'92257248163014468841725476918639415726709736077813632961290911' \
|
266 |
+
'0256421232977833028677441206049309220354796014376698325101693')
|
267 |
+
|
268 |
+
q = int(
|
269 |
+
'28752342353095132872290181526607275886182793241660805077850801' \
|
270 |
+
'75689512797754286972952273553128181861830576836289738668745250' \
|
271 |
+
'34028199691128870676414118458442900035778874482624765513861643' \
|
272 |
+
'27966696316822188398336199002306588703902894100476186823849595' \
|
273 |
+
'103239410527279605442148285816149368667083114802852804976893')
|
274 |
+
|
275 |
+
r = int(
|
276 |
+
'17698229259868825776879500736350186838850961935956310134378261' \
|
277 |
+
'89771862186717463067541369694816245225291921138038800171125596' \
|
278 |
+
'07315449521981157084370187887650624061033066022458512942411841' \
|
279 |
+
'18747893789972315277160085086164119879536041875335384844820566' \
|
280 |
+
'0287479617671726408053319619892052000850883994343378882717849')
|
281 |
+
|
282 |
+
s = int(
|
283 |
+
'68925428438585431029269182233502611027091755064643742383515623' \
|
284 |
+
'64321310582896893395529367074942808353187138794422745718419645' \
|
285 |
+
'28291231865157212604266903677599180789896916456120289112752835' \
|
286 |
+
'98502265889669730331688206825220074713977607415178738015831030' \
|
287 |
+
'364290585369150502819743827343552098197095520550865360159439'
|
288 |
+
)
|
289 |
+
|
290 |
+
t = int(
|
291 |
+
'69035483433453632820551311892368908779778144568711455301541094' \
|
292 |
+
'31487047642322695357696860925747923189635033183069823820910521' \
|
293 |
+
'71172909106797748883261493224162414050106920442445896819806600' \
|
294 |
+
'15448444826108008217972129130625571421904893252804729877353352' \
|
295 |
+
'739420480574842850202181462656251626522910618936534699566291'
|
296 |
+
)
|
297 |
+
|
298 |
+
e = 65537
|
299 |
+
puk = rsa_public_key(p, q, r, s, t, e)
|
300 |
+
prk = rsa_private_key(p, q, r, s, t, e)
|
301 |
+
|
302 |
+
plaintext = 1000
|
303 |
+
ciphertext_1 = encipher_rsa(plaintext, puk)
|
304 |
+
ciphertext_2 = encipher_rsa(plaintext, puk, [p, q, r, s, t])
|
305 |
+
assert ciphertext_1 == ciphertext_2
|
306 |
+
assert decipher_rsa(ciphertext_1, prk) == \
|
307 |
+
decipher_rsa(ciphertext_1, prk, [p, q, r, s, t])
|
308 |
+
|
309 |
+
|
310 |
+
def test_rsa_exhaustive():
|
311 |
+
p, q = 61, 53
|
312 |
+
e = 17
|
313 |
+
puk = rsa_public_key(p, q, e, totient='Carmichael')
|
314 |
+
prk = rsa_private_key(p, q, e, totient='Carmichael')
|
315 |
+
|
316 |
+
for msg in range(puk[0]):
|
317 |
+
encrypted = encipher_rsa(msg, puk)
|
318 |
+
decrypted = decipher_rsa(encrypted, prk)
|
319 |
+
try:
|
320 |
+
assert decrypted == msg
|
321 |
+
except AssertionError:
|
322 |
+
raise AssertionError(
|
323 |
+
"The RSA is not correctly decrypted " \
|
324 |
+
"(Original : {}, Encrypted : {}, Decrypted : {})" \
|
325 |
+
.format(msg, encrypted, decrypted)
|
326 |
+
)
|
327 |
+
|
328 |
+
|
329 |
+
def test_rsa_multiprime_exhanstive():
|
330 |
+
primes = [3, 5, 7, 11]
|
331 |
+
e = 7
|
332 |
+
args = primes + [e]
|
333 |
+
puk = rsa_public_key(*args, totient='Carmichael')
|
334 |
+
prk = rsa_private_key(*args, totient='Carmichael')
|
335 |
+
n = puk[0]
|
336 |
+
|
337 |
+
for msg in range(n):
|
338 |
+
encrypted = encipher_rsa(msg, puk)
|
339 |
+
decrypted = decipher_rsa(encrypted, prk)
|
340 |
+
try:
|
341 |
+
assert decrypted == msg
|
342 |
+
except AssertionError:
|
343 |
+
raise AssertionError(
|
344 |
+
"The RSA is not correctly decrypted " \
|
345 |
+
"(Original : {}, Encrypted : {}, Decrypted : {})" \
|
346 |
+
.format(msg, encrypted, decrypted)
|
347 |
+
)
|
348 |
+
|
349 |
+
|
350 |
+
def test_rsa_multipower_exhanstive():
|
351 |
+
from sympy.core.numbers import igcd
|
352 |
+
primes = [5, 5, 7]
|
353 |
+
e = 7
|
354 |
+
args = primes + [e]
|
355 |
+
puk = rsa_public_key(*args, multipower=True)
|
356 |
+
prk = rsa_private_key(*args, multipower=True)
|
357 |
+
n = puk[0]
|
358 |
+
|
359 |
+
for msg in range(n):
|
360 |
+
if igcd(msg, n) != 1:
|
361 |
+
continue
|
362 |
+
|
363 |
+
encrypted = encipher_rsa(msg, puk)
|
364 |
+
decrypted = decipher_rsa(encrypted, prk)
|
365 |
+
try:
|
366 |
+
assert decrypted == msg
|
367 |
+
except AssertionError:
|
368 |
+
raise AssertionError(
|
369 |
+
"The RSA is not correctly decrypted " \
|
370 |
+
"(Original : {}, Encrypted : {}, Decrypted : {})" \
|
371 |
+
.format(msg, encrypted, decrypted)
|
372 |
+
)
|
373 |
+
|
374 |
+
|
375 |
+
def test_kid_rsa_public_key():
|
376 |
+
assert kid_rsa_public_key(1, 2, 1, 1) == (5, 2)
|
377 |
+
assert kid_rsa_public_key(1, 2, 2, 1) == (8, 3)
|
378 |
+
assert kid_rsa_public_key(1, 2, 1, 2) == (7, 2)
|
379 |
+
|
380 |
+
|
381 |
+
def test_kid_rsa_private_key():
|
382 |
+
assert kid_rsa_private_key(1, 2, 1, 1) == (5, 3)
|
383 |
+
assert kid_rsa_private_key(1, 2, 2, 1) == (8, 3)
|
384 |
+
assert kid_rsa_private_key(1, 2, 1, 2) == (7, 4)
|
385 |
+
|
386 |
+
|
387 |
+
def test_encipher_kid_rsa():
|
388 |
+
assert encipher_kid_rsa(1, (5, 2)) == 2
|
389 |
+
assert encipher_kid_rsa(1, (8, 3)) == 3
|
390 |
+
assert encipher_kid_rsa(1, (7, 2)) == 2
|
391 |
+
|
392 |
+
|
393 |
+
def test_decipher_kid_rsa():
|
394 |
+
assert decipher_kid_rsa(2, (5, 3)) == 1
|
395 |
+
assert decipher_kid_rsa(3, (8, 3)) == 1
|
396 |
+
assert decipher_kid_rsa(2, (7, 4)) == 1
|
397 |
+
|
398 |
+
|
399 |
+
def test_encode_morse():
|
400 |
+
assert encode_morse('ABC') == '.-|-...|-.-.'
|
401 |
+
assert encode_morse('SMS ') == '...|--|...||'
|
402 |
+
assert encode_morse('SMS\n') == '...|--|...||'
|
403 |
+
assert encode_morse('') == ''
|
404 |
+
assert encode_morse(' ') == '||'
|
405 |
+
assert encode_morse(' ', sep='`') == '``'
|
406 |
+
assert encode_morse(' ', sep='``') == '````'
|
407 |
+
assert encode_morse('!@#$%^&*()_+') == '-.-.--|.--.-.|...-..-|-.--.|-.--.-|..--.-|.-.-.'
|
408 |
+
assert encode_morse('12345') == '.----|..---|...--|....-|.....'
|
409 |
+
assert encode_morse('67890') == '-....|--...|---..|----.|-----'
|
410 |
+
|
411 |
+
|
412 |
+
def test_decode_morse():
|
413 |
+
assert decode_morse('-.-|.|-.--') == 'KEY'
|
414 |
+
assert decode_morse('.-.|..-|-.||') == 'RUN'
|
415 |
+
raises(KeyError, lambda: decode_morse('.....----'))
|
416 |
+
|
417 |
+
|
418 |
+
def test_lfsr_sequence():
|
419 |
+
raises(TypeError, lambda: lfsr_sequence(1, [1], 1))
|
420 |
+
raises(TypeError, lambda: lfsr_sequence([1], 1, 1))
|
421 |
+
F = FF(2)
|
422 |
+
assert lfsr_sequence([F(1)], [F(1)], 2) == [F(1), F(1)]
|
423 |
+
assert lfsr_sequence([F(0)], [F(1)], 2) == [F(1), F(0)]
|
424 |
+
F = FF(3)
|
425 |
+
assert lfsr_sequence([F(1)], [F(1)], 2) == [F(1), F(1)]
|
426 |
+
assert lfsr_sequence([F(0)], [F(2)], 2) == [F(2), F(0)]
|
427 |
+
assert lfsr_sequence([F(1)], [F(2)], 2) == [F(2), F(2)]
|
428 |
+
|
429 |
+
|
430 |
+
def test_lfsr_autocorrelation():
|
431 |
+
raises(TypeError, lambda: lfsr_autocorrelation(1, 2, 3))
|
432 |
+
F = FF(2)
|
433 |
+
s = lfsr_sequence([F(1), F(0)], [F(0), F(1)], 5)
|
434 |
+
assert lfsr_autocorrelation(s, 2, 0) == 1
|
435 |
+
assert lfsr_autocorrelation(s, 2, 1) == -1
|
436 |
+
|
437 |
+
|
438 |
+
def test_lfsr_connection_polynomial():
|
439 |
+
F = FF(2)
|
440 |
+
x = symbols("x")
|
441 |
+
s = lfsr_sequence([F(1), F(0)], [F(0), F(1)], 5)
|
442 |
+
assert lfsr_connection_polynomial(s) == x**2 + 1
|
443 |
+
s = lfsr_sequence([F(1), F(1)], [F(0), F(1)], 5)
|
444 |
+
assert lfsr_connection_polynomial(s) == x**2 + x + 1
|
445 |
+
|
446 |
+
|
447 |
+
def test_elgamal_private_key():
|
448 |
+
a, b, _ = elgamal_private_key(digit=100)
|
449 |
+
assert isprime(a)
|
450 |
+
assert is_primitive_root(b, a)
|
451 |
+
assert len(bin(a)) >= 102
|
452 |
+
|
453 |
+
|
454 |
+
def test_elgamal():
|
455 |
+
dk = elgamal_private_key(5)
|
456 |
+
ek = elgamal_public_key(dk)
|
457 |
+
P = ek[0]
|
458 |
+
assert P - 1 == decipher_elgamal(encipher_elgamal(P - 1, ek), dk)
|
459 |
+
raises(ValueError, lambda: encipher_elgamal(P, dk))
|
460 |
+
raises(ValueError, lambda: encipher_elgamal(-1, dk))
|
461 |
+
|
462 |
+
|
463 |
+
def test_dh_private_key():
|
464 |
+
p, g, _ = dh_private_key(digit = 100)
|
465 |
+
assert isprime(p)
|
466 |
+
assert is_primitive_root(g, p)
|
467 |
+
assert len(bin(p)) >= 102
|
468 |
+
|
469 |
+
|
470 |
+
def test_dh_public_key():
|
471 |
+
p1, g1, a = dh_private_key(digit = 100)
|
472 |
+
p2, g2, ga = dh_public_key((p1, g1, a))
|
473 |
+
assert p1 == p2
|
474 |
+
assert g1 == g2
|
475 |
+
assert ga == pow(g1, a, p1)
|
476 |
+
|
477 |
+
|
478 |
+
def test_dh_shared_key():
|
479 |
+
prk = dh_private_key(digit = 100)
|
480 |
+
p, _, ga = dh_public_key(prk)
|
481 |
+
b = randrange(2, p)
|
482 |
+
sk = dh_shared_key((p, _, ga), b)
|
483 |
+
assert sk == pow(ga, b, p)
|
484 |
+
raises(ValueError, lambda: dh_shared_key((1031, 14, 565), 2000))
|
485 |
+
|
486 |
+
|
487 |
+
def test_padded_key():
|
488 |
+
assert padded_key('b', 'ab') == 'ba'
|
489 |
+
raises(ValueError, lambda: padded_key('ab', 'ace'))
|
490 |
+
raises(ValueError, lambda: padded_key('ab', 'abba'))
|
491 |
+
|
492 |
+
|
493 |
+
def test_bifid():
|
494 |
+
raises(ValueError, lambda: encipher_bifid('abc', 'b', 'abcde'))
|
495 |
+
assert encipher_bifid('abc', 'b', 'abcd') == 'bdb'
|
496 |
+
raises(ValueError, lambda: decipher_bifid('bdb', 'b', 'abcde'))
|
497 |
+
assert encipher_bifid('bdb', 'b', 'abcd') == 'abc'
|
498 |
+
raises(ValueError, lambda: bifid_square('abcde'))
|
499 |
+
assert bifid5_square("B") == \
|
500 |
+
bifid5_square('BACDEFGHIKLMNOPQRSTUVWXYZ')
|
501 |
+
assert bifid6_square('B0') == \
|
502 |
+
bifid6_square('B0ACDEFGHIJKLMNOPQRSTUVWXYZ123456789')
|
503 |
+
|
504 |
+
|
505 |
+
def test_encipher_decipher_gm():
|
506 |
+
ps = [131, 137, 139, 149, 151, 157, 163, 167,
|
507 |
+
173, 179, 181, 191, 193, 197, 199]
|
508 |
+
qs = [89, 97, 101, 103, 107, 109, 113, 127,
|
509 |
+
131, 137, 139, 149, 151, 157, 47]
|
510 |
+
messages = [
|
511 |
+
0, 32855, 34303, 14805, 1280, 75859, 38368,
|
512 |
+
724, 60356, 51675, 76697, 61854, 18661,
|
513 |
+
]
|
514 |
+
for p, q in zip(ps, qs):
|
515 |
+
pri = gm_private_key(p, q)
|
516 |
+
for msg in messages:
|
517 |
+
pub = gm_public_key(p, q)
|
518 |
+
enc = encipher_gm(msg, pub)
|
519 |
+
dec = decipher_gm(enc, pri)
|
520 |
+
assert dec == msg
|
521 |
+
|
522 |
+
|
523 |
+
def test_gm_private_key():
|
524 |
+
raises(ValueError, lambda: gm_public_key(13, 15))
|
525 |
+
raises(ValueError, lambda: gm_public_key(0, 0))
|
526 |
+
raises(ValueError, lambda: gm_public_key(0, 5))
|
527 |
+
assert 17, 19 == gm_public_key(17, 19)
|
528 |
+
|
529 |
+
|
530 |
+
def test_gm_public_key():
|
531 |
+
assert 323 == gm_public_key(17, 19)[1]
|
532 |
+
assert 15 == gm_public_key(3, 5)[1]
|
533 |
+
raises(ValueError, lambda: gm_public_key(15, 19))
|
534 |
+
|
535 |
+
def test_encipher_decipher_bg():
|
536 |
+
ps = [67, 7, 71, 103, 11, 43, 107, 47,
|
537 |
+
79, 19, 83, 23, 59, 127, 31]
|
538 |
+
qs = qs = [7, 71, 103, 11, 43, 107, 47,
|
539 |
+
79, 19, 83, 23, 59, 127, 31, 67]
|
540 |
+
messages = [
|
541 |
+
0, 328, 343, 148, 1280, 758, 383,
|
542 |
+
724, 603, 516, 766, 618, 186,
|
543 |
+
]
|
544 |
+
|
545 |
+
for p, q in zip(ps, qs):
|
546 |
+
pri = bg_private_key(p, q)
|
547 |
+
for msg in messages:
|
548 |
+
pub = bg_public_key(p, q)
|
549 |
+
enc = encipher_bg(msg, pub)
|
550 |
+
dec = decipher_bg(enc, pri)
|
551 |
+
assert dec == msg
|
552 |
+
|
553 |
+
def test_bg_private_key():
|
554 |
+
raises(ValueError, lambda: bg_private_key(8, 16))
|
555 |
+
raises(ValueError, lambda: bg_private_key(8, 8))
|
556 |
+
raises(ValueError, lambda: bg_private_key(13, 17))
|
557 |
+
assert 23, 31 == bg_private_key(23, 31)
|
558 |
+
|
559 |
+
def test_bg_public_key():
|
560 |
+
assert 5293 == bg_public_key(67, 79)
|
561 |
+
assert 713 == bg_public_key(23, 31)
|
562 |
+
raises(ValueError, lambda: bg_private_key(13, 17))
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/__init__.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Polynomial manipulation algorithms and algebraic objects. """
|
2 |
+
|
3 |
+
__all__ = [
|
4 |
+
'Poly', 'PurePoly', 'poly_from_expr', 'parallel_poly_from_expr', 'degree',
|
5 |
+
'total_degree', 'degree_list', 'LC', 'LM', 'LT', 'pdiv', 'prem', 'pquo',
|
6 |
+
'pexquo', 'div', 'rem', 'quo', 'exquo', 'half_gcdex', 'gcdex', 'invert',
|
7 |
+
'subresultants', 'resultant', 'discriminant', 'cofactors', 'gcd_list',
|
8 |
+
'gcd', 'lcm_list', 'lcm', 'terms_gcd', 'trunc', 'monic', 'content',
|
9 |
+
'primitive', 'compose', 'decompose', 'sturm', 'gff_list', 'gff',
|
10 |
+
'sqf_norm', 'sqf_part', 'sqf_list', 'sqf', 'factor_list', 'factor',
|
11 |
+
'intervals', 'refine_root', 'count_roots', 'real_roots', 'nroots',
|
12 |
+
'ground_roots', 'nth_power_roots_poly', 'cancel', 'reduced', 'groebner',
|
13 |
+
'is_zero_dimensional', 'GroebnerBasis', 'poly',
|
14 |
+
|
15 |
+
'symmetrize', 'horner', 'interpolate', 'rational_interpolate', 'viete',
|
16 |
+
|
17 |
+
'together',
|
18 |
+
|
19 |
+
'BasePolynomialError', 'ExactQuotientFailed', 'PolynomialDivisionFailed',
|
20 |
+
'OperationNotSupported', 'HeuristicGCDFailed', 'HomomorphismFailed',
|
21 |
+
'IsomorphismFailed', 'ExtraneousFactors', 'EvaluationFailed',
|
22 |
+
'RefinementFailed', 'CoercionFailed', 'NotInvertible', 'NotReversible',
|
23 |
+
'NotAlgebraic', 'DomainError', 'PolynomialError', 'UnificationFailed',
|
24 |
+
'GeneratorsError', 'GeneratorsNeeded', 'ComputationFailed',
|
25 |
+
'UnivariatePolynomialError', 'MultivariatePolynomialError',
|
26 |
+
'PolificationFailed', 'OptionError', 'FlagError',
|
27 |
+
|
28 |
+
'minpoly', 'minimal_polynomial', 'primitive_element', 'field_isomorphism',
|
29 |
+
'to_number_field', 'isolate', 'round_two', 'prime_decomp',
|
30 |
+
'prime_valuation', 'galois_group',
|
31 |
+
|
32 |
+
'itermonomials', 'Monomial',
|
33 |
+
|
34 |
+
'lex', 'grlex', 'grevlex', 'ilex', 'igrlex', 'igrevlex',
|
35 |
+
|
36 |
+
'CRootOf', 'rootof', 'RootOf', 'ComplexRootOf', 'RootSum',
|
37 |
+
|
38 |
+
'roots',
|
39 |
+
|
40 |
+
'Domain', 'FiniteField', 'IntegerRing', 'RationalField', 'RealField',
|
41 |
+
'ComplexField', 'PythonFiniteField', 'GMPYFiniteField',
|
42 |
+
'PythonIntegerRing', 'GMPYIntegerRing', 'PythonRational',
|
43 |
+
'GMPYRationalField', 'AlgebraicField', 'PolynomialRing', 'FractionField',
|
44 |
+
'ExpressionDomain', 'FF_python', 'FF_gmpy', 'ZZ_python', 'ZZ_gmpy',
|
45 |
+
'QQ_python', 'QQ_gmpy', 'GF', 'FF', 'ZZ', 'QQ', 'ZZ_I', 'QQ_I', 'RR',
|
46 |
+
'CC', 'EX', 'EXRAW',
|
47 |
+
|
48 |
+
'construct_domain',
|
49 |
+
|
50 |
+
'swinnerton_dyer_poly', 'cyclotomic_poly', 'symmetric_poly',
|
51 |
+
'random_poly', 'interpolating_poly',
|
52 |
+
|
53 |
+
'jacobi_poly', 'chebyshevt_poly', 'chebyshevu_poly', 'hermite_poly',
|
54 |
+
'hermite_prob_poly', 'legendre_poly', 'laguerre_poly',
|
55 |
+
|
56 |
+
'bernoulli_poly', 'bernoulli_c_poly', 'genocchi_poly', 'euler_poly',
|
57 |
+
'andre_poly',
|
58 |
+
|
59 |
+
'apart', 'apart_list', 'assemble_partfrac_list',
|
60 |
+
|
61 |
+
'Options',
|
62 |
+
|
63 |
+
'ring', 'xring', 'vring', 'sring',
|
64 |
+
|
65 |
+
'field', 'xfield', 'vfield', 'sfield'
|
66 |
+
]
|
67 |
+
|
68 |
+
from .polytools import (Poly, PurePoly, poly_from_expr,
|
69 |
+
parallel_poly_from_expr, degree, total_degree, degree_list, LC, LM,
|
70 |
+
LT, pdiv, prem, pquo, pexquo, div, rem, quo, exquo, half_gcdex, gcdex,
|
71 |
+
invert, subresultants, resultant, discriminant, cofactors, gcd_list,
|
72 |
+
gcd, lcm_list, lcm, terms_gcd, trunc, monic, content, primitive,
|
73 |
+
compose, decompose, sturm, gff_list, gff, sqf_norm, sqf_part,
|
74 |
+
sqf_list, sqf, factor_list, factor, intervals, refine_root,
|
75 |
+
count_roots, real_roots, nroots, ground_roots, nth_power_roots_poly,
|
76 |
+
cancel, reduced, groebner, is_zero_dimensional, GroebnerBasis, poly)
|
77 |
+
|
78 |
+
from .polyfuncs import (symmetrize, horner, interpolate,
|
79 |
+
rational_interpolate, viete)
|
80 |
+
|
81 |
+
from .rationaltools import together
|
82 |
+
|
83 |
+
from .polyerrors import (BasePolynomialError, ExactQuotientFailed,
|
84 |
+
PolynomialDivisionFailed, OperationNotSupported, HeuristicGCDFailed,
|
85 |
+
HomomorphismFailed, IsomorphismFailed, ExtraneousFactors,
|
86 |
+
EvaluationFailed, RefinementFailed, CoercionFailed, NotInvertible,
|
87 |
+
NotReversible, NotAlgebraic, DomainError, PolynomialError,
|
88 |
+
UnificationFailed, GeneratorsError, GeneratorsNeeded,
|
89 |
+
ComputationFailed, UnivariatePolynomialError,
|
90 |
+
MultivariatePolynomialError, PolificationFailed, OptionError,
|
91 |
+
FlagError)
|
92 |
+
|
93 |
+
from .numberfields import (minpoly, minimal_polynomial, primitive_element,
|
94 |
+
field_isomorphism, to_number_field, isolate, round_two, prime_decomp,
|
95 |
+
prime_valuation, galois_group)
|
96 |
+
|
97 |
+
from .monomials import itermonomials, Monomial
|
98 |
+
|
99 |
+
from .orderings import lex, grlex, grevlex, ilex, igrlex, igrevlex
|
100 |
+
|
101 |
+
from .rootoftools import CRootOf, rootof, RootOf, ComplexRootOf, RootSum
|
102 |
+
|
103 |
+
from .polyroots import roots
|
104 |
+
|
105 |
+
from .domains import (Domain, FiniteField, IntegerRing, RationalField,
|
106 |
+
RealField, ComplexField, PythonFiniteField, GMPYFiniteField,
|
107 |
+
PythonIntegerRing, GMPYIntegerRing, PythonRational, GMPYRationalField,
|
108 |
+
AlgebraicField, PolynomialRing, FractionField, ExpressionDomain,
|
109 |
+
FF_python, FF_gmpy, ZZ_python, ZZ_gmpy, QQ_python, QQ_gmpy, GF, FF,
|
110 |
+
ZZ, QQ, ZZ_I, QQ_I, RR, CC, EX, EXRAW)
|
111 |
+
|
112 |
+
from .constructor import construct_domain
|
113 |
+
|
114 |
+
from .specialpolys import (swinnerton_dyer_poly, cyclotomic_poly,
|
115 |
+
symmetric_poly, random_poly, interpolating_poly)
|
116 |
+
|
117 |
+
from .orthopolys import (jacobi_poly, chebyshevt_poly, chebyshevu_poly,
|
118 |
+
hermite_poly, hermite_prob_poly, legendre_poly, laguerre_poly)
|
119 |
+
|
120 |
+
from .appellseqs import (bernoulli_poly, bernoulli_c_poly, genocchi_poly,
|
121 |
+
euler_poly, andre_poly)
|
122 |
+
|
123 |
+
from .partfrac import apart, apart_list, assemble_partfrac_list
|
124 |
+
|
125 |
+
from .polyoptions import Options
|
126 |
+
|
127 |
+
from .rings import ring, xring, vring, sring
|
128 |
+
|
129 |
+
from .fields import field, xfield, vfield, sfield
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/appellseqs.py
ADDED
@@ -0,0 +1,269 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
r"""
|
2 |
+
Efficient functions for generating Appell sequences.
|
3 |
+
|
4 |
+
An Appell sequence is a zero-indexed sequence of polynomials `p_i(x)`
|
5 |
+
satisfying `p_{i+1}'(x)=(i+1)p_i(x)` for all `i`. This definition leads
|
6 |
+
to the following iterative algorithm:
|
7 |
+
|
8 |
+
.. math :: p_0(x) = c_0,\ p_i(x) = i \int_0^x p_{i-1}(t)\,dt + c_i
|
9 |
+
|
10 |
+
The constant coefficients `c_i` are usually determined from the
|
11 |
+
just-evaluated integral and `i`.
|
12 |
+
|
13 |
+
Appell sequences satisfy the following identity from umbral calculus:
|
14 |
+
|
15 |
+
.. math :: p_n(x+y) = \sum_{k=0}^n \binom{n}{k} p_k(x) y^{n-k}
|
16 |
+
|
17 |
+
References
|
18 |
+
==========
|
19 |
+
|
20 |
+
.. [1] https://en.wikipedia.org/wiki/Appell_sequence
|
21 |
+
.. [2] Peter Luschny, "An introduction to the Bernoulli function",
|
22 |
+
https://arxiv.org/abs/2009.06743
|
23 |
+
"""
|
24 |
+
from sympy.polys.densearith import dup_mul_ground, dup_sub_ground, dup_quo_ground
|
25 |
+
from sympy.polys.densetools import dup_eval, dup_integrate
|
26 |
+
from sympy.polys.domains import ZZ, QQ
|
27 |
+
from sympy.polys.polytools import named_poly
|
28 |
+
from sympy.utilities import public
|
29 |
+
|
30 |
+
def dup_bernoulli(n, K):
|
31 |
+
"""Low-level implementation of Bernoulli polynomials."""
|
32 |
+
if n < 1:
|
33 |
+
return [K.one]
|
34 |
+
p = [K.one, K(-1,2)]
|
35 |
+
for i in range(2, n+1):
|
36 |
+
p = dup_integrate(dup_mul_ground(p, K(i), K), 1, K)
|
37 |
+
if i % 2 == 0:
|
38 |
+
p = dup_sub_ground(p, dup_eval(p, K(1,2), K) * K(1<<(i-1), (1<<i)-1), K)
|
39 |
+
return p
|
40 |
+
|
41 |
+
@public
|
42 |
+
def bernoulli_poly(n, x=None, polys=False):
|
43 |
+
r"""Generates the Bernoulli polynomial `\operatorname{B}_n(x)`.
|
44 |
+
|
45 |
+
`\operatorname{B}_n(x)` is the unique polynomial satisfying
|
46 |
+
|
47 |
+
.. math :: \int_{x}^{x+1} \operatorname{B}_n(t) \,dt = x^n.
|
48 |
+
|
49 |
+
Based on this, we have for nonnegative integer `s` and integer
|
50 |
+
`a` and `b`
|
51 |
+
|
52 |
+
.. math :: \sum_{k=a}^{b} k^s = \frac{\operatorname{B}_{s+1}(b+1) -
|
53 |
+
\operatorname{B}_{s+1}(a)}{s+1}
|
54 |
+
|
55 |
+
which is related to Jakob Bernoulli's original motivation for introducing
|
56 |
+
the Bernoulli numbers, the values of these polynomials at `x = 1`.
|
57 |
+
|
58 |
+
Examples
|
59 |
+
========
|
60 |
+
|
61 |
+
>>> from sympy import summation
|
62 |
+
>>> from sympy.abc import x
|
63 |
+
>>> from sympy.polys import bernoulli_poly
|
64 |
+
>>> bernoulli_poly(5, x)
|
65 |
+
x**5 - 5*x**4/2 + 5*x**3/3 - x/6
|
66 |
+
|
67 |
+
>>> def psum(p, a, b):
|
68 |
+
... return (bernoulli_poly(p+1,b+1) - bernoulli_poly(p+1,a)) / (p+1)
|
69 |
+
>>> psum(4, -6, 27)
|
70 |
+
3144337
|
71 |
+
>>> summation(x**4, (x, -6, 27))
|
72 |
+
3144337
|
73 |
+
|
74 |
+
>>> psum(1, 1, x).factor()
|
75 |
+
x*(x + 1)/2
|
76 |
+
>>> psum(2, 1, x).factor()
|
77 |
+
x*(x + 1)*(2*x + 1)/6
|
78 |
+
>>> psum(3, 1, x).factor()
|
79 |
+
x**2*(x + 1)**2/4
|
80 |
+
|
81 |
+
Parameters
|
82 |
+
==========
|
83 |
+
|
84 |
+
n : int
|
85 |
+
Degree of the polynomial.
|
86 |
+
x : optional
|
87 |
+
polys : bool, optional
|
88 |
+
If True, return a Poly, otherwise (default) return an expression.
|
89 |
+
|
90 |
+
See Also
|
91 |
+
========
|
92 |
+
|
93 |
+
sympy.functions.combinatorial.numbers.bernoulli
|
94 |
+
|
95 |
+
References
|
96 |
+
==========
|
97 |
+
|
98 |
+
.. [1] https://en.wikipedia.org/wiki/Bernoulli_polynomials
|
99 |
+
"""
|
100 |
+
return named_poly(n, dup_bernoulli, QQ, "Bernoulli polynomial", (x,), polys)
|
101 |
+
|
102 |
+
def dup_bernoulli_c(n, K):
|
103 |
+
"""Low-level implementation of central Bernoulli polynomials."""
|
104 |
+
p = [K.one]
|
105 |
+
for i in range(1, n+1):
|
106 |
+
p = dup_integrate(dup_mul_ground(p, K(i), K), 1, K)
|
107 |
+
if i % 2 == 0:
|
108 |
+
p = dup_sub_ground(p, dup_eval(p, K.one, K) * K((1<<(i-1))-1, (1<<i)-1), K)
|
109 |
+
return p
|
110 |
+
|
111 |
+
@public
|
112 |
+
def bernoulli_c_poly(n, x=None, polys=False):
|
113 |
+
r"""Generates the central Bernoulli polynomial `\operatorname{B}_n^c(x)`.
|
114 |
+
|
115 |
+
These are scaled and shifted versions of the plain Bernoulli polynomials,
|
116 |
+
done in such a way that `\operatorname{B}_n^c(x)` is an even or odd function
|
117 |
+
for even or odd `n` respectively:
|
118 |
+
|
119 |
+
.. math :: \operatorname{B}_n^c(x) = 2^n \operatorname{B}_n
|
120 |
+
\left(\frac{x+1}{2}\right)
|
121 |
+
|
122 |
+
Parameters
|
123 |
+
==========
|
124 |
+
|
125 |
+
n : int
|
126 |
+
Degree of the polynomial.
|
127 |
+
x : optional
|
128 |
+
polys : bool, optional
|
129 |
+
If True, return a Poly, otherwise (default) return an expression.
|
130 |
+
"""
|
131 |
+
return named_poly(n, dup_bernoulli_c, QQ, "central Bernoulli polynomial", (x,), polys)
|
132 |
+
|
133 |
+
def dup_genocchi(n, K):
|
134 |
+
"""Low-level implementation of Genocchi polynomials."""
|
135 |
+
if n < 1:
|
136 |
+
return [K.zero]
|
137 |
+
p = [-K.one]
|
138 |
+
for i in range(2, n+1):
|
139 |
+
p = dup_integrate(dup_mul_ground(p, K(i), K), 1, K)
|
140 |
+
if i % 2 == 0:
|
141 |
+
p = dup_sub_ground(p, dup_eval(p, K.one, K) // K(2), K)
|
142 |
+
return p
|
143 |
+
|
144 |
+
@public
|
145 |
+
def genocchi_poly(n, x=None, polys=False):
|
146 |
+
r"""Generates the Genocchi polynomial `\operatorname{G}_n(x)`.
|
147 |
+
|
148 |
+
`\operatorname{G}_n(x)` is twice the difference between the plain and
|
149 |
+
central Bernoulli polynomials, so has degree `n-1`:
|
150 |
+
|
151 |
+
.. math :: \operatorname{G}_n(x) = 2 (\operatorname{B}_n(x) -
|
152 |
+
\operatorname{B}_n^c(x))
|
153 |
+
|
154 |
+
The factor of 2 in the definition endows `\operatorname{G}_n(x)` with
|
155 |
+
integer coefficients.
|
156 |
+
|
157 |
+
Parameters
|
158 |
+
==========
|
159 |
+
|
160 |
+
n : int
|
161 |
+
Degree of the polynomial plus one.
|
162 |
+
x : optional
|
163 |
+
polys : bool, optional
|
164 |
+
If True, return a Poly, otherwise (default) return an expression.
|
165 |
+
|
166 |
+
See Also
|
167 |
+
========
|
168 |
+
|
169 |
+
sympy.functions.combinatorial.numbers.genocchi
|
170 |
+
"""
|
171 |
+
return named_poly(n, dup_genocchi, ZZ, "Genocchi polynomial", (x,), polys)
|
172 |
+
|
173 |
+
def dup_euler(n, K):
|
174 |
+
"""Low-level implementation of Euler polynomials."""
|
175 |
+
return dup_quo_ground(dup_genocchi(n+1, ZZ), K(-n-1), K)
|
176 |
+
|
177 |
+
@public
|
178 |
+
def euler_poly(n, x=None, polys=False):
|
179 |
+
r"""Generates the Euler polynomial `\operatorname{E}_n(x)`.
|
180 |
+
|
181 |
+
These are scaled and reindexed versions of the Genocchi polynomials:
|
182 |
+
|
183 |
+
.. math :: \operatorname{E}_n(x) = -\frac{\operatorname{G}_{n+1}(x)}{n+1}
|
184 |
+
|
185 |
+
Parameters
|
186 |
+
==========
|
187 |
+
|
188 |
+
n : int
|
189 |
+
Degree of the polynomial.
|
190 |
+
x : optional
|
191 |
+
polys : bool, optional
|
192 |
+
If True, return a Poly, otherwise (default) return an expression.
|
193 |
+
|
194 |
+
See Also
|
195 |
+
========
|
196 |
+
|
197 |
+
sympy.functions.combinatorial.numbers.euler
|
198 |
+
"""
|
199 |
+
return named_poly(n, dup_euler, QQ, "Euler polynomial", (x,), polys)
|
200 |
+
|
201 |
+
def dup_andre(n, K):
|
202 |
+
"""Low-level implementation of Andre polynomials."""
|
203 |
+
p = [K.one]
|
204 |
+
for i in range(1, n+1):
|
205 |
+
p = dup_integrate(dup_mul_ground(p, K(i), K), 1, K)
|
206 |
+
if i % 2 == 0:
|
207 |
+
p = dup_sub_ground(p, dup_eval(p, K.one, K), K)
|
208 |
+
return p
|
209 |
+
|
210 |
+
@public
|
211 |
+
def andre_poly(n, x=None, polys=False):
|
212 |
+
r"""Generates the Andre polynomial `\mathcal{A}_n(x)`.
|
213 |
+
|
214 |
+
This is the Appell sequence where the constant coefficients form the sequence
|
215 |
+
of Euler numbers ``euler(n)``. As such they have integer coefficients
|
216 |
+
and parities matching the parity of `n`.
|
217 |
+
|
218 |
+
Luschny calls these the *Swiss-knife polynomials* because their values
|
219 |
+
at 0 and 1 can be simply transformed into both the Bernoulli and Euler
|
220 |
+
numbers. Here they are called the Andre polynomials because
|
221 |
+
`|\mathcal{A}_n(n\bmod 2)|` for `n \ge 0` generates what Luschny calls
|
222 |
+
the *Andre numbers*, A000111 in the OEIS.
|
223 |
+
|
224 |
+
Examples
|
225 |
+
========
|
226 |
+
|
227 |
+
>>> from sympy import bernoulli, euler, genocchi
|
228 |
+
>>> from sympy.abc import x
|
229 |
+
>>> from sympy.polys import andre_poly
|
230 |
+
>>> andre_poly(9, x)
|
231 |
+
x**9 - 36*x**7 + 630*x**5 - 5124*x**3 + 12465*x
|
232 |
+
|
233 |
+
>>> [andre_poly(n, 0) for n in range(11)]
|
234 |
+
[1, 0, -1, 0, 5, 0, -61, 0, 1385, 0, -50521]
|
235 |
+
>>> [euler(n) for n in range(11)]
|
236 |
+
[1, 0, -1, 0, 5, 0, -61, 0, 1385, 0, -50521]
|
237 |
+
>>> [andre_poly(n-1, 1) * n / (4**n - 2**n) for n in range(1, 11)]
|
238 |
+
[1/2, 1/6, 0, -1/30, 0, 1/42, 0, -1/30, 0, 5/66]
|
239 |
+
>>> [bernoulli(n) for n in range(1, 11)]
|
240 |
+
[1/2, 1/6, 0, -1/30, 0, 1/42, 0, -1/30, 0, 5/66]
|
241 |
+
>>> [-andre_poly(n-1, -1) * n / (-2)**(n-1) for n in range(1, 11)]
|
242 |
+
[-1, -1, 0, 1, 0, -3, 0, 17, 0, -155]
|
243 |
+
>>> [genocchi(n) for n in range(1, 11)]
|
244 |
+
[-1, -1, 0, 1, 0, -3, 0, 17, 0, -155]
|
245 |
+
|
246 |
+
>>> [abs(andre_poly(n, n%2)) for n in range(11)]
|
247 |
+
[1, 1, 1, 2, 5, 16, 61, 272, 1385, 7936, 50521]
|
248 |
+
|
249 |
+
Parameters
|
250 |
+
==========
|
251 |
+
|
252 |
+
n : int
|
253 |
+
Degree of the polynomial.
|
254 |
+
x : optional
|
255 |
+
polys : bool, optional
|
256 |
+
If True, return a Poly, otherwise (default) return an expression.
|
257 |
+
|
258 |
+
See Also
|
259 |
+
========
|
260 |
+
|
261 |
+
sympy.functions.combinatorial.numbers.andre
|
262 |
+
|
263 |
+
References
|
264 |
+
==========
|
265 |
+
|
266 |
+
.. [1] Peter Luschny, "An introduction to the Bernoulli function",
|
267 |
+
https://arxiv.org/abs/2009.06743
|
268 |
+
"""
|
269 |
+
return named_poly(n, dup_andre, ZZ, "Andre polynomial", (x,), polys)
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/compatibility.py
ADDED
@@ -0,0 +1,1134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Compatibility interface between dense and sparse polys. """
|
2 |
+
|
3 |
+
|
4 |
+
from sympy.polys.densearith import dup_add_term
|
5 |
+
from sympy.polys.densearith import dmp_add_term
|
6 |
+
from sympy.polys.densearith import dup_sub_term
|
7 |
+
from sympy.polys.densearith import dmp_sub_term
|
8 |
+
from sympy.polys.densearith import dup_mul_term
|
9 |
+
from sympy.polys.densearith import dmp_mul_term
|
10 |
+
from sympy.polys.densearith import dup_add_ground
|
11 |
+
from sympy.polys.densearith import dmp_add_ground
|
12 |
+
from sympy.polys.densearith import dup_sub_ground
|
13 |
+
from sympy.polys.densearith import dmp_sub_ground
|
14 |
+
from sympy.polys.densearith import dup_mul_ground
|
15 |
+
from sympy.polys.densearith import dmp_mul_ground
|
16 |
+
from sympy.polys.densearith import dup_quo_ground
|
17 |
+
from sympy.polys.densearith import dmp_quo_ground
|
18 |
+
from sympy.polys.densearith import dup_exquo_ground
|
19 |
+
from sympy.polys.densearith import dmp_exquo_ground
|
20 |
+
from sympy.polys.densearith import dup_lshift
|
21 |
+
from sympy.polys.densearith import dup_rshift
|
22 |
+
from sympy.polys.densearith import dup_abs
|
23 |
+
from sympy.polys.densearith import dmp_abs
|
24 |
+
from sympy.polys.densearith import dup_neg
|
25 |
+
from sympy.polys.densearith import dmp_neg
|
26 |
+
from sympy.polys.densearith import dup_add
|
27 |
+
from sympy.polys.densearith import dmp_add
|
28 |
+
from sympy.polys.densearith import dup_sub
|
29 |
+
from sympy.polys.densearith import dmp_sub
|
30 |
+
from sympy.polys.densearith import dup_add_mul
|
31 |
+
from sympy.polys.densearith import dmp_add_mul
|
32 |
+
from sympy.polys.densearith import dup_sub_mul
|
33 |
+
from sympy.polys.densearith import dmp_sub_mul
|
34 |
+
from sympy.polys.densearith import dup_mul
|
35 |
+
from sympy.polys.densearith import dmp_mul
|
36 |
+
from sympy.polys.densearith import dup_sqr
|
37 |
+
from sympy.polys.densearith import dmp_sqr
|
38 |
+
from sympy.polys.densearith import dup_pow
|
39 |
+
from sympy.polys.densearith import dmp_pow
|
40 |
+
from sympy.polys.densearith import dup_pdiv
|
41 |
+
from sympy.polys.densearith import dup_prem
|
42 |
+
from sympy.polys.densearith import dup_pquo
|
43 |
+
from sympy.polys.densearith import dup_pexquo
|
44 |
+
from sympy.polys.densearith import dmp_pdiv
|
45 |
+
from sympy.polys.densearith import dmp_prem
|
46 |
+
from sympy.polys.densearith import dmp_pquo
|
47 |
+
from sympy.polys.densearith import dmp_pexquo
|
48 |
+
from sympy.polys.densearith import dup_rr_div
|
49 |
+
from sympy.polys.densearith import dmp_rr_div
|
50 |
+
from sympy.polys.densearith import dup_ff_div
|
51 |
+
from sympy.polys.densearith import dmp_ff_div
|
52 |
+
from sympy.polys.densearith import dup_div
|
53 |
+
from sympy.polys.densearith import dup_rem
|
54 |
+
from sympy.polys.densearith import dup_quo
|
55 |
+
from sympy.polys.densearith import dup_exquo
|
56 |
+
from sympy.polys.densearith import dmp_div
|
57 |
+
from sympy.polys.densearith import dmp_rem
|
58 |
+
from sympy.polys.densearith import dmp_quo
|
59 |
+
from sympy.polys.densearith import dmp_exquo
|
60 |
+
from sympy.polys.densearith import dup_max_norm
|
61 |
+
from sympy.polys.densearith import dmp_max_norm
|
62 |
+
from sympy.polys.densearith import dup_l1_norm
|
63 |
+
from sympy.polys.densearith import dmp_l1_norm
|
64 |
+
from sympy.polys.densearith import dup_l2_norm_squared
|
65 |
+
from sympy.polys.densearith import dmp_l2_norm_squared
|
66 |
+
from sympy.polys.densearith import dup_expand
|
67 |
+
from sympy.polys.densearith import dmp_expand
|
68 |
+
from sympy.polys.densebasic import dup_LC
|
69 |
+
from sympy.polys.densebasic import dmp_LC
|
70 |
+
from sympy.polys.densebasic import dup_TC
|
71 |
+
from sympy.polys.densebasic import dmp_TC
|
72 |
+
from sympy.polys.densebasic import dmp_ground_LC
|
73 |
+
from sympy.polys.densebasic import dmp_ground_TC
|
74 |
+
from sympy.polys.densebasic import dup_degree
|
75 |
+
from sympy.polys.densebasic import dmp_degree
|
76 |
+
from sympy.polys.densebasic import dmp_degree_in
|
77 |
+
from sympy.polys.densebasic import dmp_to_dict
|
78 |
+
from sympy.polys.densetools import dup_integrate
|
79 |
+
from sympy.polys.densetools import dmp_integrate
|
80 |
+
from sympy.polys.densetools import dmp_integrate_in
|
81 |
+
from sympy.polys.densetools import dup_diff
|
82 |
+
from sympy.polys.densetools import dmp_diff
|
83 |
+
from sympy.polys.densetools import dmp_diff_in
|
84 |
+
from sympy.polys.densetools import dup_eval
|
85 |
+
from sympy.polys.densetools import dmp_eval
|
86 |
+
from sympy.polys.densetools import dmp_eval_in
|
87 |
+
from sympy.polys.densetools import dmp_eval_tail
|
88 |
+
from sympy.polys.densetools import dmp_diff_eval_in
|
89 |
+
from sympy.polys.densetools import dup_trunc
|
90 |
+
from sympy.polys.densetools import dmp_trunc
|
91 |
+
from sympy.polys.densetools import dmp_ground_trunc
|
92 |
+
from sympy.polys.densetools import dup_monic
|
93 |
+
from sympy.polys.densetools import dmp_ground_monic
|
94 |
+
from sympy.polys.densetools import dup_content
|
95 |
+
from sympy.polys.densetools import dmp_ground_content
|
96 |
+
from sympy.polys.densetools import dup_primitive
|
97 |
+
from sympy.polys.densetools import dmp_ground_primitive
|
98 |
+
from sympy.polys.densetools import dup_extract
|
99 |
+
from sympy.polys.densetools import dmp_ground_extract
|
100 |
+
from sympy.polys.densetools import dup_real_imag
|
101 |
+
from sympy.polys.densetools import dup_mirror
|
102 |
+
from sympy.polys.densetools import dup_scale
|
103 |
+
from sympy.polys.densetools import dup_shift
|
104 |
+
from sympy.polys.densetools import dup_transform
|
105 |
+
from sympy.polys.densetools import dup_compose
|
106 |
+
from sympy.polys.densetools import dmp_compose
|
107 |
+
from sympy.polys.densetools import dup_decompose
|
108 |
+
from sympy.polys.densetools import dmp_lift
|
109 |
+
from sympy.polys.densetools import dup_sign_variations
|
110 |
+
from sympy.polys.densetools import dup_clear_denoms
|
111 |
+
from sympy.polys.densetools import dmp_clear_denoms
|
112 |
+
from sympy.polys.densetools import dup_revert
|
113 |
+
from sympy.polys.euclidtools import dup_half_gcdex
|
114 |
+
from sympy.polys.euclidtools import dmp_half_gcdex
|
115 |
+
from sympy.polys.euclidtools import dup_gcdex
|
116 |
+
from sympy.polys.euclidtools import dmp_gcdex
|
117 |
+
from sympy.polys.euclidtools import dup_invert
|
118 |
+
from sympy.polys.euclidtools import dmp_invert
|
119 |
+
from sympy.polys.euclidtools import dup_euclidean_prs
|
120 |
+
from sympy.polys.euclidtools import dmp_euclidean_prs
|
121 |
+
from sympy.polys.euclidtools import dup_primitive_prs
|
122 |
+
from sympy.polys.euclidtools import dmp_primitive_prs
|
123 |
+
from sympy.polys.euclidtools import dup_inner_subresultants
|
124 |
+
from sympy.polys.euclidtools import dup_subresultants
|
125 |
+
from sympy.polys.euclidtools import dup_prs_resultant
|
126 |
+
from sympy.polys.euclidtools import dup_resultant
|
127 |
+
from sympy.polys.euclidtools import dmp_inner_subresultants
|
128 |
+
from sympy.polys.euclidtools import dmp_subresultants
|
129 |
+
from sympy.polys.euclidtools import dmp_prs_resultant
|
130 |
+
from sympy.polys.euclidtools import dmp_zz_modular_resultant
|
131 |
+
from sympy.polys.euclidtools import dmp_zz_collins_resultant
|
132 |
+
from sympy.polys.euclidtools import dmp_qq_collins_resultant
|
133 |
+
from sympy.polys.euclidtools import dmp_resultant
|
134 |
+
from sympy.polys.euclidtools import dup_discriminant
|
135 |
+
from sympy.polys.euclidtools import dmp_discriminant
|
136 |
+
from sympy.polys.euclidtools import dup_rr_prs_gcd
|
137 |
+
from sympy.polys.euclidtools import dup_ff_prs_gcd
|
138 |
+
from sympy.polys.euclidtools import dmp_rr_prs_gcd
|
139 |
+
from sympy.polys.euclidtools import dmp_ff_prs_gcd
|
140 |
+
from sympy.polys.euclidtools import dup_zz_heu_gcd
|
141 |
+
from sympy.polys.euclidtools import dmp_zz_heu_gcd
|
142 |
+
from sympy.polys.euclidtools import dup_qq_heu_gcd
|
143 |
+
from sympy.polys.euclidtools import dmp_qq_heu_gcd
|
144 |
+
from sympy.polys.euclidtools import dup_inner_gcd
|
145 |
+
from sympy.polys.euclidtools import dmp_inner_gcd
|
146 |
+
from sympy.polys.euclidtools import dup_gcd
|
147 |
+
from sympy.polys.euclidtools import dmp_gcd
|
148 |
+
from sympy.polys.euclidtools import dup_rr_lcm
|
149 |
+
from sympy.polys.euclidtools import dup_ff_lcm
|
150 |
+
from sympy.polys.euclidtools import dup_lcm
|
151 |
+
from sympy.polys.euclidtools import dmp_rr_lcm
|
152 |
+
from sympy.polys.euclidtools import dmp_ff_lcm
|
153 |
+
from sympy.polys.euclidtools import dmp_lcm
|
154 |
+
from sympy.polys.euclidtools import dmp_content
|
155 |
+
from sympy.polys.euclidtools import dmp_primitive
|
156 |
+
from sympy.polys.euclidtools import dup_cancel
|
157 |
+
from sympy.polys.euclidtools import dmp_cancel
|
158 |
+
from sympy.polys.factortools import dup_trial_division
|
159 |
+
from sympy.polys.factortools import dmp_trial_division
|
160 |
+
from sympy.polys.factortools import dup_zz_mignotte_bound
|
161 |
+
from sympy.polys.factortools import dmp_zz_mignotte_bound
|
162 |
+
from sympy.polys.factortools import dup_zz_hensel_step
|
163 |
+
from sympy.polys.factortools import dup_zz_hensel_lift
|
164 |
+
from sympy.polys.factortools import dup_zz_zassenhaus
|
165 |
+
from sympy.polys.factortools import dup_zz_irreducible_p
|
166 |
+
from sympy.polys.factortools import dup_cyclotomic_p
|
167 |
+
from sympy.polys.factortools import dup_zz_cyclotomic_poly
|
168 |
+
from sympy.polys.factortools import dup_zz_cyclotomic_factor
|
169 |
+
from sympy.polys.factortools import dup_zz_factor_sqf
|
170 |
+
from sympy.polys.factortools import dup_zz_factor
|
171 |
+
from sympy.polys.factortools import dmp_zz_wang_non_divisors
|
172 |
+
from sympy.polys.factortools import dmp_zz_wang_lead_coeffs
|
173 |
+
from sympy.polys.factortools import dup_zz_diophantine
|
174 |
+
from sympy.polys.factortools import dmp_zz_diophantine
|
175 |
+
from sympy.polys.factortools import dmp_zz_wang_hensel_lifting
|
176 |
+
from sympy.polys.factortools import dmp_zz_wang
|
177 |
+
from sympy.polys.factortools import dmp_zz_factor
|
178 |
+
from sympy.polys.factortools import dup_qq_i_factor
|
179 |
+
from sympy.polys.factortools import dup_zz_i_factor
|
180 |
+
from sympy.polys.factortools import dmp_qq_i_factor
|
181 |
+
from sympy.polys.factortools import dmp_zz_i_factor
|
182 |
+
from sympy.polys.factortools import dup_ext_factor
|
183 |
+
from sympy.polys.factortools import dmp_ext_factor
|
184 |
+
from sympy.polys.factortools import dup_gf_factor
|
185 |
+
from sympy.polys.factortools import dmp_gf_factor
|
186 |
+
from sympy.polys.factortools import dup_factor_list
|
187 |
+
from sympy.polys.factortools import dup_factor_list_include
|
188 |
+
from sympy.polys.factortools import dmp_factor_list
|
189 |
+
from sympy.polys.factortools import dmp_factor_list_include
|
190 |
+
from sympy.polys.factortools import dup_irreducible_p
|
191 |
+
from sympy.polys.factortools import dmp_irreducible_p
|
192 |
+
from sympy.polys.rootisolation import dup_sturm
|
193 |
+
from sympy.polys.rootisolation import dup_root_upper_bound
|
194 |
+
from sympy.polys.rootisolation import dup_root_lower_bound
|
195 |
+
from sympy.polys.rootisolation import dup_step_refine_real_root
|
196 |
+
from sympy.polys.rootisolation import dup_inner_refine_real_root
|
197 |
+
from sympy.polys.rootisolation import dup_outer_refine_real_root
|
198 |
+
from sympy.polys.rootisolation import dup_refine_real_root
|
199 |
+
from sympy.polys.rootisolation import dup_inner_isolate_real_roots
|
200 |
+
from sympy.polys.rootisolation import dup_inner_isolate_positive_roots
|
201 |
+
from sympy.polys.rootisolation import dup_inner_isolate_negative_roots
|
202 |
+
from sympy.polys.rootisolation import dup_isolate_real_roots_sqf
|
203 |
+
from sympy.polys.rootisolation import dup_isolate_real_roots
|
204 |
+
from sympy.polys.rootisolation import dup_isolate_real_roots_list
|
205 |
+
from sympy.polys.rootisolation import dup_count_real_roots
|
206 |
+
from sympy.polys.rootisolation import dup_count_complex_roots
|
207 |
+
from sympy.polys.rootisolation import dup_isolate_complex_roots_sqf
|
208 |
+
from sympy.polys.rootisolation import dup_isolate_all_roots_sqf
|
209 |
+
from sympy.polys.rootisolation import dup_isolate_all_roots
|
210 |
+
|
211 |
+
from sympy.polys.sqfreetools import (
|
212 |
+
dup_sqf_p, dmp_sqf_p, dup_sqf_norm, dmp_sqf_norm, dup_gf_sqf_part, dmp_gf_sqf_part,
|
213 |
+
dup_sqf_part, dmp_sqf_part, dup_gf_sqf_list, dmp_gf_sqf_list, dup_sqf_list,
|
214 |
+
dup_sqf_list_include, dmp_sqf_list, dmp_sqf_list_include, dup_gff_list, dmp_gff_list)
|
215 |
+
|
216 |
+
from sympy.polys.galoistools import (
|
217 |
+
gf_degree, gf_LC, gf_TC, gf_strip, gf_from_dict,
|
218 |
+
gf_to_dict, gf_from_int_poly, gf_to_int_poly, gf_neg, gf_add_ground, gf_sub_ground,
|
219 |
+
gf_mul_ground, gf_quo_ground, gf_add, gf_sub, gf_mul, gf_sqr, gf_add_mul, gf_sub_mul,
|
220 |
+
gf_expand, gf_div, gf_rem, gf_quo, gf_exquo, gf_lshift, gf_rshift, gf_pow, gf_pow_mod,
|
221 |
+
gf_gcd, gf_lcm, gf_cofactors, gf_gcdex, gf_monic, gf_diff, gf_eval, gf_multi_eval,
|
222 |
+
gf_compose, gf_compose_mod, gf_trace_map, gf_random, gf_irreducible, gf_irred_p_ben_or,
|
223 |
+
gf_irred_p_rabin, gf_irreducible_p, gf_sqf_p, gf_sqf_part, gf_Qmatrix,
|
224 |
+
gf_berlekamp, gf_ddf_zassenhaus, gf_edf_zassenhaus, gf_ddf_shoup, gf_edf_shoup,
|
225 |
+
gf_zassenhaus, gf_shoup, gf_factor_sqf, gf_factor)
|
226 |
+
|
227 |
+
from sympy.utilities import public
|
228 |
+
|
229 |
+
@public
|
230 |
+
class IPolys:
|
231 |
+
symbols = None
|
232 |
+
ngens = None
|
233 |
+
domain = None
|
234 |
+
order = None
|
235 |
+
gens = None
|
236 |
+
|
237 |
+
def drop(self, gen):
|
238 |
+
pass
|
239 |
+
|
240 |
+
def clone(self, symbols=None, domain=None, order=None):
|
241 |
+
pass
|
242 |
+
|
243 |
+
def to_ground(self):
|
244 |
+
pass
|
245 |
+
|
246 |
+
def ground_new(self, element):
|
247 |
+
pass
|
248 |
+
|
249 |
+
def domain_new(self, element):
|
250 |
+
pass
|
251 |
+
|
252 |
+
def from_dict(self, d):
|
253 |
+
pass
|
254 |
+
|
255 |
+
def wrap(self, element):
|
256 |
+
from sympy.polys.rings import PolyElement
|
257 |
+
if isinstance(element, PolyElement):
|
258 |
+
if element.ring == self:
|
259 |
+
return element
|
260 |
+
else:
|
261 |
+
raise NotImplementedError("domain conversions")
|
262 |
+
else:
|
263 |
+
return self.ground_new(element)
|
264 |
+
|
265 |
+
def to_dense(self, element):
|
266 |
+
return self.wrap(element).to_dense()
|
267 |
+
|
268 |
+
def from_dense(self, element):
|
269 |
+
return self.from_dict(dmp_to_dict(element, self.ngens-1, self.domain))
|
270 |
+
|
271 |
+
def dup_add_term(self, f, c, i):
|
272 |
+
return self.from_dense(dup_add_term(self.to_dense(f), c, i, self.domain))
|
273 |
+
def dmp_add_term(self, f, c, i):
|
274 |
+
return self.from_dense(dmp_add_term(self.to_dense(f), self.wrap(c).drop(0).to_dense(), i, self.ngens-1, self.domain))
|
275 |
+
def dup_sub_term(self, f, c, i):
|
276 |
+
return self.from_dense(dup_sub_term(self.to_dense(f), c, i, self.domain))
|
277 |
+
def dmp_sub_term(self, f, c, i):
|
278 |
+
return self.from_dense(dmp_sub_term(self.to_dense(f), self.wrap(c).drop(0).to_dense(), i, self.ngens-1, self.domain))
|
279 |
+
def dup_mul_term(self, f, c, i):
|
280 |
+
return self.from_dense(dup_mul_term(self.to_dense(f), c, i, self.domain))
|
281 |
+
def dmp_mul_term(self, f, c, i):
|
282 |
+
return self.from_dense(dmp_mul_term(self.to_dense(f), self.wrap(c).drop(0).to_dense(), i, self.ngens-1, self.domain))
|
283 |
+
|
284 |
+
def dup_add_ground(self, f, c):
|
285 |
+
return self.from_dense(dup_add_ground(self.to_dense(f), c, self.domain))
|
286 |
+
def dmp_add_ground(self, f, c):
|
287 |
+
return self.from_dense(dmp_add_ground(self.to_dense(f), c, self.ngens-1, self.domain))
|
288 |
+
def dup_sub_ground(self, f, c):
|
289 |
+
return self.from_dense(dup_sub_ground(self.to_dense(f), c, self.domain))
|
290 |
+
def dmp_sub_ground(self, f, c):
|
291 |
+
return self.from_dense(dmp_sub_ground(self.to_dense(f), c, self.ngens-1, self.domain))
|
292 |
+
def dup_mul_ground(self, f, c):
|
293 |
+
return self.from_dense(dup_mul_ground(self.to_dense(f), c, self.domain))
|
294 |
+
def dmp_mul_ground(self, f, c):
|
295 |
+
return self.from_dense(dmp_mul_ground(self.to_dense(f), c, self.ngens-1, self.domain))
|
296 |
+
def dup_quo_ground(self, f, c):
|
297 |
+
return self.from_dense(dup_quo_ground(self.to_dense(f), c, self.domain))
|
298 |
+
def dmp_quo_ground(self, f, c):
|
299 |
+
return self.from_dense(dmp_quo_ground(self.to_dense(f), c, self.ngens-1, self.domain))
|
300 |
+
def dup_exquo_ground(self, f, c):
|
301 |
+
return self.from_dense(dup_exquo_ground(self.to_dense(f), c, self.domain))
|
302 |
+
def dmp_exquo_ground(self, f, c):
|
303 |
+
return self.from_dense(dmp_exquo_ground(self.to_dense(f), c, self.ngens-1, self.domain))
|
304 |
+
|
305 |
+
def dup_lshift(self, f, n):
|
306 |
+
return self.from_dense(dup_lshift(self.to_dense(f), n, self.domain))
|
307 |
+
def dup_rshift(self, f, n):
|
308 |
+
return self.from_dense(dup_rshift(self.to_dense(f), n, self.domain))
|
309 |
+
|
310 |
+
def dup_abs(self, f):
|
311 |
+
return self.from_dense(dup_abs(self.to_dense(f), self.domain))
|
312 |
+
def dmp_abs(self, f):
|
313 |
+
return self.from_dense(dmp_abs(self.to_dense(f), self.ngens-1, self.domain))
|
314 |
+
|
315 |
+
def dup_neg(self, f):
|
316 |
+
return self.from_dense(dup_neg(self.to_dense(f), self.domain))
|
317 |
+
def dmp_neg(self, f):
|
318 |
+
return self.from_dense(dmp_neg(self.to_dense(f), self.ngens-1, self.domain))
|
319 |
+
|
320 |
+
def dup_add(self, f, g):
|
321 |
+
return self.from_dense(dup_add(self.to_dense(f), self.to_dense(g), self.domain))
|
322 |
+
def dmp_add(self, f, g):
|
323 |
+
return self.from_dense(dmp_add(self.to_dense(f), self.to_dense(g), self.ngens-1, self.domain))
|
324 |
+
|
325 |
+
def dup_sub(self, f, g):
|
326 |
+
return self.from_dense(dup_sub(self.to_dense(f), self.to_dense(g), self.domain))
|
327 |
+
def dmp_sub(self, f, g):
|
328 |
+
return self.from_dense(dmp_sub(self.to_dense(f), self.to_dense(g), self.ngens-1, self.domain))
|
329 |
+
|
330 |
+
def dup_add_mul(self, f, g, h):
|
331 |
+
return self.from_dense(dup_add_mul(self.to_dense(f), self.to_dense(g), self.to_dense(h), self.domain))
|
332 |
+
def dmp_add_mul(self, f, g, h):
|
333 |
+
return self.from_dense(dmp_add_mul(self.to_dense(f), self.to_dense(g), self.to_dense(h), self.ngens-1, self.domain))
|
334 |
+
def dup_sub_mul(self, f, g, h):
|
335 |
+
return self.from_dense(dup_sub_mul(self.to_dense(f), self.to_dense(g), self.to_dense(h), self.domain))
|
336 |
+
def dmp_sub_mul(self, f, g, h):
|
337 |
+
return self.from_dense(dmp_sub_mul(self.to_dense(f), self.to_dense(g), self.to_dense(h), self.ngens-1, self.domain))
|
338 |
+
|
339 |
+
def dup_mul(self, f, g):
|
340 |
+
return self.from_dense(dup_mul(self.to_dense(f), self.to_dense(g), self.domain))
|
341 |
+
def dmp_mul(self, f, g):
|
342 |
+
return self.from_dense(dmp_mul(self.to_dense(f), self.to_dense(g), self.ngens-1, self.domain))
|
343 |
+
|
344 |
+
def dup_sqr(self, f):
|
345 |
+
return self.from_dense(dup_sqr(self.to_dense(f), self.domain))
|
346 |
+
def dmp_sqr(self, f):
|
347 |
+
return self.from_dense(dmp_sqr(self.to_dense(f), self.ngens-1, self.domain))
|
348 |
+
def dup_pow(self, f, n):
|
349 |
+
return self.from_dense(dup_pow(self.to_dense(f), n, self.domain))
|
350 |
+
def dmp_pow(self, f, n):
|
351 |
+
return self.from_dense(dmp_pow(self.to_dense(f), n, self.ngens-1, self.domain))
|
352 |
+
|
353 |
+
def dup_pdiv(self, f, g):
|
354 |
+
q, r = dup_pdiv(self.to_dense(f), self.to_dense(g), self.domain)
|
355 |
+
return (self.from_dense(q), self.from_dense(r))
|
356 |
+
def dup_prem(self, f, g):
|
357 |
+
return self.from_dense(dup_prem(self.to_dense(f), self.to_dense(g), self.domain))
|
358 |
+
def dup_pquo(self, f, g):
|
359 |
+
return self.from_dense(dup_pquo(self.to_dense(f), self.to_dense(g), self.domain))
|
360 |
+
def dup_pexquo(self, f, g):
|
361 |
+
return self.from_dense(dup_pexquo(self.to_dense(f), self.to_dense(g), self.domain))
|
362 |
+
|
363 |
+
def dmp_pdiv(self, f, g):
|
364 |
+
q, r = dmp_pdiv(self.to_dense(f), self.to_dense(g), self.ngens-1, self.domain)
|
365 |
+
return (self.from_dense(q), self.from_dense(r))
|
366 |
+
def dmp_prem(self, f, g):
|
367 |
+
return self.from_dense(dmp_prem(self.to_dense(f), self.to_dense(g), self.ngens-1, self.domain))
|
368 |
+
def dmp_pquo(self, f, g):
|
369 |
+
return self.from_dense(dmp_pquo(self.to_dense(f), self.to_dense(g), self.ngens-1, self.domain))
|
370 |
+
def dmp_pexquo(self, f, g):
|
371 |
+
return self.from_dense(dmp_pexquo(self.to_dense(f), self.to_dense(g), self.ngens-1, self.domain))
|
372 |
+
|
373 |
+
def dup_rr_div(self, f, g):
|
374 |
+
q, r = dup_rr_div(self.to_dense(f), self.to_dense(g), self.domain)
|
375 |
+
return (self.from_dense(q), self.from_dense(r))
|
376 |
+
def dmp_rr_div(self, f, g):
|
377 |
+
q, r = dmp_rr_div(self.to_dense(f), self.to_dense(g), self.ngens-1, self.domain)
|
378 |
+
return (self.from_dense(q), self.from_dense(r))
|
379 |
+
def dup_ff_div(self, f, g):
|
380 |
+
q, r = dup_ff_div(self.to_dense(f), self.to_dense(g), self.domain)
|
381 |
+
return (self.from_dense(q), self.from_dense(r))
|
382 |
+
def dmp_ff_div(self, f, g):
|
383 |
+
q, r = dmp_ff_div(self.to_dense(f), self.to_dense(g), self.ngens-1, self.domain)
|
384 |
+
return (self.from_dense(q), self.from_dense(r))
|
385 |
+
|
386 |
+
def dup_div(self, f, g):
|
387 |
+
q, r = dup_div(self.to_dense(f), self.to_dense(g), self.domain)
|
388 |
+
return (self.from_dense(q), self.from_dense(r))
|
389 |
+
def dup_rem(self, f, g):
|
390 |
+
return self.from_dense(dup_rem(self.to_dense(f), self.to_dense(g), self.domain))
|
391 |
+
def dup_quo(self, f, g):
|
392 |
+
return self.from_dense(dup_quo(self.to_dense(f), self.to_dense(g), self.domain))
|
393 |
+
def dup_exquo(self, f, g):
|
394 |
+
return self.from_dense(dup_exquo(self.to_dense(f), self.to_dense(g), self.domain))
|
395 |
+
|
396 |
+
def dmp_div(self, f, g):
|
397 |
+
q, r = dmp_div(self.to_dense(f), self.to_dense(g), self.ngens-1, self.domain)
|
398 |
+
return (self.from_dense(q), self.from_dense(r))
|
399 |
+
def dmp_rem(self, f, g):
|
400 |
+
return self.from_dense(dmp_rem(self.to_dense(f), self.to_dense(g), self.ngens-1, self.domain))
|
401 |
+
def dmp_quo(self, f, g):
|
402 |
+
return self.from_dense(dmp_quo(self.to_dense(f), self.to_dense(g), self.ngens-1, self.domain))
|
403 |
+
def dmp_exquo(self, f, g):
|
404 |
+
return self.from_dense(dmp_exquo(self.to_dense(f), self.to_dense(g), self.ngens-1, self.domain))
|
405 |
+
|
406 |
+
def dup_max_norm(self, f):
|
407 |
+
return dup_max_norm(self.to_dense(f), self.domain)
|
408 |
+
def dmp_max_norm(self, f):
|
409 |
+
return dmp_max_norm(self.to_dense(f), self.ngens-1, self.domain)
|
410 |
+
|
411 |
+
def dup_l1_norm(self, f):
|
412 |
+
return dup_l1_norm(self.to_dense(f), self.domain)
|
413 |
+
def dmp_l1_norm(self, f):
|
414 |
+
return dmp_l1_norm(self.to_dense(f), self.ngens-1, self.domain)
|
415 |
+
|
416 |
+
def dup_l2_norm_squared(self, f):
|
417 |
+
return dup_l2_norm_squared(self.to_dense(f), self.domain)
|
418 |
+
def dmp_l2_norm_squared(self, f):
|
419 |
+
return dmp_l2_norm_squared(self.to_dense(f), self.ngens-1, self.domain)
|
420 |
+
|
421 |
+
def dup_expand(self, polys):
|
422 |
+
return self.from_dense(dup_expand(list(map(self.to_dense, polys)), self.domain))
|
423 |
+
def dmp_expand(self, polys):
|
424 |
+
return self.from_dense(dmp_expand(list(map(self.to_dense, polys)), self.ngens-1, self.domain))
|
425 |
+
|
426 |
+
def dup_LC(self, f):
|
427 |
+
return dup_LC(self.to_dense(f), self.domain)
|
428 |
+
def dmp_LC(self, f):
|
429 |
+
LC = dmp_LC(self.to_dense(f), self.domain)
|
430 |
+
if isinstance(LC, list):
|
431 |
+
return self[1:].from_dense(LC)
|
432 |
+
else:
|
433 |
+
return LC
|
434 |
+
def dup_TC(self, f):
|
435 |
+
return dup_TC(self.to_dense(f), self.domain)
|
436 |
+
def dmp_TC(self, f):
|
437 |
+
TC = dmp_TC(self.to_dense(f), self.domain)
|
438 |
+
if isinstance(TC, list):
|
439 |
+
return self[1:].from_dense(TC)
|
440 |
+
else:
|
441 |
+
return TC
|
442 |
+
|
443 |
+
def dmp_ground_LC(self, f):
|
444 |
+
return dmp_ground_LC(self.to_dense(f), self.ngens-1, self.domain)
|
445 |
+
def dmp_ground_TC(self, f):
|
446 |
+
return dmp_ground_TC(self.to_dense(f), self.ngens-1, self.domain)
|
447 |
+
|
448 |
+
def dup_degree(self, f):
|
449 |
+
return dup_degree(self.to_dense(f))
|
450 |
+
def dmp_degree(self, f):
|
451 |
+
return dmp_degree(self.to_dense(f), self.ngens-1)
|
452 |
+
def dmp_degree_in(self, f, j):
|
453 |
+
return dmp_degree_in(self.to_dense(f), j, self.ngens-1)
|
454 |
+
def dup_integrate(self, f, m):
|
455 |
+
return self.from_dense(dup_integrate(self.to_dense(f), m, self.domain))
|
456 |
+
def dmp_integrate(self, f, m):
|
457 |
+
return self.from_dense(dmp_integrate(self.to_dense(f), m, self.ngens-1, self.domain))
|
458 |
+
|
459 |
+
def dup_diff(self, f, m):
|
460 |
+
return self.from_dense(dup_diff(self.to_dense(f), m, self.domain))
|
461 |
+
def dmp_diff(self, f, m):
|
462 |
+
return self.from_dense(dmp_diff(self.to_dense(f), m, self.ngens-1, self.domain))
|
463 |
+
|
464 |
+
def dmp_diff_in(self, f, m, j):
|
465 |
+
return self.from_dense(dmp_diff_in(self.to_dense(f), m, j, self.ngens-1, self.domain))
|
466 |
+
def dmp_integrate_in(self, f, m, j):
|
467 |
+
return self.from_dense(dmp_integrate_in(self.to_dense(f), m, j, self.ngens-1, self.domain))
|
468 |
+
|
469 |
+
def dup_eval(self, f, a):
|
470 |
+
return dup_eval(self.to_dense(f), a, self.domain)
|
471 |
+
def dmp_eval(self, f, a):
|
472 |
+
result = dmp_eval(self.to_dense(f), a, self.ngens-1, self.domain)
|
473 |
+
return self[1:].from_dense(result)
|
474 |
+
|
475 |
+
def dmp_eval_in(self, f, a, j):
|
476 |
+
result = dmp_eval_in(self.to_dense(f), a, j, self.ngens-1, self.domain)
|
477 |
+
return self.drop(j).from_dense(result)
|
478 |
+
def dmp_diff_eval_in(self, f, m, a, j):
|
479 |
+
result = dmp_diff_eval_in(self.to_dense(f), m, a, j, self.ngens-1, self.domain)
|
480 |
+
return self.drop(j).from_dense(result)
|
481 |
+
|
482 |
+
def dmp_eval_tail(self, f, A):
|
483 |
+
result = dmp_eval_tail(self.to_dense(f), A, self.ngens-1, self.domain)
|
484 |
+
if isinstance(result, list):
|
485 |
+
return self[:-len(A)].from_dense(result)
|
486 |
+
else:
|
487 |
+
return result
|
488 |
+
|
489 |
+
def dup_trunc(self, f, p):
|
490 |
+
return self.from_dense(dup_trunc(self.to_dense(f), p, self.domain))
|
491 |
+
def dmp_trunc(self, f, g):
|
492 |
+
return self.from_dense(dmp_trunc(self.to_dense(f), self[1:].to_dense(g), self.ngens-1, self.domain))
|
493 |
+
def dmp_ground_trunc(self, f, p):
|
494 |
+
return self.from_dense(dmp_ground_trunc(self.to_dense(f), p, self.ngens-1, self.domain))
|
495 |
+
|
496 |
+
def dup_monic(self, f):
|
497 |
+
return self.from_dense(dup_monic(self.to_dense(f), self.domain))
|
498 |
+
def dmp_ground_monic(self, f):
|
499 |
+
return self.from_dense(dmp_ground_monic(self.to_dense(f), self.ngens-1, self.domain))
|
500 |
+
|
501 |
+
def dup_extract(self, f, g):
|
502 |
+
c, F, G = dup_extract(self.to_dense(f), self.to_dense(g), self.domain)
|
503 |
+
return (c, self.from_dense(F), self.from_dense(G))
|
504 |
+
def dmp_ground_extract(self, f, g):
|
505 |
+
c, F, G = dmp_ground_extract(self.to_dense(f), self.to_dense(g), self.ngens-1, self.domain)
|
506 |
+
return (c, self.from_dense(F), self.from_dense(G))
|
507 |
+
|
508 |
+
def dup_real_imag(self, f):
|
509 |
+
p, q = dup_real_imag(self.wrap(f).drop(1).to_dense(), self.domain)
|
510 |
+
return (self.from_dense(p), self.from_dense(q))
|
511 |
+
|
512 |
+
def dup_mirror(self, f):
|
513 |
+
return self.from_dense(dup_mirror(self.to_dense(f), self.domain))
|
514 |
+
def dup_scale(self, f, a):
|
515 |
+
return self.from_dense(dup_scale(self.to_dense(f), a, self.domain))
|
516 |
+
def dup_shift(self, f, a):
|
517 |
+
return self.from_dense(dup_shift(self.to_dense(f), a, self.domain))
|
518 |
+
def dup_transform(self, f, p, q):
|
519 |
+
return self.from_dense(dup_transform(self.to_dense(f), self.to_dense(p), self.to_dense(q), self.domain))
|
520 |
+
|
521 |
+
def dup_compose(self, f, g):
|
522 |
+
return self.from_dense(dup_compose(self.to_dense(f), self.to_dense(g), self.domain))
|
523 |
+
def dmp_compose(self, f, g):
|
524 |
+
return self.from_dense(dmp_compose(self.to_dense(f), self.to_dense(g), self.ngens-1, self.domain))
|
525 |
+
|
526 |
+
def dup_decompose(self, f):
|
527 |
+
components = dup_decompose(self.to_dense(f), self.domain)
|
528 |
+
return list(map(self.from_dense, components))
|
529 |
+
|
530 |
+
def dmp_lift(self, f):
|
531 |
+
result = dmp_lift(self.to_dense(f), self.ngens-1, self.domain)
|
532 |
+
return self.to_ground().from_dense(result)
|
533 |
+
|
534 |
+
def dup_sign_variations(self, f):
|
535 |
+
return dup_sign_variations(self.to_dense(f), self.domain)
|
536 |
+
|
537 |
+
def dup_clear_denoms(self, f, convert=False):
|
538 |
+
c, F = dup_clear_denoms(self.to_dense(f), self.domain, convert=convert)
|
539 |
+
if convert:
|
540 |
+
ring = self.clone(domain=self.domain.get_ring())
|
541 |
+
else:
|
542 |
+
ring = self
|
543 |
+
return (c, ring.from_dense(F))
|
544 |
+
def dmp_clear_denoms(self, f, convert=False):
|
545 |
+
c, F = dmp_clear_denoms(self.to_dense(f), self.ngens-1, self.domain, convert=convert)
|
546 |
+
if convert:
|
547 |
+
ring = self.clone(domain=self.domain.get_ring())
|
548 |
+
else:
|
549 |
+
ring = self
|
550 |
+
return (c, ring.from_dense(F))
|
551 |
+
|
552 |
+
def dup_revert(self, f, n):
|
553 |
+
return self.from_dense(dup_revert(self.to_dense(f), n, self.domain))
|
554 |
+
|
555 |
+
def dup_half_gcdex(self, f, g):
|
556 |
+
s, h = dup_half_gcdex(self.to_dense(f), self.to_dense(g), self.domain)
|
557 |
+
return (self.from_dense(s), self.from_dense(h))
|
558 |
+
def dmp_half_gcdex(self, f, g):
|
559 |
+
s, h = dmp_half_gcdex(self.to_dense(f), self.to_dense(g), self.ngens-1, self.domain)
|
560 |
+
return (self.from_dense(s), self.from_dense(h))
|
561 |
+
def dup_gcdex(self, f, g):
|
562 |
+
s, t, h = dup_gcdex(self.to_dense(f), self.to_dense(g), self.domain)
|
563 |
+
return (self.from_dense(s), self.from_dense(t), self.from_dense(h))
|
564 |
+
def dmp_gcdex(self, f, g):
|
565 |
+
s, t, h = dmp_gcdex(self.to_dense(f), self.to_dense(g), self.ngens-1, self.domain)
|
566 |
+
return (self.from_dense(s), self.from_dense(t), self.from_dense(h))
|
567 |
+
|
568 |
+
def dup_invert(self, f, g):
|
569 |
+
return self.from_dense(dup_invert(self.to_dense(f), self.to_dense(g), self.domain))
|
570 |
+
def dmp_invert(self, f, g):
|
571 |
+
return self.from_dense(dmp_invert(self.to_dense(f), self.to_dense(g), self.ngens-1, self.domain))
|
572 |
+
|
573 |
+
def dup_euclidean_prs(self, f, g):
|
574 |
+
prs = dup_euclidean_prs(self.to_dense(f), self.to_dense(g), self.domain)
|
575 |
+
return list(map(self.from_dense, prs))
|
576 |
+
def dmp_euclidean_prs(self, f, g):
|
577 |
+
prs = dmp_euclidean_prs(self.to_dense(f), self.to_dense(g), self.ngens-1, self.domain)
|
578 |
+
return list(map(self.from_dense, prs))
|
579 |
+
def dup_primitive_prs(self, f, g):
|
580 |
+
prs = dup_primitive_prs(self.to_dense(f), self.to_dense(g), self.domain)
|
581 |
+
return list(map(self.from_dense, prs))
|
582 |
+
def dmp_primitive_prs(self, f, g):
|
583 |
+
prs = dmp_primitive_prs(self.to_dense(f), self.to_dense(g), self.ngens-1, self.domain)
|
584 |
+
return list(map(self.from_dense, prs))
|
585 |
+
|
586 |
+
def dup_inner_subresultants(self, f, g):
|
587 |
+
prs, sres = dup_inner_subresultants(self.to_dense(f), self.to_dense(g), self.domain)
|
588 |
+
return (list(map(self.from_dense, prs)), sres)
|
589 |
+
def dmp_inner_subresultants(self, f, g):
|
590 |
+
prs, sres = dmp_inner_subresultants(self.to_dense(f), self.to_dense(g), self.ngens-1, self.domain)
|
591 |
+
return (list(map(self.from_dense, prs)), sres)
|
592 |
+
|
593 |
+
def dup_subresultants(self, f, g):
|
594 |
+
prs = dup_subresultants(self.to_dense(f), self.to_dense(g), self.domain)
|
595 |
+
return list(map(self.from_dense, prs))
|
596 |
+
def dmp_subresultants(self, f, g):
|
597 |
+
prs = dmp_subresultants(self.to_dense(f), self.to_dense(g), self.ngens-1, self.domain)
|
598 |
+
return list(map(self.from_dense, prs))
|
599 |
+
|
600 |
+
def dup_prs_resultant(self, f, g):
|
601 |
+
res, prs = dup_prs_resultant(self.to_dense(f), self.to_dense(g), self.domain)
|
602 |
+
return (res, list(map(self.from_dense, prs)))
|
603 |
+
def dmp_prs_resultant(self, f, g):
|
604 |
+
res, prs = dmp_prs_resultant(self.to_dense(f), self.to_dense(g), self.ngens-1, self.domain)
|
605 |
+
return (self[1:].from_dense(res), list(map(self.from_dense, prs)))
|
606 |
+
|
607 |
+
def dmp_zz_modular_resultant(self, f, g, p):
|
608 |
+
res = dmp_zz_modular_resultant(self.to_dense(f), self.to_dense(g), self.domain_new(p), self.ngens-1, self.domain)
|
609 |
+
return self[1:].from_dense(res)
|
610 |
+
def dmp_zz_collins_resultant(self, f, g):
|
611 |
+
res = dmp_zz_collins_resultant(self.to_dense(f), self.to_dense(g), self.ngens-1, self.domain)
|
612 |
+
return self[1:].from_dense(res)
|
613 |
+
def dmp_qq_collins_resultant(self, f, g):
|
614 |
+
res = dmp_qq_collins_resultant(self.to_dense(f), self.to_dense(g), self.ngens-1, self.domain)
|
615 |
+
return self[1:].from_dense(res)
|
616 |
+
|
617 |
+
def dup_resultant(self, f, g): #, includePRS=False):
|
618 |
+
return dup_resultant(self.to_dense(f), self.to_dense(g), self.domain) #, includePRS=includePRS)
|
619 |
+
def dmp_resultant(self, f, g): #, includePRS=False):
|
620 |
+
res = dmp_resultant(self.to_dense(f), self.to_dense(g), self.ngens-1, self.domain) #, includePRS=includePRS)
|
621 |
+
if isinstance(res, list):
|
622 |
+
return self[1:].from_dense(res)
|
623 |
+
else:
|
624 |
+
return res
|
625 |
+
|
626 |
+
def dup_discriminant(self, f):
|
627 |
+
return dup_discriminant(self.to_dense(f), self.domain)
|
628 |
+
def dmp_discriminant(self, f):
|
629 |
+
disc = dmp_discriminant(self.to_dense(f), self.ngens-1, self.domain)
|
630 |
+
if isinstance(disc, list):
|
631 |
+
return self[1:].from_dense(disc)
|
632 |
+
else:
|
633 |
+
return disc
|
634 |
+
|
635 |
+
def dup_rr_prs_gcd(self, f, g):
|
636 |
+
H, F, G = dup_rr_prs_gcd(self.to_dense(f), self.to_dense(g), self.domain)
|
637 |
+
return (self.from_dense(H), self.from_dense(F), self.from_dense(G))
|
638 |
+
def dup_ff_prs_gcd(self, f, g):
|
639 |
+
H, F, G = dup_ff_prs_gcd(self.to_dense(f), self.to_dense(g), self.domain)
|
640 |
+
return (self.from_dense(H), self.from_dense(F), self.from_dense(G))
|
641 |
+
def dmp_rr_prs_gcd(self, f, g):
|
642 |
+
H, F, G = dmp_rr_prs_gcd(self.to_dense(f), self.to_dense(g), self.ngens-1, self.domain)
|
643 |
+
return (self.from_dense(H), self.from_dense(F), self.from_dense(G))
|
644 |
+
def dmp_ff_prs_gcd(self, f, g):
|
645 |
+
H, F, G = dmp_ff_prs_gcd(self.to_dense(f), self.to_dense(g), self.ngens-1, self.domain)
|
646 |
+
return (self.from_dense(H), self.from_dense(F), self.from_dense(G))
|
647 |
+
def dup_zz_heu_gcd(self, f, g):
|
648 |
+
H, F, G = dup_zz_heu_gcd(self.to_dense(f), self.to_dense(g), self.domain)
|
649 |
+
return (self.from_dense(H), self.from_dense(F), self.from_dense(G))
|
650 |
+
def dmp_zz_heu_gcd(self, f, g):
|
651 |
+
H, F, G = dmp_zz_heu_gcd(self.to_dense(f), self.to_dense(g), self.ngens-1, self.domain)
|
652 |
+
return (self.from_dense(H), self.from_dense(F), self.from_dense(G))
|
653 |
+
def dup_qq_heu_gcd(self, f, g):
|
654 |
+
H, F, G = dup_qq_heu_gcd(self.to_dense(f), self.to_dense(g), self.domain)
|
655 |
+
return (self.from_dense(H), self.from_dense(F), self.from_dense(G))
|
656 |
+
def dmp_qq_heu_gcd(self, f, g):
|
657 |
+
H, F, G = dmp_qq_heu_gcd(self.to_dense(f), self.to_dense(g), self.ngens-1, self.domain)
|
658 |
+
return (self.from_dense(H), self.from_dense(F), self.from_dense(G))
|
659 |
+
def dup_inner_gcd(self, f, g):
|
660 |
+
H, F, G = dup_inner_gcd(self.to_dense(f), self.to_dense(g), self.domain)
|
661 |
+
return (self.from_dense(H), self.from_dense(F), self.from_dense(G))
|
662 |
+
def dmp_inner_gcd(self, f, g):
|
663 |
+
H, F, G = dmp_inner_gcd(self.to_dense(f), self.to_dense(g), self.ngens-1, self.domain)
|
664 |
+
return (self.from_dense(H), self.from_dense(F), self.from_dense(G))
|
665 |
+
def dup_gcd(self, f, g):
|
666 |
+
H = dup_gcd(self.to_dense(f), self.to_dense(g), self.domain)
|
667 |
+
return self.from_dense(H)
|
668 |
+
def dmp_gcd(self, f, g):
|
669 |
+
H = dmp_gcd(self.to_dense(f), self.to_dense(g), self.ngens-1, self.domain)
|
670 |
+
return self.from_dense(H)
|
671 |
+
def dup_rr_lcm(self, f, g):
|
672 |
+
H = dup_rr_lcm(self.to_dense(f), self.to_dense(g), self.domain)
|
673 |
+
return self.from_dense(H)
|
674 |
+
def dup_ff_lcm(self, f, g):
|
675 |
+
H = dup_ff_lcm(self.to_dense(f), self.to_dense(g), self.domain)
|
676 |
+
return self.from_dense(H)
|
677 |
+
def dup_lcm(self, f, g):
|
678 |
+
H = dup_lcm(self.to_dense(f), self.to_dense(g), self.domain)
|
679 |
+
return self.from_dense(H)
|
680 |
+
def dmp_rr_lcm(self, f, g):
|
681 |
+
H = dmp_rr_lcm(self.to_dense(f), self.to_dense(g), self.ngens-1, self.domain)
|
682 |
+
return self.from_dense(H)
|
683 |
+
def dmp_ff_lcm(self, f, g):
|
684 |
+
H = dmp_ff_lcm(self.to_dense(f), self.to_dense(g), self.ngens-1, self.domain)
|
685 |
+
return self.from_dense(H)
|
686 |
+
def dmp_lcm(self, f, g):
|
687 |
+
H = dmp_lcm(self.to_dense(f), self.to_dense(g), self.ngens-1, self.domain)
|
688 |
+
return self.from_dense(H)
|
689 |
+
|
690 |
+
def dup_content(self, f):
|
691 |
+
cont = dup_content(self.to_dense(f), self.domain)
|
692 |
+
return cont
|
693 |
+
def dup_primitive(self, f):
|
694 |
+
cont, prim = dup_primitive(self.to_dense(f), self.domain)
|
695 |
+
return cont, self.from_dense(prim)
|
696 |
+
|
697 |
+
def dmp_content(self, f):
|
698 |
+
cont = dmp_content(self.to_dense(f), self.ngens-1, self.domain)
|
699 |
+
if isinstance(cont, list):
|
700 |
+
return self[1:].from_dense(cont)
|
701 |
+
else:
|
702 |
+
return cont
|
703 |
+
def dmp_primitive(self, f):
|
704 |
+
cont, prim = dmp_primitive(self.to_dense(f), self.ngens-1, self.domain)
|
705 |
+
if isinstance(cont, list):
|
706 |
+
return (self[1:].from_dense(cont), self.from_dense(prim))
|
707 |
+
else:
|
708 |
+
return (cont, self.from_dense(prim))
|
709 |
+
|
710 |
+
def dmp_ground_content(self, f):
|
711 |
+
cont = dmp_ground_content(self.to_dense(f), self.ngens-1, self.domain)
|
712 |
+
return cont
|
713 |
+
def dmp_ground_primitive(self, f):
|
714 |
+
cont, prim = dmp_ground_primitive(self.to_dense(f), self.ngens-1, self.domain)
|
715 |
+
return (cont, self.from_dense(prim))
|
716 |
+
|
717 |
+
def dup_cancel(self, f, g, include=True):
|
718 |
+
result = dup_cancel(self.to_dense(f), self.to_dense(g), self.domain, include=include)
|
719 |
+
if not include:
|
720 |
+
cf, cg, F, G = result
|
721 |
+
return (cf, cg, self.from_dense(F), self.from_dense(G))
|
722 |
+
else:
|
723 |
+
F, G = result
|
724 |
+
return (self.from_dense(F), self.from_dense(G))
|
725 |
+
def dmp_cancel(self, f, g, include=True):
|
726 |
+
result = dmp_cancel(self.to_dense(f), self.to_dense(g), self.ngens-1, self.domain, include=include)
|
727 |
+
if not include:
|
728 |
+
cf, cg, F, G = result
|
729 |
+
return (cf, cg, self.from_dense(F), self.from_dense(G))
|
730 |
+
else:
|
731 |
+
F, G = result
|
732 |
+
return (self.from_dense(F), self.from_dense(G))
|
733 |
+
|
734 |
+
def dup_trial_division(self, f, factors):
|
735 |
+
factors = dup_trial_division(self.to_dense(f), list(map(self.to_dense, factors)), self.domain)
|
736 |
+
return [ (self.from_dense(g), k) for g, k in factors ]
|
737 |
+
def dmp_trial_division(self, f, factors):
|
738 |
+
factors = dmp_trial_division(self.to_dense(f), list(map(self.to_dense, factors)), self.ngens-1, self.domain)
|
739 |
+
return [ (self.from_dense(g), k) for g, k in factors ]
|
740 |
+
|
741 |
+
def dup_zz_mignotte_bound(self, f):
|
742 |
+
return dup_zz_mignotte_bound(self.to_dense(f), self.domain)
|
743 |
+
def dmp_zz_mignotte_bound(self, f):
|
744 |
+
return dmp_zz_mignotte_bound(self.to_dense(f), self.ngens-1, self.domain)
|
745 |
+
|
746 |
+
def dup_zz_hensel_step(self, m, f, g, h, s, t):
|
747 |
+
D = self.to_dense
|
748 |
+
G, H, S, T = dup_zz_hensel_step(m, D(f), D(g), D(h), D(s), D(t), self.domain)
|
749 |
+
return (self.from_dense(G), self.from_dense(H), self.from_dense(S), self.from_dense(T))
|
750 |
+
def dup_zz_hensel_lift(self, p, f, f_list, l):
|
751 |
+
D = self.to_dense
|
752 |
+
polys = dup_zz_hensel_lift(p, D(f), list(map(D, f_list)), l, self.domain)
|
753 |
+
return list(map(self.from_dense, polys))
|
754 |
+
|
755 |
+
def dup_zz_zassenhaus(self, f):
|
756 |
+
factors = dup_zz_zassenhaus(self.to_dense(f), self.domain)
|
757 |
+
return [ (self.from_dense(g), k) for g, k in factors ]
|
758 |
+
|
759 |
+
def dup_zz_irreducible_p(self, f):
|
760 |
+
return dup_zz_irreducible_p(self.to_dense(f), self.domain)
|
761 |
+
def dup_cyclotomic_p(self, f, irreducible=False):
|
762 |
+
return dup_cyclotomic_p(self.to_dense(f), self.domain, irreducible=irreducible)
|
763 |
+
def dup_zz_cyclotomic_poly(self, n):
|
764 |
+
F = dup_zz_cyclotomic_poly(n, self.domain)
|
765 |
+
return self.from_dense(F)
|
766 |
+
def dup_zz_cyclotomic_factor(self, f):
|
767 |
+
result = dup_zz_cyclotomic_factor(self.to_dense(f), self.domain)
|
768 |
+
if result is None:
|
769 |
+
return result
|
770 |
+
else:
|
771 |
+
return list(map(self.from_dense, result))
|
772 |
+
|
773 |
+
# E: List[ZZ], cs: ZZ, ct: ZZ
|
774 |
+
def dmp_zz_wang_non_divisors(self, E, cs, ct):
|
775 |
+
return dmp_zz_wang_non_divisors(E, cs, ct, self.domain)
|
776 |
+
|
777 |
+
# f: Poly, T: List[(Poly, int)], ct: ZZ, A: List[ZZ]
|
778 |
+
#def dmp_zz_wang_test_points(f, T, ct, A):
|
779 |
+
# dmp_zz_wang_test_points(self.to_dense(f), T, ct, A, self.ngens-1, self.domain)
|
780 |
+
|
781 |
+
# f: Poly, T: List[(Poly, int)], cs: ZZ, E: List[ZZ], H: List[Poly], A: List[ZZ]
|
782 |
+
def dmp_zz_wang_lead_coeffs(self, f, T, cs, E, H, A):
|
783 |
+
mv = self[1:]
|
784 |
+
T = [ (mv.to_dense(t), k) for t, k in T ]
|
785 |
+
uv = self[:1]
|
786 |
+
H = list(map(uv.to_dense, H))
|
787 |
+
f, HH, CC = dmp_zz_wang_lead_coeffs(self.to_dense(f), T, cs, E, H, A, self.ngens-1, self.domain)
|
788 |
+
return self.from_dense(f), list(map(uv.from_dense, HH)), list(map(mv.from_dense, CC))
|
789 |
+
|
790 |
+
# f: List[Poly], m: int, p: ZZ
|
791 |
+
def dup_zz_diophantine(self, F, m, p):
|
792 |
+
result = dup_zz_diophantine(list(map(self.to_dense, F)), m, p, self.domain)
|
793 |
+
return list(map(self.from_dense, result))
|
794 |
+
|
795 |
+
# f: List[Poly], c: List[Poly], A: List[ZZ], d: int, p: ZZ
|
796 |
+
def dmp_zz_diophantine(self, F, c, A, d, p):
|
797 |
+
result = dmp_zz_diophantine(list(map(self.to_dense, F)), self.to_dense(c), A, d, p, self.ngens-1, self.domain)
|
798 |
+
return list(map(self.from_dense, result))
|
799 |
+
|
800 |
+
# f: Poly, H: List[Poly], LC: List[Poly], A: List[ZZ], p: ZZ
|
801 |
+
def dmp_zz_wang_hensel_lifting(self, f, H, LC, A, p):
|
802 |
+
uv = self[:1]
|
803 |
+
mv = self[1:]
|
804 |
+
H = list(map(uv.to_dense, H))
|
805 |
+
LC = list(map(mv.to_dense, LC))
|
806 |
+
result = dmp_zz_wang_hensel_lifting(self.to_dense(f), H, LC, A, p, self.ngens-1, self.domain)
|
807 |
+
return list(map(self.from_dense, result))
|
808 |
+
|
809 |
+
def dmp_zz_wang(self, f, mod=None, seed=None):
|
810 |
+
factors = dmp_zz_wang(self.to_dense(f), self.ngens-1, self.domain, mod=mod, seed=seed)
|
811 |
+
return [ self.from_dense(g) for g in factors ]
|
812 |
+
|
813 |
+
def dup_zz_factor_sqf(self, f):
|
814 |
+
coeff, factors = dup_zz_factor_sqf(self.to_dense(f), self.domain)
|
815 |
+
return (coeff, [ self.from_dense(g) for g in factors ])
|
816 |
+
|
817 |
+
def dup_zz_factor(self, f):
|
818 |
+
coeff, factors = dup_zz_factor(self.to_dense(f), self.domain)
|
819 |
+
return (coeff, [ (self.from_dense(g), k) for g, k in factors ])
|
820 |
+
def dmp_zz_factor(self, f):
|
821 |
+
coeff, factors = dmp_zz_factor(self.to_dense(f), self.ngens-1, self.domain)
|
822 |
+
return (coeff, [ (self.from_dense(g), k) for g, k in factors ])
|
823 |
+
|
824 |
+
def dup_qq_i_factor(self, f):
|
825 |
+
coeff, factors = dup_qq_i_factor(self.to_dense(f), self.domain)
|
826 |
+
return (coeff, [ (self.from_dense(g), k) for g, k in factors ])
|
827 |
+
def dmp_qq_i_factor(self, f):
|
828 |
+
coeff, factors = dmp_qq_i_factor(self.to_dense(f), self.ngens-1, self.domain)
|
829 |
+
return (coeff, [ (self.from_dense(g), k) for g, k in factors ])
|
830 |
+
|
831 |
+
def dup_zz_i_factor(self, f):
|
832 |
+
coeff, factors = dup_zz_i_factor(self.to_dense(f), self.domain)
|
833 |
+
return (coeff, [ (self.from_dense(g), k) for g, k in factors ])
|
834 |
+
def dmp_zz_i_factor(self, f):
|
835 |
+
coeff, factors = dmp_zz_i_factor(self.to_dense(f), self.ngens-1, self.domain)
|
836 |
+
return (coeff, [ (self.from_dense(g), k) for g, k in factors ])
|
837 |
+
|
838 |
+
def dup_ext_factor(self, f):
|
839 |
+
coeff, factors = dup_ext_factor(self.to_dense(f), self.domain)
|
840 |
+
return (coeff, [ (self.from_dense(g), k) for g, k in factors ])
|
841 |
+
def dmp_ext_factor(self, f):
|
842 |
+
coeff, factors = dmp_ext_factor(self.to_dense(f), self.ngens-1, self.domain)
|
843 |
+
return (coeff, [ (self.from_dense(g), k) for g, k in factors ])
|
844 |
+
|
845 |
+
def dup_gf_factor(self, f):
|
846 |
+
coeff, factors = dup_gf_factor(self.to_dense(f), self.domain)
|
847 |
+
return (coeff, [ (self.from_dense(g), k) for g, k in factors ])
|
848 |
+
def dmp_gf_factor(self, f):
|
849 |
+
coeff, factors = dmp_gf_factor(self.to_dense(f), self.ngens-1, self.domain)
|
850 |
+
return (coeff, [ (self.from_dense(g), k) for g, k in factors ])
|
851 |
+
|
852 |
+
def dup_factor_list(self, f):
|
853 |
+
coeff, factors = dup_factor_list(self.to_dense(f), self.domain)
|
854 |
+
return (coeff, [ (self.from_dense(g), k) for g, k in factors ])
|
855 |
+
def dup_factor_list_include(self, f):
|
856 |
+
factors = dup_factor_list_include(self.to_dense(f), self.domain)
|
857 |
+
return [ (self.from_dense(g), k) for g, k in factors ]
|
858 |
+
|
859 |
+
def dmp_factor_list(self, f):
|
860 |
+
coeff, factors = dmp_factor_list(self.to_dense(f), self.ngens-1, self.domain)
|
861 |
+
return (coeff, [ (self.from_dense(g), k) for g, k in factors ])
|
862 |
+
def dmp_factor_list_include(self, f):
|
863 |
+
factors = dmp_factor_list_include(self.to_dense(f), self.ngens-1, self.domain)
|
864 |
+
return [ (self.from_dense(g), k) for g, k in factors ]
|
865 |
+
|
866 |
+
def dup_irreducible_p(self, f):
|
867 |
+
return dup_irreducible_p(self.to_dense(f), self.domain)
|
868 |
+
def dmp_irreducible_p(self, f):
|
869 |
+
return dmp_irreducible_p(self.to_dense(f), self.ngens-1, self.domain)
|
870 |
+
|
871 |
+
def dup_sturm(self, f):
|
872 |
+
seq = dup_sturm(self.to_dense(f), self.domain)
|
873 |
+
return list(map(self.from_dense, seq))
|
874 |
+
|
875 |
+
def dup_sqf_p(self, f):
|
876 |
+
return dup_sqf_p(self.to_dense(f), self.domain)
|
877 |
+
def dmp_sqf_p(self, f):
|
878 |
+
return dmp_sqf_p(self.to_dense(f), self.ngens-1, self.domain)
|
879 |
+
|
880 |
+
def dup_sqf_norm(self, f):
|
881 |
+
s, F, R = dup_sqf_norm(self.to_dense(f), self.domain)
|
882 |
+
return (s, self.from_dense(F), self.to_ground().from_dense(R))
|
883 |
+
def dmp_sqf_norm(self, f):
|
884 |
+
s, F, R = dmp_sqf_norm(self.to_dense(f), self.ngens-1, self.domain)
|
885 |
+
return (s, self.from_dense(F), self.to_ground().from_dense(R))
|
886 |
+
|
887 |
+
def dup_gf_sqf_part(self, f):
|
888 |
+
return self.from_dense(dup_gf_sqf_part(self.to_dense(f), self.domain))
|
889 |
+
def dmp_gf_sqf_part(self, f):
|
890 |
+
return self.from_dense(dmp_gf_sqf_part(self.to_dense(f), self.domain))
|
891 |
+
def dup_sqf_part(self, f):
|
892 |
+
return self.from_dense(dup_sqf_part(self.to_dense(f), self.domain))
|
893 |
+
def dmp_sqf_part(self, f):
|
894 |
+
return self.from_dense(dmp_sqf_part(self.to_dense(f), self.ngens-1, self.domain))
|
895 |
+
|
896 |
+
def dup_gf_sqf_list(self, f, all=False):
|
897 |
+
coeff, factors = dup_gf_sqf_list(self.to_dense(f), self.domain, all=all)
|
898 |
+
return (coeff, [ (self.from_dense(g), k) for g, k in factors ])
|
899 |
+
def dmp_gf_sqf_list(self, f, all=False):
|
900 |
+
coeff, factors = dmp_gf_sqf_list(self.to_dense(f), self.ngens-1, self.domain, all=all)
|
901 |
+
return (coeff, [ (self.from_dense(g), k) for g, k in factors ])
|
902 |
+
|
903 |
+
def dup_sqf_list(self, f, all=False):
|
904 |
+
coeff, factors = dup_sqf_list(self.to_dense(f), self.domain, all=all)
|
905 |
+
return (coeff, [ (self.from_dense(g), k) for g, k in factors ])
|
906 |
+
def dup_sqf_list_include(self, f, all=False):
|
907 |
+
factors = dup_sqf_list_include(self.to_dense(f), self.domain, all=all)
|
908 |
+
return [ (self.from_dense(g), k) for g, k in factors ]
|
909 |
+
def dmp_sqf_list(self, f, all=False):
|
910 |
+
coeff, factors = dmp_sqf_list(self.to_dense(f), self.ngens-1, self.domain, all=all)
|
911 |
+
return (coeff, [ (self.from_dense(g), k) for g, k in factors ])
|
912 |
+
def dmp_sqf_list_include(self, f, all=False):
|
913 |
+
factors = dmp_sqf_list_include(self.to_dense(f), self.ngens-1, self.domain, all=all)
|
914 |
+
return [ (self.from_dense(g), k) for g, k in factors ]
|
915 |
+
|
916 |
+
def dup_gff_list(self, f):
|
917 |
+
factors = dup_gff_list(self.to_dense(f), self.domain)
|
918 |
+
return [ (self.from_dense(g), k) for g, k in factors ]
|
919 |
+
def dmp_gff_list(self, f):
|
920 |
+
factors = dmp_gff_list(self.to_dense(f), self.ngens-1, self.domain)
|
921 |
+
return [ (self.from_dense(g), k) for g, k in factors ]
|
922 |
+
|
923 |
+
def dup_root_upper_bound(self, f):
|
924 |
+
return dup_root_upper_bound(self.to_dense(f), self.domain)
|
925 |
+
def dup_root_lower_bound(self, f):
|
926 |
+
return dup_root_lower_bound(self.to_dense(f), self.domain)
|
927 |
+
|
928 |
+
def dup_step_refine_real_root(self, f, M, fast=False):
|
929 |
+
return dup_step_refine_real_root(self.to_dense(f), M, self.domain, fast=fast)
|
930 |
+
def dup_inner_refine_real_root(self, f, M, eps=None, steps=None, disjoint=None, fast=False, mobius=False):
|
931 |
+
return dup_inner_refine_real_root(self.to_dense(f), M, self.domain, eps=eps, steps=steps, disjoint=disjoint, fast=fast, mobius=mobius)
|
932 |
+
def dup_outer_refine_real_root(self, f, s, t, eps=None, steps=None, disjoint=None, fast=False):
|
933 |
+
return dup_outer_refine_real_root(self.to_dense(f), s, t, self.domain, eps=eps, steps=steps, disjoint=disjoint, fast=fast)
|
934 |
+
def dup_refine_real_root(self, f, s, t, eps=None, steps=None, disjoint=None, fast=False):
|
935 |
+
return dup_refine_real_root(self.to_dense(f), s, t, self.domain, eps=eps, steps=steps, disjoint=disjoint, fast=fast)
|
936 |
+
def dup_inner_isolate_real_roots(self, f, eps=None, fast=False):
|
937 |
+
return dup_inner_isolate_real_roots(self.to_dense(f), self.domain, eps=eps, fast=fast)
|
938 |
+
def dup_inner_isolate_positive_roots(self, f, eps=None, inf=None, sup=None, fast=False, mobius=False):
|
939 |
+
return dup_inner_isolate_positive_roots(self.to_dense(f), self.domain, eps=eps, inf=inf, sup=sup, fast=fast, mobius=mobius)
|
940 |
+
def dup_inner_isolate_negative_roots(self, f, inf=None, sup=None, eps=None, fast=False, mobius=False):
|
941 |
+
return dup_inner_isolate_negative_roots(self.to_dense(f), self.domain, inf=inf, sup=sup, eps=eps, fast=fast, mobius=mobius)
|
942 |
+
def dup_isolate_real_roots_sqf(self, f, eps=None, inf=None, sup=None, fast=False, blackbox=False):
|
943 |
+
return dup_isolate_real_roots_sqf(self.to_dense(f), self.domain, eps=eps, inf=inf, sup=sup, fast=fast, blackbox=blackbox)
|
944 |
+
def dup_isolate_real_roots(self, f, eps=None, inf=None, sup=None, basis=False, fast=False):
|
945 |
+
return dup_isolate_real_roots(self.to_dense(f), self.domain, eps=eps, inf=inf, sup=sup, basis=basis, fast=fast)
|
946 |
+
def dup_isolate_real_roots_list(self, polys, eps=None, inf=None, sup=None, strict=False, basis=False, fast=False):
|
947 |
+
return dup_isolate_real_roots_list(list(map(self.to_dense, polys)), self.domain, eps=eps, inf=inf, sup=sup, strict=strict, basis=basis, fast=fast)
|
948 |
+
def dup_count_real_roots(self, f, inf=None, sup=None):
|
949 |
+
return dup_count_real_roots(self.to_dense(f), self.domain, inf=inf, sup=sup)
|
950 |
+
def dup_count_complex_roots(self, f, inf=None, sup=None, exclude=None):
|
951 |
+
return dup_count_complex_roots(self.to_dense(f), self.domain, inf=inf, sup=sup, exclude=exclude)
|
952 |
+
def dup_isolate_complex_roots_sqf(self, f, eps=None, inf=None, sup=None, blackbox=False):
|
953 |
+
return dup_isolate_complex_roots_sqf(self.to_dense(f), self.domain, eps=eps, inf=inf, sup=sup, blackbox=blackbox)
|
954 |
+
def dup_isolate_all_roots_sqf(self, f, eps=None, inf=None, sup=None, fast=False, blackbox=False):
|
955 |
+
return dup_isolate_all_roots_sqf(self.to_dense(f), self.domain, eps=eps, inf=inf, sup=sup, fast=fast, blackbox=blackbox)
|
956 |
+
def dup_isolate_all_roots(self, f, eps=None, inf=None, sup=None, fast=False):
|
957 |
+
return dup_isolate_all_roots(self.to_dense(f), self.domain, eps=eps, inf=inf, sup=sup, fast=fast)
|
958 |
+
|
959 |
+
def fateman_poly_F_1(self):
|
960 |
+
from sympy.polys.specialpolys import dmp_fateman_poly_F_1
|
961 |
+
return tuple(map(self.from_dense, dmp_fateman_poly_F_1(self.ngens-1, self.domain)))
|
962 |
+
def fateman_poly_F_2(self):
|
963 |
+
from sympy.polys.specialpolys import dmp_fateman_poly_F_2
|
964 |
+
return tuple(map(self.from_dense, dmp_fateman_poly_F_2(self.ngens-1, self.domain)))
|
965 |
+
def fateman_poly_F_3(self):
|
966 |
+
from sympy.polys.specialpolys import dmp_fateman_poly_F_3
|
967 |
+
return tuple(map(self.from_dense, dmp_fateman_poly_F_3(self.ngens-1, self.domain)))
|
968 |
+
|
969 |
+
def to_gf_dense(self, element):
|
970 |
+
return gf_strip([ self.domain.dom.convert(c, self.domain) for c in self.wrap(element).to_dense() ])
|
971 |
+
|
972 |
+
def from_gf_dense(self, element):
|
973 |
+
return self.from_dict(dmp_to_dict(element, self.ngens-1, self.domain.dom))
|
974 |
+
|
975 |
+
def gf_degree(self, f):
|
976 |
+
return gf_degree(self.to_gf_dense(f))
|
977 |
+
|
978 |
+
def gf_LC(self, f):
|
979 |
+
return gf_LC(self.to_gf_dense(f), self.domain.dom)
|
980 |
+
def gf_TC(self, f):
|
981 |
+
return gf_TC(self.to_gf_dense(f), self.domain.dom)
|
982 |
+
|
983 |
+
def gf_strip(self, f):
|
984 |
+
return self.from_gf_dense(gf_strip(self.to_gf_dense(f)))
|
985 |
+
def gf_trunc(self, f):
|
986 |
+
return self.from_gf_dense(gf_strip(self.to_gf_dense(f), self.domain.mod))
|
987 |
+
def gf_normal(self, f):
|
988 |
+
return self.from_gf_dense(gf_strip(self.to_gf_dense(f), self.domain.mod, self.domain.dom))
|
989 |
+
|
990 |
+
def gf_from_dict(self, f):
|
991 |
+
return self.from_gf_dense(gf_from_dict(f, self.domain.mod, self.domain.dom))
|
992 |
+
def gf_to_dict(self, f, symmetric=True):
|
993 |
+
return gf_to_dict(self.to_gf_dense(f), self.domain.mod, symmetric=symmetric)
|
994 |
+
|
995 |
+
def gf_from_int_poly(self, f):
|
996 |
+
return self.from_gf_dense(gf_from_int_poly(f, self.domain.mod))
|
997 |
+
def gf_to_int_poly(self, f, symmetric=True):
|
998 |
+
return gf_to_int_poly(self.to_gf_dense(f), self.domain.mod, symmetric=symmetric)
|
999 |
+
|
1000 |
+
def gf_neg(self, f):
|
1001 |
+
return self.from_gf_dense(gf_neg(self.to_gf_dense(f), self.domain.mod, self.domain.dom))
|
1002 |
+
|
1003 |
+
def gf_add_ground(self, f, a):
|
1004 |
+
return self.from_gf_dense(gf_add_ground(self.to_gf_dense(f), a, self.domain.mod, self.domain.dom))
|
1005 |
+
def gf_sub_ground(self, f, a):
|
1006 |
+
return self.from_gf_dense(gf_sub_ground(self.to_gf_dense(f), a, self.domain.mod, self.domain.dom))
|
1007 |
+
def gf_mul_ground(self, f, a):
|
1008 |
+
return self.from_gf_dense(gf_mul_ground(self.to_gf_dense(f), a, self.domain.mod, self.domain.dom))
|
1009 |
+
def gf_quo_ground(self, f, a):
|
1010 |
+
return self.from_gf_dense(gf_quo_ground(self.to_gf_dense(f), a, self.domain.mod, self.domain.dom))
|
1011 |
+
|
1012 |
+
def gf_add(self, f, g):
|
1013 |
+
return self.from_gf_dense(gf_add(self.to_gf_dense(f), self.to_gf_dense(g), self.domain.mod, self.domain.dom))
|
1014 |
+
def gf_sub(self, f, g):
|
1015 |
+
return self.from_gf_dense(gf_sub(self.to_gf_dense(f), self.to_gf_dense(g), self.domain.mod, self.domain.dom))
|
1016 |
+
def gf_mul(self, f, g):
|
1017 |
+
return self.from_gf_dense(gf_mul(self.to_gf_dense(f), self.to_gf_dense(g), self.domain.mod, self.domain.dom))
|
1018 |
+
def gf_sqr(self, f):
|
1019 |
+
return self.from_gf_dense(gf_sqr(self.to_gf_dense(f), self.domain.mod, self.domain.dom))
|
1020 |
+
|
1021 |
+
def gf_add_mul(self, f, g, h):
|
1022 |
+
return self.from_gf_dense(gf_add_mul(self.to_gf_dense(f), self.to_gf_dense(g), self.to_gf_dense(h), self.domain.mod, self.domain.dom))
|
1023 |
+
def gf_sub_mul(self, f, g, h):
|
1024 |
+
return self.from_gf_dense(gf_sub_mul(self.to_gf_dense(f), self.to_gf_dense(g), self.to_gf_dense(h), self.domain.mod, self.domain.dom))
|
1025 |
+
|
1026 |
+
def gf_expand(self, F):
|
1027 |
+
return self.from_gf_dense(gf_expand(list(map(self.to_gf_dense, F)), self.domain.mod, self.domain.dom))
|
1028 |
+
|
1029 |
+
def gf_div(self, f, g):
|
1030 |
+
q, r = gf_div(self.to_gf_dense(f), self.to_gf_dense(g), self.domain.mod, self.domain.dom)
|
1031 |
+
return self.from_gf_dense(q), self.from_gf_dense(r)
|
1032 |
+
def gf_rem(self, f, g):
|
1033 |
+
return self.from_gf_dense(gf_rem(self.to_gf_dense(f), self.to_gf_dense(g), self.domain.mod, self.domain.dom))
|
1034 |
+
def gf_quo(self, f, g):
|
1035 |
+
return self.from_gf_dense(gf_quo(self.to_gf_dense(f), self.to_gf_dense(g), self.domain.mod, self.domain.dom))
|
1036 |
+
def gf_exquo(self, f, g):
|
1037 |
+
return self.from_gf_dense(gf_exquo(self.to_gf_dense(f), self.to_gf_dense(g), self.domain.mod, self.domain.dom))
|
1038 |
+
|
1039 |
+
def gf_lshift(self, f, n):
|
1040 |
+
return self.from_gf_dense(gf_lshift(self.to_gf_dense(f), n, self.domain.dom))
|
1041 |
+
def gf_rshift(self, f, n):
|
1042 |
+
return self.from_gf_dense(gf_rshift(self.to_gf_dense(f), n, self.domain.dom))
|
1043 |
+
|
1044 |
+
def gf_pow(self, f, n):
|
1045 |
+
return self.from_gf_dense(gf_pow(self.to_gf_dense(f), n, self.domain.mod, self.domain.dom))
|
1046 |
+
def gf_pow_mod(self, f, n, g):
|
1047 |
+
return self.from_gf_dense(gf_pow_mod(self.to_gf_dense(f), n, self.to_gf_dense(g), self.domain.mod, self.domain.dom))
|
1048 |
+
|
1049 |
+
def gf_cofactors(self, f, g):
|
1050 |
+
h, cff, cfg = gf_cofactors(self.to_gf_dense(f), self.to_gf_dense(g), self.domain.mod, self.domain.dom)
|
1051 |
+
return self.from_gf_dense(h), self.from_gf_dense(cff), self.from_gf_dense(cfg)
|
1052 |
+
def gf_gcd(self, f, g):
|
1053 |
+
return self.from_gf_dense(gf_gcd(self.to_gf_dense(f), self.to_gf_dense(g), self.domain.mod, self.domain.dom))
|
1054 |
+
def gf_lcm(self, f, g):
|
1055 |
+
return self.from_gf_dense(gf_lcm(self.to_gf_dense(f), self.to_gf_dense(g), self.domain.mod, self.domain.dom))
|
1056 |
+
def gf_gcdex(self, f, g):
|
1057 |
+
return self.from_gf_dense(gf_gcdex(self.to_gf_dense(f), self.to_gf_dense(g), self.domain.mod, self.domain.dom))
|
1058 |
+
|
1059 |
+
def gf_monic(self, f):
|
1060 |
+
return self.from_gf_dense(gf_monic(self.to_gf_dense(f), self.domain.mod, self.domain.dom))
|
1061 |
+
def gf_diff(self, f):
|
1062 |
+
return self.from_gf_dense(gf_diff(self.to_gf_dense(f), self.domain.mod, self.domain.dom))
|
1063 |
+
|
1064 |
+
def gf_eval(self, f, a):
|
1065 |
+
return gf_eval(self.to_gf_dense(f), a, self.domain.mod, self.domain.dom)
|
1066 |
+
def gf_multi_eval(self, f, A):
|
1067 |
+
return gf_multi_eval(self.to_gf_dense(f), A, self.domain.mod, self.domain.dom)
|
1068 |
+
|
1069 |
+
def gf_compose(self, f, g):
|
1070 |
+
return self.from_gf_dense(gf_compose(self.to_gf_dense(f), self.to_gf_dense(g), self.domain.mod, self.domain.dom))
|
1071 |
+
def gf_compose_mod(self, g, h, f):
|
1072 |
+
return self.from_gf_dense(gf_compose_mod(self.to_gf_dense(g), self.to_gf_dense(h), self.to_gf_dense(f), self.domain.mod, self.domain.dom))
|
1073 |
+
|
1074 |
+
def gf_trace_map(self, a, b, c, n, f):
|
1075 |
+
a = self.to_gf_dense(a)
|
1076 |
+
b = self.to_gf_dense(b)
|
1077 |
+
c = self.to_gf_dense(c)
|
1078 |
+
f = self.to_gf_dense(f)
|
1079 |
+
U, V = gf_trace_map(a, b, c, n, f, self.domain.mod, self.domain.dom)
|
1080 |
+
return self.from_gf_dense(U), self.from_gf_dense(V)
|
1081 |
+
|
1082 |
+
def gf_random(self, n):
|
1083 |
+
return self.from_gf_dense(gf_random(n, self.domain.mod, self.domain.dom))
|
1084 |
+
def gf_irreducible(self, n):
|
1085 |
+
return self.from_gf_dense(gf_irreducible(n, self.domain.mod, self.domain.dom))
|
1086 |
+
|
1087 |
+
def gf_irred_p_ben_or(self, f):
|
1088 |
+
return gf_irred_p_ben_or(self.to_gf_dense(f), self.domain.mod, self.domain.dom)
|
1089 |
+
def gf_irred_p_rabin(self, f):
|
1090 |
+
return gf_irred_p_rabin(self.to_gf_dense(f), self.domain.mod, self.domain.dom)
|
1091 |
+
def gf_irreducible_p(self, f):
|
1092 |
+
return gf_irreducible_p(self.to_gf_dense(f), self.domain.mod, self.domain.dom)
|
1093 |
+
def gf_sqf_p(self, f):
|
1094 |
+
return gf_sqf_p(self.to_gf_dense(f), self.domain.mod, self.domain.dom)
|
1095 |
+
|
1096 |
+
def gf_sqf_part(self, f):
|
1097 |
+
return self.from_gf_dense(gf_sqf_part(self.to_gf_dense(f), self.domain.mod, self.domain.dom))
|
1098 |
+
def gf_sqf_list(self, f, all=False):
|
1099 |
+
coeff, factors = gf_sqf_part(self.to_gf_dense(f), self.domain.mod, self.domain.dom)
|
1100 |
+
return coeff, [ (self.from_gf_dense(g), k) for g, k in factors ]
|
1101 |
+
|
1102 |
+
def gf_Qmatrix(self, f):
|
1103 |
+
return gf_Qmatrix(self.to_gf_dense(f), self.domain.mod, self.domain.dom)
|
1104 |
+
def gf_berlekamp(self, f):
|
1105 |
+
factors = gf_berlekamp(self.to_gf_dense(f), self.domain.mod, self.domain.dom)
|
1106 |
+
return [ self.from_gf_dense(g) for g in factors ]
|
1107 |
+
|
1108 |
+
def gf_ddf_zassenhaus(self, f):
|
1109 |
+
factors = gf_ddf_zassenhaus(self.to_gf_dense(f), self.domain.mod, self.domain.dom)
|
1110 |
+
return [ (self.from_gf_dense(g), k) for g, k in factors ]
|
1111 |
+
def gf_edf_zassenhaus(self, f, n):
|
1112 |
+
factors = gf_edf_zassenhaus(self.to_gf_dense(f), self.domain.mod, self.domain.dom)
|
1113 |
+
return [ self.from_gf_dense(g) for g in factors ]
|
1114 |
+
|
1115 |
+
def gf_ddf_shoup(self, f):
|
1116 |
+
factors = gf_ddf_shoup(self.to_gf_dense(f), self.domain.mod, self.domain.dom)
|
1117 |
+
return [ (self.from_gf_dense(g), k) for g, k in factors ]
|
1118 |
+
def gf_edf_shoup(self, f, n):
|
1119 |
+
factors = gf_edf_shoup(self.to_gf_dense(f), self.domain.mod, self.domain.dom)
|
1120 |
+
return [ self.from_gf_dense(g) for g in factors ]
|
1121 |
+
|
1122 |
+
def gf_zassenhaus(self, f):
|
1123 |
+
factors = gf_zassenhaus(self.to_gf_dense(f), self.domain.mod, self.domain.dom)
|
1124 |
+
return [ self.from_gf_dense(g) for g in factors ]
|
1125 |
+
def gf_shoup(self, f):
|
1126 |
+
factors = gf_shoup(self.to_gf_dense(f), self.domain.mod, self.domain.dom)
|
1127 |
+
return [ self.from_gf_dense(g) for g in factors ]
|
1128 |
+
|
1129 |
+
def gf_factor_sqf(self, f, method=None):
|
1130 |
+
coeff, factors = gf_factor_sqf(self.to_gf_dense(f), self.domain.mod, self.domain.dom, method=method)
|
1131 |
+
return coeff, [ self.from_gf_dense(g) for g in factors ]
|
1132 |
+
def gf_factor(self, f):
|
1133 |
+
coeff, factors = gf_factor(self.to_gf_dense(f), self.domain.mod, self.domain.dom)
|
1134 |
+
return coeff, [ (self.from_gf_dense(g), k) for g, k in factors ]
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/constructor.py
ADDED
@@ -0,0 +1,387 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Tools for constructing domains for expressions. """
|
2 |
+
from math import prod
|
3 |
+
|
4 |
+
from sympy.core import sympify
|
5 |
+
from sympy.core.evalf import pure_complex
|
6 |
+
from sympy.core.sorting import ordered
|
7 |
+
from sympy.polys.domains import ZZ, QQ, ZZ_I, QQ_I, EX
|
8 |
+
from sympy.polys.domains.complexfield import ComplexField
|
9 |
+
from sympy.polys.domains.realfield import RealField
|
10 |
+
from sympy.polys.polyoptions import build_options
|
11 |
+
from sympy.polys.polyutils import parallel_dict_from_basic
|
12 |
+
from sympy.utilities import public
|
13 |
+
|
14 |
+
|
15 |
+
def _construct_simple(coeffs, opt):
|
16 |
+
"""Handle simple domains, e.g.: ZZ, QQ, RR and algebraic domains. """
|
17 |
+
rationals = floats = complexes = algebraics = False
|
18 |
+
float_numbers = []
|
19 |
+
|
20 |
+
if opt.extension is True:
|
21 |
+
is_algebraic = lambda coeff: coeff.is_number and coeff.is_algebraic
|
22 |
+
else:
|
23 |
+
is_algebraic = lambda coeff: False
|
24 |
+
|
25 |
+
for coeff in coeffs:
|
26 |
+
if coeff.is_Rational:
|
27 |
+
if not coeff.is_Integer:
|
28 |
+
rationals = True
|
29 |
+
elif coeff.is_Float:
|
30 |
+
if algebraics:
|
31 |
+
# there are both reals and algebraics -> EX
|
32 |
+
return False
|
33 |
+
else:
|
34 |
+
floats = True
|
35 |
+
float_numbers.append(coeff)
|
36 |
+
else:
|
37 |
+
is_complex = pure_complex(coeff)
|
38 |
+
if is_complex:
|
39 |
+
complexes = True
|
40 |
+
x, y = is_complex
|
41 |
+
if x.is_Rational and y.is_Rational:
|
42 |
+
if not (x.is_Integer and y.is_Integer):
|
43 |
+
rationals = True
|
44 |
+
continue
|
45 |
+
else:
|
46 |
+
floats = True
|
47 |
+
if x.is_Float:
|
48 |
+
float_numbers.append(x)
|
49 |
+
if y.is_Float:
|
50 |
+
float_numbers.append(y)
|
51 |
+
elif is_algebraic(coeff):
|
52 |
+
if floats:
|
53 |
+
# there are both algebraics and reals -> EX
|
54 |
+
return False
|
55 |
+
algebraics = True
|
56 |
+
else:
|
57 |
+
# this is a composite domain, e.g. ZZ[X], EX
|
58 |
+
return None
|
59 |
+
|
60 |
+
# Use the maximum precision of all coefficients for the RR or CC
|
61 |
+
# precision
|
62 |
+
max_prec = max(c._prec for c in float_numbers) if float_numbers else 53
|
63 |
+
|
64 |
+
if algebraics:
|
65 |
+
domain, result = _construct_algebraic(coeffs, opt)
|
66 |
+
else:
|
67 |
+
if floats and complexes:
|
68 |
+
domain = ComplexField(prec=max_prec)
|
69 |
+
elif floats:
|
70 |
+
domain = RealField(prec=max_prec)
|
71 |
+
elif rationals or opt.field:
|
72 |
+
domain = QQ_I if complexes else QQ
|
73 |
+
else:
|
74 |
+
domain = ZZ_I if complexes else ZZ
|
75 |
+
|
76 |
+
result = [domain.from_sympy(coeff) for coeff in coeffs]
|
77 |
+
|
78 |
+
return domain, result
|
79 |
+
|
80 |
+
|
81 |
+
def _construct_algebraic(coeffs, opt):
|
82 |
+
"""We know that coefficients are algebraic so construct the extension. """
|
83 |
+
from sympy.polys.numberfields import primitive_element
|
84 |
+
|
85 |
+
exts = set()
|
86 |
+
|
87 |
+
def build_trees(args):
|
88 |
+
trees = []
|
89 |
+
for a in args:
|
90 |
+
if a.is_Rational:
|
91 |
+
tree = ('Q', QQ.from_sympy(a))
|
92 |
+
elif a.is_Add:
|
93 |
+
tree = ('+', build_trees(a.args))
|
94 |
+
elif a.is_Mul:
|
95 |
+
tree = ('*', build_trees(a.args))
|
96 |
+
else:
|
97 |
+
tree = ('e', a)
|
98 |
+
exts.add(a)
|
99 |
+
trees.append(tree)
|
100 |
+
return trees
|
101 |
+
|
102 |
+
trees = build_trees(coeffs)
|
103 |
+
exts = list(ordered(exts))
|
104 |
+
|
105 |
+
g, span, H = primitive_element(exts, ex=True, polys=True)
|
106 |
+
root = sum([ s*ext for s, ext in zip(span, exts) ])
|
107 |
+
|
108 |
+
domain, g = QQ.algebraic_field((g, root)), g.rep.rep
|
109 |
+
|
110 |
+
exts_dom = [domain.dtype.from_list(h, g, QQ) for h in H]
|
111 |
+
exts_map = dict(zip(exts, exts_dom))
|
112 |
+
|
113 |
+
def convert_tree(tree):
|
114 |
+
op, args = tree
|
115 |
+
if op == 'Q':
|
116 |
+
return domain.dtype.from_list([args], g, QQ)
|
117 |
+
elif op == '+':
|
118 |
+
return sum((convert_tree(a) for a in args), domain.zero)
|
119 |
+
elif op == '*':
|
120 |
+
return prod(convert_tree(a) for a in args)
|
121 |
+
elif op == 'e':
|
122 |
+
return exts_map[args]
|
123 |
+
else:
|
124 |
+
raise RuntimeError
|
125 |
+
|
126 |
+
result = [convert_tree(tree) for tree in trees]
|
127 |
+
|
128 |
+
return domain, result
|
129 |
+
|
130 |
+
|
131 |
+
def _construct_composite(coeffs, opt):
|
132 |
+
"""Handle composite domains, e.g.: ZZ[X], QQ[X], ZZ(X), QQ(X). """
|
133 |
+
numers, denoms = [], []
|
134 |
+
|
135 |
+
for coeff in coeffs:
|
136 |
+
numer, denom = coeff.as_numer_denom()
|
137 |
+
|
138 |
+
numers.append(numer)
|
139 |
+
denoms.append(denom)
|
140 |
+
|
141 |
+
polys, gens = parallel_dict_from_basic(numers + denoms) # XXX: sorting
|
142 |
+
if not gens:
|
143 |
+
return None
|
144 |
+
|
145 |
+
if opt.composite is None:
|
146 |
+
if any(gen.is_number and gen.is_algebraic for gen in gens):
|
147 |
+
return None # generators are number-like so lets better use EX
|
148 |
+
|
149 |
+
all_symbols = set()
|
150 |
+
|
151 |
+
for gen in gens:
|
152 |
+
symbols = gen.free_symbols
|
153 |
+
|
154 |
+
if all_symbols & symbols:
|
155 |
+
return None # there could be algebraic relations between generators
|
156 |
+
else:
|
157 |
+
all_symbols |= symbols
|
158 |
+
|
159 |
+
n = len(gens)
|
160 |
+
k = len(polys)//2
|
161 |
+
|
162 |
+
numers = polys[:k]
|
163 |
+
denoms = polys[k:]
|
164 |
+
|
165 |
+
if opt.field:
|
166 |
+
fractions = True
|
167 |
+
else:
|
168 |
+
fractions, zeros = False, (0,)*n
|
169 |
+
|
170 |
+
for denom in denoms:
|
171 |
+
if len(denom) > 1 or zeros not in denom:
|
172 |
+
fractions = True
|
173 |
+
break
|
174 |
+
|
175 |
+
coeffs = set()
|
176 |
+
|
177 |
+
if not fractions:
|
178 |
+
for numer, denom in zip(numers, denoms):
|
179 |
+
denom = denom[zeros]
|
180 |
+
|
181 |
+
for monom, coeff in numer.items():
|
182 |
+
coeff /= denom
|
183 |
+
coeffs.add(coeff)
|
184 |
+
numer[monom] = coeff
|
185 |
+
else:
|
186 |
+
for numer, denom in zip(numers, denoms):
|
187 |
+
coeffs.update(list(numer.values()))
|
188 |
+
coeffs.update(list(denom.values()))
|
189 |
+
|
190 |
+
rationals = floats = complexes = False
|
191 |
+
float_numbers = []
|
192 |
+
|
193 |
+
for coeff in coeffs:
|
194 |
+
if coeff.is_Rational:
|
195 |
+
if not coeff.is_Integer:
|
196 |
+
rationals = True
|
197 |
+
elif coeff.is_Float:
|
198 |
+
floats = True
|
199 |
+
float_numbers.append(coeff)
|
200 |
+
else:
|
201 |
+
is_complex = pure_complex(coeff)
|
202 |
+
if is_complex is not None:
|
203 |
+
complexes = True
|
204 |
+
x, y = is_complex
|
205 |
+
if x.is_Rational and y.is_Rational:
|
206 |
+
if not (x.is_Integer and y.is_Integer):
|
207 |
+
rationals = True
|
208 |
+
else:
|
209 |
+
floats = True
|
210 |
+
if x.is_Float:
|
211 |
+
float_numbers.append(x)
|
212 |
+
if y.is_Float:
|
213 |
+
float_numbers.append(y)
|
214 |
+
|
215 |
+
max_prec = max(c._prec for c in float_numbers) if float_numbers else 53
|
216 |
+
|
217 |
+
if floats and complexes:
|
218 |
+
ground = ComplexField(prec=max_prec)
|
219 |
+
elif floats:
|
220 |
+
ground = RealField(prec=max_prec)
|
221 |
+
elif complexes:
|
222 |
+
if rationals:
|
223 |
+
ground = QQ_I
|
224 |
+
else:
|
225 |
+
ground = ZZ_I
|
226 |
+
elif rationals:
|
227 |
+
ground = QQ
|
228 |
+
else:
|
229 |
+
ground = ZZ
|
230 |
+
|
231 |
+
result = []
|
232 |
+
|
233 |
+
if not fractions:
|
234 |
+
domain = ground.poly_ring(*gens)
|
235 |
+
|
236 |
+
for numer in numers:
|
237 |
+
for monom, coeff in numer.items():
|
238 |
+
numer[monom] = ground.from_sympy(coeff)
|
239 |
+
|
240 |
+
result.append(domain(numer))
|
241 |
+
else:
|
242 |
+
domain = ground.frac_field(*gens)
|
243 |
+
|
244 |
+
for numer, denom in zip(numers, denoms):
|
245 |
+
for monom, coeff in numer.items():
|
246 |
+
numer[monom] = ground.from_sympy(coeff)
|
247 |
+
|
248 |
+
for monom, coeff in denom.items():
|
249 |
+
denom[monom] = ground.from_sympy(coeff)
|
250 |
+
|
251 |
+
result.append(domain((numer, denom)))
|
252 |
+
|
253 |
+
return domain, result
|
254 |
+
|
255 |
+
|
256 |
+
def _construct_expression(coeffs, opt):
|
257 |
+
"""The last resort case, i.e. use the expression domain. """
|
258 |
+
domain, result = EX, []
|
259 |
+
|
260 |
+
for coeff in coeffs:
|
261 |
+
result.append(domain.from_sympy(coeff))
|
262 |
+
|
263 |
+
return domain, result
|
264 |
+
|
265 |
+
|
266 |
+
@public
|
267 |
+
def construct_domain(obj, **args):
|
268 |
+
"""Construct a minimal domain for a list of expressions.
|
269 |
+
|
270 |
+
Explanation
|
271 |
+
===========
|
272 |
+
|
273 |
+
Given a list of normal SymPy expressions (of type :py:class:`~.Expr`)
|
274 |
+
``construct_domain`` will find a minimal :py:class:`~.Domain` that can
|
275 |
+
represent those expressions. The expressions will be converted to elements
|
276 |
+
of the domain and both the domain and the domain elements are returned.
|
277 |
+
|
278 |
+
Parameters
|
279 |
+
==========
|
280 |
+
|
281 |
+
obj: list or dict
|
282 |
+
The expressions to build a domain for.
|
283 |
+
|
284 |
+
**args: keyword arguments
|
285 |
+
Options that affect the choice of domain.
|
286 |
+
|
287 |
+
Returns
|
288 |
+
=======
|
289 |
+
|
290 |
+
(K, elements): Domain and list of domain elements
|
291 |
+
The domain K that can represent the expressions and the list or dict
|
292 |
+
of domain elements representing the same expressions as elements of K.
|
293 |
+
|
294 |
+
Examples
|
295 |
+
========
|
296 |
+
|
297 |
+
Given a list of :py:class:`~.Integer` ``construct_domain`` will return the
|
298 |
+
domain :ref:`ZZ` and a list of integers as elements of :ref:`ZZ`.
|
299 |
+
|
300 |
+
>>> from sympy import construct_domain, S
|
301 |
+
>>> expressions = [S(2), S(3), S(4)]
|
302 |
+
>>> K, elements = construct_domain(expressions)
|
303 |
+
>>> K
|
304 |
+
ZZ
|
305 |
+
>>> elements
|
306 |
+
[2, 3, 4]
|
307 |
+
>>> type(elements[0]) # doctest: +SKIP
|
308 |
+
<class 'int'>
|
309 |
+
>>> type(expressions[0])
|
310 |
+
<class 'sympy.core.numbers.Integer'>
|
311 |
+
|
312 |
+
If there are any :py:class:`~.Rational` then :ref:`QQ` is returned
|
313 |
+
instead.
|
314 |
+
|
315 |
+
>>> construct_domain([S(1)/2, S(3)/4])
|
316 |
+
(QQ, [1/2, 3/4])
|
317 |
+
|
318 |
+
If there are symbols then a polynomial ring :ref:`K[x]` is returned.
|
319 |
+
|
320 |
+
>>> from sympy import symbols
|
321 |
+
>>> x, y = symbols('x, y')
|
322 |
+
>>> construct_domain([2*x + 1, S(3)/4])
|
323 |
+
(QQ[x], [2*x + 1, 3/4])
|
324 |
+
>>> construct_domain([2*x + 1, y])
|
325 |
+
(ZZ[x,y], [2*x + 1, y])
|
326 |
+
|
327 |
+
If any symbols appear with negative powers then a rational function field
|
328 |
+
:ref:`K(x)` will be returned.
|
329 |
+
|
330 |
+
>>> construct_domain([y/x, x/(1 - y)])
|
331 |
+
(ZZ(x,y), [y/x, -x/(y - 1)])
|
332 |
+
|
333 |
+
Irrational algebraic numbers will result in the :ref:`EX` domain by
|
334 |
+
default. The keyword argument ``extension=True`` leads to the construction
|
335 |
+
of an algebraic number field :ref:`QQ(a)`.
|
336 |
+
|
337 |
+
>>> from sympy import sqrt
|
338 |
+
>>> construct_domain([sqrt(2)])
|
339 |
+
(EX, [EX(sqrt(2))])
|
340 |
+
>>> construct_domain([sqrt(2)], extension=True) # doctest: +SKIP
|
341 |
+
(QQ<sqrt(2)>, [ANP([1, 0], [1, 0, -2], QQ)])
|
342 |
+
|
343 |
+
See also
|
344 |
+
========
|
345 |
+
|
346 |
+
Domain
|
347 |
+
Expr
|
348 |
+
"""
|
349 |
+
opt = build_options(args)
|
350 |
+
|
351 |
+
if hasattr(obj, '__iter__'):
|
352 |
+
if isinstance(obj, dict):
|
353 |
+
if not obj:
|
354 |
+
monoms, coeffs = [], []
|
355 |
+
else:
|
356 |
+
monoms, coeffs = list(zip(*list(obj.items())))
|
357 |
+
else:
|
358 |
+
coeffs = obj
|
359 |
+
else:
|
360 |
+
coeffs = [obj]
|
361 |
+
|
362 |
+
coeffs = list(map(sympify, coeffs))
|
363 |
+
result = _construct_simple(coeffs, opt)
|
364 |
+
|
365 |
+
if result is not None:
|
366 |
+
if result is not False:
|
367 |
+
domain, coeffs = result
|
368 |
+
else:
|
369 |
+
domain, coeffs = _construct_expression(coeffs, opt)
|
370 |
+
else:
|
371 |
+
if opt.composite is False:
|
372 |
+
result = None
|
373 |
+
else:
|
374 |
+
result = _construct_composite(coeffs, opt)
|
375 |
+
|
376 |
+
if result is not None:
|
377 |
+
domain, coeffs = result
|
378 |
+
else:
|
379 |
+
domain, coeffs = _construct_expression(coeffs, opt)
|
380 |
+
|
381 |
+
if hasattr(obj, '__iter__'):
|
382 |
+
if isinstance(obj, dict):
|
383 |
+
return domain, dict(list(zip(monoms, coeffs)))
|
384 |
+
else:
|
385 |
+
return domain, coeffs
|
386 |
+
else:
|
387 |
+
return domain, coeffs[0]
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/densearith.py
ADDED
@@ -0,0 +1,1875 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Arithmetics for dense recursive polynomials in ``K[x]`` or ``K[X]``. """
|
2 |
+
|
3 |
+
|
4 |
+
from sympy.polys.densebasic import (
|
5 |
+
dup_slice,
|
6 |
+
dup_LC, dmp_LC,
|
7 |
+
dup_degree, dmp_degree,
|
8 |
+
dup_strip, dmp_strip,
|
9 |
+
dmp_zero_p, dmp_zero,
|
10 |
+
dmp_one_p, dmp_one,
|
11 |
+
dmp_ground, dmp_zeros)
|
12 |
+
from sympy.polys.polyerrors import (ExactQuotientFailed, PolynomialDivisionFailed)
|
13 |
+
|
14 |
+
def dup_add_term(f, c, i, K):
|
15 |
+
"""
|
16 |
+
Add ``c*x**i`` to ``f`` in ``K[x]``.
|
17 |
+
|
18 |
+
Examples
|
19 |
+
========
|
20 |
+
|
21 |
+
>>> from sympy.polys import ring, ZZ
|
22 |
+
>>> R, x = ring("x", ZZ)
|
23 |
+
|
24 |
+
>>> R.dup_add_term(x**2 - 1, ZZ(2), 4)
|
25 |
+
2*x**4 + x**2 - 1
|
26 |
+
|
27 |
+
"""
|
28 |
+
if not c:
|
29 |
+
return f
|
30 |
+
|
31 |
+
n = len(f)
|
32 |
+
m = n - i - 1
|
33 |
+
|
34 |
+
if i == n - 1:
|
35 |
+
return dup_strip([f[0] + c] + f[1:])
|
36 |
+
else:
|
37 |
+
if i >= n:
|
38 |
+
return [c] + [K.zero]*(i - n) + f
|
39 |
+
else:
|
40 |
+
return f[:m] + [f[m] + c] + f[m + 1:]
|
41 |
+
|
42 |
+
|
43 |
+
def dmp_add_term(f, c, i, u, K):
|
44 |
+
"""
|
45 |
+
Add ``c(x_2..x_u)*x_0**i`` to ``f`` in ``K[X]``.
|
46 |
+
|
47 |
+
Examples
|
48 |
+
========
|
49 |
+
|
50 |
+
>>> from sympy.polys import ring, ZZ
|
51 |
+
>>> R, x,y = ring("x,y", ZZ)
|
52 |
+
|
53 |
+
>>> R.dmp_add_term(x*y + 1, 2, 2)
|
54 |
+
2*x**2 + x*y + 1
|
55 |
+
|
56 |
+
"""
|
57 |
+
if not u:
|
58 |
+
return dup_add_term(f, c, i, K)
|
59 |
+
|
60 |
+
v = u - 1
|
61 |
+
|
62 |
+
if dmp_zero_p(c, v):
|
63 |
+
return f
|
64 |
+
|
65 |
+
n = len(f)
|
66 |
+
m = n - i - 1
|
67 |
+
|
68 |
+
if i == n - 1:
|
69 |
+
return dmp_strip([dmp_add(f[0], c, v, K)] + f[1:], u)
|
70 |
+
else:
|
71 |
+
if i >= n:
|
72 |
+
return [c] + dmp_zeros(i - n, v, K) + f
|
73 |
+
else:
|
74 |
+
return f[:m] + [dmp_add(f[m], c, v, K)] + f[m + 1:]
|
75 |
+
|
76 |
+
|
77 |
+
def dup_sub_term(f, c, i, K):
|
78 |
+
"""
|
79 |
+
Subtract ``c*x**i`` from ``f`` in ``K[x]``.
|
80 |
+
|
81 |
+
Examples
|
82 |
+
========
|
83 |
+
|
84 |
+
>>> from sympy.polys import ring, ZZ
|
85 |
+
>>> R, x = ring("x", ZZ)
|
86 |
+
|
87 |
+
>>> R.dup_sub_term(2*x**4 + x**2 - 1, ZZ(2), 4)
|
88 |
+
x**2 - 1
|
89 |
+
|
90 |
+
"""
|
91 |
+
if not c:
|
92 |
+
return f
|
93 |
+
|
94 |
+
n = len(f)
|
95 |
+
m = n - i - 1
|
96 |
+
|
97 |
+
if i == n - 1:
|
98 |
+
return dup_strip([f[0] - c] + f[1:])
|
99 |
+
else:
|
100 |
+
if i >= n:
|
101 |
+
return [-c] + [K.zero]*(i - n) + f
|
102 |
+
else:
|
103 |
+
return f[:m] + [f[m] - c] + f[m + 1:]
|
104 |
+
|
105 |
+
|
106 |
+
def dmp_sub_term(f, c, i, u, K):
|
107 |
+
"""
|
108 |
+
Subtract ``c(x_2..x_u)*x_0**i`` from ``f`` in ``K[X]``.
|
109 |
+
|
110 |
+
Examples
|
111 |
+
========
|
112 |
+
|
113 |
+
>>> from sympy.polys import ring, ZZ
|
114 |
+
>>> R, x,y = ring("x,y", ZZ)
|
115 |
+
|
116 |
+
>>> R.dmp_sub_term(2*x**2 + x*y + 1, 2, 2)
|
117 |
+
x*y + 1
|
118 |
+
|
119 |
+
"""
|
120 |
+
if not u:
|
121 |
+
return dup_add_term(f, -c, i, K)
|
122 |
+
|
123 |
+
v = u - 1
|
124 |
+
|
125 |
+
if dmp_zero_p(c, v):
|
126 |
+
return f
|
127 |
+
|
128 |
+
n = len(f)
|
129 |
+
m = n - i - 1
|
130 |
+
|
131 |
+
if i == n - 1:
|
132 |
+
return dmp_strip([dmp_sub(f[0], c, v, K)] + f[1:], u)
|
133 |
+
else:
|
134 |
+
if i >= n:
|
135 |
+
return [dmp_neg(c, v, K)] + dmp_zeros(i - n, v, K) + f
|
136 |
+
else:
|
137 |
+
return f[:m] + [dmp_sub(f[m], c, v, K)] + f[m + 1:]
|
138 |
+
|
139 |
+
|
140 |
+
def dup_mul_term(f, c, i, K):
|
141 |
+
"""
|
142 |
+
Multiply ``f`` by ``c*x**i`` in ``K[x]``.
|
143 |
+
|
144 |
+
Examples
|
145 |
+
========
|
146 |
+
|
147 |
+
>>> from sympy.polys import ring, ZZ
|
148 |
+
>>> R, x = ring("x", ZZ)
|
149 |
+
|
150 |
+
>>> R.dup_mul_term(x**2 - 1, ZZ(3), 2)
|
151 |
+
3*x**4 - 3*x**2
|
152 |
+
|
153 |
+
"""
|
154 |
+
if not c or not f:
|
155 |
+
return []
|
156 |
+
else:
|
157 |
+
return [ cf * c for cf in f ] + [K.zero]*i
|
158 |
+
|
159 |
+
|
160 |
+
def dmp_mul_term(f, c, i, u, K):
|
161 |
+
"""
|
162 |
+
Multiply ``f`` by ``c(x_2..x_u)*x_0**i`` in ``K[X]``.
|
163 |
+
|
164 |
+
Examples
|
165 |
+
========
|
166 |
+
|
167 |
+
>>> from sympy.polys import ring, ZZ
|
168 |
+
>>> R, x,y = ring("x,y", ZZ)
|
169 |
+
|
170 |
+
>>> R.dmp_mul_term(x**2*y + x, 3*y, 2)
|
171 |
+
3*x**4*y**2 + 3*x**3*y
|
172 |
+
|
173 |
+
"""
|
174 |
+
if not u:
|
175 |
+
return dup_mul_term(f, c, i, K)
|
176 |
+
|
177 |
+
v = u - 1
|
178 |
+
|
179 |
+
if dmp_zero_p(f, u):
|
180 |
+
return f
|
181 |
+
if dmp_zero_p(c, v):
|
182 |
+
return dmp_zero(u)
|
183 |
+
else:
|
184 |
+
return [ dmp_mul(cf, c, v, K) for cf in f ] + dmp_zeros(i, v, K)
|
185 |
+
|
186 |
+
|
187 |
+
def dup_add_ground(f, c, K):
|
188 |
+
"""
|
189 |
+
Add an element of the ground domain to ``f``.
|
190 |
+
|
191 |
+
Examples
|
192 |
+
========
|
193 |
+
|
194 |
+
>>> from sympy.polys import ring, ZZ
|
195 |
+
>>> R, x = ring("x", ZZ)
|
196 |
+
|
197 |
+
>>> R.dup_add_ground(x**3 + 2*x**2 + 3*x + 4, ZZ(4))
|
198 |
+
x**3 + 2*x**2 + 3*x + 8
|
199 |
+
|
200 |
+
"""
|
201 |
+
return dup_add_term(f, c, 0, K)
|
202 |
+
|
203 |
+
|
204 |
+
def dmp_add_ground(f, c, u, K):
|
205 |
+
"""
|
206 |
+
Add an element of the ground domain to ``f``.
|
207 |
+
|
208 |
+
Examples
|
209 |
+
========
|
210 |
+
|
211 |
+
>>> from sympy.polys import ring, ZZ
|
212 |
+
>>> R, x,y = ring("x,y", ZZ)
|
213 |
+
|
214 |
+
>>> R.dmp_add_ground(x**3 + 2*x**2 + 3*x + 4, ZZ(4))
|
215 |
+
x**3 + 2*x**2 + 3*x + 8
|
216 |
+
|
217 |
+
"""
|
218 |
+
return dmp_add_term(f, dmp_ground(c, u - 1), 0, u, K)
|
219 |
+
|
220 |
+
|
221 |
+
def dup_sub_ground(f, c, K):
|
222 |
+
"""
|
223 |
+
Subtract an element of the ground domain from ``f``.
|
224 |
+
|
225 |
+
Examples
|
226 |
+
========
|
227 |
+
|
228 |
+
>>> from sympy.polys import ring, ZZ
|
229 |
+
>>> R, x = ring("x", ZZ)
|
230 |
+
|
231 |
+
>>> R.dup_sub_ground(x**3 + 2*x**2 + 3*x + 4, ZZ(4))
|
232 |
+
x**3 + 2*x**2 + 3*x
|
233 |
+
|
234 |
+
"""
|
235 |
+
return dup_sub_term(f, c, 0, K)
|
236 |
+
|
237 |
+
|
238 |
+
def dmp_sub_ground(f, c, u, K):
|
239 |
+
"""
|
240 |
+
Subtract an element of the ground domain from ``f``.
|
241 |
+
|
242 |
+
Examples
|
243 |
+
========
|
244 |
+
|
245 |
+
>>> from sympy.polys import ring, ZZ
|
246 |
+
>>> R, x,y = ring("x,y", ZZ)
|
247 |
+
|
248 |
+
>>> R.dmp_sub_ground(x**3 + 2*x**2 + 3*x + 4, ZZ(4))
|
249 |
+
x**3 + 2*x**2 + 3*x
|
250 |
+
|
251 |
+
"""
|
252 |
+
return dmp_sub_term(f, dmp_ground(c, u - 1), 0, u, K)
|
253 |
+
|
254 |
+
|
255 |
+
def dup_mul_ground(f, c, K):
|
256 |
+
"""
|
257 |
+
Multiply ``f`` by a constant value in ``K[x]``.
|
258 |
+
|
259 |
+
Examples
|
260 |
+
========
|
261 |
+
|
262 |
+
>>> from sympy.polys import ring, ZZ
|
263 |
+
>>> R, x = ring("x", ZZ)
|
264 |
+
|
265 |
+
>>> R.dup_mul_ground(x**2 + 2*x - 1, ZZ(3))
|
266 |
+
3*x**2 + 6*x - 3
|
267 |
+
|
268 |
+
"""
|
269 |
+
if not c or not f:
|
270 |
+
return []
|
271 |
+
else:
|
272 |
+
return [ cf * c for cf in f ]
|
273 |
+
|
274 |
+
|
275 |
+
def dmp_mul_ground(f, c, u, K):
|
276 |
+
"""
|
277 |
+
Multiply ``f`` by a constant value in ``K[X]``.
|
278 |
+
|
279 |
+
Examples
|
280 |
+
========
|
281 |
+
|
282 |
+
>>> from sympy.polys import ring, ZZ
|
283 |
+
>>> R, x,y = ring("x,y", ZZ)
|
284 |
+
|
285 |
+
>>> R.dmp_mul_ground(2*x + 2*y, ZZ(3))
|
286 |
+
6*x + 6*y
|
287 |
+
|
288 |
+
"""
|
289 |
+
if not u:
|
290 |
+
return dup_mul_ground(f, c, K)
|
291 |
+
|
292 |
+
v = u - 1
|
293 |
+
|
294 |
+
return [ dmp_mul_ground(cf, c, v, K) for cf in f ]
|
295 |
+
|
296 |
+
|
297 |
+
def dup_quo_ground(f, c, K):
|
298 |
+
"""
|
299 |
+
Quotient by a constant in ``K[x]``.
|
300 |
+
|
301 |
+
Examples
|
302 |
+
========
|
303 |
+
|
304 |
+
>>> from sympy.polys import ring, ZZ, QQ
|
305 |
+
|
306 |
+
>>> R, x = ring("x", ZZ)
|
307 |
+
>>> R.dup_quo_ground(3*x**2 + 2, ZZ(2))
|
308 |
+
x**2 + 1
|
309 |
+
|
310 |
+
>>> R, x = ring("x", QQ)
|
311 |
+
>>> R.dup_quo_ground(3*x**2 + 2, QQ(2))
|
312 |
+
3/2*x**2 + 1
|
313 |
+
|
314 |
+
"""
|
315 |
+
if not c:
|
316 |
+
raise ZeroDivisionError('polynomial division')
|
317 |
+
if not f:
|
318 |
+
return f
|
319 |
+
|
320 |
+
if K.is_Field:
|
321 |
+
return [ K.quo(cf, c) for cf in f ]
|
322 |
+
else:
|
323 |
+
return [ cf // c for cf in f ]
|
324 |
+
|
325 |
+
|
326 |
+
def dmp_quo_ground(f, c, u, K):
|
327 |
+
"""
|
328 |
+
Quotient by a constant in ``K[X]``.
|
329 |
+
|
330 |
+
Examples
|
331 |
+
========
|
332 |
+
|
333 |
+
>>> from sympy.polys import ring, ZZ, QQ
|
334 |
+
|
335 |
+
>>> R, x,y = ring("x,y", ZZ)
|
336 |
+
>>> R.dmp_quo_ground(2*x**2*y + 3*x, ZZ(2))
|
337 |
+
x**2*y + x
|
338 |
+
|
339 |
+
>>> R, x,y = ring("x,y", QQ)
|
340 |
+
>>> R.dmp_quo_ground(2*x**2*y + 3*x, QQ(2))
|
341 |
+
x**2*y + 3/2*x
|
342 |
+
|
343 |
+
"""
|
344 |
+
if not u:
|
345 |
+
return dup_quo_ground(f, c, K)
|
346 |
+
|
347 |
+
v = u - 1
|
348 |
+
|
349 |
+
return [ dmp_quo_ground(cf, c, v, K) for cf in f ]
|
350 |
+
|
351 |
+
|
352 |
+
def dup_exquo_ground(f, c, K):
|
353 |
+
"""
|
354 |
+
Exact quotient by a constant in ``K[x]``.
|
355 |
+
|
356 |
+
Examples
|
357 |
+
========
|
358 |
+
|
359 |
+
>>> from sympy.polys import ring, QQ
|
360 |
+
>>> R, x = ring("x", QQ)
|
361 |
+
|
362 |
+
>>> R.dup_exquo_ground(x**2 + 2, QQ(2))
|
363 |
+
1/2*x**2 + 1
|
364 |
+
|
365 |
+
"""
|
366 |
+
if not c:
|
367 |
+
raise ZeroDivisionError('polynomial division')
|
368 |
+
if not f:
|
369 |
+
return f
|
370 |
+
|
371 |
+
return [ K.exquo(cf, c) for cf in f ]
|
372 |
+
|
373 |
+
|
374 |
+
def dmp_exquo_ground(f, c, u, K):
|
375 |
+
"""
|
376 |
+
Exact quotient by a constant in ``K[X]``.
|
377 |
+
|
378 |
+
Examples
|
379 |
+
========
|
380 |
+
|
381 |
+
>>> from sympy.polys import ring, QQ
|
382 |
+
>>> R, x,y = ring("x,y", QQ)
|
383 |
+
|
384 |
+
>>> R.dmp_exquo_ground(x**2*y + 2*x, QQ(2))
|
385 |
+
1/2*x**2*y + x
|
386 |
+
|
387 |
+
"""
|
388 |
+
if not u:
|
389 |
+
return dup_exquo_ground(f, c, K)
|
390 |
+
|
391 |
+
v = u - 1
|
392 |
+
|
393 |
+
return [ dmp_exquo_ground(cf, c, v, K) for cf in f ]
|
394 |
+
|
395 |
+
|
396 |
+
def dup_lshift(f, n, K):
|
397 |
+
"""
|
398 |
+
Efficiently multiply ``f`` by ``x**n`` in ``K[x]``.
|
399 |
+
|
400 |
+
Examples
|
401 |
+
========
|
402 |
+
|
403 |
+
>>> from sympy.polys import ring, ZZ
|
404 |
+
>>> R, x = ring("x", ZZ)
|
405 |
+
|
406 |
+
>>> R.dup_lshift(x**2 + 1, 2)
|
407 |
+
x**4 + x**2
|
408 |
+
|
409 |
+
"""
|
410 |
+
if not f:
|
411 |
+
return f
|
412 |
+
else:
|
413 |
+
return f + [K.zero]*n
|
414 |
+
|
415 |
+
|
416 |
+
def dup_rshift(f, n, K):
|
417 |
+
"""
|
418 |
+
Efficiently divide ``f`` by ``x**n`` in ``K[x]``.
|
419 |
+
|
420 |
+
Examples
|
421 |
+
========
|
422 |
+
|
423 |
+
>>> from sympy.polys import ring, ZZ
|
424 |
+
>>> R, x = ring("x", ZZ)
|
425 |
+
|
426 |
+
>>> R.dup_rshift(x**4 + x**2, 2)
|
427 |
+
x**2 + 1
|
428 |
+
>>> R.dup_rshift(x**4 + x**2 + 2, 2)
|
429 |
+
x**2 + 1
|
430 |
+
|
431 |
+
"""
|
432 |
+
return f[:-n]
|
433 |
+
|
434 |
+
|
435 |
+
def dup_abs(f, K):
|
436 |
+
"""
|
437 |
+
Make all coefficients positive in ``K[x]``.
|
438 |
+
|
439 |
+
Examples
|
440 |
+
========
|
441 |
+
|
442 |
+
>>> from sympy.polys import ring, ZZ
|
443 |
+
>>> R, x = ring("x", ZZ)
|
444 |
+
|
445 |
+
>>> R.dup_abs(x**2 - 1)
|
446 |
+
x**2 + 1
|
447 |
+
|
448 |
+
"""
|
449 |
+
return [ K.abs(coeff) for coeff in f ]
|
450 |
+
|
451 |
+
|
452 |
+
def dmp_abs(f, u, K):
|
453 |
+
"""
|
454 |
+
Make all coefficients positive in ``K[X]``.
|
455 |
+
|
456 |
+
Examples
|
457 |
+
========
|
458 |
+
|
459 |
+
>>> from sympy.polys import ring, ZZ
|
460 |
+
>>> R, x,y = ring("x,y", ZZ)
|
461 |
+
|
462 |
+
>>> R.dmp_abs(x**2*y - x)
|
463 |
+
x**2*y + x
|
464 |
+
|
465 |
+
"""
|
466 |
+
if not u:
|
467 |
+
return dup_abs(f, K)
|
468 |
+
|
469 |
+
v = u - 1
|
470 |
+
|
471 |
+
return [ dmp_abs(cf, v, K) for cf in f ]
|
472 |
+
|
473 |
+
|
474 |
+
def dup_neg(f, K):
|
475 |
+
"""
|
476 |
+
Negate a polynomial in ``K[x]``.
|
477 |
+
|
478 |
+
Examples
|
479 |
+
========
|
480 |
+
|
481 |
+
>>> from sympy.polys import ring, ZZ
|
482 |
+
>>> R, x = ring("x", ZZ)
|
483 |
+
|
484 |
+
>>> R.dup_neg(x**2 - 1)
|
485 |
+
-x**2 + 1
|
486 |
+
|
487 |
+
"""
|
488 |
+
return [ -coeff for coeff in f ]
|
489 |
+
|
490 |
+
|
491 |
+
def dmp_neg(f, u, K):
|
492 |
+
"""
|
493 |
+
Negate a polynomial in ``K[X]``.
|
494 |
+
|
495 |
+
Examples
|
496 |
+
========
|
497 |
+
|
498 |
+
>>> from sympy.polys import ring, ZZ
|
499 |
+
>>> R, x,y = ring("x,y", ZZ)
|
500 |
+
|
501 |
+
>>> R.dmp_neg(x**2*y - x)
|
502 |
+
-x**2*y + x
|
503 |
+
|
504 |
+
"""
|
505 |
+
if not u:
|
506 |
+
return dup_neg(f, K)
|
507 |
+
|
508 |
+
v = u - 1
|
509 |
+
|
510 |
+
return [ dmp_neg(cf, v, K) for cf in f ]
|
511 |
+
|
512 |
+
|
513 |
+
def dup_add(f, g, K):
|
514 |
+
"""
|
515 |
+
Add dense polynomials in ``K[x]``.
|
516 |
+
|
517 |
+
Examples
|
518 |
+
========
|
519 |
+
|
520 |
+
>>> from sympy.polys import ring, ZZ
|
521 |
+
>>> R, x = ring("x", ZZ)
|
522 |
+
|
523 |
+
>>> R.dup_add(x**2 - 1, x - 2)
|
524 |
+
x**2 + x - 3
|
525 |
+
|
526 |
+
"""
|
527 |
+
if not f:
|
528 |
+
return g
|
529 |
+
if not g:
|
530 |
+
return f
|
531 |
+
|
532 |
+
df = dup_degree(f)
|
533 |
+
dg = dup_degree(g)
|
534 |
+
|
535 |
+
if df == dg:
|
536 |
+
return dup_strip([ a + b for a, b in zip(f, g) ])
|
537 |
+
else:
|
538 |
+
k = abs(df - dg)
|
539 |
+
|
540 |
+
if df > dg:
|
541 |
+
h, f = f[:k], f[k:]
|
542 |
+
else:
|
543 |
+
h, g = g[:k], g[k:]
|
544 |
+
|
545 |
+
return h + [ a + b for a, b in zip(f, g) ]
|
546 |
+
|
547 |
+
|
548 |
+
def dmp_add(f, g, u, K):
|
549 |
+
"""
|
550 |
+
Add dense polynomials in ``K[X]``.
|
551 |
+
|
552 |
+
Examples
|
553 |
+
========
|
554 |
+
|
555 |
+
>>> from sympy.polys import ring, ZZ
|
556 |
+
>>> R, x,y = ring("x,y", ZZ)
|
557 |
+
|
558 |
+
>>> R.dmp_add(x**2 + y, x**2*y + x)
|
559 |
+
x**2*y + x**2 + x + y
|
560 |
+
|
561 |
+
"""
|
562 |
+
if not u:
|
563 |
+
return dup_add(f, g, K)
|
564 |
+
|
565 |
+
df = dmp_degree(f, u)
|
566 |
+
|
567 |
+
if df < 0:
|
568 |
+
return g
|
569 |
+
|
570 |
+
dg = dmp_degree(g, u)
|
571 |
+
|
572 |
+
if dg < 0:
|
573 |
+
return f
|
574 |
+
|
575 |
+
v = u - 1
|
576 |
+
|
577 |
+
if df == dg:
|
578 |
+
return dmp_strip([ dmp_add(a, b, v, K) for a, b in zip(f, g) ], u)
|
579 |
+
else:
|
580 |
+
k = abs(df - dg)
|
581 |
+
|
582 |
+
if df > dg:
|
583 |
+
h, f = f[:k], f[k:]
|
584 |
+
else:
|
585 |
+
h, g = g[:k], g[k:]
|
586 |
+
|
587 |
+
return h + [ dmp_add(a, b, v, K) for a, b in zip(f, g) ]
|
588 |
+
|
589 |
+
|
590 |
+
def dup_sub(f, g, K):
|
591 |
+
"""
|
592 |
+
Subtract dense polynomials in ``K[x]``.
|
593 |
+
|
594 |
+
Examples
|
595 |
+
========
|
596 |
+
|
597 |
+
>>> from sympy.polys import ring, ZZ
|
598 |
+
>>> R, x = ring("x", ZZ)
|
599 |
+
|
600 |
+
>>> R.dup_sub(x**2 - 1, x - 2)
|
601 |
+
x**2 - x + 1
|
602 |
+
|
603 |
+
"""
|
604 |
+
if not f:
|
605 |
+
return dup_neg(g, K)
|
606 |
+
if not g:
|
607 |
+
return f
|
608 |
+
|
609 |
+
df = dup_degree(f)
|
610 |
+
dg = dup_degree(g)
|
611 |
+
|
612 |
+
if df == dg:
|
613 |
+
return dup_strip([ a - b for a, b in zip(f, g) ])
|
614 |
+
else:
|
615 |
+
k = abs(df - dg)
|
616 |
+
|
617 |
+
if df > dg:
|
618 |
+
h, f = f[:k], f[k:]
|
619 |
+
else:
|
620 |
+
h, g = dup_neg(g[:k], K), g[k:]
|
621 |
+
|
622 |
+
return h + [ a - b for a, b in zip(f, g) ]
|
623 |
+
|
624 |
+
|
625 |
+
def dmp_sub(f, g, u, K):
|
626 |
+
"""
|
627 |
+
Subtract dense polynomials in ``K[X]``.
|
628 |
+
|
629 |
+
Examples
|
630 |
+
========
|
631 |
+
|
632 |
+
>>> from sympy.polys import ring, ZZ
|
633 |
+
>>> R, x,y = ring("x,y", ZZ)
|
634 |
+
|
635 |
+
>>> R.dmp_sub(x**2 + y, x**2*y + x)
|
636 |
+
-x**2*y + x**2 - x + y
|
637 |
+
|
638 |
+
"""
|
639 |
+
if not u:
|
640 |
+
return dup_sub(f, g, K)
|
641 |
+
|
642 |
+
df = dmp_degree(f, u)
|
643 |
+
|
644 |
+
if df < 0:
|
645 |
+
return dmp_neg(g, u, K)
|
646 |
+
|
647 |
+
dg = dmp_degree(g, u)
|
648 |
+
|
649 |
+
if dg < 0:
|
650 |
+
return f
|
651 |
+
|
652 |
+
v = u - 1
|
653 |
+
|
654 |
+
if df == dg:
|
655 |
+
return dmp_strip([ dmp_sub(a, b, v, K) for a, b in zip(f, g) ], u)
|
656 |
+
else:
|
657 |
+
k = abs(df - dg)
|
658 |
+
|
659 |
+
if df > dg:
|
660 |
+
h, f = f[:k], f[k:]
|
661 |
+
else:
|
662 |
+
h, g = dmp_neg(g[:k], u, K), g[k:]
|
663 |
+
|
664 |
+
return h + [ dmp_sub(a, b, v, K) for a, b in zip(f, g) ]
|
665 |
+
|
666 |
+
|
667 |
+
def dup_add_mul(f, g, h, K):
|
668 |
+
"""
|
669 |
+
Returns ``f + g*h`` where ``f, g, h`` are in ``K[x]``.
|
670 |
+
|
671 |
+
Examples
|
672 |
+
========
|
673 |
+
|
674 |
+
>>> from sympy.polys import ring, ZZ
|
675 |
+
>>> R, x = ring("x", ZZ)
|
676 |
+
|
677 |
+
>>> R.dup_add_mul(x**2 - 1, x - 2, x + 2)
|
678 |
+
2*x**2 - 5
|
679 |
+
|
680 |
+
"""
|
681 |
+
return dup_add(f, dup_mul(g, h, K), K)
|
682 |
+
|
683 |
+
|
684 |
+
def dmp_add_mul(f, g, h, u, K):
|
685 |
+
"""
|
686 |
+
Returns ``f + g*h`` where ``f, g, h`` are in ``K[X]``.
|
687 |
+
|
688 |
+
Examples
|
689 |
+
========
|
690 |
+
|
691 |
+
>>> from sympy.polys import ring, ZZ
|
692 |
+
>>> R, x,y = ring("x,y", ZZ)
|
693 |
+
|
694 |
+
>>> R.dmp_add_mul(x**2 + y, x, x + 2)
|
695 |
+
2*x**2 + 2*x + y
|
696 |
+
|
697 |
+
"""
|
698 |
+
return dmp_add(f, dmp_mul(g, h, u, K), u, K)
|
699 |
+
|
700 |
+
|
701 |
+
def dup_sub_mul(f, g, h, K):
|
702 |
+
"""
|
703 |
+
Returns ``f - g*h`` where ``f, g, h`` are in ``K[x]``.
|
704 |
+
|
705 |
+
Examples
|
706 |
+
========
|
707 |
+
|
708 |
+
>>> from sympy.polys import ring, ZZ
|
709 |
+
>>> R, x = ring("x", ZZ)
|
710 |
+
|
711 |
+
>>> R.dup_sub_mul(x**2 - 1, x - 2, x + 2)
|
712 |
+
3
|
713 |
+
|
714 |
+
"""
|
715 |
+
return dup_sub(f, dup_mul(g, h, K), K)
|
716 |
+
|
717 |
+
|
718 |
+
def dmp_sub_mul(f, g, h, u, K):
|
719 |
+
"""
|
720 |
+
Returns ``f - g*h`` where ``f, g, h`` are in ``K[X]``.
|
721 |
+
|
722 |
+
Examples
|
723 |
+
========
|
724 |
+
|
725 |
+
>>> from sympy.polys import ring, ZZ
|
726 |
+
>>> R, x,y = ring("x,y", ZZ)
|
727 |
+
|
728 |
+
>>> R.dmp_sub_mul(x**2 + y, x, x + 2)
|
729 |
+
-2*x + y
|
730 |
+
|
731 |
+
"""
|
732 |
+
return dmp_sub(f, dmp_mul(g, h, u, K), u, K)
|
733 |
+
|
734 |
+
|
735 |
+
def dup_mul(f, g, K):
|
736 |
+
"""
|
737 |
+
Multiply dense polynomials in ``K[x]``.
|
738 |
+
|
739 |
+
Examples
|
740 |
+
========
|
741 |
+
|
742 |
+
>>> from sympy.polys import ring, ZZ
|
743 |
+
>>> R, x = ring("x", ZZ)
|
744 |
+
|
745 |
+
>>> R.dup_mul(x - 2, x + 2)
|
746 |
+
x**2 - 4
|
747 |
+
|
748 |
+
"""
|
749 |
+
if f == g:
|
750 |
+
return dup_sqr(f, K)
|
751 |
+
|
752 |
+
if not (f and g):
|
753 |
+
return []
|
754 |
+
|
755 |
+
df = dup_degree(f)
|
756 |
+
dg = dup_degree(g)
|
757 |
+
|
758 |
+
n = max(df, dg) + 1
|
759 |
+
|
760 |
+
if n < 100:
|
761 |
+
h = []
|
762 |
+
|
763 |
+
for i in range(0, df + dg + 1):
|
764 |
+
coeff = K.zero
|
765 |
+
|
766 |
+
for j in range(max(0, i - dg), min(df, i) + 1):
|
767 |
+
coeff += f[j]*g[i - j]
|
768 |
+
|
769 |
+
h.append(coeff)
|
770 |
+
|
771 |
+
return dup_strip(h)
|
772 |
+
else:
|
773 |
+
# Use Karatsuba's algorithm (divide and conquer), see e.g.:
|
774 |
+
# Joris van der Hoeven, Relax But Don't Be Too Lazy,
|
775 |
+
# J. Symbolic Computation, 11 (2002), section 3.1.1.
|
776 |
+
n2 = n//2
|
777 |
+
|
778 |
+
fl, gl = dup_slice(f, 0, n2, K), dup_slice(g, 0, n2, K)
|
779 |
+
|
780 |
+
fh = dup_rshift(dup_slice(f, n2, n, K), n2, K)
|
781 |
+
gh = dup_rshift(dup_slice(g, n2, n, K), n2, K)
|
782 |
+
|
783 |
+
lo, hi = dup_mul(fl, gl, K), dup_mul(fh, gh, K)
|
784 |
+
|
785 |
+
mid = dup_mul(dup_add(fl, fh, K), dup_add(gl, gh, K), K)
|
786 |
+
mid = dup_sub(mid, dup_add(lo, hi, K), K)
|
787 |
+
|
788 |
+
return dup_add(dup_add(lo, dup_lshift(mid, n2, K), K),
|
789 |
+
dup_lshift(hi, 2*n2, K), K)
|
790 |
+
|
791 |
+
|
792 |
+
def dmp_mul(f, g, u, K):
|
793 |
+
"""
|
794 |
+
Multiply dense polynomials in ``K[X]``.
|
795 |
+
|
796 |
+
Examples
|
797 |
+
========
|
798 |
+
|
799 |
+
>>> from sympy.polys import ring, ZZ
|
800 |
+
>>> R, x,y = ring("x,y", ZZ)
|
801 |
+
|
802 |
+
>>> R.dmp_mul(x*y + 1, x)
|
803 |
+
x**2*y + x
|
804 |
+
|
805 |
+
"""
|
806 |
+
if not u:
|
807 |
+
return dup_mul(f, g, K)
|
808 |
+
|
809 |
+
if f == g:
|
810 |
+
return dmp_sqr(f, u, K)
|
811 |
+
|
812 |
+
df = dmp_degree(f, u)
|
813 |
+
|
814 |
+
if df < 0:
|
815 |
+
return f
|
816 |
+
|
817 |
+
dg = dmp_degree(g, u)
|
818 |
+
|
819 |
+
if dg < 0:
|
820 |
+
return g
|
821 |
+
|
822 |
+
h, v = [], u - 1
|
823 |
+
|
824 |
+
for i in range(0, df + dg + 1):
|
825 |
+
coeff = dmp_zero(v)
|
826 |
+
|
827 |
+
for j in range(max(0, i - dg), min(df, i) + 1):
|
828 |
+
coeff = dmp_add(coeff, dmp_mul(f[j], g[i - j], v, K), v, K)
|
829 |
+
|
830 |
+
h.append(coeff)
|
831 |
+
|
832 |
+
return dmp_strip(h, u)
|
833 |
+
|
834 |
+
|
835 |
+
def dup_sqr(f, K):
|
836 |
+
"""
|
837 |
+
Square dense polynomials in ``K[x]``.
|
838 |
+
|
839 |
+
Examples
|
840 |
+
========
|
841 |
+
|
842 |
+
>>> from sympy.polys import ring, ZZ
|
843 |
+
>>> R, x = ring("x", ZZ)
|
844 |
+
|
845 |
+
>>> R.dup_sqr(x**2 + 1)
|
846 |
+
x**4 + 2*x**2 + 1
|
847 |
+
|
848 |
+
"""
|
849 |
+
df, h = len(f) - 1, []
|
850 |
+
|
851 |
+
for i in range(0, 2*df + 1):
|
852 |
+
c = K.zero
|
853 |
+
|
854 |
+
jmin = max(0, i - df)
|
855 |
+
jmax = min(i, df)
|
856 |
+
|
857 |
+
n = jmax - jmin + 1
|
858 |
+
|
859 |
+
jmax = jmin + n // 2 - 1
|
860 |
+
|
861 |
+
for j in range(jmin, jmax + 1):
|
862 |
+
c += f[j]*f[i - j]
|
863 |
+
|
864 |
+
c += c
|
865 |
+
|
866 |
+
if n & 1:
|
867 |
+
elem = f[jmax + 1]
|
868 |
+
c += elem**2
|
869 |
+
|
870 |
+
h.append(c)
|
871 |
+
|
872 |
+
return dup_strip(h)
|
873 |
+
|
874 |
+
|
875 |
+
def dmp_sqr(f, u, K):
|
876 |
+
"""
|
877 |
+
Square dense polynomials in ``K[X]``.
|
878 |
+
|
879 |
+
Examples
|
880 |
+
========
|
881 |
+
|
882 |
+
>>> from sympy.polys import ring, ZZ
|
883 |
+
>>> R, x,y = ring("x,y", ZZ)
|
884 |
+
|
885 |
+
>>> R.dmp_sqr(x**2 + x*y + y**2)
|
886 |
+
x**4 + 2*x**3*y + 3*x**2*y**2 + 2*x*y**3 + y**4
|
887 |
+
|
888 |
+
"""
|
889 |
+
if not u:
|
890 |
+
return dup_sqr(f, K)
|
891 |
+
|
892 |
+
df = dmp_degree(f, u)
|
893 |
+
|
894 |
+
if df < 0:
|
895 |
+
return f
|
896 |
+
|
897 |
+
h, v = [], u - 1
|
898 |
+
|
899 |
+
for i in range(0, 2*df + 1):
|
900 |
+
c = dmp_zero(v)
|
901 |
+
|
902 |
+
jmin = max(0, i - df)
|
903 |
+
jmax = min(i, df)
|
904 |
+
|
905 |
+
n = jmax - jmin + 1
|
906 |
+
|
907 |
+
jmax = jmin + n // 2 - 1
|
908 |
+
|
909 |
+
for j in range(jmin, jmax + 1):
|
910 |
+
c = dmp_add(c, dmp_mul(f[j], f[i - j], v, K), v, K)
|
911 |
+
|
912 |
+
c = dmp_mul_ground(c, K(2), v, K)
|
913 |
+
|
914 |
+
if n & 1:
|
915 |
+
elem = dmp_sqr(f[jmax + 1], v, K)
|
916 |
+
c = dmp_add(c, elem, v, K)
|
917 |
+
|
918 |
+
h.append(c)
|
919 |
+
|
920 |
+
return dmp_strip(h, u)
|
921 |
+
|
922 |
+
|
923 |
+
def dup_pow(f, n, K):
|
924 |
+
"""
|
925 |
+
Raise ``f`` to the ``n``-th power in ``K[x]``.
|
926 |
+
|
927 |
+
Examples
|
928 |
+
========
|
929 |
+
|
930 |
+
>>> from sympy.polys import ring, ZZ
|
931 |
+
>>> R, x = ring("x", ZZ)
|
932 |
+
|
933 |
+
>>> R.dup_pow(x - 2, 3)
|
934 |
+
x**3 - 6*x**2 + 12*x - 8
|
935 |
+
|
936 |
+
"""
|
937 |
+
if not n:
|
938 |
+
return [K.one]
|
939 |
+
if n < 0:
|
940 |
+
raise ValueError("Cannot raise polynomial to a negative power")
|
941 |
+
if n == 1 or not f or f == [K.one]:
|
942 |
+
return f
|
943 |
+
|
944 |
+
g = [K.one]
|
945 |
+
|
946 |
+
while True:
|
947 |
+
n, m = n//2, n
|
948 |
+
|
949 |
+
if m % 2:
|
950 |
+
g = dup_mul(g, f, K)
|
951 |
+
|
952 |
+
if not n:
|
953 |
+
break
|
954 |
+
|
955 |
+
f = dup_sqr(f, K)
|
956 |
+
|
957 |
+
return g
|
958 |
+
|
959 |
+
|
960 |
+
def dmp_pow(f, n, u, K):
|
961 |
+
"""
|
962 |
+
Raise ``f`` to the ``n``-th power in ``K[X]``.
|
963 |
+
|
964 |
+
Examples
|
965 |
+
========
|
966 |
+
|
967 |
+
>>> from sympy.polys import ring, ZZ
|
968 |
+
>>> R, x,y = ring("x,y", ZZ)
|
969 |
+
|
970 |
+
>>> R.dmp_pow(x*y + 1, 3)
|
971 |
+
x**3*y**3 + 3*x**2*y**2 + 3*x*y + 1
|
972 |
+
|
973 |
+
"""
|
974 |
+
if not u:
|
975 |
+
return dup_pow(f, n, K)
|
976 |
+
|
977 |
+
if not n:
|
978 |
+
return dmp_one(u, K)
|
979 |
+
if n < 0:
|
980 |
+
raise ValueError("Cannot raise polynomial to a negative power")
|
981 |
+
if n == 1 or dmp_zero_p(f, u) or dmp_one_p(f, u, K):
|
982 |
+
return f
|
983 |
+
|
984 |
+
g = dmp_one(u, K)
|
985 |
+
|
986 |
+
while True:
|
987 |
+
n, m = n//2, n
|
988 |
+
|
989 |
+
if m & 1:
|
990 |
+
g = dmp_mul(g, f, u, K)
|
991 |
+
|
992 |
+
if not n:
|
993 |
+
break
|
994 |
+
|
995 |
+
f = dmp_sqr(f, u, K)
|
996 |
+
|
997 |
+
return g
|
998 |
+
|
999 |
+
|
1000 |
+
def dup_pdiv(f, g, K):
|
1001 |
+
"""
|
1002 |
+
Polynomial pseudo-division in ``K[x]``.
|
1003 |
+
|
1004 |
+
Examples
|
1005 |
+
========
|
1006 |
+
|
1007 |
+
>>> from sympy.polys import ring, ZZ
|
1008 |
+
>>> R, x = ring("x", ZZ)
|
1009 |
+
|
1010 |
+
>>> R.dup_pdiv(x**2 + 1, 2*x - 4)
|
1011 |
+
(2*x + 4, 20)
|
1012 |
+
|
1013 |
+
"""
|
1014 |
+
df = dup_degree(f)
|
1015 |
+
dg = dup_degree(g)
|
1016 |
+
|
1017 |
+
q, r, dr = [], f, df
|
1018 |
+
|
1019 |
+
if not g:
|
1020 |
+
raise ZeroDivisionError("polynomial division")
|
1021 |
+
elif df < dg:
|
1022 |
+
return q, r
|
1023 |
+
|
1024 |
+
N = df - dg + 1
|
1025 |
+
lc_g = dup_LC(g, K)
|
1026 |
+
|
1027 |
+
while True:
|
1028 |
+
lc_r = dup_LC(r, K)
|
1029 |
+
j, N = dr - dg, N - 1
|
1030 |
+
|
1031 |
+
Q = dup_mul_ground(q, lc_g, K)
|
1032 |
+
q = dup_add_term(Q, lc_r, j, K)
|
1033 |
+
|
1034 |
+
R = dup_mul_ground(r, lc_g, K)
|
1035 |
+
G = dup_mul_term(g, lc_r, j, K)
|
1036 |
+
r = dup_sub(R, G, K)
|
1037 |
+
|
1038 |
+
_dr, dr = dr, dup_degree(r)
|
1039 |
+
|
1040 |
+
if dr < dg:
|
1041 |
+
break
|
1042 |
+
elif not (dr < _dr):
|
1043 |
+
raise PolynomialDivisionFailed(f, g, K)
|
1044 |
+
|
1045 |
+
c = lc_g**N
|
1046 |
+
|
1047 |
+
q = dup_mul_ground(q, c, K)
|
1048 |
+
r = dup_mul_ground(r, c, K)
|
1049 |
+
|
1050 |
+
return q, r
|
1051 |
+
|
1052 |
+
|
1053 |
+
def dup_prem(f, g, K):
|
1054 |
+
"""
|
1055 |
+
Polynomial pseudo-remainder in ``K[x]``.
|
1056 |
+
|
1057 |
+
Examples
|
1058 |
+
========
|
1059 |
+
|
1060 |
+
>>> from sympy.polys import ring, ZZ
|
1061 |
+
>>> R, x = ring("x", ZZ)
|
1062 |
+
|
1063 |
+
>>> R.dup_prem(x**2 + 1, 2*x - 4)
|
1064 |
+
20
|
1065 |
+
|
1066 |
+
"""
|
1067 |
+
df = dup_degree(f)
|
1068 |
+
dg = dup_degree(g)
|
1069 |
+
|
1070 |
+
r, dr = f, df
|
1071 |
+
|
1072 |
+
if not g:
|
1073 |
+
raise ZeroDivisionError("polynomial division")
|
1074 |
+
elif df < dg:
|
1075 |
+
return r
|
1076 |
+
|
1077 |
+
N = df - dg + 1
|
1078 |
+
lc_g = dup_LC(g, K)
|
1079 |
+
|
1080 |
+
while True:
|
1081 |
+
lc_r = dup_LC(r, K)
|
1082 |
+
j, N = dr - dg, N - 1
|
1083 |
+
|
1084 |
+
R = dup_mul_ground(r, lc_g, K)
|
1085 |
+
G = dup_mul_term(g, lc_r, j, K)
|
1086 |
+
r = dup_sub(R, G, K)
|
1087 |
+
|
1088 |
+
_dr, dr = dr, dup_degree(r)
|
1089 |
+
|
1090 |
+
if dr < dg:
|
1091 |
+
break
|
1092 |
+
elif not (dr < _dr):
|
1093 |
+
raise PolynomialDivisionFailed(f, g, K)
|
1094 |
+
|
1095 |
+
return dup_mul_ground(r, lc_g**N, K)
|
1096 |
+
|
1097 |
+
|
1098 |
+
def dup_pquo(f, g, K):
|
1099 |
+
"""
|
1100 |
+
Polynomial exact pseudo-quotient in ``K[X]``.
|
1101 |
+
|
1102 |
+
Examples
|
1103 |
+
========
|
1104 |
+
|
1105 |
+
>>> from sympy.polys import ring, ZZ
|
1106 |
+
>>> R, x = ring("x", ZZ)
|
1107 |
+
|
1108 |
+
>>> R.dup_pquo(x**2 - 1, 2*x - 2)
|
1109 |
+
2*x + 2
|
1110 |
+
|
1111 |
+
>>> R.dup_pquo(x**2 + 1, 2*x - 4)
|
1112 |
+
2*x + 4
|
1113 |
+
|
1114 |
+
"""
|
1115 |
+
return dup_pdiv(f, g, K)[0]
|
1116 |
+
|
1117 |
+
|
1118 |
+
def dup_pexquo(f, g, K):
|
1119 |
+
"""
|
1120 |
+
Polynomial pseudo-quotient in ``K[x]``.
|
1121 |
+
|
1122 |
+
Examples
|
1123 |
+
========
|
1124 |
+
|
1125 |
+
>>> from sympy.polys import ring, ZZ
|
1126 |
+
>>> R, x = ring("x", ZZ)
|
1127 |
+
|
1128 |
+
>>> R.dup_pexquo(x**2 - 1, 2*x - 2)
|
1129 |
+
2*x + 2
|
1130 |
+
|
1131 |
+
>>> R.dup_pexquo(x**2 + 1, 2*x - 4)
|
1132 |
+
Traceback (most recent call last):
|
1133 |
+
...
|
1134 |
+
ExactQuotientFailed: [2, -4] does not divide [1, 0, 1]
|
1135 |
+
|
1136 |
+
"""
|
1137 |
+
q, r = dup_pdiv(f, g, K)
|
1138 |
+
|
1139 |
+
if not r:
|
1140 |
+
return q
|
1141 |
+
else:
|
1142 |
+
raise ExactQuotientFailed(f, g)
|
1143 |
+
|
1144 |
+
|
1145 |
+
def dmp_pdiv(f, g, u, K):
|
1146 |
+
"""
|
1147 |
+
Polynomial pseudo-division in ``K[X]``.
|
1148 |
+
|
1149 |
+
Examples
|
1150 |
+
========
|
1151 |
+
|
1152 |
+
>>> from sympy.polys import ring, ZZ
|
1153 |
+
>>> R, x,y = ring("x,y", ZZ)
|
1154 |
+
|
1155 |
+
>>> R.dmp_pdiv(x**2 + x*y, 2*x + 2)
|
1156 |
+
(2*x + 2*y - 2, -4*y + 4)
|
1157 |
+
|
1158 |
+
"""
|
1159 |
+
if not u:
|
1160 |
+
return dup_pdiv(f, g, K)
|
1161 |
+
|
1162 |
+
df = dmp_degree(f, u)
|
1163 |
+
dg = dmp_degree(g, u)
|
1164 |
+
|
1165 |
+
if dg < 0:
|
1166 |
+
raise ZeroDivisionError("polynomial division")
|
1167 |
+
|
1168 |
+
q, r, dr = dmp_zero(u), f, df
|
1169 |
+
|
1170 |
+
if df < dg:
|
1171 |
+
return q, r
|
1172 |
+
|
1173 |
+
N = df - dg + 1
|
1174 |
+
lc_g = dmp_LC(g, K)
|
1175 |
+
|
1176 |
+
while True:
|
1177 |
+
lc_r = dmp_LC(r, K)
|
1178 |
+
j, N = dr - dg, N - 1
|
1179 |
+
|
1180 |
+
Q = dmp_mul_term(q, lc_g, 0, u, K)
|
1181 |
+
q = dmp_add_term(Q, lc_r, j, u, K)
|
1182 |
+
|
1183 |
+
R = dmp_mul_term(r, lc_g, 0, u, K)
|
1184 |
+
G = dmp_mul_term(g, lc_r, j, u, K)
|
1185 |
+
r = dmp_sub(R, G, u, K)
|
1186 |
+
|
1187 |
+
_dr, dr = dr, dmp_degree(r, u)
|
1188 |
+
|
1189 |
+
if dr < dg:
|
1190 |
+
break
|
1191 |
+
elif not (dr < _dr):
|
1192 |
+
raise PolynomialDivisionFailed(f, g, K)
|
1193 |
+
|
1194 |
+
c = dmp_pow(lc_g, N, u - 1, K)
|
1195 |
+
|
1196 |
+
q = dmp_mul_term(q, c, 0, u, K)
|
1197 |
+
r = dmp_mul_term(r, c, 0, u, K)
|
1198 |
+
|
1199 |
+
return q, r
|
1200 |
+
|
1201 |
+
|
1202 |
+
def dmp_prem(f, g, u, K):
|
1203 |
+
"""
|
1204 |
+
Polynomial pseudo-remainder in ``K[X]``.
|
1205 |
+
|
1206 |
+
Examples
|
1207 |
+
========
|
1208 |
+
|
1209 |
+
>>> from sympy.polys import ring, ZZ
|
1210 |
+
>>> R, x,y = ring("x,y", ZZ)
|
1211 |
+
|
1212 |
+
>>> R.dmp_prem(x**2 + x*y, 2*x + 2)
|
1213 |
+
-4*y + 4
|
1214 |
+
|
1215 |
+
"""
|
1216 |
+
if not u:
|
1217 |
+
return dup_prem(f, g, K)
|
1218 |
+
|
1219 |
+
df = dmp_degree(f, u)
|
1220 |
+
dg = dmp_degree(g, u)
|
1221 |
+
|
1222 |
+
if dg < 0:
|
1223 |
+
raise ZeroDivisionError("polynomial division")
|
1224 |
+
|
1225 |
+
r, dr = f, df
|
1226 |
+
|
1227 |
+
if df < dg:
|
1228 |
+
return r
|
1229 |
+
|
1230 |
+
N = df - dg + 1
|
1231 |
+
lc_g = dmp_LC(g, K)
|
1232 |
+
|
1233 |
+
while True:
|
1234 |
+
lc_r = dmp_LC(r, K)
|
1235 |
+
j, N = dr - dg, N - 1
|
1236 |
+
|
1237 |
+
R = dmp_mul_term(r, lc_g, 0, u, K)
|
1238 |
+
G = dmp_mul_term(g, lc_r, j, u, K)
|
1239 |
+
r = dmp_sub(R, G, u, K)
|
1240 |
+
|
1241 |
+
_dr, dr = dr, dmp_degree(r, u)
|
1242 |
+
|
1243 |
+
if dr < dg:
|
1244 |
+
break
|
1245 |
+
elif not (dr < _dr):
|
1246 |
+
raise PolynomialDivisionFailed(f, g, K)
|
1247 |
+
|
1248 |
+
c = dmp_pow(lc_g, N, u - 1, K)
|
1249 |
+
|
1250 |
+
return dmp_mul_term(r, c, 0, u, K)
|
1251 |
+
|
1252 |
+
|
1253 |
+
def dmp_pquo(f, g, u, K):
|
1254 |
+
"""
|
1255 |
+
Polynomial exact pseudo-quotient in ``K[X]``.
|
1256 |
+
|
1257 |
+
Examples
|
1258 |
+
========
|
1259 |
+
|
1260 |
+
>>> from sympy.polys import ring, ZZ
|
1261 |
+
>>> R, x,y = ring("x,y", ZZ)
|
1262 |
+
|
1263 |
+
>>> f = x**2 + x*y
|
1264 |
+
>>> g = 2*x + 2*y
|
1265 |
+
>>> h = 2*x + 2
|
1266 |
+
|
1267 |
+
>>> R.dmp_pquo(f, g)
|
1268 |
+
2*x
|
1269 |
+
|
1270 |
+
>>> R.dmp_pquo(f, h)
|
1271 |
+
2*x + 2*y - 2
|
1272 |
+
|
1273 |
+
"""
|
1274 |
+
return dmp_pdiv(f, g, u, K)[0]
|
1275 |
+
|
1276 |
+
|
1277 |
+
def dmp_pexquo(f, g, u, K):
|
1278 |
+
"""
|
1279 |
+
Polynomial pseudo-quotient in ``K[X]``.
|
1280 |
+
|
1281 |
+
Examples
|
1282 |
+
========
|
1283 |
+
|
1284 |
+
>>> from sympy.polys import ring, ZZ
|
1285 |
+
>>> R, x,y = ring("x,y", ZZ)
|
1286 |
+
|
1287 |
+
>>> f = x**2 + x*y
|
1288 |
+
>>> g = 2*x + 2*y
|
1289 |
+
>>> h = 2*x + 2
|
1290 |
+
|
1291 |
+
>>> R.dmp_pexquo(f, g)
|
1292 |
+
2*x
|
1293 |
+
|
1294 |
+
>>> R.dmp_pexquo(f, h)
|
1295 |
+
Traceback (most recent call last):
|
1296 |
+
...
|
1297 |
+
ExactQuotientFailed: [[2], [2]] does not divide [[1], [1, 0], []]
|
1298 |
+
|
1299 |
+
"""
|
1300 |
+
q, r = dmp_pdiv(f, g, u, K)
|
1301 |
+
|
1302 |
+
if dmp_zero_p(r, u):
|
1303 |
+
return q
|
1304 |
+
else:
|
1305 |
+
raise ExactQuotientFailed(f, g)
|
1306 |
+
|
1307 |
+
|
1308 |
+
def dup_rr_div(f, g, K):
|
1309 |
+
"""
|
1310 |
+
Univariate division with remainder over a ring.
|
1311 |
+
|
1312 |
+
Examples
|
1313 |
+
========
|
1314 |
+
|
1315 |
+
>>> from sympy.polys import ring, ZZ
|
1316 |
+
>>> R, x = ring("x", ZZ)
|
1317 |
+
|
1318 |
+
>>> R.dup_rr_div(x**2 + 1, 2*x - 4)
|
1319 |
+
(0, x**2 + 1)
|
1320 |
+
|
1321 |
+
"""
|
1322 |
+
df = dup_degree(f)
|
1323 |
+
dg = dup_degree(g)
|
1324 |
+
|
1325 |
+
q, r, dr = [], f, df
|
1326 |
+
|
1327 |
+
if not g:
|
1328 |
+
raise ZeroDivisionError("polynomial division")
|
1329 |
+
elif df < dg:
|
1330 |
+
return q, r
|
1331 |
+
|
1332 |
+
lc_g = dup_LC(g, K)
|
1333 |
+
|
1334 |
+
while True:
|
1335 |
+
lc_r = dup_LC(r, K)
|
1336 |
+
|
1337 |
+
if lc_r % lc_g:
|
1338 |
+
break
|
1339 |
+
|
1340 |
+
c = K.exquo(lc_r, lc_g)
|
1341 |
+
j = dr - dg
|
1342 |
+
|
1343 |
+
q = dup_add_term(q, c, j, K)
|
1344 |
+
h = dup_mul_term(g, c, j, K)
|
1345 |
+
r = dup_sub(r, h, K)
|
1346 |
+
|
1347 |
+
_dr, dr = dr, dup_degree(r)
|
1348 |
+
|
1349 |
+
if dr < dg:
|
1350 |
+
break
|
1351 |
+
elif not (dr < _dr):
|
1352 |
+
raise PolynomialDivisionFailed(f, g, K)
|
1353 |
+
|
1354 |
+
return q, r
|
1355 |
+
|
1356 |
+
|
1357 |
+
def dmp_rr_div(f, g, u, K):
|
1358 |
+
"""
|
1359 |
+
Multivariate division with remainder over a ring.
|
1360 |
+
|
1361 |
+
Examples
|
1362 |
+
========
|
1363 |
+
|
1364 |
+
>>> from sympy.polys import ring, ZZ
|
1365 |
+
>>> R, x,y = ring("x,y", ZZ)
|
1366 |
+
|
1367 |
+
>>> R.dmp_rr_div(x**2 + x*y, 2*x + 2)
|
1368 |
+
(0, x**2 + x*y)
|
1369 |
+
|
1370 |
+
"""
|
1371 |
+
if not u:
|
1372 |
+
return dup_rr_div(f, g, K)
|
1373 |
+
|
1374 |
+
df = dmp_degree(f, u)
|
1375 |
+
dg = dmp_degree(g, u)
|
1376 |
+
|
1377 |
+
if dg < 0:
|
1378 |
+
raise ZeroDivisionError("polynomial division")
|
1379 |
+
|
1380 |
+
q, r, dr = dmp_zero(u), f, df
|
1381 |
+
|
1382 |
+
if df < dg:
|
1383 |
+
return q, r
|
1384 |
+
|
1385 |
+
lc_g, v = dmp_LC(g, K), u - 1
|
1386 |
+
|
1387 |
+
while True:
|
1388 |
+
lc_r = dmp_LC(r, K)
|
1389 |
+
c, R = dmp_rr_div(lc_r, lc_g, v, K)
|
1390 |
+
|
1391 |
+
if not dmp_zero_p(R, v):
|
1392 |
+
break
|
1393 |
+
|
1394 |
+
j = dr - dg
|
1395 |
+
|
1396 |
+
q = dmp_add_term(q, c, j, u, K)
|
1397 |
+
h = dmp_mul_term(g, c, j, u, K)
|
1398 |
+
r = dmp_sub(r, h, u, K)
|
1399 |
+
|
1400 |
+
_dr, dr = dr, dmp_degree(r, u)
|
1401 |
+
|
1402 |
+
if dr < dg:
|
1403 |
+
break
|
1404 |
+
elif not (dr < _dr):
|
1405 |
+
raise PolynomialDivisionFailed(f, g, K)
|
1406 |
+
|
1407 |
+
return q, r
|
1408 |
+
|
1409 |
+
|
1410 |
+
def dup_ff_div(f, g, K):
|
1411 |
+
"""
|
1412 |
+
Polynomial division with remainder over a field.
|
1413 |
+
|
1414 |
+
Examples
|
1415 |
+
========
|
1416 |
+
|
1417 |
+
>>> from sympy.polys import ring, QQ
|
1418 |
+
>>> R, x = ring("x", QQ)
|
1419 |
+
|
1420 |
+
>>> R.dup_ff_div(x**2 + 1, 2*x - 4)
|
1421 |
+
(1/2*x + 1, 5)
|
1422 |
+
|
1423 |
+
"""
|
1424 |
+
df = dup_degree(f)
|
1425 |
+
dg = dup_degree(g)
|
1426 |
+
|
1427 |
+
q, r, dr = [], f, df
|
1428 |
+
|
1429 |
+
if not g:
|
1430 |
+
raise ZeroDivisionError("polynomial division")
|
1431 |
+
elif df < dg:
|
1432 |
+
return q, r
|
1433 |
+
|
1434 |
+
lc_g = dup_LC(g, K)
|
1435 |
+
|
1436 |
+
while True:
|
1437 |
+
lc_r = dup_LC(r, K)
|
1438 |
+
|
1439 |
+
c = K.exquo(lc_r, lc_g)
|
1440 |
+
j = dr - dg
|
1441 |
+
|
1442 |
+
q = dup_add_term(q, c, j, K)
|
1443 |
+
h = dup_mul_term(g, c, j, K)
|
1444 |
+
r = dup_sub(r, h, K)
|
1445 |
+
|
1446 |
+
_dr, dr = dr, dup_degree(r)
|
1447 |
+
|
1448 |
+
if dr < dg:
|
1449 |
+
break
|
1450 |
+
elif dr == _dr and not K.is_Exact:
|
1451 |
+
# remove leading term created by rounding error
|
1452 |
+
r = dup_strip(r[1:])
|
1453 |
+
dr = dup_degree(r)
|
1454 |
+
if dr < dg:
|
1455 |
+
break
|
1456 |
+
elif not (dr < _dr):
|
1457 |
+
raise PolynomialDivisionFailed(f, g, K)
|
1458 |
+
|
1459 |
+
return q, r
|
1460 |
+
|
1461 |
+
|
1462 |
+
def dmp_ff_div(f, g, u, K):
|
1463 |
+
"""
|
1464 |
+
Polynomial division with remainder over a field.
|
1465 |
+
|
1466 |
+
Examples
|
1467 |
+
========
|
1468 |
+
|
1469 |
+
>>> from sympy.polys import ring, QQ
|
1470 |
+
>>> R, x,y = ring("x,y", QQ)
|
1471 |
+
|
1472 |
+
>>> R.dmp_ff_div(x**2 + x*y, 2*x + 2)
|
1473 |
+
(1/2*x + 1/2*y - 1/2, -y + 1)
|
1474 |
+
|
1475 |
+
"""
|
1476 |
+
if not u:
|
1477 |
+
return dup_ff_div(f, g, K)
|
1478 |
+
|
1479 |
+
df = dmp_degree(f, u)
|
1480 |
+
dg = dmp_degree(g, u)
|
1481 |
+
|
1482 |
+
if dg < 0:
|
1483 |
+
raise ZeroDivisionError("polynomial division")
|
1484 |
+
|
1485 |
+
q, r, dr = dmp_zero(u), f, df
|
1486 |
+
|
1487 |
+
if df < dg:
|
1488 |
+
return q, r
|
1489 |
+
|
1490 |
+
lc_g, v = dmp_LC(g, K), u - 1
|
1491 |
+
|
1492 |
+
while True:
|
1493 |
+
lc_r = dmp_LC(r, K)
|
1494 |
+
c, R = dmp_ff_div(lc_r, lc_g, v, K)
|
1495 |
+
|
1496 |
+
if not dmp_zero_p(R, v):
|
1497 |
+
break
|
1498 |
+
|
1499 |
+
j = dr - dg
|
1500 |
+
|
1501 |
+
q = dmp_add_term(q, c, j, u, K)
|
1502 |
+
h = dmp_mul_term(g, c, j, u, K)
|
1503 |
+
r = dmp_sub(r, h, u, K)
|
1504 |
+
|
1505 |
+
_dr, dr = dr, dmp_degree(r, u)
|
1506 |
+
|
1507 |
+
if dr < dg:
|
1508 |
+
break
|
1509 |
+
elif not (dr < _dr):
|
1510 |
+
raise PolynomialDivisionFailed(f, g, K)
|
1511 |
+
|
1512 |
+
return q, r
|
1513 |
+
|
1514 |
+
|
1515 |
+
def dup_div(f, g, K):
|
1516 |
+
"""
|
1517 |
+
Polynomial division with remainder in ``K[x]``.
|
1518 |
+
|
1519 |
+
Examples
|
1520 |
+
========
|
1521 |
+
|
1522 |
+
>>> from sympy.polys import ring, ZZ, QQ
|
1523 |
+
|
1524 |
+
>>> R, x = ring("x", ZZ)
|
1525 |
+
>>> R.dup_div(x**2 + 1, 2*x - 4)
|
1526 |
+
(0, x**2 + 1)
|
1527 |
+
|
1528 |
+
>>> R, x = ring("x", QQ)
|
1529 |
+
>>> R.dup_div(x**2 + 1, 2*x - 4)
|
1530 |
+
(1/2*x + 1, 5)
|
1531 |
+
|
1532 |
+
"""
|
1533 |
+
if K.is_Field:
|
1534 |
+
return dup_ff_div(f, g, K)
|
1535 |
+
else:
|
1536 |
+
return dup_rr_div(f, g, K)
|
1537 |
+
|
1538 |
+
|
1539 |
+
def dup_rem(f, g, K):
|
1540 |
+
"""
|
1541 |
+
Returns polynomial remainder in ``K[x]``.
|
1542 |
+
|
1543 |
+
Examples
|
1544 |
+
========
|
1545 |
+
|
1546 |
+
>>> from sympy.polys import ring, ZZ, QQ
|
1547 |
+
|
1548 |
+
>>> R, x = ring("x", ZZ)
|
1549 |
+
>>> R.dup_rem(x**2 + 1, 2*x - 4)
|
1550 |
+
x**2 + 1
|
1551 |
+
|
1552 |
+
>>> R, x = ring("x", QQ)
|
1553 |
+
>>> R.dup_rem(x**2 + 1, 2*x - 4)
|
1554 |
+
5
|
1555 |
+
|
1556 |
+
"""
|
1557 |
+
return dup_div(f, g, K)[1]
|
1558 |
+
|
1559 |
+
|
1560 |
+
def dup_quo(f, g, K):
|
1561 |
+
"""
|
1562 |
+
Returns exact polynomial quotient in ``K[x]``.
|
1563 |
+
|
1564 |
+
Examples
|
1565 |
+
========
|
1566 |
+
|
1567 |
+
>>> from sympy.polys import ring, ZZ, QQ
|
1568 |
+
|
1569 |
+
>>> R, x = ring("x", ZZ)
|
1570 |
+
>>> R.dup_quo(x**2 + 1, 2*x - 4)
|
1571 |
+
0
|
1572 |
+
|
1573 |
+
>>> R, x = ring("x", QQ)
|
1574 |
+
>>> R.dup_quo(x**2 + 1, 2*x - 4)
|
1575 |
+
1/2*x + 1
|
1576 |
+
|
1577 |
+
"""
|
1578 |
+
return dup_div(f, g, K)[0]
|
1579 |
+
|
1580 |
+
|
1581 |
+
def dup_exquo(f, g, K):
|
1582 |
+
"""
|
1583 |
+
Returns polynomial quotient in ``K[x]``.
|
1584 |
+
|
1585 |
+
Examples
|
1586 |
+
========
|
1587 |
+
|
1588 |
+
>>> from sympy.polys import ring, ZZ
|
1589 |
+
>>> R, x = ring("x", ZZ)
|
1590 |
+
|
1591 |
+
>>> R.dup_exquo(x**2 - 1, x - 1)
|
1592 |
+
x + 1
|
1593 |
+
|
1594 |
+
>>> R.dup_exquo(x**2 + 1, 2*x - 4)
|
1595 |
+
Traceback (most recent call last):
|
1596 |
+
...
|
1597 |
+
ExactQuotientFailed: [2, -4] does not divide [1, 0, 1]
|
1598 |
+
|
1599 |
+
"""
|
1600 |
+
q, r = dup_div(f, g, K)
|
1601 |
+
|
1602 |
+
if not r:
|
1603 |
+
return q
|
1604 |
+
else:
|
1605 |
+
raise ExactQuotientFailed(f, g)
|
1606 |
+
|
1607 |
+
|
1608 |
+
def dmp_div(f, g, u, K):
|
1609 |
+
"""
|
1610 |
+
Polynomial division with remainder in ``K[X]``.
|
1611 |
+
|
1612 |
+
Examples
|
1613 |
+
========
|
1614 |
+
|
1615 |
+
>>> from sympy.polys import ring, ZZ, QQ
|
1616 |
+
|
1617 |
+
>>> R, x,y = ring("x,y", ZZ)
|
1618 |
+
>>> R.dmp_div(x**2 + x*y, 2*x + 2)
|
1619 |
+
(0, x**2 + x*y)
|
1620 |
+
|
1621 |
+
>>> R, x,y = ring("x,y", QQ)
|
1622 |
+
>>> R.dmp_div(x**2 + x*y, 2*x + 2)
|
1623 |
+
(1/2*x + 1/2*y - 1/2, -y + 1)
|
1624 |
+
|
1625 |
+
"""
|
1626 |
+
if K.is_Field:
|
1627 |
+
return dmp_ff_div(f, g, u, K)
|
1628 |
+
else:
|
1629 |
+
return dmp_rr_div(f, g, u, K)
|
1630 |
+
|
1631 |
+
|
1632 |
+
def dmp_rem(f, g, u, K):
|
1633 |
+
"""
|
1634 |
+
Returns polynomial remainder in ``K[X]``.
|
1635 |
+
|
1636 |
+
Examples
|
1637 |
+
========
|
1638 |
+
|
1639 |
+
>>> from sympy.polys import ring, ZZ, QQ
|
1640 |
+
|
1641 |
+
>>> R, x,y = ring("x,y", ZZ)
|
1642 |
+
>>> R.dmp_rem(x**2 + x*y, 2*x + 2)
|
1643 |
+
x**2 + x*y
|
1644 |
+
|
1645 |
+
>>> R, x,y = ring("x,y", QQ)
|
1646 |
+
>>> R.dmp_rem(x**2 + x*y, 2*x + 2)
|
1647 |
+
-y + 1
|
1648 |
+
|
1649 |
+
"""
|
1650 |
+
return dmp_div(f, g, u, K)[1]
|
1651 |
+
|
1652 |
+
|
1653 |
+
def dmp_quo(f, g, u, K):
|
1654 |
+
"""
|
1655 |
+
Returns exact polynomial quotient in ``K[X]``.
|
1656 |
+
|
1657 |
+
Examples
|
1658 |
+
========
|
1659 |
+
|
1660 |
+
>>> from sympy.polys import ring, ZZ, QQ
|
1661 |
+
|
1662 |
+
>>> R, x,y = ring("x,y", ZZ)
|
1663 |
+
>>> R.dmp_quo(x**2 + x*y, 2*x + 2)
|
1664 |
+
0
|
1665 |
+
|
1666 |
+
>>> R, x,y = ring("x,y", QQ)
|
1667 |
+
>>> R.dmp_quo(x**2 + x*y, 2*x + 2)
|
1668 |
+
1/2*x + 1/2*y - 1/2
|
1669 |
+
|
1670 |
+
"""
|
1671 |
+
return dmp_div(f, g, u, K)[0]
|
1672 |
+
|
1673 |
+
|
1674 |
+
def dmp_exquo(f, g, u, K):
|
1675 |
+
"""
|
1676 |
+
Returns polynomial quotient in ``K[X]``.
|
1677 |
+
|
1678 |
+
Examples
|
1679 |
+
========
|
1680 |
+
|
1681 |
+
>>> from sympy.polys import ring, ZZ
|
1682 |
+
>>> R, x,y = ring("x,y", ZZ)
|
1683 |
+
|
1684 |
+
>>> f = x**2 + x*y
|
1685 |
+
>>> g = x + y
|
1686 |
+
>>> h = 2*x + 2
|
1687 |
+
|
1688 |
+
>>> R.dmp_exquo(f, g)
|
1689 |
+
x
|
1690 |
+
|
1691 |
+
>>> R.dmp_exquo(f, h)
|
1692 |
+
Traceback (most recent call last):
|
1693 |
+
...
|
1694 |
+
ExactQuotientFailed: [[2], [2]] does not divide [[1], [1, 0], []]
|
1695 |
+
|
1696 |
+
"""
|
1697 |
+
q, r = dmp_div(f, g, u, K)
|
1698 |
+
|
1699 |
+
if dmp_zero_p(r, u):
|
1700 |
+
return q
|
1701 |
+
else:
|
1702 |
+
raise ExactQuotientFailed(f, g)
|
1703 |
+
|
1704 |
+
|
1705 |
+
def dup_max_norm(f, K):
|
1706 |
+
"""
|
1707 |
+
Returns maximum norm of a polynomial in ``K[x]``.
|
1708 |
+
|
1709 |
+
Examples
|
1710 |
+
========
|
1711 |
+
|
1712 |
+
>>> from sympy.polys import ring, ZZ
|
1713 |
+
>>> R, x = ring("x", ZZ)
|
1714 |
+
|
1715 |
+
>>> R.dup_max_norm(-x**2 + 2*x - 3)
|
1716 |
+
3
|
1717 |
+
|
1718 |
+
"""
|
1719 |
+
if not f:
|
1720 |
+
return K.zero
|
1721 |
+
else:
|
1722 |
+
return max(dup_abs(f, K))
|
1723 |
+
|
1724 |
+
|
1725 |
+
def dmp_max_norm(f, u, K):
|
1726 |
+
"""
|
1727 |
+
Returns maximum norm of a polynomial in ``K[X]``.
|
1728 |
+
|
1729 |
+
Examples
|
1730 |
+
========
|
1731 |
+
|
1732 |
+
>>> from sympy.polys import ring, ZZ
|
1733 |
+
>>> R, x,y = ring("x,y", ZZ)
|
1734 |
+
|
1735 |
+
>>> R.dmp_max_norm(2*x*y - x - 3)
|
1736 |
+
3
|
1737 |
+
|
1738 |
+
"""
|
1739 |
+
if not u:
|
1740 |
+
return dup_max_norm(f, K)
|
1741 |
+
|
1742 |
+
v = u - 1
|
1743 |
+
|
1744 |
+
return max([ dmp_max_norm(c, v, K) for c in f ])
|
1745 |
+
|
1746 |
+
|
1747 |
+
def dup_l1_norm(f, K):
|
1748 |
+
"""
|
1749 |
+
Returns l1 norm of a polynomial in ``K[x]``.
|
1750 |
+
|
1751 |
+
Examples
|
1752 |
+
========
|
1753 |
+
|
1754 |
+
>>> from sympy.polys import ring, ZZ
|
1755 |
+
>>> R, x = ring("x", ZZ)
|
1756 |
+
|
1757 |
+
>>> R.dup_l1_norm(2*x**3 - 3*x**2 + 1)
|
1758 |
+
6
|
1759 |
+
|
1760 |
+
"""
|
1761 |
+
if not f:
|
1762 |
+
return K.zero
|
1763 |
+
else:
|
1764 |
+
return sum(dup_abs(f, K))
|
1765 |
+
|
1766 |
+
|
1767 |
+
def dmp_l1_norm(f, u, K):
|
1768 |
+
"""
|
1769 |
+
Returns l1 norm of a polynomial in ``K[X]``.
|
1770 |
+
|
1771 |
+
Examples
|
1772 |
+
========
|
1773 |
+
|
1774 |
+
>>> from sympy.polys import ring, ZZ
|
1775 |
+
>>> R, x,y = ring("x,y", ZZ)
|
1776 |
+
|
1777 |
+
>>> R.dmp_l1_norm(2*x*y - x - 3)
|
1778 |
+
6
|
1779 |
+
|
1780 |
+
"""
|
1781 |
+
if not u:
|
1782 |
+
return dup_l1_norm(f, K)
|
1783 |
+
|
1784 |
+
v = u - 1
|
1785 |
+
|
1786 |
+
return sum([ dmp_l1_norm(c, v, K) for c in f ])
|
1787 |
+
|
1788 |
+
|
1789 |
+
def dup_l2_norm_squared(f, K):
|
1790 |
+
"""
|
1791 |
+
Returns squared l2 norm of a polynomial in ``K[x]``.
|
1792 |
+
|
1793 |
+
Examples
|
1794 |
+
========
|
1795 |
+
|
1796 |
+
>>> from sympy.polys import ring, ZZ
|
1797 |
+
>>> R, x = ring("x", ZZ)
|
1798 |
+
|
1799 |
+
>>> R.dup_l2_norm_squared(2*x**3 - 3*x**2 + 1)
|
1800 |
+
14
|
1801 |
+
|
1802 |
+
"""
|
1803 |
+
return sum([coeff**2 for coeff in f], K.zero)
|
1804 |
+
|
1805 |
+
|
1806 |
+
def dmp_l2_norm_squared(f, u, K):
|
1807 |
+
"""
|
1808 |
+
Returns squared l2 norm of a polynomial in ``K[X]``.
|
1809 |
+
|
1810 |
+
Examples
|
1811 |
+
========
|
1812 |
+
|
1813 |
+
>>> from sympy.polys import ring, ZZ
|
1814 |
+
>>> R, x,y = ring("x,y", ZZ)
|
1815 |
+
|
1816 |
+
>>> R.dmp_l2_norm_squared(2*x*y - x - 3)
|
1817 |
+
14
|
1818 |
+
|
1819 |
+
"""
|
1820 |
+
if not u:
|
1821 |
+
return dup_l2_norm_squared(f, K)
|
1822 |
+
|
1823 |
+
v = u - 1
|
1824 |
+
|
1825 |
+
return sum([ dmp_l2_norm_squared(c, v, K) for c in f ])
|
1826 |
+
|
1827 |
+
|
1828 |
+
def dup_expand(polys, K):
|
1829 |
+
"""
|
1830 |
+
Multiply together several polynomials in ``K[x]``.
|
1831 |
+
|
1832 |
+
Examples
|
1833 |
+
========
|
1834 |
+
|
1835 |
+
>>> from sympy.polys import ring, ZZ
|
1836 |
+
>>> R, x = ring("x", ZZ)
|
1837 |
+
|
1838 |
+
>>> R.dup_expand([x**2 - 1, x, 2])
|
1839 |
+
2*x**3 - 2*x
|
1840 |
+
|
1841 |
+
"""
|
1842 |
+
if not polys:
|
1843 |
+
return [K.one]
|
1844 |
+
|
1845 |
+
f = polys[0]
|
1846 |
+
|
1847 |
+
for g in polys[1:]:
|
1848 |
+
f = dup_mul(f, g, K)
|
1849 |
+
|
1850 |
+
return f
|
1851 |
+
|
1852 |
+
|
1853 |
+
def dmp_expand(polys, u, K):
|
1854 |
+
"""
|
1855 |
+
Multiply together several polynomials in ``K[X]``.
|
1856 |
+
|
1857 |
+
Examples
|
1858 |
+
========
|
1859 |
+
|
1860 |
+
>>> from sympy.polys import ring, ZZ
|
1861 |
+
>>> R, x,y = ring("x,y", ZZ)
|
1862 |
+
|
1863 |
+
>>> R.dmp_expand([x**2 + y**2, x + 1])
|
1864 |
+
x**3 + x**2 + x*y**2 + y**2
|
1865 |
+
|
1866 |
+
"""
|
1867 |
+
if not polys:
|
1868 |
+
return dmp_one(u, K)
|
1869 |
+
|
1870 |
+
f = polys[0]
|
1871 |
+
|
1872 |
+
for g in polys[1:]:
|
1873 |
+
f = dmp_mul(f, g, u, K)
|
1874 |
+
|
1875 |
+
return f
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/densebasic.py
ADDED
@@ -0,0 +1,1881 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Basic tools for dense recursive polynomials in ``K[x]`` or ``K[X]``. """
|
2 |
+
|
3 |
+
|
4 |
+
from sympy.core.numbers import oo
|
5 |
+
from sympy.core import igcd
|
6 |
+
from sympy.polys.monomials import monomial_min, monomial_div
|
7 |
+
from sympy.polys.orderings import monomial_key
|
8 |
+
|
9 |
+
import random
|
10 |
+
|
11 |
+
def poly_LC(f, K):
|
12 |
+
"""
|
13 |
+
Return leading coefficient of ``f``.
|
14 |
+
|
15 |
+
Examples
|
16 |
+
========
|
17 |
+
|
18 |
+
>>> from sympy.polys.domains import ZZ
|
19 |
+
>>> from sympy.polys.densebasic import poly_LC
|
20 |
+
|
21 |
+
>>> poly_LC([], ZZ)
|
22 |
+
0
|
23 |
+
>>> poly_LC([ZZ(1), ZZ(2), ZZ(3)], ZZ)
|
24 |
+
1
|
25 |
+
|
26 |
+
"""
|
27 |
+
if not f:
|
28 |
+
return K.zero
|
29 |
+
else:
|
30 |
+
return f[0]
|
31 |
+
|
32 |
+
|
33 |
+
def poly_TC(f, K):
|
34 |
+
"""
|
35 |
+
Return trailing coefficient of ``f``.
|
36 |
+
|
37 |
+
Examples
|
38 |
+
========
|
39 |
+
|
40 |
+
>>> from sympy.polys.domains import ZZ
|
41 |
+
>>> from sympy.polys.densebasic import poly_TC
|
42 |
+
|
43 |
+
>>> poly_TC([], ZZ)
|
44 |
+
0
|
45 |
+
>>> poly_TC([ZZ(1), ZZ(2), ZZ(3)], ZZ)
|
46 |
+
3
|
47 |
+
|
48 |
+
"""
|
49 |
+
if not f:
|
50 |
+
return K.zero
|
51 |
+
else:
|
52 |
+
return f[-1]
|
53 |
+
|
54 |
+
dup_LC = dmp_LC = poly_LC
|
55 |
+
dup_TC = dmp_TC = poly_TC
|
56 |
+
|
57 |
+
|
58 |
+
def dmp_ground_LC(f, u, K):
|
59 |
+
"""
|
60 |
+
Return the ground leading coefficient.
|
61 |
+
|
62 |
+
Examples
|
63 |
+
========
|
64 |
+
|
65 |
+
>>> from sympy.polys.domains import ZZ
|
66 |
+
>>> from sympy.polys.densebasic import dmp_ground_LC
|
67 |
+
|
68 |
+
>>> f = ZZ.map([[[1], [2, 3]]])
|
69 |
+
|
70 |
+
>>> dmp_ground_LC(f, 2, ZZ)
|
71 |
+
1
|
72 |
+
|
73 |
+
"""
|
74 |
+
while u:
|
75 |
+
f = dmp_LC(f, K)
|
76 |
+
u -= 1
|
77 |
+
|
78 |
+
return dup_LC(f, K)
|
79 |
+
|
80 |
+
|
81 |
+
def dmp_ground_TC(f, u, K):
|
82 |
+
"""
|
83 |
+
Return the ground trailing coefficient.
|
84 |
+
|
85 |
+
Examples
|
86 |
+
========
|
87 |
+
|
88 |
+
>>> from sympy.polys.domains import ZZ
|
89 |
+
>>> from sympy.polys.densebasic import dmp_ground_TC
|
90 |
+
|
91 |
+
>>> f = ZZ.map([[[1], [2, 3]]])
|
92 |
+
|
93 |
+
>>> dmp_ground_TC(f, 2, ZZ)
|
94 |
+
3
|
95 |
+
|
96 |
+
"""
|
97 |
+
while u:
|
98 |
+
f = dmp_TC(f, K)
|
99 |
+
u -= 1
|
100 |
+
|
101 |
+
return dup_TC(f, K)
|
102 |
+
|
103 |
+
|
104 |
+
def dmp_true_LT(f, u, K):
|
105 |
+
"""
|
106 |
+
Return the leading term ``c * x_1**n_1 ... x_k**n_k``.
|
107 |
+
|
108 |
+
Examples
|
109 |
+
========
|
110 |
+
|
111 |
+
>>> from sympy.polys.domains import ZZ
|
112 |
+
>>> from sympy.polys.densebasic import dmp_true_LT
|
113 |
+
|
114 |
+
>>> f = ZZ.map([[4], [2, 0], [3, 0, 0]])
|
115 |
+
|
116 |
+
>>> dmp_true_LT(f, 1, ZZ)
|
117 |
+
((2, 0), 4)
|
118 |
+
|
119 |
+
"""
|
120 |
+
monom = []
|
121 |
+
|
122 |
+
while u:
|
123 |
+
monom.append(len(f) - 1)
|
124 |
+
f, u = f[0], u - 1
|
125 |
+
|
126 |
+
if not f:
|
127 |
+
monom.append(0)
|
128 |
+
else:
|
129 |
+
monom.append(len(f) - 1)
|
130 |
+
|
131 |
+
return tuple(monom), dup_LC(f, K)
|
132 |
+
|
133 |
+
|
134 |
+
def dup_degree(f):
|
135 |
+
"""
|
136 |
+
Return the leading degree of ``f`` in ``K[x]``.
|
137 |
+
|
138 |
+
Note that the degree of 0 is negative infinity (the SymPy object -oo).
|
139 |
+
|
140 |
+
Examples
|
141 |
+
========
|
142 |
+
|
143 |
+
>>> from sympy.polys.domains import ZZ
|
144 |
+
>>> from sympy.polys.densebasic import dup_degree
|
145 |
+
|
146 |
+
>>> f = ZZ.map([1, 2, 0, 3])
|
147 |
+
|
148 |
+
>>> dup_degree(f)
|
149 |
+
3
|
150 |
+
|
151 |
+
"""
|
152 |
+
if not f:
|
153 |
+
return -oo
|
154 |
+
return len(f) - 1
|
155 |
+
|
156 |
+
|
157 |
+
def dmp_degree(f, u):
|
158 |
+
"""
|
159 |
+
Return the leading degree of ``f`` in ``x_0`` in ``K[X]``.
|
160 |
+
|
161 |
+
Note that the degree of 0 is negative infinity (the SymPy object -oo).
|
162 |
+
|
163 |
+
Examples
|
164 |
+
========
|
165 |
+
|
166 |
+
>>> from sympy.polys.domains import ZZ
|
167 |
+
>>> from sympy.polys.densebasic import dmp_degree
|
168 |
+
|
169 |
+
>>> dmp_degree([[[]]], 2)
|
170 |
+
-oo
|
171 |
+
|
172 |
+
>>> f = ZZ.map([[2], [1, 2, 3]])
|
173 |
+
|
174 |
+
>>> dmp_degree(f, 1)
|
175 |
+
1
|
176 |
+
|
177 |
+
"""
|
178 |
+
if dmp_zero_p(f, u):
|
179 |
+
return -oo
|
180 |
+
else:
|
181 |
+
return len(f) - 1
|
182 |
+
|
183 |
+
|
184 |
+
def _rec_degree_in(g, v, i, j):
|
185 |
+
"""Recursive helper function for :func:`dmp_degree_in`."""
|
186 |
+
if i == j:
|
187 |
+
return dmp_degree(g, v)
|
188 |
+
|
189 |
+
v, i = v - 1, i + 1
|
190 |
+
|
191 |
+
return max([ _rec_degree_in(c, v, i, j) for c in g ])
|
192 |
+
|
193 |
+
|
194 |
+
def dmp_degree_in(f, j, u):
|
195 |
+
"""
|
196 |
+
Return the leading degree of ``f`` in ``x_j`` in ``K[X]``.
|
197 |
+
|
198 |
+
Examples
|
199 |
+
========
|
200 |
+
|
201 |
+
>>> from sympy.polys.domains import ZZ
|
202 |
+
>>> from sympy.polys.densebasic import dmp_degree_in
|
203 |
+
|
204 |
+
>>> f = ZZ.map([[2], [1, 2, 3]])
|
205 |
+
|
206 |
+
>>> dmp_degree_in(f, 0, 1)
|
207 |
+
1
|
208 |
+
>>> dmp_degree_in(f, 1, 1)
|
209 |
+
2
|
210 |
+
|
211 |
+
"""
|
212 |
+
if not j:
|
213 |
+
return dmp_degree(f, u)
|
214 |
+
if j < 0 or j > u:
|
215 |
+
raise IndexError("0 <= j <= %s expected, got %s" % (u, j))
|
216 |
+
|
217 |
+
return _rec_degree_in(f, u, 0, j)
|
218 |
+
|
219 |
+
|
220 |
+
def _rec_degree_list(g, v, i, degs):
|
221 |
+
"""Recursive helper for :func:`dmp_degree_list`."""
|
222 |
+
degs[i] = max(degs[i], dmp_degree(g, v))
|
223 |
+
|
224 |
+
if v > 0:
|
225 |
+
v, i = v - 1, i + 1
|
226 |
+
|
227 |
+
for c in g:
|
228 |
+
_rec_degree_list(c, v, i, degs)
|
229 |
+
|
230 |
+
|
231 |
+
def dmp_degree_list(f, u):
|
232 |
+
"""
|
233 |
+
Return a list of degrees of ``f`` in ``K[X]``.
|
234 |
+
|
235 |
+
Examples
|
236 |
+
========
|
237 |
+
|
238 |
+
>>> from sympy.polys.domains import ZZ
|
239 |
+
>>> from sympy.polys.densebasic import dmp_degree_list
|
240 |
+
|
241 |
+
>>> f = ZZ.map([[1], [1, 2, 3]])
|
242 |
+
|
243 |
+
>>> dmp_degree_list(f, 1)
|
244 |
+
(1, 2)
|
245 |
+
|
246 |
+
"""
|
247 |
+
degs = [-oo]*(u + 1)
|
248 |
+
_rec_degree_list(f, u, 0, degs)
|
249 |
+
return tuple(degs)
|
250 |
+
|
251 |
+
|
252 |
+
def dup_strip(f):
|
253 |
+
"""
|
254 |
+
Remove leading zeros from ``f`` in ``K[x]``.
|
255 |
+
|
256 |
+
Examples
|
257 |
+
========
|
258 |
+
|
259 |
+
>>> from sympy.polys.densebasic import dup_strip
|
260 |
+
|
261 |
+
>>> dup_strip([0, 0, 1, 2, 3, 0])
|
262 |
+
[1, 2, 3, 0]
|
263 |
+
|
264 |
+
"""
|
265 |
+
if not f or f[0]:
|
266 |
+
return f
|
267 |
+
|
268 |
+
i = 0
|
269 |
+
|
270 |
+
for cf in f:
|
271 |
+
if cf:
|
272 |
+
break
|
273 |
+
else:
|
274 |
+
i += 1
|
275 |
+
|
276 |
+
return f[i:]
|
277 |
+
|
278 |
+
|
279 |
+
def dmp_strip(f, u):
|
280 |
+
"""
|
281 |
+
Remove leading zeros from ``f`` in ``K[X]``.
|
282 |
+
|
283 |
+
Examples
|
284 |
+
========
|
285 |
+
|
286 |
+
>>> from sympy.polys.densebasic import dmp_strip
|
287 |
+
|
288 |
+
>>> dmp_strip([[], [0, 1, 2], [1]], 1)
|
289 |
+
[[0, 1, 2], [1]]
|
290 |
+
|
291 |
+
"""
|
292 |
+
if not u:
|
293 |
+
return dup_strip(f)
|
294 |
+
|
295 |
+
if dmp_zero_p(f, u):
|
296 |
+
return f
|
297 |
+
|
298 |
+
i, v = 0, u - 1
|
299 |
+
|
300 |
+
for c in f:
|
301 |
+
if not dmp_zero_p(c, v):
|
302 |
+
break
|
303 |
+
else:
|
304 |
+
i += 1
|
305 |
+
|
306 |
+
if i == len(f):
|
307 |
+
return dmp_zero(u)
|
308 |
+
else:
|
309 |
+
return f[i:]
|
310 |
+
|
311 |
+
|
312 |
+
def _rec_validate(f, g, i, K):
|
313 |
+
"""Recursive helper for :func:`dmp_validate`."""
|
314 |
+
if not isinstance(g, list):
|
315 |
+
if K is not None and not K.of_type(g):
|
316 |
+
raise TypeError("%s in %s in not of type %s" % (g, f, K.dtype))
|
317 |
+
|
318 |
+
return {i - 1}
|
319 |
+
elif not g:
|
320 |
+
return {i}
|
321 |
+
else:
|
322 |
+
levels = set()
|
323 |
+
|
324 |
+
for c in g:
|
325 |
+
levels |= _rec_validate(f, c, i + 1, K)
|
326 |
+
|
327 |
+
return levels
|
328 |
+
|
329 |
+
|
330 |
+
def _rec_strip(g, v):
|
331 |
+
"""Recursive helper for :func:`_rec_strip`."""
|
332 |
+
if not v:
|
333 |
+
return dup_strip(g)
|
334 |
+
|
335 |
+
w = v - 1
|
336 |
+
|
337 |
+
return dmp_strip([ _rec_strip(c, w) for c in g ], v)
|
338 |
+
|
339 |
+
|
340 |
+
def dmp_validate(f, K=None):
|
341 |
+
"""
|
342 |
+
Return the number of levels in ``f`` and recursively strip it.
|
343 |
+
|
344 |
+
Examples
|
345 |
+
========
|
346 |
+
|
347 |
+
>>> from sympy.polys.densebasic import dmp_validate
|
348 |
+
|
349 |
+
>>> dmp_validate([[], [0, 1, 2], [1]])
|
350 |
+
([[1, 2], [1]], 1)
|
351 |
+
|
352 |
+
>>> dmp_validate([[1], 1])
|
353 |
+
Traceback (most recent call last):
|
354 |
+
...
|
355 |
+
ValueError: invalid data structure for a multivariate polynomial
|
356 |
+
|
357 |
+
"""
|
358 |
+
levels = _rec_validate(f, f, 0, K)
|
359 |
+
|
360 |
+
u = levels.pop()
|
361 |
+
|
362 |
+
if not levels:
|
363 |
+
return _rec_strip(f, u), u
|
364 |
+
else:
|
365 |
+
raise ValueError(
|
366 |
+
"invalid data structure for a multivariate polynomial")
|
367 |
+
|
368 |
+
|
369 |
+
def dup_reverse(f):
|
370 |
+
"""
|
371 |
+
Compute ``x**n * f(1/x)``, i.e.: reverse ``f`` in ``K[x]``.
|
372 |
+
|
373 |
+
Examples
|
374 |
+
========
|
375 |
+
|
376 |
+
>>> from sympy.polys.domains import ZZ
|
377 |
+
>>> from sympy.polys.densebasic import dup_reverse
|
378 |
+
|
379 |
+
>>> f = ZZ.map([1, 2, 3, 0])
|
380 |
+
|
381 |
+
>>> dup_reverse(f)
|
382 |
+
[3, 2, 1]
|
383 |
+
|
384 |
+
"""
|
385 |
+
return dup_strip(list(reversed(f)))
|
386 |
+
|
387 |
+
|
388 |
+
def dup_copy(f):
|
389 |
+
"""
|
390 |
+
Create a new copy of a polynomial ``f`` in ``K[x]``.
|
391 |
+
|
392 |
+
Examples
|
393 |
+
========
|
394 |
+
|
395 |
+
>>> from sympy.polys.domains import ZZ
|
396 |
+
>>> from sympy.polys.densebasic import dup_copy
|
397 |
+
|
398 |
+
>>> f = ZZ.map([1, 2, 3, 0])
|
399 |
+
|
400 |
+
>>> dup_copy([1, 2, 3, 0])
|
401 |
+
[1, 2, 3, 0]
|
402 |
+
|
403 |
+
"""
|
404 |
+
return list(f)
|
405 |
+
|
406 |
+
|
407 |
+
def dmp_copy(f, u):
|
408 |
+
"""
|
409 |
+
Create a new copy of a polynomial ``f`` in ``K[X]``.
|
410 |
+
|
411 |
+
Examples
|
412 |
+
========
|
413 |
+
|
414 |
+
>>> from sympy.polys.domains import ZZ
|
415 |
+
>>> from sympy.polys.densebasic import dmp_copy
|
416 |
+
|
417 |
+
>>> f = ZZ.map([[1], [1, 2]])
|
418 |
+
|
419 |
+
>>> dmp_copy(f, 1)
|
420 |
+
[[1], [1, 2]]
|
421 |
+
|
422 |
+
"""
|
423 |
+
if not u:
|
424 |
+
return list(f)
|
425 |
+
|
426 |
+
v = u - 1
|
427 |
+
|
428 |
+
return [ dmp_copy(c, v) for c in f ]
|
429 |
+
|
430 |
+
|
431 |
+
def dup_to_tuple(f):
|
432 |
+
"""
|
433 |
+
Convert `f` into a tuple.
|
434 |
+
|
435 |
+
This is needed for hashing. This is similar to dup_copy().
|
436 |
+
|
437 |
+
Examples
|
438 |
+
========
|
439 |
+
|
440 |
+
>>> from sympy.polys.domains import ZZ
|
441 |
+
>>> from sympy.polys.densebasic import dup_copy
|
442 |
+
|
443 |
+
>>> f = ZZ.map([1, 2, 3, 0])
|
444 |
+
|
445 |
+
>>> dup_copy([1, 2, 3, 0])
|
446 |
+
[1, 2, 3, 0]
|
447 |
+
|
448 |
+
"""
|
449 |
+
return tuple(f)
|
450 |
+
|
451 |
+
|
452 |
+
def dmp_to_tuple(f, u):
|
453 |
+
"""
|
454 |
+
Convert `f` into a nested tuple of tuples.
|
455 |
+
|
456 |
+
This is needed for hashing. This is similar to dmp_copy().
|
457 |
+
|
458 |
+
Examples
|
459 |
+
========
|
460 |
+
|
461 |
+
>>> from sympy.polys.domains import ZZ
|
462 |
+
>>> from sympy.polys.densebasic import dmp_to_tuple
|
463 |
+
|
464 |
+
>>> f = ZZ.map([[1], [1, 2]])
|
465 |
+
|
466 |
+
>>> dmp_to_tuple(f, 1)
|
467 |
+
((1,), (1, 2))
|
468 |
+
|
469 |
+
"""
|
470 |
+
if not u:
|
471 |
+
return tuple(f)
|
472 |
+
v = u - 1
|
473 |
+
|
474 |
+
return tuple(dmp_to_tuple(c, v) for c in f)
|
475 |
+
|
476 |
+
|
477 |
+
def dup_normal(f, K):
|
478 |
+
"""
|
479 |
+
Normalize univariate polynomial in the given domain.
|
480 |
+
|
481 |
+
Examples
|
482 |
+
========
|
483 |
+
|
484 |
+
>>> from sympy.polys.domains import ZZ
|
485 |
+
>>> from sympy.polys.densebasic import dup_normal
|
486 |
+
|
487 |
+
>>> dup_normal([0, 1.5, 2, 3], ZZ)
|
488 |
+
[1, 2, 3]
|
489 |
+
|
490 |
+
"""
|
491 |
+
return dup_strip([ K.normal(c) for c in f ])
|
492 |
+
|
493 |
+
|
494 |
+
def dmp_normal(f, u, K):
|
495 |
+
"""
|
496 |
+
Normalize a multivariate polynomial in the given domain.
|
497 |
+
|
498 |
+
Examples
|
499 |
+
========
|
500 |
+
|
501 |
+
>>> from sympy.polys.domains import ZZ
|
502 |
+
>>> from sympy.polys.densebasic import dmp_normal
|
503 |
+
|
504 |
+
>>> dmp_normal([[], [0, 1.5, 2]], 1, ZZ)
|
505 |
+
[[1, 2]]
|
506 |
+
|
507 |
+
"""
|
508 |
+
if not u:
|
509 |
+
return dup_normal(f, K)
|
510 |
+
|
511 |
+
v = u - 1
|
512 |
+
|
513 |
+
return dmp_strip([ dmp_normal(c, v, K) for c in f ], u)
|
514 |
+
|
515 |
+
|
516 |
+
def dup_convert(f, K0, K1):
|
517 |
+
"""
|
518 |
+
Convert the ground domain of ``f`` from ``K0`` to ``K1``.
|
519 |
+
|
520 |
+
Examples
|
521 |
+
========
|
522 |
+
|
523 |
+
>>> from sympy.polys.rings import ring
|
524 |
+
>>> from sympy.polys.domains import ZZ
|
525 |
+
>>> from sympy.polys.densebasic import dup_convert
|
526 |
+
|
527 |
+
>>> R, x = ring("x", ZZ)
|
528 |
+
|
529 |
+
>>> dup_convert([R(1), R(2)], R.to_domain(), ZZ)
|
530 |
+
[1, 2]
|
531 |
+
>>> dup_convert([ZZ(1), ZZ(2)], ZZ, R.to_domain())
|
532 |
+
[1, 2]
|
533 |
+
|
534 |
+
"""
|
535 |
+
if K0 is not None and K0 == K1:
|
536 |
+
return f
|
537 |
+
else:
|
538 |
+
return dup_strip([ K1.convert(c, K0) for c in f ])
|
539 |
+
|
540 |
+
|
541 |
+
def dmp_convert(f, u, K0, K1):
|
542 |
+
"""
|
543 |
+
Convert the ground domain of ``f`` from ``K0`` to ``K1``.
|
544 |
+
|
545 |
+
Examples
|
546 |
+
========
|
547 |
+
|
548 |
+
>>> from sympy.polys.rings import ring
|
549 |
+
>>> from sympy.polys.domains import ZZ
|
550 |
+
>>> from sympy.polys.densebasic import dmp_convert
|
551 |
+
|
552 |
+
>>> R, x = ring("x", ZZ)
|
553 |
+
|
554 |
+
>>> dmp_convert([[R(1)], [R(2)]], 1, R.to_domain(), ZZ)
|
555 |
+
[[1], [2]]
|
556 |
+
>>> dmp_convert([[ZZ(1)], [ZZ(2)]], 1, ZZ, R.to_domain())
|
557 |
+
[[1], [2]]
|
558 |
+
|
559 |
+
"""
|
560 |
+
if not u:
|
561 |
+
return dup_convert(f, K0, K1)
|
562 |
+
if K0 is not None and K0 == K1:
|
563 |
+
return f
|
564 |
+
|
565 |
+
v = u - 1
|
566 |
+
|
567 |
+
return dmp_strip([ dmp_convert(c, v, K0, K1) for c in f ], u)
|
568 |
+
|
569 |
+
|
570 |
+
def dup_from_sympy(f, K):
|
571 |
+
"""
|
572 |
+
Convert the ground domain of ``f`` from SymPy to ``K``.
|
573 |
+
|
574 |
+
Examples
|
575 |
+
========
|
576 |
+
|
577 |
+
>>> from sympy import S
|
578 |
+
>>> from sympy.polys.domains import ZZ
|
579 |
+
>>> from sympy.polys.densebasic import dup_from_sympy
|
580 |
+
|
581 |
+
>>> dup_from_sympy([S(1), S(2)], ZZ) == [ZZ(1), ZZ(2)]
|
582 |
+
True
|
583 |
+
|
584 |
+
"""
|
585 |
+
return dup_strip([ K.from_sympy(c) for c in f ])
|
586 |
+
|
587 |
+
|
588 |
+
def dmp_from_sympy(f, u, K):
|
589 |
+
"""
|
590 |
+
Convert the ground domain of ``f`` from SymPy to ``K``.
|
591 |
+
|
592 |
+
Examples
|
593 |
+
========
|
594 |
+
|
595 |
+
>>> from sympy import S
|
596 |
+
>>> from sympy.polys.domains import ZZ
|
597 |
+
>>> from sympy.polys.densebasic import dmp_from_sympy
|
598 |
+
|
599 |
+
>>> dmp_from_sympy([[S(1)], [S(2)]], 1, ZZ) == [[ZZ(1)], [ZZ(2)]]
|
600 |
+
True
|
601 |
+
|
602 |
+
"""
|
603 |
+
if not u:
|
604 |
+
return dup_from_sympy(f, K)
|
605 |
+
|
606 |
+
v = u - 1
|
607 |
+
|
608 |
+
return dmp_strip([ dmp_from_sympy(c, v, K) for c in f ], u)
|
609 |
+
|
610 |
+
|
611 |
+
def dup_nth(f, n, K):
|
612 |
+
"""
|
613 |
+
Return the ``n``-th coefficient of ``f`` in ``K[x]``.
|
614 |
+
|
615 |
+
Examples
|
616 |
+
========
|
617 |
+
|
618 |
+
>>> from sympy.polys.domains import ZZ
|
619 |
+
>>> from sympy.polys.densebasic import dup_nth
|
620 |
+
|
621 |
+
>>> f = ZZ.map([1, 2, 3])
|
622 |
+
|
623 |
+
>>> dup_nth(f, 0, ZZ)
|
624 |
+
3
|
625 |
+
>>> dup_nth(f, 4, ZZ)
|
626 |
+
0
|
627 |
+
|
628 |
+
"""
|
629 |
+
if n < 0:
|
630 |
+
raise IndexError("'n' must be non-negative, got %i" % n)
|
631 |
+
elif n >= len(f):
|
632 |
+
return K.zero
|
633 |
+
else:
|
634 |
+
return f[dup_degree(f) - n]
|
635 |
+
|
636 |
+
|
637 |
+
def dmp_nth(f, n, u, K):
|
638 |
+
"""
|
639 |
+
Return the ``n``-th coefficient of ``f`` in ``K[x]``.
|
640 |
+
|
641 |
+
Examples
|
642 |
+
========
|
643 |
+
|
644 |
+
>>> from sympy.polys.domains import ZZ
|
645 |
+
>>> from sympy.polys.densebasic import dmp_nth
|
646 |
+
|
647 |
+
>>> f = ZZ.map([[1], [2], [3]])
|
648 |
+
|
649 |
+
>>> dmp_nth(f, 0, 1, ZZ)
|
650 |
+
[3]
|
651 |
+
>>> dmp_nth(f, 4, 1, ZZ)
|
652 |
+
[]
|
653 |
+
|
654 |
+
"""
|
655 |
+
if n < 0:
|
656 |
+
raise IndexError("'n' must be non-negative, got %i" % n)
|
657 |
+
elif n >= len(f):
|
658 |
+
return dmp_zero(u - 1)
|
659 |
+
else:
|
660 |
+
return f[dmp_degree(f, u) - n]
|
661 |
+
|
662 |
+
|
663 |
+
def dmp_ground_nth(f, N, u, K):
|
664 |
+
"""
|
665 |
+
Return the ground ``n``-th coefficient of ``f`` in ``K[x]``.
|
666 |
+
|
667 |
+
Examples
|
668 |
+
========
|
669 |
+
|
670 |
+
>>> from sympy.polys.domains import ZZ
|
671 |
+
>>> from sympy.polys.densebasic import dmp_ground_nth
|
672 |
+
|
673 |
+
>>> f = ZZ.map([[1], [2, 3]])
|
674 |
+
|
675 |
+
>>> dmp_ground_nth(f, (0, 1), 1, ZZ)
|
676 |
+
2
|
677 |
+
|
678 |
+
"""
|
679 |
+
v = u
|
680 |
+
|
681 |
+
for n in N:
|
682 |
+
if n < 0:
|
683 |
+
raise IndexError("`n` must be non-negative, got %i" % n)
|
684 |
+
elif n >= len(f):
|
685 |
+
return K.zero
|
686 |
+
else:
|
687 |
+
d = dmp_degree(f, v)
|
688 |
+
if d == -oo:
|
689 |
+
d = -1
|
690 |
+
f, v = f[d - n], v - 1
|
691 |
+
|
692 |
+
return f
|
693 |
+
|
694 |
+
|
695 |
+
def dmp_zero_p(f, u):
|
696 |
+
"""
|
697 |
+
Return ``True`` if ``f`` is zero in ``K[X]``.
|
698 |
+
|
699 |
+
Examples
|
700 |
+
========
|
701 |
+
|
702 |
+
>>> from sympy.polys.densebasic import dmp_zero_p
|
703 |
+
|
704 |
+
>>> dmp_zero_p([[[[[]]]]], 4)
|
705 |
+
True
|
706 |
+
>>> dmp_zero_p([[[[[1]]]]], 4)
|
707 |
+
False
|
708 |
+
|
709 |
+
"""
|
710 |
+
while u:
|
711 |
+
if len(f) != 1:
|
712 |
+
return False
|
713 |
+
|
714 |
+
f = f[0]
|
715 |
+
u -= 1
|
716 |
+
|
717 |
+
return not f
|
718 |
+
|
719 |
+
|
720 |
+
def dmp_zero(u):
|
721 |
+
"""
|
722 |
+
Return a multivariate zero.
|
723 |
+
|
724 |
+
Examples
|
725 |
+
========
|
726 |
+
|
727 |
+
>>> from sympy.polys.densebasic import dmp_zero
|
728 |
+
|
729 |
+
>>> dmp_zero(4)
|
730 |
+
[[[[[]]]]]
|
731 |
+
|
732 |
+
"""
|
733 |
+
r = []
|
734 |
+
|
735 |
+
for i in range(u):
|
736 |
+
r = [r]
|
737 |
+
|
738 |
+
return r
|
739 |
+
|
740 |
+
|
741 |
+
def dmp_one_p(f, u, K):
|
742 |
+
"""
|
743 |
+
Return ``True`` if ``f`` is one in ``K[X]``.
|
744 |
+
|
745 |
+
Examples
|
746 |
+
========
|
747 |
+
|
748 |
+
>>> from sympy.polys.domains import ZZ
|
749 |
+
>>> from sympy.polys.densebasic import dmp_one_p
|
750 |
+
|
751 |
+
>>> dmp_one_p([[[ZZ(1)]]], 2, ZZ)
|
752 |
+
True
|
753 |
+
|
754 |
+
"""
|
755 |
+
return dmp_ground_p(f, K.one, u)
|
756 |
+
|
757 |
+
|
758 |
+
def dmp_one(u, K):
|
759 |
+
"""
|
760 |
+
Return a multivariate one over ``K``.
|
761 |
+
|
762 |
+
Examples
|
763 |
+
========
|
764 |
+
|
765 |
+
>>> from sympy.polys.domains import ZZ
|
766 |
+
>>> from sympy.polys.densebasic import dmp_one
|
767 |
+
|
768 |
+
>>> dmp_one(2, ZZ)
|
769 |
+
[[[1]]]
|
770 |
+
|
771 |
+
"""
|
772 |
+
return dmp_ground(K.one, u)
|
773 |
+
|
774 |
+
|
775 |
+
def dmp_ground_p(f, c, u):
|
776 |
+
"""
|
777 |
+
Return True if ``f`` is constant in ``K[X]``.
|
778 |
+
|
779 |
+
Examples
|
780 |
+
========
|
781 |
+
|
782 |
+
>>> from sympy.polys.densebasic import dmp_ground_p
|
783 |
+
|
784 |
+
>>> dmp_ground_p([[[3]]], 3, 2)
|
785 |
+
True
|
786 |
+
>>> dmp_ground_p([[[4]]], None, 2)
|
787 |
+
True
|
788 |
+
|
789 |
+
"""
|
790 |
+
if c is not None and not c:
|
791 |
+
return dmp_zero_p(f, u)
|
792 |
+
|
793 |
+
while u:
|
794 |
+
if len(f) != 1:
|
795 |
+
return False
|
796 |
+
f = f[0]
|
797 |
+
u -= 1
|
798 |
+
|
799 |
+
if c is None:
|
800 |
+
return len(f) <= 1
|
801 |
+
else:
|
802 |
+
return f == [c]
|
803 |
+
|
804 |
+
|
805 |
+
def dmp_ground(c, u):
|
806 |
+
"""
|
807 |
+
Return a multivariate constant.
|
808 |
+
|
809 |
+
Examples
|
810 |
+
========
|
811 |
+
|
812 |
+
>>> from sympy.polys.densebasic import dmp_ground
|
813 |
+
|
814 |
+
>>> dmp_ground(3, 5)
|
815 |
+
[[[[[[3]]]]]]
|
816 |
+
>>> dmp_ground(1, -1)
|
817 |
+
1
|
818 |
+
|
819 |
+
"""
|
820 |
+
if not c:
|
821 |
+
return dmp_zero(u)
|
822 |
+
|
823 |
+
for i in range(u + 1):
|
824 |
+
c = [c]
|
825 |
+
|
826 |
+
return c
|
827 |
+
|
828 |
+
|
829 |
+
def dmp_zeros(n, u, K):
|
830 |
+
"""
|
831 |
+
Return a list of multivariate zeros.
|
832 |
+
|
833 |
+
Examples
|
834 |
+
========
|
835 |
+
|
836 |
+
>>> from sympy.polys.domains import ZZ
|
837 |
+
>>> from sympy.polys.densebasic import dmp_zeros
|
838 |
+
|
839 |
+
>>> dmp_zeros(3, 2, ZZ)
|
840 |
+
[[[[]]], [[[]]], [[[]]]]
|
841 |
+
>>> dmp_zeros(3, -1, ZZ)
|
842 |
+
[0, 0, 0]
|
843 |
+
|
844 |
+
"""
|
845 |
+
if not n:
|
846 |
+
return []
|
847 |
+
|
848 |
+
if u < 0:
|
849 |
+
return [K.zero]*n
|
850 |
+
else:
|
851 |
+
return [ dmp_zero(u) for i in range(n) ]
|
852 |
+
|
853 |
+
|
854 |
+
def dmp_grounds(c, n, u):
|
855 |
+
"""
|
856 |
+
Return a list of multivariate constants.
|
857 |
+
|
858 |
+
Examples
|
859 |
+
========
|
860 |
+
|
861 |
+
>>> from sympy.polys.domains import ZZ
|
862 |
+
>>> from sympy.polys.densebasic import dmp_grounds
|
863 |
+
|
864 |
+
>>> dmp_grounds(ZZ(4), 3, 2)
|
865 |
+
[[[[4]]], [[[4]]], [[[4]]]]
|
866 |
+
>>> dmp_grounds(ZZ(4), 3, -1)
|
867 |
+
[4, 4, 4]
|
868 |
+
|
869 |
+
"""
|
870 |
+
if not n:
|
871 |
+
return []
|
872 |
+
|
873 |
+
if u < 0:
|
874 |
+
return [c]*n
|
875 |
+
else:
|
876 |
+
return [ dmp_ground(c, u) for i in range(n) ]
|
877 |
+
|
878 |
+
|
879 |
+
def dmp_negative_p(f, u, K):
|
880 |
+
"""
|
881 |
+
Return ``True`` if ``LC(f)`` is negative.
|
882 |
+
|
883 |
+
Examples
|
884 |
+
========
|
885 |
+
|
886 |
+
>>> from sympy.polys.domains import ZZ
|
887 |
+
>>> from sympy.polys.densebasic import dmp_negative_p
|
888 |
+
|
889 |
+
>>> dmp_negative_p([[ZZ(1)], [-ZZ(1)]], 1, ZZ)
|
890 |
+
False
|
891 |
+
>>> dmp_negative_p([[-ZZ(1)], [ZZ(1)]], 1, ZZ)
|
892 |
+
True
|
893 |
+
|
894 |
+
"""
|
895 |
+
return K.is_negative(dmp_ground_LC(f, u, K))
|
896 |
+
|
897 |
+
|
898 |
+
def dmp_positive_p(f, u, K):
|
899 |
+
"""
|
900 |
+
Return ``True`` if ``LC(f)`` is positive.
|
901 |
+
|
902 |
+
Examples
|
903 |
+
========
|
904 |
+
|
905 |
+
>>> from sympy.polys.domains import ZZ
|
906 |
+
>>> from sympy.polys.densebasic import dmp_positive_p
|
907 |
+
|
908 |
+
>>> dmp_positive_p([[ZZ(1)], [-ZZ(1)]], 1, ZZ)
|
909 |
+
True
|
910 |
+
>>> dmp_positive_p([[-ZZ(1)], [ZZ(1)]], 1, ZZ)
|
911 |
+
False
|
912 |
+
|
913 |
+
"""
|
914 |
+
return K.is_positive(dmp_ground_LC(f, u, K))
|
915 |
+
|
916 |
+
|
917 |
+
def dup_from_dict(f, K):
|
918 |
+
"""
|
919 |
+
Create a ``K[x]`` polynomial from a ``dict``.
|
920 |
+
|
921 |
+
Examples
|
922 |
+
========
|
923 |
+
|
924 |
+
>>> from sympy.polys.domains import ZZ
|
925 |
+
>>> from sympy.polys.densebasic import dup_from_dict
|
926 |
+
|
927 |
+
>>> dup_from_dict({(0,): ZZ(7), (2,): ZZ(5), (4,): ZZ(1)}, ZZ)
|
928 |
+
[1, 0, 5, 0, 7]
|
929 |
+
>>> dup_from_dict({}, ZZ)
|
930 |
+
[]
|
931 |
+
|
932 |
+
"""
|
933 |
+
if not f:
|
934 |
+
return []
|
935 |
+
|
936 |
+
n, h = max(f.keys()), []
|
937 |
+
|
938 |
+
if isinstance(n, int):
|
939 |
+
for k in range(n, -1, -1):
|
940 |
+
h.append(f.get(k, K.zero))
|
941 |
+
else:
|
942 |
+
(n,) = n
|
943 |
+
|
944 |
+
for k in range(n, -1, -1):
|
945 |
+
h.append(f.get((k,), K.zero))
|
946 |
+
|
947 |
+
return dup_strip(h)
|
948 |
+
|
949 |
+
|
950 |
+
def dup_from_raw_dict(f, K):
|
951 |
+
"""
|
952 |
+
Create a ``K[x]`` polynomial from a raw ``dict``.
|
953 |
+
|
954 |
+
Examples
|
955 |
+
========
|
956 |
+
|
957 |
+
>>> from sympy.polys.domains import ZZ
|
958 |
+
>>> from sympy.polys.densebasic import dup_from_raw_dict
|
959 |
+
|
960 |
+
>>> dup_from_raw_dict({0: ZZ(7), 2: ZZ(5), 4: ZZ(1)}, ZZ)
|
961 |
+
[1, 0, 5, 0, 7]
|
962 |
+
|
963 |
+
"""
|
964 |
+
if not f:
|
965 |
+
return []
|
966 |
+
|
967 |
+
n, h = max(f.keys()), []
|
968 |
+
|
969 |
+
for k in range(n, -1, -1):
|
970 |
+
h.append(f.get(k, K.zero))
|
971 |
+
|
972 |
+
return dup_strip(h)
|
973 |
+
|
974 |
+
|
975 |
+
def dmp_from_dict(f, u, K):
|
976 |
+
"""
|
977 |
+
Create a ``K[X]`` polynomial from a ``dict``.
|
978 |
+
|
979 |
+
Examples
|
980 |
+
========
|
981 |
+
|
982 |
+
>>> from sympy.polys.domains import ZZ
|
983 |
+
>>> from sympy.polys.densebasic import dmp_from_dict
|
984 |
+
|
985 |
+
>>> dmp_from_dict({(0, 0): ZZ(3), (0, 1): ZZ(2), (2, 1): ZZ(1)}, 1, ZZ)
|
986 |
+
[[1, 0], [], [2, 3]]
|
987 |
+
>>> dmp_from_dict({}, 0, ZZ)
|
988 |
+
[]
|
989 |
+
|
990 |
+
"""
|
991 |
+
if not u:
|
992 |
+
return dup_from_dict(f, K)
|
993 |
+
if not f:
|
994 |
+
return dmp_zero(u)
|
995 |
+
|
996 |
+
coeffs = {}
|
997 |
+
|
998 |
+
for monom, coeff in f.items():
|
999 |
+
head, tail = monom[0], monom[1:]
|
1000 |
+
|
1001 |
+
if head in coeffs:
|
1002 |
+
coeffs[head][tail] = coeff
|
1003 |
+
else:
|
1004 |
+
coeffs[head] = { tail: coeff }
|
1005 |
+
|
1006 |
+
n, v, h = max(coeffs.keys()), u - 1, []
|
1007 |
+
|
1008 |
+
for k in range(n, -1, -1):
|
1009 |
+
coeff = coeffs.get(k)
|
1010 |
+
|
1011 |
+
if coeff is not None:
|
1012 |
+
h.append(dmp_from_dict(coeff, v, K))
|
1013 |
+
else:
|
1014 |
+
h.append(dmp_zero(v))
|
1015 |
+
|
1016 |
+
return dmp_strip(h, u)
|
1017 |
+
|
1018 |
+
|
1019 |
+
def dup_to_dict(f, K=None, zero=False):
|
1020 |
+
"""
|
1021 |
+
Convert ``K[x]`` polynomial to a ``dict``.
|
1022 |
+
|
1023 |
+
Examples
|
1024 |
+
========
|
1025 |
+
|
1026 |
+
>>> from sympy.polys.densebasic import dup_to_dict
|
1027 |
+
|
1028 |
+
>>> dup_to_dict([1, 0, 5, 0, 7])
|
1029 |
+
{(0,): 7, (2,): 5, (4,): 1}
|
1030 |
+
>>> dup_to_dict([])
|
1031 |
+
{}
|
1032 |
+
|
1033 |
+
"""
|
1034 |
+
if not f and zero:
|
1035 |
+
return {(0,): K.zero}
|
1036 |
+
|
1037 |
+
n, result = len(f) - 1, {}
|
1038 |
+
|
1039 |
+
for k in range(0, n + 1):
|
1040 |
+
if f[n - k]:
|
1041 |
+
result[(k,)] = f[n - k]
|
1042 |
+
|
1043 |
+
return result
|
1044 |
+
|
1045 |
+
|
1046 |
+
def dup_to_raw_dict(f, K=None, zero=False):
|
1047 |
+
"""
|
1048 |
+
Convert a ``K[x]`` polynomial to a raw ``dict``.
|
1049 |
+
|
1050 |
+
Examples
|
1051 |
+
========
|
1052 |
+
|
1053 |
+
>>> from sympy.polys.densebasic import dup_to_raw_dict
|
1054 |
+
|
1055 |
+
>>> dup_to_raw_dict([1, 0, 5, 0, 7])
|
1056 |
+
{0: 7, 2: 5, 4: 1}
|
1057 |
+
|
1058 |
+
"""
|
1059 |
+
if not f and zero:
|
1060 |
+
return {0: K.zero}
|
1061 |
+
|
1062 |
+
n, result = len(f) - 1, {}
|
1063 |
+
|
1064 |
+
for k in range(0, n + 1):
|
1065 |
+
if f[n - k]:
|
1066 |
+
result[k] = f[n - k]
|
1067 |
+
|
1068 |
+
return result
|
1069 |
+
|
1070 |
+
|
1071 |
+
def dmp_to_dict(f, u, K=None, zero=False):
|
1072 |
+
"""
|
1073 |
+
Convert a ``K[X]`` polynomial to a ``dict````.
|
1074 |
+
|
1075 |
+
Examples
|
1076 |
+
========
|
1077 |
+
|
1078 |
+
>>> from sympy.polys.densebasic import dmp_to_dict
|
1079 |
+
|
1080 |
+
>>> dmp_to_dict([[1, 0], [], [2, 3]], 1)
|
1081 |
+
{(0, 0): 3, (0, 1): 2, (2, 1): 1}
|
1082 |
+
>>> dmp_to_dict([], 0)
|
1083 |
+
{}
|
1084 |
+
|
1085 |
+
"""
|
1086 |
+
if not u:
|
1087 |
+
return dup_to_dict(f, K, zero=zero)
|
1088 |
+
|
1089 |
+
if dmp_zero_p(f, u) and zero:
|
1090 |
+
return {(0,)*(u + 1): K.zero}
|
1091 |
+
|
1092 |
+
n, v, result = dmp_degree(f, u), u - 1, {}
|
1093 |
+
|
1094 |
+
if n == -oo:
|
1095 |
+
n = -1
|
1096 |
+
|
1097 |
+
for k in range(0, n + 1):
|
1098 |
+
h = dmp_to_dict(f[n - k], v)
|
1099 |
+
|
1100 |
+
for exp, coeff in h.items():
|
1101 |
+
result[(k,) + exp] = coeff
|
1102 |
+
|
1103 |
+
return result
|
1104 |
+
|
1105 |
+
|
1106 |
+
def dmp_swap(f, i, j, u, K):
|
1107 |
+
"""
|
1108 |
+
Transform ``K[..x_i..x_j..]`` to ``K[..x_j..x_i..]``.
|
1109 |
+
|
1110 |
+
Examples
|
1111 |
+
========
|
1112 |
+
|
1113 |
+
>>> from sympy.polys.domains import ZZ
|
1114 |
+
>>> from sympy.polys.densebasic import dmp_swap
|
1115 |
+
|
1116 |
+
>>> f = ZZ.map([[[2], [1, 0]], []])
|
1117 |
+
|
1118 |
+
>>> dmp_swap(f, 0, 1, 2, ZZ)
|
1119 |
+
[[[2], []], [[1, 0], []]]
|
1120 |
+
>>> dmp_swap(f, 1, 2, 2, ZZ)
|
1121 |
+
[[[1], [2, 0]], [[]]]
|
1122 |
+
>>> dmp_swap(f, 0, 2, 2, ZZ)
|
1123 |
+
[[[1, 0]], [[2, 0], []]]
|
1124 |
+
|
1125 |
+
"""
|
1126 |
+
if i < 0 or j < 0 or i > u or j > u:
|
1127 |
+
raise IndexError("0 <= i < j <= %s expected" % u)
|
1128 |
+
elif i == j:
|
1129 |
+
return f
|
1130 |
+
|
1131 |
+
F, H = dmp_to_dict(f, u), {}
|
1132 |
+
|
1133 |
+
for exp, coeff in F.items():
|
1134 |
+
H[exp[:i] + (exp[j],) +
|
1135 |
+
exp[i + 1:j] +
|
1136 |
+
(exp[i],) + exp[j + 1:]] = coeff
|
1137 |
+
|
1138 |
+
return dmp_from_dict(H, u, K)
|
1139 |
+
|
1140 |
+
|
1141 |
+
def dmp_permute(f, P, u, K):
|
1142 |
+
"""
|
1143 |
+
Return a polynomial in ``K[x_{P(1)},..,x_{P(n)}]``.
|
1144 |
+
|
1145 |
+
Examples
|
1146 |
+
========
|
1147 |
+
|
1148 |
+
>>> from sympy.polys.domains import ZZ
|
1149 |
+
>>> from sympy.polys.densebasic import dmp_permute
|
1150 |
+
|
1151 |
+
>>> f = ZZ.map([[[2], [1, 0]], []])
|
1152 |
+
|
1153 |
+
>>> dmp_permute(f, [1, 0, 2], 2, ZZ)
|
1154 |
+
[[[2], []], [[1, 0], []]]
|
1155 |
+
>>> dmp_permute(f, [1, 2, 0], 2, ZZ)
|
1156 |
+
[[[1], []], [[2, 0], []]]
|
1157 |
+
|
1158 |
+
"""
|
1159 |
+
F, H = dmp_to_dict(f, u), {}
|
1160 |
+
|
1161 |
+
for exp, coeff in F.items():
|
1162 |
+
new_exp = [0]*len(exp)
|
1163 |
+
|
1164 |
+
for e, p in zip(exp, P):
|
1165 |
+
new_exp[p] = e
|
1166 |
+
|
1167 |
+
H[tuple(new_exp)] = coeff
|
1168 |
+
|
1169 |
+
return dmp_from_dict(H, u, K)
|
1170 |
+
|
1171 |
+
|
1172 |
+
def dmp_nest(f, l, K):
|
1173 |
+
"""
|
1174 |
+
Return a multivariate value nested ``l``-levels.
|
1175 |
+
|
1176 |
+
Examples
|
1177 |
+
========
|
1178 |
+
|
1179 |
+
>>> from sympy.polys.domains import ZZ
|
1180 |
+
>>> from sympy.polys.densebasic import dmp_nest
|
1181 |
+
|
1182 |
+
>>> dmp_nest([[ZZ(1)]], 2, ZZ)
|
1183 |
+
[[[[1]]]]
|
1184 |
+
|
1185 |
+
"""
|
1186 |
+
if not isinstance(f, list):
|
1187 |
+
return dmp_ground(f, l)
|
1188 |
+
|
1189 |
+
for i in range(l):
|
1190 |
+
f = [f]
|
1191 |
+
|
1192 |
+
return f
|
1193 |
+
|
1194 |
+
|
1195 |
+
def dmp_raise(f, l, u, K):
|
1196 |
+
"""
|
1197 |
+
Return a multivariate polynomial raised ``l``-levels.
|
1198 |
+
|
1199 |
+
Examples
|
1200 |
+
========
|
1201 |
+
|
1202 |
+
>>> from sympy.polys.domains import ZZ
|
1203 |
+
>>> from sympy.polys.densebasic import dmp_raise
|
1204 |
+
|
1205 |
+
>>> f = ZZ.map([[], [1, 2]])
|
1206 |
+
|
1207 |
+
>>> dmp_raise(f, 2, 1, ZZ)
|
1208 |
+
[[[[]]], [[[1]], [[2]]]]
|
1209 |
+
|
1210 |
+
"""
|
1211 |
+
if not l:
|
1212 |
+
return f
|
1213 |
+
|
1214 |
+
if not u:
|
1215 |
+
if not f:
|
1216 |
+
return dmp_zero(l)
|
1217 |
+
|
1218 |
+
k = l - 1
|
1219 |
+
|
1220 |
+
return [ dmp_ground(c, k) for c in f ]
|
1221 |
+
|
1222 |
+
v = u - 1
|
1223 |
+
|
1224 |
+
return [ dmp_raise(c, l, v, K) for c in f ]
|
1225 |
+
|
1226 |
+
|
1227 |
+
def dup_deflate(f, K):
|
1228 |
+
"""
|
1229 |
+
Map ``x**m`` to ``y`` in a polynomial in ``K[x]``.
|
1230 |
+
|
1231 |
+
Examples
|
1232 |
+
========
|
1233 |
+
|
1234 |
+
>>> from sympy.polys.domains import ZZ
|
1235 |
+
>>> from sympy.polys.densebasic import dup_deflate
|
1236 |
+
|
1237 |
+
>>> f = ZZ.map([1, 0, 0, 1, 0, 0, 1])
|
1238 |
+
|
1239 |
+
>>> dup_deflate(f, ZZ)
|
1240 |
+
(3, [1, 1, 1])
|
1241 |
+
|
1242 |
+
"""
|
1243 |
+
if dup_degree(f) <= 0:
|
1244 |
+
return 1, f
|
1245 |
+
|
1246 |
+
g = 0
|
1247 |
+
|
1248 |
+
for i in range(len(f)):
|
1249 |
+
if not f[-i - 1]:
|
1250 |
+
continue
|
1251 |
+
|
1252 |
+
g = igcd(g, i)
|
1253 |
+
|
1254 |
+
if g == 1:
|
1255 |
+
return 1, f
|
1256 |
+
|
1257 |
+
return g, f[::g]
|
1258 |
+
|
1259 |
+
|
1260 |
+
def dmp_deflate(f, u, K):
|
1261 |
+
"""
|
1262 |
+
Map ``x_i**m_i`` to ``y_i`` in a polynomial in ``K[X]``.
|
1263 |
+
|
1264 |
+
Examples
|
1265 |
+
========
|
1266 |
+
|
1267 |
+
>>> from sympy.polys.domains import ZZ
|
1268 |
+
>>> from sympy.polys.densebasic import dmp_deflate
|
1269 |
+
|
1270 |
+
>>> f = ZZ.map([[1, 0, 0, 2], [], [3, 0, 0, 4]])
|
1271 |
+
|
1272 |
+
>>> dmp_deflate(f, 1, ZZ)
|
1273 |
+
((2, 3), [[1, 2], [3, 4]])
|
1274 |
+
|
1275 |
+
"""
|
1276 |
+
if dmp_zero_p(f, u):
|
1277 |
+
return (1,)*(u + 1), f
|
1278 |
+
|
1279 |
+
F = dmp_to_dict(f, u)
|
1280 |
+
B = [0]*(u + 1)
|
1281 |
+
|
1282 |
+
for M in F.keys():
|
1283 |
+
for i, m in enumerate(M):
|
1284 |
+
B[i] = igcd(B[i], m)
|
1285 |
+
|
1286 |
+
for i, b in enumerate(B):
|
1287 |
+
if not b:
|
1288 |
+
B[i] = 1
|
1289 |
+
|
1290 |
+
B = tuple(B)
|
1291 |
+
|
1292 |
+
if all(b == 1 for b in B):
|
1293 |
+
return B, f
|
1294 |
+
|
1295 |
+
H = {}
|
1296 |
+
|
1297 |
+
for A, coeff in F.items():
|
1298 |
+
N = [ a // b for a, b in zip(A, B) ]
|
1299 |
+
H[tuple(N)] = coeff
|
1300 |
+
|
1301 |
+
return B, dmp_from_dict(H, u, K)
|
1302 |
+
|
1303 |
+
|
1304 |
+
def dup_multi_deflate(polys, K):
|
1305 |
+
"""
|
1306 |
+
Map ``x**m`` to ``y`` in a set of polynomials in ``K[x]``.
|
1307 |
+
|
1308 |
+
Examples
|
1309 |
+
========
|
1310 |
+
|
1311 |
+
>>> from sympy.polys.domains import ZZ
|
1312 |
+
>>> from sympy.polys.densebasic import dup_multi_deflate
|
1313 |
+
|
1314 |
+
>>> f = ZZ.map([1, 0, 2, 0, 3])
|
1315 |
+
>>> g = ZZ.map([4, 0, 0])
|
1316 |
+
|
1317 |
+
>>> dup_multi_deflate((f, g), ZZ)
|
1318 |
+
(2, ([1, 2, 3], [4, 0]))
|
1319 |
+
|
1320 |
+
"""
|
1321 |
+
G = 0
|
1322 |
+
|
1323 |
+
for p in polys:
|
1324 |
+
if dup_degree(p) <= 0:
|
1325 |
+
return 1, polys
|
1326 |
+
|
1327 |
+
g = 0
|
1328 |
+
|
1329 |
+
for i in range(len(p)):
|
1330 |
+
if not p[-i - 1]:
|
1331 |
+
continue
|
1332 |
+
|
1333 |
+
g = igcd(g, i)
|
1334 |
+
|
1335 |
+
if g == 1:
|
1336 |
+
return 1, polys
|
1337 |
+
|
1338 |
+
G = igcd(G, g)
|
1339 |
+
|
1340 |
+
return G, tuple([ p[::G] for p in polys ])
|
1341 |
+
|
1342 |
+
|
1343 |
+
def dmp_multi_deflate(polys, u, K):
|
1344 |
+
"""
|
1345 |
+
Map ``x_i**m_i`` to ``y_i`` in a set of polynomials in ``K[X]``.
|
1346 |
+
|
1347 |
+
Examples
|
1348 |
+
========
|
1349 |
+
|
1350 |
+
>>> from sympy.polys.domains import ZZ
|
1351 |
+
>>> from sympy.polys.densebasic import dmp_multi_deflate
|
1352 |
+
|
1353 |
+
>>> f = ZZ.map([[1, 0, 0, 2], [], [3, 0, 0, 4]])
|
1354 |
+
>>> g = ZZ.map([[1, 0, 2], [], [3, 0, 4]])
|
1355 |
+
|
1356 |
+
>>> dmp_multi_deflate((f, g), 1, ZZ)
|
1357 |
+
((2, 1), ([[1, 0, 0, 2], [3, 0, 0, 4]], [[1, 0, 2], [3, 0, 4]]))
|
1358 |
+
|
1359 |
+
"""
|
1360 |
+
if not u:
|
1361 |
+
M, H = dup_multi_deflate(polys, K)
|
1362 |
+
return (M,), H
|
1363 |
+
|
1364 |
+
F, B = [], [0]*(u + 1)
|
1365 |
+
|
1366 |
+
for p in polys:
|
1367 |
+
f = dmp_to_dict(p, u)
|
1368 |
+
|
1369 |
+
if not dmp_zero_p(p, u):
|
1370 |
+
for M in f.keys():
|
1371 |
+
for i, m in enumerate(M):
|
1372 |
+
B[i] = igcd(B[i], m)
|
1373 |
+
|
1374 |
+
F.append(f)
|
1375 |
+
|
1376 |
+
for i, b in enumerate(B):
|
1377 |
+
if not b:
|
1378 |
+
B[i] = 1
|
1379 |
+
|
1380 |
+
B = tuple(B)
|
1381 |
+
|
1382 |
+
if all(b == 1 for b in B):
|
1383 |
+
return B, polys
|
1384 |
+
|
1385 |
+
H = []
|
1386 |
+
|
1387 |
+
for f in F:
|
1388 |
+
h = {}
|
1389 |
+
|
1390 |
+
for A, coeff in f.items():
|
1391 |
+
N = [ a // b for a, b in zip(A, B) ]
|
1392 |
+
h[tuple(N)] = coeff
|
1393 |
+
|
1394 |
+
H.append(dmp_from_dict(h, u, K))
|
1395 |
+
|
1396 |
+
return B, tuple(H)
|
1397 |
+
|
1398 |
+
|
1399 |
+
def dup_inflate(f, m, K):
|
1400 |
+
"""
|
1401 |
+
Map ``y`` to ``x**m`` in a polynomial in ``K[x]``.
|
1402 |
+
|
1403 |
+
Examples
|
1404 |
+
========
|
1405 |
+
|
1406 |
+
>>> from sympy.polys.domains import ZZ
|
1407 |
+
>>> from sympy.polys.densebasic import dup_inflate
|
1408 |
+
|
1409 |
+
>>> f = ZZ.map([1, 1, 1])
|
1410 |
+
|
1411 |
+
>>> dup_inflate(f, 3, ZZ)
|
1412 |
+
[1, 0, 0, 1, 0, 0, 1]
|
1413 |
+
|
1414 |
+
"""
|
1415 |
+
if m <= 0:
|
1416 |
+
raise IndexError("'m' must be positive, got %s" % m)
|
1417 |
+
if m == 1 or not f:
|
1418 |
+
return f
|
1419 |
+
|
1420 |
+
result = [f[0]]
|
1421 |
+
|
1422 |
+
for coeff in f[1:]:
|
1423 |
+
result.extend([K.zero]*(m - 1))
|
1424 |
+
result.append(coeff)
|
1425 |
+
|
1426 |
+
return result
|
1427 |
+
|
1428 |
+
|
1429 |
+
def _rec_inflate(g, M, v, i, K):
|
1430 |
+
"""Recursive helper for :func:`dmp_inflate`."""
|
1431 |
+
if not v:
|
1432 |
+
return dup_inflate(g, M[i], K)
|
1433 |
+
if M[i] <= 0:
|
1434 |
+
raise IndexError("all M[i] must be positive, got %s" % M[i])
|
1435 |
+
|
1436 |
+
w, j = v - 1, i + 1
|
1437 |
+
|
1438 |
+
g = [ _rec_inflate(c, M, w, j, K) for c in g ]
|
1439 |
+
|
1440 |
+
result = [g[0]]
|
1441 |
+
|
1442 |
+
for coeff in g[1:]:
|
1443 |
+
for _ in range(1, M[i]):
|
1444 |
+
result.append(dmp_zero(w))
|
1445 |
+
|
1446 |
+
result.append(coeff)
|
1447 |
+
|
1448 |
+
return result
|
1449 |
+
|
1450 |
+
|
1451 |
+
def dmp_inflate(f, M, u, K):
|
1452 |
+
"""
|
1453 |
+
Map ``y_i`` to ``x_i**k_i`` in a polynomial in ``K[X]``.
|
1454 |
+
|
1455 |
+
Examples
|
1456 |
+
========
|
1457 |
+
|
1458 |
+
>>> from sympy.polys.domains import ZZ
|
1459 |
+
>>> from sympy.polys.densebasic import dmp_inflate
|
1460 |
+
|
1461 |
+
>>> f = ZZ.map([[1, 2], [3, 4]])
|
1462 |
+
|
1463 |
+
>>> dmp_inflate(f, (2, 3), 1, ZZ)
|
1464 |
+
[[1, 0, 0, 2], [], [3, 0, 0, 4]]
|
1465 |
+
|
1466 |
+
"""
|
1467 |
+
if not u:
|
1468 |
+
return dup_inflate(f, M[0], K)
|
1469 |
+
|
1470 |
+
if all(m == 1 for m in M):
|
1471 |
+
return f
|
1472 |
+
else:
|
1473 |
+
return _rec_inflate(f, M, u, 0, K)
|
1474 |
+
|
1475 |
+
|
1476 |
+
def dmp_exclude(f, u, K):
|
1477 |
+
"""
|
1478 |
+
Exclude useless levels from ``f``.
|
1479 |
+
|
1480 |
+
Return the levels excluded, the new excluded ``f``, and the new ``u``.
|
1481 |
+
|
1482 |
+
Examples
|
1483 |
+
========
|
1484 |
+
|
1485 |
+
>>> from sympy.polys.domains import ZZ
|
1486 |
+
>>> from sympy.polys.densebasic import dmp_exclude
|
1487 |
+
|
1488 |
+
>>> f = ZZ.map([[[1]], [[1], [2]]])
|
1489 |
+
|
1490 |
+
>>> dmp_exclude(f, 2, ZZ)
|
1491 |
+
([2], [[1], [1, 2]], 1)
|
1492 |
+
|
1493 |
+
"""
|
1494 |
+
if not u or dmp_ground_p(f, None, u):
|
1495 |
+
return [], f, u
|
1496 |
+
|
1497 |
+
J, F = [], dmp_to_dict(f, u)
|
1498 |
+
|
1499 |
+
for j in range(0, u + 1):
|
1500 |
+
for monom in F.keys():
|
1501 |
+
if monom[j]:
|
1502 |
+
break
|
1503 |
+
else:
|
1504 |
+
J.append(j)
|
1505 |
+
|
1506 |
+
if not J:
|
1507 |
+
return [], f, u
|
1508 |
+
|
1509 |
+
f = {}
|
1510 |
+
|
1511 |
+
for monom, coeff in F.items():
|
1512 |
+
monom = list(monom)
|
1513 |
+
|
1514 |
+
for j in reversed(J):
|
1515 |
+
del monom[j]
|
1516 |
+
|
1517 |
+
f[tuple(monom)] = coeff
|
1518 |
+
|
1519 |
+
u -= len(J)
|
1520 |
+
|
1521 |
+
return J, dmp_from_dict(f, u, K), u
|
1522 |
+
|
1523 |
+
|
1524 |
+
def dmp_include(f, J, u, K):
|
1525 |
+
"""
|
1526 |
+
Include useless levels in ``f``.
|
1527 |
+
|
1528 |
+
Examples
|
1529 |
+
========
|
1530 |
+
|
1531 |
+
>>> from sympy.polys.domains import ZZ
|
1532 |
+
>>> from sympy.polys.densebasic import dmp_include
|
1533 |
+
|
1534 |
+
>>> f = ZZ.map([[1], [1, 2]])
|
1535 |
+
|
1536 |
+
>>> dmp_include(f, [2], 1, ZZ)
|
1537 |
+
[[[1]], [[1], [2]]]
|
1538 |
+
|
1539 |
+
"""
|
1540 |
+
if not J:
|
1541 |
+
return f
|
1542 |
+
|
1543 |
+
F, f = dmp_to_dict(f, u), {}
|
1544 |
+
|
1545 |
+
for monom, coeff in F.items():
|
1546 |
+
monom = list(monom)
|
1547 |
+
|
1548 |
+
for j in J:
|
1549 |
+
monom.insert(j, 0)
|
1550 |
+
|
1551 |
+
f[tuple(monom)] = coeff
|
1552 |
+
|
1553 |
+
u += len(J)
|
1554 |
+
|
1555 |
+
return dmp_from_dict(f, u, K)
|
1556 |
+
|
1557 |
+
|
1558 |
+
def dmp_inject(f, u, K, front=False):
|
1559 |
+
"""
|
1560 |
+
Convert ``f`` from ``K[X][Y]`` to ``K[X,Y]``.
|
1561 |
+
|
1562 |
+
Examples
|
1563 |
+
========
|
1564 |
+
|
1565 |
+
>>> from sympy.polys.rings import ring
|
1566 |
+
>>> from sympy.polys.domains import ZZ
|
1567 |
+
>>> from sympy.polys.densebasic import dmp_inject
|
1568 |
+
|
1569 |
+
>>> R, x,y = ring("x,y", ZZ)
|
1570 |
+
|
1571 |
+
>>> dmp_inject([R(1), x + 2], 0, R.to_domain())
|
1572 |
+
([[[1]], [[1], [2]]], 2)
|
1573 |
+
>>> dmp_inject([R(1), x + 2], 0, R.to_domain(), front=True)
|
1574 |
+
([[[1]], [[1, 2]]], 2)
|
1575 |
+
|
1576 |
+
"""
|
1577 |
+
f, h = dmp_to_dict(f, u), {}
|
1578 |
+
|
1579 |
+
v = K.ngens - 1
|
1580 |
+
|
1581 |
+
for f_monom, g in f.items():
|
1582 |
+
g = g.to_dict()
|
1583 |
+
|
1584 |
+
for g_monom, c in g.items():
|
1585 |
+
if front:
|
1586 |
+
h[g_monom + f_monom] = c
|
1587 |
+
else:
|
1588 |
+
h[f_monom + g_monom] = c
|
1589 |
+
|
1590 |
+
w = u + v + 1
|
1591 |
+
|
1592 |
+
return dmp_from_dict(h, w, K.dom), w
|
1593 |
+
|
1594 |
+
|
1595 |
+
def dmp_eject(f, u, K, front=False):
|
1596 |
+
"""
|
1597 |
+
Convert ``f`` from ``K[X,Y]`` to ``K[X][Y]``.
|
1598 |
+
|
1599 |
+
Examples
|
1600 |
+
========
|
1601 |
+
|
1602 |
+
>>> from sympy.polys.domains import ZZ
|
1603 |
+
>>> from sympy.polys.densebasic import dmp_eject
|
1604 |
+
|
1605 |
+
>>> dmp_eject([[[1]], [[1], [2]]], 2, ZZ['x', 'y'])
|
1606 |
+
[1, x + 2]
|
1607 |
+
|
1608 |
+
"""
|
1609 |
+
f, h = dmp_to_dict(f, u), {}
|
1610 |
+
|
1611 |
+
n = K.ngens
|
1612 |
+
v = u - K.ngens + 1
|
1613 |
+
|
1614 |
+
for monom, c in f.items():
|
1615 |
+
if front:
|
1616 |
+
g_monom, f_monom = monom[:n], monom[n:]
|
1617 |
+
else:
|
1618 |
+
g_monom, f_monom = monom[-n:], monom[:-n]
|
1619 |
+
|
1620 |
+
if f_monom in h:
|
1621 |
+
h[f_monom][g_monom] = c
|
1622 |
+
else:
|
1623 |
+
h[f_monom] = {g_monom: c}
|
1624 |
+
|
1625 |
+
for monom, c in h.items():
|
1626 |
+
h[monom] = K(c)
|
1627 |
+
|
1628 |
+
return dmp_from_dict(h, v - 1, K)
|
1629 |
+
|
1630 |
+
|
1631 |
+
def dup_terms_gcd(f, K):
|
1632 |
+
"""
|
1633 |
+
Remove GCD of terms from ``f`` in ``K[x]``.
|
1634 |
+
|
1635 |
+
Examples
|
1636 |
+
========
|
1637 |
+
|
1638 |
+
>>> from sympy.polys.domains import ZZ
|
1639 |
+
>>> from sympy.polys.densebasic import dup_terms_gcd
|
1640 |
+
|
1641 |
+
>>> f = ZZ.map([1, 0, 1, 0, 0])
|
1642 |
+
|
1643 |
+
>>> dup_terms_gcd(f, ZZ)
|
1644 |
+
(2, [1, 0, 1])
|
1645 |
+
|
1646 |
+
"""
|
1647 |
+
if dup_TC(f, K) or not f:
|
1648 |
+
return 0, f
|
1649 |
+
|
1650 |
+
i = 0
|
1651 |
+
|
1652 |
+
for c in reversed(f):
|
1653 |
+
if not c:
|
1654 |
+
i += 1
|
1655 |
+
else:
|
1656 |
+
break
|
1657 |
+
|
1658 |
+
return i, f[:-i]
|
1659 |
+
|
1660 |
+
|
1661 |
+
def dmp_terms_gcd(f, u, K):
|
1662 |
+
"""
|
1663 |
+
Remove GCD of terms from ``f`` in ``K[X]``.
|
1664 |
+
|
1665 |
+
Examples
|
1666 |
+
========
|
1667 |
+
|
1668 |
+
>>> from sympy.polys.domains import ZZ
|
1669 |
+
>>> from sympy.polys.densebasic import dmp_terms_gcd
|
1670 |
+
|
1671 |
+
>>> f = ZZ.map([[1, 0], [1, 0, 0], [], []])
|
1672 |
+
|
1673 |
+
>>> dmp_terms_gcd(f, 1, ZZ)
|
1674 |
+
((2, 1), [[1], [1, 0]])
|
1675 |
+
|
1676 |
+
"""
|
1677 |
+
if dmp_ground_TC(f, u, K) or dmp_zero_p(f, u):
|
1678 |
+
return (0,)*(u + 1), f
|
1679 |
+
|
1680 |
+
F = dmp_to_dict(f, u)
|
1681 |
+
G = monomial_min(*list(F.keys()))
|
1682 |
+
|
1683 |
+
if all(g == 0 for g in G):
|
1684 |
+
return G, f
|
1685 |
+
|
1686 |
+
f = {}
|
1687 |
+
|
1688 |
+
for monom, coeff in F.items():
|
1689 |
+
f[monomial_div(monom, G)] = coeff
|
1690 |
+
|
1691 |
+
return G, dmp_from_dict(f, u, K)
|
1692 |
+
|
1693 |
+
|
1694 |
+
def _rec_list_terms(g, v, monom):
|
1695 |
+
"""Recursive helper for :func:`dmp_list_terms`."""
|
1696 |
+
d, terms = dmp_degree(g, v), []
|
1697 |
+
|
1698 |
+
if not v:
|
1699 |
+
for i, c in enumerate(g):
|
1700 |
+
if not c:
|
1701 |
+
continue
|
1702 |
+
|
1703 |
+
terms.append((monom + (d - i,), c))
|
1704 |
+
else:
|
1705 |
+
w = v - 1
|
1706 |
+
|
1707 |
+
for i, c in enumerate(g):
|
1708 |
+
terms.extend(_rec_list_terms(c, w, monom + (d - i,)))
|
1709 |
+
|
1710 |
+
return terms
|
1711 |
+
|
1712 |
+
|
1713 |
+
def dmp_list_terms(f, u, K, order=None):
|
1714 |
+
"""
|
1715 |
+
List all non-zero terms from ``f`` in the given order ``order``.
|
1716 |
+
|
1717 |
+
Examples
|
1718 |
+
========
|
1719 |
+
|
1720 |
+
>>> from sympy.polys.domains import ZZ
|
1721 |
+
>>> from sympy.polys.densebasic import dmp_list_terms
|
1722 |
+
|
1723 |
+
>>> f = ZZ.map([[1, 1], [2, 3]])
|
1724 |
+
|
1725 |
+
>>> dmp_list_terms(f, 1, ZZ)
|
1726 |
+
[((1, 1), 1), ((1, 0), 1), ((0, 1), 2), ((0, 0), 3)]
|
1727 |
+
>>> dmp_list_terms(f, 1, ZZ, order='grevlex')
|
1728 |
+
[((1, 1), 1), ((1, 0), 1), ((0, 1), 2), ((0, 0), 3)]
|
1729 |
+
|
1730 |
+
"""
|
1731 |
+
def sort(terms, O):
|
1732 |
+
return sorted(terms, key=lambda term: O(term[0]), reverse=True)
|
1733 |
+
|
1734 |
+
terms = _rec_list_terms(f, u, ())
|
1735 |
+
|
1736 |
+
if not terms:
|
1737 |
+
return [((0,)*(u + 1), K.zero)]
|
1738 |
+
|
1739 |
+
if order is None:
|
1740 |
+
return terms
|
1741 |
+
else:
|
1742 |
+
return sort(terms, monomial_key(order))
|
1743 |
+
|
1744 |
+
|
1745 |
+
def dup_apply_pairs(f, g, h, args, K):
|
1746 |
+
"""
|
1747 |
+
Apply ``h`` to pairs of coefficients of ``f`` and ``g``.
|
1748 |
+
|
1749 |
+
Examples
|
1750 |
+
========
|
1751 |
+
|
1752 |
+
>>> from sympy.polys.domains import ZZ
|
1753 |
+
>>> from sympy.polys.densebasic import dup_apply_pairs
|
1754 |
+
|
1755 |
+
>>> h = lambda x, y, z: 2*x + y - z
|
1756 |
+
|
1757 |
+
>>> dup_apply_pairs([1, 2, 3], [3, 2, 1], h, (1,), ZZ)
|
1758 |
+
[4, 5, 6]
|
1759 |
+
|
1760 |
+
"""
|
1761 |
+
n, m = len(f), len(g)
|
1762 |
+
|
1763 |
+
if n != m:
|
1764 |
+
if n > m:
|
1765 |
+
g = [K.zero]*(n - m) + g
|
1766 |
+
else:
|
1767 |
+
f = [K.zero]*(m - n) + f
|
1768 |
+
|
1769 |
+
result = []
|
1770 |
+
|
1771 |
+
for a, b in zip(f, g):
|
1772 |
+
result.append(h(a, b, *args))
|
1773 |
+
|
1774 |
+
return dup_strip(result)
|
1775 |
+
|
1776 |
+
|
1777 |
+
def dmp_apply_pairs(f, g, h, args, u, K):
|
1778 |
+
"""
|
1779 |
+
Apply ``h`` to pairs of coefficients of ``f`` and ``g``.
|
1780 |
+
|
1781 |
+
Examples
|
1782 |
+
========
|
1783 |
+
|
1784 |
+
>>> from sympy.polys.domains import ZZ
|
1785 |
+
>>> from sympy.polys.densebasic import dmp_apply_pairs
|
1786 |
+
|
1787 |
+
>>> h = lambda x, y, z: 2*x + y - z
|
1788 |
+
|
1789 |
+
>>> dmp_apply_pairs([[1], [2, 3]], [[3], [2, 1]], h, (1,), 1, ZZ)
|
1790 |
+
[[4], [5, 6]]
|
1791 |
+
|
1792 |
+
"""
|
1793 |
+
if not u:
|
1794 |
+
return dup_apply_pairs(f, g, h, args, K)
|
1795 |
+
|
1796 |
+
n, m, v = len(f), len(g), u - 1
|
1797 |
+
|
1798 |
+
if n != m:
|
1799 |
+
if n > m:
|
1800 |
+
g = dmp_zeros(n - m, v, K) + g
|
1801 |
+
else:
|
1802 |
+
f = dmp_zeros(m - n, v, K) + f
|
1803 |
+
|
1804 |
+
result = []
|
1805 |
+
|
1806 |
+
for a, b in zip(f, g):
|
1807 |
+
result.append(dmp_apply_pairs(a, b, h, args, v, K))
|
1808 |
+
|
1809 |
+
return dmp_strip(result, u)
|
1810 |
+
|
1811 |
+
|
1812 |
+
def dup_slice(f, m, n, K):
|
1813 |
+
"""Take a continuous subsequence of terms of ``f`` in ``K[x]``. """
|
1814 |
+
k = len(f)
|
1815 |
+
|
1816 |
+
if k >= m:
|
1817 |
+
M = k - m
|
1818 |
+
else:
|
1819 |
+
M = 0
|
1820 |
+
if k >= n:
|
1821 |
+
N = k - n
|
1822 |
+
else:
|
1823 |
+
N = 0
|
1824 |
+
|
1825 |
+
f = f[N:M]
|
1826 |
+
|
1827 |
+
if not f:
|
1828 |
+
return []
|
1829 |
+
else:
|
1830 |
+
return f + [K.zero]*m
|
1831 |
+
|
1832 |
+
|
1833 |
+
def dmp_slice(f, m, n, u, K):
|
1834 |
+
"""Take a continuous subsequence of terms of ``f`` in ``K[X]``. """
|
1835 |
+
return dmp_slice_in(f, m, n, 0, u, K)
|
1836 |
+
|
1837 |
+
|
1838 |
+
def dmp_slice_in(f, m, n, j, u, K):
|
1839 |
+
"""Take a continuous subsequence of terms of ``f`` in ``x_j`` in ``K[X]``. """
|
1840 |
+
if j < 0 or j > u:
|
1841 |
+
raise IndexError("-%s <= j < %s expected, got %s" % (u, u, j))
|
1842 |
+
|
1843 |
+
if not u:
|
1844 |
+
return dup_slice(f, m, n, K)
|
1845 |
+
|
1846 |
+
f, g = dmp_to_dict(f, u), {}
|
1847 |
+
|
1848 |
+
for monom, coeff in f.items():
|
1849 |
+
k = monom[j]
|
1850 |
+
|
1851 |
+
if k < m or k >= n:
|
1852 |
+
monom = monom[:j] + (0,) + monom[j + 1:]
|
1853 |
+
|
1854 |
+
if monom in g:
|
1855 |
+
g[monom] += coeff
|
1856 |
+
else:
|
1857 |
+
g[monom] = coeff
|
1858 |
+
|
1859 |
+
return dmp_from_dict(g, u, K)
|
1860 |
+
|
1861 |
+
|
1862 |
+
def dup_random(n, a, b, K):
|
1863 |
+
"""
|
1864 |
+
Return a polynomial of degree ``n`` with coefficients in ``[a, b]``.
|
1865 |
+
|
1866 |
+
Examples
|
1867 |
+
========
|
1868 |
+
|
1869 |
+
>>> from sympy.polys.domains import ZZ
|
1870 |
+
>>> from sympy.polys.densebasic import dup_random
|
1871 |
+
|
1872 |
+
>>> dup_random(3, -10, 10, ZZ) #doctest: +SKIP
|
1873 |
+
[-2, -8, 9, -4]
|
1874 |
+
|
1875 |
+
"""
|
1876 |
+
f = [ K.convert(random.randint(a, b)) for _ in range(0, n + 1) ]
|
1877 |
+
|
1878 |
+
while not f[0]:
|
1879 |
+
f[0] = K.convert(random.randint(a, b))
|
1880 |
+
|
1881 |
+
return f
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/densetools.py
ADDED
@@ -0,0 +1,1309 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Advanced tools for dense recursive polynomials in ``K[x]`` or ``K[X]``. """
|
2 |
+
|
3 |
+
|
4 |
+
from sympy.polys.densearith import (
|
5 |
+
dup_add_term, dmp_add_term,
|
6 |
+
dup_lshift,
|
7 |
+
dup_add, dmp_add,
|
8 |
+
dup_sub, dmp_sub,
|
9 |
+
dup_mul, dmp_mul,
|
10 |
+
dup_sqr,
|
11 |
+
dup_div,
|
12 |
+
dup_rem, dmp_rem,
|
13 |
+
dmp_expand,
|
14 |
+
dup_mul_ground, dmp_mul_ground,
|
15 |
+
dup_quo_ground, dmp_quo_ground,
|
16 |
+
dup_exquo_ground, dmp_exquo_ground,
|
17 |
+
)
|
18 |
+
from sympy.polys.densebasic import (
|
19 |
+
dup_strip, dmp_strip,
|
20 |
+
dup_convert, dmp_convert,
|
21 |
+
dup_degree, dmp_degree,
|
22 |
+
dmp_to_dict,
|
23 |
+
dmp_from_dict,
|
24 |
+
dup_LC, dmp_LC, dmp_ground_LC,
|
25 |
+
dup_TC, dmp_TC,
|
26 |
+
dmp_zero, dmp_ground,
|
27 |
+
dmp_zero_p,
|
28 |
+
dup_to_raw_dict, dup_from_raw_dict,
|
29 |
+
dmp_zeros
|
30 |
+
)
|
31 |
+
from sympy.polys.polyerrors import (
|
32 |
+
MultivariatePolynomialError,
|
33 |
+
DomainError
|
34 |
+
)
|
35 |
+
from sympy.utilities import variations
|
36 |
+
|
37 |
+
from math import ceil as _ceil, log as _log
|
38 |
+
|
39 |
+
def dup_integrate(f, m, K):
|
40 |
+
"""
|
41 |
+
Computes the indefinite integral of ``f`` in ``K[x]``.
|
42 |
+
|
43 |
+
Examples
|
44 |
+
========
|
45 |
+
|
46 |
+
>>> from sympy.polys import ring, QQ
|
47 |
+
>>> R, x = ring("x", QQ)
|
48 |
+
|
49 |
+
>>> R.dup_integrate(x**2 + 2*x, 1)
|
50 |
+
1/3*x**3 + x**2
|
51 |
+
>>> R.dup_integrate(x**2 + 2*x, 2)
|
52 |
+
1/12*x**4 + 1/3*x**3
|
53 |
+
|
54 |
+
"""
|
55 |
+
if m <= 0 or not f:
|
56 |
+
return f
|
57 |
+
|
58 |
+
g = [K.zero]*m
|
59 |
+
|
60 |
+
for i, c in enumerate(reversed(f)):
|
61 |
+
n = i + 1
|
62 |
+
|
63 |
+
for j in range(1, m):
|
64 |
+
n *= i + j + 1
|
65 |
+
|
66 |
+
g.insert(0, K.exquo(c, K(n)))
|
67 |
+
|
68 |
+
return g
|
69 |
+
|
70 |
+
|
71 |
+
def dmp_integrate(f, m, u, K):
|
72 |
+
"""
|
73 |
+
Computes the indefinite integral of ``f`` in ``x_0`` in ``K[X]``.
|
74 |
+
|
75 |
+
Examples
|
76 |
+
========
|
77 |
+
|
78 |
+
>>> from sympy.polys import ring, QQ
|
79 |
+
>>> R, x,y = ring("x,y", QQ)
|
80 |
+
|
81 |
+
>>> R.dmp_integrate(x + 2*y, 1)
|
82 |
+
1/2*x**2 + 2*x*y
|
83 |
+
>>> R.dmp_integrate(x + 2*y, 2)
|
84 |
+
1/6*x**3 + x**2*y
|
85 |
+
|
86 |
+
"""
|
87 |
+
if not u:
|
88 |
+
return dup_integrate(f, m, K)
|
89 |
+
|
90 |
+
if m <= 0 or dmp_zero_p(f, u):
|
91 |
+
return f
|
92 |
+
|
93 |
+
g, v = dmp_zeros(m, u - 1, K), u - 1
|
94 |
+
|
95 |
+
for i, c in enumerate(reversed(f)):
|
96 |
+
n = i + 1
|
97 |
+
|
98 |
+
for j in range(1, m):
|
99 |
+
n *= i + j + 1
|
100 |
+
|
101 |
+
g.insert(0, dmp_quo_ground(c, K(n), v, K))
|
102 |
+
|
103 |
+
return g
|
104 |
+
|
105 |
+
|
106 |
+
def _rec_integrate_in(g, m, v, i, j, K):
|
107 |
+
"""Recursive helper for :func:`dmp_integrate_in`."""
|
108 |
+
if i == j:
|
109 |
+
return dmp_integrate(g, m, v, K)
|
110 |
+
|
111 |
+
w, i = v - 1, i + 1
|
112 |
+
|
113 |
+
return dmp_strip([ _rec_integrate_in(c, m, w, i, j, K) for c in g ], v)
|
114 |
+
|
115 |
+
|
116 |
+
def dmp_integrate_in(f, m, j, u, K):
|
117 |
+
"""
|
118 |
+
Computes the indefinite integral of ``f`` in ``x_j`` in ``K[X]``.
|
119 |
+
|
120 |
+
Examples
|
121 |
+
========
|
122 |
+
|
123 |
+
>>> from sympy.polys import ring, QQ
|
124 |
+
>>> R, x,y = ring("x,y", QQ)
|
125 |
+
|
126 |
+
>>> R.dmp_integrate_in(x + 2*y, 1, 0)
|
127 |
+
1/2*x**2 + 2*x*y
|
128 |
+
>>> R.dmp_integrate_in(x + 2*y, 1, 1)
|
129 |
+
x*y + y**2
|
130 |
+
|
131 |
+
"""
|
132 |
+
if j < 0 or j > u:
|
133 |
+
raise IndexError("0 <= j <= u expected, got u = %d, j = %d" % (u, j))
|
134 |
+
|
135 |
+
return _rec_integrate_in(f, m, u, 0, j, K)
|
136 |
+
|
137 |
+
|
138 |
+
def dup_diff(f, m, K):
|
139 |
+
"""
|
140 |
+
``m``-th order derivative of a polynomial in ``K[x]``.
|
141 |
+
|
142 |
+
Examples
|
143 |
+
========
|
144 |
+
|
145 |
+
>>> from sympy.polys import ring, ZZ
|
146 |
+
>>> R, x = ring("x", ZZ)
|
147 |
+
|
148 |
+
>>> R.dup_diff(x**3 + 2*x**2 + 3*x + 4, 1)
|
149 |
+
3*x**2 + 4*x + 3
|
150 |
+
>>> R.dup_diff(x**3 + 2*x**2 + 3*x + 4, 2)
|
151 |
+
6*x + 4
|
152 |
+
|
153 |
+
"""
|
154 |
+
if m <= 0:
|
155 |
+
return f
|
156 |
+
|
157 |
+
n = dup_degree(f)
|
158 |
+
|
159 |
+
if n < m:
|
160 |
+
return []
|
161 |
+
|
162 |
+
deriv = []
|
163 |
+
|
164 |
+
if m == 1:
|
165 |
+
for coeff in f[:-m]:
|
166 |
+
deriv.append(K(n)*coeff)
|
167 |
+
n -= 1
|
168 |
+
else:
|
169 |
+
for coeff in f[:-m]:
|
170 |
+
k = n
|
171 |
+
|
172 |
+
for i in range(n - 1, n - m, -1):
|
173 |
+
k *= i
|
174 |
+
|
175 |
+
deriv.append(K(k)*coeff)
|
176 |
+
n -= 1
|
177 |
+
|
178 |
+
return dup_strip(deriv)
|
179 |
+
|
180 |
+
|
181 |
+
def dmp_diff(f, m, u, K):
|
182 |
+
"""
|
183 |
+
``m``-th order derivative in ``x_0`` of a polynomial in ``K[X]``.
|
184 |
+
|
185 |
+
Examples
|
186 |
+
========
|
187 |
+
|
188 |
+
>>> from sympy.polys import ring, ZZ
|
189 |
+
>>> R, x,y = ring("x,y", ZZ)
|
190 |
+
|
191 |
+
>>> f = x*y**2 + 2*x*y + 3*x + 2*y**2 + 3*y + 1
|
192 |
+
|
193 |
+
>>> R.dmp_diff(f, 1)
|
194 |
+
y**2 + 2*y + 3
|
195 |
+
>>> R.dmp_diff(f, 2)
|
196 |
+
0
|
197 |
+
|
198 |
+
"""
|
199 |
+
if not u:
|
200 |
+
return dup_diff(f, m, K)
|
201 |
+
if m <= 0:
|
202 |
+
return f
|
203 |
+
|
204 |
+
n = dmp_degree(f, u)
|
205 |
+
|
206 |
+
if n < m:
|
207 |
+
return dmp_zero(u)
|
208 |
+
|
209 |
+
deriv, v = [], u - 1
|
210 |
+
|
211 |
+
if m == 1:
|
212 |
+
for coeff in f[:-m]:
|
213 |
+
deriv.append(dmp_mul_ground(coeff, K(n), v, K))
|
214 |
+
n -= 1
|
215 |
+
else:
|
216 |
+
for coeff in f[:-m]:
|
217 |
+
k = n
|
218 |
+
|
219 |
+
for i in range(n - 1, n - m, -1):
|
220 |
+
k *= i
|
221 |
+
|
222 |
+
deriv.append(dmp_mul_ground(coeff, K(k), v, K))
|
223 |
+
n -= 1
|
224 |
+
|
225 |
+
return dmp_strip(deriv, u)
|
226 |
+
|
227 |
+
|
228 |
+
def _rec_diff_in(g, m, v, i, j, K):
|
229 |
+
"""Recursive helper for :func:`dmp_diff_in`."""
|
230 |
+
if i == j:
|
231 |
+
return dmp_diff(g, m, v, K)
|
232 |
+
|
233 |
+
w, i = v - 1, i + 1
|
234 |
+
|
235 |
+
return dmp_strip([ _rec_diff_in(c, m, w, i, j, K) for c in g ], v)
|
236 |
+
|
237 |
+
|
238 |
+
def dmp_diff_in(f, m, j, u, K):
|
239 |
+
"""
|
240 |
+
``m``-th order derivative in ``x_j`` of a polynomial in ``K[X]``.
|
241 |
+
|
242 |
+
Examples
|
243 |
+
========
|
244 |
+
|
245 |
+
>>> from sympy.polys import ring, ZZ
|
246 |
+
>>> R, x,y = ring("x,y", ZZ)
|
247 |
+
|
248 |
+
>>> f = x*y**2 + 2*x*y + 3*x + 2*y**2 + 3*y + 1
|
249 |
+
|
250 |
+
>>> R.dmp_diff_in(f, 1, 0)
|
251 |
+
y**2 + 2*y + 3
|
252 |
+
>>> R.dmp_diff_in(f, 1, 1)
|
253 |
+
2*x*y + 2*x + 4*y + 3
|
254 |
+
|
255 |
+
"""
|
256 |
+
if j < 0 or j > u:
|
257 |
+
raise IndexError("0 <= j <= %s expected, got %s" % (u, j))
|
258 |
+
|
259 |
+
return _rec_diff_in(f, m, u, 0, j, K)
|
260 |
+
|
261 |
+
|
262 |
+
def dup_eval(f, a, K):
|
263 |
+
"""
|
264 |
+
Evaluate a polynomial at ``x = a`` in ``K[x]`` using Horner scheme.
|
265 |
+
|
266 |
+
Examples
|
267 |
+
========
|
268 |
+
|
269 |
+
>>> from sympy.polys import ring, ZZ
|
270 |
+
>>> R, x = ring("x", ZZ)
|
271 |
+
|
272 |
+
>>> R.dup_eval(x**2 + 2*x + 3, 2)
|
273 |
+
11
|
274 |
+
|
275 |
+
"""
|
276 |
+
if not a:
|
277 |
+
return K.convert(dup_TC(f, K))
|
278 |
+
|
279 |
+
result = K.zero
|
280 |
+
|
281 |
+
for c in f:
|
282 |
+
result *= a
|
283 |
+
result += c
|
284 |
+
|
285 |
+
return result
|
286 |
+
|
287 |
+
|
288 |
+
def dmp_eval(f, a, u, K):
|
289 |
+
"""
|
290 |
+
Evaluate a polynomial at ``x_0 = a`` in ``K[X]`` using the Horner scheme.
|
291 |
+
|
292 |
+
Examples
|
293 |
+
========
|
294 |
+
|
295 |
+
>>> from sympy.polys import ring, ZZ
|
296 |
+
>>> R, x,y = ring("x,y", ZZ)
|
297 |
+
|
298 |
+
>>> R.dmp_eval(2*x*y + 3*x + y + 2, 2)
|
299 |
+
5*y + 8
|
300 |
+
|
301 |
+
"""
|
302 |
+
if not u:
|
303 |
+
return dup_eval(f, a, K)
|
304 |
+
|
305 |
+
if not a:
|
306 |
+
return dmp_TC(f, K)
|
307 |
+
|
308 |
+
result, v = dmp_LC(f, K), u - 1
|
309 |
+
|
310 |
+
for coeff in f[1:]:
|
311 |
+
result = dmp_mul_ground(result, a, v, K)
|
312 |
+
result = dmp_add(result, coeff, v, K)
|
313 |
+
|
314 |
+
return result
|
315 |
+
|
316 |
+
|
317 |
+
def _rec_eval_in(g, a, v, i, j, K):
|
318 |
+
"""Recursive helper for :func:`dmp_eval_in`."""
|
319 |
+
if i == j:
|
320 |
+
return dmp_eval(g, a, v, K)
|
321 |
+
|
322 |
+
v, i = v - 1, i + 1
|
323 |
+
|
324 |
+
return dmp_strip([ _rec_eval_in(c, a, v, i, j, K) for c in g ], v)
|
325 |
+
|
326 |
+
|
327 |
+
def dmp_eval_in(f, a, j, u, K):
|
328 |
+
"""
|
329 |
+
Evaluate a polynomial at ``x_j = a`` in ``K[X]`` using the Horner scheme.
|
330 |
+
|
331 |
+
Examples
|
332 |
+
========
|
333 |
+
|
334 |
+
>>> from sympy.polys import ring, ZZ
|
335 |
+
>>> R, x,y = ring("x,y", ZZ)
|
336 |
+
|
337 |
+
>>> f = 2*x*y + 3*x + y + 2
|
338 |
+
|
339 |
+
>>> R.dmp_eval_in(f, 2, 0)
|
340 |
+
5*y + 8
|
341 |
+
>>> R.dmp_eval_in(f, 2, 1)
|
342 |
+
7*x + 4
|
343 |
+
|
344 |
+
"""
|
345 |
+
if j < 0 or j > u:
|
346 |
+
raise IndexError("0 <= j <= %s expected, got %s" % (u, j))
|
347 |
+
|
348 |
+
return _rec_eval_in(f, a, u, 0, j, K)
|
349 |
+
|
350 |
+
|
351 |
+
def _rec_eval_tail(g, i, A, u, K):
|
352 |
+
"""Recursive helper for :func:`dmp_eval_tail`."""
|
353 |
+
if i == u:
|
354 |
+
return dup_eval(g, A[-1], K)
|
355 |
+
else:
|
356 |
+
h = [ _rec_eval_tail(c, i + 1, A, u, K) for c in g ]
|
357 |
+
|
358 |
+
if i < u - len(A) + 1:
|
359 |
+
return h
|
360 |
+
else:
|
361 |
+
return dup_eval(h, A[-u + i - 1], K)
|
362 |
+
|
363 |
+
|
364 |
+
def dmp_eval_tail(f, A, u, K):
|
365 |
+
"""
|
366 |
+
Evaluate a polynomial at ``x_j = a_j, ...`` in ``K[X]``.
|
367 |
+
|
368 |
+
Examples
|
369 |
+
========
|
370 |
+
|
371 |
+
>>> from sympy.polys import ring, ZZ
|
372 |
+
>>> R, x,y = ring("x,y", ZZ)
|
373 |
+
|
374 |
+
>>> f = 2*x*y + 3*x + y + 2
|
375 |
+
|
376 |
+
>>> R.dmp_eval_tail(f, [2])
|
377 |
+
7*x + 4
|
378 |
+
>>> R.dmp_eval_tail(f, [2, 2])
|
379 |
+
18
|
380 |
+
|
381 |
+
"""
|
382 |
+
if not A:
|
383 |
+
return f
|
384 |
+
|
385 |
+
if dmp_zero_p(f, u):
|
386 |
+
return dmp_zero(u - len(A))
|
387 |
+
|
388 |
+
e = _rec_eval_tail(f, 0, A, u, K)
|
389 |
+
|
390 |
+
if u == len(A) - 1:
|
391 |
+
return e
|
392 |
+
else:
|
393 |
+
return dmp_strip(e, u - len(A))
|
394 |
+
|
395 |
+
|
396 |
+
def _rec_diff_eval(g, m, a, v, i, j, K):
|
397 |
+
"""Recursive helper for :func:`dmp_diff_eval`."""
|
398 |
+
if i == j:
|
399 |
+
return dmp_eval(dmp_diff(g, m, v, K), a, v, K)
|
400 |
+
|
401 |
+
v, i = v - 1, i + 1
|
402 |
+
|
403 |
+
return dmp_strip([ _rec_diff_eval(c, m, a, v, i, j, K) for c in g ], v)
|
404 |
+
|
405 |
+
|
406 |
+
def dmp_diff_eval_in(f, m, a, j, u, K):
|
407 |
+
"""
|
408 |
+
Differentiate and evaluate a polynomial in ``x_j`` at ``a`` in ``K[X]``.
|
409 |
+
|
410 |
+
Examples
|
411 |
+
========
|
412 |
+
|
413 |
+
>>> from sympy.polys import ring, ZZ
|
414 |
+
>>> R, x,y = ring("x,y", ZZ)
|
415 |
+
|
416 |
+
>>> f = x*y**2 + 2*x*y + 3*x + 2*y**2 + 3*y + 1
|
417 |
+
|
418 |
+
>>> R.dmp_diff_eval_in(f, 1, 2, 0)
|
419 |
+
y**2 + 2*y + 3
|
420 |
+
>>> R.dmp_diff_eval_in(f, 1, 2, 1)
|
421 |
+
6*x + 11
|
422 |
+
|
423 |
+
"""
|
424 |
+
if j > u:
|
425 |
+
raise IndexError("-%s <= j < %s expected, got %s" % (u, u, j))
|
426 |
+
if not j:
|
427 |
+
return dmp_eval(dmp_diff(f, m, u, K), a, u, K)
|
428 |
+
|
429 |
+
return _rec_diff_eval(f, m, a, u, 0, j, K)
|
430 |
+
|
431 |
+
|
432 |
+
def dup_trunc(f, p, K):
|
433 |
+
"""
|
434 |
+
Reduce a ``K[x]`` polynomial modulo a constant ``p`` in ``K``.
|
435 |
+
|
436 |
+
Examples
|
437 |
+
========
|
438 |
+
|
439 |
+
>>> from sympy.polys import ring, ZZ
|
440 |
+
>>> R, x = ring("x", ZZ)
|
441 |
+
|
442 |
+
>>> R.dup_trunc(2*x**3 + 3*x**2 + 5*x + 7, ZZ(3))
|
443 |
+
-x**3 - x + 1
|
444 |
+
|
445 |
+
"""
|
446 |
+
if K.is_ZZ:
|
447 |
+
g = []
|
448 |
+
|
449 |
+
for c in f:
|
450 |
+
c = c % p
|
451 |
+
|
452 |
+
if c > p // 2:
|
453 |
+
g.append(c - p)
|
454 |
+
else:
|
455 |
+
g.append(c)
|
456 |
+
else:
|
457 |
+
g = [ c % p for c in f ]
|
458 |
+
|
459 |
+
return dup_strip(g)
|
460 |
+
|
461 |
+
|
462 |
+
def dmp_trunc(f, p, u, K):
|
463 |
+
"""
|
464 |
+
Reduce a ``K[X]`` polynomial modulo a polynomial ``p`` in ``K[Y]``.
|
465 |
+
|
466 |
+
Examples
|
467 |
+
========
|
468 |
+
|
469 |
+
>>> from sympy.polys import ring, ZZ
|
470 |
+
>>> R, x,y = ring("x,y", ZZ)
|
471 |
+
|
472 |
+
>>> f = 3*x**2*y + 8*x**2 + 5*x*y + 6*x + 2*y + 3
|
473 |
+
>>> g = (y - 1).drop(x)
|
474 |
+
|
475 |
+
>>> R.dmp_trunc(f, g)
|
476 |
+
11*x**2 + 11*x + 5
|
477 |
+
|
478 |
+
"""
|
479 |
+
return dmp_strip([ dmp_rem(c, p, u - 1, K) for c in f ], u)
|
480 |
+
|
481 |
+
|
482 |
+
def dmp_ground_trunc(f, p, u, K):
|
483 |
+
"""
|
484 |
+
Reduce a ``K[X]`` polynomial modulo a constant ``p`` in ``K``.
|
485 |
+
|
486 |
+
Examples
|
487 |
+
========
|
488 |
+
|
489 |
+
>>> from sympy.polys import ring, ZZ
|
490 |
+
>>> R, x,y = ring("x,y", ZZ)
|
491 |
+
|
492 |
+
>>> f = 3*x**2*y + 8*x**2 + 5*x*y + 6*x + 2*y + 3
|
493 |
+
|
494 |
+
>>> R.dmp_ground_trunc(f, ZZ(3))
|
495 |
+
-x**2 - x*y - y
|
496 |
+
|
497 |
+
"""
|
498 |
+
if not u:
|
499 |
+
return dup_trunc(f, p, K)
|
500 |
+
|
501 |
+
v = u - 1
|
502 |
+
|
503 |
+
return dmp_strip([ dmp_ground_trunc(c, p, v, K) for c in f ], u)
|
504 |
+
|
505 |
+
|
506 |
+
def dup_monic(f, K):
|
507 |
+
"""
|
508 |
+
Divide all coefficients by ``LC(f)`` in ``K[x]``.
|
509 |
+
|
510 |
+
Examples
|
511 |
+
========
|
512 |
+
|
513 |
+
>>> from sympy.polys import ring, ZZ, QQ
|
514 |
+
|
515 |
+
>>> R, x = ring("x", ZZ)
|
516 |
+
>>> R.dup_monic(3*x**2 + 6*x + 9)
|
517 |
+
x**2 + 2*x + 3
|
518 |
+
|
519 |
+
>>> R, x = ring("x", QQ)
|
520 |
+
>>> R.dup_monic(3*x**2 + 4*x + 2)
|
521 |
+
x**2 + 4/3*x + 2/3
|
522 |
+
|
523 |
+
"""
|
524 |
+
if not f:
|
525 |
+
return f
|
526 |
+
|
527 |
+
lc = dup_LC(f, K)
|
528 |
+
|
529 |
+
if K.is_one(lc):
|
530 |
+
return f
|
531 |
+
else:
|
532 |
+
return dup_exquo_ground(f, lc, K)
|
533 |
+
|
534 |
+
|
535 |
+
def dmp_ground_monic(f, u, K):
|
536 |
+
"""
|
537 |
+
Divide all coefficients by ``LC(f)`` in ``K[X]``.
|
538 |
+
|
539 |
+
Examples
|
540 |
+
========
|
541 |
+
|
542 |
+
>>> from sympy.polys import ring, ZZ, QQ
|
543 |
+
|
544 |
+
>>> R, x,y = ring("x,y", ZZ)
|
545 |
+
>>> f = 3*x**2*y + 6*x**2 + 3*x*y + 9*y + 3
|
546 |
+
|
547 |
+
>>> R.dmp_ground_monic(f)
|
548 |
+
x**2*y + 2*x**2 + x*y + 3*y + 1
|
549 |
+
|
550 |
+
>>> R, x,y = ring("x,y", QQ)
|
551 |
+
>>> f = 3*x**2*y + 8*x**2 + 5*x*y + 6*x + 2*y + 3
|
552 |
+
|
553 |
+
>>> R.dmp_ground_monic(f)
|
554 |
+
x**2*y + 8/3*x**2 + 5/3*x*y + 2*x + 2/3*y + 1
|
555 |
+
|
556 |
+
"""
|
557 |
+
if not u:
|
558 |
+
return dup_monic(f, K)
|
559 |
+
|
560 |
+
if dmp_zero_p(f, u):
|
561 |
+
return f
|
562 |
+
|
563 |
+
lc = dmp_ground_LC(f, u, K)
|
564 |
+
|
565 |
+
if K.is_one(lc):
|
566 |
+
return f
|
567 |
+
else:
|
568 |
+
return dmp_exquo_ground(f, lc, u, K)
|
569 |
+
|
570 |
+
|
571 |
+
def dup_content(f, K):
|
572 |
+
"""
|
573 |
+
Compute the GCD of coefficients of ``f`` in ``K[x]``.
|
574 |
+
|
575 |
+
Examples
|
576 |
+
========
|
577 |
+
|
578 |
+
>>> from sympy.polys import ring, ZZ, QQ
|
579 |
+
|
580 |
+
>>> R, x = ring("x", ZZ)
|
581 |
+
>>> f = 6*x**2 + 8*x + 12
|
582 |
+
|
583 |
+
>>> R.dup_content(f)
|
584 |
+
2
|
585 |
+
|
586 |
+
>>> R, x = ring("x", QQ)
|
587 |
+
>>> f = 6*x**2 + 8*x + 12
|
588 |
+
|
589 |
+
>>> R.dup_content(f)
|
590 |
+
2
|
591 |
+
|
592 |
+
"""
|
593 |
+
from sympy.polys.domains import QQ
|
594 |
+
|
595 |
+
if not f:
|
596 |
+
return K.zero
|
597 |
+
|
598 |
+
cont = K.zero
|
599 |
+
|
600 |
+
if K == QQ:
|
601 |
+
for c in f:
|
602 |
+
cont = K.gcd(cont, c)
|
603 |
+
else:
|
604 |
+
for c in f:
|
605 |
+
cont = K.gcd(cont, c)
|
606 |
+
|
607 |
+
if K.is_one(cont):
|
608 |
+
break
|
609 |
+
|
610 |
+
return cont
|
611 |
+
|
612 |
+
|
613 |
+
def dmp_ground_content(f, u, K):
|
614 |
+
"""
|
615 |
+
Compute the GCD of coefficients of ``f`` in ``K[X]``.
|
616 |
+
|
617 |
+
Examples
|
618 |
+
========
|
619 |
+
|
620 |
+
>>> from sympy.polys import ring, ZZ, QQ
|
621 |
+
|
622 |
+
>>> R, x,y = ring("x,y", ZZ)
|
623 |
+
>>> f = 2*x*y + 6*x + 4*y + 12
|
624 |
+
|
625 |
+
>>> R.dmp_ground_content(f)
|
626 |
+
2
|
627 |
+
|
628 |
+
>>> R, x,y = ring("x,y", QQ)
|
629 |
+
>>> f = 2*x*y + 6*x + 4*y + 12
|
630 |
+
|
631 |
+
>>> R.dmp_ground_content(f)
|
632 |
+
2
|
633 |
+
|
634 |
+
"""
|
635 |
+
from sympy.polys.domains import QQ
|
636 |
+
|
637 |
+
if not u:
|
638 |
+
return dup_content(f, K)
|
639 |
+
|
640 |
+
if dmp_zero_p(f, u):
|
641 |
+
return K.zero
|
642 |
+
|
643 |
+
cont, v = K.zero, u - 1
|
644 |
+
|
645 |
+
if K == QQ:
|
646 |
+
for c in f:
|
647 |
+
cont = K.gcd(cont, dmp_ground_content(c, v, K))
|
648 |
+
else:
|
649 |
+
for c in f:
|
650 |
+
cont = K.gcd(cont, dmp_ground_content(c, v, K))
|
651 |
+
|
652 |
+
if K.is_one(cont):
|
653 |
+
break
|
654 |
+
|
655 |
+
return cont
|
656 |
+
|
657 |
+
|
658 |
+
def dup_primitive(f, K):
|
659 |
+
"""
|
660 |
+
Compute content and the primitive form of ``f`` in ``K[x]``.
|
661 |
+
|
662 |
+
Examples
|
663 |
+
========
|
664 |
+
|
665 |
+
>>> from sympy.polys import ring, ZZ, QQ
|
666 |
+
|
667 |
+
>>> R, x = ring("x", ZZ)
|
668 |
+
>>> f = 6*x**2 + 8*x + 12
|
669 |
+
|
670 |
+
>>> R.dup_primitive(f)
|
671 |
+
(2, 3*x**2 + 4*x + 6)
|
672 |
+
|
673 |
+
>>> R, x = ring("x", QQ)
|
674 |
+
>>> f = 6*x**2 + 8*x + 12
|
675 |
+
|
676 |
+
>>> R.dup_primitive(f)
|
677 |
+
(2, 3*x**2 + 4*x + 6)
|
678 |
+
|
679 |
+
"""
|
680 |
+
if not f:
|
681 |
+
return K.zero, f
|
682 |
+
|
683 |
+
cont = dup_content(f, K)
|
684 |
+
|
685 |
+
if K.is_one(cont):
|
686 |
+
return cont, f
|
687 |
+
else:
|
688 |
+
return cont, dup_quo_ground(f, cont, K)
|
689 |
+
|
690 |
+
|
691 |
+
def dmp_ground_primitive(f, u, K):
|
692 |
+
"""
|
693 |
+
Compute content and the primitive form of ``f`` in ``K[X]``.
|
694 |
+
|
695 |
+
Examples
|
696 |
+
========
|
697 |
+
|
698 |
+
>>> from sympy.polys import ring, ZZ, QQ
|
699 |
+
|
700 |
+
>>> R, x,y = ring("x,y", ZZ)
|
701 |
+
>>> f = 2*x*y + 6*x + 4*y + 12
|
702 |
+
|
703 |
+
>>> R.dmp_ground_primitive(f)
|
704 |
+
(2, x*y + 3*x + 2*y + 6)
|
705 |
+
|
706 |
+
>>> R, x,y = ring("x,y", QQ)
|
707 |
+
>>> f = 2*x*y + 6*x + 4*y + 12
|
708 |
+
|
709 |
+
>>> R.dmp_ground_primitive(f)
|
710 |
+
(2, x*y + 3*x + 2*y + 6)
|
711 |
+
|
712 |
+
"""
|
713 |
+
if not u:
|
714 |
+
return dup_primitive(f, K)
|
715 |
+
|
716 |
+
if dmp_zero_p(f, u):
|
717 |
+
return K.zero, f
|
718 |
+
|
719 |
+
cont = dmp_ground_content(f, u, K)
|
720 |
+
|
721 |
+
if K.is_one(cont):
|
722 |
+
return cont, f
|
723 |
+
else:
|
724 |
+
return cont, dmp_quo_ground(f, cont, u, K)
|
725 |
+
|
726 |
+
|
727 |
+
def dup_extract(f, g, K):
|
728 |
+
"""
|
729 |
+
Extract common content from a pair of polynomials in ``K[x]``.
|
730 |
+
|
731 |
+
Examples
|
732 |
+
========
|
733 |
+
|
734 |
+
>>> from sympy.polys import ring, ZZ
|
735 |
+
>>> R, x = ring("x", ZZ)
|
736 |
+
|
737 |
+
>>> R.dup_extract(6*x**2 + 12*x + 18, 4*x**2 + 8*x + 12)
|
738 |
+
(2, 3*x**2 + 6*x + 9, 2*x**2 + 4*x + 6)
|
739 |
+
|
740 |
+
"""
|
741 |
+
fc = dup_content(f, K)
|
742 |
+
gc = dup_content(g, K)
|
743 |
+
|
744 |
+
gcd = K.gcd(fc, gc)
|
745 |
+
|
746 |
+
if not K.is_one(gcd):
|
747 |
+
f = dup_quo_ground(f, gcd, K)
|
748 |
+
g = dup_quo_ground(g, gcd, K)
|
749 |
+
|
750 |
+
return gcd, f, g
|
751 |
+
|
752 |
+
|
753 |
+
def dmp_ground_extract(f, g, u, K):
|
754 |
+
"""
|
755 |
+
Extract common content from a pair of polynomials in ``K[X]``.
|
756 |
+
|
757 |
+
Examples
|
758 |
+
========
|
759 |
+
|
760 |
+
>>> from sympy.polys import ring, ZZ
|
761 |
+
>>> R, x,y = ring("x,y", ZZ)
|
762 |
+
|
763 |
+
>>> R.dmp_ground_extract(6*x*y + 12*x + 18, 4*x*y + 8*x + 12)
|
764 |
+
(2, 3*x*y + 6*x + 9, 2*x*y + 4*x + 6)
|
765 |
+
|
766 |
+
"""
|
767 |
+
fc = dmp_ground_content(f, u, K)
|
768 |
+
gc = dmp_ground_content(g, u, K)
|
769 |
+
|
770 |
+
gcd = K.gcd(fc, gc)
|
771 |
+
|
772 |
+
if not K.is_one(gcd):
|
773 |
+
f = dmp_quo_ground(f, gcd, u, K)
|
774 |
+
g = dmp_quo_ground(g, gcd, u, K)
|
775 |
+
|
776 |
+
return gcd, f, g
|
777 |
+
|
778 |
+
|
779 |
+
def dup_real_imag(f, K):
|
780 |
+
"""
|
781 |
+
Return bivariate polynomials ``f1`` and ``f2``, such that ``f = f1 + f2*I``.
|
782 |
+
|
783 |
+
Examples
|
784 |
+
========
|
785 |
+
|
786 |
+
>>> from sympy.polys import ring, ZZ
|
787 |
+
>>> R, x,y = ring("x,y", ZZ)
|
788 |
+
|
789 |
+
>>> R.dup_real_imag(x**3 + x**2 + x + 1)
|
790 |
+
(x**3 + x**2 - 3*x*y**2 + x - y**2 + 1, 3*x**2*y + 2*x*y - y**3 + y)
|
791 |
+
|
792 |
+
"""
|
793 |
+
if not K.is_ZZ and not K.is_QQ:
|
794 |
+
raise DomainError("computing real and imaginary parts is not supported over %s" % K)
|
795 |
+
|
796 |
+
f1 = dmp_zero(1)
|
797 |
+
f2 = dmp_zero(1)
|
798 |
+
|
799 |
+
if not f:
|
800 |
+
return f1, f2
|
801 |
+
|
802 |
+
g = [[[K.one, K.zero]], [[K.one], []]]
|
803 |
+
h = dmp_ground(f[0], 2)
|
804 |
+
|
805 |
+
for c in f[1:]:
|
806 |
+
h = dmp_mul(h, g, 2, K)
|
807 |
+
h = dmp_add_term(h, dmp_ground(c, 1), 0, 2, K)
|
808 |
+
|
809 |
+
H = dup_to_raw_dict(h)
|
810 |
+
|
811 |
+
for k, h in H.items():
|
812 |
+
m = k % 4
|
813 |
+
|
814 |
+
if not m:
|
815 |
+
f1 = dmp_add(f1, h, 1, K)
|
816 |
+
elif m == 1:
|
817 |
+
f2 = dmp_add(f2, h, 1, K)
|
818 |
+
elif m == 2:
|
819 |
+
f1 = dmp_sub(f1, h, 1, K)
|
820 |
+
else:
|
821 |
+
f2 = dmp_sub(f2, h, 1, K)
|
822 |
+
|
823 |
+
return f1, f2
|
824 |
+
|
825 |
+
|
826 |
+
def dup_mirror(f, K):
|
827 |
+
"""
|
828 |
+
Evaluate efficiently the composition ``f(-x)`` in ``K[x]``.
|
829 |
+
|
830 |
+
Examples
|
831 |
+
========
|
832 |
+
|
833 |
+
>>> from sympy.polys import ring, ZZ
|
834 |
+
>>> R, x = ring("x", ZZ)
|
835 |
+
|
836 |
+
>>> R.dup_mirror(x**3 + 2*x**2 - 4*x + 2)
|
837 |
+
-x**3 + 2*x**2 + 4*x + 2
|
838 |
+
|
839 |
+
"""
|
840 |
+
f = list(f)
|
841 |
+
|
842 |
+
for i in range(len(f) - 2, -1, -2):
|
843 |
+
f[i] = -f[i]
|
844 |
+
|
845 |
+
return f
|
846 |
+
|
847 |
+
|
848 |
+
def dup_scale(f, a, K):
|
849 |
+
"""
|
850 |
+
Evaluate efficiently composition ``f(a*x)`` in ``K[x]``.
|
851 |
+
|
852 |
+
Examples
|
853 |
+
========
|
854 |
+
|
855 |
+
>>> from sympy.polys import ring, ZZ
|
856 |
+
>>> R, x = ring("x", ZZ)
|
857 |
+
|
858 |
+
>>> R.dup_scale(x**2 - 2*x + 1, ZZ(2))
|
859 |
+
4*x**2 - 4*x + 1
|
860 |
+
|
861 |
+
"""
|
862 |
+
f, n, b = list(f), len(f) - 1, a
|
863 |
+
|
864 |
+
for i in range(n - 1, -1, -1):
|
865 |
+
f[i], b = b*f[i], b*a
|
866 |
+
|
867 |
+
return f
|
868 |
+
|
869 |
+
|
870 |
+
def dup_shift(f, a, K):
|
871 |
+
"""
|
872 |
+
Evaluate efficiently Taylor shift ``f(x + a)`` in ``K[x]``.
|
873 |
+
|
874 |
+
Examples
|
875 |
+
========
|
876 |
+
|
877 |
+
>>> from sympy.polys import ring, ZZ
|
878 |
+
>>> R, x = ring("x", ZZ)
|
879 |
+
|
880 |
+
>>> R.dup_shift(x**2 - 2*x + 1, ZZ(2))
|
881 |
+
x**2 + 2*x + 1
|
882 |
+
|
883 |
+
"""
|
884 |
+
f, n = list(f), len(f) - 1
|
885 |
+
|
886 |
+
for i in range(n, 0, -1):
|
887 |
+
for j in range(0, i):
|
888 |
+
f[j + 1] += a*f[j]
|
889 |
+
|
890 |
+
return f
|
891 |
+
|
892 |
+
|
893 |
+
def dup_transform(f, p, q, K):
|
894 |
+
"""
|
895 |
+
Evaluate functional transformation ``q**n * f(p/q)`` in ``K[x]``.
|
896 |
+
|
897 |
+
Examples
|
898 |
+
========
|
899 |
+
|
900 |
+
>>> from sympy.polys import ring, ZZ
|
901 |
+
>>> R, x = ring("x", ZZ)
|
902 |
+
|
903 |
+
>>> R.dup_transform(x**2 - 2*x + 1, x**2 + 1, x - 1)
|
904 |
+
x**4 - 2*x**3 + 5*x**2 - 4*x + 4
|
905 |
+
|
906 |
+
"""
|
907 |
+
if not f:
|
908 |
+
return []
|
909 |
+
|
910 |
+
n = len(f) - 1
|
911 |
+
h, Q = [f[0]], [[K.one]]
|
912 |
+
|
913 |
+
for i in range(0, n):
|
914 |
+
Q.append(dup_mul(Q[-1], q, K))
|
915 |
+
|
916 |
+
for c, q in zip(f[1:], Q[1:]):
|
917 |
+
h = dup_mul(h, p, K)
|
918 |
+
q = dup_mul_ground(q, c, K)
|
919 |
+
h = dup_add(h, q, K)
|
920 |
+
|
921 |
+
return h
|
922 |
+
|
923 |
+
|
924 |
+
def dup_compose(f, g, K):
|
925 |
+
"""
|
926 |
+
Evaluate functional composition ``f(g)`` in ``K[x]``.
|
927 |
+
|
928 |
+
Examples
|
929 |
+
========
|
930 |
+
|
931 |
+
>>> from sympy.polys import ring, ZZ
|
932 |
+
>>> R, x = ring("x", ZZ)
|
933 |
+
|
934 |
+
>>> R.dup_compose(x**2 + x, x - 1)
|
935 |
+
x**2 - x
|
936 |
+
|
937 |
+
"""
|
938 |
+
if len(g) <= 1:
|
939 |
+
return dup_strip([dup_eval(f, dup_LC(g, K), K)])
|
940 |
+
|
941 |
+
if not f:
|
942 |
+
return []
|
943 |
+
|
944 |
+
h = [f[0]]
|
945 |
+
|
946 |
+
for c in f[1:]:
|
947 |
+
h = dup_mul(h, g, K)
|
948 |
+
h = dup_add_term(h, c, 0, K)
|
949 |
+
|
950 |
+
return h
|
951 |
+
|
952 |
+
|
953 |
+
def dmp_compose(f, g, u, K):
|
954 |
+
"""
|
955 |
+
Evaluate functional composition ``f(g)`` in ``K[X]``.
|
956 |
+
|
957 |
+
Examples
|
958 |
+
========
|
959 |
+
|
960 |
+
>>> from sympy.polys import ring, ZZ
|
961 |
+
>>> R, x,y = ring("x,y", ZZ)
|
962 |
+
|
963 |
+
>>> R.dmp_compose(x*y + 2*x + y, y)
|
964 |
+
y**2 + 3*y
|
965 |
+
|
966 |
+
"""
|
967 |
+
if not u:
|
968 |
+
return dup_compose(f, g, K)
|
969 |
+
|
970 |
+
if dmp_zero_p(f, u):
|
971 |
+
return f
|
972 |
+
|
973 |
+
h = [f[0]]
|
974 |
+
|
975 |
+
for c in f[1:]:
|
976 |
+
h = dmp_mul(h, g, u, K)
|
977 |
+
h = dmp_add_term(h, c, 0, u, K)
|
978 |
+
|
979 |
+
return h
|
980 |
+
|
981 |
+
|
982 |
+
def _dup_right_decompose(f, s, K):
|
983 |
+
"""Helper function for :func:`_dup_decompose`."""
|
984 |
+
n = len(f) - 1
|
985 |
+
lc = dup_LC(f, K)
|
986 |
+
|
987 |
+
f = dup_to_raw_dict(f)
|
988 |
+
g = { s: K.one }
|
989 |
+
|
990 |
+
r = n // s
|
991 |
+
|
992 |
+
for i in range(1, s):
|
993 |
+
coeff = K.zero
|
994 |
+
|
995 |
+
for j in range(0, i):
|
996 |
+
if not n + j - i in f:
|
997 |
+
continue
|
998 |
+
|
999 |
+
if not s - j in g:
|
1000 |
+
continue
|
1001 |
+
|
1002 |
+
fc, gc = f[n + j - i], g[s - j]
|
1003 |
+
coeff += (i - r*j)*fc*gc
|
1004 |
+
|
1005 |
+
g[s - i] = K.quo(coeff, i*r*lc)
|
1006 |
+
|
1007 |
+
return dup_from_raw_dict(g, K)
|
1008 |
+
|
1009 |
+
|
1010 |
+
def _dup_left_decompose(f, h, K):
|
1011 |
+
"""Helper function for :func:`_dup_decompose`."""
|
1012 |
+
g, i = {}, 0
|
1013 |
+
|
1014 |
+
while f:
|
1015 |
+
q, r = dup_div(f, h, K)
|
1016 |
+
|
1017 |
+
if dup_degree(r) > 0:
|
1018 |
+
return None
|
1019 |
+
else:
|
1020 |
+
g[i] = dup_LC(r, K)
|
1021 |
+
f, i = q, i + 1
|
1022 |
+
|
1023 |
+
return dup_from_raw_dict(g, K)
|
1024 |
+
|
1025 |
+
|
1026 |
+
def _dup_decompose(f, K):
|
1027 |
+
"""Helper function for :func:`dup_decompose`."""
|
1028 |
+
df = len(f) - 1
|
1029 |
+
|
1030 |
+
for s in range(2, df):
|
1031 |
+
if df % s != 0:
|
1032 |
+
continue
|
1033 |
+
|
1034 |
+
h = _dup_right_decompose(f, s, K)
|
1035 |
+
|
1036 |
+
if h is not None:
|
1037 |
+
g = _dup_left_decompose(f, h, K)
|
1038 |
+
|
1039 |
+
if g is not None:
|
1040 |
+
return g, h
|
1041 |
+
|
1042 |
+
return None
|
1043 |
+
|
1044 |
+
|
1045 |
+
def dup_decompose(f, K):
|
1046 |
+
"""
|
1047 |
+
Computes functional decomposition of ``f`` in ``K[x]``.
|
1048 |
+
|
1049 |
+
Given a univariate polynomial ``f`` with coefficients in a field of
|
1050 |
+
characteristic zero, returns list ``[f_1, f_2, ..., f_n]``, where::
|
1051 |
+
|
1052 |
+
f = f_1 o f_2 o ... f_n = f_1(f_2(... f_n))
|
1053 |
+
|
1054 |
+
and ``f_2, ..., f_n`` are monic and homogeneous polynomials of at
|
1055 |
+
least second degree.
|
1056 |
+
|
1057 |
+
Unlike factorization, complete functional decompositions of
|
1058 |
+
polynomials are not unique, consider examples:
|
1059 |
+
|
1060 |
+
1. ``f o g = f(x + b) o (g - b)``
|
1061 |
+
2. ``x**n o x**m = x**m o x**n``
|
1062 |
+
3. ``T_n o T_m = T_m o T_n``
|
1063 |
+
|
1064 |
+
where ``T_n`` and ``T_m`` are Chebyshev polynomials.
|
1065 |
+
|
1066 |
+
Examples
|
1067 |
+
========
|
1068 |
+
|
1069 |
+
>>> from sympy.polys import ring, ZZ
|
1070 |
+
>>> R, x = ring("x", ZZ)
|
1071 |
+
|
1072 |
+
>>> R.dup_decompose(x**4 - 2*x**3 + x**2)
|
1073 |
+
[x**2, x**2 - x]
|
1074 |
+
|
1075 |
+
References
|
1076 |
+
==========
|
1077 |
+
|
1078 |
+
.. [1] [Kozen89]_
|
1079 |
+
|
1080 |
+
"""
|
1081 |
+
F = []
|
1082 |
+
|
1083 |
+
while True:
|
1084 |
+
result = _dup_decompose(f, K)
|
1085 |
+
|
1086 |
+
if result is not None:
|
1087 |
+
f, h = result
|
1088 |
+
F = [h] + F
|
1089 |
+
else:
|
1090 |
+
break
|
1091 |
+
|
1092 |
+
return [f] + F
|
1093 |
+
|
1094 |
+
|
1095 |
+
def dmp_lift(f, u, K):
|
1096 |
+
"""
|
1097 |
+
Convert algebraic coefficients to integers in ``K[X]``.
|
1098 |
+
|
1099 |
+
Examples
|
1100 |
+
========
|
1101 |
+
|
1102 |
+
>>> from sympy.polys import ring, QQ
|
1103 |
+
>>> from sympy import I
|
1104 |
+
|
1105 |
+
>>> K = QQ.algebraic_field(I)
|
1106 |
+
>>> R, x = ring("x", K)
|
1107 |
+
|
1108 |
+
>>> f = x**2 + K([QQ(1), QQ(0)])*x + K([QQ(2), QQ(0)])
|
1109 |
+
|
1110 |
+
>>> R.dmp_lift(f)
|
1111 |
+
x**8 + 2*x**6 + 9*x**4 - 8*x**2 + 16
|
1112 |
+
|
1113 |
+
"""
|
1114 |
+
if K.is_GaussianField:
|
1115 |
+
K1 = K.as_AlgebraicField()
|
1116 |
+
f = dmp_convert(f, u, K, K1)
|
1117 |
+
K = K1
|
1118 |
+
|
1119 |
+
if not K.is_Algebraic:
|
1120 |
+
raise DomainError(
|
1121 |
+
'computation can be done only in an algebraic domain')
|
1122 |
+
|
1123 |
+
F, monoms, polys = dmp_to_dict(f, u), [], []
|
1124 |
+
|
1125 |
+
for monom, coeff in F.items():
|
1126 |
+
if not coeff.is_ground:
|
1127 |
+
monoms.append(monom)
|
1128 |
+
|
1129 |
+
perms = variations([-1, 1], len(monoms), repetition=True)
|
1130 |
+
|
1131 |
+
for perm in perms:
|
1132 |
+
G = dict(F)
|
1133 |
+
|
1134 |
+
for sign, monom in zip(perm, monoms):
|
1135 |
+
if sign == -1:
|
1136 |
+
G[monom] = -G[monom]
|
1137 |
+
|
1138 |
+
polys.append(dmp_from_dict(G, u, K))
|
1139 |
+
|
1140 |
+
return dmp_convert(dmp_expand(polys, u, K), u, K, K.dom)
|
1141 |
+
|
1142 |
+
|
1143 |
+
def dup_sign_variations(f, K):
|
1144 |
+
"""
|
1145 |
+
Compute the number of sign variations of ``f`` in ``K[x]``.
|
1146 |
+
|
1147 |
+
Examples
|
1148 |
+
========
|
1149 |
+
|
1150 |
+
>>> from sympy.polys import ring, ZZ
|
1151 |
+
>>> R, x = ring("x", ZZ)
|
1152 |
+
|
1153 |
+
>>> R.dup_sign_variations(x**4 - x**2 - x + 1)
|
1154 |
+
2
|
1155 |
+
|
1156 |
+
"""
|
1157 |
+
prev, k = K.zero, 0
|
1158 |
+
|
1159 |
+
for coeff in f:
|
1160 |
+
if K.is_negative(coeff*prev):
|
1161 |
+
k += 1
|
1162 |
+
|
1163 |
+
if coeff:
|
1164 |
+
prev = coeff
|
1165 |
+
|
1166 |
+
return k
|
1167 |
+
|
1168 |
+
|
1169 |
+
def dup_clear_denoms(f, K0, K1=None, convert=False):
|
1170 |
+
"""
|
1171 |
+
Clear denominators, i.e. transform ``K_0`` to ``K_1``.
|
1172 |
+
|
1173 |
+
Examples
|
1174 |
+
========
|
1175 |
+
|
1176 |
+
>>> from sympy.polys import ring, QQ
|
1177 |
+
>>> R, x = ring("x", QQ)
|
1178 |
+
|
1179 |
+
>>> f = QQ(1,2)*x + QQ(1,3)
|
1180 |
+
|
1181 |
+
>>> R.dup_clear_denoms(f, convert=False)
|
1182 |
+
(6, 3*x + 2)
|
1183 |
+
>>> R.dup_clear_denoms(f, convert=True)
|
1184 |
+
(6, 3*x + 2)
|
1185 |
+
|
1186 |
+
"""
|
1187 |
+
if K1 is None:
|
1188 |
+
if K0.has_assoc_Ring:
|
1189 |
+
K1 = K0.get_ring()
|
1190 |
+
else:
|
1191 |
+
K1 = K0
|
1192 |
+
|
1193 |
+
common = K1.one
|
1194 |
+
|
1195 |
+
for c in f:
|
1196 |
+
common = K1.lcm(common, K0.denom(c))
|
1197 |
+
|
1198 |
+
if not K1.is_one(common):
|
1199 |
+
f = dup_mul_ground(f, common, K0)
|
1200 |
+
|
1201 |
+
if not convert:
|
1202 |
+
return common, f
|
1203 |
+
else:
|
1204 |
+
return common, dup_convert(f, K0, K1)
|
1205 |
+
|
1206 |
+
|
1207 |
+
def _rec_clear_denoms(g, v, K0, K1):
|
1208 |
+
"""Recursive helper for :func:`dmp_clear_denoms`."""
|
1209 |
+
common = K1.one
|
1210 |
+
|
1211 |
+
if not v:
|
1212 |
+
for c in g:
|
1213 |
+
common = K1.lcm(common, K0.denom(c))
|
1214 |
+
else:
|
1215 |
+
w = v - 1
|
1216 |
+
|
1217 |
+
for c in g:
|
1218 |
+
common = K1.lcm(common, _rec_clear_denoms(c, w, K0, K1))
|
1219 |
+
|
1220 |
+
return common
|
1221 |
+
|
1222 |
+
|
1223 |
+
def dmp_clear_denoms(f, u, K0, K1=None, convert=False):
|
1224 |
+
"""
|
1225 |
+
Clear denominators, i.e. transform ``K_0`` to ``K_1``.
|
1226 |
+
|
1227 |
+
Examples
|
1228 |
+
========
|
1229 |
+
|
1230 |
+
>>> from sympy.polys import ring, QQ
|
1231 |
+
>>> R, x,y = ring("x,y", QQ)
|
1232 |
+
|
1233 |
+
>>> f = QQ(1,2)*x + QQ(1,3)*y + 1
|
1234 |
+
|
1235 |
+
>>> R.dmp_clear_denoms(f, convert=False)
|
1236 |
+
(6, 3*x + 2*y + 6)
|
1237 |
+
>>> R.dmp_clear_denoms(f, convert=True)
|
1238 |
+
(6, 3*x + 2*y + 6)
|
1239 |
+
|
1240 |
+
"""
|
1241 |
+
if not u:
|
1242 |
+
return dup_clear_denoms(f, K0, K1, convert=convert)
|
1243 |
+
|
1244 |
+
if K1 is None:
|
1245 |
+
if K0.has_assoc_Ring:
|
1246 |
+
K1 = K0.get_ring()
|
1247 |
+
else:
|
1248 |
+
K1 = K0
|
1249 |
+
|
1250 |
+
common = _rec_clear_denoms(f, u, K0, K1)
|
1251 |
+
|
1252 |
+
if not K1.is_one(common):
|
1253 |
+
f = dmp_mul_ground(f, common, u, K0)
|
1254 |
+
|
1255 |
+
if not convert:
|
1256 |
+
return common, f
|
1257 |
+
else:
|
1258 |
+
return common, dmp_convert(f, u, K0, K1)
|
1259 |
+
|
1260 |
+
|
1261 |
+
def dup_revert(f, n, K):
|
1262 |
+
"""
|
1263 |
+
Compute ``f**(-1)`` mod ``x**n`` using Newton iteration.
|
1264 |
+
|
1265 |
+
This function computes first ``2**n`` terms of a polynomial that
|
1266 |
+
is a result of inversion of a polynomial modulo ``x**n``. This is
|
1267 |
+
useful to efficiently compute series expansion of ``1/f``.
|
1268 |
+
|
1269 |
+
Examples
|
1270 |
+
========
|
1271 |
+
|
1272 |
+
>>> from sympy.polys import ring, QQ
|
1273 |
+
>>> R, x = ring("x", QQ)
|
1274 |
+
|
1275 |
+
>>> f = -QQ(1,720)*x**6 + QQ(1,24)*x**4 - QQ(1,2)*x**2 + 1
|
1276 |
+
|
1277 |
+
>>> R.dup_revert(f, 8)
|
1278 |
+
61/720*x**6 + 5/24*x**4 + 1/2*x**2 + 1
|
1279 |
+
|
1280 |
+
"""
|
1281 |
+
g = [K.revert(dup_TC(f, K))]
|
1282 |
+
h = [K.one, K.zero, K.zero]
|
1283 |
+
|
1284 |
+
N = int(_ceil(_log(n, 2)))
|
1285 |
+
|
1286 |
+
for i in range(1, N + 1):
|
1287 |
+
a = dup_mul_ground(g, K(2), K)
|
1288 |
+
b = dup_mul(f, dup_sqr(g, K), K)
|
1289 |
+
g = dup_rem(dup_sub(a, b, K), h, K)
|
1290 |
+
h = dup_lshift(h, dup_degree(h), K)
|
1291 |
+
|
1292 |
+
return g
|
1293 |
+
|
1294 |
+
|
1295 |
+
def dmp_revert(f, g, u, K):
|
1296 |
+
"""
|
1297 |
+
Compute ``f**(-1)`` mod ``x**n`` using Newton iteration.
|
1298 |
+
|
1299 |
+
Examples
|
1300 |
+
========
|
1301 |
+
|
1302 |
+
>>> from sympy.polys import ring, QQ
|
1303 |
+
>>> R, x,y = ring("x,y", QQ)
|
1304 |
+
|
1305 |
+
"""
|
1306 |
+
if not u:
|
1307 |
+
return dup_revert(f, g, K)
|
1308 |
+
else:
|
1309 |
+
raise MultivariatePolynomialError(f, g)
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/dispersion.py
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core import S
|
2 |
+
from sympy.polys import Poly
|
3 |
+
|
4 |
+
|
5 |
+
def dispersionset(p, q=None, *gens, **args):
|
6 |
+
r"""Compute the *dispersion set* of two polynomials.
|
7 |
+
|
8 |
+
For two polynomials `f(x)` and `g(x)` with `\deg f > 0`
|
9 |
+
and `\deg g > 0` the dispersion set `\operatorname{J}(f, g)` is defined as:
|
10 |
+
|
11 |
+
.. math::
|
12 |
+
\operatorname{J}(f, g)
|
13 |
+
& := \{a \in \mathbb{N}_0 | \gcd(f(x), g(x+a)) \neq 1\} \\
|
14 |
+
& = \{a \in \mathbb{N}_0 | \deg \gcd(f(x), g(x+a)) \geq 1\}
|
15 |
+
|
16 |
+
For a single polynomial one defines `\operatorname{J}(f) := \operatorname{J}(f, f)`.
|
17 |
+
|
18 |
+
Examples
|
19 |
+
========
|
20 |
+
|
21 |
+
>>> from sympy import poly
|
22 |
+
>>> from sympy.polys.dispersion import dispersion, dispersionset
|
23 |
+
>>> from sympy.abc import x
|
24 |
+
|
25 |
+
Dispersion set and dispersion of a simple polynomial:
|
26 |
+
|
27 |
+
>>> fp = poly((x - 3)*(x + 3), x)
|
28 |
+
>>> sorted(dispersionset(fp))
|
29 |
+
[0, 6]
|
30 |
+
>>> dispersion(fp)
|
31 |
+
6
|
32 |
+
|
33 |
+
Note that the definition of the dispersion is not symmetric:
|
34 |
+
|
35 |
+
>>> fp = poly(x**4 - 3*x**2 + 1, x)
|
36 |
+
>>> gp = fp.shift(-3)
|
37 |
+
>>> sorted(dispersionset(fp, gp))
|
38 |
+
[2, 3, 4]
|
39 |
+
>>> dispersion(fp, gp)
|
40 |
+
4
|
41 |
+
>>> sorted(dispersionset(gp, fp))
|
42 |
+
[]
|
43 |
+
>>> dispersion(gp, fp)
|
44 |
+
-oo
|
45 |
+
|
46 |
+
Computing the dispersion also works over field extensions:
|
47 |
+
|
48 |
+
>>> from sympy import sqrt
|
49 |
+
>>> fp = poly(x**2 + sqrt(5)*x - 1, x, domain='QQ<sqrt(5)>')
|
50 |
+
>>> gp = poly(x**2 + (2 + sqrt(5))*x + sqrt(5), x, domain='QQ<sqrt(5)>')
|
51 |
+
>>> sorted(dispersionset(fp, gp))
|
52 |
+
[2]
|
53 |
+
>>> sorted(dispersionset(gp, fp))
|
54 |
+
[1, 4]
|
55 |
+
|
56 |
+
We can even perform the computations for polynomials
|
57 |
+
having symbolic coefficients:
|
58 |
+
|
59 |
+
>>> from sympy.abc import a
|
60 |
+
>>> fp = poly(4*x**4 + (4*a + 8)*x**3 + (a**2 + 6*a + 4)*x**2 + (a**2 + 2*a)*x, x)
|
61 |
+
>>> sorted(dispersionset(fp))
|
62 |
+
[0, 1]
|
63 |
+
|
64 |
+
See Also
|
65 |
+
========
|
66 |
+
|
67 |
+
dispersion
|
68 |
+
|
69 |
+
References
|
70 |
+
==========
|
71 |
+
|
72 |
+
.. [1] [ManWright94]_
|
73 |
+
.. [2] [Koepf98]_
|
74 |
+
.. [3] [Abramov71]_
|
75 |
+
.. [4] [Man93]_
|
76 |
+
"""
|
77 |
+
# Check for valid input
|
78 |
+
same = False if q is not None else True
|
79 |
+
if same:
|
80 |
+
q = p
|
81 |
+
|
82 |
+
p = Poly(p, *gens, **args)
|
83 |
+
q = Poly(q, *gens, **args)
|
84 |
+
|
85 |
+
if not p.is_univariate or not q.is_univariate:
|
86 |
+
raise ValueError("Polynomials need to be univariate")
|
87 |
+
|
88 |
+
# The generator
|
89 |
+
if not p.gen == q.gen:
|
90 |
+
raise ValueError("Polynomials must have the same generator")
|
91 |
+
gen = p.gen
|
92 |
+
|
93 |
+
# We define the dispersion of constant polynomials to be zero
|
94 |
+
if p.degree() < 1 or q.degree() < 1:
|
95 |
+
return {0}
|
96 |
+
|
97 |
+
# Factor p and q over the rationals
|
98 |
+
fp = p.factor_list()
|
99 |
+
fq = q.factor_list() if not same else fp
|
100 |
+
|
101 |
+
# Iterate over all pairs of factors
|
102 |
+
J = set()
|
103 |
+
for s, unused in fp[1]:
|
104 |
+
for t, unused in fq[1]:
|
105 |
+
m = s.degree()
|
106 |
+
n = t.degree()
|
107 |
+
if n != m:
|
108 |
+
continue
|
109 |
+
an = s.LC()
|
110 |
+
bn = t.LC()
|
111 |
+
if not (an - bn).is_zero:
|
112 |
+
continue
|
113 |
+
# Note that the roles of `s` and `t` below are switched
|
114 |
+
# w.r.t. the original paper. This is for consistency
|
115 |
+
# with the description in the book of W. Koepf.
|
116 |
+
anm1 = s.coeff_monomial(gen**(m-1))
|
117 |
+
bnm1 = t.coeff_monomial(gen**(n-1))
|
118 |
+
alpha = (anm1 - bnm1) / S(n*bn)
|
119 |
+
if not alpha.is_integer:
|
120 |
+
continue
|
121 |
+
if alpha < 0 or alpha in J:
|
122 |
+
continue
|
123 |
+
if n > 1 and not (s - t.shift(alpha)).is_zero:
|
124 |
+
continue
|
125 |
+
J.add(alpha)
|
126 |
+
|
127 |
+
return J
|
128 |
+
|
129 |
+
|
130 |
+
def dispersion(p, q=None, *gens, **args):
|
131 |
+
r"""Compute the *dispersion* of polynomials.
|
132 |
+
|
133 |
+
For two polynomials `f(x)` and `g(x)` with `\deg f > 0`
|
134 |
+
and `\deg g > 0` the dispersion `\operatorname{dis}(f, g)` is defined as:
|
135 |
+
|
136 |
+
.. math::
|
137 |
+
\operatorname{dis}(f, g)
|
138 |
+
& := \max\{ J(f,g) \cup \{0\} \} \\
|
139 |
+
& = \max\{ \{a \in \mathbb{N} | \gcd(f(x), g(x+a)) \neq 1\} \cup \{0\} \}
|
140 |
+
|
141 |
+
and for a single polynomial `\operatorname{dis}(f) := \operatorname{dis}(f, f)`.
|
142 |
+
Note that we make the definition `\max\{\} := -\infty`.
|
143 |
+
|
144 |
+
Examples
|
145 |
+
========
|
146 |
+
|
147 |
+
>>> from sympy import poly
|
148 |
+
>>> from sympy.polys.dispersion import dispersion, dispersionset
|
149 |
+
>>> from sympy.abc import x
|
150 |
+
|
151 |
+
Dispersion set and dispersion of a simple polynomial:
|
152 |
+
|
153 |
+
>>> fp = poly((x - 3)*(x + 3), x)
|
154 |
+
>>> sorted(dispersionset(fp))
|
155 |
+
[0, 6]
|
156 |
+
>>> dispersion(fp)
|
157 |
+
6
|
158 |
+
|
159 |
+
Note that the definition of the dispersion is not symmetric:
|
160 |
+
|
161 |
+
>>> fp = poly(x**4 - 3*x**2 + 1, x)
|
162 |
+
>>> gp = fp.shift(-3)
|
163 |
+
>>> sorted(dispersionset(fp, gp))
|
164 |
+
[2, 3, 4]
|
165 |
+
>>> dispersion(fp, gp)
|
166 |
+
4
|
167 |
+
>>> sorted(dispersionset(gp, fp))
|
168 |
+
[]
|
169 |
+
>>> dispersion(gp, fp)
|
170 |
+
-oo
|
171 |
+
|
172 |
+
The maximum of an empty set is defined to be `-\infty`
|
173 |
+
as seen in this example.
|
174 |
+
|
175 |
+
Computing the dispersion also works over field extensions:
|
176 |
+
|
177 |
+
>>> from sympy import sqrt
|
178 |
+
>>> fp = poly(x**2 + sqrt(5)*x - 1, x, domain='QQ<sqrt(5)>')
|
179 |
+
>>> gp = poly(x**2 + (2 + sqrt(5))*x + sqrt(5), x, domain='QQ<sqrt(5)>')
|
180 |
+
>>> sorted(dispersionset(fp, gp))
|
181 |
+
[2]
|
182 |
+
>>> sorted(dispersionset(gp, fp))
|
183 |
+
[1, 4]
|
184 |
+
|
185 |
+
We can even perform the computations for polynomials
|
186 |
+
having symbolic coefficients:
|
187 |
+
|
188 |
+
>>> from sympy.abc import a
|
189 |
+
>>> fp = poly(4*x**4 + (4*a + 8)*x**3 + (a**2 + 6*a + 4)*x**2 + (a**2 + 2*a)*x, x)
|
190 |
+
>>> sorted(dispersionset(fp))
|
191 |
+
[0, 1]
|
192 |
+
|
193 |
+
See Also
|
194 |
+
========
|
195 |
+
|
196 |
+
dispersionset
|
197 |
+
|
198 |
+
References
|
199 |
+
==========
|
200 |
+
|
201 |
+
.. [1] [ManWright94]_
|
202 |
+
.. [2] [Koepf98]_
|
203 |
+
.. [3] [Abramov71]_
|
204 |
+
.. [4] [Man93]_
|
205 |
+
"""
|
206 |
+
J = dispersionset(p, q, *gens, **args)
|
207 |
+
if not J:
|
208 |
+
# Definition for maximum of empty set
|
209 |
+
j = S.NegativeInfinity
|
210 |
+
else:
|
211 |
+
j = max(J)
|
212 |
+
return j
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/distributedmodules.py
ADDED
@@ -0,0 +1,739 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
r"""
|
2 |
+
Sparse distributed elements of free modules over multivariate (generalized)
|
3 |
+
polynomial rings.
|
4 |
+
|
5 |
+
This code and its data structures are very much like the distributed
|
6 |
+
polynomials, except that the first "exponent" of the monomial is
|
7 |
+
a module generator index. That is, the multi-exponent ``(i, e_1, ..., e_n)``
|
8 |
+
represents the "monomial" `x_1^{e_1} \cdots x_n^{e_n} f_i` of the free module
|
9 |
+
`F` generated by `f_1, \ldots, f_r` over (a localization of) the ring
|
10 |
+
`K[x_1, \ldots, x_n]`. A module element is simply stored as a list of terms
|
11 |
+
ordered by the monomial order. Here a term is a pair of a multi-exponent and a
|
12 |
+
coefficient. In general, this coefficient should never be zero (since it can
|
13 |
+
then be omitted). The zero module element is stored as an empty list.
|
14 |
+
|
15 |
+
The main routines are ``sdm_nf_mora`` and ``sdm_groebner`` which can be used
|
16 |
+
to compute, respectively, weak normal forms and standard bases. They work with
|
17 |
+
arbitrary (not necessarily global) monomial orders.
|
18 |
+
|
19 |
+
In general, product orders have to be used to construct valid monomial orders
|
20 |
+
for modules. However, ``lex`` can be used as-is.
|
21 |
+
|
22 |
+
Note that the "level" (number of variables, i.e. parameter u+1 in
|
23 |
+
distributedpolys.py) is never needed in this code.
|
24 |
+
|
25 |
+
The main reference for this file is [SCA],
|
26 |
+
"A Singular Introduction to Commutative Algebra".
|
27 |
+
"""
|
28 |
+
|
29 |
+
|
30 |
+
from itertools import permutations
|
31 |
+
|
32 |
+
from sympy.polys.monomials import (
|
33 |
+
monomial_mul, monomial_lcm, monomial_div, monomial_deg
|
34 |
+
)
|
35 |
+
|
36 |
+
from sympy.polys.polytools import Poly
|
37 |
+
from sympy.polys.polyutils import parallel_dict_from_expr
|
38 |
+
from sympy.core.singleton import S
|
39 |
+
from sympy.core.sympify import sympify
|
40 |
+
|
41 |
+
# Additional monomial tools.
|
42 |
+
|
43 |
+
|
44 |
+
def sdm_monomial_mul(M, X):
|
45 |
+
"""
|
46 |
+
Multiply tuple ``X`` representing a monomial of `K[X]` into the tuple
|
47 |
+
``M`` representing a monomial of `F`.
|
48 |
+
|
49 |
+
Examples
|
50 |
+
========
|
51 |
+
|
52 |
+
Multiplying `xy^3` into `x f_1` yields `x^2 y^3 f_1`:
|
53 |
+
|
54 |
+
>>> from sympy.polys.distributedmodules import sdm_monomial_mul
|
55 |
+
>>> sdm_monomial_mul((1, 1, 0), (1, 3))
|
56 |
+
(1, 2, 3)
|
57 |
+
"""
|
58 |
+
return (M[0],) + monomial_mul(X, M[1:])
|
59 |
+
|
60 |
+
|
61 |
+
def sdm_monomial_deg(M):
|
62 |
+
"""
|
63 |
+
Return the total degree of ``M``.
|
64 |
+
|
65 |
+
Examples
|
66 |
+
========
|
67 |
+
|
68 |
+
For example, the total degree of `x^2 y f_5` is 3:
|
69 |
+
|
70 |
+
>>> from sympy.polys.distributedmodules import sdm_monomial_deg
|
71 |
+
>>> sdm_monomial_deg((5, 2, 1))
|
72 |
+
3
|
73 |
+
"""
|
74 |
+
return monomial_deg(M[1:])
|
75 |
+
|
76 |
+
|
77 |
+
def sdm_monomial_lcm(A, B):
|
78 |
+
r"""
|
79 |
+
Return the "least common multiple" of ``A`` and ``B``.
|
80 |
+
|
81 |
+
IF `A = M e_j` and `B = N e_j`, where `M` and `N` are polynomial monomials,
|
82 |
+
this returns `\lcm(M, N) e_j`. Note that ``A`` and ``B`` involve distinct
|
83 |
+
monomials.
|
84 |
+
|
85 |
+
Otherwise the result is undefined.
|
86 |
+
|
87 |
+
Examples
|
88 |
+
========
|
89 |
+
|
90 |
+
>>> from sympy.polys.distributedmodules import sdm_monomial_lcm
|
91 |
+
>>> sdm_monomial_lcm((1, 2, 3), (1, 0, 5))
|
92 |
+
(1, 2, 5)
|
93 |
+
"""
|
94 |
+
return (A[0],) + monomial_lcm(A[1:], B[1:])
|
95 |
+
|
96 |
+
|
97 |
+
def sdm_monomial_divides(A, B):
|
98 |
+
"""
|
99 |
+
Does there exist a (polynomial) monomial X such that XA = B?
|
100 |
+
|
101 |
+
Examples
|
102 |
+
========
|
103 |
+
|
104 |
+
Positive examples:
|
105 |
+
|
106 |
+
In the following examples, the monomial is given in terms of x, y and the
|
107 |
+
generator(s), f_1, f_2 etc. The tuple form of that monomial is used in
|
108 |
+
the call to sdm_monomial_divides.
|
109 |
+
Note: the generator appears last in the expression but first in the tuple
|
110 |
+
and other factors appear in the same order that they appear in the monomial
|
111 |
+
expression.
|
112 |
+
|
113 |
+
`A = f_1` divides `B = f_1`
|
114 |
+
|
115 |
+
>>> from sympy.polys.distributedmodules import sdm_monomial_divides
|
116 |
+
>>> sdm_monomial_divides((1, 0, 0), (1, 0, 0))
|
117 |
+
True
|
118 |
+
|
119 |
+
`A = f_1` divides `B = x^2 y f_1`
|
120 |
+
|
121 |
+
>>> sdm_monomial_divides((1, 0, 0), (1, 2, 1))
|
122 |
+
True
|
123 |
+
|
124 |
+
`A = xy f_5` divides `B = x^2 y f_5`
|
125 |
+
|
126 |
+
>>> sdm_monomial_divides((5, 1, 1), (5, 2, 1))
|
127 |
+
True
|
128 |
+
|
129 |
+
Negative examples:
|
130 |
+
|
131 |
+
`A = f_1` does not divide `B = f_2`
|
132 |
+
|
133 |
+
>>> sdm_monomial_divides((1, 0, 0), (2, 0, 0))
|
134 |
+
False
|
135 |
+
|
136 |
+
`A = x f_1` does not divide `B = f_1`
|
137 |
+
|
138 |
+
>>> sdm_monomial_divides((1, 1, 0), (1, 0, 0))
|
139 |
+
False
|
140 |
+
|
141 |
+
`A = xy^2 f_5` does not divide `B = y f_5`
|
142 |
+
|
143 |
+
>>> sdm_monomial_divides((5, 1, 2), (5, 0, 1))
|
144 |
+
False
|
145 |
+
"""
|
146 |
+
return A[0] == B[0] and all(a <= b for a, b in zip(A[1:], B[1:]))
|
147 |
+
|
148 |
+
|
149 |
+
# The actual distributed modules code.
|
150 |
+
|
151 |
+
def sdm_LC(f, K):
|
152 |
+
"""Returns the leading coefficient of ``f``. """
|
153 |
+
if not f:
|
154 |
+
return K.zero
|
155 |
+
else:
|
156 |
+
return f[0][1]
|
157 |
+
|
158 |
+
|
159 |
+
def sdm_to_dict(f):
|
160 |
+
"""Make a dictionary from a distributed polynomial. """
|
161 |
+
return dict(f)
|
162 |
+
|
163 |
+
|
164 |
+
def sdm_from_dict(d, O):
|
165 |
+
"""
|
166 |
+
Create an sdm from a dictionary.
|
167 |
+
|
168 |
+
Here ``O`` is the monomial order to use.
|
169 |
+
|
170 |
+
Examples
|
171 |
+
========
|
172 |
+
|
173 |
+
>>> from sympy.polys.distributedmodules import sdm_from_dict
|
174 |
+
>>> from sympy.polys import QQ, lex
|
175 |
+
>>> dic = {(1, 1, 0): QQ(1), (1, 0, 0): QQ(2), (0, 1, 0): QQ(0)}
|
176 |
+
>>> sdm_from_dict(dic, lex)
|
177 |
+
[((1, 1, 0), 1), ((1, 0, 0), 2)]
|
178 |
+
"""
|
179 |
+
return sdm_strip(sdm_sort(list(d.items()), O))
|
180 |
+
|
181 |
+
|
182 |
+
def sdm_sort(f, O):
|
183 |
+
"""Sort terms in ``f`` using the given monomial order ``O``. """
|
184 |
+
return sorted(f, key=lambda term: O(term[0]), reverse=True)
|
185 |
+
|
186 |
+
|
187 |
+
def sdm_strip(f):
|
188 |
+
"""Remove terms with zero coefficients from ``f`` in ``K[X]``. """
|
189 |
+
return [ (monom, coeff) for monom, coeff in f if coeff ]
|
190 |
+
|
191 |
+
|
192 |
+
def sdm_add(f, g, O, K):
|
193 |
+
"""
|
194 |
+
Add two module elements ``f``, ``g``.
|
195 |
+
|
196 |
+
Addition is done over the ground field ``K``, monomials are ordered
|
197 |
+
according to ``O``.
|
198 |
+
|
199 |
+
Examples
|
200 |
+
========
|
201 |
+
|
202 |
+
All examples use lexicographic order.
|
203 |
+
|
204 |
+
`(xy f_1) + (f_2) = f_2 + xy f_1`
|
205 |
+
|
206 |
+
>>> from sympy.polys.distributedmodules import sdm_add
|
207 |
+
>>> from sympy.polys import lex, QQ
|
208 |
+
>>> sdm_add([((1, 1, 1), QQ(1))], [((2, 0, 0), QQ(1))], lex, QQ)
|
209 |
+
[((2, 0, 0), 1), ((1, 1, 1), 1)]
|
210 |
+
|
211 |
+
`(xy f_1) + (-xy f_1)` = 0`
|
212 |
+
|
213 |
+
>>> sdm_add([((1, 1, 1), QQ(1))], [((1, 1, 1), QQ(-1))], lex, QQ)
|
214 |
+
[]
|
215 |
+
|
216 |
+
`(f_1) + (2f_1) = 3f_1`
|
217 |
+
|
218 |
+
>>> sdm_add([((1, 0, 0), QQ(1))], [((1, 0, 0), QQ(2))], lex, QQ)
|
219 |
+
[((1, 0, 0), 3)]
|
220 |
+
|
221 |
+
`(yf_1) + (xf_1) = xf_1 + yf_1`
|
222 |
+
|
223 |
+
>>> sdm_add([((1, 0, 1), QQ(1))], [((1, 1, 0), QQ(1))], lex, QQ)
|
224 |
+
[((1, 1, 0), 1), ((1, 0, 1), 1)]
|
225 |
+
"""
|
226 |
+
h = dict(f)
|
227 |
+
|
228 |
+
for monom, c in g:
|
229 |
+
if monom in h:
|
230 |
+
coeff = h[monom] + c
|
231 |
+
|
232 |
+
if not coeff:
|
233 |
+
del h[monom]
|
234 |
+
else:
|
235 |
+
h[monom] = coeff
|
236 |
+
else:
|
237 |
+
h[monom] = c
|
238 |
+
|
239 |
+
return sdm_from_dict(h, O)
|
240 |
+
|
241 |
+
|
242 |
+
def sdm_LM(f):
|
243 |
+
r"""
|
244 |
+
Returns the leading monomial of ``f``.
|
245 |
+
|
246 |
+
Only valid if `f \ne 0`.
|
247 |
+
|
248 |
+
Examples
|
249 |
+
========
|
250 |
+
|
251 |
+
>>> from sympy.polys.distributedmodules import sdm_LM, sdm_from_dict
|
252 |
+
>>> from sympy.polys import QQ, lex
|
253 |
+
>>> dic = {(1, 2, 3): QQ(1), (4, 0, 0): QQ(1), (4, 0, 1): QQ(1)}
|
254 |
+
>>> sdm_LM(sdm_from_dict(dic, lex))
|
255 |
+
(4, 0, 1)
|
256 |
+
"""
|
257 |
+
return f[0][0]
|
258 |
+
|
259 |
+
|
260 |
+
def sdm_LT(f):
|
261 |
+
r"""
|
262 |
+
Returns the leading term of ``f``.
|
263 |
+
|
264 |
+
Only valid if `f \ne 0`.
|
265 |
+
|
266 |
+
Examples
|
267 |
+
========
|
268 |
+
|
269 |
+
>>> from sympy.polys.distributedmodules import sdm_LT, sdm_from_dict
|
270 |
+
>>> from sympy.polys import QQ, lex
|
271 |
+
>>> dic = {(1, 2, 3): QQ(1), (4, 0, 0): QQ(2), (4, 0, 1): QQ(3)}
|
272 |
+
>>> sdm_LT(sdm_from_dict(dic, lex))
|
273 |
+
((4, 0, 1), 3)
|
274 |
+
"""
|
275 |
+
return f[0]
|
276 |
+
|
277 |
+
|
278 |
+
def sdm_mul_term(f, term, O, K):
|
279 |
+
"""
|
280 |
+
Multiply a distributed module element ``f`` by a (polynomial) term ``term``.
|
281 |
+
|
282 |
+
Multiplication of coefficients is done over the ground field ``K``, and
|
283 |
+
monomials are ordered according to ``O``.
|
284 |
+
|
285 |
+
Examples
|
286 |
+
========
|
287 |
+
|
288 |
+
`0 f_1 = 0`
|
289 |
+
|
290 |
+
>>> from sympy.polys.distributedmodules import sdm_mul_term
|
291 |
+
>>> from sympy.polys import lex, QQ
|
292 |
+
>>> sdm_mul_term([((1, 0, 0), QQ(1))], ((0, 0), QQ(0)), lex, QQ)
|
293 |
+
[]
|
294 |
+
|
295 |
+
`x 0 = 0`
|
296 |
+
|
297 |
+
>>> sdm_mul_term([], ((1, 0), QQ(1)), lex, QQ)
|
298 |
+
[]
|
299 |
+
|
300 |
+
`(x) (f_1) = xf_1`
|
301 |
+
|
302 |
+
>>> sdm_mul_term([((1, 0, 0), QQ(1))], ((1, 0), QQ(1)), lex, QQ)
|
303 |
+
[((1, 1, 0), 1)]
|
304 |
+
|
305 |
+
`(2xy) (3x f_1 + 4y f_2) = 8xy^2 f_2 + 6x^2y f_1`
|
306 |
+
|
307 |
+
>>> f = [((2, 0, 1), QQ(4)), ((1, 1, 0), QQ(3))]
|
308 |
+
>>> sdm_mul_term(f, ((1, 1), QQ(2)), lex, QQ)
|
309 |
+
[((2, 1, 2), 8), ((1, 2, 1), 6)]
|
310 |
+
"""
|
311 |
+
X, c = term
|
312 |
+
|
313 |
+
if not f or not c:
|
314 |
+
return []
|
315 |
+
else:
|
316 |
+
if K.is_one(c):
|
317 |
+
return [ (sdm_monomial_mul(f_M, X), f_c) for f_M, f_c in f ]
|
318 |
+
else:
|
319 |
+
return [ (sdm_monomial_mul(f_M, X), f_c * c) for f_M, f_c in f ]
|
320 |
+
|
321 |
+
|
322 |
+
def sdm_zero():
|
323 |
+
"""Return the zero module element."""
|
324 |
+
return []
|
325 |
+
|
326 |
+
|
327 |
+
def sdm_deg(f):
|
328 |
+
"""
|
329 |
+
Degree of ``f``.
|
330 |
+
|
331 |
+
This is the maximum of the degrees of all its monomials.
|
332 |
+
Invalid if ``f`` is zero.
|
333 |
+
|
334 |
+
Examples
|
335 |
+
========
|
336 |
+
|
337 |
+
>>> from sympy.polys.distributedmodules import sdm_deg
|
338 |
+
>>> sdm_deg([((1, 2, 3), 1), ((10, 0, 1), 1), ((2, 3, 4), 4)])
|
339 |
+
7
|
340 |
+
"""
|
341 |
+
return max(sdm_monomial_deg(M[0]) for M in f)
|
342 |
+
|
343 |
+
|
344 |
+
# Conversion
|
345 |
+
|
346 |
+
def sdm_from_vector(vec, O, K, **opts):
|
347 |
+
"""
|
348 |
+
Create an sdm from an iterable of expressions.
|
349 |
+
|
350 |
+
Coefficients are created in the ground field ``K``, and terms are ordered
|
351 |
+
according to monomial order ``O``. Named arguments are passed on to the
|
352 |
+
polys conversion code and can be used to specify for example generators.
|
353 |
+
|
354 |
+
Examples
|
355 |
+
========
|
356 |
+
|
357 |
+
>>> from sympy.polys.distributedmodules import sdm_from_vector
|
358 |
+
>>> from sympy.abc import x, y, z
|
359 |
+
>>> from sympy.polys import QQ, lex
|
360 |
+
>>> sdm_from_vector([x**2+y**2, 2*z], lex, QQ)
|
361 |
+
[((1, 0, 0, 1), 2), ((0, 2, 0, 0), 1), ((0, 0, 2, 0), 1)]
|
362 |
+
"""
|
363 |
+
dics, gens = parallel_dict_from_expr(sympify(vec), **opts)
|
364 |
+
dic = {}
|
365 |
+
for i, d in enumerate(dics):
|
366 |
+
for k, v in d.items():
|
367 |
+
dic[(i,) + k] = K.convert(v)
|
368 |
+
return sdm_from_dict(dic, O)
|
369 |
+
|
370 |
+
|
371 |
+
def sdm_to_vector(f, gens, K, n=None):
|
372 |
+
"""
|
373 |
+
Convert sdm ``f`` into a list of polynomial expressions.
|
374 |
+
|
375 |
+
The generators for the polynomial ring are specified via ``gens``. The rank
|
376 |
+
of the module is guessed, or passed via ``n``. The ground field is assumed
|
377 |
+
to be ``K``.
|
378 |
+
|
379 |
+
Examples
|
380 |
+
========
|
381 |
+
|
382 |
+
>>> from sympy.polys.distributedmodules import sdm_to_vector
|
383 |
+
>>> from sympy.abc import x, y, z
|
384 |
+
>>> from sympy.polys import QQ
|
385 |
+
>>> f = [((1, 0, 0, 1), QQ(2)), ((0, 2, 0, 0), QQ(1)), ((0, 0, 2, 0), QQ(1))]
|
386 |
+
>>> sdm_to_vector(f, [x, y, z], QQ)
|
387 |
+
[x**2 + y**2, 2*z]
|
388 |
+
"""
|
389 |
+
dic = sdm_to_dict(f)
|
390 |
+
dics = {}
|
391 |
+
for k, v in dic.items():
|
392 |
+
dics.setdefault(k[0], []).append((k[1:], v))
|
393 |
+
n = n or len(dics)
|
394 |
+
res = []
|
395 |
+
for k in range(n):
|
396 |
+
if k in dics:
|
397 |
+
res.append(Poly(dict(dics[k]), gens=gens, domain=K).as_expr())
|
398 |
+
else:
|
399 |
+
res.append(S.Zero)
|
400 |
+
return res
|
401 |
+
|
402 |
+
# Algorithms.
|
403 |
+
|
404 |
+
|
405 |
+
def sdm_spoly(f, g, O, K, phantom=None):
|
406 |
+
"""
|
407 |
+
Compute the generalized s-polynomial of ``f`` and ``g``.
|
408 |
+
|
409 |
+
The ground field is assumed to be ``K``, and monomials ordered according to
|
410 |
+
``O``.
|
411 |
+
|
412 |
+
This is invalid if either of ``f`` or ``g`` is zero.
|
413 |
+
|
414 |
+
If the leading terms of `f` and `g` involve different basis elements of
|
415 |
+
`F`, their s-poly is defined to be zero. Otherwise it is a certain linear
|
416 |
+
combination of `f` and `g` in which the leading terms cancel.
|
417 |
+
See [SCA, defn 2.3.6] for details.
|
418 |
+
|
419 |
+
If ``phantom`` is not ``None``, it should be a pair of module elements on
|
420 |
+
which to perform the same operation(s) as on ``f`` and ``g``. The in this
|
421 |
+
case both results are returned.
|
422 |
+
|
423 |
+
Examples
|
424 |
+
========
|
425 |
+
|
426 |
+
>>> from sympy.polys.distributedmodules import sdm_spoly
|
427 |
+
>>> from sympy.polys import QQ, lex
|
428 |
+
>>> f = [((2, 1, 1), QQ(1)), ((1, 0, 1), QQ(1))]
|
429 |
+
>>> g = [((2, 3, 0), QQ(1))]
|
430 |
+
>>> h = [((1, 2, 3), QQ(1))]
|
431 |
+
>>> sdm_spoly(f, h, lex, QQ)
|
432 |
+
[]
|
433 |
+
>>> sdm_spoly(f, g, lex, QQ)
|
434 |
+
[((1, 2, 1), 1)]
|
435 |
+
"""
|
436 |
+
if not f or not g:
|
437 |
+
return sdm_zero()
|
438 |
+
LM1 = sdm_LM(f)
|
439 |
+
LM2 = sdm_LM(g)
|
440 |
+
if LM1[0] != LM2[0]:
|
441 |
+
return sdm_zero()
|
442 |
+
LM1 = LM1[1:]
|
443 |
+
LM2 = LM2[1:]
|
444 |
+
lcm = monomial_lcm(LM1, LM2)
|
445 |
+
m1 = monomial_div(lcm, LM1)
|
446 |
+
m2 = monomial_div(lcm, LM2)
|
447 |
+
c = K.quo(-sdm_LC(f, K), sdm_LC(g, K))
|
448 |
+
r1 = sdm_add(sdm_mul_term(f, (m1, K.one), O, K),
|
449 |
+
sdm_mul_term(g, (m2, c), O, K), O, K)
|
450 |
+
if phantom is None:
|
451 |
+
return r1
|
452 |
+
r2 = sdm_add(sdm_mul_term(phantom[0], (m1, K.one), O, K),
|
453 |
+
sdm_mul_term(phantom[1], (m2, c), O, K), O, K)
|
454 |
+
return r1, r2
|
455 |
+
|
456 |
+
|
457 |
+
def sdm_ecart(f):
|
458 |
+
"""
|
459 |
+
Compute the ecart of ``f``.
|
460 |
+
|
461 |
+
This is defined to be the difference of the total degree of `f` and the
|
462 |
+
total degree of the leading monomial of `f` [SCA, defn 2.3.7].
|
463 |
+
|
464 |
+
Invalid if f is zero.
|
465 |
+
|
466 |
+
Examples
|
467 |
+
========
|
468 |
+
|
469 |
+
>>> from sympy.polys.distributedmodules import sdm_ecart
|
470 |
+
>>> sdm_ecart([((1, 2, 3), 1), ((1, 0, 1), 1)])
|
471 |
+
0
|
472 |
+
>>> sdm_ecart([((2, 2, 1), 1), ((1, 5, 1), 1)])
|
473 |
+
3
|
474 |
+
"""
|
475 |
+
return sdm_deg(f) - sdm_monomial_deg(sdm_LM(f))
|
476 |
+
|
477 |
+
|
478 |
+
def sdm_nf_mora(f, G, O, K, phantom=None):
|
479 |
+
r"""
|
480 |
+
Compute a weak normal form of ``f`` with respect to ``G`` and order ``O``.
|
481 |
+
|
482 |
+
The ground field is assumed to be ``K``, and monomials ordered according to
|
483 |
+
``O``.
|
484 |
+
|
485 |
+
Weak normal forms are defined in [SCA, defn 2.3.3]. They are not unique.
|
486 |
+
This function deterministically computes a weak normal form, depending on
|
487 |
+
the order of `G`.
|
488 |
+
|
489 |
+
The most important property of a weak normal form is the following: if
|
490 |
+
`R` is the ring associated with the monomial ordering (if the ordering is
|
491 |
+
global, we just have `R = K[x_1, \ldots, x_n]`, otherwise it is a certain
|
492 |
+
localization thereof), `I` any ideal of `R` and `G` a standard basis for
|
493 |
+
`I`, then for any `f \in R`, we have `f \in I` if and only if
|
494 |
+
`NF(f | G) = 0`.
|
495 |
+
|
496 |
+
This is the generalized Mora algorithm for computing weak normal forms with
|
497 |
+
respect to arbitrary monomial orders [SCA, algorithm 2.3.9].
|
498 |
+
|
499 |
+
If ``phantom`` is not ``None``, it should be a pair of "phantom" arguments
|
500 |
+
on which to perform the same computations as on ``f``, ``G``, both results
|
501 |
+
are then returned.
|
502 |
+
"""
|
503 |
+
from itertools import repeat
|
504 |
+
h = f
|
505 |
+
T = list(G)
|
506 |
+
if phantom is not None:
|
507 |
+
# "phantom" variables with suffix p
|
508 |
+
hp = phantom[0]
|
509 |
+
Tp = list(phantom[1])
|
510 |
+
phantom = True
|
511 |
+
else:
|
512 |
+
Tp = repeat([])
|
513 |
+
phantom = False
|
514 |
+
while h:
|
515 |
+
# TODO better data structure!!!
|
516 |
+
Th = [(g, sdm_ecart(g), gp) for g, gp in zip(T, Tp)
|
517 |
+
if sdm_monomial_divides(sdm_LM(g), sdm_LM(h))]
|
518 |
+
if not Th:
|
519 |
+
break
|
520 |
+
g, _, gp = min(Th, key=lambda x: x[1])
|
521 |
+
if sdm_ecart(g) > sdm_ecart(h):
|
522 |
+
T.append(h)
|
523 |
+
if phantom:
|
524 |
+
Tp.append(hp)
|
525 |
+
if phantom:
|
526 |
+
h, hp = sdm_spoly(h, g, O, K, phantom=(hp, gp))
|
527 |
+
else:
|
528 |
+
h = sdm_spoly(h, g, O, K)
|
529 |
+
if phantom:
|
530 |
+
return h, hp
|
531 |
+
return h
|
532 |
+
|
533 |
+
|
534 |
+
def sdm_nf_buchberger(f, G, O, K, phantom=None):
|
535 |
+
r"""
|
536 |
+
Compute a weak normal form of ``f`` with respect to ``G`` and order ``O``.
|
537 |
+
|
538 |
+
The ground field is assumed to be ``K``, and monomials ordered according to
|
539 |
+
``O``.
|
540 |
+
|
541 |
+
This is the standard Buchberger algorithm for computing weak normal forms with
|
542 |
+
respect to *global* monomial orders [SCA, algorithm 1.6.10].
|
543 |
+
|
544 |
+
If ``phantom`` is not ``None``, it should be a pair of "phantom" arguments
|
545 |
+
on which to perform the same computations as on ``f``, ``G``, both results
|
546 |
+
are then returned.
|
547 |
+
"""
|
548 |
+
from itertools import repeat
|
549 |
+
h = f
|
550 |
+
T = list(G)
|
551 |
+
if phantom is not None:
|
552 |
+
# "phantom" variables with suffix p
|
553 |
+
hp = phantom[0]
|
554 |
+
Tp = list(phantom[1])
|
555 |
+
phantom = True
|
556 |
+
else:
|
557 |
+
Tp = repeat([])
|
558 |
+
phantom = False
|
559 |
+
while h:
|
560 |
+
try:
|
561 |
+
g, gp = next((g, gp) for g, gp in zip(T, Tp)
|
562 |
+
if sdm_monomial_divides(sdm_LM(g), sdm_LM(h)))
|
563 |
+
except StopIteration:
|
564 |
+
break
|
565 |
+
if phantom:
|
566 |
+
h, hp = sdm_spoly(h, g, O, K, phantom=(hp, gp))
|
567 |
+
else:
|
568 |
+
h = sdm_spoly(h, g, O, K)
|
569 |
+
if phantom:
|
570 |
+
return h, hp
|
571 |
+
return h
|
572 |
+
|
573 |
+
|
574 |
+
def sdm_nf_buchberger_reduced(f, G, O, K):
|
575 |
+
r"""
|
576 |
+
Compute a reduced normal form of ``f`` with respect to ``G`` and order ``O``.
|
577 |
+
|
578 |
+
The ground field is assumed to be ``K``, and monomials ordered according to
|
579 |
+
``O``.
|
580 |
+
|
581 |
+
In contrast to weak normal forms, reduced normal forms *are* unique, but
|
582 |
+
their computation is more expensive.
|
583 |
+
|
584 |
+
This is the standard Buchberger algorithm for computing reduced normal forms
|
585 |
+
with respect to *global* monomial orders [SCA, algorithm 1.6.11].
|
586 |
+
|
587 |
+
The ``pantom`` option is not supported, so this normal form cannot be used
|
588 |
+
as a normal form for the "extended" groebner algorithm.
|
589 |
+
"""
|
590 |
+
h = sdm_zero()
|
591 |
+
g = f
|
592 |
+
while g:
|
593 |
+
g = sdm_nf_buchberger(g, G, O, K)
|
594 |
+
if g:
|
595 |
+
h = sdm_add(h, [sdm_LT(g)], O, K)
|
596 |
+
g = g[1:]
|
597 |
+
return h
|
598 |
+
|
599 |
+
|
600 |
+
def sdm_groebner(G, NF, O, K, extended=False):
|
601 |
+
"""
|
602 |
+
Compute a minimal standard basis of ``G`` with respect to order ``O``.
|
603 |
+
|
604 |
+
The algorithm uses a normal form ``NF``, for example ``sdm_nf_mora``.
|
605 |
+
The ground field is assumed to be ``K``, and monomials ordered according
|
606 |
+
to ``O``.
|
607 |
+
|
608 |
+
Let `N` denote the submodule generated by elements of `G`. A standard
|
609 |
+
basis for `N` is a subset `S` of `N`, such that `in(S) = in(N)`, where for
|
610 |
+
any subset `X` of `F`, `in(X)` denotes the submodule generated by the
|
611 |
+
initial forms of elements of `X`. [SCA, defn 2.3.2]
|
612 |
+
|
613 |
+
A standard basis is called minimal if no subset of it is a standard basis.
|
614 |
+
|
615 |
+
One may show that standard bases are always generating sets.
|
616 |
+
|
617 |
+
Minimal standard bases are not unique. This algorithm computes a
|
618 |
+
deterministic result, depending on the particular order of `G`.
|
619 |
+
|
620 |
+
If ``extended=True``, also compute the transition matrix from the initial
|
621 |
+
generators to the groebner basis. That is, return a list of coefficient
|
622 |
+
vectors, expressing the elements of the groebner basis in terms of the
|
623 |
+
elements of ``G``.
|
624 |
+
|
625 |
+
This functions implements the "sugar" strategy, see
|
626 |
+
|
627 |
+
Giovini et al: "One sugar cube, please" OR Selection strategies in
|
628 |
+
Buchberger algorithm.
|
629 |
+
"""
|
630 |
+
|
631 |
+
# The critical pair set.
|
632 |
+
# A critical pair is stored as (i, j, s, t) where (i, j) defines the pair
|
633 |
+
# (by indexing S), s is the sugar of the pair, and t is the lcm of their
|
634 |
+
# leading monomials.
|
635 |
+
P = []
|
636 |
+
|
637 |
+
# The eventual standard basis.
|
638 |
+
S = []
|
639 |
+
Sugars = []
|
640 |
+
|
641 |
+
def Ssugar(i, j):
|
642 |
+
"""Compute the sugar of the S-poly corresponding to (i, j)."""
|
643 |
+
LMi = sdm_LM(S[i])
|
644 |
+
LMj = sdm_LM(S[j])
|
645 |
+
return max(Sugars[i] - sdm_monomial_deg(LMi),
|
646 |
+
Sugars[j] - sdm_monomial_deg(LMj)) \
|
647 |
+
+ sdm_monomial_deg(sdm_monomial_lcm(LMi, LMj))
|
648 |
+
|
649 |
+
ourkey = lambda p: (p[2], O(p[3]), p[1])
|
650 |
+
|
651 |
+
def update(f, sugar, P):
|
652 |
+
"""Add f with sugar ``sugar`` to S, update P."""
|
653 |
+
if not f:
|
654 |
+
return P
|
655 |
+
k = len(S)
|
656 |
+
S.append(f)
|
657 |
+
Sugars.append(sugar)
|
658 |
+
|
659 |
+
LMf = sdm_LM(f)
|
660 |
+
|
661 |
+
def removethis(pair):
|
662 |
+
i, j, s, t = pair
|
663 |
+
if LMf[0] != t[0]:
|
664 |
+
return False
|
665 |
+
tik = sdm_monomial_lcm(LMf, sdm_LM(S[i]))
|
666 |
+
tjk = sdm_monomial_lcm(LMf, sdm_LM(S[j]))
|
667 |
+
return tik != t and tjk != t and sdm_monomial_divides(tik, t) and \
|
668 |
+
sdm_monomial_divides(tjk, t)
|
669 |
+
# apply the chain criterion
|
670 |
+
P = [p for p in P if not removethis(p)]
|
671 |
+
|
672 |
+
# new-pair set
|
673 |
+
N = [(i, k, Ssugar(i, k), sdm_monomial_lcm(LMf, sdm_LM(S[i])))
|
674 |
+
for i in range(k) if LMf[0] == sdm_LM(S[i])[0]]
|
675 |
+
# TODO apply the product criterion?
|
676 |
+
N.sort(key=ourkey)
|
677 |
+
remove = set()
|
678 |
+
for i, p in enumerate(N):
|
679 |
+
for j in range(i + 1, len(N)):
|
680 |
+
if sdm_monomial_divides(p[3], N[j][3]):
|
681 |
+
remove.add(j)
|
682 |
+
|
683 |
+
# TODO mergesort?
|
684 |
+
P.extend(reversed([p for i, p in enumerate(N) if i not in remove]))
|
685 |
+
P.sort(key=ourkey, reverse=True)
|
686 |
+
# NOTE reverse-sort, because we want to pop from the end
|
687 |
+
return P
|
688 |
+
|
689 |
+
# Figure out the number of generators in the ground ring.
|
690 |
+
try:
|
691 |
+
# NOTE: we look for the first non-zero vector, take its first monomial
|
692 |
+
# the number of generators in the ring is one less than the length
|
693 |
+
# (since the zeroth entry is for the module generators)
|
694 |
+
numgens = len(next(x[0] for x in G if x)[0]) - 1
|
695 |
+
except StopIteration:
|
696 |
+
# No non-zero elements in G ...
|
697 |
+
if extended:
|
698 |
+
return [], []
|
699 |
+
return []
|
700 |
+
|
701 |
+
# This list will store expressions of the elements of S in terms of the
|
702 |
+
# initial generators
|
703 |
+
coefficients = []
|
704 |
+
|
705 |
+
# First add all the elements of G to S
|
706 |
+
for i, f in enumerate(G):
|
707 |
+
P = update(f, sdm_deg(f), P)
|
708 |
+
if extended and f:
|
709 |
+
coefficients.append(sdm_from_dict({(i,) + (0,)*numgens: K(1)}, O))
|
710 |
+
|
711 |
+
# Now carry out the buchberger algorithm.
|
712 |
+
while P:
|
713 |
+
i, j, s, t = P.pop()
|
714 |
+
f, g = S[i], S[j]
|
715 |
+
if extended:
|
716 |
+
sp, coeff = sdm_spoly(f, g, O, K,
|
717 |
+
phantom=(coefficients[i], coefficients[j]))
|
718 |
+
h, hcoeff = NF(sp, S, O, K, phantom=(coeff, coefficients))
|
719 |
+
if h:
|
720 |
+
coefficients.append(hcoeff)
|
721 |
+
else:
|
722 |
+
h = NF(sdm_spoly(f, g, O, K), S, O, K)
|
723 |
+
P = update(h, Ssugar(i, j), P)
|
724 |
+
|
725 |
+
# Finally interreduce the standard basis.
|
726 |
+
# (TODO again, better data structures)
|
727 |
+
S = {(tuple(f), i) for i, f in enumerate(S)}
|
728 |
+
for (a, ai), (b, bi) in permutations(S, 2):
|
729 |
+
A = sdm_LM(a)
|
730 |
+
B = sdm_LM(b)
|
731 |
+
if sdm_monomial_divides(A, B) and (b, bi) in S and (a, ai) in S:
|
732 |
+
S.remove((b, bi))
|
733 |
+
|
734 |
+
L = sorted(((list(f), i) for f, i in S), key=lambda p: O(sdm_LM(p[0])),
|
735 |
+
reverse=True)
|
736 |
+
res = [x[0] for x in L]
|
737 |
+
if extended:
|
738 |
+
return res, [coefficients[i] for _, i in L]
|
739 |
+
return res
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/domainmatrix.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Stub module to expose DomainMatrix which has now moved to
|
3 |
+
sympy.polys.matrices package. It should now be imported as:
|
4 |
+
|
5 |
+
>>> from sympy.polys.matrices import DomainMatrix
|
6 |
+
|
7 |
+
This module might be removed in future.
|
8 |
+
"""
|
9 |
+
|
10 |
+
from sympy.polys.matrices.domainmatrix import DomainMatrix
|
11 |
+
|
12 |
+
__all__ = ['DomainMatrix']
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/domains/algebraicfield.py
ADDED
@@ -0,0 +1,605 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Implementation of :class:`AlgebraicField` class. """
|
2 |
+
|
3 |
+
|
4 |
+
from sympy.core.add import Add
|
5 |
+
from sympy.core.mul import Mul
|
6 |
+
from sympy.core.singleton import S
|
7 |
+
from sympy.polys.domains.characteristiczero import CharacteristicZero
|
8 |
+
from sympy.polys.domains.field import Field
|
9 |
+
from sympy.polys.domains.simpledomain import SimpleDomain
|
10 |
+
from sympy.polys.polyclasses import ANP
|
11 |
+
from sympy.polys.polyerrors import CoercionFailed, DomainError, NotAlgebraic, IsomorphismFailed
|
12 |
+
from sympy.utilities import public
|
13 |
+
|
14 |
+
@public
|
15 |
+
class AlgebraicField(Field, CharacteristicZero, SimpleDomain):
|
16 |
+
r"""Algebraic number field :ref:`QQ(a)`
|
17 |
+
|
18 |
+
A :ref:`QQ(a)` domain represents an `algebraic number field`_
|
19 |
+
`\mathbb{Q}(a)` as a :py:class:`~.Domain` in the domain system (see
|
20 |
+
:ref:`polys-domainsintro`).
|
21 |
+
|
22 |
+
A :py:class:`~.Poly` created from an expression involving `algebraic
|
23 |
+
numbers`_ will treat the algebraic numbers as generators if the generators
|
24 |
+
argument is not specified.
|
25 |
+
|
26 |
+
>>> from sympy import Poly, Symbol, sqrt
|
27 |
+
>>> x = Symbol('x')
|
28 |
+
>>> Poly(x**2 + sqrt(2))
|
29 |
+
Poly(x**2 + (sqrt(2)), x, sqrt(2), domain='ZZ')
|
30 |
+
|
31 |
+
That is a multivariate polynomial with ``sqrt(2)`` treated as one of the
|
32 |
+
generators (variables). If the generators are explicitly specified then
|
33 |
+
``sqrt(2)`` will be considered to be a coefficient but by default the
|
34 |
+
:ref:`EX` domain is used. To make a :py:class:`~.Poly` with a :ref:`QQ(a)`
|
35 |
+
domain the argument ``extension=True`` can be given.
|
36 |
+
|
37 |
+
>>> Poly(x**2 + sqrt(2), x)
|
38 |
+
Poly(x**2 + sqrt(2), x, domain='EX')
|
39 |
+
>>> Poly(x**2 + sqrt(2), x, extension=True)
|
40 |
+
Poly(x**2 + sqrt(2), x, domain='QQ<sqrt(2)>')
|
41 |
+
|
42 |
+
A generator of the algebraic field extension can also be specified
|
43 |
+
explicitly which is particularly useful if the coefficients are all
|
44 |
+
rational but an extension field is needed (e.g. to factor the
|
45 |
+
polynomial).
|
46 |
+
|
47 |
+
>>> Poly(x**2 + 1)
|
48 |
+
Poly(x**2 + 1, x, domain='ZZ')
|
49 |
+
>>> Poly(x**2 + 1, extension=sqrt(2))
|
50 |
+
Poly(x**2 + 1, x, domain='QQ<sqrt(2)>')
|
51 |
+
|
52 |
+
It is possible to factorise a polynomial over a :ref:`QQ(a)` domain using
|
53 |
+
the ``extension`` argument to :py:func:`~.factor` or by specifying the domain
|
54 |
+
explicitly.
|
55 |
+
|
56 |
+
>>> from sympy import factor, QQ
|
57 |
+
>>> factor(x**2 - 2)
|
58 |
+
x**2 - 2
|
59 |
+
>>> factor(x**2 - 2, extension=sqrt(2))
|
60 |
+
(x - sqrt(2))*(x + sqrt(2))
|
61 |
+
>>> factor(x**2 - 2, domain='QQ<sqrt(2)>')
|
62 |
+
(x - sqrt(2))*(x + sqrt(2))
|
63 |
+
>>> factor(x**2 - 2, domain=QQ.algebraic_field(sqrt(2)))
|
64 |
+
(x - sqrt(2))*(x + sqrt(2))
|
65 |
+
|
66 |
+
The ``extension=True`` argument can be used but will only create an
|
67 |
+
extension that contains the coefficients which is usually not enough to
|
68 |
+
factorise the polynomial.
|
69 |
+
|
70 |
+
>>> p = x**3 + sqrt(2)*x**2 - 2*x - 2*sqrt(2)
|
71 |
+
>>> factor(p) # treats sqrt(2) as a symbol
|
72 |
+
(x + sqrt(2))*(x**2 - 2)
|
73 |
+
>>> factor(p, extension=True)
|
74 |
+
(x - sqrt(2))*(x + sqrt(2))**2
|
75 |
+
>>> factor(x**2 - 2, extension=True) # all rational coefficients
|
76 |
+
x**2 - 2
|
77 |
+
|
78 |
+
It is also possible to use :ref:`QQ(a)` with the :py:func:`~.cancel`
|
79 |
+
and :py:func:`~.gcd` functions.
|
80 |
+
|
81 |
+
>>> from sympy import cancel, gcd
|
82 |
+
>>> cancel((x**2 - 2)/(x - sqrt(2)))
|
83 |
+
(x**2 - 2)/(x - sqrt(2))
|
84 |
+
>>> cancel((x**2 - 2)/(x - sqrt(2)), extension=sqrt(2))
|
85 |
+
x + sqrt(2)
|
86 |
+
>>> gcd(x**2 - 2, x - sqrt(2))
|
87 |
+
1
|
88 |
+
>>> gcd(x**2 - 2, x - sqrt(2), extension=sqrt(2))
|
89 |
+
x - sqrt(2)
|
90 |
+
|
91 |
+
When using the domain directly :ref:`QQ(a)` can be used as a constructor
|
92 |
+
to create instances which then support the operations ``+,-,*,**,/``. The
|
93 |
+
:py:meth:`~.Domain.algebraic_field` method is used to construct a
|
94 |
+
particular :ref:`QQ(a)` domain. The :py:meth:`~.Domain.from_sympy` method
|
95 |
+
can be used to create domain elements from normal SymPy expressions.
|
96 |
+
|
97 |
+
>>> K = QQ.algebraic_field(sqrt(2))
|
98 |
+
>>> K
|
99 |
+
QQ<sqrt(2)>
|
100 |
+
>>> xk = K.from_sympy(3 + 4*sqrt(2))
|
101 |
+
>>> xk # doctest: +SKIP
|
102 |
+
ANP([4, 3], [1, 0, -2], QQ)
|
103 |
+
|
104 |
+
Elements of :ref:`QQ(a)` are instances of :py:class:`~.ANP` which have
|
105 |
+
limited printing support. The raw display shows the internal
|
106 |
+
representation of the element as the list ``[4, 3]`` representing the
|
107 |
+
coefficients of ``1`` and ``sqrt(2)`` for this element in the form
|
108 |
+
``a * sqrt(2) + b * 1`` where ``a`` and ``b`` are elements of :ref:`QQ`.
|
109 |
+
The minimal polynomial for the generator ``(x**2 - 2)`` is also shown in
|
110 |
+
the :ref:`dup-representation` as the list ``[1, 0, -2]``. We can use
|
111 |
+
:py:meth:`~.Domain.to_sympy` to get a better printed form for the
|
112 |
+
elements and to see the results of operations.
|
113 |
+
|
114 |
+
>>> xk = K.from_sympy(3 + 4*sqrt(2))
|
115 |
+
>>> yk = K.from_sympy(2 + 3*sqrt(2))
|
116 |
+
>>> xk * yk # doctest: +SKIP
|
117 |
+
ANP([17, 30], [1, 0, -2], QQ)
|
118 |
+
>>> K.to_sympy(xk * yk)
|
119 |
+
17*sqrt(2) + 30
|
120 |
+
>>> K.to_sympy(xk + yk)
|
121 |
+
5 + 7*sqrt(2)
|
122 |
+
>>> K.to_sympy(xk ** 2)
|
123 |
+
24*sqrt(2) + 41
|
124 |
+
>>> K.to_sympy(xk / yk)
|
125 |
+
sqrt(2)/14 + 9/7
|
126 |
+
|
127 |
+
Any expression representing an algebraic number can be used to generate
|
128 |
+
a :ref:`QQ(a)` domain provided its `minimal polynomial`_ can be computed.
|
129 |
+
The function :py:func:`~.minpoly` function is used for this.
|
130 |
+
|
131 |
+
>>> from sympy import exp, I, pi, minpoly
|
132 |
+
>>> g = exp(2*I*pi/3)
|
133 |
+
>>> g
|
134 |
+
exp(2*I*pi/3)
|
135 |
+
>>> g.is_algebraic
|
136 |
+
True
|
137 |
+
>>> minpoly(g, x)
|
138 |
+
x**2 + x + 1
|
139 |
+
>>> factor(x**3 - 1, extension=g)
|
140 |
+
(x - 1)*(x - exp(2*I*pi/3))*(x + 1 + exp(2*I*pi/3))
|
141 |
+
|
142 |
+
It is also possible to make an algebraic field from multiple extension
|
143 |
+
elements.
|
144 |
+
|
145 |
+
>>> K = QQ.algebraic_field(sqrt(2), sqrt(3))
|
146 |
+
>>> K
|
147 |
+
QQ<sqrt(2) + sqrt(3)>
|
148 |
+
>>> p = x**4 - 5*x**2 + 6
|
149 |
+
>>> factor(p)
|
150 |
+
(x**2 - 3)*(x**2 - 2)
|
151 |
+
>>> factor(p, domain=K)
|
152 |
+
(x - sqrt(2))*(x + sqrt(2))*(x - sqrt(3))*(x + sqrt(3))
|
153 |
+
>>> factor(p, extension=[sqrt(2), sqrt(3)])
|
154 |
+
(x - sqrt(2))*(x + sqrt(2))*(x - sqrt(3))*(x + sqrt(3))
|
155 |
+
|
156 |
+
Multiple extension elements are always combined together to make a single
|
157 |
+
`primitive element`_. In the case of ``[sqrt(2), sqrt(3)]`` the primitive
|
158 |
+
element chosen is ``sqrt(2) + sqrt(3)`` which is why the domain displays
|
159 |
+
as ``QQ<sqrt(2) + sqrt(3)>``. The minimal polynomial for the primitive
|
160 |
+
element is computed using the :py:func:`~.primitive_element` function.
|
161 |
+
|
162 |
+
>>> from sympy import primitive_element
|
163 |
+
>>> primitive_element([sqrt(2), sqrt(3)], x)
|
164 |
+
(x**4 - 10*x**2 + 1, [1, 1])
|
165 |
+
>>> minpoly(sqrt(2) + sqrt(3), x)
|
166 |
+
x**4 - 10*x**2 + 1
|
167 |
+
|
168 |
+
The extension elements that generate the domain can be accessed from the
|
169 |
+
domain using the :py:attr:`~.ext` and :py:attr:`~.orig_ext` attributes as
|
170 |
+
instances of :py:class:`~.AlgebraicNumber`. The minimal polynomial for
|
171 |
+
the primitive element as a :py:class:`~.DMP` instance is available as
|
172 |
+
:py:attr:`~.mod`.
|
173 |
+
|
174 |
+
>>> K = QQ.algebraic_field(sqrt(2), sqrt(3))
|
175 |
+
>>> K
|
176 |
+
QQ<sqrt(2) + sqrt(3)>
|
177 |
+
>>> K.ext
|
178 |
+
sqrt(2) + sqrt(3)
|
179 |
+
>>> K.orig_ext
|
180 |
+
(sqrt(2), sqrt(3))
|
181 |
+
>>> K.mod
|
182 |
+
DMP([1, 0, -10, 0, 1], QQ, None)
|
183 |
+
|
184 |
+
The `discriminant`_ of the field can be obtained from the
|
185 |
+
:py:meth:`~.discriminant` method, and an `integral basis`_ from the
|
186 |
+
:py:meth:`~.integral_basis` method. The latter returns a list of
|
187 |
+
:py:class:`~.ANP` instances by default, but can be made to return instances
|
188 |
+
of :py:class:`~.Expr` or :py:class:`~.AlgebraicNumber` by passing a ``fmt``
|
189 |
+
argument. The maximal order, or ring of integers, of the field can also be
|
190 |
+
obtained from the :py:meth:`~.maximal_order` method, as a
|
191 |
+
:py:class:`~sympy.polys.numberfields.modules.Submodule`.
|
192 |
+
|
193 |
+
>>> zeta5 = exp(2*I*pi/5)
|
194 |
+
>>> K = QQ.algebraic_field(zeta5)
|
195 |
+
>>> K
|
196 |
+
QQ<exp(2*I*pi/5)>
|
197 |
+
>>> K.discriminant()
|
198 |
+
125
|
199 |
+
>>> K = QQ.algebraic_field(sqrt(5))
|
200 |
+
>>> K
|
201 |
+
QQ<sqrt(5)>
|
202 |
+
>>> K.integral_basis(fmt='sympy')
|
203 |
+
[1, 1/2 + sqrt(5)/2]
|
204 |
+
>>> K.maximal_order()
|
205 |
+
Submodule[[2, 0], [1, 1]]/2
|
206 |
+
|
207 |
+
The factorization of a rational prime into prime ideals of the field is
|
208 |
+
computed by the :py:meth:`~.primes_above` method, which returns a list
|
209 |
+
of :py:class:`~sympy.polys.numberfields.primes.PrimeIdeal` instances.
|
210 |
+
|
211 |
+
>>> zeta7 = exp(2*I*pi/7)
|
212 |
+
>>> K = QQ.algebraic_field(zeta7)
|
213 |
+
>>> K
|
214 |
+
QQ<exp(2*I*pi/7)>
|
215 |
+
>>> K.primes_above(11)
|
216 |
+
[(11, _x**3 + 5*_x**2 + 4*_x - 1), (11, _x**3 - 4*_x**2 - 5*_x - 1)]
|
217 |
+
|
218 |
+
The Galois group of the Galois closure of the field can be computed (when
|
219 |
+
the minimal polynomial of the field is of sufficiently small degree).
|
220 |
+
|
221 |
+
>>> K.galois_group(by_name=True)[0]
|
222 |
+
S6TransitiveSubgroups.C6
|
223 |
+
|
224 |
+
Notes
|
225 |
+
=====
|
226 |
+
|
227 |
+
It is not currently possible to generate an algebraic extension over any
|
228 |
+
domain other than :ref:`QQ`. Ideally it would be possible to generate
|
229 |
+
extensions like ``QQ(x)(sqrt(x**2 - 2))``. This is equivalent to the
|
230 |
+
quotient ring ``QQ(x)[y]/(y**2 - x**2 + 2)`` and there are two
|
231 |
+
implementations of this kind of quotient ring/extension in the
|
232 |
+
:py:class:`~.QuotientRing` and :py:class:`~.MonogenicFiniteExtension`
|
233 |
+
classes. Each of those implementations needs some work to make them fully
|
234 |
+
usable though.
|
235 |
+
|
236 |
+
.. _algebraic number field: https://en.wikipedia.org/wiki/Algebraic_number_field
|
237 |
+
.. _algebraic numbers: https://en.wikipedia.org/wiki/Algebraic_number
|
238 |
+
.. _discriminant: https://en.wikipedia.org/wiki/Discriminant_of_an_algebraic_number_field
|
239 |
+
.. _integral basis: https://en.wikipedia.org/wiki/Algebraic_number_field#Integral_basis
|
240 |
+
.. _minimal polynomial: https://en.wikipedia.org/wiki/Minimal_polynomial_(field_theory)
|
241 |
+
.. _primitive element: https://en.wikipedia.org/wiki/Primitive_element_theorem
|
242 |
+
"""
|
243 |
+
|
244 |
+
dtype = ANP
|
245 |
+
|
246 |
+
is_AlgebraicField = is_Algebraic = True
|
247 |
+
is_Numerical = True
|
248 |
+
|
249 |
+
has_assoc_Ring = False
|
250 |
+
has_assoc_Field = True
|
251 |
+
|
252 |
+
def __init__(self, dom, *ext, alias=None):
|
253 |
+
r"""
|
254 |
+
Parameters
|
255 |
+
==========
|
256 |
+
|
257 |
+
dom : :py:class:`~.Domain`
|
258 |
+
The base field over which this is an extension field.
|
259 |
+
Currently only :ref:`QQ` is accepted.
|
260 |
+
|
261 |
+
*ext : One or more :py:class:`~.Expr`
|
262 |
+
Generators of the extension. These should be expressions that are
|
263 |
+
algebraic over `\mathbb{Q}`.
|
264 |
+
|
265 |
+
alias : str, :py:class:`~.Symbol`, None, optional (default=None)
|
266 |
+
If provided, this will be used as the alias symbol for the
|
267 |
+
primitive element of the :py:class:`~.AlgebraicField`.
|
268 |
+
If ``None``, while ``ext`` consists of exactly one
|
269 |
+
:py:class:`~.AlgebraicNumber`, its alias (if any) will be used.
|
270 |
+
"""
|
271 |
+
if not dom.is_QQ:
|
272 |
+
raise DomainError("ground domain must be a rational field")
|
273 |
+
|
274 |
+
from sympy.polys.numberfields import to_number_field
|
275 |
+
if len(ext) == 1 and isinstance(ext[0], tuple):
|
276 |
+
orig_ext = ext[0][1:]
|
277 |
+
else:
|
278 |
+
orig_ext = ext
|
279 |
+
|
280 |
+
if alias is None and len(ext) == 1:
|
281 |
+
alias = getattr(ext[0], 'alias', None)
|
282 |
+
|
283 |
+
self.orig_ext = orig_ext
|
284 |
+
"""
|
285 |
+
Original elements given to generate the extension.
|
286 |
+
|
287 |
+
>>> from sympy import QQ, sqrt
|
288 |
+
>>> K = QQ.algebraic_field(sqrt(2), sqrt(3))
|
289 |
+
>>> K.orig_ext
|
290 |
+
(sqrt(2), sqrt(3))
|
291 |
+
"""
|
292 |
+
|
293 |
+
self.ext = to_number_field(ext, alias=alias)
|
294 |
+
"""
|
295 |
+
Primitive element used for the extension.
|
296 |
+
|
297 |
+
>>> from sympy import QQ, sqrt
|
298 |
+
>>> K = QQ.algebraic_field(sqrt(2), sqrt(3))
|
299 |
+
>>> K.ext
|
300 |
+
sqrt(2) + sqrt(3)
|
301 |
+
"""
|
302 |
+
|
303 |
+
self.mod = self.ext.minpoly.rep
|
304 |
+
"""
|
305 |
+
Minimal polynomial for the primitive element of the extension.
|
306 |
+
|
307 |
+
>>> from sympy import QQ, sqrt
|
308 |
+
>>> K = QQ.algebraic_field(sqrt(2))
|
309 |
+
>>> K.mod
|
310 |
+
DMP([1, 0, -2], QQ, None)
|
311 |
+
"""
|
312 |
+
|
313 |
+
self.domain = self.dom = dom
|
314 |
+
|
315 |
+
self.ngens = 1
|
316 |
+
self.symbols = self.gens = (self.ext,)
|
317 |
+
self.unit = self([dom(1), dom(0)])
|
318 |
+
|
319 |
+
self.zero = self.dtype.zero(self.mod.rep, dom)
|
320 |
+
self.one = self.dtype.one(self.mod.rep, dom)
|
321 |
+
|
322 |
+
self._maximal_order = None
|
323 |
+
self._discriminant = None
|
324 |
+
self._nilradicals_mod_p = {}
|
325 |
+
|
326 |
+
def new(self, element):
|
327 |
+
return self.dtype(element, self.mod.rep, self.dom)
|
328 |
+
|
329 |
+
def __str__(self):
|
330 |
+
return str(self.dom) + '<' + str(self.ext) + '>'
|
331 |
+
|
332 |
+
def __hash__(self):
|
333 |
+
return hash((self.__class__.__name__, self.dtype, self.dom, self.ext))
|
334 |
+
|
335 |
+
def __eq__(self, other):
|
336 |
+
"""Returns ``True`` if two domains are equivalent. """
|
337 |
+
return isinstance(other, AlgebraicField) and \
|
338 |
+
self.dtype == other.dtype and self.ext == other.ext
|
339 |
+
|
340 |
+
def algebraic_field(self, *extension, alias=None):
|
341 |
+
r"""Returns an algebraic field, i.e. `\mathbb{Q}(\alpha, \ldots)`. """
|
342 |
+
return AlgebraicField(self.dom, *((self.ext,) + extension), alias=alias)
|
343 |
+
|
344 |
+
def to_alg_num(self, a):
|
345 |
+
"""Convert ``a`` of ``dtype`` to an :py:class:`~.AlgebraicNumber`. """
|
346 |
+
return self.ext.field_element(a)
|
347 |
+
|
348 |
+
def to_sympy(self, a):
|
349 |
+
"""Convert ``a`` of ``dtype`` to a SymPy object. """
|
350 |
+
# Precompute a converter to be reused:
|
351 |
+
if not hasattr(self, '_converter'):
|
352 |
+
self._converter = _make_converter(self)
|
353 |
+
|
354 |
+
return self._converter(a)
|
355 |
+
|
356 |
+
def from_sympy(self, a):
|
357 |
+
"""Convert SymPy's expression to ``dtype``. """
|
358 |
+
try:
|
359 |
+
return self([self.dom.from_sympy(a)])
|
360 |
+
except CoercionFailed:
|
361 |
+
pass
|
362 |
+
|
363 |
+
from sympy.polys.numberfields import to_number_field
|
364 |
+
|
365 |
+
try:
|
366 |
+
return self(to_number_field(a, self.ext).native_coeffs())
|
367 |
+
except (NotAlgebraic, IsomorphismFailed):
|
368 |
+
raise CoercionFailed(
|
369 |
+
"%s is not a valid algebraic number in %s" % (a, self))
|
370 |
+
|
371 |
+
def from_ZZ(K1, a, K0):
|
372 |
+
"""Convert a Python ``int`` object to ``dtype``. """
|
373 |
+
return K1(K1.dom.convert(a, K0))
|
374 |
+
|
375 |
+
def from_ZZ_python(K1, a, K0):
|
376 |
+
"""Convert a Python ``int`` object to ``dtype``. """
|
377 |
+
return K1(K1.dom.convert(a, K0))
|
378 |
+
|
379 |
+
def from_QQ(K1, a, K0):
|
380 |
+
"""Convert a Python ``Fraction`` object to ``dtype``. """
|
381 |
+
return K1(K1.dom.convert(a, K0))
|
382 |
+
|
383 |
+
def from_QQ_python(K1, a, K0):
|
384 |
+
"""Convert a Python ``Fraction`` object to ``dtype``. """
|
385 |
+
return K1(K1.dom.convert(a, K0))
|
386 |
+
|
387 |
+
def from_ZZ_gmpy(K1, a, K0):
|
388 |
+
"""Convert a GMPY ``mpz`` object to ``dtype``. """
|
389 |
+
return K1(K1.dom.convert(a, K0))
|
390 |
+
|
391 |
+
def from_QQ_gmpy(K1, a, K0):
|
392 |
+
"""Convert a GMPY ``mpq`` object to ``dtype``. """
|
393 |
+
return K1(K1.dom.convert(a, K0))
|
394 |
+
|
395 |
+
def from_RealField(K1, a, K0):
|
396 |
+
"""Convert a mpmath ``mpf`` object to ``dtype``. """
|
397 |
+
return K1(K1.dom.convert(a, K0))
|
398 |
+
|
399 |
+
def get_ring(self):
|
400 |
+
"""Returns a ring associated with ``self``. """
|
401 |
+
raise DomainError('there is no ring associated with %s' % self)
|
402 |
+
|
403 |
+
def is_positive(self, a):
|
404 |
+
"""Returns True if ``a`` is positive. """
|
405 |
+
return self.dom.is_positive(a.LC())
|
406 |
+
|
407 |
+
def is_negative(self, a):
|
408 |
+
"""Returns True if ``a`` is negative. """
|
409 |
+
return self.dom.is_negative(a.LC())
|
410 |
+
|
411 |
+
def is_nonpositive(self, a):
|
412 |
+
"""Returns True if ``a`` is non-positive. """
|
413 |
+
return self.dom.is_nonpositive(a.LC())
|
414 |
+
|
415 |
+
def is_nonnegative(self, a):
|
416 |
+
"""Returns True if ``a`` is non-negative. """
|
417 |
+
return self.dom.is_nonnegative(a.LC())
|
418 |
+
|
419 |
+
def numer(self, a):
|
420 |
+
"""Returns numerator of ``a``. """
|
421 |
+
return a
|
422 |
+
|
423 |
+
def denom(self, a):
|
424 |
+
"""Returns denominator of ``a``. """
|
425 |
+
return self.one
|
426 |
+
|
427 |
+
def from_AlgebraicField(K1, a, K0):
|
428 |
+
"""Convert AlgebraicField element 'a' to another AlgebraicField """
|
429 |
+
return K1.from_sympy(K0.to_sympy(a))
|
430 |
+
|
431 |
+
def from_GaussianIntegerRing(K1, a, K0):
|
432 |
+
"""Convert a GaussianInteger element 'a' to ``dtype``. """
|
433 |
+
return K1.from_sympy(K0.to_sympy(a))
|
434 |
+
|
435 |
+
def from_GaussianRationalField(K1, a, K0):
|
436 |
+
"""Convert a GaussianRational element 'a' to ``dtype``. """
|
437 |
+
return K1.from_sympy(K0.to_sympy(a))
|
438 |
+
|
439 |
+
def _do_round_two(self):
|
440 |
+
from sympy.polys.numberfields.basis import round_two
|
441 |
+
ZK, dK = round_two(self, radicals=self._nilradicals_mod_p)
|
442 |
+
self._maximal_order = ZK
|
443 |
+
self._discriminant = dK
|
444 |
+
|
445 |
+
def maximal_order(self):
|
446 |
+
"""
|
447 |
+
Compute the maximal order, or ring of integers, of the field.
|
448 |
+
|
449 |
+
Returns
|
450 |
+
=======
|
451 |
+
|
452 |
+
:py:class:`~sympy.polys.numberfields.modules.Submodule`.
|
453 |
+
|
454 |
+
See Also
|
455 |
+
========
|
456 |
+
|
457 |
+
integral_basis
|
458 |
+
|
459 |
+
"""
|
460 |
+
if self._maximal_order is None:
|
461 |
+
self._do_round_two()
|
462 |
+
return self._maximal_order
|
463 |
+
|
464 |
+
def integral_basis(self, fmt=None):
|
465 |
+
r"""
|
466 |
+
Get an integral basis for the field.
|
467 |
+
|
468 |
+
Parameters
|
469 |
+
==========
|
470 |
+
|
471 |
+
fmt : str, None, optional (default=None)
|
472 |
+
If ``None``, return a list of :py:class:`~.ANP` instances.
|
473 |
+
If ``"sympy"``, convert each element of the list to an
|
474 |
+
:py:class:`~.Expr`, using ``self.to_sympy()``.
|
475 |
+
If ``"alg"``, convert each element of the list to an
|
476 |
+
:py:class:`~.AlgebraicNumber`, using ``self.to_alg_num()``.
|
477 |
+
|
478 |
+
Examples
|
479 |
+
========
|
480 |
+
|
481 |
+
>>> from sympy import QQ, AlgebraicNumber, sqrt
|
482 |
+
>>> alpha = AlgebraicNumber(sqrt(5), alias='alpha')
|
483 |
+
>>> k = QQ.algebraic_field(alpha)
|
484 |
+
>>> B0 = k.integral_basis()
|
485 |
+
>>> B1 = k.integral_basis(fmt='sympy')
|
486 |
+
>>> B2 = k.integral_basis(fmt='alg')
|
487 |
+
>>> print(B0[1]) # doctest: +SKIP
|
488 |
+
ANP([mpq(1,2), mpq(1,2)], [mpq(1,1), mpq(0,1), mpq(-5,1)], QQ)
|
489 |
+
>>> print(B1[1])
|
490 |
+
1/2 + alpha/2
|
491 |
+
>>> print(B2[1])
|
492 |
+
alpha/2 + 1/2
|
493 |
+
|
494 |
+
In the last two cases we get legible expressions, which print somewhat
|
495 |
+
differently because of the different types involved:
|
496 |
+
|
497 |
+
>>> print(type(B1[1]))
|
498 |
+
<class 'sympy.core.add.Add'>
|
499 |
+
>>> print(type(B2[1]))
|
500 |
+
<class 'sympy.core.numbers.AlgebraicNumber'>
|
501 |
+
|
502 |
+
See Also
|
503 |
+
========
|
504 |
+
|
505 |
+
to_sympy
|
506 |
+
to_alg_num
|
507 |
+
maximal_order
|
508 |
+
"""
|
509 |
+
ZK = self.maximal_order()
|
510 |
+
M = ZK.QQ_matrix
|
511 |
+
n = M.shape[1]
|
512 |
+
B = [self.new(list(reversed(M[:, j].flat()))) for j in range(n)]
|
513 |
+
if fmt == 'sympy':
|
514 |
+
return [self.to_sympy(b) for b in B]
|
515 |
+
elif fmt == 'alg':
|
516 |
+
return [self.to_alg_num(b) for b in B]
|
517 |
+
return B
|
518 |
+
|
519 |
+
def discriminant(self):
|
520 |
+
"""Get the discriminant of the field."""
|
521 |
+
if self._discriminant is None:
|
522 |
+
self._do_round_two()
|
523 |
+
return self._discriminant
|
524 |
+
|
525 |
+
def primes_above(self, p):
|
526 |
+
"""Compute the prime ideals lying above a given rational prime *p*."""
|
527 |
+
from sympy.polys.numberfields.primes import prime_decomp
|
528 |
+
ZK = self.maximal_order()
|
529 |
+
dK = self.discriminant()
|
530 |
+
rad = self._nilradicals_mod_p.get(p)
|
531 |
+
return prime_decomp(p, ZK=ZK, dK=dK, radical=rad)
|
532 |
+
|
533 |
+
def galois_group(self, by_name=False, max_tries=30, randomize=False):
|
534 |
+
"""
|
535 |
+
Compute the Galois group of the Galois closure of this field.
|
536 |
+
|
537 |
+
Examples
|
538 |
+
========
|
539 |
+
|
540 |
+
If the field is Galois, the order of the group will equal the degree
|
541 |
+
of the field:
|
542 |
+
|
543 |
+
>>> from sympy import QQ
|
544 |
+
>>> from sympy.abc import x
|
545 |
+
>>> k = QQ.alg_field_from_poly(x**4 + 1)
|
546 |
+
>>> G, _ = k.galois_group()
|
547 |
+
>>> G.order()
|
548 |
+
4
|
549 |
+
|
550 |
+
If the field is not Galois, then its Galois closure is a proper
|
551 |
+
extension, and the order of the Galois group will be greater than the
|
552 |
+
degree of the field:
|
553 |
+
|
554 |
+
>>> k = QQ.alg_field_from_poly(x**4 - 2)
|
555 |
+
>>> G, _ = k.galois_group()
|
556 |
+
>>> G.order()
|
557 |
+
8
|
558 |
+
|
559 |
+
See Also
|
560 |
+
========
|
561 |
+
|
562 |
+
sympy.polys.numberfields.galoisgroups.galois_group
|
563 |
+
|
564 |
+
"""
|
565 |
+
return self.ext.minpoly_of_element().galois_group(
|
566 |
+
by_name=by_name, max_tries=max_tries, randomize=randomize)
|
567 |
+
|
568 |
+
|
569 |
+
def _make_converter(K):
|
570 |
+
"""Construct the converter to convert back to Expr"""
|
571 |
+
# Precompute the effect of converting to SymPy and expanding expressions
|
572 |
+
# like (sqrt(2) + sqrt(3))**2. Asking Expr to do the expansion on every
|
573 |
+
# conversion from K to Expr is slow. Here we compute the expansions for
|
574 |
+
# each power of the generator and collect together the resulting algebraic
|
575 |
+
# terms and the rational coefficients into a matrix.
|
576 |
+
|
577 |
+
gen = K.ext.as_expr()
|
578 |
+
todom = K.dom.from_sympy
|
579 |
+
|
580 |
+
# We'll let Expr compute the expansions. We won't make any presumptions
|
581 |
+
# about what this results in except that it is QQ-linear in some terms
|
582 |
+
# that we will call algebraics. The final result will be expressed in
|
583 |
+
# terms of those.
|
584 |
+
powers = [S.One, gen]
|
585 |
+
for n in range(2, K.mod.degree()):
|
586 |
+
powers.append((gen * powers[-1]).expand())
|
587 |
+
|
588 |
+
# Collect the rational coefficients and algebraic Expr that can
|
589 |
+
# map the ANP coefficients into an expanded SymPy expression
|
590 |
+
terms = [dict(t.as_coeff_Mul()[::-1] for t in Add.make_args(p)) for p in powers]
|
591 |
+
algebraics = set().union(*terms)
|
592 |
+
matrix = [[todom(t.get(a, S.Zero)) for t in terms] for a in algebraics]
|
593 |
+
|
594 |
+
# Create a function to do the conversion efficiently:
|
595 |
+
|
596 |
+
def converter(a):
|
597 |
+
"""Convert a to Expr using converter"""
|
598 |
+
ai = a.rep[::-1]
|
599 |
+
tosympy = K.dom.to_sympy
|
600 |
+
coeffs_dom = [sum(mij*aj for mij, aj in zip(mi, ai)) for mi in matrix]
|
601 |
+
coeffs_sympy = [tosympy(c) for c in coeffs_dom]
|
602 |
+
res = Add(*(Mul(c, a) for c, a in zip(coeffs_sympy, algebraics)))
|
603 |
+
return res
|
604 |
+
|
605 |
+
return converter
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/domains/complexfield.py
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Implementation of :class:`ComplexField` class. """
|
2 |
+
|
3 |
+
|
4 |
+
from sympy.core.numbers import Float, I
|
5 |
+
from sympy.polys.domains.characteristiczero import CharacteristicZero
|
6 |
+
from sympy.polys.domains.field import Field
|
7 |
+
from sympy.polys.domains.mpelements import MPContext
|
8 |
+
from sympy.polys.domains.simpledomain import SimpleDomain
|
9 |
+
from sympy.polys.polyerrors import DomainError, CoercionFailed
|
10 |
+
from sympy.utilities import public
|
11 |
+
|
12 |
+
@public
|
13 |
+
class ComplexField(Field, CharacteristicZero, SimpleDomain):
|
14 |
+
"""Complex numbers up to the given precision. """
|
15 |
+
|
16 |
+
rep = 'CC'
|
17 |
+
|
18 |
+
is_ComplexField = is_CC = True
|
19 |
+
|
20 |
+
is_Exact = False
|
21 |
+
is_Numerical = True
|
22 |
+
|
23 |
+
has_assoc_Ring = False
|
24 |
+
has_assoc_Field = True
|
25 |
+
|
26 |
+
_default_precision = 53
|
27 |
+
|
28 |
+
@property
|
29 |
+
def has_default_precision(self):
|
30 |
+
return self.precision == self._default_precision
|
31 |
+
|
32 |
+
@property
|
33 |
+
def precision(self):
|
34 |
+
return self._context.prec
|
35 |
+
|
36 |
+
@property
|
37 |
+
def dps(self):
|
38 |
+
return self._context.dps
|
39 |
+
|
40 |
+
@property
|
41 |
+
def tolerance(self):
|
42 |
+
return self._context.tolerance
|
43 |
+
|
44 |
+
def __init__(self, prec=_default_precision, dps=None, tol=None):
|
45 |
+
context = MPContext(prec, dps, tol, False)
|
46 |
+
context._parent = self
|
47 |
+
self._context = context
|
48 |
+
|
49 |
+
self.dtype = context.mpc
|
50 |
+
self.zero = self.dtype(0)
|
51 |
+
self.one = self.dtype(1)
|
52 |
+
|
53 |
+
def __eq__(self, other):
|
54 |
+
return (isinstance(other, ComplexField)
|
55 |
+
and self.precision == other.precision
|
56 |
+
and self.tolerance == other.tolerance)
|
57 |
+
|
58 |
+
def __hash__(self):
|
59 |
+
return hash((self.__class__.__name__, self.dtype, self.precision, self.tolerance))
|
60 |
+
|
61 |
+
def to_sympy(self, element):
|
62 |
+
"""Convert ``element`` to SymPy number. """
|
63 |
+
return Float(element.real, self.dps) + I*Float(element.imag, self.dps)
|
64 |
+
|
65 |
+
def from_sympy(self, expr):
|
66 |
+
"""Convert SymPy's number to ``dtype``. """
|
67 |
+
number = expr.evalf(n=self.dps)
|
68 |
+
real, imag = number.as_real_imag()
|
69 |
+
|
70 |
+
if real.is_Number and imag.is_Number:
|
71 |
+
return self.dtype(real, imag)
|
72 |
+
else:
|
73 |
+
raise CoercionFailed("expected complex number, got %s" % expr)
|
74 |
+
|
75 |
+
def from_ZZ(self, element, base):
|
76 |
+
return self.dtype(element)
|
77 |
+
|
78 |
+
def from_QQ(self, element, base):
|
79 |
+
return self.dtype(int(element.numerator)) / int(element.denominator)
|
80 |
+
|
81 |
+
def from_ZZ_python(self, element, base):
|
82 |
+
return self.dtype(element)
|
83 |
+
|
84 |
+
def from_QQ_python(self, element, base):
|
85 |
+
return self.dtype(element.numerator) / element.denominator
|
86 |
+
|
87 |
+
def from_ZZ_gmpy(self, element, base):
|
88 |
+
return self.dtype(int(element))
|
89 |
+
|
90 |
+
def from_QQ_gmpy(self, element, base):
|
91 |
+
return self.dtype(int(element.numerator)) / int(element.denominator)
|
92 |
+
|
93 |
+
def from_GaussianIntegerRing(self, element, base):
|
94 |
+
return self.dtype(int(element.x), int(element.y))
|
95 |
+
|
96 |
+
def from_GaussianRationalField(self, element, base):
|
97 |
+
x = element.x
|
98 |
+
y = element.y
|
99 |
+
return (self.dtype(int(x.numerator)) / int(x.denominator) +
|
100 |
+
self.dtype(0, int(y.numerator)) / int(y.denominator))
|
101 |
+
|
102 |
+
def from_AlgebraicField(self, element, base):
|
103 |
+
return self.from_sympy(base.to_sympy(element).evalf(self.dps))
|
104 |
+
|
105 |
+
def from_RealField(self, element, base):
|
106 |
+
return self.dtype(element)
|
107 |
+
|
108 |
+
def from_ComplexField(self, element, base):
|
109 |
+
if self == base:
|
110 |
+
return element
|
111 |
+
else:
|
112 |
+
return self.dtype(element)
|
113 |
+
|
114 |
+
def get_ring(self):
|
115 |
+
"""Returns a ring associated with ``self``. """
|
116 |
+
raise DomainError("there is no ring associated with %s" % self)
|
117 |
+
|
118 |
+
def get_exact(self):
|
119 |
+
"""Returns an exact domain associated with ``self``. """
|
120 |
+
raise DomainError("there is no exact domain associated with %s" % self)
|
121 |
+
|
122 |
+
def is_negative(self, element):
|
123 |
+
"""Returns ``False`` for any ``ComplexElement``. """
|
124 |
+
return False
|
125 |
+
|
126 |
+
def is_positive(self, element):
|
127 |
+
"""Returns ``False`` for any ``ComplexElement``. """
|
128 |
+
return False
|
129 |
+
|
130 |
+
def is_nonnegative(self, element):
|
131 |
+
"""Returns ``False`` for any ``ComplexElement``. """
|
132 |
+
return False
|
133 |
+
|
134 |
+
def is_nonpositive(self, element):
|
135 |
+
"""Returns ``False`` for any ``ComplexElement``. """
|
136 |
+
return False
|
137 |
+
|
138 |
+
def gcd(self, a, b):
|
139 |
+
"""Returns GCD of ``a`` and ``b``. """
|
140 |
+
return self.one
|
141 |
+
|
142 |
+
def lcm(self, a, b):
|
143 |
+
"""Returns LCM of ``a`` and ``b``. """
|
144 |
+
return a*b
|
145 |
+
|
146 |
+
def almosteq(self, a, b, tolerance=None):
|
147 |
+
"""Check if ``a`` and ``b`` are almost equal. """
|
148 |
+
return self._context.almosteq(a, b, tolerance)
|
149 |
+
|
150 |
+
|
151 |
+
CC = ComplexField()
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/domains/domain.py
ADDED
@@ -0,0 +1,1304 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Implementation of :class:`Domain` class. """
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
from typing import Any
|
5 |
+
|
6 |
+
from sympy.core.numbers import AlgebraicNumber
|
7 |
+
from sympy.core import Basic, sympify
|
8 |
+
from sympy.core.sorting import default_sort_key, ordered
|
9 |
+
from sympy.external.gmpy import HAS_GMPY
|
10 |
+
from sympy.polys.domains.domainelement import DomainElement
|
11 |
+
from sympy.polys.orderings import lex
|
12 |
+
from sympy.polys.polyerrors import UnificationFailed, CoercionFailed, DomainError
|
13 |
+
from sympy.polys.polyutils import _unify_gens, _not_a_coeff
|
14 |
+
from sympy.utilities import public
|
15 |
+
from sympy.utilities.iterables import is_sequence
|
16 |
+
|
17 |
+
|
18 |
+
@public
|
19 |
+
class Domain:
|
20 |
+
"""Superclass for all domains in the polys domains system.
|
21 |
+
|
22 |
+
See :ref:`polys-domainsintro` for an introductory explanation of the
|
23 |
+
domains system.
|
24 |
+
|
25 |
+
The :py:class:`~.Domain` class is an abstract base class for all of the
|
26 |
+
concrete domain types. There are many different :py:class:`~.Domain`
|
27 |
+
subclasses each of which has an associated ``dtype`` which is a class
|
28 |
+
representing the elements of the domain. The coefficients of a
|
29 |
+
:py:class:`~.Poly` are elements of a domain which must be a subclass of
|
30 |
+
:py:class:`~.Domain`.
|
31 |
+
|
32 |
+
Examples
|
33 |
+
========
|
34 |
+
|
35 |
+
The most common example domains are the integers :ref:`ZZ` and the
|
36 |
+
rationals :ref:`QQ`.
|
37 |
+
|
38 |
+
>>> from sympy import Poly, symbols, Domain
|
39 |
+
>>> x, y = symbols('x, y')
|
40 |
+
>>> p = Poly(x**2 + y)
|
41 |
+
>>> p
|
42 |
+
Poly(x**2 + y, x, y, domain='ZZ')
|
43 |
+
>>> p.domain
|
44 |
+
ZZ
|
45 |
+
>>> isinstance(p.domain, Domain)
|
46 |
+
True
|
47 |
+
>>> Poly(x**2 + y/2)
|
48 |
+
Poly(x**2 + 1/2*y, x, y, domain='QQ')
|
49 |
+
|
50 |
+
The domains can be used directly in which case the domain object e.g.
|
51 |
+
(:ref:`ZZ` or :ref:`QQ`) can be used as a constructor for elements of
|
52 |
+
``dtype``.
|
53 |
+
|
54 |
+
>>> from sympy import ZZ, QQ
|
55 |
+
>>> ZZ(2)
|
56 |
+
2
|
57 |
+
>>> ZZ.dtype # doctest: +SKIP
|
58 |
+
<class 'int'>
|
59 |
+
>>> type(ZZ(2)) # doctest: +SKIP
|
60 |
+
<class 'int'>
|
61 |
+
>>> QQ(1, 2)
|
62 |
+
1/2
|
63 |
+
>>> type(QQ(1, 2)) # doctest: +SKIP
|
64 |
+
<class 'sympy.polys.domains.pythonrational.PythonRational'>
|
65 |
+
|
66 |
+
The corresponding domain elements can be used with the arithmetic
|
67 |
+
operations ``+,-,*,**`` and depending on the domain some combination of
|
68 |
+
``/,//,%`` might be usable. For example in :ref:`ZZ` both ``//`` (floor
|
69 |
+
division) and ``%`` (modulo division) can be used but ``/`` (true
|
70 |
+
division) cannot. Since :ref:`QQ` is a :py:class:`~.Field` its elements
|
71 |
+
can be used with ``/`` but ``//`` and ``%`` should not be used. Some
|
72 |
+
domains have a :py:meth:`~.Domain.gcd` method.
|
73 |
+
|
74 |
+
>>> ZZ(2) + ZZ(3)
|
75 |
+
5
|
76 |
+
>>> ZZ(5) // ZZ(2)
|
77 |
+
2
|
78 |
+
>>> ZZ(5) % ZZ(2)
|
79 |
+
1
|
80 |
+
>>> QQ(1, 2) / QQ(2, 3)
|
81 |
+
3/4
|
82 |
+
>>> ZZ.gcd(ZZ(4), ZZ(2))
|
83 |
+
2
|
84 |
+
>>> QQ.gcd(QQ(2,7), QQ(5,3))
|
85 |
+
1/21
|
86 |
+
>>> ZZ.is_Field
|
87 |
+
False
|
88 |
+
>>> QQ.is_Field
|
89 |
+
True
|
90 |
+
|
91 |
+
There are also many other domains including:
|
92 |
+
|
93 |
+
1. :ref:`GF(p)` for finite fields of prime order.
|
94 |
+
2. :ref:`RR` for real (floating point) numbers.
|
95 |
+
3. :ref:`CC` for complex (floating point) numbers.
|
96 |
+
4. :ref:`QQ(a)` for algebraic number fields.
|
97 |
+
5. :ref:`K[x]` for polynomial rings.
|
98 |
+
6. :ref:`K(x)` for rational function fields.
|
99 |
+
7. :ref:`EX` for arbitrary expressions.
|
100 |
+
|
101 |
+
Each domain is represented by a domain object and also an implementation
|
102 |
+
class (``dtype``) for the elements of the domain. For example the
|
103 |
+
:ref:`K[x]` domains are represented by a domain object which is an
|
104 |
+
instance of :py:class:`~.PolynomialRing` and the elements are always
|
105 |
+
instances of :py:class:`~.PolyElement`. The implementation class
|
106 |
+
represents particular types of mathematical expressions in a way that is
|
107 |
+
more efficient than a normal SymPy expression which is of type
|
108 |
+
:py:class:`~.Expr`. The domain methods :py:meth:`~.Domain.from_sympy` and
|
109 |
+
:py:meth:`~.Domain.to_sympy` are used to convert from :py:class:`~.Expr`
|
110 |
+
to a domain element and vice versa.
|
111 |
+
|
112 |
+
>>> from sympy import Symbol, ZZ, Expr
|
113 |
+
>>> x = Symbol('x')
|
114 |
+
>>> K = ZZ[x] # polynomial ring domain
|
115 |
+
>>> K
|
116 |
+
ZZ[x]
|
117 |
+
>>> type(K) # class of the domain
|
118 |
+
<class 'sympy.polys.domains.polynomialring.PolynomialRing'>
|
119 |
+
>>> K.dtype # class of the elements
|
120 |
+
<class 'sympy.polys.rings.PolyElement'>
|
121 |
+
>>> p_expr = x**2 + 1 # Expr
|
122 |
+
>>> p_expr
|
123 |
+
x**2 + 1
|
124 |
+
>>> type(p_expr)
|
125 |
+
<class 'sympy.core.add.Add'>
|
126 |
+
>>> isinstance(p_expr, Expr)
|
127 |
+
True
|
128 |
+
>>> p_domain = K.from_sympy(p_expr)
|
129 |
+
>>> p_domain # domain element
|
130 |
+
x**2 + 1
|
131 |
+
>>> type(p_domain)
|
132 |
+
<class 'sympy.polys.rings.PolyElement'>
|
133 |
+
>>> K.to_sympy(p_domain) == p_expr
|
134 |
+
True
|
135 |
+
|
136 |
+
The :py:meth:`~.Domain.convert_from` method is used to convert domain
|
137 |
+
elements from one domain to another.
|
138 |
+
|
139 |
+
>>> from sympy import ZZ, QQ
|
140 |
+
>>> ez = ZZ(2)
|
141 |
+
>>> eq = QQ.convert_from(ez, ZZ)
|
142 |
+
>>> type(ez) # doctest: +SKIP
|
143 |
+
<class 'int'>
|
144 |
+
>>> type(eq) # doctest: +SKIP
|
145 |
+
<class 'sympy.polys.domains.pythonrational.PythonRational'>
|
146 |
+
|
147 |
+
Elements from different domains should not be mixed in arithmetic or other
|
148 |
+
operations: they should be converted to a common domain first. The domain
|
149 |
+
method :py:meth:`~.Domain.unify` is used to find a domain that can
|
150 |
+
represent all the elements of two given domains.
|
151 |
+
|
152 |
+
>>> from sympy import ZZ, QQ, symbols
|
153 |
+
>>> x, y = symbols('x, y')
|
154 |
+
>>> ZZ.unify(QQ)
|
155 |
+
QQ
|
156 |
+
>>> ZZ[x].unify(QQ)
|
157 |
+
QQ[x]
|
158 |
+
>>> ZZ[x].unify(QQ[y])
|
159 |
+
QQ[x,y]
|
160 |
+
|
161 |
+
If a domain is a :py:class:`~.Ring` then is might have an associated
|
162 |
+
:py:class:`~.Field` and vice versa. The :py:meth:`~.Domain.get_field` and
|
163 |
+
:py:meth:`~.Domain.get_ring` methods will find or create the associated
|
164 |
+
domain.
|
165 |
+
|
166 |
+
>>> from sympy import ZZ, QQ, Symbol
|
167 |
+
>>> x = Symbol('x')
|
168 |
+
>>> ZZ.has_assoc_Field
|
169 |
+
True
|
170 |
+
>>> ZZ.get_field()
|
171 |
+
QQ
|
172 |
+
>>> QQ.has_assoc_Ring
|
173 |
+
True
|
174 |
+
>>> QQ.get_ring()
|
175 |
+
ZZ
|
176 |
+
>>> K = QQ[x]
|
177 |
+
>>> K
|
178 |
+
QQ[x]
|
179 |
+
>>> K.get_field()
|
180 |
+
QQ(x)
|
181 |
+
|
182 |
+
See also
|
183 |
+
========
|
184 |
+
|
185 |
+
DomainElement: abstract base class for domain elements
|
186 |
+
construct_domain: construct a minimal domain for some expressions
|
187 |
+
|
188 |
+
"""
|
189 |
+
|
190 |
+
dtype: type | None = None
|
191 |
+
"""The type (class) of the elements of this :py:class:`~.Domain`:
|
192 |
+
|
193 |
+
>>> from sympy import ZZ, QQ, Symbol
|
194 |
+
>>> ZZ.dtype
|
195 |
+
<class 'int'>
|
196 |
+
>>> z = ZZ(2)
|
197 |
+
>>> z
|
198 |
+
2
|
199 |
+
>>> type(z)
|
200 |
+
<class 'int'>
|
201 |
+
>>> type(z) == ZZ.dtype
|
202 |
+
True
|
203 |
+
|
204 |
+
Every domain has an associated **dtype** ("datatype") which is the
|
205 |
+
class of the associated domain elements.
|
206 |
+
|
207 |
+
See also
|
208 |
+
========
|
209 |
+
|
210 |
+
of_type
|
211 |
+
"""
|
212 |
+
|
213 |
+
zero: Any = None
|
214 |
+
"""The zero element of the :py:class:`~.Domain`:
|
215 |
+
|
216 |
+
>>> from sympy import QQ
|
217 |
+
>>> QQ.zero
|
218 |
+
0
|
219 |
+
>>> QQ.of_type(QQ.zero)
|
220 |
+
True
|
221 |
+
|
222 |
+
See also
|
223 |
+
========
|
224 |
+
|
225 |
+
of_type
|
226 |
+
one
|
227 |
+
"""
|
228 |
+
|
229 |
+
one: Any = None
|
230 |
+
"""The one element of the :py:class:`~.Domain`:
|
231 |
+
|
232 |
+
>>> from sympy import QQ
|
233 |
+
>>> QQ.one
|
234 |
+
1
|
235 |
+
>>> QQ.of_type(QQ.one)
|
236 |
+
True
|
237 |
+
|
238 |
+
See also
|
239 |
+
========
|
240 |
+
|
241 |
+
of_type
|
242 |
+
zero
|
243 |
+
"""
|
244 |
+
|
245 |
+
is_Ring = False
|
246 |
+
"""Boolean flag indicating if the domain is a :py:class:`~.Ring`.
|
247 |
+
|
248 |
+
>>> from sympy import ZZ
|
249 |
+
>>> ZZ.is_Ring
|
250 |
+
True
|
251 |
+
|
252 |
+
Basically every :py:class:`~.Domain` represents a ring so this flag is
|
253 |
+
not that useful.
|
254 |
+
|
255 |
+
See also
|
256 |
+
========
|
257 |
+
|
258 |
+
is_PID
|
259 |
+
is_Field
|
260 |
+
get_ring
|
261 |
+
has_assoc_Ring
|
262 |
+
"""
|
263 |
+
|
264 |
+
is_Field = False
|
265 |
+
"""Boolean flag indicating if the domain is a :py:class:`~.Field`.
|
266 |
+
|
267 |
+
>>> from sympy import ZZ, QQ
|
268 |
+
>>> ZZ.is_Field
|
269 |
+
False
|
270 |
+
>>> QQ.is_Field
|
271 |
+
True
|
272 |
+
|
273 |
+
See also
|
274 |
+
========
|
275 |
+
|
276 |
+
is_PID
|
277 |
+
is_Ring
|
278 |
+
get_field
|
279 |
+
has_assoc_Field
|
280 |
+
"""
|
281 |
+
|
282 |
+
has_assoc_Ring = False
|
283 |
+
"""Boolean flag indicating if the domain has an associated
|
284 |
+
:py:class:`~.Ring`.
|
285 |
+
|
286 |
+
>>> from sympy import QQ
|
287 |
+
>>> QQ.has_assoc_Ring
|
288 |
+
True
|
289 |
+
>>> QQ.get_ring()
|
290 |
+
ZZ
|
291 |
+
|
292 |
+
See also
|
293 |
+
========
|
294 |
+
|
295 |
+
is_Field
|
296 |
+
get_ring
|
297 |
+
"""
|
298 |
+
|
299 |
+
has_assoc_Field = False
|
300 |
+
"""Boolean flag indicating if the domain has an associated
|
301 |
+
:py:class:`~.Field`.
|
302 |
+
|
303 |
+
>>> from sympy import ZZ
|
304 |
+
>>> ZZ.has_assoc_Field
|
305 |
+
True
|
306 |
+
>>> ZZ.get_field()
|
307 |
+
QQ
|
308 |
+
|
309 |
+
See also
|
310 |
+
========
|
311 |
+
|
312 |
+
is_Field
|
313 |
+
get_field
|
314 |
+
"""
|
315 |
+
|
316 |
+
is_FiniteField = is_FF = False
|
317 |
+
is_IntegerRing = is_ZZ = False
|
318 |
+
is_RationalField = is_QQ = False
|
319 |
+
is_GaussianRing = is_ZZ_I = False
|
320 |
+
is_GaussianField = is_QQ_I = False
|
321 |
+
is_RealField = is_RR = False
|
322 |
+
is_ComplexField = is_CC = False
|
323 |
+
is_AlgebraicField = is_Algebraic = False
|
324 |
+
is_PolynomialRing = is_Poly = False
|
325 |
+
is_FractionField = is_Frac = False
|
326 |
+
is_SymbolicDomain = is_EX = False
|
327 |
+
is_SymbolicRawDomain = is_EXRAW = False
|
328 |
+
is_FiniteExtension = False
|
329 |
+
|
330 |
+
is_Exact = True
|
331 |
+
is_Numerical = False
|
332 |
+
|
333 |
+
is_Simple = False
|
334 |
+
is_Composite = False
|
335 |
+
|
336 |
+
is_PID = False
|
337 |
+
"""Boolean flag indicating if the domain is a `principal ideal domain`_.
|
338 |
+
|
339 |
+
>>> from sympy import ZZ
|
340 |
+
>>> ZZ.has_assoc_Field
|
341 |
+
True
|
342 |
+
>>> ZZ.get_field()
|
343 |
+
QQ
|
344 |
+
|
345 |
+
.. _principal ideal domain: https://en.wikipedia.org/wiki/Principal_ideal_domain
|
346 |
+
|
347 |
+
See also
|
348 |
+
========
|
349 |
+
|
350 |
+
is_Field
|
351 |
+
get_field
|
352 |
+
"""
|
353 |
+
|
354 |
+
has_CharacteristicZero = False
|
355 |
+
|
356 |
+
rep: str | None = None
|
357 |
+
alias: str | None = None
|
358 |
+
|
359 |
+
def __init__(self):
|
360 |
+
raise NotImplementedError
|
361 |
+
|
362 |
+
def __str__(self):
|
363 |
+
return self.rep
|
364 |
+
|
365 |
+
def __repr__(self):
|
366 |
+
return str(self)
|
367 |
+
|
368 |
+
def __hash__(self):
|
369 |
+
return hash((self.__class__.__name__, self.dtype))
|
370 |
+
|
371 |
+
def new(self, *args):
|
372 |
+
return self.dtype(*args)
|
373 |
+
|
374 |
+
@property
|
375 |
+
def tp(self):
|
376 |
+
"""Alias for :py:attr:`~.Domain.dtype`"""
|
377 |
+
return self.dtype
|
378 |
+
|
379 |
+
def __call__(self, *args):
|
380 |
+
"""Construct an element of ``self`` domain from ``args``. """
|
381 |
+
return self.new(*args)
|
382 |
+
|
383 |
+
def normal(self, *args):
|
384 |
+
return self.dtype(*args)
|
385 |
+
|
386 |
+
def convert_from(self, element, base):
|
387 |
+
"""Convert ``element`` to ``self.dtype`` given the base domain. """
|
388 |
+
if base.alias is not None:
|
389 |
+
method = "from_" + base.alias
|
390 |
+
else:
|
391 |
+
method = "from_" + base.__class__.__name__
|
392 |
+
|
393 |
+
_convert = getattr(self, method)
|
394 |
+
|
395 |
+
if _convert is not None:
|
396 |
+
result = _convert(element, base)
|
397 |
+
|
398 |
+
if result is not None:
|
399 |
+
return result
|
400 |
+
|
401 |
+
raise CoercionFailed("Cannot convert %s of type %s from %s to %s" % (element, type(element), base, self))
|
402 |
+
|
403 |
+
def convert(self, element, base=None):
|
404 |
+
"""Convert ``element`` to ``self.dtype``. """
|
405 |
+
|
406 |
+
if base is not None:
|
407 |
+
if _not_a_coeff(element):
|
408 |
+
raise CoercionFailed('%s is not in any domain' % element)
|
409 |
+
return self.convert_from(element, base)
|
410 |
+
|
411 |
+
if self.of_type(element):
|
412 |
+
return element
|
413 |
+
|
414 |
+
if _not_a_coeff(element):
|
415 |
+
raise CoercionFailed('%s is not in any domain' % element)
|
416 |
+
|
417 |
+
from sympy.polys.domains import ZZ, QQ, RealField, ComplexField
|
418 |
+
|
419 |
+
if ZZ.of_type(element):
|
420 |
+
return self.convert_from(element, ZZ)
|
421 |
+
|
422 |
+
if isinstance(element, int):
|
423 |
+
return self.convert_from(ZZ(element), ZZ)
|
424 |
+
|
425 |
+
if HAS_GMPY:
|
426 |
+
integers = ZZ
|
427 |
+
if isinstance(element, integers.tp):
|
428 |
+
return self.convert_from(element, integers)
|
429 |
+
|
430 |
+
rationals = QQ
|
431 |
+
if isinstance(element, rationals.tp):
|
432 |
+
return self.convert_from(element, rationals)
|
433 |
+
|
434 |
+
if isinstance(element, float):
|
435 |
+
parent = RealField(tol=False)
|
436 |
+
return self.convert_from(parent(element), parent)
|
437 |
+
|
438 |
+
if isinstance(element, complex):
|
439 |
+
parent = ComplexField(tol=False)
|
440 |
+
return self.convert_from(parent(element), parent)
|
441 |
+
|
442 |
+
if isinstance(element, DomainElement):
|
443 |
+
return self.convert_from(element, element.parent())
|
444 |
+
|
445 |
+
# TODO: implement this in from_ methods
|
446 |
+
if self.is_Numerical and getattr(element, 'is_ground', False):
|
447 |
+
return self.convert(element.LC())
|
448 |
+
|
449 |
+
if isinstance(element, Basic):
|
450 |
+
try:
|
451 |
+
return self.from_sympy(element)
|
452 |
+
except (TypeError, ValueError):
|
453 |
+
pass
|
454 |
+
else: # TODO: remove this branch
|
455 |
+
if not is_sequence(element):
|
456 |
+
try:
|
457 |
+
element = sympify(element, strict=True)
|
458 |
+
if isinstance(element, Basic):
|
459 |
+
return self.from_sympy(element)
|
460 |
+
except (TypeError, ValueError):
|
461 |
+
pass
|
462 |
+
|
463 |
+
raise CoercionFailed("Cannot convert %s of type %s to %s" % (element, type(element), self))
|
464 |
+
|
465 |
+
def of_type(self, element):
|
466 |
+
"""Check if ``a`` is of type ``dtype``. """
|
467 |
+
return isinstance(element, self.tp) # XXX: this isn't correct, e.g. PolyElement
|
468 |
+
|
469 |
+
def __contains__(self, a):
|
470 |
+
"""Check if ``a`` belongs to this domain. """
|
471 |
+
try:
|
472 |
+
if _not_a_coeff(a):
|
473 |
+
raise CoercionFailed
|
474 |
+
self.convert(a) # this might raise, too
|
475 |
+
except CoercionFailed:
|
476 |
+
return False
|
477 |
+
|
478 |
+
return True
|
479 |
+
|
480 |
+
def to_sympy(self, a):
|
481 |
+
"""Convert domain element *a* to a SymPy expression (Expr).
|
482 |
+
|
483 |
+
Explanation
|
484 |
+
===========
|
485 |
+
|
486 |
+
Convert a :py:class:`~.Domain` element *a* to :py:class:`~.Expr`. Most
|
487 |
+
public SymPy functions work with objects of type :py:class:`~.Expr`.
|
488 |
+
The elements of a :py:class:`~.Domain` have a different internal
|
489 |
+
representation. It is not possible to mix domain elements with
|
490 |
+
:py:class:`~.Expr` so each domain has :py:meth:`~.Domain.to_sympy` and
|
491 |
+
:py:meth:`~.Domain.from_sympy` methods to convert its domain elements
|
492 |
+
to and from :py:class:`~.Expr`.
|
493 |
+
|
494 |
+
Parameters
|
495 |
+
==========
|
496 |
+
|
497 |
+
a: domain element
|
498 |
+
An element of this :py:class:`~.Domain`.
|
499 |
+
|
500 |
+
Returns
|
501 |
+
=======
|
502 |
+
|
503 |
+
expr: Expr
|
504 |
+
A normal SymPy expression of type :py:class:`~.Expr`.
|
505 |
+
|
506 |
+
Examples
|
507 |
+
========
|
508 |
+
|
509 |
+
Construct an element of the :ref:`QQ` domain and then convert it to
|
510 |
+
:py:class:`~.Expr`.
|
511 |
+
|
512 |
+
>>> from sympy import QQ, Expr
|
513 |
+
>>> q_domain = QQ(2)
|
514 |
+
>>> q_domain
|
515 |
+
2
|
516 |
+
>>> q_expr = QQ.to_sympy(q_domain)
|
517 |
+
>>> q_expr
|
518 |
+
2
|
519 |
+
|
520 |
+
Although the printed forms look similar these objects are not of the
|
521 |
+
same type.
|
522 |
+
|
523 |
+
>>> isinstance(q_domain, Expr)
|
524 |
+
False
|
525 |
+
>>> isinstance(q_expr, Expr)
|
526 |
+
True
|
527 |
+
|
528 |
+
Construct an element of :ref:`K[x]` and convert to
|
529 |
+
:py:class:`~.Expr`.
|
530 |
+
|
531 |
+
>>> from sympy import Symbol
|
532 |
+
>>> x = Symbol('x')
|
533 |
+
>>> K = QQ[x]
|
534 |
+
>>> x_domain = K.gens[0] # generator x as a domain element
|
535 |
+
>>> p_domain = x_domain**2/3 + 1
|
536 |
+
>>> p_domain
|
537 |
+
1/3*x**2 + 1
|
538 |
+
>>> p_expr = K.to_sympy(p_domain)
|
539 |
+
>>> p_expr
|
540 |
+
x**2/3 + 1
|
541 |
+
|
542 |
+
The :py:meth:`~.Domain.from_sympy` method is used for the opposite
|
543 |
+
conversion from a normal SymPy expression to a domain element.
|
544 |
+
|
545 |
+
>>> p_domain == p_expr
|
546 |
+
False
|
547 |
+
>>> K.from_sympy(p_expr) == p_domain
|
548 |
+
True
|
549 |
+
>>> K.to_sympy(p_domain) == p_expr
|
550 |
+
True
|
551 |
+
>>> K.from_sympy(K.to_sympy(p_domain)) == p_domain
|
552 |
+
True
|
553 |
+
>>> K.to_sympy(K.from_sympy(p_expr)) == p_expr
|
554 |
+
True
|
555 |
+
|
556 |
+
The :py:meth:`~.Domain.from_sympy` method makes it easier to construct
|
557 |
+
domain elements interactively.
|
558 |
+
|
559 |
+
>>> from sympy import Symbol
|
560 |
+
>>> x = Symbol('x')
|
561 |
+
>>> K = QQ[x]
|
562 |
+
>>> K.from_sympy(x**2/3 + 1)
|
563 |
+
1/3*x**2 + 1
|
564 |
+
|
565 |
+
See also
|
566 |
+
========
|
567 |
+
|
568 |
+
from_sympy
|
569 |
+
convert_from
|
570 |
+
"""
|
571 |
+
raise NotImplementedError
|
572 |
+
|
573 |
+
def from_sympy(self, a):
|
574 |
+
"""Convert a SymPy expression to an element of this domain.
|
575 |
+
|
576 |
+
Explanation
|
577 |
+
===========
|
578 |
+
|
579 |
+
See :py:meth:`~.Domain.to_sympy` for explanation and examples.
|
580 |
+
|
581 |
+
Parameters
|
582 |
+
==========
|
583 |
+
|
584 |
+
expr: Expr
|
585 |
+
A normal SymPy expression of type :py:class:`~.Expr`.
|
586 |
+
|
587 |
+
Returns
|
588 |
+
=======
|
589 |
+
|
590 |
+
a: domain element
|
591 |
+
An element of this :py:class:`~.Domain`.
|
592 |
+
|
593 |
+
See also
|
594 |
+
========
|
595 |
+
|
596 |
+
to_sympy
|
597 |
+
convert_from
|
598 |
+
"""
|
599 |
+
raise NotImplementedError
|
600 |
+
|
601 |
+
def sum(self, args):
|
602 |
+
return sum(args)
|
603 |
+
|
604 |
+
def from_FF(K1, a, K0):
|
605 |
+
"""Convert ``ModularInteger(int)`` to ``dtype``. """
|
606 |
+
return None
|
607 |
+
|
608 |
+
def from_FF_python(K1, a, K0):
|
609 |
+
"""Convert ``ModularInteger(int)`` to ``dtype``. """
|
610 |
+
return None
|
611 |
+
|
612 |
+
def from_ZZ_python(K1, a, K0):
|
613 |
+
"""Convert a Python ``int`` object to ``dtype``. """
|
614 |
+
return None
|
615 |
+
|
616 |
+
def from_QQ_python(K1, a, K0):
|
617 |
+
"""Convert a Python ``Fraction`` object to ``dtype``. """
|
618 |
+
return None
|
619 |
+
|
620 |
+
def from_FF_gmpy(K1, a, K0):
|
621 |
+
"""Convert ``ModularInteger(mpz)`` to ``dtype``. """
|
622 |
+
return None
|
623 |
+
|
624 |
+
def from_ZZ_gmpy(K1, a, K0):
|
625 |
+
"""Convert a GMPY ``mpz`` object to ``dtype``. """
|
626 |
+
return None
|
627 |
+
|
628 |
+
def from_QQ_gmpy(K1, a, K0):
|
629 |
+
"""Convert a GMPY ``mpq`` object to ``dtype``. """
|
630 |
+
return None
|
631 |
+
|
632 |
+
def from_RealField(K1, a, K0):
|
633 |
+
"""Convert a real element object to ``dtype``. """
|
634 |
+
return None
|
635 |
+
|
636 |
+
def from_ComplexField(K1, a, K0):
|
637 |
+
"""Convert a complex element to ``dtype``. """
|
638 |
+
return None
|
639 |
+
|
640 |
+
def from_AlgebraicField(K1, a, K0):
|
641 |
+
"""Convert an algebraic number to ``dtype``. """
|
642 |
+
return None
|
643 |
+
|
644 |
+
def from_PolynomialRing(K1, a, K0):
|
645 |
+
"""Convert a polynomial to ``dtype``. """
|
646 |
+
if a.is_ground:
|
647 |
+
return K1.convert(a.LC, K0.dom)
|
648 |
+
|
649 |
+
def from_FractionField(K1, a, K0):
|
650 |
+
"""Convert a rational function to ``dtype``. """
|
651 |
+
return None
|
652 |
+
|
653 |
+
def from_MonogenicFiniteExtension(K1, a, K0):
|
654 |
+
"""Convert an ``ExtensionElement`` to ``dtype``. """
|
655 |
+
return K1.convert_from(a.rep, K0.ring)
|
656 |
+
|
657 |
+
def from_ExpressionDomain(K1, a, K0):
|
658 |
+
"""Convert a ``EX`` object to ``dtype``. """
|
659 |
+
return K1.from_sympy(a.ex)
|
660 |
+
|
661 |
+
def from_ExpressionRawDomain(K1, a, K0):
|
662 |
+
"""Convert a ``EX`` object to ``dtype``. """
|
663 |
+
return K1.from_sympy(a)
|
664 |
+
|
665 |
+
def from_GlobalPolynomialRing(K1, a, K0):
|
666 |
+
"""Convert a polynomial to ``dtype``. """
|
667 |
+
if a.degree() <= 0:
|
668 |
+
return K1.convert(a.LC(), K0.dom)
|
669 |
+
|
670 |
+
def from_GeneralizedPolynomialRing(K1, a, K0):
|
671 |
+
return K1.from_FractionField(a, K0)
|
672 |
+
|
673 |
+
def unify_with_symbols(K0, K1, symbols):
|
674 |
+
if (K0.is_Composite and (set(K0.symbols) & set(symbols))) or (K1.is_Composite and (set(K1.symbols) & set(symbols))):
|
675 |
+
raise UnificationFailed("Cannot unify %s with %s, given %s generators" % (K0, K1, tuple(symbols)))
|
676 |
+
|
677 |
+
return K0.unify(K1)
|
678 |
+
|
679 |
+
def unify(K0, K1, symbols=None):
|
680 |
+
"""
|
681 |
+
Construct a minimal domain that contains elements of ``K0`` and ``K1``.
|
682 |
+
|
683 |
+
Known domains (from smallest to largest):
|
684 |
+
|
685 |
+
- ``GF(p)``
|
686 |
+
- ``ZZ``
|
687 |
+
- ``QQ``
|
688 |
+
- ``RR(prec, tol)``
|
689 |
+
- ``CC(prec, tol)``
|
690 |
+
- ``ALG(a, b, c)``
|
691 |
+
- ``K[x, y, z]``
|
692 |
+
- ``K(x, y, z)``
|
693 |
+
- ``EX``
|
694 |
+
|
695 |
+
"""
|
696 |
+
if symbols is not None:
|
697 |
+
return K0.unify_with_symbols(K1, symbols)
|
698 |
+
|
699 |
+
if K0 == K1:
|
700 |
+
return K0
|
701 |
+
|
702 |
+
if K0.is_EXRAW:
|
703 |
+
return K0
|
704 |
+
if K1.is_EXRAW:
|
705 |
+
return K1
|
706 |
+
|
707 |
+
if K0.is_EX:
|
708 |
+
return K0
|
709 |
+
if K1.is_EX:
|
710 |
+
return K1
|
711 |
+
|
712 |
+
if K0.is_FiniteExtension or K1.is_FiniteExtension:
|
713 |
+
if K1.is_FiniteExtension:
|
714 |
+
K0, K1 = K1, K0
|
715 |
+
if K1.is_FiniteExtension:
|
716 |
+
# Unifying two extensions.
|
717 |
+
# Try to ensure that K0.unify(K1) == K1.unify(K0)
|
718 |
+
if list(ordered([K0.modulus, K1.modulus]))[1] == K0.modulus:
|
719 |
+
K0, K1 = K1, K0
|
720 |
+
return K1.set_domain(K0)
|
721 |
+
else:
|
722 |
+
# Drop the generator from other and unify with the base domain
|
723 |
+
K1 = K1.drop(K0.symbol)
|
724 |
+
K1 = K0.domain.unify(K1)
|
725 |
+
return K0.set_domain(K1)
|
726 |
+
|
727 |
+
if K0.is_Composite or K1.is_Composite:
|
728 |
+
K0_ground = K0.dom if K0.is_Composite else K0
|
729 |
+
K1_ground = K1.dom if K1.is_Composite else K1
|
730 |
+
|
731 |
+
K0_symbols = K0.symbols if K0.is_Composite else ()
|
732 |
+
K1_symbols = K1.symbols if K1.is_Composite else ()
|
733 |
+
|
734 |
+
domain = K0_ground.unify(K1_ground)
|
735 |
+
symbols = _unify_gens(K0_symbols, K1_symbols)
|
736 |
+
order = K0.order if K0.is_Composite else K1.order
|
737 |
+
|
738 |
+
if ((K0.is_FractionField and K1.is_PolynomialRing or
|
739 |
+
K1.is_FractionField and K0.is_PolynomialRing) and
|
740 |
+
(not K0_ground.is_Field or not K1_ground.is_Field) and domain.is_Field
|
741 |
+
and domain.has_assoc_Ring):
|
742 |
+
domain = domain.get_ring()
|
743 |
+
|
744 |
+
if K0.is_Composite and (not K1.is_Composite or K0.is_FractionField or K1.is_PolynomialRing):
|
745 |
+
cls = K0.__class__
|
746 |
+
else:
|
747 |
+
cls = K1.__class__
|
748 |
+
|
749 |
+
from sympy.polys.domains.old_polynomialring import GlobalPolynomialRing
|
750 |
+
if cls == GlobalPolynomialRing:
|
751 |
+
return cls(domain, symbols)
|
752 |
+
|
753 |
+
return cls(domain, symbols, order)
|
754 |
+
|
755 |
+
def mkinexact(cls, K0, K1):
|
756 |
+
prec = max(K0.precision, K1.precision)
|
757 |
+
tol = max(K0.tolerance, K1.tolerance)
|
758 |
+
return cls(prec=prec, tol=tol)
|
759 |
+
|
760 |
+
if K1.is_ComplexField:
|
761 |
+
K0, K1 = K1, K0
|
762 |
+
if K0.is_ComplexField:
|
763 |
+
if K1.is_ComplexField or K1.is_RealField:
|
764 |
+
return mkinexact(K0.__class__, K0, K1)
|
765 |
+
else:
|
766 |
+
return K0
|
767 |
+
|
768 |
+
if K1.is_RealField:
|
769 |
+
K0, K1 = K1, K0
|
770 |
+
if K0.is_RealField:
|
771 |
+
if K1.is_RealField:
|
772 |
+
return mkinexact(K0.__class__, K0, K1)
|
773 |
+
elif K1.is_GaussianRing or K1.is_GaussianField:
|
774 |
+
from sympy.polys.domains.complexfield import ComplexField
|
775 |
+
return ComplexField(prec=K0.precision, tol=K0.tolerance)
|
776 |
+
else:
|
777 |
+
return K0
|
778 |
+
|
779 |
+
if K1.is_AlgebraicField:
|
780 |
+
K0, K1 = K1, K0
|
781 |
+
if K0.is_AlgebraicField:
|
782 |
+
if K1.is_GaussianRing:
|
783 |
+
K1 = K1.get_field()
|
784 |
+
if K1.is_GaussianField:
|
785 |
+
K1 = K1.as_AlgebraicField()
|
786 |
+
if K1.is_AlgebraicField:
|
787 |
+
return K0.__class__(K0.dom.unify(K1.dom), *_unify_gens(K0.orig_ext, K1.orig_ext))
|
788 |
+
else:
|
789 |
+
return K0
|
790 |
+
|
791 |
+
if K0.is_GaussianField:
|
792 |
+
return K0
|
793 |
+
if K1.is_GaussianField:
|
794 |
+
return K1
|
795 |
+
|
796 |
+
if K0.is_GaussianRing:
|
797 |
+
if K1.is_RationalField:
|
798 |
+
K0 = K0.get_field()
|
799 |
+
return K0
|
800 |
+
if K1.is_GaussianRing:
|
801 |
+
if K0.is_RationalField:
|
802 |
+
K1 = K1.get_field()
|
803 |
+
return K1
|
804 |
+
|
805 |
+
if K0.is_RationalField:
|
806 |
+
return K0
|
807 |
+
if K1.is_RationalField:
|
808 |
+
return K1
|
809 |
+
|
810 |
+
if K0.is_IntegerRing:
|
811 |
+
return K0
|
812 |
+
if K1.is_IntegerRing:
|
813 |
+
return K1
|
814 |
+
|
815 |
+
if K0.is_FiniteField and K1.is_FiniteField:
|
816 |
+
return K0.__class__(max(K0.mod, K1.mod, key=default_sort_key))
|
817 |
+
|
818 |
+
from sympy.polys.domains import EX
|
819 |
+
return EX
|
820 |
+
|
821 |
+
def __eq__(self, other):
|
822 |
+
"""Returns ``True`` if two domains are equivalent. """
|
823 |
+
return isinstance(other, Domain) and self.dtype == other.dtype
|
824 |
+
|
825 |
+
def __ne__(self, other):
|
826 |
+
"""Returns ``False`` if two domains are equivalent. """
|
827 |
+
return not self == other
|
828 |
+
|
829 |
+
def map(self, seq):
|
830 |
+
"""Rersively apply ``self`` to all elements of ``seq``. """
|
831 |
+
result = []
|
832 |
+
|
833 |
+
for elt in seq:
|
834 |
+
if isinstance(elt, list):
|
835 |
+
result.append(self.map(elt))
|
836 |
+
else:
|
837 |
+
result.append(self(elt))
|
838 |
+
|
839 |
+
return result
|
840 |
+
|
841 |
+
def get_ring(self):
|
842 |
+
"""Returns a ring associated with ``self``. """
|
843 |
+
raise DomainError('there is no ring associated with %s' % self)
|
844 |
+
|
845 |
+
def get_field(self):
|
846 |
+
"""Returns a field associated with ``self``. """
|
847 |
+
raise DomainError('there is no field associated with %s' % self)
|
848 |
+
|
849 |
+
def get_exact(self):
|
850 |
+
"""Returns an exact domain associated with ``self``. """
|
851 |
+
return self
|
852 |
+
|
853 |
+
def __getitem__(self, symbols):
|
854 |
+
"""The mathematical way to make a polynomial ring. """
|
855 |
+
if hasattr(symbols, '__iter__'):
|
856 |
+
return self.poly_ring(*symbols)
|
857 |
+
else:
|
858 |
+
return self.poly_ring(symbols)
|
859 |
+
|
860 |
+
def poly_ring(self, *symbols, order=lex):
|
861 |
+
"""Returns a polynomial ring, i.e. `K[X]`. """
|
862 |
+
from sympy.polys.domains.polynomialring import PolynomialRing
|
863 |
+
return PolynomialRing(self, symbols, order)
|
864 |
+
|
865 |
+
def frac_field(self, *symbols, order=lex):
|
866 |
+
"""Returns a fraction field, i.e. `K(X)`. """
|
867 |
+
from sympy.polys.domains.fractionfield import FractionField
|
868 |
+
return FractionField(self, symbols, order)
|
869 |
+
|
870 |
+
def old_poly_ring(self, *symbols, **kwargs):
|
871 |
+
"""Returns a polynomial ring, i.e. `K[X]`. """
|
872 |
+
from sympy.polys.domains.old_polynomialring import PolynomialRing
|
873 |
+
return PolynomialRing(self, *symbols, **kwargs)
|
874 |
+
|
875 |
+
def old_frac_field(self, *symbols, **kwargs):
|
876 |
+
"""Returns a fraction field, i.e. `K(X)`. """
|
877 |
+
from sympy.polys.domains.old_fractionfield import FractionField
|
878 |
+
return FractionField(self, *symbols, **kwargs)
|
879 |
+
|
880 |
+
def algebraic_field(self, *extension, alias=None):
|
881 |
+
r"""Returns an algebraic field, i.e. `K(\alpha, \ldots)`. """
|
882 |
+
raise DomainError("Cannot create algebraic field over %s" % self)
|
883 |
+
|
884 |
+
def alg_field_from_poly(self, poly, alias=None, root_index=-1):
|
885 |
+
r"""
|
886 |
+
Convenience method to construct an algebraic extension on a root of a
|
887 |
+
polynomial, chosen by root index.
|
888 |
+
|
889 |
+
Parameters
|
890 |
+
==========
|
891 |
+
|
892 |
+
poly : :py:class:`~.Poly`
|
893 |
+
The polynomial whose root generates the extension.
|
894 |
+
alias : str, optional (default=None)
|
895 |
+
Symbol name for the generator of the extension.
|
896 |
+
E.g. "alpha" or "theta".
|
897 |
+
root_index : int, optional (default=-1)
|
898 |
+
Specifies which root of the polynomial is desired. The ordering is
|
899 |
+
as defined by the :py:class:`~.ComplexRootOf` class. The default of
|
900 |
+
``-1`` selects the most natural choice in the common cases of
|
901 |
+
quadratic and cyclotomic fields (the square root on the positive
|
902 |
+
real or imaginary axis, resp. $\mathrm{e}^{2\pi i/n}$).
|
903 |
+
|
904 |
+
Examples
|
905 |
+
========
|
906 |
+
|
907 |
+
>>> from sympy import QQ, Poly
|
908 |
+
>>> from sympy.abc import x
|
909 |
+
>>> f = Poly(x**2 - 2)
|
910 |
+
>>> K = QQ.alg_field_from_poly(f)
|
911 |
+
>>> K.ext.minpoly == f
|
912 |
+
True
|
913 |
+
>>> g = Poly(8*x**3 - 6*x - 1)
|
914 |
+
>>> L = QQ.alg_field_from_poly(g, "alpha")
|
915 |
+
>>> L.ext.minpoly == g
|
916 |
+
True
|
917 |
+
>>> L.to_sympy(L([1, 1, 1]))
|
918 |
+
alpha**2 + alpha + 1
|
919 |
+
|
920 |
+
"""
|
921 |
+
from sympy.polys.rootoftools import CRootOf
|
922 |
+
root = CRootOf(poly, root_index)
|
923 |
+
alpha = AlgebraicNumber(root, alias=alias)
|
924 |
+
return self.algebraic_field(alpha, alias=alias)
|
925 |
+
|
926 |
+
def cyclotomic_field(self, n, ss=False, alias="zeta", gen=None, root_index=-1):
|
927 |
+
r"""
|
928 |
+
Convenience method to construct a cyclotomic field.
|
929 |
+
|
930 |
+
Parameters
|
931 |
+
==========
|
932 |
+
|
933 |
+
n : int
|
934 |
+
Construct the nth cyclotomic field.
|
935 |
+
ss : boolean, optional (default=False)
|
936 |
+
If True, append *n* as a subscript on the alias string.
|
937 |
+
alias : str, optional (default="zeta")
|
938 |
+
Symbol name for the generator.
|
939 |
+
gen : :py:class:`~.Symbol`, optional (default=None)
|
940 |
+
Desired variable for the cyclotomic polynomial that defines the
|
941 |
+
field. If ``None``, a dummy variable will be used.
|
942 |
+
root_index : int, optional (default=-1)
|
943 |
+
Specifies which root of the polynomial is desired. The ordering is
|
944 |
+
as defined by the :py:class:`~.ComplexRootOf` class. The default of
|
945 |
+
``-1`` selects the root $\mathrm{e}^{2\pi i/n}$.
|
946 |
+
|
947 |
+
Examples
|
948 |
+
========
|
949 |
+
|
950 |
+
>>> from sympy import QQ, latex
|
951 |
+
>>> K = QQ.cyclotomic_field(5)
|
952 |
+
>>> K.to_sympy(K([-1, 1]))
|
953 |
+
1 - zeta
|
954 |
+
>>> L = QQ.cyclotomic_field(7, True)
|
955 |
+
>>> a = L.to_sympy(L([-1, 1]))
|
956 |
+
>>> print(a)
|
957 |
+
1 - zeta7
|
958 |
+
>>> print(latex(a))
|
959 |
+
1 - \zeta_{7}
|
960 |
+
|
961 |
+
"""
|
962 |
+
from sympy.polys.specialpolys import cyclotomic_poly
|
963 |
+
if ss:
|
964 |
+
alias += str(n)
|
965 |
+
return self.alg_field_from_poly(cyclotomic_poly(n, gen), alias=alias,
|
966 |
+
root_index=root_index)
|
967 |
+
|
968 |
+
def inject(self, *symbols):
|
969 |
+
"""Inject generators into this domain. """
|
970 |
+
raise NotImplementedError
|
971 |
+
|
972 |
+
def drop(self, *symbols):
|
973 |
+
"""Drop generators from this domain. """
|
974 |
+
if self.is_Simple:
|
975 |
+
return self
|
976 |
+
raise NotImplementedError # pragma: no cover
|
977 |
+
|
978 |
+
def is_zero(self, a):
|
979 |
+
"""Returns True if ``a`` is zero. """
|
980 |
+
return not a
|
981 |
+
|
982 |
+
def is_one(self, a):
|
983 |
+
"""Returns True if ``a`` is one. """
|
984 |
+
return a == self.one
|
985 |
+
|
986 |
+
def is_positive(self, a):
|
987 |
+
"""Returns True if ``a`` is positive. """
|
988 |
+
return a > 0
|
989 |
+
|
990 |
+
def is_negative(self, a):
|
991 |
+
"""Returns True if ``a`` is negative. """
|
992 |
+
return a < 0
|
993 |
+
|
994 |
+
def is_nonpositive(self, a):
|
995 |
+
"""Returns True if ``a`` is non-positive. """
|
996 |
+
return a <= 0
|
997 |
+
|
998 |
+
def is_nonnegative(self, a):
|
999 |
+
"""Returns True if ``a`` is non-negative. """
|
1000 |
+
return a >= 0
|
1001 |
+
|
1002 |
+
def canonical_unit(self, a):
|
1003 |
+
if self.is_negative(a):
|
1004 |
+
return -self.one
|
1005 |
+
else:
|
1006 |
+
return self.one
|
1007 |
+
|
1008 |
+
def abs(self, a):
|
1009 |
+
"""Absolute value of ``a``, implies ``__abs__``. """
|
1010 |
+
return abs(a)
|
1011 |
+
|
1012 |
+
def neg(self, a):
|
1013 |
+
"""Returns ``a`` negated, implies ``__neg__``. """
|
1014 |
+
return -a
|
1015 |
+
|
1016 |
+
def pos(self, a):
|
1017 |
+
"""Returns ``a`` positive, implies ``__pos__``. """
|
1018 |
+
return +a
|
1019 |
+
|
1020 |
+
def add(self, a, b):
|
1021 |
+
"""Sum of ``a`` and ``b``, implies ``__add__``. """
|
1022 |
+
return a + b
|
1023 |
+
|
1024 |
+
def sub(self, a, b):
|
1025 |
+
"""Difference of ``a`` and ``b``, implies ``__sub__``. """
|
1026 |
+
return a - b
|
1027 |
+
|
1028 |
+
def mul(self, a, b):
|
1029 |
+
"""Product of ``a`` and ``b``, implies ``__mul__``. """
|
1030 |
+
return a * b
|
1031 |
+
|
1032 |
+
def pow(self, a, b):
|
1033 |
+
"""Raise ``a`` to power ``b``, implies ``__pow__``. """
|
1034 |
+
return a ** b
|
1035 |
+
|
1036 |
+
def exquo(self, a, b):
|
1037 |
+
"""Exact quotient of *a* and *b*. Analogue of ``a / b``.
|
1038 |
+
|
1039 |
+
Explanation
|
1040 |
+
===========
|
1041 |
+
|
1042 |
+
This is essentially the same as ``a / b`` except that an error will be
|
1043 |
+
raised if the division is inexact (if there is any remainder) and the
|
1044 |
+
result will always be a domain element. When working in a
|
1045 |
+
:py:class:`~.Domain` that is not a :py:class:`~.Field` (e.g. :ref:`ZZ`
|
1046 |
+
or :ref:`K[x]`) ``exquo`` should be used instead of ``/``.
|
1047 |
+
|
1048 |
+
The key invariant is that if ``q = K.exquo(a, b)`` (and ``exquo`` does
|
1049 |
+
not raise an exception) then ``a == b*q``.
|
1050 |
+
|
1051 |
+
Examples
|
1052 |
+
========
|
1053 |
+
|
1054 |
+
We can use ``K.exquo`` instead of ``/`` for exact division.
|
1055 |
+
|
1056 |
+
>>> from sympy import ZZ
|
1057 |
+
>>> ZZ.exquo(ZZ(4), ZZ(2))
|
1058 |
+
2
|
1059 |
+
>>> ZZ.exquo(ZZ(5), ZZ(2))
|
1060 |
+
Traceback (most recent call last):
|
1061 |
+
...
|
1062 |
+
ExactQuotientFailed: 2 does not divide 5 in ZZ
|
1063 |
+
|
1064 |
+
Over a :py:class:`~.Field` such as :ref:`QQ`, division (with nonzero
|
1065 |
+
divisor) is always exact so in that case ``/`` can be used instead of
|
1066 |
+
:py:meth:`~.Domain.exquo`.
|
1067 |
+
|
1068 |
+
>>> from sympy import QQ
|
1069 |
+
>>> QQ.exquo(QQ(5), QQ(2))
|
1070 |
+
5/2
|
1071 |
+
>>> QQ(5) / QQ(2)
|
1072 |
+
5/2
|
1073 |
+
|
1074 |
+
Parameters
|
1075 |
+
==========
|
1076 |
+
|
1077 |
+
a: domain element
|
1078 |
+
The dividend
|
1079 |
+
b: domain element
|
1080 |
+
The divisor
|
1081 |
+
|
1082 |
+
Returns
|
1083 |
+
=======
|
1084 |
+
|
1085 |
+
q: domain element
|
1086 |
+
The exact quotient
|
1087 |
+
|
1088 |
+
Raises
|
1089 |
+
======
|
1090 |
+
|
1091 |
+
ExactQuotientFailed: if exact division is not possible.
|
1092 |
+
ZeroDivisionError: when the divisor is zero.
|
1093 |
+
|
1094 |
+
See also
|
1095 |
+
========
|
1096 |
+
|
1097 |
+
quo: Analogue of ``a // b``
|
1098 |
+
rem: Analogue of ``a % b``
|
1099 |
+
div: Analogue of ``divmod(a, b)``
|
1100 |
+
|
1101 |
+
Notes
|
1102 |
+
=====
|
1103 |
+
|
1104 |
+
Since the default :py:attr:`~.Domain.dtype` for :ref:`ZZ` is ``int``
|
1105 |
+
(or ``mpz``) division as ``a / b`` should not be used as it would give
|
1106 |
+
a ``float``.
|
1107 |
+
|
1108 |
+
>>> ZZ(4) / ZZ(2)
|
1109 |
+
2.0
|
1110 |
+
>>> ZZ(5) / ZZ(2)
|
1111 |
+
2.5
|
1112 |
+
|
1113 |
+
Using ``/`` with :ref:`ZZ` will lead to incorrect results so
|
1114 |
+
:py:meth:`~.Domain.exquo` should be used instead.
|
1115 |
+
|
1116 |
+
"""
|
1117 |
+
raise NotImplementedError
|
1118 |
+
|
1119 |
+
def quo(self, a, b):
|
1120 |
+
"""Quotient of *a* and *b*. Analogue of ``a // b``.
|
1121 |
+
|
1122 |
+
``K.quo(a, b)`` is equivalent to ``K.div(a, b)[0]``. See
|
1123 |
+
:py:meth:`~.Domain.div` for more explanation.
|
1124 |
+
|
1125 |
+
See also
|
1126 |
+
========
|
1127 |
+
|
1128 |
+
rem: Analogue of ``a % b``
|
1129 |
+
div: Analogue of ``divmod(a, b)``
|
1130 |
+
exquo: Analogue of ``a / b``
|
1131 |
+
"""
|
1132 |
+
raise NotImplementedError
|
1133 |
+
|
1134 |
+
def rem(self, a, b):
|
1135 |
+
"""Modulo division of *a* and *b*. Analogue of ``a % b``.
|
1136 |
+
|
1137 |
+
``K.rem(a, b)`` is equivalent to ``K.div(a, b)[1]``. See
|
1138 |
+
:py:meth:`~.Domain.div` for more explanation.
|
1139 |
+
|
1140 |
+
See also
|
1141 |
+
========
|
1142 |
+
|
1143 |
+
quo: Analogue of ``a // b``
|
1144 |
+
div: Analogue of ``divmod(a, b)``
|
1145 |
+
exquo: Analogue of ``a / b``
|
1146 |
+
"""
|
1147 |
+
raise NotImplementedError
|
1148 |
+
|
1149 |
+
def div(self, a, b):
|
1150 |
+
"""Quotient and remainder for *a* and *b*. Analogue of ``divmod(a, b)``
|
1151 |
+
|
1152 |
+
Explanation
|
1153 |
+
===========
|
1154 |
+
|
1155 |
+
This is essentially the same as ``divmod(a, b)`` except that is more
|
1156 |
+
consistent when working over some :py:class:`~.Field` domains such as
|
1157 |
+
:ref:`QQ`. When working over an arbitrary :py:class:`~.Domain` the
|
1158 |
+
:py:meth:`~.Domain.div` method should be used instead of ``divmod``.
|
1159 |
+
|
1160 |
+
The key invariant is that if ``q, r = K.div(a, b)`` then
|
1161 |
+
``a == b*q + r``.
|
1162 |
+
|
1163 |
+
The result of ``K.div(a, b)`` is the same as the tuple
|
1164 |
+
``(K.quo(a, b), K.rem(a, b))`` except that if both quotient and
|
1165 |
+
remainder are needed then it is more efficient to use
|
1166 |
+
:py:meth:`~.Domain.div`.
|
1167 |
+
|
1168 |
+
Examples
|
1169 |
+
========
|
1170 |
+
|
1171 |
+
We can use ``K.div`` instead of ``divmod`` for floor division and
|
1172 |
+
remainder.
|
1173 |
+
|
1174 |
+
>>> from sympy import ZZ, QQ
|
1175 |
+
>>> ZZ.div(ZZ(5), ZZ(2))
|
1176 |
+
(2, 1)
|
1177 |
+
|
1178 |
+
If ``K`` is a :py:class:`~.Field` then the division is always exact
|
1179 |
+
with a remainder of :py:attr:`~.Domain.zero`.
|
1180 |
+
|
1181 |
+
>>> QQ.div(QQ(5), QQ(2))
|
1182 |
+
(5/2, 0)
|
1183 |
+
|
1184 |
+
Parameters
|
1185 |
+
==========
|
1186 |
+
|
1187 |
+
a: domain element
|
1188 |
+
The dividend
|
1189 |
+
b: domain element
|
1190 |
+
The divisor
|
1191 |
+
|
1192 |
+
Returns
|
1193 |
+
=======
|
1194 |
+
|
1195 |
+
(q, r): tuple of domain elements
|
1196 |
+
The quotient and remainder
|
1197 |
+
|
1198 |
+
Raises
|
1199 |
+
======
|
1200 |
+
|
1201 |
+
ZeroDivisionError: when the divisor is zero.
|
1202 |
+
|
1203 |
+
See also
|
1204 |
+
========
|
1205 |
+
|
1206 |
+
quo: Analogue of ``a // b``
|
1207 |
+
rem: Analogue of ``a % b``
|
1208 |
+
exquo: Analogue of ``a / b``
|
1209 |
+
|
1210 |
+
Notes
|
1211 |
+
=====
|
1212 |
+
|
1213 |
+
If ``gmpy`` is installed then the ``gmpy.mpq`` type will be used as
|
1214 |
+
the :py:attr:`~.Domain.dtype` for :ref:`QQ`. The ``gmpy.mpq`` type
|
1215 |
+
defines ``divmod`` in a way that is undesirable so
|
1216 |
+
:py:meth:`~.Domain.div` should be used instead of ``divmod``.
|
1217 |
+
|
1218 |
+
>>> a = QQ(1)
|
1219 |
+
>>> b = QQ(3, 2)
|
1220 |
+
>>> a # doctest: +SKIP
|
1221 |
+
mpq(1,1)
|
1222 |
+
>>> b # doctest: +SKIP
|
1223 |
+
mpq(3,2)
|
1224 |
+
>>> divmod(a, b) # doctest: +SKIP
|
1225 |
+
(mpz(0), mpq(1,1))
|
1226 |
+
>>> QQ.div(a, b) # doctest: +SKIP
|
1227 |
+
(mpq(2,3), mpq(0,1))
|
1228 |
+
|
1229 |
+
Using ``//`` or ``%`` with :ref:`QQ` will lead to incorrect results so
|
1230 |
+
:py:meth:`~.Domain.div` should be used instead.
|
1231 |
+
|
1232 |
+
"""
|
1233 |
+
raise NotImplementedError
|
1234 |
+
|
1235 |
+
def invert(self, a, b):
|
1236 |
+
"""Returns inversion of ``a mod b``, implies something. """
|
1237 |
+
raise NotImplementedError
|
1238 |
+
|
1239 |
+
def revert(self, a):
|
1240 |
+
"""Returns ``a**(-1)`` if possible. """
|
1241 |
+
raise NotImplementedError
|
1242 |
+
|
1243 |
+
def numer(self, a):
|
1244 |
+
"""Returns numerator of ``a``. """
|
1245 |
+
raise NotImplementedError
|
1246 |
+
|
1247 |
+
def denom(self, a):
|
1248 |
+
"""Returns denominator of ``a``. """
|
1249 |
+
raise NotImplementedError
|
1250 |
+
|
1251 |
+
def half_gcdex(self, a, b):
|
1252 |
+
"""Half extended GCD of ``a`` and ``b``. """
|
1253 |
+
s, t, h = self.gcdex(a, b)
|
1254 |
+
return s, h
|
1255 |
+
|
1256 |
+
def gcdex(self, a, b):
|
1257 |
+
"""Extended GCD of ``a`` and ``b``. """
|
1258 |
+
raise NotImplementedError
|
1259 |
+
|
1260 |
+
def cofactors(self, a, b):
|
1261 |
+
"""Returns GCD and cofactors of ``a`` and ``b``. """
|
1262 |
+
gcd = self.gcd(a, b)
|
1263 |
+
cfa = self.quo(a, gcd)
|
1264 |
+
cfb = self.quo(b, gcd)
|
1265 |
+
return gcd, cfa, cfb
|
1266 |
+
|
1267 |
+
def gcd(self, a, b):
|
1268 |
+
"""Returns GCD of ``a`` and ``b``. """
|
1269 |
+
raise NotImplementedError
|
1270 |
+
|
1271 |
+
def lcm(self, a, b):
|
1272 |
+
"""Returns LCM of ``a`` and ``b``. """
|
1273 |
+
raise NotImplementedError
|
1274 |
+
|
1275 |
+
def log(self, a, b):
|
1276 |
+
"""Returns b-base logarithm of ``a``. """
|
1277 |
+
raise NotImplementedError
|
1278 |
+
|
1279 |
+
def sqrt(self, a):
|
1280 |
+
"""Returns square root of ``a``. """
|
1281 |
+
raise NotImplementedError
|
1282 |
+
|
1283 |
+
def evalf(self, a, prec=None, **options):
|
1284 |
+
"""Returns numerical approximation of ``a``. """
|
1285 |
+
return self.to_sympy(a).evalf(prec, **options)
|
1286 |
+
|
1287 |
+
n = evalf
|
1288 |
+
|
1289 |
+
def real(self, a):
|
1290 |
+
return a
|
1291 |
+
|
1292 |
+
def imag(self, a):
|
1293 |
+
return self.zero
|
1294 |
+
|
1295 |
+
def almosteq(self, a, b, tolerance=None):
|
1296 |
+
"""Check if ``a`` and ``b`` are almost equal. """
|
1297 |
+
return a == b
|
1298 |
+
|
1299 |
+
def characteristic(self):
|
1300 |
+
"""Return the characteristic of this domain. """
|
1301 |
+
raise NotImplementedError('characteristic()')
|
1302 |
+
|
1303 |
+
|
1304 |
+
__all__ = ['Domain']
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/domains/field.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Implementation of :class:`Field` class. """
|
2 |
+
|
3 |
+
|
4 |
+
from sympy.polys.domains.ring import Ring
|
5 |
+
from sympy.polys.polyerrors import NotReversible, DomainError
|
6 |
+
from sympy.utilities import public
|
7 |
+
|
8 |
+
@public
|
9 |
+
class Field(Ring):
|
10 |
+
"""Represents a field domain. """
|
11 |
+
|
12 |
+
is_Field = True
|
13 |
+
is_PID = True
|
14 |
+
|
15 |
+
def get_ring(self):
|
16 |
+
"""Returns a ring associated with ``self``. """
|
17 |
+
raise DomainError('there is no ring associated with %s' % self)
|
18 |
+
|
19 |
+
def get_field(self):
|
20 |
+
"""Returns a field associated with ``self``. """
|
21 |
+
return self
|
22 |
+
|
23 |
+
def exquo(self, a, b):
|
24 |
+
"""Exact quotient of ``a`` and ``b``, implies ``__truediv__``. """
|
25 |
+
return a / b
|
26 |
+
|
27 |
+
def quo(self, a, b):
|
28 |
+
"""Quotient of ``a`` and ``b``, implies ``__truediv__``. """
|
29 |
+
return a / b
|
30 |
+
|
31 |
+
def rem(self, a, b):
|
32 |
+
"""Remainder of ``a`` and ``b``, implies nothing. """
|
33 |
+
return self.zero
|
34 |
+
|
35 |
+
def div(self, a, b):
|
36 |
+
"""Division of ``a`` and ``b``, implies ``__truediv__``. """
|
37 |
+
return a / b, self.zero
|
38 |
+
|
39 |
+
def gcd(self, a, b):
|
40 |
+
"""
|
41 |
+
Returns GCD of ``a`` and ``b``.
|
42 |
+
|
43 |
+
This definition of GCD over fields allows to clear denominators
|
44 |
+
in `primitive()`.
|
45 |
+
|
46 |
+
Examples
|
47 |
+
========
|
48 |
+
|
49 |
+
>>> from sympy.polys.domains import QQ
|
50 |
+
>>> from sympy import S, gcd, primitive
|
51 |
+
>>> from sympy.abc import x
|
52 |
+
|
53 |
+
>>> QQ.gcd(QQ(2, 3), QQ(4, 9))
|
54 |
+
2/9
|
55 |
+
>>> gcd(S(2)/3, S(4)/9)
|
56 |
+
2/9
|
57 |
+
>>> primitive(2*x/3 + S(4)/9)
|
58 |
+
(2/9, 3*x + 2)
|
59 |
+
|
60 |
+
"""
|
61 |
+
try:
|
62 |
+
ring = self.get_ring()
|
63 |
+
except DomainError:
|
64 |
+
return self.one
|
65 |
+
|
66 |
+
p = ring.gcd(self.numer(a), self.numer(b))
|
67 |
+
q = ring.lcm(self.denom(a), self.denom(b))
|
68 |
+
|
69 |
+
return self.convert(p, ring)/q
|
70 |
+
|
71 |
+
def lcm(self, a, b):
|
72 |
+
"""
|
73 |
+
Returns LCM of ``a`` and ``b``.
|
74 |
+
|
75 |
+
>>> from sympy.polys.domains import QQ
|
76 |
+
>>> from sympy import S, lcm
|
77 |
+
|
78 |
+
>>> QQ.lcm(QQ(2, 3), QQ(4, 9))
|
79 |
+
4/3
|
80 |
+
>>> lcm(S(2)/3, S(4)/9)
|
81 |
+
4/3
|
82 |
+
|
83 |
+
"""
|
84 |
+
|
85 |
+
try:
|
86 |
+
ring = self.get_ring()
|
87 |
+
except DomainError:
|
88 |
+
return a*b
|
89 |
+
|
90 |
+
p = ring.lcm(self.numer(a), self.numer(b))
|
91 |
+
q = ring.gcd(self.denom(a), self.denom(b))
|
92 |
+
|
93 |
+
return self.convert(p, ring)/q
|
94 |
+
|
95 |
+
def revert(self, a):
|
96 |
+
"""Returns ``a**(-1)`` if possible. """
|
97 |
+
if a:
|
98 |
+
return 1/a
|
99 |
+
else:
|
100 |
+
raise NotReversible('zero is not reversible')
|
101 |
+
|
102 |
+
def is_unit(self, a):
|
103 |
+
"""Return true if ``a`` is a invertible"""
|
104 |
+
return bool(a)
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/domains/gmpyintegerring.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Implementation of :class:`GMPYIntegerRing` class. """
|
2 |
+
|
3 |
+
|
4 |
+
from sympy.polys.domains.groundtypes import (
|
5 |
+
GMPYInteger, SymPyInteger,
|
6 |
+
factorial as gmpy_factorial,
|
7 |
+
gmpy_gcdex, gmpy_gcd, gmpy_lcm, sqrt as gmpy_sqrt,
|
8 |
+
)
|
9 |
+
from sympy.polys.domains.integerring import IntegerRing
|
10 |
+
from sympy.polys.polyerrors import CoercionFailed
|
11 |
+
from sympy.utilities import public
|
12 |
+
|
13 |
+
@public
|
14 |
+
class GMPYIntegerRing(IntegerRing):
|
15 |
+
"""Integer ring based on GMPY's ``mpz`` type.
|
16 |
+
|
17 |
+
This will be the implementation of :ref:`ZZ` if ``gmpy`` or ``gmpy2`` is
|
18 |
+
installed. Elements will be of type ``gmpy.mpz``.
|
19 |
+
"""
|
20 |
+
|
21 |
+
dtype = GMPYInteger
|
22 |
+
zero = dtype(0)
|
23 |
+
one = dtype(1)
|
24 |
+
tp = type(one)
|
25 |
+
alias = 'ZZ_gmpy'
|
26 |
+
|
27 |
+
def __init__(self):
|
28 |
+
"""Allow instantiation of this domain. """
|
29 |
+
|
30 |
+
def to_sympy(self, a):
|
31 |
+
"""Convert ``a`` to a SymPy object. """
|
32 |
+
return SymPyInteger(int(a))
|
33 |
+
|
34 |
+
def from_sympy(self, a):
|
35 |
+
"""Convert SymPy's Integer to ``dtype``. """
|
36 |
+
if a.is_Integer:
|
37 |
+
return GMPYInteger(a.p)
|
38 |
+
elif a.is_Float and int(a) == a:
|
39 |
+
return GMPYInteger(int(a))
|
40 |
+
else:
|
41 |
+
raise CoercionFailed("expected an integer, got %s" % a)
|
42 |
+
|
43 |
+
def from_FF_python(K1, a, K0):
|
44 |
+
"""Convert ``ModularInteger(int)`` to GMPY's ``mpz``. """
|
45 |
+
return GMPYInteger(a.to_int())
|
46 |
+
|
47 |
+
def from_ZZ_python(K1, a, K0):
|
48 |
+
"""Convert Python's ``int`` to GMPY's ``mpz``. """
|
49 |
+
return GMPYInteger(a)
|
50 |
+
|
51 |
+
def from_QQ(K1, a, K0):
|
52 |
+
"""Convert Python's ``Fraction`` to GMPY's ``mpz``. """
|
53 |
+
if a.denominator == 1:
|
54 |
+
return GMPYInteger(a.numerator)
|
55 |
+
|
56 |
+
def from_QQ_python(K1, a, K0):
|
57 |
+
"""Convert Python's ``Fraction`` to GMPY's ``mpz``. """
|
58 |
+
if a.denominator == 1:
|
59 |
+
return GMPYInteger(a.numerator)
|
60 |
+
|
61 |
+
def from_FF_gmpy(K1, a, K0):
|
62 |
+
"""Convert ``ModularInteger(mpz)`` to GMPY's ``mpz``. """
|
63 |
+
return a.to_int()
|
64 |
+
|
65 |
+
def from_ZZ_gmpy(K1, a, K0):
|
66 |
+
"""Convert GMPY's ``mpz`` to GMPY's ``mpz``. """
|
67 |
+
return a
|
68 |
+
|
69 |
+
def from_QQ_gmpy(K1, a, K0):
|
70 |
+
"""Convert GMPY ``mpq`` to GMPY's ``mpz``. """
|
71 |
+
if a.denominator == 1:
|
72 |
+
return a.numerator
|
73 |
+
|
74 |
+
def from_RealField(K1, a, K0):
|
75 |
+
"""Convert mpmath's ``mpf`` to GMPY's ``mpz``. """
|
76 |
+
p, q = K0.to_rational(a)
|
77 |
+
|
78 |
+
if q == 1:
|
79 |
+
return GMPYInteger(p)
|
80 |
+
|
81 |
+
def from_GaussianIntegerRing(K1, a, K0):
|
82 |
+
if a.y == 0:
|
83 |
+
return a.x
|
84 |
+
|
85 |
+
def gcdex(self, a, b):
|
86 |
+
"""Compute extended GCD of ``a`` and ``b``. """
|
87 |
+
h, s, t = gmpy_gcdex(a, b)
|
88 |
+
return s, t, h
|
89 |
+
|
90 |
+
def gcd(self, a, b):
|
91 |
+
"""Compute GCD of ``a`` and ``b``. """
|
92 |
+
return gmpy_gcd(a, b)
|
93 |
+
|
94 |
+
def lcm(self, a, b):
|
95 |
+
"""Compute LCM of ``a`` and ``b``. """
|
96 |
+
return gmpy_lcm(a, b)
|
97 |
+
|
98 |
+
def sqrt(self, a):
|
99 |
+
"""Compute square root of ``a``. """
|
100 |
+
return gmpy_sqrt(a)
|
101 |
+
|
102 |
+
def factorial(self, a):
|
103 |
+
"""Compute factorial of ``a``. """
|
104 |
+
return gmpy_factorial(a)
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/domains/modularinteger.py
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Implementation of :class:`ModularInteger` class. """
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
from typing import Any
|
5 |
+
|
6 |
+
import operator
|
7 |
+
|
8 |
+
from sympy.polys.polyutils import PicklableWithSlots
|
9 |
+
from sympy.polys.polyerrors import CoercionFailed
|
10 |
+
from sympy.polys.domains.domainelement import DomainElement
|
11 |
+
|
12 |
+
from sympy.utilities import public
|
13 |
+
|
14 |
+
@public
|
15 |
+
class ModularInteger(PicklableWithSlots, DomainElement):
|
16 |
+
"""A class representing a modular integer. """
|
17 |
+
|
18 |
+
mod, dom, sym, _parent = None, None, None, None
|
19 |
+
|
20 |
+
__slots__ = ('val',)
|
21 |
+
|
22 |
+
def parent(self):
|
23 |
+
return self._parent
|
24 |
+
|
25 |
+
def __init__(self, val):
|
26 |
+
if isinstance(val, self.__class__):
|
27 |
+
self.val = val.val % self.mod
|
28 |
+
else:
|
29 |
+
self.val = self.dom.convert(val) % self.mod
|
30 |
+
|
31 |
+
def __hash__(self):
|
32 |
+
return hash((self.val, self.mod))
|
33 |
+
|
34 |
+
def __repr__(self):
|
35 |
+
return "%s(%s)" % (self.__class__.__name__, self.val)
|
36 |
+
|
37 |
+
def __str__(self):
|
38 |
+
return "%s mod %s" % (self.val, self.mod)
|
39 |
+
|
40 |
+
def __int__(self):
|
41 |
+
return int(self.to_int())
|
42 |
+
|
43 |
+
def to_int(self):
|
44 |
+
if self.sym:
|
45 |
+
if self.val <= self.mod // 2:
|
46 |
+
return self.val
|
47 |
+
else:
|
48 |
+
return self.val - self.mod
|
49 |
+
else:
|
50 |
+
return self.val
|
51 |
+
|
52 |
+
def __pos__(self):
|
53 |
+
return self
|
54 |
+
|
55 |
+
def __neg__(self):
|
56 |
+
return self.__class__(-self.val)
|
57 |
+
|
58 |
+
@classmethod
|
59 |
+
def _get_val(cls, other):
|
60 |
+
if isinstance(other, cls):
|
61 |
+
return other.val
|
62 |
+
else:
|
63 |
+
try:
|
64 |
+
return cls.dom.convert(other)
|
65 |
+
except CoercionFailed:
|
66 |
+
return None
|
67 |
+
|
68 |
+
def __add__(self, other):
|
69 |
+
val = self._get_val(other)
|
70 |
+
|
71 |
+
if val is not None:
|
72 |
+
return self.__class__(self.val + val)
|
73 |
+
else:
|
74 |
+
return NotImplemented
|
75 |
+
|
76 |
+
def __radd__(self, other):
|
77 |
+
return self.__add__(other)
|
78 |
+
|
79 |
+
def __sub__(self, other):
|
80 |
+
val = self._get_val(other)
|
81 |
+
|
82 |
+
if val is not None:
|
83 |
+
return self.__class__(self.val - val)
|
84 |
+
else:
|
85 |
+
return NotImplemented
|
86 |
+
|
87 |
+
def __rsub__(self, other):
|
88 |
+
return (-self).__add__(other)
|
89 |
+
|
90 |
+
def __mul__(self, other):
|
91 |
+
val = self._get_val(other)
|
92 |
+
|
93 |
+
if val is not None:
|
94 |
+
return self.__class__(self.val * val)
|
95 |
+
else:
|
96 |
+
return NotImplemented
|
97 |
+
|
98 |
+
def __rmul__(self, other):
|
99 |
+
return self.__mul__(other)
|
100 |
+
|
101 |
+
def __truediv__(self, other):
|
102 |
+
val = self._get_val(other)
|
103 |
+
|
104 |
+
if val is not None:
|
105 |
+
return self.__class__(self.val * self._invert(val))
|
106 |
+
else:
|
107 |
+
return NotImplemented
|
108 |
+
|
109 |
+
def __rtruediv__(self, other):
|
110 |
+
return self.invert().__mul__(other)
|
111 |
+
|
112 |
+
def __mod__(self, other):
|
113 |
+
val = self._get_val(other)
|
114 |
+
|
115 |
+
if val is not None:
|
116 |
+
return self.__class__(self.val % val)
|
117 |
+
else:
|
118 |
+
return NotImplemented
|
119 |
+
|
120 |
+
def __rmod__(self, other):
|
121 |
+
val = self._get_val(other)
|
122 |
+
|
123 |
+
if val is not None:
|
124 |
+
return self.__class__(val % self.val)
|
125 |
+
else:
|
126 |
+
return NotImplemented
|
127 |
+
|
128 |
+
def __pow__(self, exp):
|
129 |
+
if not exp:
|
130 |
+
return self.__class__(self.dom.one)
|
131 |
+
|
132 |
+
if exp < 0:
|
133 |
+
val, exp = self.invert().val, -exp
|
134 |
+
else:
|
135 |
+
val = self.val
|
136 |
+
|
137 |
+
return self.__class__(pow(val, int(exp), self.mod))
|
138 |
+
|
139 |
+
def _compare(self, other, op):
|
140 |
+
val = self._get_val(other)
|
141 |
+
|
142 |
+
if val is not None:
|
143 |
+
return op(self.val, val % self.mod)
|
144 |
+
else:
|
145 |
+
return NotImplemented
|
146 |
+
|
147 |
+
def __eq__(self, other):
|
148 |
+
return self._compare(other, operator.eq)
|
149 |
+
|
150 |
+
def __ne__(self, other):
|
151 |
+
return self._compare(other, operator.ne)
|
152 |
+
|
153 |
+
def __lt__(self, other):
|
154 |
+
return self._compare(other, operator.lt)
|
155 |
+
|
156 |
+
def __le__(self, other):
|
157 |
+
return self._compare(other, operator.le)
|
158 |
+
|
159 |
+
def __gt__(self, other):
|
160 |
+
return self._compare(other, operator.gt)
|
161 |
+
|
162 |
+
def __ge__(self, other):
|
163 |
+
return self._compare(other, operator.ge)
|
164 |
+
|
165 |
+
def __bool__(self):
|
166 |
+
return bool(self.val)
|
167 |
+
|
168 |
+
@classmethod
|
169 |
+
def _invert(cls, value):
|
170 |
+
return cls.dom.invert(value, cls.mod)
|
171 |
+
|
172 |
+
def invert(self):
|
173 |
+
return self.__class__(self._invert(self.val))
|
174 |
+
|
175 |
+
_modular_integer_cache: dict[tuple[Any, Any, Any], type[ModularInteger]] = {}
|
176 |
+
|
177 |
+
def ModularIntegerFactory(_mod, _dom, _sym, parent):
|
178 |
+
"""Create custom class for specific integer modulus."""
|
179 |
+
try:
|
180 |
+
_mod = _dom.convert(_mod)
|
181 |
+
except CoercionFailed:
|
182 |
+
ok = False
|
183 |
+
else:
|
184 |
+
ok = True
|
185 |
+
|
186 |
+
if not ok or _mod < 1:
|
187 |
+
raise ValueError("modulus must be a positive integer, got %s" % _mod)
|
188 |
+
|
189 |
+
key = _mod, _dom, _sym
|
190 |
+
|
191 |
+
try:
|
192 |
+
cls = _modular_integer_cache[key]
|
193 |
+
except KeyError:
|
194 |
+
class cls(ModularInteger):
|
195 |
+
mod, dom, sym = _mod, _dom, _sym
|
196 |
+
_parent = parent
|
197 |
+
|
198 |
+
if _sym:
|
199 |
+
cls.__name__ = "SymmetricModularIntegerMod%s" % _mod
|
200 |
+
else:
|
201 |
+
cls.__name__ = "ModularIntegerMod%s" % _mod
|
202 |
+
|
203 |
+
_modular_integer_cache[key] = cls
|
204 |
+
|
205 |
+
return cls
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/domains/old_fractionfield.py
ADDED
@@ -0,0 +1,185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Implementation of :class:`FractionField` class. """
|
2 |
+
|
3 |
+
|
4 |
+
from sympy.polys.domains.field import Field
|
5 |
+
from sympy.polys.domains.compositedomain import CompositeDomain
|
6 |
+
from sympy.polys.domains.characteristiczero import CharacteristicZero
|
7 |
+
from sympy.polys.polyclasses import DMF
|
8 |
+
from sympy.polys.polyerrors import GeneratorsNeeded
|
9 |
+
from sympy.polys.polyutils import dict_from_basic, basic_from_dict, _dict_reorder
|
10 |
+
from sympy.utilities import public
|
11 |
+
|
12 |
+
@public
|
13 |
+
class FractionField(Field, CharacteristicZero, CompositeDomain):
|
14 |
+
"""A class for representing rational function fields. """
|
15 |
+
|
16 |
+
dtype = DMF
|
17 |
+
is_FractionField = is_Frac = True
|
18 |
+
|
19 |
+
has_assoc_Ring = True
|
20 |
+
has_assoc_Field = True
|
21 |
+
|
22 |
+
def __init__(self, dom, *gens):
|
23 |
+
if not gens:
|
24 |
+
raise GeneratorsNeeded("generators not specified")
|
25 |
+
|
26 |
+
lev = len(gens) - 1
|
27 |
+
self.ngens = len(gens)
|
28 |
+
|
29 |
+
self.zero = self.dtype.zero(lev, dom, ring=self)
|
30 |
+
self.one = self.dtype.one(lev, dom, ring=self)
|
31 |
+
|
32 |
+
self.domain = self.dom = dom
|
33 |
+
self.symbols = self.gens = gens
|
34 |
+
|
35 |
+
def new(self, element):
|
36 |
+
return self.dtype(element, self.dom, len(self.gens) - 1, ring=self)
|
37 |
+
|
38 |
+
def __str__(self):
|
39 |
+
return str(self.dom) + '(' + ','.join(map(str, self.gens)) + ')'
|
40 |
+
|
41 |
+
def __hash__(self):
|
42 |
+
return hash((self.__class__.__name__, self.dtype, self.dom, self.gens))
|
43 |
+
|
44 |
+
def __eq__(self, other):
|
45 |
+
"""Returns ``True`` if two domains are equivalent. """
|
46 |
+
return isinstance(other, FractionField) and \
|
47 |
+
self.dtype == other.dtype and self.dom == other.dom and self.gens == other.gens
|
48 |
+
|
49 |
+
def to_sympy(self, a):
|
50 |
+
"""Convert ``a`` to a SymPy object. """
|
51 |
+
return (basic_from_dict(a.numer().to_sympy_dict(), *self.gens) /
|
52 |
+
basic_from_dict(a.denom().to_sympy_dict(), *self.gens))
|
53 |
+
|
54 |
+
def from_sympy(self, a):
|
55 |
+
"""Convert SymPy's expression to ``dtype``. """
|
56 |
+
p, q = a.as_numer_denom()
|
57 |
+
|
58 |
+
num, _ = dict_from_basic(p, gens=self.gens)
|
59 |
+
den, _ = dict_from_basic(q, gens=self.gens)
|
60 |
+
|
61 |
+
for k, v in num.items():
|
62 |
+
num[k] = self.dom.from_sympy(v)
|
63 |
+
|
64 |
+
for k, v in den.items():
|
65 |
+
den[k] = self.dom.from_sympy(v)
|
66 |
+
|
67 |
+
return self((num, den)).cancel()
|
68 |
+
|
69 |
+
def from_ZZ(K1, a, K0):
|
70 |
+
"""Convert a Python ``int`` object to ``dtype``. """
|
71 |
+
return K1(K1.dom.convert(a, K0))
|
72 |
+
|
73 |
+
def from_ZZ_python(K1, a, K0):
|
74 |
+
"""Convert a Python ``int`` object to ``dtype``. """
|
75 |
+
return K1(K1.dom.convert(a, K0))
|
76 |
+
|
77 |
+
def from_QQ_python(K1, a, K0):
|
78 |
+
"""Convert a Python ``Fraction`` object to ``dtype``. """
|
79 |
+
return K1(K1.dom.convert(a, K0))
|
80 |
+
|
81 |
+
def from_ZZ_gmpy(K1, a, K0):
|
82 |
+
"""Convert a GMPY ``mpz`` object to ``dtype``. """
|
83 |
+
return K1(K1.dom.convert(a, K0))
|
84 |
+
|
85 |
+
def from_QQ_gmpy(K1, a, K0):
|
86 |
+
"""Convert a GMPY ``mpq`` object to ``dtype``. """
|
87 |
+
return K1(K1.dom.convert(a, K0))
|
88 |
+
|
89 |
+
def from_RealField(K1, a, K0):
|
90 |
+
"""Convert a mpmath ``mpf`` object to ``dtype``. """
|
91 |
+
return K1(K1.dom.convert(a, K0))
|
92 |
+
|
93 |
+
def from_GlobalPolynomialRing(K1, a, K0):
|
94 |
+
"""Convert a ``DMF`` object to ``dtype``. """
|
95 |
+
if K1.gens == K0.gens:
|
96 |
+
if K1.dom == K0.dom:
|
97 |
+
return K1(a.rep)
|
98 |
+
else:
|
99 |
+
return K1(a.convert(K1.dom).rep)
|
100 |
+
else:
|
101 |
+
monoms, coeffs = _dict_reorder(a.to_dict(), K0.gens, K1.gens)
|
102 |
+
|
103 |
+
if K1.dom != K0.dom:
|
104 |
+
coeffs = [ K1.dom.convert(c, K0.dom) for c in coeffs ]
|
105 |
+
|
106 |
+
return K1(dict(zip(monoms, coeffs)))
|
107 |
+
|
108 |
+
def from_FractionField(K1, a, K0):
|
109 |
+
"""
|
110 |
+
Convert a fraction field element to another fraction field.
|
111 |
+
|
112 |
+
Examples
|
113 |
+
========
|
114 |
+
|
115 |
+
>>> from sympy.polys.polyclasses import DMF
|
116 |
+
>>> from sympy.polys.domains import ZZ, QQ
|
117 |
+
>>> from sympy.abc import x
|
118 |
+
|
119 |
+
>>> f = DMF(([ZZ(1), ZZ(2)], [ZZ(1), ZZ(1)]), ZZ)
|
120 |
+
|
121 |
+
>>> QQx = QQ.old_frac_field(x)
|
122 |
+
>>> ZZx = ZZ.old_frac_field(x)
|
123 |
+
|
124 |
+
>>> QQx.from_FractionField(f, ZZx)
|
125 |
+
(x + 2)/(x + 1)
|
126 |
+
|
127 |
+
"""
|
128 |
+
if K1.gens == K0.gens:
|
129 |
+
if K1.dom == K0.dom:
|
130 |
+
return a
|
131 |
+
else:
|
132 |
+
return K1((a.numer().convert(K1.dom).rep,
|
133 |
+
a.denom().convert(K1.dom).rep))
|
134 |
+
elif set(K0.gens).issubset(K1.gens):
|
135 |
+
nmonoms, ncoeffs = _dict_reorder(
|
136 |
+
a.numer().to_dict(), K0.gens, K1.gens)
|
137 |
+
dmonoms, dcoeffs = _dict_reorder(
|
138 |
+
a.denom().to_dict(), K0.gens, K1.gens)
|
139 |
+
|
140 |
+
if K1.dom != K0.dom:
|
141 |
+
ncoeffs = [ K1.dom.convert(c, K0.dom) for c in ncoeffs ]
|
142 |
+
dcoeffs = [ K1.dom.convert(c, K0.dom) for c in dcoeffs ]
|
143 |
+
|
144 |
+
return K1((dict(zip(nmonoms, ncoeffs)), dict(zip(dmonoms, dcoeffs))))
|
145 |
+
|
146 |
+
def get_ring(self):
|
147 |
+
"""Returns a ring associated with ``self``. """
|
148 |
+
from sympy.polys.domains import PolynomialRing
|
149 |
+
return PolynomialRing(self.dom, *self.gens)
|
150 |
+
|
151 |
+
def poly_ring(self, *gens):
|
152 |
+
"""Returns a polynomial ring, i.e. `K[X]`. """
|
153 |
+
raise NotImplementedError('nested domains not allowed')
|
154 |
+
|
155 |
+
def frac_field(self, *gens):
|
156 |
+
"""Returns a fraction field, i.e. `K(X)`. """
|
157 |
+
raise NotImplementedError('nested domains not allowed')
|
158 |
+
|
159 |
+
def is_positive(self, a):
|
160 |
+
"""Returns True if ``a`` is positive. """
|
161 |
+
return self.dom.is_positive(a.numer().LC())
|
162 |
+
|
163 |
+
def is_negative(self, a):
|
164 |
+
"""Returns True if ``a`` is negative. """
|
165 |
+
return self.dom.is_negative(a.numer().LC())
|
166 |
+
|
167 |
+
def is_nonpositive(self, a):
|
168 |
+
"""Returns True if ``a`` is non-positive. """
|
169 |
+
return self.dom.is_nonpositive(a.numer().LC())
|
170 |
+
|
171 |
+
def is_nonnegative(self, a):
|
172 |
+
"""Returns True if ``a`` is non-negative. """
|
173 |
+
return self.dom.is_nonnegative(a.numer().LC())
|
174 |
+
|
175 |
+
def numer(self, a):
|
176 |
+
"""Returns numerator of ``a``. """
|
177 |
+
return a.numer()
|
178 |
+
|
179 |
+
def denom(self, a):
|
180 |
+
"""Returns denominator of ``a``. """
|
181 |
+
return a.denom()
|
182 |
+
|
183 |
+
def factorial(self, a):
|
184 |
+
"""Returns factorial of ``a``. """
|
185 |
+
return self.dtype(self.dom.factorial(a))
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/domains/old_polynomialring.py
ADDED
@@ -0,0 +1,462 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Implementation of :class:`PolynomialRing` class. """
|
2 |
+
|
3 |
+
|
4 |
+
from sympy.polys.agca.modules import FreeModulePolyRing
|
5 |
+
from sympy.polys.domains.characteristiczero import CharacteristicZero
|
6 |
+
from sympy.polys.domains.compositedomain import CompositeDomain
|
7 |
+
from sympy.polys.domains.old_fractionfield import FractionField
|
8 |
+
from sympy.polys.domains.ring import Ring
|
9 |
+
from sympy.polys.orderings import monomial_key, build_product_order
|
10 |
+
from sympy.polys.polyclasses import DMP, DMF
|
11 |
+
from sympy.polys.polyerrors import (GeneratorsNeeded, PolynomialError,
|
12 |
+
CoercionFailed, ExactQuotientFailed, NotReversible)
|
13 |
+
from sympy.polys.polyutils import dict_from_basic, basic_from_dict, _dict_reorder
|
14 |
+
from sympy.utilities import public
|
15 |
+
from sympy.utilities.iterables import iterable
|
16 |
+
|
17 |
+
# XXX why does this derive from CharacteristicZero???
|
18 |
+
|
19 |
+
@public
|
20 |
+
class PolynomialRingBase(Ring, CharacteristicZero, CompositeDomain):
|
21 |
+
"""
|
22 |
+
Base class for generalized polynomial rings.
|
23 |
+
|
24 |
+
This base class should be used for uniform access to generalized polynomial
|
25 |
+
rings. Subclasses only supply information about the element storage etc.
|
26 |
+
|
27 |
+
Do not instantiate.
|
28 |
+
"""
|
29 |
+
|
30 |
+
has_assoc_Ring = True
|
31 |
+
has_assoc_Field = True
|
32 |
+
|
33 |
+
default_order = "grevlex"
|
34 |
+
|
35 |
+
def __init__(self, dom, *gens, **opts):
|
36 |
+
if not gens:
|
37 |
+
raise GeneratorsNeeded("generators not specified")
|
38 |
+
|
39 |
+
lev = len(gens) - 1
|
40 |
+
self.ngens = len(gens)
|
41 |
+
|
42 |
+
self.zero = self.dtype.zero(lev, dom, ring=self)
|
43 |
+
self.one = self.dtype.one(lev, dom, ring=self)
|
44 |
+
|
45 |
+
self.domain = self.dom = dom
|
46 |
+
self.symbols = self.gens = gens
|
47 |
+
# NOTE 'order' may not be set if inject was called through CompositeDomain
|
48 |
+
self.order = opts.get('order', monomial_key(self.default_order))
|
49 |
+
|
50 |
+
def new(self, element):
|
51 |
+
return self.dtype(element, self.dom, len(self.gens) - 1, ring=self)
|
52 |
+
|
53 |
+
def __str__(self):
|
54 |
+
s_order = str(self.order)
|
55 |
+
orderstr = (
|
56 |
+
" order=" + s_order) if s_order != self.default_order else ""
|
57 |
+
return str(self.dom) + '[' + ','.join(map(str, self.gens)) + orderstr + ']'
|
58 |
+
|
59 |
+
def __hash__(self):
|
60 |
+
return hash((self.__class__.__name__, self.dtype, self.dom,
|
61 |
+
self.gens, self.order))
|
62 |
+
|
63 |
+
def __eq__(self, other):
|
64 |
+
"""Returns ``True`` if two domains are equivalent. """
|
65 |
+
return isinstance(other, PolynomialRingBase) and \
|
66 |
+
self.dtype == other.dtype and self.dom == other.dom and \
|
67 |
+
self.gens == other.gens and self.order == other.order
|
68 |
+
|
69 |
+
def from_ZZ(K1, a, K0):
|
70 |
+
"""Convert a Python ``int`` object to ``dtype``. """
|
71 |
+
return K1(K1.dom.convert(a, K0))
|
72 |
+
|
73 |
+
def from_ZZ_python(K1, a, K0):
|
74 |
+
"""Convert a Python ``int`` object to ``dtype``. """
|
75 |
+
return K1(K1.dom.convert(a, K0))
|
76 |
+
|
77 |
+
def from_QQ(K1, a, K0):
|
78 |
+
"""Convert a Python ``Fraction`` object to ``dtype``. """
|
79 |
+
return K1(K1.dom.convert(a, K0))
|
80 |
+
|
81 |
+
def from_QQ_python(K1, a, K0):
|
82 |
+
"""Convert a Python ``Fraction`` object to ``dtype``. """
|
83 |
+
return K1(K1.dom.convert(a, K0))
|
84 |
+
|
85 |
+
def from_ZZ_gmpy(K1, a, K0):
|
86 |
+
"""Convert a GMPY ``mpz`` object to ``dtype``. """
|
87 |
+
return K1(K1.dom.convert(a, K0))
|
88 |
+
|
89 |
+
def from_QQ_gmpy(K1, a, K0):
|
90 |
+
"""Convert a GMPY ``mpq`` object to ``dtype``. """
|
91 |
+
return K1(K1.dom.convert(a, K0))
|
92 |
+
|
93 |
+
def from_RealField(K1, a, K0):
|
94 |
+
"""Convert a mpmath ``mpf`` object to ``dtype``. """
|
95 |
+
return K1(K1.dom.convert(a, K0))
|
96 |
+
|
97 |
+
def from_AlgebraicField(K1, a, K0):
|
98 |
+
"""Convert a ``ANP`` object to ``dtype``. """
|
99 |
+
if K1.dom == K0:
|
100 |
+
return K1(a)
|
101 |
+
|
102 |
+
def from_PolynomialRing(K1, a, K0):
|
103 |
+
"""Convert a ``PolyElement`` object to ``dtype``. """
|
104 |
+
if K1.gens == K0.symbols:
|
105 |
+
if K1.dom == K0.dom:
|
106 |
+
return K1(dict(a)) # set the correct ring
|
107 |
+
else:
|
108 |
+
convert_dom = lambda c: K1.dom.convert_from(c, K0.dom)
|
109 |
+
return K1({m: convert_dom(c) for m, c in a.items()})
|
110 |
+
else:
|
111 |
+
monoms, coeffs = _dict_reorder(a.to_dict(), K0.symbols, K1.gens)
|
112 |
+
|
113 |
+
if K1.dom != K0.dom:
|
114 |
+
coeffs = [ K1.dom.convert(c, K0.dom) for c in coeffs ]
|
115 |
+
|
116 |
+
return K1(dict(zip(monoms, coeffs)))
|
117 |
+
|
118 |
+
def from_GlobalPolynomialRing(K1, a, K0):
|
119 |
+
"""Convert a ``DMP`` object to ``dtype``. """
|
120 |
+
if K1.gens == K0.gens:
|
121 |
+
if K1.dom == K0.dom:
|
122 |
+
return K1(a.rep) # set the correct ring
|
123 |
+
else:
|
124 |
+
return K1(a.convert(K1.dom).rep)
|
125 |
+
else:
|
126 |
+
monoms, coeffs = _dict_reorder(a.to_dict(), K0.gens, K1.gens)
|
127 |
+
|
128 |
+
if K1.dom != K0.dom:
|
129 |
+
coeffs = [ K1.dom.convert(c, K0.dom) for c in coeffs ]
|
130 |
+
|
131 |
+
return K1(dict(zip(monoms, coeffs)))
|
132 |
+
|
133 |
+
def get_field(self):
|
134 |
+
"""Returns a field associated with ``self``. """
|
135 |
+
return FractionField(self.dom, *self.gens)
|
136 |
+
|
137 |
+
def poly_ring(self, *gens):
|
138 |
+
"""Returns a polynomial ring, i.e. ``K[X]``. """
|
139 |
+
raise NotImplementedError('nested domains not allowed')
|
140 |
+
|
141 |
+
def frac_field(self, *gens):
|
142 |
+
"""Returns a fraction field, i.e. ``K(X)``. """
|
143 |
+
raise NotImplementedError('nested domains not allowed')
|
144 |
+
|
145 |
+
def revert(self, a):
|
146 |
+
try:
|
147 |
+
return 1/a
|
148 |
+
except (ExactQuotientFailed, ZeroDivisionError):
|
149 |
+
raise NotReversible('%s is not a unit' % a)
|
150 |
+
|
151 |
+
def gcdex(self, a, b):
|
152 |
+
"""Extended GCD of ``a`` and ``b``. """
|
153 |
+
return a.gcdex(b)
|
154 |
+
|
155 |
+
def gcd(self, a, b):
|
156 |
+
"""Returns GCD of ``a`` and ``b``. """
|
157 |
+
return a.gcd(b)
|
158 |
+
|
159 |
+
def lcm(self, a, b):
|
160 |
+
"""Returns LCM of ``a`` and ``b``. """
|
161 |
+
return a.lcm(b)
|
162 |
+
|
163 |
+
def factorial(self, a):
|
164 |
+
"""Returns factorial of ``a``. """
|
165 |
+
return self.dtype(self.dom.factorial(a))
|
166 |
+
|
167 |
+
def _vector_to_sdm(self, v, order):
|
168 |
+
"""
|
169 |
+
For internal use by the modules class.
|
170 |
+
|
171 |
+
Convert an iterable of elements of this ring into a sparse distributed
|
172 |
+
module element.
|
173 |
+
"""
|
174 |
+
raise NotImplementedError
|
175 |
+
|
176 |
+
def _sdm_to_dics(self, s, n):
|
177 |
+
"""Helper for _sdm_to_vector."""
|
178 |
+
from sympy.polys.distributedmodules import sdm_to_dict
|
179 |
+
dic = sdm_to_dict(s)
|
180 |
+
res = [{} for _ in range(n)]
|
181 |
+
for k, v in dic.items():
|
182 |
+
res[k[0]][k[1:]] = v
|
183 |
+
return res
|
184 |
+
|
185 |
+
def _sdm_to_vector(self, s, n):
|
186 |
+
"""
|
187 |
+
For internal use by the modules class.
|
188 |
+
|
189 |
+
Convert a sparse distributed module into a list of length ``n``.
|
190 |
+
|
191 |
+
Examples
|
192 |
+
========
|
193 |
+
|
194 |
+
>>> from sympy import QQ, ilex
|
195 |
+
>>> from sympy.abc import x, y
|
196 |
+
>>> R = QQ.old_poly_ring(x, y, order=ilex)
|
197 |
+
>>> L = [((1, 1, 1), QQ(1)), ((0, 1, 0), QQ(1)), ((0, 0, 1), QQ(2))]
|
198 |
+
>>> R._sdm_to_vector(L, 2)
|
199 |
+
[x + 2*y, x*y]
|
200 |
+
"""
|
201 |
+
dics = self._sdm_to_dics(s, n)
|
202 |
+
# NOTE this works for global and local rings!
|
203 |
+
return [self(x) for x in dics]
|
204 |
+
|
205 |
+
def free_module(self, rank):
|
206 |
+
"""
|
207 |
+
Generate a free module of rank ``rank`` over ``self``.
|
208 |
+
|
209 |
+
Examples
|
210 |
+
========
|
211 |
+
|
212 |
+
>>> from sympy.abc import x
|
213 |
+
>>> from sympy import QQ
|
214 |
+
>>> QQ.old_poly_ring(x).free_module(2)
|
215 |
+
QQ[x]**2
|
216 |
+
"""
|
217 |
+
return FreeModulePolyRing(self, rank)
|
218 |
+
|
219 |
+
|
220 |
+
def _vector_to_sdm_helper(v, order):
|
221 |
+
"""Helper method for common code in Global and Local poly rings."""
|
222 |
+
from sympy.polys.distributedmodules import sdm_from_dict
|
223 |
+
d = {}
|
224 |
+
for i, e in enumerate(v):
|
225 |
+
for key, value in e.to_dict().items():
|
226 |
+
d[(i,) + key] = value
|
227 |
+
return sdm_from_dict(d, order)
|
228 |
+
|
229 |
+
|
230 |
+
@public
|
231 |
+
class GlobalPolynomialRing(PolynomialRingBase):
|
232 |
+
"""A true polynomial ring, with objects DMP. """
|
233 |
+
|
234 |
+
is_PolynomialRing = is_Poly = True
|
235 |
+
dtype = DMP
|
236 |
+
|
237 |
+
def from_FractionField(K1, a, K0):
|
238 |
+
"""
|
239 |
+
Convert a ``DMF`` object to ``DMP``.
|
240 |
+
|
241 |
+
Examples
|
242 |
+
========
|
243 |
+
|
244 |
+
>>> from sympy.polys.polyclasses import DMP, DMF
|
245 |
+
>>> from sympy.polys.domains import ZZ
|
246 |
+
>>> from sympy.abc import x
|
247 |
+
|
248 |
+
>>> f = DMF(([ZZ(1), ZZ(1)], [ZZ(1)]), ZZ)
|
249 |
+
>>> K = ZZ.old_frac_field(x)
|
250 |
+
|
251 |
+
>>> F = ZZ.old_poly_ring(x).from_FractionField(f, K)
|
252 |
+
|
253 |
+
>>> F == DMP([ZZ(1), ZZ(1)], ZZ)
|
254 |
+
True
|
255 |
+
>>> type(F)
|
256 |
+
<class 'sympy.polys.polyclasses.DMP'>
|
257 |
+
|
258 |
+
"""
|
259 |
+
if a.denom().is_one:
|
260 |
+
return K1.from_GlobalPolynomialRing(a.numer(), K0)
|
261 |
+
|
262 |
+
def to_sympy(self, a):
|
263 |
+
"""Convert ``a`` to a SymPy object. """
|
264 |
+
return basic_from_dict(a.to_sympy_dict(), *self.gens)
|
265 |
+
|
266 |
+
def from_sympy(self, a):
|
267 |
+
"""Convert SymPy's expression to ``dtype``. """
|
268 |
+
try:
|
269 |
+
rep, _ = dict_from_basic(a, gens=self.gens)
|
270 |
+
except PolynomialError:
|
271 |
+
raise CoercionFailed("Cannot convert %s to type %s" % (a, self))
|
272 |
+
|
273 |
+
for k, v in rep.items():
|
274 |
+
rep[k] = self.dom.from_sympy(v)
|
275 |
+
|
276 |
+
return self(rep)
|
277 |
+
|
278 |
+
def is_positive(self, a):
|
279 |
+
"""Returns True if ``LC(a)`` is positive. """
|
280 |
+
return self.dom.is_positive(a.LC())
|
281 |
+
|
282 |
+
def is_negative(self, a):
|
283 |
+
"""Returns True if ``LC(a)`` is negative. """
|
284 |
+
return self.dom.is_negative(a.LC())
|
285 |
+
|
286 |
+
def is_nonpositive(self, a):
|
287 |
+
"""Returns True if ``LC(a)`` is non-positive. """
|
288 |
+
return self.dom.is_nonpositive(a.LC())
|
289 |
+
|
290 |
+
def is_nonnegative(self, a):
|
291 |
+
"""Returns True if ``LC(a)`` is non-negative. """
|
292 |
+
return self.dom.is_nonnegative(a.LC())
|
293 |
+
|
294 |
+
def _vector_to_sdm(self, v, order):
|
295 |
+
"""
|
296 |
+
Examples
|
297 |
+
========
|
298 |
+
|
299 |
+
>>> from sympy import lex, QQ
|
300 |
+
>>> from sympy.abc import x, y
|
301 |
+
>>> R = QQ.old_poly_ring(x, y)
|
302 |
+
>>> f = R.convert(x + 2*y)
|
303 |
+
>>> g = R.convert(x * y)
|
304 |
+
>>> R._vector_to_sdm([f, g], lex)
|
305 |
+
[((1, 1, 1), 1), ((0, 1, 0), 1), ((0, 0, 1), 2)]
|
306 |
+
"""
|
307 |
+
return _vector_to_sdm_helper(v, order)
|
308 |
+
|
309 |
+
|
310 |
+
class GeneralizedPolynomialRing(PolynomialRingBase):
|
311 |
+
"""A generalized polynomial ring, with objects DMF. """
|
312 |
+
|
313 |
+
dtype = DMF
|
314 |
+
|
315 |
+
def new(self, a):
|
316 |
+
"""Construct an element of ``self`` domain from ``a``. """
|
317 |
+
res = self.dtype(a, self.dom, len(self.gens) - 1, ring=self)
|
318 |
+
|
319 |
+
# make sure res is actually in our ring
|
320 |
+
if res.denom().terms(order=self.order)[0][0] != (0,)*len(self.gens):
|
321 |
+
from sympy.printing.str import sstr
|
322 |
+
raise CoercionFailed("denominator %s not allowed in %s"
|
323 |
+
% (sstr(res), self))
|
324 |
+
return res
|
325 |
+
|
326 |
+
def __contains__(self, a):
|
327 |
+
try:
|
328 |
+
a = self.convert(a)
|
329 |
+
except CoercionFailed:
|
330 |
+
return False
|
331 |
+
return a.denom().terms(order=self.order)[0][0] == (0,)*len(self.gens)
|
332 |
+
|
333 |
+
def from_FractionField(K1, a, K0):
|
334 |
+
dmf = K1.get_field().from_FractionField(a, K0)
|
335 |
+
return K1((dmf.num, dmf.den))
|
336 |
+
|
337 |
+
def to_sympy(self, a):
|
338 |
+
"""Convert ``a`` to a SymPy object. """
|
339 |
+
return (basic_from_dict(a.numer().to_sympy_dict(), *self.gens) /
|
340 |
+
basic_from_dict(a.denom().to_sympy_dict(), *self.gens))
|
341 |
+
|
342 |
+
def from_sympy(self, a):
|
343 |
+
"""Convert SymPy's expression to ``dtype``. """
|
344 |
+
p, q = a.as_numer_denom()
|
345 |
+
|
346 |
+
num, _ = dict_from_basic(p, gens=self.gens)
|
347 |
+
den, _ = dict_from_basic(q, gens=self.gens)
|
348 |
+
|
349 |
+
for k, v in num.items():
|
350 |
+
num[k] = self.dom.from_sympy(v)
|
351 |
+
|
352 |
+
for k, v in den.items():
|
353 |
+
den[k] = self.dom.from_sympy(v)
|
354 |
+
|
355 |
+
return self((num, den)).cancel()
|
356 |
+
|
357 |
+
def _vector_to_sdm(self, v, order):
|
358 |
+
"""
|
359 |
+
Turn an iterable into a sparse distributed module.
|
360 |
+
|
361 |
+
Note that the vector is multiplied by a unit first to make all entries
|
362 |
+
polynomials.
|
363 |
+
|
364 |
+
Examples
|
365 |
+
========
|
366 |
+
|
367 |
+
>>> from sympy import ilex, QQ
|
368 |
+
>>> from sympy.abc import x, y
|
369 |
+
>>> R = QQ.old_poly_ring(x, y, order=ilex)
|
370 |
+
>>> f = R.convert((x + 2*y) / (1 + x))
|
371 |
+
>>> g = R.convert(x * y)
|
372 |
+
>>> R._vector_to_sdm([f, g], ilex)
|
373 |
+
[((0, 0, 1), 2), ((0, 1, 0), 1), ((1, 1, 1), 1), ((1,
|
374 |
+
2, 1), 1)]
|
375 |
+
"""
|
376 |
+
# NOTE this is quite inefficient...
|
377 |
+
u = self.one.numer()
|
378 |
+
for x in v:
|
379 |
+
u *= x.denom()
|
380 |
+
return _vector_to_sdm_helper([x.numer()*u/x.denom() for x in v], order)
|
381 |
+
|
382 |
+
|
383 |
+
@public
|
384 |
+
def PolynomialRing(dom, *gens, **opts):
|
385 |
+
r"""
|
386 |
+
Create a generalized multivariate polynomial ring.
|
387 |
+
|
388 |
+
A generalized polynomial ring is defined by a ground field `K`, a set
|
389 |
+
of generators (typically `x_1, \ldots, x_n`) and a monomial order `<`.
|
390 |
+
The monomial order can be global, local or mixed. In any case it induces
|
391 |
+
a total ordering on the monomials, and there exists for every (non-zero)
|
392 |
+
polynomial `f \in K[x_1, \ldots, x_n]` a well-defined "leading monomial"
|
393 |
+
`LM(f) = LM(f, >)`. One can then define a multiplicative subset
|
394 |
+
`S = S_> = \{f \in K[x_1, \ldots, x_n] | LM(f) = 1\}`. The generalized
|
395 |
+
polynomial ring corresponding to the monomial order is
|
396 |
+
`R = S^{-1}K[x_1, \ldots, x_n]`.
|
397 |
+
|
398 |
+
If `>` is a so-called global order, that is `1` is the smallest monomial,
|
399 |
+
then we just have `S = K` and `R = K[x_1, \ldots, x_n]`.
|
400 |
+
|
401 |
+
Examples
|
402 |
+
========
|
403 |
+
|
404 |
+
A few examples may make this clearer.
|
405 |
+
|
406 |
+
>>> from sympy.abc import x, y
|
407 |
+
>>> from sympy import QQ
|
408 |
+
|
409 |
+
Our first ring uses global lexicographic order.
|
410 |
+
|
411 |
+
>>> R1 = QQ.old_poly_ring(x, y, order=(("lex", x, y),))
|
412 |
+
|
413 |
+
The second ring uses local lexicographic order. Note that when using a
|
414 |
+
single (non-product) order, you can just specify the name and omit the
|
415 |
+
variables:
|
416 |
+
|
417 |
+
>>> R2 = QQ.old_poly_ring(x, y, order="ilex")
|
418 |
+
|
419 |
+
The third and fourth rings use a mixed orders:
|
420 |
+
|
421 |
+
>>> o1 = (("ilex", x), ("lex", y))
|
422 |
+
>>> o2 = (("lex", x), ("ilex", y))
|
423 |
+
>>> R3 = QQ.old_poly_ring(x, y, order=o1)
|
424 |
+
>>> R4 = QQ.old_poly_ring(x, y, order=o2)
|
425 |
+
|
426 |
+
We will investigate what elements of `K(x, y)` are contained in the various
|
427 |
+
rings.
|
428 |
+
|
429 |
+
>>> L = [x, 1/x, y/(1 + x), 1/(1 + y), 1/(1 + x*y)]
|
430 |
+
>>> test = lambda R: [f in R for f in L]
|
431 |
+
|
432 |
+
The first ring is just `K[x, y]`:
|
433 |
+
|
434 |
+
>>> test(R1)
|
435 |
+
[True, False, False, False, False]
|
436 |
+
|
437 |
+
The second ring is R1 localised at the maximal ideal (x, y):
|
438 |
+
|
439 |
+
>>> test(R2)
|
440 |
+
[True, False, True, True, True]
|
441 |
+
|
442 |
+
The third ring is R1 localised at the prime ideal (x):
|
443 |
+
|
444 |
+
>>> test(R3)
|
445 |
+
[True, False, True, False, True]
|
446 |
+
|
447 |
+
Finally the fourth ring is R1 localised at `S = K[x, y] \setminus yK[y]`:
|
448 |
+
|
449 |
+
>>> test(R4)
|
450 |
+
[True, False, False, True, False]
|
451 |
+
"""
|
452 |
+
|
453 |
+
order = opts.get("order", GeneralizedPolynomialRing.default_order)
|
454 |
+
if iterable(order):
|
455 |
+
order = build_product_order(order, gens)
|
456 |
+
order = monomial_key(order)
|
457 |
+
opts['order'] = order
|
458 |
+
|
459 |
+
if order.is_global:
|
460 |
+
return GlobalPolynomialRing(dom, *gens, **opts)
|
461 |
+
else:
|
462 |
+
return GeneralizedPolynomialRing(dom, *gens, **opts)
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/domains/pythonfinitefield.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Implementation of :class:`PythonFiniteField` class. """
|
2 |
+
|
3 |
+
|
4 |
+
from sympy.polys.domains.finitefield import FiniteField
|
5 |
+
from sympy.polys.domains.pythonintegerring import PythonIntegerRing
|
6 |
+
|
7 |
+
from sympy.utilities import public
|
8 |
+
|
9 |
+
@public
|
10 |
+
class PythonFiniteField(FiniteField):
|
11 |
+
"""Finite field based on Python's integers. """
|
12 |
+
|
13 |
+
alias = 'FF_python'
|
14 |
+
|
15 |
+
def __init__(self, mod, symmetric=True):
|
16 |
+
return super().__init__(mod, PythonIntegerRing(), symmetric)
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/domains/rationalfield.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Implementation of :class:`RationalField` class. """
|
2 |
+
|
3 |
+
|
4 |
+
from sympy.external.gmpy import MPQ
|
5 |
+
|
6 |
+
from sympy.polys.domains.groundtypes import SymPyRational
|
7 |
+
|
8 |
+
from sympy.polys.domains.characteristiczero import CharacteristicZero
|
9 |
+
from sympy.polys.domains.field import Field
|
10 |
+
from sympy.polys.domains.simpledomain import SimpleDomain
|
11 |
+
from sympy.polys.polyerrors import CoercionFailed
|
12 |
+
from sympy.utilities import public
|
13 |
+
|
14 |
+
@public
|
15 |
+
class RationalField(Field, CharacteristicZero, SimpleDomain):
|
16 |
+
r"""Abstract base class for the domain :ref:`QQ`.
|
17 |
+
|
18 |
+
The :py:class:`RationalField` class represents the field of rational
|
19 |
+
numbers $\mathbb{Q}$ as a :py:class:`~.Domain` in the domain system.
|
20 |
+
:py:class:`RationalField` is a superclass of
|
21 |
+
:py:class:`PythonRationalField` and :py:class:`GMPYRationalField` one of
|
22 |
+
which will be the implementation for :ref:`QQ` depending on whether either
|
23 |
+
of ``gmpy`` or ``gmpy2`` is installed or not.
|
24 |
+
|
25 |
+
See also
|
26 |
+
========
|
27 |
+
|
28 |
+
Domain
|
29 |
+
"""
|
30 |
+
|
31 |
+
rep = 'QQ'
|
32 |
+
alias = 'QQ'
|
33 |
+
|
34 |
+
is_RationalField = is_QQ = True
|
35 |
+
is_Numerical = True
|
36 |
+
|
37 |
+
has_assoc_Ring = True
|
38 |
+
has_assoc_Field = True
|
39 |
+
|
40 |
+
dtype = MPQ
|
41 |
+
zero = dtype(0)
|
42 |
+
one = dtype(1)
|
43 |
+
tp = type(one)
|
44 |
+
|
45 |
+
def __init__(self):
|
46 |
+
pass
|
47 |
+
|
48 |
+
def get_ring(self):
|
49 |
+
"""Returns ring associated with ``self``. """
|
50 |
+
from sympy.polys.domains import ZZ
|
51 |
+
return ZZ
|
52 |
+
|
53 |
+
def to_sympy(self, a):
|
54 |
+
"""Convert ``a`` to a SymPy object. """
|
55 |
+
return SymPyRational(int(a.numerator), int(a.denominator))
|
56 |
+
|
57 |
+
def from_sympy(self, a):
|
58 |
+
"""Convert SymPy's Integer to ``dtype``. """
|
59 |
+
if a.is_Rational:
|
60 |
+
return MPQ(a.p, a.q)
|
61 |
+
elif a.is_Float:
|
62 |
+
from sympy.polys.domains import RR
|
63 |
+
return MPQ(*map(int, RR.to_rational(a)))
|
64 |
+
else:
|
65 |
+
raise CoercionFailed("expected `Rational` object, got %s" % a)
|
66 |
+
|
67 |
+
def algebraic_field(self, *extension, alias=None):
|
68 |
+
r"""Returns an algebraic field, i.e. `\mathbb{Q}(\alpha, \ldots)`.
|
69 |
+
|
70 |
+
Parameters
|
71 |
+
==========
|
72 |
+
|
73 |
+
*extension : One or more :py:class:`~.Expr`
|
74 |
+
Generators of the extension. These should be expressions that are
|
75 |
+
algebraic over `\mathbb{Q}`.
|
76 |
+
|
77 |
+
alias : str, :py:class:`~.Symbol`, None, optional (default=None)
|
78 |
+
If provided, this will be used as the alias symbol for the
|
79 |
+
primitive element of the returned :py:class:`~.AlgebraicField`.
|
80 |
+
|
81 |
+
Returns
|
82 |
+
=======
|
83 |
+
|
84 |
+
:py:class:`~.AlgebraicField`
|
85 |
+
A :py:class:`~.Domain` representing the algebraic field extension.
|
86 |
+
|
87 |
+
Examples
|
88 |
+
========
|
89 |
+
|
90 |
+
>>> from sympy import QQ, sqrt
|
91 |
+
>>> QQ.algebraic_field(sqrt(2))
|
92 |
+
QQ<sqrt(2)>
|
93 |
+
"""
|
94 |
+
from sympy.polys.domains import AlgebraicField
|
95 |
+
return AlgebraicField(self, *extension, alias=alias)
|
96 |
+
|
97 |
+
def from_AlgebraicField(K1, a, K0):
|
98 |
+
"""Convert a :py:class:`~.ANP` object to :ref:`QQ`.
|
99 |
+
|
100 |
+
See :py:meth:`~.Domain.convert`
|
101 |
+
"""
|
102 |
+
if a.is_ground:
|
103 |
+
return K1.convert(a.LC(), K0.dom)
|
104 |
+
|
105 |
+
def from_ZZ(K1, a, K0):
|
106 |
+
"""Convert a Python ``int`` object to ``dtype``. """
|
107 |
+
return MPQ(a)
|
108 |
+
|
109 |
+
def from_ZZ_python(K1, a, K0):
|
110 |
+
"""Convert a Python ``int`` object to ``dtype``. """
|
111 |
+
return MPQ(a)
|
112 |
+
|
113 |
+
def from_QQ(K1, a, K0):
|
114 |
+
"""Convert a Python ``Fraction`` object to ``dtype``. """
|
115 |
+
return MPQ(a.numerator, a.denominator)
|
116 |
+
|
117 |
+
def from_QQ_python(K1, a, K0):
|
118 |
+
"""Convert a Python ``Fraction`` object to ``dtype``. """
|
119 |
+
return MPQ(a.numerator, a.denominator)
|
120 |
+
|
121 |
+
def from_ZZ_gmpy(K1, a, K0):
|
122 |
+
"""Convert a GMPY ``mpz`` object to ``dtype``. """
|
123 |
+
return MPQ(a)
|
124 |
+
|
125 |
+
def from_QQ_gmpy(K1, a, K0):
|
126 |
+
"""Convert a GMPY ``mpq`` object to ``dtype``. """
|
127 |
+
return a
|
128 |
+
|
129 |
+
def from_GaussianRationalField(K1, a, K0):
|
130 |
+
"""Convert a ``GaussianElement`` object to ``dtype``. """
|
131 |
+
if a.y == 0:
|
132 |
+
return MPQ(a.x)
|
133 |
+
|
134 |
+
def from_RealField(K1, a, K0):
|
135 |
+
"""Convert a mpmath ``mpf`` object to ``dtype``. """
|
136 |
+
return MPQ(*map(int, K0.to_rational(a)))
|
137 |
+
|
138 |
+
def exquo(self, a, b):
|
139 |
+
"""Exact quotient of ``a`` and ``b``, implies ``__truediv__``. """
|
140 |
+
return MPQ(a) / MPQ(b)
|
141 |
+
|
142 |
+
def quo(self, a, b):
|
143 |
+
"""Quotient of ``a`` and ``b``, implies ``__truediv__``. """
|
144 |
+
return MPQ(a) / MPQ(b)
|
145 |
+
|
146 |
+
def rem(self, a, b):
|
147 |
+
"""Remainder of ``a`` and ``b``, implies nothing. """
|
148 |
+
return self.zero
|
149 |
+
|
150 |
+
def div(self, a, b):
|
151 |
+
"""Division of ``a`` and ``b``, implies ``__truediv__``. """
|
152 |
+
return MPQ(a) / MPQ(b), self.zero
|
153 |
+
|
154 |
+
def numer(self, a):
|
155 |
+
"""Returns numerator of ``a``. """
|
156 |
+
return a.numerator
|
157 |
+
|
158 |
+
def denom(self, a):
|
159 |
+
"""Returns denominator of ``a``. """
|
160 |
+
return a.denominator
|
161 |
+
|
162 |
+
|
163 |
+
QQ = RationalField()
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/domains/ring.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Implementation of :class:`Ring` class. """
|
2 |
+
|
3 |
+
|
4 |
+
from sympy.polys.domains.domain import Domain
|
5 |
+
from sympy.polys.polyerrors import ExactQuotientFailed, NotInvertible, NotReversible
|
6 |
+
|
7 |
+
from sympy.utilities import public
|
8 |
+
|
9 |
+
@public
|
10 |
+
class Ring(Domain):
|
11 |
+
"""Represents a ring domain. """
|
12 |
+
|
13 |
+
is_Ring = True
|
14 |
+
|
15 |
+
def get_ring(self):
|
16 |
+
"""Returns a ring associated with ``self``. """
|
17 |
+
return self
|
18 |
+
|
19 |
+
def exquo(self, a, b):
|
20 |
+
"""Exact quotient of ``a`` and ``b``, implies ``__floordiv__``. """
|
21 |
+
if a % b:
|
22 |
+
raise ExactQuotientFailed(a, b, self)
|
23 |
+
else:
|
24 |
+
return a // b
|
25 |
+
|
26 |
+
def quo(self, a, b):
|
27 |
+
"""Quotient of ``a`` and ``b``, implies ``__floordiv__``. """
|
28 |
+
return a // b
|
29 |
+
|
30 |
+
def rem(self, a, b):
|
31 |
+
"""Remainder of ``a`` and ``b``, implies ``__mod__``. """
|
32 |
+
return a % b
|
33 |
+
|
34 |
+
def div(self, a, b):
|
35 |
+
"""Division of ``a`` and ``b``, implies ``__divmod__``. """
|
36 |
+
return divmod(a, b)
|
37 |
+
|
38 |
+
def invert(self, a, b):
|
39 |
+
"""Returns inversion of ``a mod b``. """
|
40 |
+
s, t, h = self.gcdex(a, b)
|
41 |
+
|
42 |
+
if self.is_one(h):
|
43 |
+
return s % b
|
44 |
+
else:
|
45 |
+
raise NotInvertible("zero divisor")
|
46 |
+
|
47 |
+
def revert(self, a):
|
48 |
+
"""Returns ``a**(-1)`` if possible. """
|
49 |
+
if self.is_one(a) or self.is_one(-a):
|
50 |
+
return a
|
51 |
+
else:
|
52 |
+
raise NotReversible('only units are reversible in a ring')
|
53 |
+
|
54 |
+
def is_unit(self, a):
|
55 |
+
try:
|
56 |
+
self.revert(a)
|
57 |
+
return True
|
58 |
+
except NotReversible:
|
59 |
+
return False
|
60 |
+
|
61 |
+
def numer(self, a):
|
62 |
+
"""Returns numerator of ``a``. """
|
63 |
+
return a
|
64 |
+
|
65 |
+
def denom(self, a):
|
66 |
+
"""Returns denominator of `a`. """
|
67 |
+
return self.one
|
68 |
+
|
69 |
+
def free_module(self, rank):
|
70 |
+
"""
|
71 |
+
Generate a free module of rank ``rank`` over self.
|
72 |
+
|
73 |
+
>>> from sympy.abc import x
|
74 |
+
>>> from sympy import QQ
|
75 |
+
>>> QQ.old_poly_ring(x).free_module(2)
|
76 |
+
QQ[x]**2
|
77 |
+
"""
|
78 |
+
raise NotImplementedError
|
79 |
+
|
80 |
+
def ideal(self, *gens):
|
81 |
+
"""
|
82 |
+
Generate an ideal of ``self``.
|
83 |
+
|
84 |
+
>>> from sympy.abc import x
|
85 |
+
>>> from sympy import QQ
|
86 |
+
>>> QQ.old_poly_ring(x).ideal(x**2)
|
87 |
+
<x**2>
|
88 |
+
"""
|
89 |
+
from sympy.polys.agca.ideals import ModuleImplementedIdeal
|
90 |
+
return ModuleImplementedIdeal(self, self.free_module(1).submodule(
|
91 |
+
*[[x] for x in gens]))
|
92 |
+
|
93 |
+
def quotient_ring(self, e):
|
94 |
+
"""
|
95 |
+
Form a quotient ring of ``self``.
|
96 |
+
|
97 |
+
Here ``e`` can be an ideal or an iterable.
|
98 |
+
|
99 |
+
>>> from sympy.abc import x
|
100 |
+
>>> from sympy import QQ
|
101 |
+
>>> QQ.old_poly_ring(x).quotient_ring(QQ.old_poly_ring(x).ideal(x**2))
|
102 |
+
QQ[x]/<x**2>
|
103 |
+
>>> QQ.old_poly_ring(x).quotient_ring([x**2])
|
104 |
+
QQ[x]/<x**2>
|
105 |
+
|
106 |
+
The division operator has been overloaded for this:
|
107 |
+
|
108 |
+
>>> QQ.old_poly_ring(x)/[x**2]
|
109 |
+
QQ[x]/<x**2>
|
110 |
+
"""
|
111 |
+
from sympy.polys.agca.ideals import Ideal
|
112 |
+
from sympy.polys.domains.quotientring import QuotientRing
|
113 |
+
if not isinstance(e, Ideal):
|
114 |
+
e = self.ideal(*e)
|
115 |
+
return QuotientRing(self, e)
|
116 |
+
|
117 |
+
def __truediv__(self, e):
|
118 |
+
return self.quotient_ring(e)
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/euclidtools.py
ADDED
@@ -0,0 +1,1893 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Euclidean algorithms, GCDs, LCMs and polynomial remainder sequences. """
|
2 |
+
|
3 |
+
|
4 |
+
from sympy.polys.densearith import (
|
5 |
+
dup_sub_mul,
|
6 |
+
dup_neg, dmp_neg,
|
7 |
+
dmp_add,
|
8 |
+
dmp_sub,
|
9 |
+
dup_mul, dmp_mul,
|
10 |
+
dmp_pow,
|
11 |
+
dup_div, dmp_div,
|
12 |
+
dup_rem,
|
13 |
+
dup_quo, dmp_quo,
|
14 |
+
dup_prem, dmp_prem,
|
15 |
+
dup_mul_ground, dmp_mul_ground,
|
16 |
+
dmp_mul_term,
|
17 |
+
dup_quo_ground, dmp_quo_ground,
|
18 |
+
dup_max_norm, dmp_max_norm)
|
19 |
+
from sympy.polys.densebasic import (
|
20 |
+
dup_strip, dmp_raise,
|
21 |
+
dmp_zero, dmp_one, dmp_ground,
|
22 |
+
dmp_one_p, dmp_zero_p,
|
23 |
+
dmp_zeros,
|
24 |
+
dup_degree, dmp_degree, dmp_degree_in,
|
25 |
+
dup_LC, dmp_LC, dmp_ground_LC,
|
26 |
+
dmp_multi_deflate, dmp_inflate,
|
27 |
+
dup_convert, dmp_convert,
|
28 |
+
dmp_apply_pairs)
|
29 |
+
from sympy.polys.densetools import (
|
30 |
+
dup_clear_denoms, dmp_clear_denoms,
|
31 |
+
dup_diff, dmp_diff,
|
32 |
+
dup_eval, dmp_eval, dmp_eval_in,
|
33 |
+
dup_trunc, dmp_ground_trunc,
|
34 |
+
dup_monic, dmp_ground_monic,
|
35 |
+
dup_primitive, dmp_ground_primitive,
|
36 |
+
dup_extract, dmp_ground_extract)
|
37 |
+
from sympy.polys.galoistools import (
|
38 |
+
gf_int, gf_crt)
|
39 |
+
from sympy.polys.polyconfig import query
|
40 |
+
from sympy.polys.polyerrors import (
|
41 |
+
MultivariatePolynomialError,
|
42 |
+
HeuristicGCDFailed,
|
43 |
+
HomomorphismFailed,
|
44 |
+
NotInvertible,
|
45 |
+
DomainError)
|
46 |
+
|
47 |
+
|
48 |
+
|
49 |
+
|
50 |
+
def dup_half_gcdex(f, g, K):
|
51 |
+
"""
|
52 |
+
Half extended Euclidean algorithm in `F[x]`.
|
53 |
+
|
54 |
+
Returns ``(s, h)`` such that ``h = gcd(f, g)`` and ``s*f = h (mod g)``.
|
55 |
+
|
56 |
+
Examples
|
57 |
+
========
|
58 |
+
|
59 |
+
>>> from sympy.polys import ring, QQ
|
60 |
+
>>> R, x = ring("x", QQ)
|
61 |
+
|
62 |
+
>>> f = x**4 - 2*x**3 - 6*x**2 + 12*x + 15
|
63 |
+
>>> g = x**3 + x**2 - 4*x - 4
|
64 |
+
|
65 |
+
>>> R.dup_half_gcdex(f, g)
|
66 |
+
(-1/5*x + 3/5, x + 1)
|
67 |
+
|
68 |
+
"""
|
69 |
+
if not K.is_Field:
|
70 |
+
raise DomainError("Cannot compute half extended GCD over %s" % K)
|
71 |
+
|
72 |
+
a, b = [K.one], []
|
73 |
+
|
74 |
+
while g:
|
75 |
+
q, r = dup_div(f, g, K)
|
76 |
+
f, g = g, r
|
77 |
+
a, b = b, dup_sub_mul(a, q, b, K)
|
78 |
+
|
79 |
+
a = dup_quo_ground(a, dup_LC(f, K), K)
|
80 |
+
f = dup_monic(f, K)
|
81 |
+
|
82 |
+
return a, f
|
83 |
+
|
84 |
+
|
85 |
+
def dmp_half_gcdex(f, g, u, K):
|
86 |
+
"""
|
87 |
+
Half extended Euclidean algorithm in `F[X]`.
|
88 |
+
|
89 |
+
Examples
|
90 |
+
========
|
91 |
+
|
92 |
+
>>> from sympy.polys import ring, ZZ
|
93 |
+
>>> R, x,y = ring("x,y", ZZ)
|
94 |
+
|
95 |
+
"""
|
96 |
+
if not u:
|
97 |
+
return dup_half_gcdex(f, g, K)
|
98 |
+
else:
|
99 |
+
raise MultivariatePolynomialError(f, g)
|
100 |
+
|
101 |
+
|
102 |
+
def dup_gcdex(f, g, K):
|
103 |
+
"""
|
104 |
+
Extended Euclidean algorithm in `F[x]`.
|
105 |
+
|
106 |
+
Returns ``(s, t, h)`` such that ``h = gcd(f, g)`` and ``s*f + t*g = h``.
|
107 |
+
|
108 |
+
Examples
|
109 |
+
========
|
110 |
+
|
111 |
+
>>> from sympy.polys import ring, QQ
|
112 |
+
>>> R, x = ring("x", QQ)
|
113 |
+
|
114 |
+
>>> f = x**4 - 2*x**3 - 6*x**2 + 12*x + 15
|
115 |
+
>>> g = x**3 + x**2 - 4*x - 4
|
116 |
+
|
117 |
+
>>> R.dup_gcdex(f, g)
|
118 |
+
(-1/5*x + 3/5, 1/5*x**2 - 6/5*x + 2, x + 1)
|
119 |
+
|
120 |
+
"""
|
121 |
+
s, h = dup_half_gcdex(f, g, K)
|
122 |
+
|
123 |
+
F = dup_sub_mul(h, s, f, K)
|
124 |
+
t = dup_quo(F, g, K)
|
125 |
+
|
126 |
+
return s, t, h
|
127 |
+
|
128 |
+
|
129 |
+
def dmp_gcdex(f, g, u, K):
|
130 |
+
"""
|
131 |
+
Extended Euclidean algorithm in `F[X]`.
|
132 |
+
|
133 |
+
Examples
|
134 |
+
========
|
135 |
+
|
136 |
+
>>> from sympy.polys import ring, ZZ
|
137 |
+
>>> R, x,y = ring("x,y", ZZ)
|
138 |
+
|
139 |
+
"""
|
140 |
+
if not u:
|
141 |
+
return dup_gcdex(f, g, K)
|
142 |
+
else:
|
143 |
+
raise MultivariatePolynomialError(f, g)
|
144 |
+
|
145 |
+
|
146 |
+
def dup_invert(f, g, K):
|
147 |
+
"""
|
148 |
+
Compute multiplicative inverse of `f` modulo `g` in `F[x]`.
|
149 |
+
|
150 |
+
Examples
|
151 |
+
========
|
152 |
+
|
153 |
+
>>> from sympy.polys import ring, QQ
|
154 |
+
>>> R, x = ring("x", QQ)
|
155 |
+
|
156 |
+
>>> f = x**2 - 1
|
157 |
+
>>> g = 2*x - 1
|
158 |
+
>>> h = x - 1
|
159 |
+
|
160 |
+
>>> R.dup_invert(f, g)
|
161 |
+
-4/3
|
162 |
+
|
163 |
+
>>> R.dup_invert(f, h)
|
164 |
+
Traceback (most recent call last):
|
165 |
+
...
|
166 |
+
NotInvertible: zero divisor
|
167 |
+
|
168 |
+
"""
|
169 |
+
s, h = dup_half_gcdex(f, g, K)
|
170 |
+
|
171 |
+
if h == [K.one]:
|
172 |
+
return dup_rem(s, g, K)
|
173 |
+
else:
|
174 |
+
raise NotInvertible("zero divisor")
|
175 |
+
|
176 |
+
|
177 |
+
def dmp_invert(f, g, u, K):
|
178 |
+
"""
|
179 |
+
Compute multiplicative inverse of `f` modulo `g` in `F[X]`.
|
180 |
+
|
181 |
+
Examples
|
182 |
+
========
|
183 |
+
|
184 |
+
>>> from sympy.polys import ring, QQ
|
185 |
+
>>> R, x = ring("x", QQ)
|
186 |
+
|
187 |
+
"""
|
188 |
+
if not u:
|
189 |
+
return dup_invert(f, g, K)
|
190 |
+
else:
|
191 |
+
raise MultivariatePolynomialError(f, g)
|
192 |
+
|
193 |
+
|
194 |
+
def dup_euclidean_prs(f, g, K):
|
195 |
+
"""
|
196 |
+
Euclidean polynomial remainder sequence (PRS) in `K[x]`.
|
197 |
+
|
198 |
+
Examples
|
199 |
+
========
|
200 |
+
|
201 |
+
>>> from sympy.polys import ring, QQ
|
202 |
+
>>> R, x = ring("x", QQ)
|
203 |
+
|
204 |
+
>>> f = x**8 + x**6 - 3*x**4 - 3*x**3 + 8*x**2 + 2*x - 5
|
205 |
+
>>> g = 3*x**6 + 5*x**4 - 4*x**2 - 9*x + 21
|
206 |
+
|
207 |
+
>>> prs = R.dup_euclidean_prs(f, g)
|
208 |
+
|
209 |
+
>>> prs[0]
|
210 |
+
x**8 + x**6 - 3*x**4 - 3*x**3 + 8*x**2 + 2*x - 5
|
211 |
+
>>> prs[1]
|
212 |
+
3*x**6 + 5*x**4 - 4*x**2 - 9*x + 21
|
213 |
+
>>> prs[2]
|
214 |
+
-5/9*x**4 + 1/9*x**2 - 1/3
|
215 |
+
>>> prs[3]
|
216 |
+
-117/25*x**2 - 9*x + 441/25
|
217 |
+
>>> prs[4]
|
218 |
+
233150/19773*x - 102500/6591
|
219 |
+
>>> prs[5]
|
220 |
+
-1288744821/543589225
|
221 |
+
|
222 |
+
"""
|
223 |
+
prs = [f, g]
|
224 |
+
h = dup_rem(f, g, K)
|
225 |
+
|
226 |
+
while h:
|
227 |
+
prs.append(h)
|
228 |
+
f, g = g, h
|
229 |
+
h = dup_rem(f, g, K)
|
230 |
+
|
231 |
+
return prs
|
232 |
+
|
233 |
+
|
234 |
+
def dmp_euclidean_prs(f, g, u, K):
|
235 |
+
"""
|
236 |
+
Euclidean polynomial remainder sequence (PRS) in `K[X]`.
|
237 |
+
|
238 |
+
Examples
|
239 |
+
========
|
240 |
+
|
241 |
+
>>> from sympy.polys import ring, ZZ
|
242 |
+
>>> R, x,y = ring("x,y", ZZ)
|
243 |
+
|
244 |
+
"""
|
245 |
+
if not u:
|
246 |
+
return dup_euclidean_prs(f, g, K)
|
247 |
+
else:
|
248 |
+
raise MultivariatePolynomialError(f, g)
|
249 |
+
|
250 |
+
|
251 |
+
def dup_primitive_prs(f, g, K):
|
252 |
+
"""
|
253 |
+
Primitive polynomial remainder sequence (PRS) in `K[x]`.
|
254 |
+
|
255 |
+
Examples
|
256 |
+
========
|
257 |
+
|
258 |
+
>>> from sympy.polys import ring, ZZ
|
259 |
+
>>> R, x = ring("x", ZZ)
|
260 |
+
|
261 |
+
>>> f = x**8 + x**6 - 3*x**4 - 3*x**3 + 8*x**2 + 2*x - 5
|
262 |
+
>>> g = 3*x**6 + 5*x**4 - 4*x**2 - 9*x + 21
|
263 |
+
|
264 |
+
>>> prs = R.dup_primitive_prs(f, g)
|
265 |
+
|
266 |
+
>>> prs[0]
|
267 |
+
x**8 + x**6 - 3*x**4 - 3*x**3 + 8*x**2 + 2*x - 5
|
268 |
+
>>> prs[1]
|
269 |
+
3*x**6 + 5*x**4 - 4*x**2 - 9*x + 21
|
270 |
+
>>> prs[2]
|
271 |
+
-5*x**4 + x**2 - 3
|
272 |
+
>>> prs[3]
|
273 |
+
13*x**2 + 25*x - 49
|
274 |
+
>>> prs[4]
|
275 |
+
4663*x - 6150
|
276 |
+
>>> prs[5]
|
277 |
+
1
|
278 |
+
|
279 |
+
"""
|
280 |
+
prs = [f, g]
|
281 |
+
_, h = dup_primitive(dup_prem(f, g, K), K)
|
282 |
+
|
283 |
+
while h:
|
284 |
+
prs.append(h)
|
285 |
+
f, g = g, h
|
286 |
+
_, h = dup_primitive(dup_prem(f, g, K), K)
|
287 |
+
|
288 |
+
return prs
|
289 |
+
|
290 |
+
|
291 |
+
def dmp_primitive_prs(f, g, u, K):
|
292 |
+
"""
|
293 |
+
Primitive polynomial remainder sequence (PRS) in `K[X]`.
|
294 |
+
|
295 |
+
Examples
|
296 |
+
========
|
297 |
+
|
298 |
+
>>> from sympy.polys import ring, ZZ
|
299 |
+
>>> R, x,y = ring("x,y", ZZ)
|
300 |
+
|
301 |
+
"""
|
302 |
+
if not u:
|
303 |
+
return dup_primitive_prs(f, g, K)
|
304 |
+
else:
|
305 |
+
raise MultivariatePolynomialError(f, g)
|
306 |
+
|
307 |
+
|
308 |
+
def dup_inner_subresultants(f, g, K):
|
309 |
+
"""
|
310 |
+
Subresultant PRS algorithm in `K[x]`.
|
311 |
+
|
312 |
+
Computes the subresultant polynomial remainder sequence (PRS)
|
313 |
+
and the non-zero scalar subresultants of `f` and `g`.
|
314 |
+
By [1] Thm. 3, these are the constants '-c' (- to optimize
|
315 |
+
computation of sign).
|
316 |
+
The first subdeterminant is set to 1 by convention to match
|
317 |
+
the polynomial and the scalar subdeterminants.
|
318 |
+
If 'deg(f) < deg(g)', the subresultants of '(g,f)' are computed.
|
319 |
+
|
320 |
+
Examples
|
321 |
+
========
|
322 |
+
|
323 |
+
>>> from sympy.polys import ring, ZZ
|
324 |
+
>>> R, x = ring("x", ZZ)
|
325 |
+
|
326 |
+
>>> R.dup_inner_subresultants(x**2 + 1, x**2 - 1)
|
327 |
+
([x**2 + 1, x**2 - 1, -2], [1, 1, 4])
|
328 |
+
|
329 |
+
References
|
330 |
+
==========
|
331 |
+
|
332 |
+
.. [1] W.S. Brown, The Subresultant PRS Algorithm.
|
333 |
+
ACM Transaction of Mathematical Software 4 (1978) 237-249
|
334 |
+
|
335 |
+
"""
|
336 |
+
n = dup_degree(f)
|
337 |
+
m = dup_degree(g)
|
338 |
+
|
339 |
+
if n < m:
|
340 |
+
f, g = g, f
|
341 |
+
n, m = m, n
|
342 |
+
|
343 |
+
if not f:
|
344 |
+
return [], []
|
345 |
+
|
346 |
+
if not g:
|
347 |
+
return [f], [K.one]
|
348 |
+
|
349 |
+
R = [f, g]
|
350 |
+
d = n - m
|
351 |
+
|
352 |
+
b = (-K.one)**(d + 1)
|
353 |
+
|
354 |
+
h = dup_prem(f, g, K)
|
355 |
+
h = dup_mul_ground(h, b, K)
|
356 |
+
|
357 |
+
lc = dup_LC(g, K)
|
358 |
+
c = lc**d
|
359 |
+
|
360 |
+
# Conventional first scalar subdeterminant is 1
|
361 |
+
S = [K.one, c]
|
362 |
+
c = -c
|
363 |
+
|
364 |
+
while h:
|
365 |
+
k = dup_degree(h)
|
366 |
+
R.append(h)
|
367 |
+
|
368 |
+
f, g, m, d = g, h, k, m - k
|
369 |
+
|
370 |
+
b = -lc * c**d
|
371 |
+
|
372 |
+
h = dup_prem(f, g, K)
|
373 |
+
h = dup_quo_ground(h, b, K)
|
374 |
+
|
375 |
+
lc = dup_LC(g, K)
|
376 |
+
|
377 |
+
if d > 1: # abnormal case
|
378 |
+
q = c**(d - 1)
|
379 |
+
c = K.quo((-lc)**d, q)
|
380 |
+
else:
|
381 |
+
c = -lc
|
382 |
+
|
383 |
+
S.append(-c)
|
384 |
+
|
385 |
+
return R, S
|
386 |
+
|
387 |
+
|
388 |
+
def dup_subresultants(f, g, K):
|
389 |
+
"""
|
390 |
+
Computes subresultant PRS of two polynomials in `K[x]`.
|
391 |
+
|
392 |
+
Examples
|
393 |
+
========
|
394 |
+
|
395 |
+
>>> from sympy.polys import ring, ZZ
|
396 |
+
>>> R, x = ring("x", ZZ)
|
397 |
+
|
398 |
+
>>> R.dup_subresultants(x**2 + 1, x**2 - 1)
|
399 |
+
[x**2 + 1, x**2 - 1, -2]
|
400 |
+
|
401 |
+
"""
|
402 |
+
return dup_inner_subresultants(f, g, K)[0]
|
403 |
+
|
404 |
+
|
405 |
+
def dup_prs_resultant(f, g, K):
|
406 |
+
"""
|
407 |
+
Resultant algorithm in `K[x]` using subresultant PRS.
|
408 |
+
|
409 |
+
Examples
|
410 |
+
========
|
411 |
+
|
412 |
+
>>> from sympy.polys import ring, ZZ
|
413 |
+
>>> R, x = ring("x", ZZ)
|
414 |
+
|
415 |
+
>>> R.dup_prs_resultant(x**2 + 1, x**2 - 1)
|
416 |
+
(4, [x**2 + 1, x**2 - 1, -2])
|
417 |
+
|
418 |
+
"""
|
419 |
+
if not f or not g:
|
420 |
+
return (K.zero, [])
|
421 |
+
|
422 |
+
R, S = dup_inner_subresultants(f, g, K)
|
423 |
+
|
424 |
+
if dup_degree(R[-1]) > 0:
|
425 |
+
return (K.zero, R)
|
426 |
+
|
427 |
+
return S[-1], R
|
428 |
+
|
429 |
+
|
430 |
+
def dup_resultant(f, g, K, includePRS=False):
|
431 |
+
"""
|
432 |
+
Computes resultant of two polynomials in `K[x]`.
|
433 |
+
|
434 |
+
Examples
|
435 |
+
========
|
436 |
+
|
437 |
+
>>> from sympy.polys import ring, ZZ
|
438 |
+
>>> R, x = ring("x", ZZ)
|
439 |
+
|
440 |
+
>>> R.dup_resultant(x**2 + 1, x**2 - 1)
|
441 |
+
4
|
442 |
+
|
443 |
+
"""
|
444 |
+
if includePRS:
|
445 |
+
return dup_prs_resultant(f, g, K)
|
446 |
+
return dup_prs_resultant(f, g, K)[0]
|
447 |
+
|
448 |
+
|
449 |
+
def dmp_inner_subresultants(f, g, u, K):
|
450 |
+
"""
|
451 |
+
Subresultant PRS algorithm in `K[X]`.
|
452 |
+
|
453 |
+
Examples
|
454 |
+
========
|
455 |
+
|
456 |
+
>>> from sympy.polys import ring, ZZ
|
457 |
+
>>> R, x,y = ring("x,y", ZZ)
|
458 |
+
|
459 |
+
>>> f = 3*x**2*y - y**3 - 4
|
460 |
+
>>> g = x**2 + x*y**3 - 9
|
461 |
+
|
462 |
+
>>> a = 3*x*y**4 + y**3 - 27*y + 4
|
463 |
+
>>> b = -3*y**10 - 12*y**7 + y**6 - 54*y**4 + 8*y**3 + 729*y**2 - 216*y + 16
|
464 |
+
|
465 |
+
>>> prs = [f, g, a, b]
|
466 |
+
>>> sres = [[1], [1], [3, 0, 0, 0, 0], [-3, 0, 0, -12, 1, 0, -54, 8, 729, -216, 16]]
|
467 |
+
|
468 |
+
>>> R.dmp_inner_subresultants(f, g) == (prs, sres)
|
469 |
+
True
|
470 |
+
|
471 |
+
"""
|
472 |
+
if not u:
|
473 |
+
return dup_inner_subresultants(f, g, K)
|
474 |
+
|
475 |
+
n = dmp_degree(f, u)
|
476 |
+
m = dmp_degree(g, u)
|
477 |
+
|
478 |
+
if n < m:
|
479 |
+
f, g = g, f
|
480 |
+
n, m = m, n
|
481 |
+
|
482 |
+
if dmp_zero_p(f, u):
|
483 |
+
return [], []
|
484 |
+
|
485 |
+
v = u - 1
|
486 |
+
if dmp_zero_p(g, u):
|
487 |
+
return [f], [dmp_ground(K.one, v)]
|
488 |
+
|
489 |
+
R = [f, g]
|
490 |
+
d = n - m
|
491 |
+
|
492 |
+
b = dmp_pow(dmp_ground(-K.one, v), d + 1, v, K)
|
493 |
+
|
494 |
+
h = dmp_prem(f, g, u, K)
|
495 |
+
h = dmp_mul_term(h, b, 0, u, K)
|
496 |
+
|
497 |
+
lc = dmp_LC(g, K)
|
498 |
+
c = dmp_pow(lc, d, v, K)
|
499 |
+
|
500 |
+
S = [dmp_ground(K.one, v), c]
|
501 |
+
c = dmp_neg(c, v, K)
|
502 |
+
|
503 |
+
while not dmp_zero_p(h, u):
|
504 |
+
k = dmp_degree(h, u)
|
505 |
+
R.append(h)
|
506 |
+
|
507 |
+
f, g, m, d = g, h, k, m - k
|
508 |
+
|
509 |
+
b = dmp_mul(dmp_neg(lc, v, K),
|
510 |
+
dmp_pow(c, d, v, K), v, K)
|
511 |
+
|
512 |
+
h = dmp_prem(f, g, u, K)
|
513 |
+
h = [ dmp_quo(ch, b, v, K) for ch in h ]
|
514 |
+
|
515 |
+
lc = dmp_LC(g, K)
|
516 |
+
|
517 |
+
if d > 1:
|
518 |
+
p = dmp_pow(dmp_neg(lc, v, K), d, v, K)
|
519 |
+
q = dmp_pow(c, d - 1, v, K)
|
520 |
+
c = dmp_quo(p, q, v, K)
|
521 |
+
else:
|
522 |
+
c = dmp_neg(lc, v, K)
|
523 |
+
|
524 |
+
S.append(dmp_neg(c, v, K))
|
525 |
+
|
526 |
+
return R, S
|
527 |
+
|
528 |
+
|
529 |
+
def dmp_subresultants(f, g, u, K):
|
530 |
+
"""
|
531 |
+
Computes subresultant PRS of two polynomials in `K[X]`.
|
532 |
+
|
533 |
+
Examples
|
534 |
+
========
|
535 |
+
|
536 |
+
>>> from sympy.polys import ring, ZZ
|
537 |
+
>>> R, x,y = ring("x,y", ZZ)
|
538 |
+
|
539 |
+
>>> f = 3*x**2*y - y**3 - 4
|
540 |
+
>>> g = x**2 + x*y**3 - 9
|
541 |
+
|
542 |
+
>>> a = 3*x*y**4 + y**3 - 27*y + 4
|
543 |
+
>>> b = -3*y**10 - 12*y**7 + y**6 - 54*y**4 + 8*y**3 + 729*y**2 - 216*y + 16
|
544 |
+
|
545 |
+
>>> R.dmp_subresultants(f, g) == [f, g, a, b]
|
546 |
+
True
|
547 |
+
|
548 |
+
"""
|
549 |
+
return dmp_inner_subresultants(f, g, u, K)[0]
|
550 |
+
|
551 |
+
|
552 |
+
def dmp_prs_resultant(f, g, u, K):
|
553 |
+
"""
|
554 |
+
Resultant algorithm in `K[X]` using subresultant PRS.
|
555 |
+
|
556 |
+
Examples
|
557 |
+
========
|
558 |
+
|
559 |
+
>>> from sympy.polys import ring, ZZ
|
560 |
+
>>> R, x,y = ring("x,y", ZZ)
|
561 |
+
|
562 |
+
>>> f = 3*x**2*y - y**3 - 4
|
563 |
+
>>> g = x**2 + x*y**3 - 9
|
564 |
+
|
565 |
+
>>> a = 3*x*y**4 + y**3 - 27*y + 4
|
566 |
+
>>> b = -3*y**10 - 12*y**7 + y**6 - 54*y**4 + 8*y**3 + 729*y**2 - 216*y + 16
|
567 |
+
|
568 |
+
>>> res, prs = R.dmp_prs_resultant(f, g)
|
569 |
+
|
570 |
+
>>> res == b # resultant has n-1 variables
|
571 |
+
False
|
572 |
+
>>> res == b.drop(x)
|
573 |
+
True
|
574 |
+
>>> prs == [f, g, a, b]
|
575 |
+
True
|
576 |
+
|
577 |
+
"""
|
578 |
+
if not u:
|
579 |
+
return dup_prs_resultant(f, g, K)
|
580 |
+
|
581 |
+
if dmp_zero_p(f, u) or dmp_zero_p(g, u):
|
582 |
+
return (dmp_zero(u - 1), [])
|
583 |
+
|
584 |
+
R, S = dmp_inner_subresultants(f, g, u, K)
|
585 |
+
|
586 |
+
if dmp_degree(R[-1], u) > 0:
|
587 |
+
return (dmp_zero(u - 1), R)
|
588 |
+
|
589 |
+
return S[-1], R
|
590 |
+
|
591 |
+
|
592 |
+
def dmp_zz_modular_resultant(f, g, p, u, K):
|
593 |
+
"""
|
594 |
+
Compute resultant of `f` and `g` modulo a prime `p`.
|
595 |
+
|
596 |
+
Examples
|
597 |
+
========
|
598 |
+
|
599 |
+
>>> from sympy.polys import ring, ZZ
|
600 |
+
>>> R, x,y = ring("x,y", ZZ)
|
601 |
+
|
602 |
+
>>> f = x + y + 2
|
603 |
+
>>> g = 2*x*y + x + 3
|
604 |
+
|
605 |
+
>>> R.dmp_zz_modular_resultant(f, g, 5)
|
606 |
+
-2*y**2 + 1
|
607 |
+
|
608 |
+
"""
|
609 |
+
if not u:
|
610 |
+
return gf_int(dup_prs_resultant(f, g, K)[0] % p, p)
|
611 |
+
|
612 |
+
v = u - 1
|
613 |
+
|
614 |
+
n = dmp_degree(f, u)
|
615 |
+
m = dmp_degree(g, u)
|
616 |
+
|
617 |
+
N = dmp_degree_in(f, 1, u)
|
618 |
+
M = dmp_degree_in(g, 1, u)
|
619 |
+
|
620 |
+
B = n*M + m*N
|
621 |
+
|
622 |
+
D, a = [K.one], -K.one
|
623 |
+
r = dmp_zero(v)
|
624 |
+
|
625 |
+
while dup_degree(D) <= B:
|
626 |
+
while True:
|
627 |
+
a += K.one
|
628 |
+
|
629 |
+
if a == p:
|
630 |
+
raise HomomorphismFailed('no luck')
|
631 |
+
|
632 |
+
F = dmp_eval_in(f, gf_int(a, p), 1, u, K)
|
633 |
+
|
634 |
+
if dmp_degree(F, v) == n:
|
635 |
+
G = dmp_eval_in(g, gf_int(a, p), 1, u, K)
|
636 |
+
|
637 |
+
if dmp_degree(G, v) == m:
|
638 |
+
break
|
639 |
+
|
640 |
+
R = dmp_zz_modular_resultant(F, G, p, v, K)
|
641 |
+
e = dmp_eval(r, a, v, K)
|
642 |
+
|
643 |
+
if not v:
|
644 |
+
R = dup_strip([R])
|
645 |
+
e = dup_strip([e])
|
646 |
+
else:
|
647 |
+
R = [R]
|
648 |
+
e = [e]
|
649 |
+
|
650 |
+
d = K.invert(dup_eval(D, a, K), p)
|
651 |
+
d = dup_mul_ground(D, d, K)
|
652 |
+
d = dmp_raise(d, v, 0, K)
|
653 |
+
|
654 |
+
c = dmp_mul(d, dmp_sub(R, e, v, K), v, K)
|
655 |
+
r = dmp_add(r, c, v, K)
|
656 |
+
|
657 |
+
r = dmp_ground_trunc(r, p, v, K)
|
658 |
+
|
659 |
+
D = dup_mul(D, [K.one, -a], K)
|
660 |
+
D = dup_trunc(D, p, K)
|
661 |
+
|
662 |
+
return r
|
663 |
+
|
664 |
+
|
665 |
+
def _collins_crt(r, R, P, p, K):
|
666 |
+
"""Wrapper of CRT for Collins's resultant algorithm. """
|
667 |
+
return gf_int(gf_crt([r, R], [P, p], K), P*p)
|
668 |
+
|
669 |
+
|
670 |
+
def dmp_zz_collins_resultant(f, g, u, K):
|
671 |
+
"""
|
672 |
+
Collins's modular resultant algorithm in `Z[X]`.
|
673 |
+
|
674 |
+
Examples
|
675 |
+
========
|
676 |
+
|
677 |
+
>>> from sympy.polys import ring, ZZ
|
678 |
+
>>> R, x,y = ring("x,y", ZZ)
|
679 |
+
|
680 |
+
>>> f = x + y + 2
|
681 |
+
>>> g = 2*x*y + x + 3
|
682 |
+
|
683 |
+
>>> R.dmp_zz_collins_resultant(f, g)
|
684 |
+
-2*y**2 - 5*y + 1
|
685 |
+
|
686 |
+
"""
|
687 |
+
|
688 |
+
n = dmp_degree(f, u)
|
689 |
+
m = dmp_degree(g, u)
|
690 |
+
|
691 |
+
if n < 0 or m < 0:
|
692 |
+
return dmp_zero(u - 1)
|
693 |
+
|
694 |
+
A = dmp_max_norm(f, u, K)
|
695 |
+
B = dmp_max_norm(g, u, K)
|
696 |
+
|
697 |
+
a = dmp_ground_LC(f, u, K)
|
698 |
+
b = dmp_ground_LC(g, u, K)
|
699 |
+
|
700 |
+
v = u - 1
|
701 |
+
|
702 |
+
B = K(2)*K.factorial(K(n + m))*A**m*B**n
|
703 |
+
r, p, P = dmp_zero(v), K.one, K.one
|
704 |
+
|
705 |
+
from sympy.ntheory import nextprime
|
706 |
+
|
707 |
+
while P <= B:
|
708 |
+
p = K(nextprime(p))
|
709 |
+
|
710 |
+
while not (a % p) or not (b % p):
|
711 |
+
p = K(nextprime(p))
|
712 |
+
|
713 |
+
F = dmp_ground_trunc(f, p, u, K)
|
714 |
+
G = dmp_ground_trunc(g, p, u, K)
|
715 |
+
|
716 |
+
try:
|
717 |
+
R = dmp_zz_modular_resultant(F, G, p, u, K)
|
718 |
+
except HomomorphismFailed:
|
719 |
+
continue
|
720 |
+
|
721 |
+
if K.is_one(P):
|
722 |
+
r = R
|
723 |
+
else:
|
724 |
+
r = dmp_apply_pairs(r, R, _collins_crt, (P, p, K), v, K)
|
725 |
+
|
726 |
+
P *= p
|
727 |
+
|
728 |
+
return r
|
729 |
+
|
730 |
+
|
731 |
+
def dmp_qq_collins_resultant(f, g, u, K0):
|
732 |
+
"""
|
733 |
+
Collins's modular resultant algorithm in `Q[X]`.
|
734 |
+
|
735 |
+
Examples
|
736 |
+
========
|
737 |
+
|
738 |
+
>>> from sympy.polys import ring, QQ
|
739 |
+
>>> R, x,y = ring("x,y", QQ)
|
740 |
+
|
741 |
+
>>> f = QQ(1,2)*x + y + QQ(2,3)
|
742 |
+
>>> g = 2*x*y + x + 3
|
743 |
+
|
744 |
+
>>> R.dmp_qq_collins_resultant(f, g)
|
745 |
+
-2*y**2 - 7/3*y + 5/6
|
746 |
+
|
747 |
+
"""
|
748 |
+
n = dmp_degree(f, u)
|
749 |
+
m = dmp_degree(g, u)
|
750 |
+
|
751 |
+
if n < 0 or m < 0:
|
752 |
+
return dmp_zero(u - 1)
|
753 |
+
|
754 |
+
K1 = K0.get_ring()
|
755 |
+
|
756 |
+
cf, f = dmp_clear_denoms(f, u, K0, K1)
|
757 |
+
cg, g = dmp_clear_denoms(g, u, K0, K1)
|
758 |
+
|
759 |
+
f = dmp_convert(f, u, K0, K1)
|
760 |
+
g = dmp_convert(g, u, K0, K1)
|
761 |
+
|
762 |
+
r = dmp_zz_collins_resultant(f, g, u, K1)
|
763 |
+
r = dmp_convert(r, u - 1, K1, K0)
|
764 |
+
|
765 |
+
c = K0.convert(cf**m * cg**n, K1)
|
766 |
+
|
767 |
+
return dmp_quo_ground(r, c, u - 1, K0)
|
768 |
+
|
769 |
+
|
770 |
+
def dmp_resultant(f, g, u, K, includePRS=False):
|
771 |
+
"""
|
772 |
+
Computes resultant of two polynomials in `K[X]`.
|
773 |
+
|
774 |
+
Examples
|
775 |
+
========
|
776 |
+
|
777 |
+
>>> from sympy.polys import ring, ZZ
|
778 |
+
>>> R, x,y = ring("x,y", ZZ)
|
779 |
+
|
780 |
+
>>> f = 3*x**2*y - y**3 - 4
|
781 |
+
>>> g = x**2 + x*y**3 - 9
|
782 |
+
|
783 |
+
>>> R.dmp_resultant(f, g)
|
784 |
+
-3*y**10 - 12*y**7 + y**6 - 54*y**4 + 8*y**3 + 729*y**2 - 216*y + 16
|
785 |
+
|
786 |
+
"""
|
787 |
+
if not u:
|
788 |
+
return dup_resultant(f, g, K, includePRS=includePRS)
|
789 |
+
|
790 |
+
if includePRS:
|
791 |
+
return dmp_prs_resultant(f, g, u, K)
|
792 |
+
|
793 |
+
if K.is_Field:
|
794 |
+
if K.is_QQ and query('USE_COLLINS_RESULTANT'):
|
795 |
+
return dmp_qq_collins_resultant(f, g, u, K)
|
796 |
+
else:
|
797 |
+
if K.is_ZZ and query('USE_COLLINS_RESULTANT'):
|
798 |
+
return dmp_zz_collins_resultant(f, g, u, K)
|
799 |
+
|
800 |
+
return dmp_prs_resultant(f, g, u, K)[0]
|
801 |
+
|
802 |
+
|
803 |
+
def dup_discriminant(f, K):
|
804 |
+
"""
|
805 |
+
Computes discriminant of a polynomial in `K[x]`.
|
806 |
+
|
807 |
+
Examples
|
808 |
+
========
|
809 |
+
|
810 |
+
>>> from sympy.polys import ring, ZZ
|
811 |
+
>>> R, x = ring("x", ZZ)
|
812 |
+
|
813 |
+
>>> R.dup_discriminant(x**2 + 2*x + 3)
|
814 |
+
-8
|
815 |
+
|
816 |
+
"""
|
817 |
+
d = dup_degree(f)
|
818 |
+
|
819 |
+
if d <= 0:
|
820 |
+
return K.zero
|
821 |
+
else:
|
822 |
+
s = (-1)**((d*(d - 1)) // 2)
|
823 |
+
c = dup_LC(f, K)
|
824 |
+
|
825 |
+
r = dup_resultant(f, dup_diff(f, 1, K), K)
|
826 |
+
|
827 |
+
return K.quo(r, c*K(s))
|
828 |
+
|
829 |
+
|
830 |
+
def dmp_discriminant(f, u, K):
|
831 |
+
"""
|
832 |
+
Computes discriminant of a polynomial in `K[X]`.
|
833 |
+
|
834 |
+
Examples
|
835 |
+
========
|
836 |
+
|
837 |
+
>>> from sympy.polys import ring, ZZ
|
838 |
+
>>> R, x,y,z,t = ring("x,y,z,t", ZZ)
|
839 |
+
|
840 |
+
>>> R.dmp_discriminant(x**2*y + x*z + t)
|
841 |
+
-4*y*t + z**2
|
842 |
+
|
843 |
+
"""
|
844 |
+
if not u:
|
845 |
+
return dup_discriminant(f, K)
|
846 |
+
|
847 |
+
d, v = dmp_degree(f, u), u - 1
|
848 |
+
|
849 |
+
if d <= 0:
|
850 |
+
return dmp_zero(v)
|
851 |
+
else:
|
852 |
+
s = (-1)**((d*(d - 1)) // 2)
|
853 |
+
c = dmp_LC(f, K)
|
854 |
+
|
855 |
+
r = dmp_resultant(f, dmp_diff(f, 1, u, K), u, K)
|
856 |
+
c = dmp_mul_ground(c, K(s), v, K)
|
857 |
+
|
858 |
+
return dmp_quo(r, c, v, K)
|
859 |
+
|
860 |
+
|
861 |
+
def _dup_rr_trivial_gcd(f, g, K):
|
862 |
+
"""Handle trivial cases in GCD algorithm over a ring. """
|
863 |
+
if not (f or g):
|
864 |
+
return [], [], []
|
865 |
+
elif not f:
|
866 |
+
if K.is_nonnegative(dup_LC(g, K)):
|
867 |
+
return g, [], [K.one]
|
868 |
+
else:
|
869 |
+
return dup_neg(g, K), [], [-K.one]
|
870 |
+
elif not g:
|
871 |
+
if K.is_nonnegative(dup_LC(f, K)):
|
872 |
+
return f, [K.one], []
|
873 |
+
else:
|
874 |
+
return dup_neg(f, K), [-K.one], []
|
875 |
+
|
876 |
+
return None
|
877 |
+
|
878 |
+
|
879 |
+
def _dup_ff_trivial_gcd(f, g, K):
|
880 |
+
"""Handle trivial cases in GCD algorithm over a field. """
|
881 |
+
if not (f or g):
|
882 |
+
return [], [], []
|
883 |
+
elif not f:
|
884 |
+
return dup_monic(g, K), [], [dup_LC(g, K)]
|
885 |
+
elif not g:
|
886 |
+
return dup_monic(f, K), [dup_LC(f, K)], []
|
887 |
+
else:
|
888 |
+
return None
|
889 |
+
|
890 |
+
|
891 |
+
def _dmp_rr_trivial_gcd(f, g, u, K):
|
892 |
+
"""Handle trivial cases in GCD algorithm over a ring. """
|
893 |
+
zero_f = dmp_zero_p(f, u)
|
894 |
+
zero_g = dmp_zero_p(g, u)
|
895 |
+
if_contain_one = dmp_one_p(f, u, K) or dmp_one_p(g, u, K)
|
896 |
+
|
897 |
+
if zero_f and zero_g:
|
898 |
+
return tuple(dmp_zeros(3, u, K))
|
899 |
+
elif zero_f:
|
900 |
+
if K.is_nonnegative(dmp_ground_LC(g, u, K)):
|
901 |
+
return g, dmp_zero(u), dmp_one(u, K)
|
902 |
+
else:
|
903 |
+
return dmp_neg(g, u, K), dmp_zero(u), dmp_ground(-K.one, u)
|
904 |
+
elif zero_g:
|
905 |
+
if K.is_nonnegative(dmp_ground_LC(f, u, K)):
|
906 |
+
return f, dmp_one(u, K), dmp_zero(u)
|
907 |
+
else:
|
908 |
+
return dmp_neg(f, u, K), dmp_ground(-K.one, u), dmp_zero(u)
|
909 |
+
elif if_contain_one:
|
910 |
+
return dmp_one(u, K), f, g
|
911 |
+
elif query('USE_SIMPLIFY_GCD'):
|
912 |
+
return _dmp_simplify_gcd(f, g, u, K)
|
913 |
+
else:
|
914 |
+
return None
|
915 |
+
|
916 |
+
|
917 |
+
def _dmp_ff_trivial_gcd(f, g, u, K):
|
918 |
+
"""Handle trivial cases in GCD algorithm over a field. """
|
919 |
+
zero_f = dmp_zero_p(f, u)
|
920 |
+
zero_g = dmp_zero_p(g, u)
|
921 |
+
|
922 |
+
if zero_f and zero_g:
|
923 |
+
return tuple(dmp_zeros(3, u, K))
|
924 |
+
elif zero_f:
|
925 |
+
return (dmp_ground_monic(g, u, K),
|
926 |
+
dmp_zero(u),
|
927 |
+
dmp_ground(dmp_ground_LC(g, u, K), u))
|
928 |
+
elif zero_g:
|
929 |
+
return (dmp_ground_monic(f, u, K),
|
930 |
+
dmp_ground(dmp_ground_LC(f, u, K), u),
|
931 |
+
dmp_zero(u))
|
932 |
+
elif query('USE_SIMPLIFY_GCD'):
|
933 |
+
return _dmp_simplify_gcd(f, g, u, K)
|
934 |
+
else:
|
935 |
+
return None
|
936 |
+
|
937 |
+
|
938 |
+
def _dmp_simplify_gcd(f, g, u, K):
|
939 |
+
"""Try to eliminate `x_0` from GCD computation in `K[X]`. """
|
940 |
+
df = dmp_degree(f, u)
|
941 |
+
dg = dmp_degree(g, u)
|
942 |
+
|
943 |
+
if df > 0 and dg > 0:
|
944 |
+
return None
|
945 |
+
|
946 |
+
if not (df or dg):
|
947 |
+
F = dmp_LC(f, K)
|
948 |
+
G = dmp_LC(g, K)
|
949 |
+
else:
|
950 |
+
if not df:
|
951 |
+
F = dmp_LC(f, K)
|
952 |
+
G = dmp_content(g, u, K)
|
953 |
+
else:
|
954 |
+
F = dmp_content(f, u, K)
|
955 |
+
G = dmp_LC(g, K)
|
956 |
+
|
957 |
+
v = u - 1
|
958 |
+
h = dmp_gcd(F, G, v, K)
|
959 |
+
|
960 |
+
cff = [ dmp_quo(cf, h, v, K) for cf in f ]
|
961 |
+
cfg = [ dmp_quo(cg, h, v, K) for cg in g ]
|
962 |
+
|
963 |
+
return [h], cff, cfg
|
964 |
+
|
965 |
+
|
966 |
+
def dup_rr_prs_gcd(f, g, K):
|
967 |
+
"""
|
968 |
+
Computes polynomial GCD using subresultants over a ring.
|
969 |
+
|
970 |
+
Returns ``(h, cff, cfg)`` such that ``a = gcd(f, g)``, ``cff = quo(f, h)``,
|
971 |
+
and ``cfg = quo(g, h)``.
|
972 |
+
|
973 |
+
Examples
|
974 |
+
========
|
975 |
+
|
976 |
+
>>> from sympy.polys import ring, ZZ
|
977 |
+
>>> R, x = ring("x", ZZ)
|
978 |
+
|
979 |
+
>>> R.dup_rr_prs_gcd(x**2 - 1, x**2 - 3*x + 2)
|
980 |
+
(x - 1, x + 1, x - 2)
|
981 |
+
|
982 |
+
"""
|
983 |
+
result = _dup_rr_trivial_gcd(f, g, K)
|
984 |
+
|
985 |
+
if result is not None:
|
986 |
+
return result
|
987 |
+
|
988 |
+
fc, F = dup_primitive(f, K)
|
989 |
+
gc, G = dup_primitive(g, K)
|
990 |
+
|
991 |
+
c = K.gcd(fc, gc)
|
992 |
+
|
993 |
+
h = dup_subresultants(F, G, K)[-1]
|
994 |
+
_, h = dup_primitive(h, K)
|
995 |
+
|
996 |
+
c *= K.canonical_unit(dup_LC(h, K))
|
997 |
+
|
998 |
+
h = dup_mul_ground(h, c, K)
|
999 |
+
|
1000 |
+
cff = dup_quo(f, h, K)
|
1001 |
+
cfg = dup_quo(g, h, K)
|
1002 |
+
|
1003 |
+
return h, cff, cfg
|
1004 |
+
|
1005 |
+
|
1006 |
+
def dup_ff_prs_gcd(f, g, K):
|
1007 |
+
"""
|
1008 |
+
Computes polynomial GCD using subresultants over a field.
|
1009 |
+
|
1010 |
+
Returns ``(h, cff, cfg)`` such that ``a = gcd(f, g)``, ``cff = quo(f, h)``,
|
1011 |
+
and ``cfg = quo(g, h)``.
|
1012 |
+
|
1013 |
+
Examples
|
1014 |
+
========
|
1015 |
+
|
1016 |
+
>>> from sympy.polys import ring, QQ
|
1017 |
+
>>> R, x = ring("x", QQ)
|
1018 |
+
|
1019 |
+
>>> R.dup_ff_prs_gcd(x**2 - 1, x**2 - 3*x + 2)
|
1020 |
+
(x - 1, x + 1, x - 2)
|
1021 |
+
|
1022 |
+
"""
|
1023 |
+
result = _dup_ff_trivial_gcd(f, g, K)
|
1024 |
+
|
1025 |
+
if result is not None:
|
1026 |
+
return result
|
1027 |
+
|
1028 |
+
h = dup_subresultants(f, g, K)[-1]
|
1029 |
+
h = dup_monic(h, K)
|
1030 |
+
|
1031 |
+
cff = dup_quo(f, h, K)
|
1032 |
+
cfg = dup_quo(g, h, K)
|
1033 |
+
|
1034 |
+
return h, cff, cfg
|
1035 |
+
|
1036 |
+
|
1037 |
+
def dmp_rr_prs_gcd(f, g, u, K):
|
1038 |
+
"""
|
1039 |
+
Computes polynomial GCD using subresultants over a ring.
|
1040 |
+
|
1041 |
+
Returns ``(h, cff, cfg)`` such that ``a = gcd(f, g)``, ``cff = quo(f, h)``,
|
1042 |
+
and ``cfg = quo(g, h)``.
|
1043 |
+
|
1044 |
+
Examples
|
1045 |
+
========
|
1046 |
+
|
1047 |
+
>>> from sympy.polys import ring, ZZ
|
1048 |
+
>>> R, x,y, = ring("x,y", ZZ)
|
1049 |
+
|
1050 |
+
>>> f = x**2 + 2*x*y + y**2
|
1051 |
+
>>> g = x**2 + x*y
|
1052 |
+
|
1053 |
+
>>> R.dmp_rr_prs_gcd(f, g)
|
1054 |
+
(x + y, x + y, x)
|
1055 |
+
|
1056 |
+
"""
|
1057 |
+
if not u:
|
1058 |
+
return dup_rr_prs_gcd(f, g, K)
|
1059 |
+
|
1060 |
+
result = _dmp_rr_trivial_gcd(f, g, u, K)
|
1061 |
+
|
1062 |
+
if result is not None:
|
1063 |
+
return result
|
1064 |
+
|
1065 |
+
fc, F = dmp_primitive(f, u, K)
|
1066 |
+
gc, G = dmp_primitive(g, u, K)
|
1067 |
+
|
1068 |
+
h = dmp_subresultants(F, G, u, K)[-1]
|
1069 |
+
c, _, _ = dmp_rr_prs_gcd(fc, gc, u - 1, K)
|
1070 |
+
|
1071 |
+
if K.is_negative(dmp_ground_LC(h, u, K)):
|
1072 |
+
h = dmp_neg(h, u, K)
|
1073 |
+
|
1074 |
+
_, h = dmp_primitive(h, u, K)
|
1075 |
+
h = dmp_mul_term(h, c, 0, u, K)
|
1076 |
+
|
1077 |
+
cff = dmp_quo(f, h, u, K)
|
1078 |
+
cfg = dmp_quo(g, h, u, K)
|
1079 |
+
|
1080 |
+
return h, cff, cfg
|
1081 |
+
|
1082 |
+
|
1083 |
+
def dmp_ff_prs_gcd(f, g, u, K):
|
1084 |
+
"""
|
1085 |
+
Computes polynomial GCD using subresultants over a field.
|
1086 |
+
|
1087 |
+
Returns ``(h, cff, cfg)`` such that ``a = gcd(f, g)``, ``cff = quo(f, h)``,
|
1088 |
+
and ``cfg = quo(g, h)``.
|
1089 |
+
|
1090 |
+
Examples
|
1091 |
+
========
|
1092 |
+
|
1093 |
+
>>> from sympy.polys import ring, QQ
|
1094 |
+
>>> R, x,y, = ring("x,y", QQ)
|
1095 |
+
|
1096 |
+
>>> f = QQ(1,2)*x**2 + x*y + QQ(1,2)*y**2
|
1097 |
+
>>> g = x**2 + x*y
|
1098 |
+
|
1099 |
+
>>> R.dmp_ff_prs_gcd(f, g)
|
1100 |
+
(x + y, 1/2*x + 1/2*y, x)
|
1101 |
+
|
1102 |
+
"""
|
1103 |
+
if not u:
|
1104 |
+
return dup_ff_prs_gcd(f, g, K)
|
1105 |
+
|
1106 |
+
result = _dmp_ff_trivial_gcd(f, g, u, K)
|
1107 |
+
|
1108 |
+
if result is not None:
|
1109 |
+
return result
|
1110 |
+
|
1111 |
+
fc, F = dmp_primitive(f, u, K)
|
1112 |
+
gc, G = dmp_primitive(g, u, K)
|
1113 |
+
|
1114 |
+
h = dmp_subresultants(F, G, u, K)[-1]
|
1115 |
+
c, _, _ = dmp_ff_prs_gcd(fc, gc, u - 1, K)
|
1116 |
+
|
1117 |
+
_, h = dmp_primitive(h, u, K)
|
1118 |
+
h = dmp_mul_term(h, c, 0, u, K)
|
1119 |
+
h = dmp_ground_monic(h, u, K)
|
1120 |
+
|
1121 |
+
cff = dmp_quo(f, h, u, K)
|
1122 |
+
cfg = dmp_quo(g, h, u, K)
|
1123 |
+
|
1124 |
+
return h, cff, cfg
|
1125 |
+
|
1126 |
+
HEU_GCD_MAX = 6
|
1127 |
+
|
1128 |
+
|
1129 |
+
def _dup_zz_gcd_interpolate(h, x, K):
|
1130 |
+
"""Interpolate polynomial GCD from integer GCD. """
|
1131 |
+
f = []
|
1132 |
+
|
1133 |
+
while h:
|
1134 |
+
g = h % x
|
1135 |
+
|
1136 |
+
if g > x // 2:
|
1137 |
+
g -= x
|
1138 |
+
|
1139 |
+
f.insert(0, g)
|
1140 |
+
h = (h - g) // x
|
1141 |
+
|
1142 |
+
return f
|
1143 |
+
|
1144 |
+
|
1145 |
+
def dup_zz_heu_gcd(f, g, K):
|
1146 |
+
"""
|
1147 |
+
Heuristic polynomial GCD in `Z[x]`.
|
1148 |
+
|
1149 |
+
Given univariate polynomials `f` and `g` in `Z[x]`, returns
|
1150 |
+
their GCD and cofactors, i.e. polynomials ``h``, ``cff`` and ``cfg``
|
1151 |
+
such that::
|
1152 |
+
|
1153 |
+
h = gcd(f, g), cff = quo(f, h) and cfg = quo(g, h)
|
1154 |
+
|
1155 |
+
The algorithm is purely heuristic which means it may fail to compute
|
1156 |
+
the GCD. This will be signaled by raising an exception. In this case
|
1157 |
+
you will need to switch to another GCD method.
|
1158 |
+
|
1159 |
+
The algorithm computes the polynomial GCD by evaluating polynomials
|
1160 |
+
f and g at certain points and computing (fast) integer GCD of those
|
1161 |
+
evaluations. The polynomial GCD is recovered from the integer image
|
1162 |
+
by interpolation. The final step is to verify if the result is the
|
1163 |
+
correct GCD. This gives cofactors as a side effect.
|
1164 |
+
|
1165 |
+
Examples
|
1166 |
+
========
|
1167 |
+
|
1168 |
+
>>> from sympy.polys import ring, ZZ
|
1169 |
+
>>> R, x = ring("x", ZZ)
|
1170 |
+
|
1171 |
+
>>> R.dup_zz_heu_gcd(x**2 - 1, x**2 - 3*x + 2)
|
1172 |
+
(x - 1, x + 1, x - 2)
|
1173 |
+
|
1174 |
+
References
|
1175 |
+
==========
|
1176 |
+
|
1177 |
+
.. [1] [Liao95]_
|
1178 |
+
|
1179 |
+
"""
|
1180 |
+
result = _dup_rr_trivial_gcd(f, g, K)
|
1181 |
+
|
1182 |
+
if result is not None:
|
1183 |
+
return result
|
1184 |
+
|
1185 |
+
df = dup_degree(f)
|
1186 |
+
dg = dup_degree(g)
|
1187 |
+
|
1188 |
+
gcd, f, g = dup_extract(f, g, K)
|
1189 |
+
|
1190 |
+
if df == 0 or dg == 0:
|
1191 |
+
return [gcd], f, g
|
1192 |
+
|
1193 |
+
f_norm = dup_max_norm(f, K)
|
1194 |
+
g_norm = dup_max_norm(g, K)
|
1195 |
+
|
1196 |
+
B = K(2*min(f_norm, g_norm) + 29)
|
1197 |
+
|
1198 |
+
x = max(min(B, 99*K.sqrt(B)),
|
1199 |
+
2*min(f_norm // abs(dup_LC(f, K)),
|
1200 |
+
g_norm // abs(dup_LC(g, K))) + 2)
|
1201 |
+
|
1202 |
+
for i in range(0, HEU_GCD_MAX):
|
1203 |
+
ff = dup_eval(f, x, K)
|
1204 |
+
gg = dup_eval(g, x, K)
|
1205 |
+
|
1206 |
+
if ff and gg:
|
1207 |
+
h = K.gcd(ff, gg)
|
1208 |
+
|
1209 |
+
cff = ff // h
|
1210 |
+
cfg = gg // h
|
1211 |
+
|
1212 |
+
h = _dup_zz_gcd_interpolate(h, x, K)
|
1213 |
+
h = dup_primitive(h, K)[1]
|
1214 |
+
|
1215 |
+
cff_, r = dup_div(f, h, K)
|
1216 |
+
|
1217 |
+
if not r:
|
1218 |
+
cfg_, r = dup_div(g, h, K)
|
1219 |
+
|
1220 |
+
if not r:
|
1221 |
+
h = dup_mul_ground(h, gcd, K)
|
1222 |
+
return h, cff_, cfg_
|
1223 |
+
|
1224 |
+
cff = _dup_zz_gcd_interpolate(cff, x, K)
|
1225 |
+
|
1226 |
+
h, r = dup_div(f, cff, K)
|
1227 |
+
|
1228 |
+
if not r:
|
1229 |
+
cfg_, r = dup_div(g, h, K)
|
1230 |
+
|
1231 |
+
if not r:
|
1232 |
+
h = dup_mul_ground(h, gcd, K)
|
1233 |
+
return h, cff, cfg_
|
1234 |
+
|
1235 |
+
cfg = _dup_zz_gcd_interpolate(cfg, x, K)
|
1236 |
+
|
1237 |
+
h, r = dup_div(g, cfg, K)
|
1238 |
+
|
1239 |
+
if not r:
|
1240 |
+
cff_, r = dup_div(f, h, K)
|
1241 |
+
|
1242 |
+
if not r:
|
1243 |
+
h = dup_mul_ground(h, gcd, K)
|
1244 |
+
return h, cff_, cfg
|
1245 |
+
|
1246 |
+
x = 73794*x * K.sqrt(K.sqrt(x)) // 27011
|
1247 |
+
|
1248 |
+
raise HeuristicGCDFailed('no luck')
|
1249 |
+
|
1250 |
+
|
1251 |
+
def _dmp_zz_gcd_interpolate(h, x, v, K):
|
1252 |
+
"""Interpolate polynomial GCD from integer GCD. """
|
1253 |
+
f = []
|
1254 |
+
|
1255 |
+
while not dmp_zero_p(h, v):
|
1256 |
+
g = dmp_ground_trunc(h, x, v, K)
|
1257 |
+
f.insert(0, g)
|
1258 |
+
|
1259 |
+
h = dmp_sub(h, g, v, K)
|
1260 |
+
h = dmp_quo_ground(h, x, v, K)
|
1261 |
+
|
1262 |
+
if K.is_negative(dmp_ground_LC(f, v + 1, K)):
|
1263 |
+
return dmp_neg(f, v + 1, K)
|
1264 |
+
else:
|
1265 |
+
return f
|
1266 |
+
|
1267 |
+
|
1268 |
+
def dmp_zz_heu_gcd(f, g, u, K):
|
1269 |
+
"""
|
1270 |
+
Heuristic polynomial GCD in `Z[X]`.
|
1271 |
+
|
1272 |
+
Given univariate polynomials `f` and `g` in `Z[X]`, returns
|
1273 |
+
their GCD and cofactors, i.e. polynomials ``h``, ``cff`` and ``cfg``
|
1274 |
+
such that::
|
1275 |
+
|
1276 |
+
h = gcd(f, g), cff = quo(f, h) and cfg = quo(g, h)
|
1277 |
+
|
1278 |
+
The algorithm is purely heuristic which means it may fail to compute
|
1279 |
+
the GCD. This will be signaled by raising an exception. In this case
|
1280 |
+
you will need to switch to another GCD method.
|
1281 |
+
|
1282 |
+
The algorithm computes the polynomial GCD by evaluating polynomials
|
1283 |
+
f and g at certain points and computing (fast) integer GCD of those
|
1284 |
+
evaluations. The polynomial GCD is recovered from the integer image
|
1285 |
+
by interpolation. The evaluation process reduces f and g variable by
|
1286 |
+
variable into a large integer. The final step is to verify if the
|
1287 |
+
interpolated polynomial is the correct GCD. This gives cofactors of
|
1288 |
+
the input polynomials as a side effect.
|
1289 |
+
|
1290 |
+
Examples
|
1291 |
+
========
|
1292 |
+
|
1293 |
+
>>> from sympy.polys import ring, ZZ
|
1294 |
+
>>> R, x,y, = ring("x,y", ZZ)
|
1295 |
+
|
1296 |
+
>>> f = x**2 + 2*x*y + y**2
|
1297 |
+
>>> g = x**2 + x*y
|
1298 |
+
|
1299 |
+
>>> R.dmp_zz_heu_gcd(f, g)
|
1300 |
+
(x + y, x + y, x)
|
1301 |
+
|
1302 |
+
References
|
1303 |
+
==========
|
1304 |
+
|
1305 |
+
.. [1] [Liao95]_
|
1306 |
+
|
1307 |
+
"""
|
1308 |
+
if not u:
|
1309 |
+
return dup_zz_heu_gcd(f, g, K)
|
1310 |
+
|
1311 |
+
result = _dmp_rr_trivial_gcd(f, g, u, K)
|
1312 |
+
|
1313 |
+
if result is not None:
|
1314 |
+
return result
|
1315 |
+
|
1316 |
+
gcd, f, g = dmp_ground_extract(f, g, u, K)
|
1317 |
+
|
1318 |
+
f_norm = dmp_max_norm(f, u, K)
|
1319 |
+
g_norm = dmp_max_norm(g, u, K)
|
1320 |
+
|
1321 |
+
B = K(2*min(f_norm, g_norm) + 29)
|
1322 |
+
|
1323 |
+
x = max(min(B, 99*K.sqrt(B)),
|
1324 |
+
2*min(f_norm // abs(dmp_ground_LC(f, u, K)),
|
1325 |
+
g_norm // abs(dmp_ground_LC(g, u, K))) + 2)
|
1326 |
+
|
1327 |
+
for i in range(0, HEU_GCD_MAX):
|
1328 |
+
ff = dmp_eval(f, x, u, K)
|
1329 |
+
gg = dmp_eval(g, x, u, K)
|
1330 |
+
|
1331 |
+
v = u - 1
|
1332 |
+
|
1333 |
+
if not (dmp_zero_p(ff, v) or dmp_zero_p(gg, v)):
|
1334 |
+
h, cff, cfg = dmp_zz_heu_gcd(ff, gg, v, K)
|
1335 |
+
|
1336 |
+
h = _dmp_zz_gcd_interpolate(h, x, v, K)
|
1337 |
+
h = dmp_ground_primitive(h, u, K)[1]
|
1338 |
+
|
1339 |
+
cff_, r = dmp_div(f, h, u, K)
|
1340 |
+
|
1341 |
+
if dmp_zero_p(r, u):
|
1342 |
+
cfg_, r = dmp_div(g, h, u, K)
|
1343 |
+
|
1344 |
+
if dmp_zero_p(r, u):
|
1345 |
+
h = dmp_mul_ground(h, gcd, u, K)
|
1346 |
+
return h, cff_, cfg_
|
1347 |
+
|
1348 |
+
cff = _dmp_zz_gcd_interpolate(cff, x, v, K)
|
1349 |
+
|
1350 |
+
h, r = dmp_div(f, cff, u, K)
|
1351 |
+
|
1352 |
+
if dmp_zero_p(r, u):
|
1353 |
+
cfg_, r = dmp_div(g, h, u, K)
|
1354 |
+
|
1355 |
+
if dmp_zero_p(r, u):
|
1356 |
+
h = dmp_mul_ground(h, gcd, u, K)
|
1357 |
+
return h, cff, cfg_
|
1358 |
+
|
1359 |
+
cfg = _dmp_zz_gcd_interpolate(cfg, x, v, K)
|
1360 |
+
|
1361 |
+
h, r = dmp_div(g, cfg, u, K)
|
1362 |
+
|
1363 |
+
if dmp_zero_p(r, u):
|
1364 |
+
cff_, r = dmp_div(f, h, u, K)
|
1365 |
+
|
1366 |
+
if dmp_zero_p(r, u):
|
1367 |
+
h = dmp_mul_ground(h, gcd, u, K)
|
1368 |
+
return h, cff_, cfg
|
1369 |
+
|
1370 |
+
x = 73794*x * K.sqrt(K.sqrt(x)) // 27011
|
1371 |
+
|
1372 |
+
raise HeuristicGCDFailed('no luck')
|
1373 |
+
|
1374 |
+
|
1375 |
+
def dup_qq_heu_gcd(f, g, K0):
|
1376 |
+
"""
|
1377 |
+
Heuristic polynomial GCD in `Q[x]`.
|
1378 |
+
|
1379 |
+
Returns ``(h, cff, cfg)`` such that ``a = gcd(f, g)``,
|
1380 |
+
``cff = quo(f, h)``, and ``cfg = quo(g, h)``.
|
1381 |
+
|
1382 |
+
Examples
|
1383 |
+
========
|
1384 |
+
|
1385 |
+
>>> from sympy.polys import ring, QQ
|
1386 |
+
>>> R, x = ring("x", QQ)
|
1387 |
+
|
1388 |
+
>>> f = QQ(1,2)*x**2 + QQ(7,4)*x + QQ(3,2)
|
1389 |
+
>>> g = QQ(1,2)*x**2 + x
|
1390 |
+
|
1391 |
+
>>> R.dup_qq_heu_gcd(f, g)
|
1392 |
+
(x + 2, 1/2*x + 3/4, 1/2*x)
|
1393 |
+
|
1394 |
+
"""
|
1395 |
+
result = _dup_ff_trivial_gcd(f, g, K0)
|
1396 |
+
|
1397 |
+
if result is not None:
|
1398 |
+
return result
|
1399 |
+
|
1400 |
+
K1 = K0.get_ring()
|
1401 |
+
|
1402 |
+
cf, f = dup_clear_denoms(f, K0, K1)
|
1403 |
+
cg, g = dup_clear_denoms(g, K0, K1)
|
1404 |
+
|
1405 |
+
f = dup_convert(f, K0, K1)
|
1406 |
+
g = dup_convert(g, K0, K1)
|
1407 |
+
|
1408 |
+
h, cff, cfg = dup_zz_heu_gcd(f, g, K1)
|
1409 |
+
|
1410 |
+
h = dup_convert(h, K1, K0)
|
1411 |
+
|
1412 |
+
c = dup_LC(h, K0)
|
1413 |
+
h = dup_monic(h, K0)
|
1414 |
+
|
1415 |
+
cff = dup_convert(cff, K1, K0)
|
1416 |
+
cfg = dup_convert(cfg, K1, K0)
|
1417 |
+
|
1418 |
+
cff = dup_mul_ground(cff, K0.quo(c, cf), K0)
|
1419 |
+
cfg = dup_mul_ground(cfg, K0.quo(c, cg), K0)
|
1420 |
+
|
1421 |
+
return h, cff, cfg
|
1422 |
+
|
1423 |
+
|
1424 |
+
def dmp_qq_heu_gcd(f, g, u, K0):
|
1425 |
+
"""
|
1426 |
+
Heuristic polynomial GCD in `Q[X]`.
|
1427 |
+
|
1428 |
+
Returns ``(h, cff, cfg)`` such that ``a = gcd(f, g)``,
|
1429 |
+
``cff = quo(f, h)``, and ``cfg = quo(g, h)``.
|
1430 |
+
|
1431 |
+
Examples
|
1432 |
+
========
|
1433 |
+
|
1434 |
+
>>> from sympy.polys import ring, QQ
|
1435 |
+
>>> R, x,y, = ring("x,y", QQ)
|
1436 |
+
|
1437 |
+
>>> f = QQ(1,4)*x**2 + x*y + y**2
|
1438 |
+
>>> g = QQ(1,2)*x**2 + x*y
|
1439 |
+
|
1440 |
+
>>> R.dmp_qq_heu_gcd(f, g)
|
1441 |
+
(x + 2*y, 1/4*x + 1/2*y, 1/2*x)
|
1442 |
+
|
1443 |
+
"""
|
1444 |
+
result = _dmp_ff_trivial_gcd(f, g, u, K0)
|
1445 |
+
|
1446 |
+
if result is not None:
|
1447 |
+
return result
|
1448 |
+
|
1449 |
+
K1 = K0.get_ring()
|
1450 |
+
|
1451 |
+
cf, f = dmp_clear_denoms(f, u, K0, K1)
|
1452 |
+
cg, g = dmp_clear_denoms(g, u, K0, K1)
|
1453 |
+
|
1454 |
+
f = dmp_convert(f, u, K0, K1)
|
1455 |
+
g = dmp_convert(g, u, K0, K1)
|
1456 |
+
|
1457 |
+
h, cff, cfg = dmp_zz_heu_gcd(f, g, u, K1)
|
1458 |
+
|
1459 |
+
h = dmp_convert(h, u, K1, K0)
|
1460 |
+
|
1461 |
+
c = dmp_ground_LC(h, u, K0)
|
1462 |
+
h = dmp_ground_monic(h, u, K0)
|
1463 |
+
|
1464 |
+
cff = dmp_convert(cff, u, K1, K0)
|
1465 |
+
cfg = dmp_convert(cfg, u, K1, K0)
|
1466 |
+
|
1467 |
+
cff = dmp_mul_ground(cff, K0.quo(c, cf), u, K0)
|
1468 |
+
cfg = dmp_mul_ground(cfg, K0.quo(c, cg), u, K0)
|
1469 |
+
|
1470 |
+
return h, cff, cfg
|
1471 |
+
|
1472 |
+
|
1473 |
+
def dup_inner_gcd(f, g, K):
|
1474 |
+
"""
|
1475 |
+
Computes polynomial GCD and cofactors of `f` and `g` in `K[x]`.
|
1476 |
+
|
1477 |
+
Returns ``(h, cff, cfg)`` such that ``a = gcd(f, g)``,
|
1478 |
+
``cff = quo(f, h)``, and ``cfg = quo(g, h)``.
|
1479 |
+
|
1480 |
+
Examples
|
1481 |
+
========
|
1482 |
+
|
1483 |
+
>>> from sympy.polys import ring, ZZ
|
1484 |
+
>>> R, x = ring("x", ZZ)
|
1485 |
+
|
1486 |
+
>>> R.dup_inner_gcd(x**2 - 1, x**2 - 3*x + 2)
|
1487 |
+
(x - 1, x + 1, x - 2)
|
1488 |
+
|
1489 |
+
"""
|
1490 |
+
if not K.is_Exact:
|
1491 |
+
try:
|
1492 |
+
exact = K.get_exact()
|
1493 |
+
except DomainError:
|
1494 |
+
return [K.one], f, g
|
1495 |
+
|
1496 |
+
f = dup_convert(f, K, exact)
|
1497 |
+
g = dup_convert(g, K, exact)
|
1498 |
+
|
1499 |
+
h, cff, cfg = dup_inner_gcd(f, g, exact)
|
1500 |
+
|
1501 |
+
h = dup_convert(h, exact, K)
|
1502 |
+
cff = dup_convert(cff, exact, K)
|
1503 |
+
cfg = dup_convert(cfg, exact, K)
|
1504 |
+
|
1505 |
+
return h, cff, cfg
|
1506 |
+
elif K.is_Field:
|
1507 |
+
if K.is_QQ and query('USE_HEU_GCD'):
|
1508 |
+
try:
|
1509 |
+
return dup_qq_heu_gcd(f, g, K)
|
1510 |
+
except HeuristicGCDFailed:
|
1511 |
+
pass
|
1512 |
+
|
1513 |
+
return dup_ff_prs_gcd(f, g, K)
|
1514 |
+
else:
|
1515 |
+
if K.is_ZZ and query('USE_HEU_GCD'):
|
1516 |
+
try:
|
1517 |
+
return dup_zz_heu_gcd(f, g, K)
|
1518 |
+
except HeuristicGCDFailed:
|
1519 |
+
pass
|
1520 |
+
|
1521 |
+
return dup_rr_prs_gcd(f, g, K)
|
1522 |
+
|
1523 |
+
|
1524 |
+
def _dmp_inner_gcd(f, g, u, K):
|
1525 |
+
"""Helper function for `dmp_inner_gcd()`. """
|
1526 |
+
if not K.is_Exact:
|
1527 |
+
try:
|
1528 |
+
exact = K.get_exact()
|
1529 |
+
except DomainError:
|
1530 |
+
return dmp_one(u, K), f, g
|
1531 |
+
|
1532 |
+
f = dmp_convert(f, u, K, exact)
|
1533 |
+
g = dmp_convert(g, u, K, exact)
|
1534 |
+
|
1535 |
+
h, cff, cfg = _dmp_inner_gcd(f, g, u, exact)
|
1536 |
+
|
1537 |
+
h = dmp_convert(h, u, exact, K)
|
1538 |
+
cff = dmp_convert(cff, u, exact, K)
|
1539 |
+
cfg = dmp_convert(cfg, u, exact, K)
|
1540 |
+
|
1541 |
+
return h, cff, cfg
|
1542 |
+
elif K.is_Field:
|
1543 |
+
if K.is_QQ and query('USE_HEU_GCD'):
|
1544 |
+
try:
|
1545 |
+
return dmp_qq_heu_gcd(f, g, u, K)
|
1546 |
+
except HeuristicGCDFailed:
|
1547 |
+
pass
|
1548 |
+
|
1549 |
+
return dmp_ff_prs_gcd(f, g, u, K)
|
1550 |
+
else:
|
1551 |
+
if K.is_ZZ and query('USE_HEU_GCD'):
|
1552 |
+
try:
|
1553 |
+
return dmp_zz_heu_gcd(f, g, u, K)
|
1554 |
+
except HeuristicGCDFailed:
|
1555 |
+
pass
|
1556 |
+
|
1557 |
+
return dmp_rr_prs_gcd(f, g, u, K)
|
1558 |
+
|
1559 |
+
|
1560 |
+
def dmp_inner_gcd(f, g, u, K):
|
1561 |
+
"""
|
1562 |
+
Computes polynomial GCD and cofactors of `f` and `g` in `K[X]`.
|
1563 |
+
|
1564 |
+
Returns ``(h, cff, cfg)`` such that ``a = gcd(f, g)``,
|
1565 |
+
``cff = quo(f, h)``, and ``cfg = quo(g, h)``.
|
1566 |
+
|
1567 |
+
Examples
|
1568 |
+
========
|
1569 |
+
|
1570 |
+
>>> from sympy.polys import ring, ZZ
|
1571 |
+
>>> R, x,y, = ring("x,y", ZZ)
|
1572 |
+
|
1573 |
+
>>> f = x**2 + 2*x*y + y**2
|
1574 |
+
>>> g = x**2 + x*y
|
1575 |
+
|
1576 |
+
>>> R.dmp_inner_gcd(f, g)
|
1577 |
+
(x + y, x + y, x)
|
1578 |
+
|
1579 |
+
"""
|
1580 |
+
if not u:
|
1581 |
+
return dup_inner_gcd(f, g, K)
|
1582 |
+
|
1583 |
+
J, (f, g) = dmp_multi_deflate((f, g), u, K)
|
1584 |
+
h, cff, cfg = _dmp_inner_gcd(f, g, u, K)
|
1585 |
+
|
1586 |
+
return (dmp_inflate(h, J, u, K),
|
1587 |
+
dmp_inflate(cff, J, u, K),
|
1588 |
+
dmp_inflate(cfg, J, u, K))
|
1589 |
+
|
1590 |
+
|
1591 |
+
def dup_gcd(f, g, K):
|
1592 |
+
"""
|
1593 |
+
Computes polynomial GCD of `f` and `g` in `K[x]`.
|
1594 |
+
|
1595 |
+
Examples
|
1596 |
+
========
|
1597 |
+
|
1598 |
+
>>> from sympy.polys import ring, ZZ
|
1599 |
+
>>> R, x = ring("x", ZZ)
|
1600 |
+
|
1601 |
+
>>> R.dup_gcd(x**2 - 1, x**2 - 3*x + 2)
|
1602 |
+
x - 1
|
1603 |
+
|
1604 |
+
"""
|
1605 |
+
return dup_inner_gcd(f, g, K)[0]
|
1606 |
+
|
1607 |
+
|
1608 |
+
def dmp_gcd(f, g, u, K):
|
1609 |
+
"""
|
1610 |
+
Computes polynomial GCD of `f` and `g` in `K[X]`.
|
1611 |
+
|
1612 |
+
Examples
|
1613 |
+
========
|
1614 |
+
|
1615 |
+
>>> from sympy.polys import ring, ZZ
|
1616 |
+
>>> R, x,y, = ring("x,y", ZZ)
|
1617 |
+
|
1618 |
+
>>> f = x**2 + 2*x*y + y**2
|
1619 |
+
>>> g = x**2 + x*y
|
1620 |
+
|
1621 |
+
>>> R.dmp_gcd(f, g)
|
1622 |
+
x + y
|
1623 |
+
|
1624 |
+
"""
|
1625 |
+
return dmp_inner_gcd(f, g, u, K)[0]
|
1626 |
+
|
1627 |
+
|
1628 |
+
def dup_rr_lcm(f, g, K):
|
1629 |
+
"""
|
1630 |
+
Computes polynomial LCM over a ring in `K[x]`.
|
1631 |
+
|
1632 |
+
Examples
|
1633 |
+
========
|
1634 |
+
|
1635 |
+
>>> from sympy.polys import ring, ZZ
|
1636 |
+
>>> R, x = ring("x", ZZ)
|
1637 |
+
|
1638 |
+
>>> R.dup_rr_lcm(x**2 - 1, x**2 - 3*x + 2)
|
1639 |
+
x**3 - 2*x**2 - x + 2
|
1640 |
+
|
1641 |
+
"""
|
1642 |
+
fc, f = dup_primitive(f, K)
|
1643 |
+
gc, g = dup_primitive(g, K)
|
1644 |
+
|
1645 |
+
c = K.lcm(fc, gc)
|
1646 |
+
|
1647 |
+
h = dup_quo(dup_mul(f, g, K),
|
1648 |
+
dup_gcd(f, g, K), K)
|
1649 |
+
|
1650 |
+
return dup_mul_ground(h, c, K)
|
1651 |
+
|
1652 |
+
|
1653 |
+
def dup_ff_lcm(f, g, K):
|
1654 |
+
"""
|
1655 |
+
Computes polynomial LCM over a field in `K[x]`.
|
1656 |
+
|
1657 |
+
Examples
|
1658 |
+
========
|
1659 |
+
|
1660 |
+
>>> from sympy.polys import ring, QQ
|
1661 |
+
>>> R, x = ring("x", QQ)
|
1662 |
+
|
1663 |
+
>>> f = QQ(1,2)*x**2 + QQ(7,4)*x + QQ(3,2)
|
1664 |
+
>>> g = QQ(1,2)*x**2 + x
|
1665 |
+
|
1666 |
+
>>> R.dup_ff_lcm(f, g)
|
1667 |
+
x**3 + 7/2*x**2 + 3*x
|
1668 |
+
|
1669 |
+
"""
|
1670 |
+
h = dup_quo(dup_mul(f, g, K),
|
1671 |
+
dup_gcd(f, g, K), K)
|
1672 |
+
|
1673 |
+
return dup_monic(h, K)
|
1674 |
+
|
1675 |
+
|
1676 |
+
def dup_lcm(f, g, K):
|
1677 |
+
"""
|
1678 |
+
Computes polynomial LCM of `f` and `g` in `K[x]`.
|
1679 |
+
|
1680 |
+
Examples
|
1681 |
+
========
|
1682 |
+
|
1683 |
+
>>> from sympy.polys import ring, ZZ
|
1684 |
+
>>> R, x = ring("x", ZZ)
|
1685 |
+
|
1686 |
+
>>> R.dup_lcm(x**2 - 1, x**2 - 3*x + 2)
|
1687 |
+
x**3 - 2*x**2 - x + 2
|
1688 |
+
|
1689 |
+
"""
|
1690 |
+
if K.is_Field:
|
1691 |
+
return dup_ff_lcm(f, g, K)
|
1692 |
+
else:
|
1693 |
+
return dup_rr_lcm(f, g, K)
|
1694 |
+
|
1695 |
+
|
1696 |
+
def dmp_rr_lcm(f, g, u, K):
|
1697 |
+
"""
|
1698 |
+
Computes polynomial LCM over a ring in `K[X]`.
|
1699 |
+
|
1700 |
+
Examples
|
1701 |
+
========
|
1702 |
+
|
1703 |
+
>>> from sympy.polys import ring, ZZ
|
1704 |
+
>>> R, x,y, = ring("x,y", ZZ)
|
1705 |
+
|
1706 |
+
>>> f = x**2 + 2*x*y + y**2
|
1707 |
+
>>> g = x**2 + x*y
|
1708 |
+
|
1709 |
+
>>> R.dmp_rr_lcm(f, g)
|
1710 |
+
x**3 + 2*x**2*y + x*y**2
|
1711 |
+
|
1712 |
+
"""
|
1713 |
+
fc, f = dmp_ground_primitive(f, u, K)
|
1714 |
+
gc, g = dmp_ground_primitive(g, u, K)
|
1715 |
+
|
1716 |
+
c = K.lcm(fc, gc)
|
1717 |
+
|
1718 |
+
h = dmp_quo(dmp_mul(f, g, u, K),
|
1719 |
+
dmp_gcd(f, g, u, K), u, K)
|
1720 |
+
|
1721 |
+
return dmp_mul_ground(h, c, u, K)
|
1722 |
+
|
1723 |
+
|
1724 |
+
def dmp_ff_lcm(f, g, u, K):
|
1725 |
+
"""
|
1726 |
+
Computes polynomial LCM over a field in `K[X]`.
|
1727 |
+
|
1728 |
+
Examples
|
1729 |
+
========
|
1730 |
+
|
1731 |
+
>>> from sympy.polys import ring, QQ
|
1732 |
+
>>> R, x,y, = ring("x,y", QQ)
|
1733 |
+
|
1734 |
+
>>> f = QQ(1,4)*x**2 + x*y + y**2
|
1735 |
+
>>> g = QQ(1,2)*x**2 + x*y
|
1736 |
+
|
1737 |
+
>>> R.dmp_ff_lcm(f, g)
|
1738 |
+
x**3 + 4*x**2*y + 4*x*y**2
|
1739 |
+
|
1740 |
+
"""
|
1741 |
+
h = dmp_quo(dmp_mul(f, g, u, K),
|
1742 |
+
dmp_gcd(f, g, u, K), u, K)
|
1743 |
+
|
1744 |
+
return dmp_ground_monic(h, u, K)
|
1745 |
+
|
1746 |
+
|
1747 |
+
def dmp_lcm(f, g, u, K):
|
1748 |
+
"""
|
1749 |
+
Computes polynomial LCM of `f` and `g` in `K[X]`.
|
1750 |
+
|
1751 |
+
Examples
|
1752 |
+
========
|
1753 |
+
|
1754 |
+
>>> from sympy.polys import ring, ZZ
|
1755 |
+
>>> R, x,y, = ring("x,y", ZZ)
|
1756 |
+
|
1757 |
+
>>> f = x**2 + 2*x*y + y**2
|
1758 |
+
>>> g = x**2 + x*y
|
1759 |
+
|
1760 |
+
>>> R.dmp_lcm(f, g)
|
1761 |
+
x**3 + 2*x**2*y + x*y**2
|
1762 |
+
|
1763 |
+
"""
|
1764 |
+
if not u:
|
1765 |
+
return dup_lcm(f, g, K)
|
1766 |
+
|
1767 |
+
if K.is_Field:
|
1768 |
+
return dmp_ff_lcm(f, g, u, K)
|
1769 |
+
else:
|
1770 |
+
return dmp_rr_lcm(f, g, u, K)
|
1771 |
+
|
1772 |
+
|
1773 |
+
def dmp_content(f, u, K):
|
1774 |
+
"""
|
1775 |
+
Returns GCD of multivariate coefficients.
|
1776 |
+
|
1777 |
+
Examples
|
1778 |
+
========
|
1779 |
+
|
1780 |
+
>>> from sympy.polys import ring, ZZ
|
1781 |
+
>>> R, x,y, = ring("x,y", ZZ)
|
1782 |
+
|
1783 |
+
>>> R.dmp_content(2*x*y + 6*x + 4*y + 12)
|
1784 |
+
2*y + 6
|
1785 |
+
|
1786 |
+
"""
|
1787 |
+
cont, v = dmp_LC(f, K), u - 1
|
1788 |
+
|
1789 |
+
if dmp_zero_p(f, u):
|
1790 |
+
return cont
|
1791 |
+
|
1792 |
+
for c in f[1:]:
|
1793 |
+
cont = dmp_gcd(cont, c, v, K)
|
1794 |
+
|
1795 |
+
if dmp_one_p(cont, v, K):
|
1796 |
+
break
|
1797 |
+
|
1798 |
+
if K.is_negative(dmp_ground_LC(cont, v, K)):
|
1799 |
+
return dmp_neg(cont, v, K)
|
1800 |
+
else:
|
1801 |
+
return cont
|
1802 |
+
|
1803 |
+
|
1804 |
+
def dmp_primitive(f, u, K):
|
1805 |
+
"""
|
1806 |
+
Returns multivariate content and a primitive polynomial.
|
1807 |
+
|
1808 |
+
Examples
|
1809 |
+
========
|
1810 |
+
|
1811 |
+
>>> from sympy.polys import ring, ZZ
|
1812 |
+
>>> R, x,y, = ring("x,y", ZZ)
|
1813 |
+
|
1814 |
+
>>> R.dmp_primitive(2*x*y + 6*x + 4*y + 12)
|
1815 |
+
(2*y + 6, x + 2)
|
1816 |
+
|
1817 |
+
"""
|
1818 |
+
cont, v = dmp_content(f, u, K), u - 1
|
1819 |
+
|
1820 |
+
if dmp_zero_p(f, u) or dmp_one_p(cont, v, K):
|
1821 |
+
return cont, f
|
1822 |
+
else:
|
1823 |
+
return cont, [ dmp_quo(c, cont, v, K) for c in f ]
|
1824 |
+
|
1825 |
+
|
1826 |
+
def dup_cancel(f, g, K, include=True):
|
1827 |
+
"""
|
1828 |
+
Cancel common factors in a rational function `f/g`.
|
1829 |
+
|
1830 |
+
Examples
|
1831 |
+
========
|
1832 |
+
|
1833 |
+
>>> from sympy.polys import ring, ZZ
|
1834 |
+
>>> R, x = ring("x", ZZ)
|
1835 |
+
|
1836 |
+
>>> R.dup_cancel(2*x**2 - 2, x**2 - 2*x + 1)
|
1837 |
+
(2*x + 2, x - 1)
|
1838 |
+
|
1839 |
+
"""
|
1840 |
+
return dmp_cancel(f, g, 0, K, include=include)
|
1841 |
+
|
1842 |
+
|
1843 |
+
def dmp_cancel(f, g, u, K, include=True):
|
1844 |
+
"""
|
1845 |
+
Cancel common factors in a rational function `f/g`.
|
1846 |
+
|
1847 |
+
Examples
|
1848 |
+
========
|
1849 |
+
|
1850 |
+
>>> from sympy.polys import ring, ZZ
|
1851 |
+
>>> R, x,y = ring("x,y", ZZ)
|
1852 |
+
|
1853 |
+
>>> R.dmp_cancel(2*x**2 - 2, x**2 - 2*x + 1)
|
1854 |
+
(2*x + 2, x - 1)
|
1855 |
+
|
1856 |
+
"""
|
1857 |
+
K0 = None
|
1858 |
+
|
1859 |
+
if K.is_Field and K.has_assoc_Ring:
|
1860 |
+
K0, K = K, K.get_ring()
|
1861 |
+
|
1862 |
+
cq, f = dmp_clear_denoms(f, u, K0, K, convert=True)
|
1863 |
+
cp, g = dmp_clear_denoms(g, u, K0, K, convert=True)
|
1864 |
+
else:
|
1865 |
+
cp, cq = K.one, K.one
|
1866 |
+
|
1867 |
+
_, p, q = dmp_inner_gcd(f, g, u, K)
|
1868 |
+
|
1869 |
+
if K0 is not None:
|
1870 |
+
_, cp, cq = K.cofactors(cp, cq)
|
1871 |
+
|
1872 |
+
p = dmp_convert(p, u, K, K0)
|
1873 |
+
q = dmp_convert(q, u, K, K0)
|
1874 |
+
|
1875 |
+
K = K0
|
1876 |
+
|
1877 |
+
p_neg = K.is_negative(dmp_ground_LC(p, u, K))
|
1878 |
+
q_neg = K.is_negative(dmp_ground_LC(q, u, K))
|
1879 |
+
|
1880 |
+
if p_neg and q_neg:
|
1881 |
+
p, q = dmp_neg(p, u, K), dmp_neg(q, u, K)
|
1882 |
+
elif p_neg:
|
1883 |
+
cp, p = -cp, dmp_neg(p, u, K)
|
1884 |
+
elif q_neg:
|
1885 |
+
cp, q = -cp, dmp_neg(q, u, K)
|
1886 |
+
|
1887 |
+
if not include:
|
1888 |
+
return cp, cq, p, q
|
1889 |
+
|
1890 |
+
p = dmp_mul_ground(p, cp, u, K)
|
1891 |
+
q = dmp_mul_ground(q, cq, u, K)
|
1892 |
+
|
1893 |
+
return p, q
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/factortools.py
ADDED
@@ -0,0 +1,1502 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Polynomial factorization routines in characteristic zero. """
|
2 |
+
|
3 |
+
from sympy.core.random import _randint
|
4 |
+
|
5 |
+
from sympy.polys.galoistools import (
|
6 |
+
gf_from_int_poly, gf_to_int_poly,
|
7 |
+
gf_lshift, gf_add_mul, gf_mul,
|
8 |
+
gf_div, gf_rem,
|
9 |
+
gf_gcdex,
|
10 |
+
gf_sqf_p,
|
11 |
+
gf_factor_sqf, gf_factor)
|
12 |
+
|
13 |
+
from sympy.polys.densebasic import (
|
14 |
+
dup_LC, dmp_LC, dmp_ground_LC,
|
15 |
+
dup_TC,
|
16 |
+
dup_convert, dmp_convert,
|
17 |
+
dup_degree, dmp_degree,
|
18 |
+
dmp_degree_in, dmp_degree_list,
|
19 |
+
dmp_from_dict,
|
20 |
+
dmp_zero_p,
|
21 |
+
dmp_one,
|
22 |
+
dmp_nest, dmp_raise,
|
23 |
+
dup_strip,
|
24 |
+
dmp_ground,
|
25 |
+
dup_inflate,
|
26 |
+
dmp_exclude, dmp_include,
|
27 |
+
dmp_inject, dmp_eject,
|
28 |
+
dup_terms_gcd, dmp_terms_gcd)
|
29 |
+
|
30 |
+
from sympy.polys.densearith import (
|
31 |
+
dup_neg, dmp_neg,
|
32 |
+
dup_add, dmp_add,
|
33 |
+
dup_sub, dmp_sub,
|
34 |
+
dup_mul, dmp_mul,
|
35 |
+
dup_sqr,
|
36 |
+
dmp_pow,
|
37 |
+
dup_div, dmp_div,
|
38 |
+
dup_quo, dmp_quo,
|
39 |
+
dmp_expand,
|
40 |
+
dmp_add_mul,
|
41 |
+
dup_sub_mul, dmp_sub_mul,
|
42 |
+
dup_lshift,
|
43 |
+
dup_max_norm, dmp_max_norm,
|
44 |
+
dup_l1_norm,
|
45 |
+
dup_mul_ground, dmp_mul_ground,
|
46 |
+
dup_quo_ground, dmp_quo_ground)
|
47 |
+
|
48 |
+
from sympy.polys.densetools import (
|
49 |
+
dup_clear_denoms, dmp_clear_denoms,
|
50 |
+
dup_trunc, dmp_ground_trunc,
|
51 |
+
dup_content,
|
52 |
+
dup_monic, dmp_ground_monic,
|
53 |
+
dup_primitive, dmp_ground_primitive,
|
54 |
+
dmp_eval_tail,
|
55 |
+
dmp_eval_in, dmp_diff_eval_in,
|
56 |
+
dmp_compose,
|
57 |
+
dup_shift, dup_mirror)
|
58 |
+
|
59 |
+
from sympy.polys.euclidtools import (
|
60 |
+
dmp_primitive,
|
61 |
+
dup_inner_gcd, dmp_inner_gcd)
|
62 |
+
|
63 |
+
from sympy.polys.sqfreetools import (
|
64 |
+
dup_sqf_p,
|
65 |
+
dup_sqf_norm, dmp_sqf_norm,
|
66 |
+
dup_sqf_part, dmp_sqf_part)
|
67 |
+
|
68 |
+
from sympy.polys.polyutils import _sort_factors
|
69 |
+
from sympy.polys.polyconfig import query
|
70 |
+
|
71 |
+
from sympy.polys.polyerrors import (
|
72 |
+
ExtraneousFactors, DomainError, CoercionFailed, EvaluationFailed)
|
73 |
+
|
74 |
+
from sympy.utilities import subsets
|
75 |
+
|
76 |
+
from math import ceil as _ceil, log as _log
|
77 |
+
|
78 |
+
|
79 |
+
def dup_trial_division(f, factors, K):
|
80 |
+
"""
|
81 |
+
Determine multiplicities of factors for a univariate polynomial
|
82 |
+
using trial division.
|
83 |
+
"""
|
84 |
+
result = []
|
85 |
+
|
86 |
+
for factor in factors:
|
87 |
+
k = 0
|
88 |
+
|
89 |
+
while True:
|
90 |
+
q, r = dup_div(f, factor, K)
|
91 |
+
|
92 |
+
if not r:
|
93 |
+
f, k = q, k + 1
|
94 |
+
else:
|
95 |
+
break
|
96 |
+
|
97 |
+
result.append((factor, k))
|
98 |
+
|
99 |
+
return _sort_factors(result)
|
100 |
+
|
101 |
+
|
102 |
+
def dmp_trial_division(f, factors, u, K):
|
103 |
+
"""
|
104 |
+
Determine multiplicities of factors for a multivariate polynomial
|
105 |
+
using trial division.
|
106 |
+
"""
|
107 |
+
result = []
|
108 |
+
|
109 |
+
for factor in factors:
|
110 |
+
k = 0
|
111 |
+
|
112 |
+
while True:
|
113 |
+
q, r = dmp_div(f, factor, u, K)
|
114 |
+
|
115 |
+
if dmp_zero_p(r, u):
|
116 |
+
f, k = q, k + 1
|
117 |
+
else:
|
118 |
+
break
|
119 |
+
|
120 |
+
result.append((factor, k))
|
121 |
+
|
122 |
+
return _sort_factors(result)
|
123 |
+
|
124 |
+
|
125 |
+
def dup_zz_mignotte_bound(f, K):
|
126 |
+
"""
|
127 |
+
The Knuth-Cohen variant of Mignotte bound for
|
128 |
+
univariate polynomials in `K[x]`.
|
129 |
+
|
130 |
+
Examples
|
131 |
+
========
|
132 |
+
|
133 |
+
>>> from sympy.polys import ring, ZZ
|
134 |
+
>>> R, x = ring("x", ZZ)
|
135 |
+
|
136 |
+
>>> f = x**3 + 14*x**2 + 56*x + 64
|
137 |
+
>>> R.dup_zz_mignotte_bound(f)
|
138 |
+
152
|
139 |
+
|
140 |
+
By checking `factor(f)` we can see that max coeff is 8
|
141 |
+
|
142 |
+
Also consider a case that `f` is irreducible for example `f = 2*x**2 + 3*x + 4`
|
143 |
+
To avoid a bug for these cases, we return the bound plus the max coefficient of `f`
|
144 |
+
|
145 |
+
>>> f = 2*x**2 + 3*x + 4
|
146 |
+
>>> R.dup_zz_mignotte_bound(f)
|
147 |
+
6
|
148 |
+
|
149 |
+
Lastly,To see the difference between the new and the old Mignotte bound
|
150 |
+
consider the irreducible polynomial::
|
151 |
+
|
152 |
+
>>> f = 87*x**7 + 4*x**6 + 80*x**5 + 17*x**4 + 9*x**3 + 12*x**2 + 49*x + 26
|
153 |
+
>>> R.dup_zz_mignotte_bound(f)
|
154 |
+
744
|
155 |
+
|
156 |
+
The new Mignotte bound is 744 whereas the old one (SymPy 1.5.1) is 1937664.
|
157 |
+
|
158 |
+
|
159 |
+
References
|
160 |
+
==========
|
161 |
+
|
162 |
+
..[1] [Abbott2013]_
|
163 |
+
|
164 |
+
"""
|
165 |
+
from sympy.functions.combinatorial.factorials import binomial
|
166 |
+
d = dup_degree(f)
|
167 |
+
delta = _ceil(d / 2)
|
168 |
+
delta2 = _ceil(delta / 2)
|
169 |
+
|
170 |
+
# euclidean-norm
|
171 |
+
eucl_norm = K.sqrt( sum( [cf**2 for cf in f] ) )
|
172 |
+
|
173 |
+
# biggest values of binomial coefficients (p. 538 of reference)
|
174 |
+
t1 = binomial(delta - 1, delta2)
|
175 |
+
t2 = binomial(delta - 1, delta2 - 1)
|
176 |
+
|
177 |
+
lc = K.abs(dup_LC(f, K)) # leading coefficient
|
178 |
+
bound = t1 * eucl_norm + t2 * lc # (p. 538 of reference)
|
179 |
+
bound += dup_max_norm(f, K) # add max coeff for irreducible polys
|
180 |
+
bound = _ceil(bound / 2) * 2 # round up to even integer
|
181 |
+
|
182 |
+
return bound
|
183 |
+
|
184 |
+
def dmp_zz_mignotte_bound(f, u, K):
|
185 |
+
"""Mignotte bound for multivariate polynomials in `K[X]`. """
|
186 |
+
a = dmp_max_norm(f, u, K)
|
187 |
+
b = abs(dmp_ground_LC(f, u, K))
|
188 |
+
n = sum(dmp_degree_list(f, u))
|
189 |
+
|
190 |
+
return K.sqrt(K(n + 1))*2**n*a*b
|
191 |
+
|
192 |
+
|
193 |
+
def dup_zz_hensel_step(m, f, g, h, s, t, K):
|
194 |
+
"""
|
195 |
+
One step in Hensel lifting in `Z[x]`.
|
196 |
+
|
197 |
+
Given positive integer `m` and `Z[x]` polynomials `f`, `g`, `h`, `s`
|
198 |
+
and `t` such that::
|
199 |
+
|
200 |
+
f = g*h (mod m)
|
201 |
+
s*g + t*h = 1 (mod m)
|
202 |
+
|
203 |
+
lc(f) is not a zero divisor (mod m)
|
204 |
+
lc(h) = 1
|
205 |
+
|
206 |
+
deg(f) = deg(g) + deg(h)
|
207 |
+
deg(s) < deg(h)
|
208 |
+
deg(t) < deg(g)
|
209 |
+
|
210 |
+
returns polynomials `G`, `H`, `S` and `T`, such that::
|
211 |
+
|
212 |
+
f = G*H (mod m**2)
|
213 |
+
S*G + T*H = 1 (mod m**2)
|
214 |
+
|
215 |
+
References
|
216 |
+
==========
|
217 |
+
|
218 |
+
.. [1] [Gathen99]_
|
219 |
+
|
220 |
+
"""
|
221 |
+
M = m**2
|
222 |
+
|
223 |
+
e = dup_sub_mul(f, g, h, K)
|
224 |
+
e = dup_trunc(e, M, K)
|
225 |
+
|
226 |
+
q, r = dup_div(dup_mul(s, e, K), h, K)
|
227 |
+
|
228 |
+
q = dup_trunc(q, M, K)
|
229 |
+
r = dup_trunc(r, M, K)
|
230 |
+
|
231 |
+
u = dup_add(dup_mul(t, e, K), dup_mul(q, g, K), K)
|
232 |
+
G = dup_trunc(dup_add(g, u, K), M, K)
|
233 |
+
H = dup_trunc(dup_add(h, r, K), M, K)
|
234 |
+
|
235 |
+
u = dup_add(dup_mul(s, G, K), dup_mul(t, H, K), K)
|
236 |
+
b = dup_trunc(dup_sub(u, [K.one], K), M, K)
|
237 |
+
|
238 |
+
c, d = dup_div(dup_mul(s, b, K), H, K)
|
239 |
+
|
240 |
+
c = dup_trunc(c, M, K)
|
241 |
+
d = dup_trunc(d, M, K)
|
242 |
+
|
243 |
+
u = dup_add(dup_mul(t, b, K), dup_mul(c, G, K), K)
|
244 |
+
S = dup_trunc(dup_sub(s, d, K), M, K)
|
245 |
+
T = dup_trunc(dup_sub(t, u, K), M, K)
|
246 |
+
|
247 |
+
return G, H, S, T
|
248 |
+
|
249 |
+
|
250 |
+
def dup_zz_hensel_lift(p, f, f_list, l, K):
|
251 |
+
r"""
|
252 |
+
Multifactor Hensel lifting in `Z[x]`.
|
253 |
+
|
254 |
+
Given a prime `p`, polynomial `f` over `Z[x]` such that `lc(f)`
|
255 |
+
is a unit modulo `p`, monic pair-wise coprime polynomials `f_i`
|
256 |
+
over `Z[x]` satisfying::
|
257 |
+
|
258 |
+
f = lc(f) f_1 ... f_r (mod p)
|
259 |
+
|
260 |
+
and a positive integer `l`, returns a list of monic polynomials
|
261 |
+
`F_1,\ F_2,\ \dots,\ F_r` satisfying::
|
262 |
+
|
263 |
+
f = lc(f) F_1 ... F_r (mod p**l)
|
264 |
+
|
265 |
+
F_i = f_i (mod p), i = 1..r
|
266 |
+
|
267 |
+
References
|
268 |
+
==========
|
269 |
+
|
270 |
+
.. [1] [Gathen99]_
|
271 |
+
|
272 |
+
"""
|
273 |
+
r = len(f_list)
|
274 |
+
lc = dup_LC(f, K)
|
275 |
+
|
276 |
+
if r == 1:
|
277 |
+
F = dup_mul_ground(f, K.gcdex(lc, p**l)[0], K)
|
278 |
+
return [ dup_trunc(F, p**l, K) ]
|
279 |
+
|
280 |
+
m = p
|
281 |
+
k = r // 2
|
282 |
+
d = int(_ceil(_log(l, 2)))
|
283 |
+
|
284 |
+
g = gf_from_int_poly([lc], p)
|
285 |
+
|
286 |
+
for f_i in f_list[:k]:
|
287 |
+
g = gf_mul(g, gf_from_int_poly(f_i, p), p, K)
|
288 |
+
|
289 |
+
h = gf_from_int_poly(f_list[k], p)
|
290 |
+
|
291 |
+
for f_i in f_list[k + 1:]:
|
292 |
+
h = gf_mul(h, gf_from_int_poly(f_i, p), p, K)
|
293 |
+
|
294 |
+
s, t, _ = gf_gcdex(g, h, p, K)
|
295 |
+
|
296 |
+
g = gf_to_int_poly(g, p)
|
297 |
+
h = gf_to_int_poly(h, p)
|
298 |
+
s = gf_to_int_poly(s, p)
|
299 |
+
t = gf_to_int_poly(t, p)
|
300 |
+
|
301 |
+
for _ in range(1, d + 1):
|
302 |
+
(g, h, s, t), m = dup_zz_hensel_step(m, f, g, h, s, t, K), m**2
|
303 |
+
|
304 |
+
return dup_zz_hensel_lift(p, g, f_list[:k], l, K) \
|
305 |
+
+ dup_zz_hensel_lift(p, h, f_list[k:], l, K)
|
306 |
+
|
307 |
+
def _test_pl(fc, q, pl):
|
308 |
+
if q > pl // 2:
|
309 |
+
q = q - pl
|
310 |
+
if not q:
|
311 |
+
return True
|
312 |
+
return fc % q == 0
|
313 |
+
|
314 |
+
def dup_zz_zassenhaus(f, K):
|
315 |
+
"""Factor primitive square-free polynomials in `Z[x]`. """
|
316 |
+
n = dup_degree(f)
|
317 |
+
|
318 |
+
if n == 1:
|
319 |
+
return [f]
|
320 |
+
|
321 |
+
from sympy.ntheory import isprime
|
322 |
+
|
323 |
+
fc = f[-1]
|
324 |
+
A = dup_max_norm(f, K)
|
325 |
+
b = dup_LC(f, K)
|
326 |
+
B = int(abs(K.sqrt(K(n + 1))*2**n*A*b))
|
327 |
+
C = int((n + 1)**(2*n)*A**(2*n - 1))
|
328 |
+
gamma = int(_ceil(2*_log(C, 2)))
|
329 |
+
bound = int(2*gamma*_log(gamma))
|
330 |
+
a = []
|
331 |
+
# choose a prime number `p` such that `f` be square free in Z_p
|
332 |
+
# if there are many factors in Z_p, choose among a few different `p`
|
333 |
+
# the one with fewer factors
|
334 |
+
for px in range(3, bound + 1):
|
335 |
+
if not isprime(px) or b % px == 0:
|
336 |
+
continue
|
337 |
+
|
338 |
+
px = K.convert(px)
|
339 |
+
|
340 |
+
F = gf_from_int_poly(f, px)
|
341 |
+
|
342 |
+
if not gf_sqf_p(F, px, K):
|
343 |
+
continue
|
344 |
+
fsqfx = gf_factor_sqf(F, px, K)[1]
|
345 |
+
a.append((px, fsqfx))
|
346 |
+
if len(fsqfx) < 15 or len(a) > 4:
|
347 |
+
break
|
348 |
+
p, fsqf = min(a, key=lambda x: len(x[1]))
|
349 |
+
|
350 |
+
l = int(_ceil(_log(2*B + 1, p)))
|
351 |
+
|
352 |
+
modular = [gf_to_int_poly(ff, p) for ff in fsqf]
|
353 |
+
|
354 |
+
g = dup_zz_hensel_lift(p, f, modular, l, K)
|
355 |
+
|
356 |
+
sorted_T = range(len(g))
|
357 |
+
T = set(sorted_T)
|
358 |
+
factors, s = [], 1
|
359 |
+
pl = p**l
|
360 |
+
|
361 |
+
while 2*s <= len(T):
|
362 |
+
for S in subsets(sorted_T, s):
|
363 |
+
# lift the constant coefficient of the product `G` of the factors
|
364 |
+
# in the subset `S`; if it is does not divide `fc`, `G` does
|
365 |
+
# not divide the input polynomial
|
366 |
+
|
367 |
+
if b == 1:
|
368 |
+
q = 1
|
369 |
+
for i in S:
|
370 |
+
q = q*g[i][-1]
|
371 |
+
q = q % pl
|
372 |
+
if not _test_pl(fc, q, pl):
|
373 |
+
continue
|
374 |
+
else:
|
375 |
+
G = [b]
|
376 |
+
for i in S:
|
377 |
+
G = dup_mul(G, g[i], K)
|
378 |
+
G = dup_trunc(G, pl, K)
|
379 |
+
G = dup_primitive(G, K)[1]
|
380 |
+
q = G[-1]
|
381 |
+
if q and fc % q != 0:
|
382 |
+
continue
|
383 |
+
|
384 |
+
H = [b]
|
385 |
+
S = set(S)
|
386 |
+
T_S = T - S
|
387 |
+
|
388 |
+
if b == 1:
|
389 |
+
G = [b]
|
390 |
+
for i in S:
|
391 |
+
G = dup_mul(G, g[i], K)
|
392 |
+
G = dup_trunc(G, pl, K)
|
393 |
+
|
394 |
+
for i in T_S:
|
395 |
+
H = dup_mul(H, g[i], K)
|
396 |
+
|
397 |
+
H = dup_trunc(H, pl, K)
|
398 |
+
|
399 |
+
G_norm = dup_l1_norm(G, K)
|
400 |
+
H_norm = dup_l1_norm(H, K)
|
401 |
+
|
402 |
+
if G_norm*H_norm <= B:
|
403 |
+
T = T_S
|
404 |
+
sorted_T = [i for i in sorted_T if i not in S]
|
405 |
+
|
406 |
+
G = dup_primitive(G, K)[1]
|
407 |
+
f = dup_primitive(H, K)[1]
|
408 |
+
|
409 |
+
factors.append(G)
|
410 |
+
b = dup_LC(f, K)
|
411 |
+
|
412 |
+
break
|
413 |
+
else:
|
414 |
+
s += 1
|
415 |
+
|
416 |
+
return factors + [f]
|
417 |
+
|
418 |
+
|
419 |
+
def dup_zz_irreducible_p(f, K):
|
420 |
+
"""Test irreducibility using Eisenstein's criterion. """
|
421 |
+
lc = dup_LC(f, K)
|
422 |
+
tc = dup_TC(f, K)
|
423 |
+
|
424 |
+
e_fc = dup_content(f[1:], K)
|
425 |
+
|
426 |
+
if e_fc:
|
427 |
+
from sympy.ntheory import factorint
|
428 |
+
e_ff = factorint(int(e_fc))
|
429 |
+
|
430 |
+
for p in e_ff.keys():
|
431 |
+
if (lc % p) and (tc % p**2):
|
432 |
+
return True
|
433 |
+
|
434 |
+
|
435 |
+
def dup_cyclotomic_p(f, K, irreducible=False):
|
436 |
+
"""
|
437 |
+
Efficiently test if ``f`` is a cyclotomic polynomial.
|
438 |
+
|
439 |
+
Examples
|
440 |
+
========
|
441 |
+
|
442 |
+
>>> from sympy.polys import ring, ZZ
|
443 |
+
>>> R, x = ring("x", ZZ)
|
444 |
+
|
445 |
+
>>> f = x**16 + x**14 - x**10 + x**8 - x**6 + x**2 + 1
|
446 |
+
>>> R.dup_cyclotomic_p(f)
|
447 |
+
False
|
448 |
+
|
449 |
+
>>> g = x**16 + x**14 - x**10 - x**8 - x**6 + x**2 + 1
|
450 |
+
>>> R.dup_cyclotomic_p(g)
|
451 |
+
True
|
452 |
+
|
453 |
+
References
|
454 |
+
==========
|
455 |
+
|
456 |
+
Bradford, Russell J., and James H. Davenport. "Effective tests for
|
457 |
+
cyclotomic polynomials." In International Symposium on Symbolic and
|
458 |
+
Algebraic Computation, pp. 244-251. Springer, Berlin, Heidelberg, 1988.
|
459 |
+
|
460 |
+
"""
|
461 |
+
if K.is_QQ:
|
462 |
+
try:
|
463 |
+
K0, K = K, K.get_ring()
|
464 |
+
f = dup_convert(f, K0, K)
|
465 |
+
except CoercionFailed:
|
466 |
+
return False
|
467 |
+
elif not K.is_ZZ:
|
468 |
+
return False
|
469 |
+
|
470 |
+
lc = dup_LC(f, K)
|
471 |
+
tc = dup_TC(f, K)
|
472 |
+
|
473 |
+
if lc != 1 or (tc != -1 and tc != 1):
|
474 |
+
return False
|
475 |
+
|
476 |
+
if not irreducible:
|
477 |
+
coeff, factors = dup_factor_list(f, K)
|
478 |
+
|
479 |
+
if coeff != K.one or factors != [(f, 1)]:
|
480 |
+
return False
|
481 |
+
|
482 |
+
n = dup_degree(f)
|
483 |
+
g, h = [], []
|
484 |
+
|
485 |
+
for i in range(n, -1, -2):
|
486 |
+
g.insert(0, f[i])
|
487 |
+
|
488 |
+
for i in range(n - 1, -1, -2):
|
489 |
+
h.insert(0, f[i])
|
490 |
+
|
491 |
+
g = dup_sqr(dup_strip(g), K)
|
492 |
+
h = dup_sqr(dup_strip(h), K)
|
493 |
+
|
494 |
+
F = dup_sub(g, dup_lshift(h, 1, K), K)
|
495 |
+
|
496 |
+
if K.is_negative(dup_LC(F, K)):
|
497 |
+
F = dup_neg(F, K)
|
498 |
+
|
499 |
+
if F == f:
|
500 |
+
return True
|
501 |
+
|
502 |
+
g = dup_mirror(f, K)
|
503 |
+
|
504 |
+
if K.is_negative(dup_LC(g, K)):
|
505 |
+
g = dup_neg(g, K)
|
506 |
+
|
507 |
+
if F == g and dup_cyclotomic_p(g, K):
|
508 |
+
return True
|
509 |
+
|
510 |
+
G = dup_sqf_part(F, K)
|
511 |
+
|
512 |
+
if dup_sqr(G, K) == F and dup_cyclotomic_p(G, K):
|
513 |
+
return True
|
514 |
+
|
515 |
+
return False
|
516 |
+
|
517 |
+
|
518 |
+
def dup_zz_cyclotomic_poly(n, K):
|
519 |
+
"""Efficiently generate n-th cyclotomic polynomial. """
|
520 |
+
from sympy.ntheory import factorint
|
521 |
+
h = [K.one, -K.one]
|
522 |
+
|
523 |
+
for p, k in factorint(n).items():
|
524 |
+
h = dup_quo(dup_inflate(h, p, K), h, K)
|
525 |
+
h = dup_inflate(h, p**(k - 1), K)
|
526 |
+
|
527 |
+
return h
|
528 |
+
|
529 |
+
|
530 |
+
def _dup_cyclotomic_decompose(n, K):
|
531 |
+
from sympy.ntheory import factorint
|
532 |
+
|
533 |
+
H = [[K.one, -K.one]]
|
534 |
+
|
535 |
+
for p, k in factorint(n).items():
|
536 |
+
Q = [ dup_quo(dup_inflate(h, p, K), h, K) for h in H ]
|
537 |
+
H.extend(Q)
|
538 |
+
|
539 |
+
for i in range(1, k):
|
540 |
+
Q = [ dup_inflate(q, p, K) for q in Q ]
|
541 |
+
H.extend(Q)
|
542 |
+
|
543 |
+
return H
|
544 |
+
|
545 |
+
|
546 |
+
def dup_zz_cyclotomic_factor(f, K):
|
547 |
+
"""
|
548 |
+
Efficiently factor polynomials `x**n - 1` and `x**n + 1` in `Z[x]`.
|
549 |
+
|
550 |
+
Given a univariate polynomial `f` in `Z[x]` returns a list of factors
|
551 |
+
of `f`, provided that `f` is in the form `x**n - 1` or `x**n + 1` for
|
552 |
+
`n >= 1`. Otherwise returns None.
|
553 |
+
|
554 |
+
Factorization is performed using cyclotomic decomposition of `f`,
|
555 |
+
which makes this method much faster that any other direct factorization
|
556 |
+
approach (e.g. Zassenhaus's).
|
557 |
+
|
558 |
+
References
|
559 |
+
==========
|
560 |
+
|
561 |
+
.. [1] [Weisstein09]_
|
562 |
+
|
563 |
+
"""
|
564 |
+
lc_f, tc_f = dup_LC(f, K), dup_TC(f, K)
|
565 |
+
|
566 |
+
if dup_degree(f) <= 0:
|
567 |
+
return None
|
568 |
+
|
569 |
+
if lc_f != 1 or tc_f not in [-1, 1]:
|
570 |
+
return None
|
571 |
+
|
572 |
+
if any(bool(cf) for cf in f[1:-1]):
|
573 |
+
return None
|
574 |
+
|
575 |
+
n = dup_degree(f)
|
576 |
+
F = _dup_cyclotomic_decompose(n, K)
|
577 |
+
|
578 |
+
if not K.is_one(tc_f):
|
579 |
+
return F
|
580 |
+
else:
|
581 |
+
H = []
|
582 |
+
|
583 |
+
for h in _dup_cyclotomic_decompose(2*n, K):
|
584 |
+
if h not in F:
|
585 |
+
H.append(h)
|
586 |
+
|
587 |
+
return H
|
588 |
+
|
589 |
+
|
590 |
+
def dup_zz_factor_sqf(f, K):
|
591 |
+
"""Factor square-free (non-primitive) polynomials in `Z[x]`. """
|
592 |
+
cont, g = dup_primitive(f, K)
|
593 |
+
|
594 |
+
n = dup_degree(g)
|
595 |
+
|
596 |
+
if dup_LC(g, K) < 0:
|
597 |
+
cont, g = -cont, dup_neg(g, K)
|
598 |
+
|
599 |
+
if n <= 0:
|
600 |
+
return cont, []
|
601 |
+
elif n == 1:
|
602 |
+
return cont, [g]
|
603 |
+
|
604 |
+
if query('USE_IRREDUCIBLE_IN_FACTOR'):
|
605 |
+
if dup_zz_irreducible_p(g, K):
|
606 |
+
return cont, [g]
|
607 |
+
|
608 |
+
factors = None
|
609 |
+
|
610 |
+
if query('USE_CYCLOTOMIC_FACTOR'):
|
611 |
+
factors = dup_zz_cyclotomic_factor(g, K)
|
612 |
+
|
613 |
+
if factors is None:
|
614 |
+
factors = dup_zz_zassenhaus(g, K)
|
615 |
+
|
616 |
+
return cont, _sort_factors(factors, multiple=False)
|
617 |
+
|
618 |
+
|
619 |
+
def dup_zz_factor(f, K):
|
620 |
+
"""
|
621 |
+
Factor (non square-free) polynomials in `Z[x]`.
|
622 |
+
|
623 |
+
Given a univariate polynomial `f` in `Z[x]` computes its complete
|
624 |
+
factorization `f_1, ..., f_n` into irreducibles over integers::
|
625 |
+
|
626 |
+
f = content(f) f_1**k_1 ... f_n**k_n
|
627 |
+
|
628 |
+
The factorization is computed by reducing the input polynomial
|
629 |
+
into a primitive square-free polynomial and factoring it using
|
630 |
+
Zassenhaus algorithm. Trial division is used to recover the
|
631 |
+
multiplicities of factors.
|
632 |
+
|
633 |
+
The result is returned as a tuple consisting of::
|
634 |
+
|
635 |
+
(content(f), [(f_1, k_1), ..., (f_n, k_n))
|
636 |
+
|
637 |
+
Examples
|
638 |
+
========
|
639 |
+
|
640 |
+
Consider the polynomial `f = 2*x**4 - 2`::
|
641 |
+
|
642 |
+
>>> from sympy.polys import ring, ZZ
|
643 |
+
>>> R, x = ring("x", ZZ)
|
644 |
+
|
645 |
+
>>> R.dup_zz_factor(2*x**4 - 2)
|
646 |
+
(2, [(x - 1, 1), (x + 1, 1), (x**2 + 1, 1)])
|
647 |
+
|
648 |
+
In result we got the following factorization::
|
649 |
+
|
650 |
+
f = 2 (x - 1) (x + 1) (x**2 + 1)
|
651 |
+
|
652 |
+
Note that this is a complete factorization over integers,
|
653 |
+
however over Gaussian integers we can factor the last term.
|
654 |
+
|
655 |
+
By default, polynomials `x**n - 1` and `x**n + 1` are factored
|
656 |
+
using cyclotomic decomposition to speedup computations. To
|
657 |
+
disable this behaviour set cyclotomic=False.
|
658 |
+
|
659 |
+
References
|
660 |
+
==========
|
661 |
+
|
662 |
+
.. [1] [Gathen99]_
|
663 |
+
|
664 |
+
"""
|
665 |
+
cont, g = dup_primitive(f, K)
|
666 |
+
|
667 |
+
n = dup_degree(g)
|
668 |
+
|
669 |
+
if dup_LC(g, K) < 0:
|
670 |
+
cont, g = -cont, dup_neg(g, K)
|
671 |
+
|
672 |
+
if n <= 0:
|
673 |
+
return cont, []
|
674 |
+
elif n == 1:
|
675 |
+
return cont, [(g, 1)]
|
676 |
+
|
677 |
+
if query('USE_IRREDUCIBLE_IN_FACTOR'):
|
678 |
+
if dup_zz_irreducible_p(g, K):
|
679 |
+
return cont, [(g, 1)]
|
680 |
+
|
681 |
+
g = dup_sqf_part(g, K)
|
682 |
+
H = None
|
683 |
+
|
684 |
+
if query('USE_CYCLOTOMIC_FACTOR'):
|
685 |
+
H = dup_zz_cyclotomic_factor(g, K)
|
686 |
+
|
687 |
+
if H is None:
|
688 |
+
H = dup_zz_zassenhaus(g, K)
|
689 |
+
|
690 |
+
factors = dup_trial_division(f, H, K)
|
691 |
+
return cont, factors
|
692 |
+
|
693 |
+
|
694 |
+
def dmp_zz_wang_non_divisors(E, cs, ct, K):
|
695 |
+
"""Wang/EEZ: Compute a set of valid divisors. """
|
696 |
+
result = [ cs*ct ]
|
697 |
+
|
698 |
+
for q in E:
|
699 |
+
q = abs(q)
|
700 |
+
|
701 |
+
for r in reversed(result):
|
702 |
+
while r != 1:
|
703 |
+
r = K.gcd(r, q)
|
704 |
+
q = q // r
|
705 |
+
|
706 |
+
if K.is_one(q):
|
707 |
+
return None
|
708 |
+
|
709 |
+
result.append(q)
|
710 |
+
|
711 |
+
return result[1:]
|
712 |
+
|
713 |
+
|
714 |
+
def dmp_zz_wang_test_points(f, T, ct, A, u, K):
|
715 |
+
"""Wang/EEZ: Test evaluation points for suitability. """
|
716 |
+
if not dmp_eval_tail(dmp_LC(f, K), A, u - 1, K):
|
717 |
+
raise EvaluationFailed('no luck')
|
718 |
+
|
719 |
+
g = dmp_eval_tail(f, A, u, K)
|
720 |
+
|
721 |
+
if not dup_sqf_p(g, K):
|
722 |
+
raise EvaluationFailed('no luck')
|
723 |
+
|
724 |
+
c, h = dup_primitive(g, K)
|
725 |
+
|
726 |
+
if K.is_negative(dup_LC(h, K)):
|
727 |
+
c, h = -c, dup_neg(h, K)
|
728 |
+
|
729 |
+
v = u - 1
|
730 |
+
|
731 |
+
E = [ dmp_eval_tail(t, A, v, K) for t, _ in T ]
|
732 |
+
D = dmp_zz_wang_non_divisors(E, c, ct, K)
|
733 |
+
|
734 |
+
if D is not None:
|
735 |
+
return c, h, E
|
736 |
+
else:
|
737 |
+
raise EvaluationFailed('no luck')
|
738 |
+
|
739 |
+
|
740 |
+
def dmp_zz_wang_lead_coeffs(f, T, cs, E, H, A, u, K):
|
741 |
+
"""Wang/EEZ: Compute correct leading coefficients. """
|
742 |
+
C, J, v = [], [0]*len(E), u - 1
|
743 |
+
|
744 |
+
for h in H:
|
745 |
+
c = dmp_one(v, K)
|
746 |
+
d = dup_LC(h, K)*cs
|
747 |
+
|
748 |
+
for i in reversed(range(len(E))):
|
749 |
+
k, e, (t, _) = 0, E[i], T[i]
|
750 |
+
|
751 |
+
while not (d % e):
|
752 |
+
d, k = d//e, k + 1
|
753 |
+
|
754 |
+
if k != 0:
|
755 |
+
c, J[i] = dmp_mul(c, dmp_pow(t, k, v, K), v, K), 1
|
756 |
+
|
757 |
+
C.append(c)
|
758 |
+
|
759 |
+
if not all(J):
|
760 |
+
raise ExtraneousFactors # pragma: no cover
|
761 |
+
|
762 |
+
CC, HH = [], []
|
763 |
+
|
764 |
+
for c, h in zip(C, H):
|
765 |
+
d = dmp_eval_tail(c, A, v, K)
|
766 |
+
lc = dup_LC(h, K)
|
767 |
+
|
768 |
+
if K.is_one(cs):
|
769 |
+
cc = lc//d
|
770 |
+
else:
|
771 |
+
g = K.gcd(lc, d)
|
772 |
+
d, cc = d//g, lc//g
|
773 |
+
h, cs = dup_mul_ground(h, d, K), cs//d
|
774 |
+
|
775 |
+
c = dmp_mul_ground(c, cc, v, K)
|
776 |
+
|
777 |
+
CC.append(c)
|
778 |
+
HH.append(h)
|
779 |
+
|
780 |
+
if K.is_one(cs):
|
781 |
+
return f, HH, CC
|
782 |
+
|
783 |
+
CCC, HHH = [], []
|
784 |
+
|
785 |
+
for c, h in zip(CC, HH):
|
786 |
+
CCC.append(dmp_mul_ground(c, cs, v, K))
|
787 |
+
HHH.append(dmp_mul_ground(h, cs, 0, K))
|
788 |
+
|
789 |
+
f = dmp_mul_ground(f, cs**(len(H) - 1), u, K)
|
790 |
+
|
791 |
+
return f, HHH, CCC
|
792 |
+
|
793 |
+
|
794 |
+
def dup_zz_diophantine(F, m, p, K):
|
795 |
+
"""Wang/EEZ: Solve univariate Diophantine equations. """
|
796 |
+
if len(F) == 2:
|
797 |
+
a, b = F
|
798 |
+
|
799 |
+
f = gf_from_int_poly(a, p)
|
800 |
+
g = gf_from_int_poly(b, p)
|
801 |
+
|
802 |
+
s, t, G = gf_gcdex(g, f, p, K)
|
803 |
+
|
804 |
+
s = gf_lshift(s, m, K)
|
805 |
+
t = gf_lshift(t, m, K)
|
806 |
+
|
807 |
+
q, s = gf_div(s, f, p, K)
|
808 |
+
|
809 |
+
t = gf_add_mul(t, q, g, p, K)
|
810 |
+
|
811 |
+
s = gf_to_int_poly(s, p)
|
812 |
+
t = gf_to_int_poly(t, p)
|
813 |
+
|
814 |
+
result = [s, t]
|
815 |
+
else:
|
816 |
+
G = [F[-1]]
|
817 |
+
|
818 |
+
for f in reversed(F[1:-1]):
|
819 |
+
G.insert(0, dup_mul(f, G[0], K))
|
820 |
+
|
821 |
+
S, T = [], [[1]]
|
822 |
+
|
823 |
+
for f, g in zip(F, G):
|
824 |
+
t, s = dmp_zz_diophantine([g, f], T[-1], [], 0, p, 1, K)
|
825 |
+
T.append(t)
|
826 |
+
S.append(s)
|
827 |
+
|
828 |
+
result, S = [], S + [T[-1]]
|
829 |
+
|
830 |
+
for s, f in zip(S, F):
|
831 |
+
s = gf_from_int_poly(s, p)
|
832 |
+
f = gf_from_int_poly(f, p)
|
833 |
+
|
834 |
+
r = gf_rem(gf_lshift(s, m, K), f, p, K)
|
835 |
+
s = gf_to_int_poly(r, p)
|
836 |
+
|
837 |
+
result.append(s)
|
838 |
+
|
839 |
+
return result
|
840 |
+
|
841 |
+
|
842 |
+
def dmp_zz_diophantine(F, c, A, d, p, u, K):
|
843 |
+
"""Wang/EEZ: Solve multivariate Diophantine equations. """
|
844 |
+
if not A:
|
845 |
+
S = [ [] for _ in F ]
|
846 |
+
n = dup_degree(c)
|
847 |
+
|
848 |
+
for i, coeff in enumerate(c):
|
849 |
+
if not coeff:
|
850 |
+
continue
|
851 |
+
|
852 |
+
T = dup_zz_diophantine(F, n - i, p, K)
|
853 |
+
|
854 |
+
for j, (s, t) in enumerate(zip(S, T)):
|
855 |
+
t = dup_mul_ground(t, coeff, K)
|
856 |
+
S[j] = dup_trunc(dup_add(s, t, K), p, K)
|
857 |
+
else:
|
858 |
+
n = len(A)
|
859 |
+
e = dmp_expand(F, u, K)
|
860 |
+
|
861 |
+
a, A = A[-1], A[:-1]
|
862 |
+
B, G = [], []
|
863 |
+
|
864 |
+
for f in F:
|
865 |
+
B.append(dmp_quo(e, f, u, K))
|
866 |
+
G.append(dmp_eval_in(f, a, n, u, K))
|
867 |
+
|
868 |
+
C = dmp_eval_in(c, a, n, u, K)
|
869 |
+
|
870 |
+
v = u - 1
|
871 |
+
|
872 |
+
S = dmp_zz_diophantine(G, C, A, d, p, v, K)
|
873 |
+
S = [ dmp_raise(s, 1, v, K) for s in S ]
|
874 |
+
|
875 |
+
for s, b in zip(S, B):
|
876 |
+
c = dmp_sub_mul(c, s, b, u, K)
|
877 |
+
|
878 |
+
c = dmp_ground_trunc(c, p, u, K)
|
879 |
+
|
880 |
+
m = dmp_nest([K.one, -a], n, K)
|
881 |
+
M = dmp_one(n, K)
|
882 |
+
|
883 |
+
for k in K.map(range(0, d)):
|
884 |
+
if dmp_zero_p(c, u):
|
885 |
+
break
|
886 |
+
|
887 |
+
M = dmp_mul(M, m, u, K)
|
888 |
+
C = dmp_diff_eval_in(c, k + 1, a, n, u, K)
|
889 |
+
|
890 |
+
if not dmp_zero_p(C, v):
|
891 |
+
C = dmp_quo_ground(C, K.factorial(k + 1), v, K)
|
892 |
+
T = dmp_zz_diophantine(G, C, A, d, p, v, K)
|
893 |
+
|
894 |
+
for i, t in enumerate(T):
|
895 |
+
T[i] = dmp_mul(dmp_raise(t, 1, v, K), M, u, K)
|
896 |
+
|
897 |
+
for i, (s, t) in enumerate(zip(S, T)):
|
898 |
+
S[i] = dmp_add(s, t, u, K)
|
899 |
+
|
900 |
+
for t, b in zip(T, B):
|
901 |
+
c = dmp_sub_mul(c, t, b, u, K)
|
902 |
+
|
903 |
+
c = dmp_ground_trunc(c, p, u, K)
|
904 |
+
|
905 |
+
S = [ dmp_ground_trunc(s, p, u, K) for s in S ]
|
906 |
+
|
907 |
+
return S
|
908 |
+
|
909 |
+
|
910 |
+
def dmp_zz_wang_hensel_lifting(f, H, LC, A, p, u, K):
|
911 |
+
"""Wang/EEZ: Parallel Hensel lifting algorithm. """
|
912 |
+
S, n, v = [f], len(A), u - 1
|
913 |
+
|
914 |
+
H = list(H)
|
915 |
+
|
916 |
+
for i, a in enumerate(reversed(A[1:])):
|
917 |
+
s = dmp_eval_in(S[0], a, n - i, u - i, K)
|
918 |
+
S.insert(0, dmp_ground_trunc(s, p, v - i, K))
|
919 |
+
|
920 |
+
d = max(dmp_degree_list(f, u)[1:])
|
921 |
+
|
922 |
+
for j, s, a in zip(range(2, n + 2), S, A):
|
923 |
+
G, w = list(H), j - 1
|
924 |
+
|
925 |
+
I, J = A[:j - 2], A[j - 1:]
|
926 |
+
|
927 |
+
for i, (h, lc) in enumerate(zip(H, LC)):
|
928 |
+
lc = dmp_ground_trunc(dmp_eval_tail(lc, J, v, K), p, w - 1, K)
|
929 |
+
H[i] = [lc] + dmp_raise(h[1:], 1, w - 1, K)
|
930 |
+
|
931 |
+
m = dmp_nest([K.one, -a], w, K)
|
932 |
+
M = dmp_one(w, K)
|
933 |
+
|
934 |
+
c = dmp_sub(s, dmp_expand(H, w, K), w, K)
|
935 |
+
|
936 |
+
dj = dmp_degree_in(s, w, w)
|
937 |
+
|
938 |
+
for k in K.map(range(0, dj)):
|
939 |
+
if dmp_zero_p(c, w):
|
940 |
+
break
|
941 |
+
|
942 |
+
M = dmp_mul(M, m, w, K)
|
943 |
+
C = dmp_diff_eval_in(c, k + 1, a, w, w, K)
|
944 |
+
|
945 |
+
if not dmp_zero_p(C, w - 1):
|
946 |
+
C = dmp_quo_ground(C, K.factorial(k + 1), w - 1, K)
|
947 |
+
T = dmp_zz_diophantine(G, C, I, d, p, w - 1, K)
|
948 |
+
|
949 |
+
for i, (h, t) in enumerate(zip(H, T)):
|
950 |
+
h = dmp_add_mul(h, dmp_raise(t, 1, w - 1, K), M, w, K)
|
951 |
+
H[i] = dmp_ground_trunc(h, p, w, K)
|
952 |
+
|
953 |
+
h = dmp_sub(s, dmp_expand(H, w, K), w, K)
|
954 |
+
c = dmp_ground_trunc(h, p, w, K)
|
955 |
+
|
956 |
+
if dmp_expand(H, u, K) != f:
|
957 |
+
raise ExtraneousFactors # pragma: no cover
|
958 |
+
else:
|
959 |
+
return H
|
960 |
+
|
961 |
+
|
962 |
+
def dmp_zz_wang(f, u, K, mod=None, seed=None):
|
963 |
+
r"""
|
964 |
+
Factor primitive square-free polynomials in `Z[X]`.
|
965 |
+
|
966 |
+
Given a multivariate polynomial `f` in `Z[x_1,...,x_n]`, which is
|
967 |
+
primitive and square-free in `x_1`, computes factorization of `f` into
|
968 |
+
irreducibles over integers.
|
969 |
+
|
970 |
+
The procedure is based on Wang's Enhanced Extended Zassenhaus
|
971 |
+
algorithm. The algorithm works by viewing `f` as a univariate polynomial
|
972 |
+
in `Z[x_2,...,x_n][x_1]`, for which an evaluation mapping is computed::
|
973 |
+
|
974 |
+
x_2 -> a_2, ..., x_n -> a_n
|
975 |
+
|
976 |
+
where `a_i`, for `i = 2, \dots, n`, are carefully chosen integers. The
|
977 |
+
mapping is used to transform `f` into a univariate polynomial in `Z[x_1]`,
|
978 |
+
which can be factored efficiently using Zassenhaus algorithm. The last
|
979 |
+
step is to lift univariate factors to obtain true multivariate
|
980 |
+
factors. For this purpose a parallel Hensel lifting procedure is used.
|
981 |
+
|
982 |
+
The parameter ``seed`` is passed to _randint and can be used to seed randint
|
983 |
+
(when an integer) or (for testing purposes) can be a sequence of numbers.
|
984 |
+
|
985 |
+
References
|
986 |
+
==========
|
987 |
+
|
988 |
+
.. [1] [Wang78]_
|
989 |
+
.. [2] [Geddes92]_
|
990 |
+
|
991 |
+
"""
|
992 |
+
from sympy.ntheory import nextprime
|
993 |
+
|
994 |
+
randint = _randint(seed)
|
995 |
+
|
996 |
+
ct, T = dmp_zz_factor(dmp_LC(f, K), u - 1, K)
|
997 |
+
|
998 |
+
b = dmp_zz_mignotte_bound(f, u, K)
|
999 |
+
p = K(nextprime(b))
|
1000 |
+
|
1001 |
+
if mod is None:
|
1002 |
+
if u == 1:
|
1003 |
+
mod = 2
|
1004 |
+
else:
|
1005 |
+
mod = 1
|
1006 |
+
|
1007 |
+
history, configs, A, r = set(), [], [K.zero]*u, None
|
1008 |
+
|
1009 |
+
try:
|
1010 |
+
cs, s, E = dmp_zz_wang_test_points(f, T, ct, A, u, K)
|
1011 |
+
|
1012 |
+
_, H = dup_zz_factor_sqf(s, K)
|
1013 |
+
|
1014 |
+
r = len(H)
|
1015 |
+
|
1016 |
+
if r == 1:
|
1017 |
+
return [f]
|
1018 |
+
|
1019 |
+
configs = [(s, cs, E, H, A)]
|
1020 |
+
except EvaluationFailed:
|
1021 |
+
pass
|
1022 |
+
|
1023 |
+
eez_num_configs = query('EEZ_NUMBER_OF_CONFIGS')
|
1024 |
+
eez_num_tries = query('EEZ_NUMBER_OF_TRIES')
|
1025 |
+
eez_mod_step = query('EEZ_MODULUS_STEP')
|
1026 |
+
|
1027 |
+
while len(configs) < eez_num_configs:
|
1028 |
+
for _ in range(eez_num_tries):
|
1029 |
+
A = [ K(randint(-mod, mod)) for _ in range(u) ]
|
1030 |
+
|
1031 |
+
if tuple(A) not in history:
|
1032 |
+
history.add(tuple(A))
|
1033 |
+
else:
|
1034 |
+
continue
|
1035 |
+
|
1036 |
+
try:
|
1037 |
+
cs, s, E = dmp_zz_wang_test_points(f, T, ct, A, u, K)
|
1038 |
+
except EvaluationFailed:
|
1039 |
+
continue
|
1040 |
+
|
1041 |
+
_, H = dup_zz_factor_sqf(s, K)
|
1042 |
+
|
1043 |
+
rr = len(H)
|
1044 |
+
|
1045 |
+
if r is not None:
|
1046 |
+
if rr != r: # pragma: no cover
|
1047 |
+
if rr < r:
|
1048 |
+
configs, r = [], rr
|
1049 |
+
else:
|
1050 |
+
continue
|
1051 |
+
else:
|
1052 |
+
r = rr
|
1053 |
+
|
1054 |
+
if r == 1:
|
1055 |
+
return [f]
|
1056 |
+
|
1057 |
+
configs.append((s, cs, E, H, A))
|
1058 |
+
|
1059 |
+
if len(configs) == eez_num_configs:
|
1060 |
+
break
|
1061 |
+
else:
|
1062 |
+
mod += eez_mod_step
|
1063 |
+
|
1064 |
+
s_norm, s_arg, i = None, 0, 0
|
1065 |
+
|
1066 |
+
for s, _, _, _, _ in configs:
|
1067 |
+
_s_norm = dup_max_norm(s, K)
|
1068 |
+
|
1069 |
+
if s_norm is not None:
|
1070 |
+
if _s_norm < s_norm:
|
1071 |
+
s_norm = _s_norm
|
1072 |
+
s_arg = i
|
1073 |
+
else:
|
1074 |
+
s_norm = _s_norm
|
1075 |
+
|
1076 |
+
i += 1
|
1077 |
+
|
1078 |
+
_, cs, E, H, A = configs[s_arg]
|
1079 |
+
orig_f = f
|
1080 |
+
|
1081 |
+
try:
|
1082 |
+
f, H, LC = dmp_zz_wang_lead_coeffs(f, T, cs, E, H, A, u, K)
|
1083 |
+
factors = dmp_zz_wang_hensel_lifting(f, H, LC, A, p, u, K)
|
1084 |
+
except ExtraneousFactors: # pragma: no cover
|
1085 |
+
if query('EEZ_RESTART_IF_NEEDED'):
|
1086 |
+
return dmp_zz_wang(orig_f, u, K, mod + 1)
|
1087 |
+
else:
|
1088 |
+
raise ExtraneousFactors(
|
1089 |
+
"we need to restart algorithm with better parameters")
|
1090 |
+
|
1091 |
+
result = []
|
1092 |
+
|
1093 |
+
for f in factors:
|
1094 |
+
_, f = dmp_ground_primitive(f, u, K)
|
1095 |
+
|
1096 |
+
if K.is_negative(dmp_ground_LC(f, u, K)):
|
1097 |
+
f = dmp_neg(f, u, K)
|
1098 |
+
|
1099 |
+
result.append(f)
|
1100 |
+
|
1101 |
+
return result
|
1102 |
+
|
1103 |
+
|
1104 |
+
def dmp_zz_factor(f, u, K):
|
1105 |
+
r"""
|
1106 |
+
Factor (non square-free) polynomials in `Z[X]`.
|
1107 |
+
|
1108 |
+
Given a multivariate polynomial `f` in `Z[x]` computes its complete
|
1109 |
+
factorization `f_1, \dots, f_n` into irreducibles over integers::
|
1110 |
+
|
1111 |
+
f = content(f) f_1**k_1 ... f_n**k_n
|
1112 |
+
|
1113 |
+
The factorization is computed by reducing the input polynomial
|
1114 |
+
into a primitive square-free polynomial and factoring it using
|
1115 |
+
Enhanced Extended Zassenhaus (EEZ) algorithm. Trial division
|
1116 |
+
is used to recover the multiplicities of factors.
|
1117 |
+
|
1118 |
+
The result is returned as a tuple consisting of::
|
1119 |
+
|
1120 |
+
(content(f), [(f_1, k_1), ..., (f_n, k_n))
|
1121 |
+
|
1122 |
+
Consider polynomial `f = 2*(x**2 - y**2)`::
|
1123 |
+
|
1124 |
+
>>> from sympy.polys import ring, ZZ
|
1125 |
+
>>> R, x,y = ring("x,y", ZZ)
|
1126 |
+
|
1127 |
+
>>> R.dmp_zz_factor(2*x**2 - 2*y**2)
|
1128 |
+
(2, [(x - y, 1), (x + y, 1)])
|
1129 |
+
|
1130 |
+
In result we got the following factorization::
|
1131 |
+
|
1132 |
+
f = 2 (x - y) (x + y)
|
1133 |
+
|
1134 |
+
References
|
1135 |
+
==========
|
1136 |
+
|
1137 |
+
.. [1] [Gathen99]_
|
1138 |
+
|
1139 |
+
"""
|
1140 |
+
if not u:
|
1141 |
+
return dup_zz_factor(f, K)
|
1142 |
+
|
1143 |
+
if dmp_zero_p(f, u):
|
1144 |
+
return K.zero, []
|
1145 |
+
|
1146 |
+
cont, g = dmp_ground_primitive(f, u, K)
|
1147 |
+
|
1148 |
+
if dmp_ground_LC(g, u, K) < 0:
|
1149 |
+
cont, g = -cont, dmp_neg(g, u, K)
|
1150 |
+
|
1151 |
+
if all(d <= 0 for d in dmp_degree_list(g, u)):
|
1152 |
+
return cont, []
|
1153 |
+
|
1154 |
+
G, g = dmp_primitive(g, u, K)
|
1155 |
+
|
1156 |
+
factors = []
|
1157 |
+
|
1158 |
+
if dmp_degree(g, u) > 0:
|
1159 |
+
g = dmp_sqf_part(g, u, K)
|
1160 |
+
H = dmp_zz_wang(g, u, K)
|
1161 |
+
factors = dmp_trial_division(f, H, u, K)
|
1162 |
+
|
1163 |
+
for g, k in dmp_zz_factor(G, u - 1, K)[1]:
|
1164 |
+
factors.insert(0, ([g], k))
|
1165 |
+
|
1166 |
+
return cont, _sort_factors(factors)
|
1167 |
+
|
1168 |
+
|
1169 |
+
def dup_qq_i_factor(f, K0):
|
1170 |
+
"""Factor univariate polynomials into irreducibles in `QQ_I[x]`. """
|
1171 |
+
# Factor in QQ<I>
|
1172 |
+
K1 = K0.as_AlgebraicField()
|
1173 |
+
f = dup_convert(f, K0, K1)
|
1174 |
+
coeff, factors = dup_factor_list(f, K1)
|
1175 |
+
factors = [(dup_convert(fac, K1, K0), i) for fac, i in factors]
|
1176 |
+
coeff = K0.convert(coeff, K1)
|
1177 |
+
return coeff, factors
|
1178 |
+
|
1179 |
+
|
1180 |
+
def dup_zz_i_factor(f, K0):
|
1181 |
+
"""Factor univariate polynomials into irreducibles in `ZZ_I[x]`. """
|
1182 |
+
# First factor in QQ_I
|
1183 |
+
K1 = K0.get_field()
|
1184 |
+
f = dup_convert(f, K0, K1)
|
1185 |
+
coeff, factors = dup_qq_i_factor(f, K1)
|
1186 |
+
|
1187 |
+
new_factors = []
|
1188 |
+
for fac, i in factors:
|
1189 |
+
# Extract content
|
1190 |
+
fac_denom, fac_num = dup_clear_denoms(fac, K1)
|
1191 |
+
fac_num_ZZ_I = dup_convert(fac_num, K1, K0)
|
1192 |
+
content, fac_prim = dmp_ground_primitive(fac_num_ZZ_I, 0, K1)
|
1193 |
+
|
1194 |
+
coeff = (coeff * content ** i) // fac_denom ** i
|
1195 |
+
new_factors.append((fac_prim, i))
|
1196 |
+
|
1197 |
+
factors = new_factors
|
1198 |
+
coeff = K0.convert(coeff, K1)
|
1199 |
+
return coeff, factors
|
1200 |
+
|
1201 |
+
|
1202 |
+
def dmp_qq_i_factor(f, u, K0):
|
1203 |
+
"""Factor multivariate polynomials into irreducibles in `QQ_I[X]`. """
|
1204 |
+
# Factor in QQ<I>
|
1205 |
+
K1 = K0.as_AlgebraicField()
|
1206 |
+
f = dmp_convert(f, u, K0, K1)
|
1207 |
+
coeff, factors = dmp_factor_list(f, u, K1)
|
1208 |
+
factors = [(dmp_convert(fac, u, K1, K0), i) for fac, i in factors]
|
1209 |
+
coeff = K0.convert(coeff, K1)
|
1210 |
+
return coeff, factors
|
1211 |
+
|
1212 |
+
|
1213 |
+
def dmp_zz_i_factor(f, u, K0):
|
1214 |
+
"""Factor multivariate polynomials into irreducibles in `ZZ_I[X]`. """
|
1215 |
+
# First factor in QQ_I
|
1216 |
+
K1 = K0.get_field()
|
1217 |
+
f = dmp_convert(f, u, K0, K1)
|
1218 |
+
coeff, factors = dmp_qq_i_factor(f, u, K1)
|
1219 |
+
|
1220 |
+
new_factors = []
|
1221 |
+
for fac, i in factors:
|
1222 |
+
# Extract content
|
1223 |
+
fac_denom, fac_num = dmp_clear_denoms(fac, u, K1)
|
1224 |
+
fac_num_ZZ_I = dmp_convert(fac_num, u, K1, K0)
|
1225 |
+
content, fac_prim = dmp_ground_primitive(fac_num_ZZ_I, u, K1)
|
1226 |
+
|
1227 |
+
coeff = (coeff * content ** i) // fac_denom ** i
|
1228 |
+
new_factors.append((fac_prim, i))
|
1229 |
+
|
1230 |
+
factors = new_factors
|
1231 |
+
coeff = K0.convert(coeff, K1)
|
1232 |
+
return coeff, factors
|
1233 |
+
|
1234 |
+
|
1235 |
+
def dup_ext_factor(f, K):
|
1236 |
+
"""Factor univariate polynomials over algebraic number fields. """
|
1237 |
+
n, lc = dup_degree(f), dup_LC(f, K)
|
1238 |
+
|
1239 |
+
f = dup_monic(f, K)
|
1240 |
+
|
1241 |
+
if n <= 0:
|
1242 |
+
return lc, []
|
1243 |
+
if n == 1:
|
1244 |
+
return lc, [(f, 1)]
|
1245 |
+
|
1246 |
+
f, F = dup_sqf_part(f, K), f
|
1247 |
+
s, g, r = dup_sqf_norm(f, K)
|
1248 |
+
|
1249 |
+
factors = dup_factor_list_include(r, K.dom)
|
1250 |
+
|
1251 |
+
if len(factors) == 1:
|
1252 |
+
return lc, [(f, n//dup_degree(f))]
|
1253 |
+
|
1254 |
+
H = s*K.unit
|
1255 |
+
|
1256 |
+
for i, (factor, _) in enumerate(factors):
|
1257 |
+
h = dup_convert(factor, K.dom, K)
|
1258 |
+
h, _, g = dup_inner_gcd(h, g, K)
|
1259 |
+
h = dup_shift(h, H, K)
|
1260 |
+
factors[i] = h
|
1261 |
+
|
1262 |
+
factors = dup_trial_division(F, factors, K)
|
1263 |
+
return lc, factors
|
1264 |
+
|
1265 |
+
|
1266 |
+
def dmp_ext_factor(f, u, K):
|
1267 |
+
"""Factor multivariate polynomials over algebraic number fields. """
|
1268 |
+
if not u:
|
1269 |
+
return dup_ext_factor(f, K)
|
1270 |
+
|
1271 |
+
lc = dmp_ground_LC(f, u, K)
|
1272 |
+
f = dmp_ground_monic(f, u, K)
|
1273 |
+
|
1274 |
+
if all(d <= 0 for d in dmp_degree_list(f, u)):
|
1275 |
+
return lc, []
|
1276 |
+
|
1277 |
+
f, F = dmp_sqf_part(f, u, K), f
|
1278 |
+
s, g, r = dmp_sqf_norm(f, u, K)
|
1279 |
+
|
1280 |
+
factors = dmp_factor_list_include(r, u, K.dom)
|
1281 |
+
|
1282 |
+
if len(factors) == 1:
|
1283 |
+
factors = [f]
|
1284 |
+
else:
|
1285 |
+
H = dmp_raise([K.one, s*K.unit], u, 0, K)
|
1286 |
+
|
1287 |
+
for i, (factor, _) in enumerate(factors):
|
1288 |
+
h = dmp_convert(factor, u, K.dom, K)
|
1289 |
+
h, _, g = dmp_inner_gcd(h, g, u, K)
|
1290 |
+
h = dmp_compose(h, H, u, K)
|
1291 |
+
factors[i] = h
|
1292 |
+
|
1293 |
+
return lc, dmp_trial_division(F, factors, u, K)
|
1294 |
+
|
1295 |
+
|
1296 |
+
def dup_gf_factor(f, K):
|
1297 |
+
"""Factor univariate polynomials over finite fields. """
|
1298 |
+
f = dup_convert(f, K, K.dom)
|
1299 |
+
|
1300 |
+
coeff, factors = gf_factor(f, K.mod, K.dom)
|
1301 |
+
|
1302 |
+
for i, (f, k) in enumerate(factors):
|
1303 |
+
factors[i] = (dup_convert(f, K.dom, K), k)
|
1304 |
+
|
1305 |
+
return K.convert(coeff, K.dom), factors
|
1306 |
+
|
1307 |
+
|
1308 |
+
def dmp_gf_factor(f, u, K):
|
1309 |
+
"""Factor multivariate polynomials over finite fields. """
|
1310 |
+
raise NotImplementedError('multivariate polynomials over finite fields')
|
1311 |
+
|
1312 |
+
|
1313 |
+
def dup_factor_list(f, K0):
|
1314 |
+
"""Factor univariate polynomials into irreducibles in `K[x]`. """
|
1315 |
+
j, f = dup_terms_gcd(f, K0)
|
1316 |
+
cont, f = dup_primitive(f, K0)
|
1317 |
+
|
1318 |
+
if K0.is_FiniteField:
|
1319 |
+
coeff, factors = dup_gf_factor(f, K0)
|
1320 |
+
elif K0.is_Algebraic:
|
1321 |
+
coeff, factors = dup_ext_factor(f, K0)
|
1322 |
+
elif K0.is_GaussianRing:
|
1323 |
+
coeff, factors = dup_zz_i_factor(f, K0)
|
1324 |
+
elif K0.is_GaussianField:
|
1325 |
+
coeff, factors = dup_qq_i_factor(f, K0)
|
1326 |
+
else:
|
1327 |
+
if not K0.is_Exact:
|
1328 |
+
K0_inexact, K0 = K0, K0.get_exact()
|
1329 |
+
f = dup_convert(f, K0_inexact, K0)
|
1330 |
+
else:
|
1331 |
+
K0_inexact = None
|
1332 |
+
|
1333 |
+
if K0.is_Field:
|
1334 |
+
K = K0.get_ring()
|
1335 |
+
|
1336 |
+
denom, f = dup_clear_denoms(f, K0, K)
|
1337 |
+
f = dup_convert(f, K0, K)
|
1338 |
+
else:
|
1339 |
+
K = K0
|
1340 |
+
|
1341 |
+
if K.is_ZZ:
|
1342 |
+
coeff, factors = dup_zz_factor(f, K)
|
1343 |
+
elif K.is_Poly:
|
1344 |
+
f, u = dmp_inject(f, 0, K)
|
1345 |
+
|
1346 |
+
coeff, factors = dmp_factor_list(f, u, K.dom)
|
1347 |
+
|
1348 |
+
for i, (f, k) in enumerate(factors):
|
1349 |
+
factors[i] = (dmp_eject(f, u, K), k)
|
1350 |
+
|
1351 |
+
coeff = K.convert(coeff, K.dom)
|
1352 |
+
else: # pragma: no cover
|
1353 |
+
raise DomainError('factorization not supported over %s' % K0)
|
1354 |
+
|
1355 |
+
if K0.is_Field:
|
1356 |
+
for i, (f, k) in enumerate(factors):
|
1357 |
+
factors[i] = (dup_convert(f, K, K0), k)
|
1358 |
+
|
1359 |
+
coeff = K0.convert(coeff, K)
|
1360 |
+
coeff = K0.quo(coeff, denom)
|
1361 |
+
|
1362 |
+
if K0_inexact:
|
1363 |
+
for i, (f, k) in enumerate(factors):
|
1364 |
+
max_norm = dup_max_norm(f, K0)
|
1365 |
+
f = dup_quo_ground(f, max_norm, K0)
|
1366 |
+
f = dup_convert(f, K0, K0_inexact)
|
1367 |
+
factors[i] = (f, k)
|
1368 |
+
coeff = K0.mul(coeff, K0.pow(max_norm, k))
|
1369 |
+
|
1370 |
+
coeff = K0_inexact.convert(coeff, K0)
|
1371 |
+
K0 = K0_inexact
|
1372 |
+
|
1373 |
+
if j:
|
1374 |
+
factors.insert(0, ([K0.one, K0.zero], j))
|
1375 |
+
|
1376 |
+
return coeff*cont, _sort_factors(factors)
|
1377 |
+
|
1378 |
+
|
1379 |
+
def dup_factor_list_include(f, K):
|
1380 |
+
"""Factor univariate polynomials into irreducibles in `K[x]`. """
|
1381 |
+
coeff, factors = dup_factor_list(f, K)
|
1382 |
+
|
1383 |
+
if not factors:
|
1384 |
+
return [(dup_strip([coeff]), 1)]
|
1385 |
+
else:
|
1386 |
+
g = dup_mul_ground(factors[0][0], coeff, K)
|
1387 |
+
return [(g, factors[0][1])] + factors[1:]
|
1388 |
+
|
1389 |
+
|
1390 |
+
def dmp_factor_list(f, u, K0):
|
1391 |
+
"""Factor multivariate polynomials into irreducibles in `K[X]`. """
|
1392 |
+
if not u:
|
1393 |
+
return dup_factor_list(f, K0)
|
1394 |
+
|
1395 |
+
J, f = dmp_terms_gcd(f, u, K0)
|
1396 |
+
cont, f = dmp_ground_primitive(f, u, K0)
|
1397 |
+
|
1398 |
+
if K0.is_FiniteField: # pragma: no cover
|
1399 |
+
coeff, factors = dmp_gf_factor(f, u, K0)
|
1400 |
+
elif K0.is_Algebraic:
|
1401 |
+
coeff, factors = dmp_ext_factor(f, u, K0)
|
1402 |
+
elif K0.is_GaussianRing:
|
1403 |
+
coeff, factors = dmp_zz_i_factor(f, u, K0)
|
1404 |
+
elif K0.is_GaussianField:
|
1405 |
+
coeff, factors = dmp_qq_i_factor(f, u, K0)
|
1406 |
+
else:
|
1407 |
+
if not K0.is_Exact:
|
1408 |
+
K0_inexact, K0 = K0, K0.get_exact()
|
1409 |
+
f = dmp_convert(f, u, K0_inexact, K0)
|
1410 |
+
else:
|
1411 |
+
K0_inexact = None
|
1412 |
+
|
1413 |
+
if K0.is_Field:
|
1414 |
+
K = K0.get_ring()
|
1415 |
+
|
1416 |
+
denom, f = dmp_clear_denoms(f, u, K0, K)
|
1417 |
+
f = dmp_convert(f, u, K0, K)
|
1418 |
+
else:
|
1419 |
+
K = K0
|
1420 |
+
|
1421 |
+
if K.is_ZZ:
|
1422 |
+
levels, f, v = dmp_exclude(f, u, K)
|
1423 |
+
coeff, factors = dmp_zz_factor(f, v, K)
|
1424 |
+
|
1425 |
+
for i, (f, k) in enumerate(factors):
|
1426 |
+
factors[i] = (dmp_include(f, levels, v, K), k)
|
1427 |
+
elif K.is_Poly:
|
1428 |
+
f, v = dmp_inject(f, u, K)
|
1429 |
+
|
1430 |
+
coeff, factors = dmp_factor_list(f, v, K.dom)
|
1431 |
+
|
1432 |
+
for i, (f, k) in enumerate(factors):
|
1433 |
+
factors[i] = (dmp_eject(f, v, K), k)
|
1434 |
+
|
1435 |
+
coeff = K.convert(coeff, K.dom)
|
1436 |
+
else: # pragma: no cover
|
1437 |
+
raise DomainError('factorization not supported over %s' % K0)
|
1438 |
+
|
1439 |
+
if K0.is_Field:
|
1440 |
+
for i, (f, k) in enumerate(factors):
|
1441 |
+
factors[i] = (dmp_convert(f, u, K, K0), k)
|
1442 |
+
|
1443 |
+
coeff = K0.convert(coeff, K)
|
1444 |
+
coeff = K0.quo(coeff, denom)
|
1445 |
+
|
1446 |
+
if K0_inexact:
|
1447 |
+
for i, (f, k) in enumerate(factors):
|
1448 |
+
max_norm = dmp_max_norm(f, u, K0)
|
1449 |
+
f = dmp_quo_ground(f, max_norm, u, K0)
|
1450 |
+
f = dmp_convert(f, u, K0, K0_inexact)
|
1451 |
+
factors[i] = (f, k)
|
1452 |
+
coeff = K0.mul(coeff, K0.pow(max_norm, k))
|
1453 |
+
|
1454 |
+
coeff = K0_inexact.convert(coeff, K0)
|
1455 |
+
K0 = K0_inexact
|
1456 |
+
|
1457 |
+
for i, j in enumerate(reversed(J)):
|
1458 |
+
if not j:
|
1459 |
+
continue
|
1460 |
+
|
1461 |
+
term = {(0,)*(u - i) + (1,) + (0,)*i: K0.one}
|
1462 |
+
factors.insert(0, (dmp_from_dict(term, u, K0), j))
|
1463 |
+
|
1464 |
+
return coeff*cont, _sort_factors(factors)
|
1465 |
+
|
1466 |
+
|
1467 |
+
def dmp_factor_list_include(f, u, K):
|
1468 |
+
"""Factor multivariate polynomials into irreducibles in `K[X]`. """
|
1469 |
+
if not u:
|
1470 |
+
return dup_factor_list_include(f, K)
|
1471 |
+
|
1472 |
+
coeff, factors = dmp_factor_list(f, u, K)
|
1473 |
+
|
1474 |
+
if not factors:
|
1475 |
+
return [(dmp_ground(coeff, u), 1)]
|
1476 |
+
else:
|
1477 |
+
g = dmp_mul_ground(factors[0][0], coeff, u, K)
|
1478 |
+
return [(g, factors[0][1])] + factors[1:]
|
1479 |
+
|
1480 |
+
|
1481 |
+
def dup_irreducible_p(f, K):
|
1482 |
+
"""
|
1483 |
+
Returns ``True`` if a univariate polynomial ``f`` has no factors
|
1484 |
+
over its domain.
|
1485 |
+
"""
|
1486 |
+
return dmp_irreducible_p(f, 0, K)
|
1487 |
+
|
1488 |
+
|
1489 |
+
def dmp_irreducible_p(f, u, K):
|
1490 |
+
"""
|
1491 |
+
Returns ``True`` if a multivariate polynomial ``f`` has no factors
|
1492 |
+
over its domain.
|
1493 |
+
"""
|
1494 |
+
_, factors = dmp_factor_list(f, u, K)
|
1495 |
+
|
1496 |
+
if not factors:
|
1497 |
+
return True
|
1498 |
+
elif len(factors) > 1:
|
1499 |
+
return False
|
1500 |
+
else:
|
1501 |
+
_, k = factors[0]
|
1502 |
+
return k == 1
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/fglmtools.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Implementation of matrix FGLM Groebner basis conversion algorithm. """
|
2 |
+
|
3 |
+
|
4 |
+
from sympy.polys.monomials import monomial_mul, monomial_div
|
5 |
+
|
6 |
+
def matrix_fglm(F, ring, O_to):
|
7 |
+
"""
|
8 |
+
Converts the reduced Groebner basis ``F`` of a zero-dimensional
|
9 |
+
ideal w.r.t. ``O_from`` to a reduced Groebner basis
|
10 |
+
w.r.t. ``O_to``.
|
11 |
+
|
12 |
+
References
|
13 |
+
==========
|
14 |
+
|
15 |
+
.. [1] J.C. Faugere, P. Gianni, D. Lazard, T. Mora (1994). Efficient
|
16 |
+
Computation of Zero-dimensional Groebner Bases by Change of
|
17 |
+
Ordering
|
18 |
+
"""
|
19 |
+
domain = ring.domain
|
20 |
+
ngens = ring.ngens
|
21 |
+
|
22 |
+
ring_to = ring.clone(order=O_to)
|
23 |
+
|
24 |
+
old_basis = _basis(F, ring)
|
25 |
+
M = _representing_matrices(old_basis, F, ring)
|
26 |
+
|
27 |
+
# V contains the normalforms (wrt O_from) of S
|
28 |
+
S = [ring.zero_monom]
|
29 |
+
V = [[domain.one] + [domain.zero] * (len(old_basis) - 1)]
|
30 |
+
G = []
|
31 |
+
|
32 |
+
L = [(i, 0) for i in range(ngens)] # (i, j) corresponds to x_i * S[j]
|
33 |
+
L.sort(key=lambda k_l: O_to(_incr_k(S[k_l[1]], k_l[0])), reverse=True)
|
34 |
+
t = L.pop()
|
35 |
+
|
36 |
+
P = _identity_matrix(len(old_basis), domain)
|
37 |
+
|
38 |
+
while True:
|
39 |
+
s = len(S)
|
40 |
+
v = _matrix_mul(M[t[0]], V[t[1]])
|
41 |
+
_lambda = _matrix_mul(P, v)
|
42 |
+
|
43 |
+
if all(_lambda[i] == domain.zero for i in range(s, len(old_basis))):
|
44 |
+
# there is a linear combination of v by V
|
45 |
+
lt = ring.term_new(_incr_k(S[t[1]], t[0]), domain.one)
|
46 |
+
rest = ring.from_dict({S[i]: _lambda[i] for i in range(s)})
|
47 |
+
|
48 |
+
g = (lt - rest).set_ring(ring_to)
|
49 |
+
if g:
|
50 |
+
G.append(g)
|
51 |
+
else:
|
52 |
+
# v is linearly independent from V
|
53 |
+
P = _update(s, _lambda, P)
|
54 |
+
S.append(_incr_k(S[t[1]], t[0]))
|
55 |
+
V.append(v)
|
56 |
+
|
57 |
+
L.extend([(i, s) for i in range(ngens)])
|
58 |
+
L = list(set(L))
|
59 |
+
L.sort(key=lambda k_l: O_to(_incr_k(S[k_l[1]], k_l[0])), reverse=True)
|
60 |
+
|
61 |
+
L = [(k, l) for (k, l) in L if all(monomial_div(_incr_k(S[l], k), g.LM) is None for g in G)]
|
62 |
+
|
63 |
+
if not L:
|
64 |
+
G = [ g.monic() for g in G ]
|
65 |
+
return sorted(G, key=lambda g: O_to(g.LM), reverse=True)
|
66 |
+
|
67 |
+
t = L.pop()
|
68 |
+
|
69 |
+
|
70 |
+
def _incr_k(m, k):
|
71 |
+
return tuple(list(m[:k]) + [m[k] + 1] + list(m[k + 1:]))
|
72 |
+
|
73 |
+
|
74 |
+
def _identity_matrix(n, domain):
|
75 |
+
M = [[domain.zero]*n for _ in range(n)]
|
76 |
+
|
77 |
+
for i in range(n):
|
78 |
+
M[i][i] = domain.one
|
79 |
+
|
80 |
+
return M
|
81 |
+
|
82 |
+
|
83 |
+
def _matrix_mul(M, v):
|
84 |
+
return [sum([row[i] * v[i] for i in range(len(v))]) for row in M]
|
85 |
+
|
86 |
+
|
87 |
+
def _update(s, _lambda, P):
|
88 |
+
"""
|
89 |
+
Update ``P`` such that for the updated `P'` `P' v = e_{s}`.
|
90 |
+
"""
|
91 |
+
k = min([j for j in range(s, len(_lambda)) if _lambda[j] != 0])
|
92 |
+
|
93 |
+
for r in range(len(_lambda)):
|
94 |
+
if r != k:
|
95 |
+
P[r] = [P[r][j] - (P[k][j] * _lambda[r]) / _lambda[k] for j in range(len(P[r]))]
|
96 |
+
|
97 |
+
P[k] = [P[k][j] / _lambda[k] for j in range(len(P[k]))]
|
98 |
+
P[k], P[s] = P[s], P[k]
|
99 |
+
|
100 |
+
return P
|
101 |
+
|
102 |
+
|
103 |
+
def _representing_matrices(basis, G, ring):
|
104 |
+
r"""
|
105 |
+
Compute the matrices corresponding to the linear maps `m \mapsto
|
106 |
+
x_i m` for all variables `x_i`.
|
107 |
+
"""
|
108 |
+
domain = ring.domain
|
109 |
+
u = ring.ngens-1
|
110 |
+
|
111 |
+
def var(i):
|
112 |
+
return tuple([0] * i + [1] + [0] * (u - i))
|
113 |
+
|
114 |
+
def representing_matrix(m):
|
115 |
+
M = [[domain.zero] * len(basis) for _ in range(len(basis))]
|
116 |
+
|
117 |
+
for i, v in enumerate(basis):
|
118 |
+
r = ring.term_new(monomial_mul(m, v), domain.one).rem(G)
|
119 |
+
|
120 |
+
for monom, coeff in r.terms():
|
121 |
+
j = basis.index(monom)
|
122 |
+
M[j][i] = coeff
|
123 |
+
|
124 |
+
return M
|
125 |
+
|
126 |
+
return [representing_matrix(var(i)) for i in range(u + 1)]
|
127 |
+
|
128 |
+
|
129 |
+
def _basis(G, ring):
|
130 |
+
r"""
|
131 |
+
Computes a list of monomials which are not divisible by the leading
|
132 |
+
monomials wrt to ``O`` of ``G``. These monomials are a basis of
|
133 |
+
`K[X_1, \ldots, X_n]/(G)`.
|
134 |
+
"""
|
135 |
+
order = ring.order
|
136 |
+
|
137 |
+
leading_monomials = [g.LM for g in G]
|
138 |
+
candidates = [ring.zero_monom]
|
139 |
+
basis = []
|
140 |
+
|
141 |
+
while candidates:
|
142 |
+
t = candidates.pop()
|
143 |
+
basis.append(t)
|
144 |
+
|
145 |
+
new_candidates = [_incr_k(t, k) for k in range(ring.ngens)
|
146 |
+
if all(monomial_div(_incr_k(t, k), lmg) is None
|
147 |
+
for lmg in leading_monomials)]
|
148 |
+
candidates.extend(new_candidates)
|
149 |
+
candidates.sort(key=order, reverse=True)
|
150 |
+
|
151 |
+
basis = list(set(basis))
|
152 |
+
|
153 |
+
return sorted(basis, key=order)
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/fields.py
ADDED
@@ -0,0 +1,631 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Sparse rational function fields. """
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
from typing import Any
|
5 |
+
from functools import reduce
|
6 |
+
|
7 |
+
from operator import add, mul, lt, le, gt, ge
|
8 |
+
|
9 |
+
from sympy.core.expr import Expr
|
10 |
+
from sympy.core.mod import Mod
|
11 |
+
from sympy.core.numbers import Exp1
|
12 |
+
from sympy.core.singleton import S
|
13 |
+
from sympy.core.symbol import Symbol
|
14 |
+
from sympy.core.sympify import CantSympify, sympify
|
15 |
+
from sympy.functions.elementary.exponential import ExpBase
|
16 |
+
from sympy.polys.domains.domainelement import DomainElement
|
17 |
+
from sympy.polys.domains.fractionfield import FractionField
|
18 |
+
from sympy.polys.domains.polynomialring import PolynomialRing
|
19 |
+
from sympy.polys.constructor import construct_domain
|
20 |
+
from sympy.polys.orderings import lex
|
21 |
+
from sympy.polys.polyerrors import CoercionFailed
|
22 |
+
from sympy.polys.polyoptions import build_options
|
23 |
+
from sympy.polys.polyutils import _parallel_dict_from_expr
|
24 |
+
from sympy.polys.rings import PolyElement
|
25 |
+
from sympy.printing.defaults import DefaultPrinting
|
26 |
+
from sympy.utilities import public
|
27 |
+
from sympy.utilities.iterables import is_sequence
|
28 |
+
from sympy.utilities.magic import pollute
|
29 |
+
|
30 |
+
@public
|
31 |
+
def field(symbols, domain, order=lex):
|
32 |
+
"""Construct new rational function field returning (field, x1, ..., xn). """
|
33 |
+
_field = FracField(symbols, domain, order)
|
34 |
+
return (_field,) + _field.gens
|
35 |
+
|
36 |
+
@public
|
37 |
+
def xfield(symbols, domain, order=lex):
|
38 |
+
"""Construct new rational function field returning (field, (x1, ..., xn)). """
|
39 |
+
_field = FracField(symbols, domain, order)
|
40 |
+
return (_field, _field.gens)
|
41 |
+
|
42 |
+
@public
|
43 |
+
def vfield(symbols, domain, order=lex):
|
44 |
+
"""Construct new rational function field and inject generators into global namespace. """
|
45 |
+
_field = FracField(symbols, domain, order)
|
46 |
+
pollute([ sym.name for sym in _field.symbols ], _field.gens)
|
47 |
+
return _field
|
48 |
+
|
49 |
+
@public
|
50 |
+
def sfield(exprs, *symbols, **options):
|
51 |
+
"""Construct a field deriving generators and domain
|
52 |
+
from options and input expressions.
|
53 |
+
|
54 |
+
Parameters
|
55 |
+
==========
|
56 |
+
|
57 |
+
exprs : py:class:`~.Expr` or sequence of :py:class:`~.Expr` (sympifiable)
|
58 |
+
|
59 |
+
symbols : sequence of :py:class:`~.Symbol`/:py:class:`~.Expr`
|
60 |
+
|
61 |
+
options : keyword arguments understood by :py:class:`~.Options`
|
62 |
+
|
63 |
+
Examples
|
64 |
+
========
|
65 |
+
|
66 |
+
>>> from sympy import exp, log, symbols, sfield
|
67 |
+
|
68 |
+
>>> x = symbols("x")
|
69 |
+
>>> K, f = sfield((x*log(x) + 4*x**2)*exp(1/x + log(x)/3)/x**2)
|
70 |
+
>>> K
|
71 |
+
Rational function field in x, exp(1/x), log(x), x**(1/3) over ZZ with lex order
|
72 |
+
>>> f
|
73 |
+
(4*x**2*(exp(1/x)) + x*(exp(1/x))*(log(x)))/((x**(1/3))**5)
|
74 |
+
"""
|
75 |
+
single = False
|
76 |
+
if not is_sequence(exprs):
|
77 |
+
exprs, single = [exprs], True
|
78 |
+
|
79 |
+
exprs = list(map(sympify, exprs))
|
80 |
+
opt = build_options(symbols, options)
|
81 |
+
numdens = []
|
82 |
+
for expr in exprs:
|
83 |
+
numdens.extend(expr.as_numer_denom())
|
84 |
+
reps, opt = _parallel_dict_from_expr(numdens, opt)
|
85 |
+
|
86 |
+
if opt.domain is None:
|
87 |
+
# NOTE: this is inefficient because construct_domain() automatically
|
88 |
+
# performs conversion to the target domain. It shouldn't do this.
|
89 |
+
coeffs = sum([list(rep.values()) for rep in reps], [])
|
90 |
+
opt.domain, _ = construct_domain(coeffs, opt=opt)
|
91 |
+
|
92 |
+
_field = FracField(opt.gens, opt.domain, opt.order)
|
93 |
+
fracs = []
|
94 |
+
for i in range(0, len(reps), 2):
|
95 |
+
fracs.append(_field(tuple(reps[i:i+2])))
|
96 |
+
|
97 |
+
if single:
|
98 |
+
return (_field, fracs[0])
|
99 |
+
else:
|
100 |
+
return (_field, fracs)
|
101 |
+
|
102 |
+
_field_cache: dict[Any, Any] = {}
|
103 |
+
|
104 |
+
class FracField(DefaultPrinting):
|
105 |
+
"""Multivariate distributed rational function field. """
|
106 |
+
|
107 |
+
def __new__(cls, symbols, domain, order=lex):
|
108 |
+
from sympy.polys.rings import PolyRing
|
109 |
+
ring = PolyRing(symbols, domain, order)
|
110 |
+
symbols = ring.symbols
|
111 |
+
ngens = ring.ngens
|
112 |
+
domain = ring.domain
|
113 |
+
order = ring.order
|
114 |
+
|
115 |
+
_hash_tuple = (cls.__name__, symbols, ngens, domain, order)
|
116 |
+
obj = _field_cache.get(_hash_tuple)
|
117 |
+
|
118 |
+
if obj is None:
|
119 |
+
obj = object.__new__(cls)
|
120 |
+
obj._hash_tuple = _hash_tuple
|
121 |
+
obj._hash = hash(_hash_tuple)
|
122 |
+
obj.ring = ring
|
123 |
+
obj.dtype = type("FracElement", (FracElement,), {"field": obj})
|
124 |
+
obj.symbols = symbols
|
125 |
+
obj.ngens = ngens
|
126 |
+
obj.domain = domain
|
127 |
+
obj.order = order
|
128 |
+
|
129 |
+
obj.zero = obj.dtype(ring.zero)
|
130 |
+
obj.one = obj.dtype(ring.one)
|
131 |
+
|
132 |
+
obj.gens = obj._gens()
|
133 |
+
|
134 |
+
for symbol, generator in zip(obj.symbols, obj.gens):
|
135 |
+
if isinstance(symbol, Symbol):
|
136 |
+
name = symbol.name
|
137 |
+
|
138 |
+
if not hasattr(obj, name):
|
139 |
+
setattr(obj, name, generator)
|
140 |
+
|
141 |
+
_field_cache[_hash_tuple] = obj
|
142 |
+
|
143 |
+
return obj
|
144 |
+
|
145 |
+
def _gens(self):
|
146 |
+
"""Return a list of polynomial generators. """
|
147 |
+
return tuple([ self.dtype(gen) for gen in self.ring.gens ])
|
148 |
+
|
149 |
+
def __getnewargs__(self):
|
150 |
+
return (self.symbols, self.domain, self.order)
|
151 |
+
|
152 |
+
def __hash__(self):
|
153 |
+
return self._hash
|
154 |
+
|
155 |
+
def index(self, gen):
|
156 |
+
if isinstance(gen, self.dtype):
|
157 |
+
return self.ring.index(gen.to_poly())
|
158 |
+
else:
|
159 |
+
raise ValueError("expected a %s, got %s instead" % (self.dtype,gen))
|
160 |
+
|
161 |
+
def __eq__(self, other):
|
162 |
+
return isinstance(other, FracField) and \
|
163 |
+
(self.symbols, self.ngens, self.domain, self.order) == \
|
164 |
+
(other.symbols, other.ngens, other.domain, other.order)
|
165 |
+
|
166 |
+
def __ne__(self, other):
|
167 |
+
return not self == other
|
168 |
+
|
169 |
+
def raw_new(self, numer, denom=None):
|
170 |
+
return self.dtype(numer, denom)
|
171 |
+
def new(self, numer, denom=None):
|
172 |
+
if denom is None: denom = self.ring.one
|
173 |
+
numer, denom = numer.cancel(denom)
|
174 |
+
return self.raw_new(numer, denom)
|
175 |
+
|
176 |
+
def domain_new(self, element):
|
177 |
+
return self.domain.convert(element)
|
178 |
+
|
179 |
+
def ground_new(self, element):
|
180 |
+
try:
|
181 |
+
return self.new(self.ring.ground_new(element))
|
182 |
+
except CoercionFailed:
|
183 |
+
domain = self.domain
|
184 |
+
|
185 |
+
if not domain.is_Field and domain.has_assoc_Field:
|
186 |
+
ring = self.ring
|
187 |
+
ground_field = domain.get_field()
|
188 |
+
element = ground_field.convert(element)
|
189 |
+
numer = ring.ground_new(ground_field.numer(element))
|
190 |
+
denom = ring.ground_new(ground_field.denom(element))
|
191 |
+
return self.raw_new(numer, denom)
|
192 |
+
else:
|
193 |
+
raise
|
194 |
+
|
195 |
+
def field_new(self, element):
|
196 |
+
if isinstance(element, FracElement):
|
197 |
+
if self == element.field:
|
198 |
+
return element
|
199 |
+
|
200 |
+
if isinstance(self.domain, FractionField) and \
|
201 |
+
self.domain.field == element.field:
|
202 |
+
return self.ground_new(element)
|
203 |
+
elif isinstance(self.domain, PolynomialRing) and \
|
204 |
+
self.domain.ring.to_field() == element.field:
|
205 |
+
return self.ground_new(element)
|
206 |
+
else:
|
207 |
+
raise NotImplementedError("conversion")
|
208 |
+
elif isinstance(element, PolyElement):
|
209 |
+
denom, numer = element.clear_denoms()
|
210 |
+
|
211 |
+
if isinstance(self.domain, PolynomialRing) and \
|
212 |
+
numer.ring == self.domain.ring:
|
213 |
+
numer = self.ring.ground_new(numer)
|
214 |
+
elif isinstance(self.domain, FractionField) and \
|
215 |
+
numer.ring == self.domain.field.to_ring():
|
216 |
+
numer = self.ring.ground_new(numer)
|
217 |
+
else:
|
218 |
+
numer = numer.set_ring(self.ring)
|
219 |
+
|
220 |
+
denom = self.ring.ground_new(denom)
|
221 |
+
return self.raw_new(numer, denom)
|
222 |
+
elif isinstance(element, tuple) and len(element) == 2:
|
223 |
+
numer, denom = list(map(self.ring.ring_new, element))
|
224 |
+
return self.new(numer, denom)
|
225 |
+
elif isinstance(element, str):
|
226 |
+
raise NotImplementedError("parsing")
|
227 |
+
elif isinstance(element, Expr):
|
228 |
+
return self.from_expr(element)
|
229 |
+
else:
|
230 |
+
return self.ground_new(element)
|
231 |
+
|
232 |
+
__call__ = field_new
|
233 |
+
|
234 |
+
def _rebuild_expr(self, expr, mapping):
|
235 |
+
domain = self.domain
|
236 |
+
powers = tuple((gen, gen.as_base_exp()) for gen in mapping.keys()
|
237 |
+
if gen.is_Pow or isinstance(gen, ExpBase))
|
238 |
+
|
239 |
+
def _rebuild(expr):
|
240 |
+
generator = mapping.get(expr)
|
241 |
+
|
242 |
+
if generator is not None:
|
243 |
+
return generator
|
244 |
+
elif expr.is_Add:
|
245 |
+
return reduce(add, list(map(_rebuild, expr.args)))
|
246 |
+
elif expr.is_Mul:
|
247 |
+
return reduce(mul, list(map(_rebuild, expr.args)))
|
248 |
+
elif expr.is_Pow or isinstance(expr, (ExpBase, Exp1)):
|
249 |
+
b, e = expr.as_base_exp()
|
250 |
+
# look for bg**eg whose integer power may be b**e
|
251 |
+
for gen, (bg, eg) in powers:
|
252 |
+
if bg == b and Mod(e, eg) == 0:
|
253 |
+
return mapping.get(gen)**int(e/eg)
|
254 |
+
if e.is_Integer and e is not S.One:
|
255 |
+
return _rebuild(b)**int(e)
|
256 |
+
elif mapping.get(1/expr) is not None:
|
257 |
+
return 1/mapping.get(1/expr)
|
258 |
+
|
259 |
+
try:
|
260 |
+
return domain.convert(expr)
|
261 |
+
except CoercionFailed:
|
262 |
+
if not domain.is_Field and domain.has_assoc_Field:
|
263 |
+
return domain.get_field().convert(expr)
|
264 |
+
else:
|
265 |
+
raise
|
266 |
+
|
267 |
+
return _rebuild(expr)
|
268 |
+
|
269 |
+
def from_expr(self, expr):
|
270 |
+
mapping = dict(list(zip(self.symbols, self.gens)))
|
271 |
+
|
272 |
+
try:
|
273 |
+
frac = self._rebuild_expr(sympify(expr), mapping)
|
274 |
+
except CoercionFailed:
|
275 |
+
raise ValueError("expected an expression convertible to a rational function in %s, got %s" % (self, expr))
|
276 |
+
else:
|
277 |
+
return self.field_new(frac)
|
278 |
+
|
279 |
+
def to_domain(self):
|
280 |
+
return FractionField(self)
|
281 |
+
|
282 |
+
def to_ring(self):
|
283 |
+
from sympy.polys.rings import PolyRing
|
284 |
+
return PolyRing(self.symbols, self.domain, self.order)
|
285 |
+
|
286 |
+
class FracElement(DomainElement, DefaultPrinting, CantSympify):
|
287 |
+
"""Element of multivariate distributed rational function field. """
|
288 |
+
|
289 |
+
def __init__(self, numer, denom=None):
|
290 |
+
if denom is None:
|
291 |
+
denom = self.field.ring.one
|
292 |
+
elif not denom:
|
293 |
+
raise ZeroDivisionError("zero denominator")
|
294 |
+
|
295 |
+
self.numer = numer
|
296 |
+
self.denom = denom
|
297 |
+
|
298 |
+
def raw_new(f, numer, denom):
|
299 |
+
return f.__class__(numer, denom)
|
300 |
+
def new(f, numer, denom):
|
301 |
+
return f.raw_new(*numer.cancel(denom))
|
302 |
+
|
303 |
+
def to_poly(f):
|
304 |
+
if f.denom != 1:
|
305 |
+
raise ValueError("f.denom should be 1")
|
306 |
+
return f.numer
|
307 |
+
|
308 |
+
def parent(self):
|
309 |
+
return self.field.to_domain()
|
310 |
+
|
311 |
+
def __getnewargs__(self):
|
312 |
+
return (self.field, self.numer, self.denom)
|
313 |
+
|
314 |
+
_hash = None
|
315 |
+
|
316 |
+
def __hash__(self):
|
317 |
+
_hash = self._hash
|
318 |
+
if _hash is None:
|
319 |
+
self._hash = _hash = hash((self.field, self.numer, self.denom))
|
320 |
+
return _hash
|
321 |
+
|
322 |
+
def copy(self):
|
323 |
+
return self.raw_new(self.numer.copy(), self.denom.copy())
|
324 |
+
|
325 |
+
def set_field(self, new_field):
|
326 |
+
if self.field == new_field:
|
327 |
+
return self
|
328 |
+
else:
|
329 |
+
new_ring = new_field.ring
|
330 |
+
numer = self.numer.set_ring(new_ring)
|
331 |
+
denom = self.denom.set_ring(new_ring)
|
332 |
+
return new_field.new(numer, denom)
|
333 |
+
|
334 |
+
def as_expr(self, *symbols):
|
335 |
+
return self.numer.as_expr(*symbols)/self.denom.as_expr(*symbols)
|
336 |
+
|
337 |
+
def __eq__(f, g):
|
338 |
+
if isinstance(g, FracElement) and f.field == g.field:
|
339 |
+
return f.numer == g.numer and f.denom == g.denom
|
340 |
+
else:
|
341 |
+
return f.numer == g and f.denom == f.field.ring.one
|
342 |
+
|
343 |
+
def __ne__(f, g):
|
344 |
+
return not f == g
|
345 |
+
|
346 |
+
def __bool__(f):
|
347 |
+
return bool(f.numer)
|
348 |
+
|
349 |
+
def sort_key(self):
|
350 |
+
return (self.denom.sort_key(), self.numer.sort_key())
|
351 |
+
|
352 |
+
def _cmp(f1, f2, op):
|
353 |
+
if isinstance(f2, f1.field.dtype):
|
354 |
+
return op(f1.sort_key(), f2.sort_key())
|
355 |
+
else:
|
356 |
+
return NotImplemented
|
357 |
+
|
358 |
+
def __lt__(f1, f2):
|
359 |
+
return f1._cmp(f2, lt)
|
360 |
+
def __le__(f1, f2):
|
361 |
+
return f1._cmp(f2, le)
|
362 |
+
def __gt__(f1, f2):
|
363 |
+
return f1._cmp(f2, gt)
|
364 |
+
def __ge__(f1, f2):
|
365 |
+
return f1._cmp(f2, ge)
|
366 |
+
|
367 |
+
def __pos__(f):
|
368 |
+
"""Negate all coefficients in ``f``. """
|
369 |
+
return f.raw_new(f.numer, f.denom)
|
370 |
+
|
371 |
+
def __neg__(f):
|
372 |
+
"""Negate all coefficients in ``f``. """
|
373 |
+
return f.raw_new(-f.numer, f.denom)
|
374 |
+
|
375 |
+
def _extract_ground(self, element):
|
376 |
+
domain = self.field.domain
|
377 |
+
|
378 |
+
try:
|
379 |
+
element = domain.convert(element)
|
380 |
+
except CoercionFailed:
|
381 |
+
if not domain.is_Field and domain.has_assoc_Field:
|
382 |
+
ground_field = domain.get_field()
|
383 |
+
|
384 |
+
try:
|
385 |
+
element = ground_field.convert(element)
|
386 |
+
except CoercionFailed:
|
387 |
+
pass
|
388 |
+
else:
|
389 |
+
return -1, ground_field.numer(element), ground_field.denom(element)
|
390 |
+
|
391 |
+
return 0, None, None
|
392 |
+
else:
|
393 |
+
return 1, element, None
|
394 |
+
|
395 |
+
def __add__(f, g):
|
396 |
+
"""Add rational functions ``f`` and ``g``. """
|
397 |
+
field = f.field
|
398 |
+
|
399 |
+
if not g:
|
400 |
+
return f
|
401 |
+
elif not f:
|
402 |
+
return g
|
403 |
+
elif isinstance(g, field.dtype):
|
404 |
+
if f.denom == g.denom:
|
405 |
+
return f.new(f.numer + g.numer, f.denom)
|
406 |
+
else:
|
407 |
+
return f.new(f.numer*g.denom + f.denom*g.numer, f.denom*g.denom)
|
408 |
+
elif isinstance(g, field.ring.dtype):
|
409 |
+
return f.new(f.numer + f.denom*g, f.denom)
|
410 |
+
else:
|
411 |
+
if isinstance(g, FracElement):
|
412 |
+
if isinstance(field.domain, FractionField) and field.domain.field == g.field:
|
413 |
+
pass
|
414 |
+
elif isinstance(g.field.domain, FractionField) and g.field.domain.field == field:
|
415 |
+
return g.__radd__(f)
|
416 |
+
else:
|
417 |
+
return NotImplemented
|
418 |
+
elif isinstance(g, PolyElement):
|
419 |
+
if isinstance(field.domain, PolynomialRing) and field.domain.ring == g.ring:
|
420 |
+
pass
|
421 |
+
else:
|
422 |
+
return g.__radd__(f)
|
423 |
+
|
424 |
+
return f.__radd__(g)
|
425 |
+
|
426 |
+
def __radd__(f, c):
|
427 |
+
if isinstance(c, f.field.ring.dtype):
|
428 |
+
return f.new(f.numer + f.denom*c, f.denom)
|
429 |
+
|
430 |
+
op, g_numer, g_denom = f._extract_ground(c)
|
431 |
+
|
432 |
+
if op == 1:
|
433 |
+
return f.new(f.numer + f.denom*g_numer, f.denom)
|
434 |
+
elif not op:
|
435 |
+
return NotImplemented
|
436 |
+
else:
|
437 |
+
return f.new(f.numer*g_denom + f.denom*g_numer, f.denom*g_denom)
|
438 |
+
|
439 |
+
def __sub__(f, g):
|
440 |
+
"""Subtract rational functions ``f`` and ``g``. """
|
441 |
+
field = f.field
|
442 |
+
|
443 |
+
if not g:
|
444 |
+
return f
|
445 |
+
elif not f:
|
446 |
+
return -g
|
447 |
+
elif isinstance(g, field.dtype):
|
448 |
+
if f.denom == g.denom:
|
449 |
+
return f.new(f.numer - g.numer, f.denom)
|
450 |
+
else:
|
451 |
+
return f.new(f.numer*g.denom - f.denom*g.numer, f.denom*g.denom)
|
452 |
+
elif isinstance(g, field.ring.dtype):
|
453 |
+
return f.new(f.numer - f.denom*g, f.denom)
|
454 |
+
else:
|
455 |
+
if isinstance(g, FracElement):
|
456 |
+
if isinstance(field.domain, FractionField) and field.domain.field == g.field:
|
457 |
+
pass
|
458 |
+
elif isinstance(g.field.domain, FractionField) and g.field.domain.field == field:
|
459 |
+
return g.__rsub__(f)
|
460 |
+
else:
|
461 |
+
return NotImplemented
|
462 |
+
elif isinstance(g, PolyElement):
|
463 |
+
if isinstance(field.domain, PolynomialRing) and field.domain.ring == g.ring:
|
464 |
+
pass
|
465 |
+
else:
|
466 |
+
return g.__rsub__(f)
|
467 |
+
|
468 |
+
op, g_numer, g_denom = f._extract_ground(g)
|
469 |
+
|
470 |
+
if op == 1:
|
471 |
+
return f.new(f.numer - f.denom*g_numer, f.denom)
|
472 |
+
elif not op:
|
473 |
+
return NotImplemented
|
474 |
+
else:
|
475 |
+
return f.new(f.numer*g_denom - f.denom*g_numer, f.denom*g_denom)
|
476 |
+
|
477 |
+
def __rsub__(f, c):
|
478 |
+
if isinstance(c, f.field.ring.dtype):
|
479 |
+
return f.new(-f.numer + f.denom*c, f.denom)
|
480 |
+
|
481 |
+
op, g_numer, g_denom = f._extract_ground(c)
|
482 |
+
|
483 |
+
if op == 1:
|
484 |
+
return f.new(-f.numer + f.denom*g_numer, f.denom)
|
485 |
+
elif not op:
|
486 |
+
return NotImplemented
|
487 |
+
else:
|
488 |
+
return f.new(-f.numer*g_denom + f.denom*g_numer, f.denom*g_denom)
|
489 |
+
|
490 |
+
def __mul__(f, g):
|
491 |
+
"""Multiply rational functions ``f`` and ``g``. """
|
492 |
+
field = f.field
|
493 |
+
|
494 |
+
if not f or not g:
|
495 |
+
return field.zero
|
496 |
+
elif isinstance(g, field.dtype):
|
497 |
+
return f.new(f.numer*g.numer, f.denom*g.denom)
|
498 |
+
elif isinstance(g, field.ring.dtype):
|
499 |
+
return f.new(f.numer*g, f.denom)
|
500 |
+
else:
|
501 |
+
if isinstance(g, FracElement):
|
502 |
+
if isinstance(field.domain, FractionField) and field.domain.field == g.field:
|
503 |
+
pass
|
504 |
+
elif isinstance(g.field.domain, FractionField) and g.field.domain.field == field:
|
505 |
+
return g.__rmul__(f)
|
506 |
+
else:
|
507 |
+
return NotImplemented
|
508 |
+
elif isinstance(g, PolyElement):
|
509 |
+
if isinstance(field.domain, PolynomialRing) and field.domain.ring == g.ring:
|
510 |
+
pass
|
511 |
+
else:
|
512 |
+
return g.__rmul__(f)
|
513 |
+
|
514 |
+
return f.__rmul__(g)
|
515 |
+
|
516 |
+
def __rmul__(f, c):
|
517 |
+
if isinstance(c, f.field.ring.dtype):
|
518 |
+
return f.new(f.numer*c, f.denom)
|
519 |
+
|
520 |
+
op, g_numer, g_denom = f._extract_ground(c)
|
521 |
+
|
522 |
+
if op == 1:
|
523 |
+
return f.new(f.numer*g_numer, f.denom)
|
524 |
+
elif not op:
|
525 |
+
return NotImplemented
|
526 |
+
else:
|
527 |
+
return f.new(f.numer*g_numer, f.denom*g_denom)
|
528 |
+
|
529 |
+
def __truediv__(f, g):
|
530 |
+
"""Computes quotient of fractions ``f`` and ``g``. """
|
531 |
+
field = f.field
|
532 |
+
|
533 |
+
if not g:
|
534 |
+
raise ZeroDivisionError
|
535 |
+
elif isinstance(g, field.dtype):
|
536 |
+
return f.new(f.numer*g.denom, f.denom*g.numer)
|
537 |
+
elif isinstance(g, field.ring.dtype):
|
538 |
+
return f.new(f.numer, f.denom*g)
|
539 |
+
else:
|
540 |
+
if isinstance(g, FracElement):
|
541 |
+
if isinstance(field.domain, FractionField) and field.domain.field == g.field:
|
542 |
+
pass
|
543 |
+
elif isinstance(g.field.domain, FractionField) and g.field.domain.field == field:
|
544 |
+
return g.__rtruediv__(f)
|
545 |
+
else:
|
546 |
+
return NotImplemented
|
547 |
+
elif isinstance(g, PolyElement):
|
548 |
+
if isinstance(field.domain, PolynomialRing) and field.domain.ring == g.ring:
|
549 |
+
pass
|
550 |
+
else:
|
551 |
+
return g.__rtruediv__(f)
|
552 |
+
|
553 |
+
op, g_numer, g_denom = f._extract_ground(g)
|
554 |
+
|
555 |
+
if op == 1:
|
556 |
+
return f.new(f.numer, f.denom*g_numer)
|
557 |
+
elif not op:
|
558 |
+
return NotImplemented
|
559 |
+
else:
|
560 |
+
return f.new(f.numer*g_denom, f.denom*g_numer)
|
561 |
+
|
562 |
+
def __rtruediv__(f, c):
|
563 |
+
if not f:
|
564 |
+
raise ZeroDivisionError
|
565 |
+
elif isinstance(c, f.field.ring.dtype):
|
566 |
+
return f.new(f.denom*c, f.numer)
|
567 |
+
|
568 |
+
op, g_numer, g_denom = f._extract_ground(c)
|
569 |
+
|
570 |
+
if op == 1:
|
571 |
+
return f.new(f.denom*g_numer, f.numer)
|
572 |
+
elif not op:
|
573 |
+
return NotImplemented
|
574 |
+
else:
|
575 |
+
return f.new(f.denom*g_numer, f.numer*g_denom)
|
576 |
+
|
577 |
+
def __pow__(f, n):
|
578 |
+
"""Raise ``f`` to a non-negative power ``n``. """
|
579 |
+
if n >= 0:
|
580 |
+
return f.raw_new(f.numer**n, f.denom**n)
|
581 |
+
elif not f:
|
582 |
+
raise ZeroDivisionError
|
583 |
+
else:
|
584 |
+
return f.raw_new(f.denom**-n, f.numer**-n)
|
585 |
+
|
586 |
+
def diff(f, x):
|
587 |
+
"""Computes partial derivative in ``x``.
|
588 |
+
|
589 |
+
Examples
|
590 |
+
========
|
591 |
+
|
592 |
+
>>> from sympy.polys.fields import field
|
593 |
+
>>> from sympy.polys.domains import ZZ
|
594 |
+
|
595 |
+
>>> _, x, y, z = field("x,y,z", ZZ)
|
596 |
+
>>> ((x**2 + y)/(z + 1)).diff(x)
|
597 |
+
2*x/(z + 1)
|
598 |
+
|
599 |
+
"""
|
600 |
+
x = x.to_poly()
|
601 |
+
return f.new(f.numer.diff(x)*f.denom - f.numer*f.denom.diff(x), f.denom**2)
|
602 |
+
|
603 |
+
def __call__(f, *values):
|
604 |
+
if 0 < len(values) <= f.field.ngens:
|
605 |
+
return f.evaluate(list(zip(f.field.gens, values)))
|
606 |
+
else:
|
607 |
+
raise ValueError("expected at least 1 and at most %s values, got %s" % (f.field.ngens, len(values)))
|
608 |
+
|
609 |
+
def evaluate(f, x, a=None):
|
610 |
+
if isinstance(x, list) and a is None:
|
611 |
+
x = [ (X.to_poly(), a) for X, a in x ]
|
612 |
+
numer, denom = f.numer.evaluate(x), f.denom.evaluate(x)
|
613 |
+
else:
|
614 |
+
x = x.to_poly()
|
615 |
+
numer, denom = f.numer.evaluate(x, a), f.denom.evaluate(x, a)
|
616 |
+
|
617 |
+
field = numer.ring.to_field()
|
618 |
+
return field.new(numer, denom)
|
619 |
+
|
620 |
+
def subs(f, x, a=None):
|
621 |
+
if isinstance(x, list) and a is None:
|
622 |
+
x = [ (X.to_poly(), a) for X, a in x ]
|
623 |
+
numer, denom = f.numer.subs(x), f.denom.subs(x)
|
624 |
+
else:
|
625 |
+
x = x.to_poly()
|
626 |
+
numer, denom = f.numer.subs(x, a), f.denom.subs(x, a)
|
627 |
+
|
628 |
+
return f.new(numer, denom)
|
629 |
+
|
630 |
+
def compose(f, x, a=None):
|
631 |
+
raise NotImplementedError
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/galoistools.py
ADDED
@@ -0,0 +1,2363 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Dense univariate polynomials with coefficients in Galois fields. """
|
2 |
+
|
3 |
+
from math import ceil as _ceil, sqrt as _sqrt, prod
|
4 |
+
|
5 |
+
from sympy.core.random import uniform
|
6 |
+
from sympy.external.gmpy import SYMPY_INTS
|
7 |
+
from sympy.polys.polyconfig import query
|
8 |
+
from sympy.polys.polyerrors import ExactQuotientFailed
|
9 |
+
from sympy.polys.polyutils import _sort_factors
|
10 |
+
|
11 |
+
|
12 |
+
def gf_crt(U, M, K=None):
|
13 |
+
"""
|
14 |
+
Chinese Remainder Theorem.
|
15 |
+
|
16 |
+
Given a set of integer residues ``u_0,...,u_n`` and a set of
|
17 |
+
co-prime integer moduli ``m_0,...,m_n``, returns an integer
|
18 |
+
``u``, such that ``u = u_i mod m_i`` for ``i = ``0,...,n``.
|
19 |
+
|
20 |
+
Examples
|
21 |
+
========
|
22 |
+
|
23 |
+
Consider a set of residues ``U = [49, 76, 65]``
|
24 |
+
and a set of moduli ``M = [99, 97, 95]``. Then we have::
|
25 |
+
|
26 |
+
>>> from sympy.polys.domains import ZZ
|
27 |
+
>>> from sympy.polys.galoistools import gf_crt
|
28 |
+
|
29 |
+
>>> gf_crt([49, 76, 65], [99, 97, 95], ZZ)
|
30 |
+
639985
|
31 |
+
|
32 |
+
This is the correct result because::
|
33 |
+
|
34 |
+
>>> [639985 % m for m in [99, 97, 95]]
|
35 |
+
[49, 76, 65]
|
36 |
+
|
37 |
+
Note: this is a low-level routine with no error checking.
|
38 |
+
|
39 |
+
See Also
|
40 |
+
========
|
41 |
+
|
42 |
+
sympy.ntheory.modular.crt : a higher level crt routine
|
43 |
+
sympy.ntheory.modular.solve_congruence
|
44 |
+
|
45 |
+
"""
|
46 |
+
p = prod(M, start=K.one)
|
47 |
+
v = K.zero
|
48 |
+
|
49 |
+
for u, m in zip(U, M):
|
50 |
+
e = p // m
|
51 |
+
s, _, _ = K.gcdex(e, m)
|
52 |
+
v += e*(u*s % m)
|
53 |
+
|
54 |
+
return v % p
|
55 |
+
|
56 |
+
|
57 |
+
def gf_crt1(M, K):
|
58 |
+
"""
|
59 |
+
First part of the Chinese Remainder Theorem.
|
60 |
+
|
61 |
+
Examples
|
62 |
+
========
|
63 |
+
|
64 |
+
>>> from sympy.polys.domains import ZZ
|
65 |
+
>>> from sympy.polys.galoistools import gf_crt1
|
66 |
+
|
67 |
+
>>> gf_crt1([99, 97, 95], ZZ)
|
68 |
+
(912285, [9215, 9405, 9603], [62, 24, 12])
|
69 |
+
|
70 |
+
"""
|
71 |
+
E, S = [], []
|
72 |
+
p = prod(M, start=K.one)
|
73 |
+
|
74 |
+
for m in M:
|
75 |
+
E.append(p // m)
|
76 |
+
S.append(K.gcdex(E[-1], m)[0] % m)
|
77 |
+
|
78 |
+
return p, E, S
|
79 |
+
|
80 |
+
|
81 |
+
def gf_crt2(U, M, p, E, S, K):
|
82 |
+
"""
|
83 |
+
Second part of the Chinese Remainder Theorem.
|
84 |
+
|
85 |
+
Examples
|
86 |
+
========
|
87 |
+
|
88 |
+
>>> from sympy.polys.domains import ZZ
|
89 |
+
>>> from sympy.polys.galoistools import gf_crt2
|
90 |
+
|
91 |
+
>>> U = [49, 76, 65]
|
92 |
+
>>> M = [99, 97, 95]
|
93 |
+
>>> p = 912285
|
94 |
+
>>> E = [9215, 9405, 9603]
|
95 |
+
>>> S = [62, 24, 12]
|
96 |
+
|
97 |
+
>>> gf_crt2(U, M, p, E, S, ZZ)
|
98 |
+
639985
|
99 |
+
|
100 |
+
"""
|
101 |
+
v = K.zero
|
102 |
+
|
103 |
+
for u, m, e, s in zip(U, M, E, S):
|
104 |
+
v += e*(u*s % m)
|
105 |
+
|
106 |
+
return v % p
|
107 |
+
|
108 |
+
|
109 |
+
def gf_int(a, p):
|
110 |
+
"""
|
111 |
+
Coerce ``a mod p`` to an integer in the range ``[-p/2, p/2]``.
|
112 |
+
|
113 |
+
Examples
|
114 |
+
========
|
115 |
+
|
116 |
+
>>> from sympy.polys.galoistools import gf_int
|
117 |
+
|
118 |
+
>>> gf_int(2, 7)
|
119 |
+
2
|
120 |
+
>>> gf_int(5, 7)
|
121 |
+
-2
|
122 |
+
|
123 |
+
"""
|
124 |
+
if a <= p // 2:
|
125 |
+
return a
|
126 |
+
else:
|
127 |
+
return a - p
|
128 |
+
|
129 |
+
|
130 |
+
def gf_degree(f):
|
131 |
+
"""
|
132 |
+
Return the leading degree of ``f``.
|
133 |
+
|
134 |
+
Examples
|
135 |
+
========
|
136 |
+
|
137 |
+
>>> from sympy.polys.galoistools import gf_degree
|
138 |
+
|
139 |
+
>>> gf_degree([1, 1, 2, 0])
|
140 |
+
3
|
141 |
+
>>> gf_degree([])
|
142 |
+
-1
|
143 |
+
|
144 |
+
"""
|
145 |
+
return len(f) - 1
|
146 |
+
|
147 |
+
|
148 |
+
def gf_LC(f, K):
|
149 |
+
"""
|
150 |
+
Return the leading coefficient of ``f``.
|
151 |
+
|
152 |
+
Examples
|
153 |
+
========
|
154 |
+
|
155 |
+
>>> from sympy.polys.domains import ZZ
|
156 |
+
>>> from sympy.polys.galoistools import gf_LC
|
157 |
+
|
158 |
+
>>> gf_LC([3, 0, 1], ZZ)
|
159 |
+
3
|
160 |
+
|
161 |
+
"""
|
162 |
+
if not f:
|
163 |
+
return K.zero
|
164 |
+
else:
|
165 |
+
return f[0]
|
166 |
+
|
167 |
+
|
168 |
+
def gf_TC(f, K):
|
169 |
+
"""
|
170 |
+
Return the trailing coefficient of ``f``.
|
171 |
+
|
172 |
+
Examples
|
173 |
+
========
|
174 |
+
|
175 |
+
>>> from sympy.polys.domains import ZZ
|
176 |
+
>>> from sympy.polys.galoistools import gf_TC
|
177 |
+
|
178 |
+
>>> gf_TC([3, 0, 1], ZZ)
|
179 |
+
1
|
180 |
+
|
181 |
+
"""
|
182 |
+
if not f:
|
183 |
+
return K.zero
|
184 |
+
else:
|
185 |
+
return f[-1]
|
186 |
+
|
187 |
+
|
188 |
+
def gf_strip(f):
|
189 |
+
"""
|
190 |
+
Remove leading zeros from ``f``.
|
191 |
+
|
192 |
+
|
193 |
+
Examples
|
194 |
+
========
|
195 |
+
|
196 |
+
>>> from sympy.polys.galoistools import gf_strip
|
197 |
+
|
198 |
+
>>> gf_strip([0, 0, 0, 3, 0, 1])
|
199 |
+
[3, 0, 1]
|
200 |
+
|
201 |
+
"""
|
202 |
+
if not f or f[0]:
|
203 |
+
return f
|
204 |
+
|
205 |
+
k = 0
|
206 |
+
|
207 |
+
for coeff in f:
|
208 |
+
if coeff:
|
209 |
+
break
|
210 |
+
else:
|
211 |
+
k += 1
|
212 |
+
|
213 |
+
return f[k:]
|
214 |
+
|
215 |
+
|
216 |
+
def gf_trunc(f, p):
|
217 |
+
"""
|
218 |
+
Reduce all coefficients modulo ``p``.
|
219 |
+
|
220 |
+
Examples
|
221 |
+
========
|
222 |
+
|
223 |
+
>>> from sympy.polys.galoistools import gf_trunc
|
224 |
+
|
225 |
+
>>> gf_trunc([7, -2, 3], 5)
|
226 |
+
[2, 3, 3]
|
227 |
+
|
228 |
+
"""
|
229 |
+
return gf_strip([ a % p for a in f ])
|
230 |
+
|
231 |
+
|
232 |
+
def gf_normal(f, p, K):
|
233 |
+
"""
|
234 |
+
Normalize all coefficients in ``K``.
|
235 |
+
|
236 |
+
Examples
|
237 |
+
========
|
238 |
+
|
239 |
+
>>> from sympy.polys.domains import ZZ
|
240 |
+
>>> from sympy.polys.galoistools import gf_normal
|
241 |
+
|
242 |
+
>>> gf_normal([5, 10, 21, -3], 5, ZZ)
|
243 |
+
[1, 2]
|
244 |
+
|
245 |
+
"""
|
246 |
+
return gf_trunc(list(map(K, f)), p)
|
247 |
+
|
248 |
+
|
249 |
+
def gf_from_dict(f, p, K):
|
250 |
+
"""
|
251 |
+
Create a ``GF(p)[x]`` polynomial from a dict.
|
252 |
+
|
253 |
+
Examples
|
254 |
+
========
|
255 |
+
|
256 |
+
>>> from sympy.polys.domains import ZZ
|
257 |
+
>>> from sympy.polys.galoistools import gf_from_dict
|
258 |
+
|
259 |
+
>>> gf_from_dict({10: ZZ(4), 4: ZZ(33), 0: ZZ(-1)}, 5, ZZ)
|
260 |
+
[4, 0, 0, 0, 0, 0, 3, 0, 0, 0, 4]
|
261 |
+
|
262 |
+
"""
|
263 |
+
n, h = max(f.keys()), []
|
264 |
+
|
265 |
+
if isinstance(n, SYMPY_INTS):
|
266 |
+
for k in range(n, -1, -1):
|
267 |
+
h.append(f.get(k, K.zero) % p)
|
268 |
+
else:
|
269 |
+
(n,) = n
|
270 |
+
|
271 |
+
for k in range(n, -1, -1):
|
272 |
+
h.append(f.get((k,), K.zero) % p)
|
273 |
+
|
274 |
+
return gf_trunc(h, p)
|
275 |
+
|
276 |
+
|
277 |
+
def gf_to_dict(f, p, symmetric=True):
|
278 |
+
"""
|
279 |
+
Convert a ``GF(p)[x]`` polynomial to a dict.
|
280 |
+
|
281 |
+
Examples
|
282 |
+
========
|
283 |
+
|
284 |
+
>>> from sympy.polys.galoistools import gf_to_dict
|
285 |
+
|
286 |
+
>>> gf_to_dict([4, 0, 0, 0, 0, 0, 3, 0, 0, 0, 4], 5)
|
287 |
+
{0: -1, 4: -2, 10: -1}
|
288 |
+
>>> gf_to_dict([4, 0, 0, 0, 0, 0, 3, 0, 0, 0, 4], 5, symmetric=False)
|
289 |
+
{0: 4, 4: 3, 10: 4}
|
290 |
+
|
291 |
+
"""
|
292 |
+
n, result = gf_degree(f), {}
|
293 |
+
|
294 |
+
for k in range(0, n + 1):
|
295 |
+
if symmetric:
|
296 |
+
a = gf_int(f[n - k], p)
|
297 |
+
else:
|
298 |
+
a = f[n - k]
|
299 |
+
|
300 |
+
if a:
|
301 |
+
result[k] = a
|
302 |
+
|
303 |
+
return result
|
304 |
+
|
305 |
+
|
306 |
+
def gf_from_int_poly(f, p):
|
307 |
+
"""
|
308 |
+
Create a ``GF(p)[x]`` polynomial from ``Z[x]``.
|
309 |
+
|
310 |
+
Examples
|
311 |
+
========
|
312 |
+
|
313 |
+
>>> from sympy.polys.galoistools import gf_from_int_poly
|
314 |
+
|
315 |
+
>>> gf_from_int_poly([7, -2, 3], 5)
|
316 |
+
[2, 3, 3]
|
317 |
+
|
318 |
+
"""
|
319 |
+
return gf_trunc(f, p)
|
320 |
+
|
321 |
+
|
322 |
+
def gf_to_int_poly(f, p, symmetric=True):
|
323 |
+
"""
|
324 |
+
Convert a ``GF(p)[x]`` polynomial to ``Z[x]``.
|
325 |
+
|
326 |
+
|
327 |
+
Examples
|
328 |
+
========
|
329 |
+
|
330 |
+
>>> from sympy.polys.galoistools import gf_to_int_poly
|
331 |
+
|
332 |
+
>>> gf_to_int_poly([2, 3, 3], 5)
|
333 |
+
[2, -2, -2]
|
334 |
+
>>> gf_to_int_poly([2, 3, 3], 5, symmetric=False)
|
335 |
+
[2, 3, 3]
|
336 |
+
|
337 |
+
"""
|
338 |
+
if symmetric:
|
339 |
+
return [ gf_int(c, p) for c in f ]
|
340 |
+
else:
|
341 |
+
return f
|
342 |
+
|
343 |
+
|
344 |
+
def gf_neg(f, p, K):
|
345 |
+
"""
|
346 |
+
Negate a polynomial in ``GF(p)[x]``.
|
347 |
+
|
348 |
+
Examples
|
349 |
+
========
|
350 |
+
|
351 |
+
>>> from sympy.polys.domains import ZZ
|
352 |
+
>>> from sympy.polys.galoistools import gf_neg
|
353 |
+
|
354 |
+
>>> gf_neg([3, 2, 1, 0], 5, ZZ)
|
355 |
+
[2, 3, 4, 0]
|
356 |
+
|
357 |
+
"""
|
358 |
+
return [ -coeff % p for coeff in f ]
|
359 |
+
|
360 |
+
|
361 |
+
def gf_add_ground(f, a, p, K):
|
362 |
+
"""
|
363 |
+
Compute ``f + a`` where ``f`` in ``GF(p)[x]`` and ``a`` in ``GF(p)``.
|
364 |
+
|
365 |
+
Examples
|
366 |
+
========
|
367 |
+
|
368 |
+
>>> from sympy.polys.domains import ZZ
|
369 |
+
>>> from sympy.polys.galoistools import gf_add_ground
|
370 |
+
|
371 |
+
>>> gf_add_ground([3, 2, 4], 2, 5, ZZ)
|
372 |
+
[3, 2, 1]
|
373 |
+
|
374 |
+
"""
|
375 |
+
if not f:
|
376 |
+
a = a % p
|
377 |
+
else:
|
378 |
+
a = (f[-1] + a) % p
|
379 |
+
|
380 |
+
if len(f) > 1:
|
381 |
+
return f[:-1] + [a]
|
382 |
+
|
383 |
+
if not a:
|
384 |
+
return []
|
385 |
+
else:
|
386 |
+
return [a]
|
387 |
+
|
388 |
+
|
389 |
+
def gf_sub_ground(f, a, p, K):
|
390 |
+
"""
|
391 |
+
Compute ``f - a`` where ``f`` in ``GF(p)[x]`` and ``a`` in ``GF(p)``.
|
392 |
+
|
393 |
+
Examples
|
394 |
+
========
|
395 |
+
|
396 |
+
>>> from sympy.polys.domains import ZZ
|
397 |
+
>>> from sympy.polys.galoistools import gf_sub_ground
|
398 |
+
|
399 |
+
>>> gf_sub_ground([3, 2, 4], 2, 5, ZZ)
|
400 |
+
[3, 2, 2]
|
401 |
+
|
402 |
+
"""
|
403 |
+
if not f:
|
404 |
+
a = -a % p
|
405 |
+
else:
|
406 |
+
a = (f[-1] - a) % p
|
407 |
+
|
408 |
+
if len(f) > 1:
|
409 |
+
return f[:-1] + [a]
|
410 |
+
|
411 |
+
if not a:
|
412 |
+
return []
|
413 |
+
else:
|
414 |
+
return [a]
|
415 |
+
|
416 |
+
|
417 |
+
def gf_mul_ground(f, a, p, K):
|
418 |
+
"""
|
419 |
+
Compute ``f * a`` where ``f`` in ``GF(p)[x]`` and ``a`` in ``GF(p)``.
|
420 |
+
|
421 |
+
Examples
|
422 |
+
========
|
423 |
+
|
424 |
+
>>> from sympy.polys.domains import ZZ
|
425 |
+
>>> from sympy.polys.galoistools import gf_mul_ground
|
426 |
+
|
427 |
+
>>> gf_mul_ground([3, 2, 4], 2, 5, ZZ)
|
428 |
+
[1, 4, 3]
|
429 |
+
|
430 |
+
"""
|
431 |
+
if not a:
|
432 |
+
return []
|
433 |
+
else:
|
434 |
+
return [ (a*b) % p for b in f ]
|
435 |
+
|
436 |
+
|
437 |
+
def gf_quo_ground(f, a, p, K):
|
438 |
+
"""
|
439 |
+
Compute ``f/a`` where ``f`` in ``GF(p)[x]`` and ``a`` in ``GF(p)``.
|
440 |
+
|
441 |
+
Examples
|
442 |
+
========
|
443 |
+
|
444 |
+
>>> from sympy.polys.domains import ZZ
|
445 |
+
>>> from sympy.polys.galoistools import gf_quo_ground
|
446 |
+
|
447 |
+
>>> gf_quo_ground(ZZ.map([3, 2, 4]), ZZ(2), 5, ZZ)
|
448 |
+
[4, 1, 2]
|
449 |
+
|
450 |
+
"""
|
451 |
+
return gf_mul_ground(f, K.invert(a, p), p, K)
|
452 |
+
|
453 |
+
|
454 |
+
def gf_add(f, g, p, K):
|
455 |
+
"""
|
456 |
+
Add polynomials in ``GF(p)[x]``.
|
457 |
+
|
458 |
+
Examples
|
459 |
+
========
|
460 |
+
|
461 |
+
>>> from sympy.polys.domains import ZZ
|
462 |
+
>>> from sympy.polys.galoistools import gf_add
|
463 |
+
|
464 |
+
>>> gf_add([3, 2, 4], [2, 2, 2], 5, ZZ)
|
465 |
+
[4, 1]
|
466 |
+
|
467 |
+
"""
|
468 |
+
if not f:
|
469 |
+
return g
|
470 |
+
if not g:
|
471 |
+
return f
|
472 |
+
|
473 |
+
df = gf_degree(f)
|
474 |
+
dg = gf_degree(g)
|
475 |
+
|
476 |
+
if df == dg:
|
477 |
+
return gf_strip([ (a + b) % p for a, b in zip(f, g) ])
|
478 |
+
else:
|
479 |
+
k = abs(df - dg)
|
480 |
+
|
481 |
+
if df > dg:
|
482 |
+
h, f = f[:k], f[k:]
|
483 |
+
else:
|
484 |
+
h, g = g[:k], g[k:]
|
485 |
+
|
486 |
+
return h + [ (a + b) % p for a, b in zip(f, g) ]
|
487 |
+
|
488 |
+
|
489 |
+
def gf_sub(f, g, p, K):
|
490 |
+
"""
|
491 |
+
Subtract polynomials in ``GF(p)[x]``.
|
492 |
+
|
493 |
+
Examples
|
494 |
+
========
|
495 |
+
|
496 |
+
>>> from sympy.polys.domains import ZZ
|
497 |
+
>>> from sympy.polys.galoistools import gf_sub
|
498 |
+
|
499 |
+
>>> gf_sub([3, 2, 4], [2, 2, 2], 5, ZZ)
|
500 |
+
[1, 0, 2]
|
501 |
+
|
502 |
+
"""
|
503 |
+
if not g:
|
504 |
+
return f
|
505 |
+
if not f:
|
506 |
+
return gf_neg(g, p, K)
|
507 |
+
|
508 |
+
df = gf_degree(f)
|
509 |
+
dg = gf_degree(g)
|
510 |
+
|
511 |
+
if df == dg:
|
512 |
+
return gf_strip([ (a - b) % p for a, b in zip(f, g) ])
|
513 |
+
else:
|
514 |
+
k = abs(df - dg)
|
515 |
+
|
516 |
+
if df > dg:
|
517 |
+
h, f = f[:k], f[k:]
|
518 |
+
else:
|
519 |
+
h, g = gf_neg(g[:k], p, K), g[k:]
|
520 |
+
|
521 |
+
return h + [ (a - b) % p for a, b in zip(f, g) ]
|
522 |
+
|
523 |
+
|
524 |
+
def gf_mul(f, g, p, K):
|
525 |
+
"""
|
526 |
+
Multiply polynomials in ``GF(p)[x]``.
|
527 |
+
|
528 |
+
Examples
|
529 |
+
========
|
530 |
+
|
531 |
+
>>> from sympy.polys.domains import ZZ
|
532 |
+
>>> from sympy.polys.galoistools import gf_mul
|
533 |
+
|
534 |
+
>>> gf_mul([3, 2, 4], [2, 2, 2], 5, ZZ)
|
535 |
+
[1, 0, 3, 2, 3]
|
536 |
+
|
537 |
+
"""
|
538 |
+
df = gf_degree(f)
|
539 |
+
dg = gf_degree(g)
|
540 |
+
|
541 |
+
dh = df + dg
|
542 |
+
h = [0]*(dh + 1)
|
543 |
+
|
544 |
+
for i in range(0, dh + 1):
|
545 |
+
coeff = K.zero
|
546 |
+
|
547 |
+
for j in range(max(0, i - dg), min(i, df) + 1):
|
548 |
+
coeff += f[j]*g[i - j]
|
549 |
+
|
550 |
+
h[i] = coeff % p
|
551 |
+
|
552 |
+
return gf_strip(h)
|
553 |
+
|
554 |
+
|
555 |
+
def gf_sqr(f, p, K):
|
556 |
+
"""
|
557 |
+
Square polynomials in ``GF(p)[x]``.
|
558 |
+
|
559 |
+
Examples
|
560 |
+
========
|
561 |
+
|
562 |
+
>>> from sympy.polys.domains import ZZ
|
563 |
+
>>> from sympy.polys.galoistools import gf_sqr
|
564 |
+
|
565 |
+
>>> gf_sqr([3, 2, 4], 5, ZZ)
|
566 |
+
[4, 2, 3, 1, 1]
|
567 |
+
|
568 |
+
"""
|
569 |
+
df = gf_degree(f)
|
570 |
+
|
571 |
+
dh = 2*df
|
572 |
+
h = [0]*(dh + 1)
|
573 |
+
|
574 |
+
for i in range(0, dh + 1):
|
575 |
+
coeff = K.zero
|
576 |
+
|
577 |
+
jmin = max(0, i - df)
|
578 |
+
jmax = min(i, df)
|
579 |
+
|
580 |
+
n = jmax - jmin + 1
|
581 |
+
|
582 |
+
jmax = jmin + n // 2 - 1
|
583 |
+
|
584 |
+
for j in range(jmin, jmax + 1):
|
585 |
+
coeff += f[j]*f[i - j]
|
586 |
+
|
587 |
+
coeff += coeff
|
588 |
+
|
589 |
+
if n & 1:
|
590 |
+
elem = f[jmax + 1]
|
591 |
+
coeff += elem**2
|
592 |
+
|
593 |
+
h[i] = coeff % p
|
594 |
+
|
595 |
+
return gf_strip(h)
|
596 |
+
|
597 |
+
|
598 |
+
def gf_add_mul(f, g, h, p, K):
|
599 |
+
"""
|
600 |
+
Returns ``f + g*h`` where ``f``, ``g``, ``h`` in ``GF(p)[x]``.
|
601 |
+
|
602 |
+
Examples
|
603 |
+
========
|
604 |
+
|
605 |
+
>>> from sympy.polys.domains import ZZ
|
606 |
+
>>> from sympy.polys.galoistools import gf_add_mul
|
607 |
+
>>> gf_add_mul([3, 2, 4], [2, 2, 2], [1, 4], 5, ZZ)
|
608 |
+
[2, 3, 2, 2]
|
609 |
+
"""
|
610 |
+
return gf_add(f, gf_mul(g, h, p, K), p, K)
|
611 |
+
|
612 |
+
|
613 |
+
def gf_sub_mul(f, g, h, p, K):
|
614 |
+
"""
|
615 |
+
Compute ``f - g*h`` where ``f``, ``g``, ``h`` in ``GF(p)[x]``.
|
616 |
+
|
617 |
+
Examples
|
618 |
+
========
|
619 |
+
|
620 |
+
>>> from sympy.polys.domains import ZZ
|
621 |
+
>>> from sympy.polys.galoistools import gf_sub_mul
|
622 |
+
|
623 |
+
>>> gf_sub_mul([3, 2, 4], [2, 2, 2], [1, 4], 5, ZZ)
|
624 |
+
[3, 3, 2, 1]
|
625 |
+
|
626 |
+
"""
|
627 |
+
return gf_sub(f, gf_mul(g, h, p, K), p, K)
|
628 |
+
|
629 |
+
|
630 |
+
def gf_expand(F, p, K):
|
631 |
+
"""
|
632 |
+
Expand results of :func:`~.factor` in ``GF(p)[x]``.
|
633 |
+
|
634 |
+
Examples
|
635 |
+
========
|
636 |
+
|
637 |
+
>>> from sympy.polys.domains import ZZ
|
638 |
+
>>> from sympy.polys.galoistools import gf_expand
|
639 |
+
|
640 |
+
>>> gf_expand([([3, 2, 4], 1), ([2, 2], 2), ([3, 1], 3)], 5, ZZ)
|
641 |
+
[4, 3, 0, 3, 0, 1, 4, 1]
|
642 |
+
|
643 |
+
"""
|
644 |
+
if isinstance(F, tuple):
|
645 |
+
lc, F = F
|
646 |
+
else:
|
647 |
+
lc = K.one
|
648 |
+
|
649 |
+
g = [lc]
|
650 |
+
|
651 |
+
for f, k in F:
|
652 |
+
f = gf_pow(f, k, p, K)
|
653 |
+
g = gf_mul(g, f, p, K)
|
654 |
+
|
655 |
+
return g
|
656 |
+
|
657 |
+
|
658 |
+
def gf_div(f, g, p, K):
|
659 |
+
"""
|
660 |
+
Division with remainder in ``GF(p)[x]``.
|
661 |
+
|
662 |
+
Given univariate polynomials ``f`` and ``g`` with coefficients in a
|
663 |
+
finite field with ``p`` elements, returns polynomials ``q`` and ``r``
|
664 |
+
(quotient and remainder) such that ``f = q*g + r``.
|
665 |
+
|
666 |
+
Consider polynomials ``x**3 + x + 1`` and ``x**2 + x`` in GF(2)::
|
667 |
+
|
668 |
+
>>> from sympy.polys.domains import ZZ
|
669 |
+
>>> from sympy.polys.galoistools import gf_div, gf_add_mul
|
670 |
+
|
671 |
+
>>> gf_div(ZZ.map([1, 0, 1, 1]), ZZ.map([1, 1, 0]), 2, ZZ)
|
672 |
+
([1, 1], [1])
|
673 |
+
|
674 |
+
As result we obtained quotient ``x + 1`` and remainder ``1``, thus::
|
675 |
+
|
676 |
+
>>> gf_add_mul(ZZ.map([1]), ZZ.map([1, 1]), ZZ.map([1, 1, 0]), 2, ZZ)
|
677 |
+
[1, 0, 1, 1]
|
678 |
+
|
679 |
+
References
|
680 |
+
==========
|
681 |
+
|
682 |
+
.. [1] [Monagan93]_
|
683 |
+
.. [2] [Gathen99]_
|
684 |
+
|
685 |
+
"""
|
686 |
+
df = gf_degree(f)
|
687 |
+
dg = gf_degree(g)
|
688 |
+
|
689 |
+
if not g:
|
690 |
+
raise ZeroDivisionError("polynomial division")
|
691 |
+
elif df < dg:
|
692 |
+
return [], f
|
693 |
+
|
694 |
+
inv = K.invert(g[0], p)
|
695 |
+
|
696 |
+
h, dq, dr = list(f), df - dg, dg - 1
|
697 |
+
|
698 |
+
for i in range(0, df + 1):
|
699 |
+
coeff = h[i]
|
700 |
+
|
701 |
+
for j in range(max(0, dg - i), min(df - i, dr) + 1):
|
702 |
+
coeff -= h[i + j - dg] * g[dg - j]
|
703 |
+
|
704 |
+
if i <= dq:
|
705 |
+
coeff *= inv
|
706 |
+
|
707 |
+
h[i] = coeff % p
|
708 |
+
|
709 |
+
return h[:dq + 1], gf_strip(h[dq + 1:])
|
710 |
+
|
711 |
+
|
712 |
+
def gf_rem(f, g, p, K):
|
713 |
+
"""
|
714 |
+
Compute polynomial remainder in ``GF(p)[x]``.
|
715 |
+
|
716 |
+
Examples
|
717 |
+
========
|
718 |
+
|
719 |
+
>>> from sympy.polys.domains import ZZ
|
720 |
+
>>> from sympy.polys.galoistools import gf_rem
|
721 |
+
|
722 |
+
>>> gf_rem(ZZ.map([1, 0, 1, 1]), ZZ.map([1, 1, 0]), 2, ZZ)
|
723 |
+
[1]
|
724 |
+
|
725 |
+
"""
|
726 |
+
return gf_div(f, g, p, K)[1]
|
727 |
+
|
728 |
+
|
729 |
+
def gf_quo(f, g, p, K):
|
730 |
+
"""
|
731 |
+
Compute exact quotient in ``GF(p)[x]``.
|
732 |
+
|
733 |
+
Examples
|
734 |
+
========
|
735 |
+
|
736 |
+
>>> from sympy.polys.domains import ZZ
|
737 |
+
>>> from sympy.polys.galoistools import gf_quo
|
738 |
+
|
739 |
+
>>> gf_quo(ZZ.map([1, 0, 1, 1]), ZZ.map([1, 1, 0]), 2, ZZ)
|
740 |
+
[1, 1]
|
741 |
+
>>> gf_quo(ZZ.map([1, 0, 3, 2, 3]), ZZ.map([2, 2, 2]), 5, ZZ)
|
742 |
+
[3, 2, 4]
|
743 |
+
|
744 |
+
"""
|
745 |
+
df = gf_degree(f)
|
746 |
+
dg = gf_degree(g)
|
747 |
+
|
748 |
+
if not g:
|
749 |
+
raise ZeroDivisionError("polynomial division")
|
750 |
+
elif df < dg:
|
751 |
+
return []
|
752 |
+
|
753 |
+
inv = K.invert(g[0], p)
|
754 |
+
|
755 |
+
h, dq, dr = f[:], df - dg, dg - 1
|
756 |
+
|
757 |
+
for i in range(0, dq + 1):
|
758 |
+
coeff = h[i]
|
759 |
+
|
760 |
+
for j in range(max(0, dg - i), min(df - i, dr) + 1):
|
761 |
+
coeff -= h[i + j - dg] * g[dg - j]
|
762 |
+
|
763 |
+
h[i] = (coeff * inv) % p
|
764 |
+
|
765 |
+
return h[:dq + 1]
|
766 |
+
|
767 |
+
|
768 |
+
def gf_exquo(f, g, p, K):
|
769 |
+
"""
|
770 |
+
Compute polynomial quotient in ``GF(p)[x]``.
|
771 |
+
|
772 |
+
Examples
|
773 |
+
========
|
774 |
+
|
775 |
+
>>> from sympy.polys.domains import ZZ
|
776 |
+
>>> from sympy.polys.galoistools import gf_exquo
|
777 |
+
|
778 |
+
>>> gf_exquo(ZZ.map([1, 0, 3, 2, 3]), ZZ.map([2, 2, 2]), 5, ZZ)
|
779 |
+
[3, 2, 4]
|
780 |
+
|
781 |
+
>>> gf_exquo(ZZ.map([1, 0, 1, 1]), ZZ.map([1, 1, 0]), 2, ZZ)
|
782 |
+
Traceback (most recent call last):
|
783 |
+
...
|
784 |
+
ExactQuotientFailed: [1, 1, 0] does not divide [1, 0, 1, 1]
|
785 |
+
|
786 |
+
"""
|
787 |
+
q, r = gf_div(f, g, p, K)
|
788 |
+
|
789 |
+
if not r:
|
790 |
+
return q
|
791 |
+
else:
|
792 |
+
raise ExactQuotientFailed(f, g)
|
793 |
+
|
794 |
+
|
795 |
+
def gf_lshift(f, n, K):
|
796 |
+
"""
|
797 |
+
Efficiently multiply ``f`` by ``x**n``.
|
798 |
+
|
799 |
+
Examples
|
800 |
+
========
|
801 |
+
|
802 |
+
>>> from sympy.polys.domains import ZZ
|
803 |
+
>>> from sympy.polys.galoistools import gf_lshift
|
804 |
+
|
805 |
+
>>> gf_lshift([3, 2, 4], 4, ZZ)
|
806 |
+
[3, 2, 4, 0, 0, 0, 0]
|
807 |
+
|
808 |
+
"""
|
809 |
+
if not f:
|
810 |
+
return f
|
811 |
+
else:
|
812 |
+
return f + [K.zero]*n
|
813 |
+
|
814 |
+
|
815 |
+
def gf_rshift(f, n, K):
|
816 |
+
"""
|
817 |
+
Efficiently divide ``f`` by ``x**n``.
|
818 |
+
|
819 |
+
Examples
|
820 |
+
========
|
821 |
+
|
822 |
+
>>> from sympy.polys.domains import ZZ
|
823 |
+
>>> from sympy.polys.galoistools import gf_rshift
|
824 |
+
|
825 |
+
>>> gf_rshift([1, 2, 3, 4, 0], 3, ZZ)
|
826 |
+
([1, 2], [3, 4, 0])
|
827 |
+
|
828 |
+
"""
|
829 |
+
if not n:
|
830 |
+
return f, []
|
831 |
+
else:
|
832 |
+
return f[:-n], f[-n:]
|
833 |
+
|
834 |
+
|
835 |
+
def gf_pow(f, n, p, K):
|
836 |
+
"""
|
837 |
+
Compute ``f**n`` in ``GF(p)[x]`` using repeated squaring.
|
838 |
+
|
839 |
+
Examples
|
840 |
+
========
|
841 |
+
|
842 |
+
>>> from sympy.polys.domains import ZZ
|
843 |
+
>>> from sympy.polys.galoistools import gf_pow
|
844 |
+
|
845 |
+
>>> gf_pow([3, 2, 4], 3, 5, ZZ)
|
846 |
+
[2, 4, 4, 2, 2, 1, 4]
|
847 |
+
|
848 |
+
"""
|
849 |
+
if not n:
|
850 |
+
return [K.one]
|
851 |
+
elif n == 1:
|
852 |
+
return f
|
853 |
+
elif n == 2:
|
854 |
+
return gf_sqr(f, p, K)
|
855 |
+
|
856 |
+
h = [K.one]
|
857 |
+
|
858 |
+
while True:
|
859 |
+
if n & 1:
|
860 |
+
h = gf_mul(h, f, p, K)
|
861 |
+
n -= 1
|
862 |
+
|
863 |
+
n >>= 1
|
864 |
+
|
865 |
+
if not n:
|
866 |
+
break
|
867 |
+
|
868 |
+
f = gf_sqr(f, p, K)
|
869 |
+
|
870 |
+
return h
|
871 |
+
|
872 |
+
def gf_frobenius_monomial_base(g, p, K):
|
873 |
+
"""
|
874 |
+
return the list of ``x**(i*p) mod g in Z_p`` for ``i = 0, .., n - 1``
|
875 |
+
where ``n = gf_degree(g)``
|
876 |
+
|
877 |
+
Examples
|
878 |
+
========
|
879 |
+
|
880 |
+
>>> from sympy.polys.domains import ZZ
|
881 |
+
>>> from sympy.polys.galoistools import gf_frobenius_monomial_base
|
882 |
+
>>> g = ZZ.map([1, 0, 2, 1])
|
883 |
+
>>> gf_frobenius_monomial_base(g, 5, ZZ)
|
884 |
+
[[1], [4, 4, 2], [1, 2]]
|
885 |
+
|
886 |
+
"""
|
887 |
+
n = gf_degree(g)
|
888 |
+
if n == 0:
|
889 |
+
return []
|
890 |
+
b = [0]*n
|
891 |
+
b[0] = [1]
|
892 |
+
if p < n:
|
893 |
+
for i in range(1, n):
|
894 |
+
mon = gf_lshift(b[i - 1], p, K)
|
895 |
+
b[i] = gf_rem(mon, g, p, K)
|
896 |
+
elif n > 1:
|
897 |
+
b[1] = gf_pow_mod([K.one, K.zero], p, g, p, K)
|
898 |
+
for i in range(2, n):
|
899 |
+
b[i] = gf_mul(b[i - 1], b[1], p, K)
|
900 |
+
b[i] = gf_rem(b[i], g, p, K)
|
901 |
+
|
902 |
+
return b
|
903 |
+
|
904 |
+
def gf_frobenius_map(f, g, b, p, K):
|
905 |
+
"""
|
906 |
+
compute gf_pow_mod(f, p, g, p, K) using the Frobenius map
|
907 |
+
|
908 |
+
Parameters
|
909 |
+
==========
|
910 |
+
|
911 |
+
f, g : polynomials in ``GF(p)[x]``
|
912 |
+
b : frobenius monomial base
|
913 |
+
p : prime number
|
914 |
+
K : domain
|
915 |
+
|
916 |
+
Examples
|
917 |
+
========
|
918 |
+
|
919 |
+
>>> from sympy.polys.domains import ZZ
|
920 |
+
>>> from sympy.polys.galoistools import gf_frobenius_monomial_base, gf_frobenius_map
|
921 |
+
>>> f = ZZ.map([2, 1, 0, 1])
|
922 |
+
>>> g = ZZ.map([1, 0, 2, 1])
|
923 |
+
>>> p = 5
|
924 |
+
>>> b = gf_frobenius_monomial_base(g, p, ZZ)
|
925 |
+
>>> r = gf_frobenius_map(f, g, b, p, ZZ)
|
926 |
+
>>> gf_frobenius_map(f, g, b, p, ZZ)
|
927 |
+
[4, 0, 3]
|
928 |
+
"""
|
929 |
+
m = gf_degree(g)
|
930 |
+
if gf_degree(f) >= m:
|
931 |
+
f = gf_rem(f, g, p, K)
|
932 |
+
if not f:
|
933 |
+
return []
|
934 |
+
n = gf_degree(f)
|
935 |
+
sf = [f[-1]]
|
936 |
+
for i in range(1, n + 1):
|
937 |
+
v = gf_mul_ground(b[i], f[n - i], p, K)
|
938 |
+
sf = gf_add(sf, v, p, K)
|
939 |
+
return sf
|
940 |
+
|
941 |
+
def _gf_pow_pnm1d2(f, n, g, b, p, K):
|
942 |
+
"""
|
943 |
+
utility function for ``gf_edf_zassenhaus``
|
944 |
+
Compute ``f**((p**n - 1) // 2)`` in ``GF(p)[x]/(g)``
|
945 |
+
``f**((p**n - 1) // 2) = (f*f**p*...*f**(p**n - 1))**((p - 1) // 2)``
|
946 |
+
"""
|
947 |
+
f = gf_rem(f, g, p, K)
|
948 |
+
h = f
|
949 |
+
r = f
|
950 |
+
for i in range(1, n):
|
951 |
+
h = gf_frobenius_map(h, g, b, p, K)
|
952 |
+
r = gf_mul(r, h, p, K)
|
953 |
+
r = gf_rem(r, g, p, K)
|
954 |
+
|
955 |
+
res = gf_pow_mod(r, (p - 1)//2, g, p, K)
|
956 |
+
return res
|
957 |
+
|
958 |
+
def gf_pow_mod(f, n, g, p, K):
|
959 |
+
"""
|
960 |
+
Compute ``f**n`` in ``GF(p)[x]/(g)`` using repeated squaring.
|
961 |
+
|
962 |
+
Given polynomials ``f`` and ``g`` in ``GF(p)[x]`` and a non-negative
|
963 |
+
integer ``n``, efficiently computes ``f**n (mod g)`` i.e. the remainder
|
964 |
+
of ``f**n`` from division by ``g``, using the repeated squaring algorithm.
|
965 |
+
|
966 |
+
Examples
|
967 |
+
========
|
968 |
+
|
969 |
+
>>> from sympy.polys.domains import ZZ
|
970 |
+
>>> from sympy.polys.galoistools import gf_pow_mod
|
971 |
+
|
972 |
+
>>> gf_pow_mod(ZZ.map([3, 2, 4]), 3, ZZ.map([1, 1]), 5, ZZ)
|
973 |
+
[]
|
974 |
+
|
975 |
+
References
|
976 |
+
==========
|
977 |
+
|
978 |
+
.. [1] [Gathen99]_
|
979 |
+
|
980 |
+
"""
|
981 |
+
if not n:
|
982 |
+
return [K.one]
|
983 |
+
elif n == 1:
|
984 |
+
return gf_rem(f, g, p, K)
|
985 |
+
elif n == 2:
|
986 |
+
return gf_rem(gf_sqr(f, p, K), g, p, K)
|
987 |
+
|
988 |
+
h = [K.one]
|
989 |
+
|
990 |
+
while True:
|
991 |
+
if n & 1:
|
992 |
+
h = gf_mul(h, f, p, K)
|
993 |
+
h = gf_rem(h, g, p, K)
|
994 |
+
n -= 1
|
995 |
+
|
996 |
+
n >>= 1
|
997 |
+
|
998 |
+
if not n:
|
999 |
+
break
|
1000 |
+
|
1001 |
+
f = gf_sqr(f, p, K)
|
1002 |
+
f = gf_rem(f, g, p, K)
|
1003 |
+
|
1004 |
+
return h
|
1005 |
+
|
1006 |
+
|
1007 |
+
def gf_gcd(f, g, p, K):
|
1008 |
+
"""
|
1009 |
+
Euclidean Algorithm in ``GF(p)[x]``.
|
1010 |
+
|
1011 |
+
Examples
|
1012 |
+
========
|
1013 |
+
|
1014 |
+
>>> from sympy.polys.domains import ZZ
|
1015 |
+
>>> from sympy.polys.galoistools import gf_gcd
|
1016 |
+
|
1017 |
+
>>> gf_gcd(ZZ.map([3, 2, 4]), ZZ.map([2, 2, 3]), 5, ZZ)
|
1018 |
+
[1, 3]
|
1019 |
+
|
1020 |
+
"""
|
1021 |
+
while g:
|
1022 |
+
f, g = g, gf_rem(f, g, p, K)
|
1023 |
+
|
1024 |
+
return gf_monic(f, p, K)[1]
|
1025 |
+
|
1026 |
+
|
1027 |
+
def gf_lcm(f, g, p, K):
|
1028 |
+
"""
|
1029 |
+
Compute polynomial LCM in ``GF(p)[x]``.
|
1030 |
+
|
1031 |
+
Examples
|
1032 |
+
========
|
1033 |
+
|
1034 |
+
>>> from sympy.polys.domains import ZZ
|
1035 |
+
>>> from sympy.polys.galoistools import gf_lcm
|
1036 |
+
|
1037 |
+
>>> gf_lcm(ZZ.map([3, 2, 4]), ZZ.map([2, 2, 3]), 5, ZZ)
|
1038 |
+
[1, 2, 0, 4]
|
1039 |
+
|
1040 |
+
"""
|
1041 |
+
if not f or not g:
|
1042 |
+
return []
|
1043 |
+
|
1044 |
+
h = gf_quo(gf_mul(f, g, p, K),
|
1045 |
+
gf_gcd(f, g, p, K), p, K)
|
1046 |
+
|
1047 |
+
return gf_monic(h, p, K)[1]
|
1048 |
+
|
1049 |
+
|
1050 |
+
def gf_cofactors(f, g, p, K):
|
1051 |
+
"""
|
1052 |
+
Compute polynomial GCD and cofactors in ``GF(p)[x]``.
|
1053 |
+
|
1054 |
+
Examples
|
1055 |
+
========
|
1056 |
+
|
1057 |
+
>>> from sympy.polys.domains import ZZ
|
1058 |
+
>>> from sympy.polys.galoistools import gf_cofactors
|
1059 |
+
|
1060 |
+
>>> gf_cofactors(ZZ.map([3, 2, 4]), ZZ.map([2, 2, 3]), 5, ZZ)
|
1061 |
+
([1, 3], [3, 3], [2, 1])
|
1062 |
+
|
1063 |
+
"""
|
1064 |
+
if not f and not g:
|
1065 |
+
return ([], [], [])
|
1066 |
+
|
1067 |
+
h = gf_gcd(f, g, p, K)
|
1068 |
+
|
1069 |
+
return (h, gf_quo(f, h, p, K),
|
1070 |
+
gf_quo(g, h, p, K))
|
1071 |
+
|
1072 |
+
|
1073 |
+
def gf_gcdex(f, g, p, K):
|
1074 |
+
"""
|
1075 |
+
Extended Euclidean Algorithm in ``GF(p)[x]``.
|
1076 |
+
|
1077 |
+
Given polynomials ``f`` and ``g`` in ``GF(p)[x]``, computes polynomials
|
1078 |
+
``s``, ``t`` and ``h``, such that ``h = gcd(f, g)`` and ``s*f + t*g = h``.
|
1079 |
+
The typical application of EEA is solving polynomial diophantine equations.
|
1080 |
+
|
1081 |
+
Consider polynomials ``f = (x + 7) (x + 1)``, ``g = (x + 7) (x**2 + 1)``
|
1082 |
+
in ``GF(11)[x]``. Application of Extended Euclidean Algorithm gives::
|
1083 |
+
|
1084 |
+
>>> from sympy.polys.domains import ZZ
|
1085 |
+
>>> from sympy.polys.galoistools import gf_gcdex, gf_mul, gf_add
|
1086 |
+
|
1087 |
+
>>> s, t, g = gf_gcdex(ZZ.map([1, 8, 7]), ZZ.map([1, 7, 1, 7]), 11, ZZ)
|
1088 |
+
>>> s, t, g
|
1089 |
+
([5, 6], [6], [1, 7])
|
1090 |
+
|
1091 |
+
As result we obtained polynomials ``s = 5*x + 6`` and ``t = 6``, and
|
1092 |
+
additionally ``gcd(f, g) = x + 7``. This is correct because::
|
1093 |
+
|
1094 |
+
>>> S = gf_mul(s, ZZ.map([1, 8, 7]), 11, ZZ)
|
1095 |
+
>>> T = gf_mul(t, ZZ.map([1, 7, 1, 7]), 11, ZZ)
|
1096 |
+
|
1097 |
+
>>> gf_add(S, T, 11, ZZ) == [1, 7]
|
1098 |
+
True
|
1099 |
+
|
1100 |
+
References
|
1101 |
+
==========
|
1102 |
+
|
1103 |
+
.. [1] [Gathen99]_
|
1104 |
+
|
1105 |
+
"""
|
1106 |
+
if not (f or g):
|
1107 |
+
return [K.one], [], []
|
1108 |
+
|
1109 |
+
p0, r0 = gf_monic(f, p, K)
|
1110 |
+
p1, r1 = gf_monic(g, p, K)
|
1111 |
+
|
1112 |
+
if not f:
|
1113 |
+
return [], [K.invert(p1, p)], r1
|
1114 |
+
if not g:
|
1115 |
+
return [K.invert(p0, p)], [], r0
|
1116 |
+
|
1117 |
+
s0, s1 = [K.invert(p0, p)], []
|
1118 |
+
t0, t1 = [], [K.invert(p1, p)]
|
1119 |
+
|
1120 |
+
while True:
|
1121 |
+
Q, R = gf_div(r0, r1, p, K)
|
1122 |
+
|
1123 |
+
if not R:
|
1124 |
+
break
|
1125 |
+
|
1126 |
+
(lc, r1), r0 = gf_monic(R, p, K), r1
|
1127 |
+
|
1128 |
+
inv = K.invert(lc, p)
|
1129 |
+
|
1130 |
+
s = gf_sub_mul(s0, s1, Q, p, K)
|
1131 |
+
t = gf_sub_mul(t0, t1, Q, p, K)
|
1132 |
+
|
1133 |
+
s1, s0 = gf_mul_ground(s, inv, p, K), s1
|
1134 |
+
t1, t0 = gf_mul_ground(t, inv, p, K), t1
|
1135 |
+
|
1136 |
+
return s1, t1, r1
|
1137 |
+
|
1138 |
+
|
1139 |
+
def gf_monic(f, p, K):
|
1140 |
+
"""
|
1141 |
+
Compute LC and a monic polynomial in ``GF(p)[x]``.
|
1142 |
+
|
1143 |
+
Examples
|
1144 |
+
========
|
1145 |
+
|
1146 |
+
>>> from sympy.polys.domains import ZZ
|
1147 |
+
>>> from sympy.polys.galoistools import gf_monic
|
1148 |
+
|
1149 |
+
>>> gf_monic(ZZ.map([3, 2, 4]), 5, ZZ)
|
1150 |
+
(3, [1, 4, 3])
|
1151 |
+
|
1152 |
+
"""
|
1153 |
+
if not f:
|
1154 |
+
return K.zero, []
|
1155 |
+
else:
|
1156 |
+
lc = f[0]
|
1157 |
+
|
1158 |
+
if K.is_one(lc):
|
1159 |
+
return lc, list(f)
|
1160 |
+
else:
|
1161 |
+
return lc, gf_quo_ground(f, lc, p, K)
|
1162 |
+
|
1163 |
+
|
1164 |
+
def gf_diff(f, p, K):
|
1165 |
+
"""
|
1166 |
+
Differentiate polynomial in ``GF(p)[x]``.
|
1167 |
+
|
1168 |
+
Examples
|
1169 |
+
========
|
1170 |
+
|
1171 |
+
>>> from sympy.polys.domains import ZZ
|
1172 |
+
>>> from sympy.polys.galoistools import gf_diff
|
1173 |
+
|
1174 |
+
>>> gf_diff([3, 2, 4], 5, ZZ)
|
1175 |
+
[1, 2]
|
1176 |
+
|
1177 |
+
"""
|
1178 |
+
df = gf_degree(f)
|
1179 |
+
|
1180 |
+
h, n = [K.zero]*df, df
|
1181 |
+
|
1182 |
+
for coeff in f[:-1]:
|
1183 |
+
coeff *= K(n)
|
1184 |
+
coeff %= p
|
1185 |
+
|
1186 |
+
if coeff:
|
1187 |
+
h[df - n] = coeff
|
1188 |
+
|
1189 |
+
n -= 1
|
1190 |
+
|
1191 |
+
return gf_strip(h)
|
1192 |
+
|
1193 |
+
|
1194 |
+
def gf_eval(f, a, p, K):
|
1195 |
+
"""
|
1196 |
+
Evaluate ``f(a)`` in ``GF(p)`` using Horner scheme.
|
1197 |
+
|
1198 |
+
Examples
|
1199 |
+
========
|
1200 |
+
|
1201 |
+
>>> from sympy.polys.domains import ZZ
|
1202 |
+
>>> from sympy.polys.galoistools import gf_eval
|
1203 |
+
|
1204 |
+
>>> gf_eval([3, 2, 4], 2, 5, ZZ)
|
1205 |
+
0
|
1206 |
+
|
1207 |
+
"""
|
1208 |
+
result = K.zero
|
1209 |
+
|
1210 |
+
for c in f:
|
1211 |
+
result *= a
|
1212 |
+
result += c
|
1213 |
+
result %= p
|
1214 |
+
|
1215 |
+
return result
|
1216 |
+
|
1217 |
+
|
1218 |
+
def gf_multi_eval(f, A, p, K):
|
1219 |
+
"""
|
1220 |
+
Evaluate ``f(a)`` for ``a`` in ``[a_1, ..., a_n]``.
|
1221 |
+
|
1222 |
+
Examples
|
1223 |
+
========
|
1224 |
+
|
1225 |
+
>>> from sympy.polys.domains import ZZ
|
1226 |
+
>>> from sympy.polys.galoistools import gf_multi_eval
|
1227 |
+
|
1228 |
+
>>> gf_multi_eval([3, 2, 4], [0, 1, 2, 3, 4], 5, ZZ)
|
1229 |
+
[4, 4, 0, 2, 0]
|
1230 |
+
|
1231 |
+
"""
|
1232 |
+
return [ gf_eval(f, a, p, K) for a in A ]
|
1233 |
+
|
1234 |
+
|
1235 |
+
def gf_compose(f, g, p, K):
|
1236 |
+
"""
|
1237 |
+
Compute polynomial composition ``f(g)`` in ``GF(p)[x]``.
|
1238 |
+
|
1239 |
+
Examples
|
1240 |
+
========
|
1241 |
+
|
1242 |
+
>>> from sympy.polys.domains import ZZ
|
1243 |
+
>>> from sympy.polys.galoistools import gf_compose
|
1244 |
+
|
1245 |
+
>>> gf_compose([3, 2, 4], [2, 2, 2], 5, ZZ)
|
1246 |
+
[2, 4, 0, 3, 0]
|
1247 |
+
|
1248 |
+
"""
|
1249 |
+
if len(g) <= 1:
|
1250 |
+
return gf_strip([gf_eval(f, gf_LC(g, K), p, K)])
|
1251 |
+
|
1252 |
+
if not f:
|
1253 |
+
return []
|
1254 |
+
|
1255 |
+
h = [f[0]]
|
1256 |
+
|
1257 |
+
for c in f[1:]:
|
1258 |
+
h = gf_mul(h, g, p, K)
|
1259 |
+
h = gf_add_ground(h, c, p, K)
|
1260 |
+
|
1261 |
+
return h
|
1262 |
+
|
1263 |
+
|
1264 |
+
def gf_compose_mod(g, h, f, p, K):
|
1265 |
+
"""
|
1266 |
+
Compute polynomial composition ``g(h)`` in ``GF(p)[x]/(f)``.
|
1267 |
+
|
1268 |
+
Examples
|
1269 |
+
========
|
1270 |
+
|
1271 |
+
>>> from sympy.polys.domains import ZZ
|
1272 |
+
>>> from sympy.polys.galoistools import gf_compose_mod
|
1273 |
+
|
1274 |
+
>>> gf_compose_mod(ZZ.map([3, 2, 4]), ZZ.map([2, 2, 2]), ZZ.map([4, 3]), 5, ZZ)
|
1275 |
+
[4]
|
1276 |
+
|
1277 |
+
"""
|
1278 |
+
if not g:
|
1279 |
+
return []
|
1280 |
+
|
1281 |
+
comp = [g[0]]
|
1282 |
+
|
1283 |
+
for a in g[1:]:
|
1284 |
+
comp = gf_mul(comp, h, p, K)
|
1285 |
+
comp = gf_add_ground(comp, a, p, K)
|
1286 |
+
comp = gf_rem(comp, f, p, K)
|
1287 |
+
|
1288 |
+
return comp
|
1289 |
+
|
1290 |
+
|
1291 |
+
def gf_trace_map(a, b, c, n, f, p, K):
|
1292 |
+
"""
|
1293 |
+
Compute polynomial trace map in ``GF(p)[x]/(f)``.
|
1294 |
+
|
1295 |
+
Given a polynomial ``f`` in ``GF(p)[x]``, polynomials ``a``, ``b``,
|
1296 |
+
``c`` in the quotient ring ``GF(p)[x]/(f)`` such that ``b = c**t
|
1297 |
+
(mod f)`` for some positive power ``t`` of ``p``, and a positive
|
1298 |
+
integer ``n``, returns a mapping::
|
1299 |
+
|
1300 |
+
a -> a**t**n, a + a**t + a**t**2 + ... + a**t**n (mod f)
|
1301 |
+
|
1302 |
+
In factorization context, ``b = x**p mod f`` and ``c = x mod f``.
|
1303 |
+
This way we can efficiently compute trace polynomials in equal
|
1304 |
+
degree factorization routine, much faster than with other methods,
|
1305 |
+
like iterated Frobenius algorithm, for large degrees.
|
1306 |
+
|
1307 |
+
Examples
|
1308 |
+
========
|
1309 |
+
|
1310 |
+
>>> from sympy.polys.domains import ZZ
|
1311 |
+
>>> from sympy.polys.galoistools import gf_trace_map
|
1312 |
+
|
1313 |
+
>>> gf_trace_map([1, 2], [4, 4], [1, 1], 4, [3, 2, 4], 5, ZZ)
|
1314 |
+
([1, 3], [1, 3])
|
1315 |
+
|
1316 |
+
References
|
1317 |
+
==========
|
1318 |
+
|
1319 |
+
.. [1] [Gathen92]_
|
1320 |
+
|
1321 |
+
"""
|
1322 |
+
u = gf_compose_mod(a, b, f, p, K)
|
1323 |
+
v = b
|
1324 |
+
|
1325 |
+
if n & 1:
|
1326 |
+
U = gf_add(a, u, p, K)
|
1327 |
+
V = b
|
1328 |
+
else:
|
1329 |
+
U = a
|
1330 |
+
V = c
|
1331 |
+
|
1332 |
+
n >>= 1
|
1333 |
+
|
1334 |
+
while n:
|
1335 |
+
u = gf_add(u, gf_compose_mod(u, v, f, p, K), p, K)
|
1336 |
+
v = gf_compose_mod(v, v, f, p, K)
|
1337 |
+
|
1338 |
+
if n & 1:
|
1339 |
+
U = gf_add(U, gf_compose_mod(u, V, f, p, K), p, K)
|
1340 |
+
V = gf_compose_mod(v, V, f, p, K)
|
1341 |
+
|
1342 |
+
n >>= 1
|
1343 |
+
|
1344 |
+
return gf_compose_mod(a, V, f, p, K), U
|
1345 |
+
|
1346 |
+
def _gf_trace_map(f, n, g, b, p, K):
|
1347 |
+
"""
|
1348 |
+
utility for ``gf_edf_shoup``
|
1349 |
+
"""
|
1350 |
+
f = gf_rem(f, g, p, K)
|
1351 |
+
h = f
|
1352 |
+
r = f
|
1353 |
+
for i in range(1, n):
|
1354 |
+
h = gf_frobenius_map(h, g, b, p, K)
|
1355 |
+
r = gf_add(r, h, p, K)
|
1356 |
+
r = gf_rem(r, g, p, K)
|
1357 |
+
return r
|
1358 |
+
|
1359 |
+
|
1360 |
+
def gf_random(n, p, K):
|
1361 |
+
"""
|
1362 |
+
Generate a random polynomial in ``GF(p)[x]`` of degree ``n``.
|
1363 |
+
|
1364 |
+
Examples
|
1365 |
+
========
|
1366 |
+
|
1367 |
+
>>> from sympy.polys.domains import ZZ
|
1368 |
+
>>> from sympy.polys.galoistools import gf_random
|
1369 |
+
>>> gf_random(10, 5, ZZ) #doctest: +SKIP
|
1370 |
+
[1, 2, 3, 2, 1, 1, 1, 2, 0, 4, 2]
|
1371 |
+
|
1372 |
+
"""
|
1373 |
+
return [K.one] + [ K(int(uniform(0, p))) for i in range(0, n) ]
|
1374 |
+
|
1375 |
+
|
1376 |
+
def gf_irreducible(n, p, K):
|
1377 |
+
"""
|
1378 |
+
Generate random irreducible polynomial of degree ``n`` in ``GF(p)[x]``.
|
1379 |
+
|
1380 |
+
Examples
|
1381 |
+
========
|
1382 |
+
|
1383 |
+
>>> from sympy.polys.domains import ZZ
|
1384 |
+
>>> from sympy.polys.galoistools import gf_irreducible
|
1385 |
+
>>> gf_irreducible(10, 5, ZZ) #doctest: +SKIP
|
1386 |
+
[1, 4, 2, 2, 3, 2, 4, 1, 4, 0, 4]
|
1387 |
+
|
1388 |
+
"""
|
1389 |
+
while True:
|
1390 |
+
f = gf_random(n, p, K)
|
1391 |
+
if gf_irreducible_p(f, p, K):
|
1392 |
+
return f
|
1393 |
+
|
1394 |
+
|
1395 |
+
def gf_irred_p_ben_or(f, p, K):
|
1396 |
+
"""
|
1397 |
+
Ben-Or's polynomial irreducibility test over finite fields.
|
1398 |
+
|
1399 |
+
Examples
|
1400 |
+
========
|
1401 |
+
|
1402 |
+
>>> from sympy.polys.domains import ZZ
|
1403 |
+
>>> from sympy.polys.galoistools import gf_irred_p_ben_or
|
1404 |
+
|
1405 |
+
>>> gf_irred_p_ben_or(ZZ.map([1, 4, 2, 2, 3, 2, 4, 1, 4, 0, 4]), 5, ZZ)
|
1406 |
+
True
|
1407 |
+
>>> gf_irred_p_ben_or(ZZ.map([3, 2, 4]), 5, ZZ)
|
1408 |
+
False
|
1409 |
+
|
1410 |
+
"""
|
1411 |
+
n = gf_degree(f)
|
1412 |
+
|
1413 |
+
if n <= 1:
|
1414 |
+
return True
|
1415 |
+
|
1416 |
+
_, f = gf_monic(f, p, K)
|
1417 |
+
if n < 5:
|
1418 |
+
H = h = gf_pow_mod([K.one, K.zero], p, f, p, K)
|
1419 |
+
|
1420 |
+
for i in range(0, n//2):
|
1421 |
+
g = gf_sub(h, [K.one, K.zero], p, K)
|
1422 |
+
|
1423 |
+
if gf_gcd(f, g, p, K) == [K.one]:
|
1424 |
+
h = gf_compose_mod(h, H, f, p, K)
|
1425 |
+
else:
|
1426 |
+
return False
|
1427 |
+
else:
|
1428 |
+
b = gf_frobenius_monomial_base(f, p, K)
|
1429 |
+
H = h = gf_frobenius_map([K.one, K.zero], f, b, p, K)
|
1430 |
+
for i in range(0, n//2):
|
1431 |
+
g = gf_sub(h, [K.one, K.zero], p, K)
|
1432 |
+
if gf_gcd(f, g, p, K) == [K.one]:
|
1433 |
+
h = gf_frobenius_map(h, f, b, p, K)
|
1434 |
+
else:
|
1435 |
+
return False
|
1436 |
+
|
1437 |
+
return True
|
1438 |
+
|
1439 |
+
|
1440 |
+
def gf_irred_p_rabin(f, p, K):
|
1441 |
+
"""
|
1442 |
+
Rabin's polynomial irreducibility test over finite fields.
|
1443 |
+
|
1444 |
+
Examples
|
1445 |
+
========
|
1446 |
+
|
1447 |
+
>>> from sympy.polys.domains import ZZ
|
1448 |
+
>>> from sympy.polys.galoistools import gf_irred_p_rabin
|
1449 |
+
|
1450 |
+
>>> gf_irred_p_rabin(ZZ.map([1, 4, 2, 2, 3, 2, 4, 1, 4, 0, 4]), 5, ZZ)
|
1451 |
+
True
|
1452 |
+
>>> gf_irred_p_rabin(ZZ.map([3, 2, 4]), 5, ZZ)
|
1453 |
+
False
|
1454 |
+
|
1455 |
+
"""
|
1456 |
+
n = gf_degree(f)
|
1457 |
+
|
1458 |
+
if n <= 1:
|
1459 |
+
return True
|
1460 |
+
|
1461 |
+
_, f = gf_monic(f, p, K)
|
1462 |
+
|
1463 |
+
x = [K.one, K.zero]
|
1464 |
+
|
1465 |
+
from sympy.ntheory import factorint
|
1466 |
+
|
1467 |
+
indices = { n//d for d in factorint(n) }
|
1468 |
+
|
1469 |
+
b = gf_frobenius_monomial_base(f, p, K)
|
1470 |
+
h = b[1]
|
1471 |
+
|
1472 |
+
for i in range(1, n):
|
1473 |
+
if i in indices:
|
1474 |
+
g = gf_sub(h, x, p, K)
|
1475 |
+
|
1476 |
+
if gf_gcd(f, g, p, K) != [K.one]:
|
1477 |
+
return False
|
1478 |
+
|
1479 |
+
h = gf_frobenius_map(h, f, b, p, K)
|
1480 |
+
|
1481 |
+
return h == x
|
1482 |
+
|
1483 |
+
_irred_methods = {
|
1484 |
+
'ben-or': gf_irred_p_ben_or,
|
1485 |
+
'rabin': gf_irred_p_rabin,
|
1486 |
+
}
|
1487 |
+
|
1488 |
+
|
1489 |
+
def gf_irreducible_p(f, p, K):
|
1490 |
+
"""
|
1491 |
+
Test irreducibility of a polynomial ``f`` in ``GF(p)[x]``.
|
1492 |
+
|
1493 |
+
Examples
|
1494 |
+
========
|
1495 |
+
|
1496 |
+
>>> from sympy.polys.domains import ZZ
|
1497 |
+
>>> from sympy.polys.galoistools import gf_irreducible_p
|
1498 |
+
|
1499 |
+
>>> gf_irreducible_p(ZZ.map([1, 4, 2, 2, 3, 2, 4, 1, 4, 0, 4]), 5, ZZ)
|
1500 |
+
True
|
1501 |
+
>>> gf_irreducible_p(ZZ.map([3, 2, 4]), 5, ZZ)
|
1502 |
+
False
|
1503 |
+
|
1504 |
+
"""
|
1505 |
+
method = query('GF_IRRED_METHOD')
|
1506 |
+
|
1507 |
+
if method is not None:
|
1508 |
+
irred = _irred_methods[method](f, p, K)
|
1509 |
+
else:
|
1510 |
+
irred = gf_irred_p_rabin(f, p, K)
|
1511 |
+
|
1512 |
+
return irred
|
1513 |
+
|
1514 |
+
|
1515 |
+
def gf_sqf_p(f, p, K):
|
1516 |
+
"""
|
1517 |
+
Return ``True`` if ``f`` is square-free in ``GF(p)[x]``.
|
1518 |
+
|
1519 |
+
Examples
|
1520 |
+
========
|
1521 |
+
|
1522 |
+
>>> from sympy.polys.domains import ZZ
|
1523 |
+
>>> from sympy.polys.galoistools import gf_sqf_p
|
1524 |
+
|
1525 |
+
>>> gf_sqf_p(ZZ.map([3, 2, 4]), 5, ZZ)
|
1526 |
+
True
|
1527 |
+
>>> gf_sqf_p(ZZ.map([2, 4, 4, 2, 2, 1, 4]), 5, ZZ)
|
1528 |
+
False
|
1529 |
+
|
1530 |
+
"""
|
1531 |
+
_, f = gf_monic(f, p, K)
|
1532 |
+
|
1533 |
+
if not f:
|
1534 |
+
return True
|
1535 |
+
else:
|
1536 |
+
return gf_gcd(f, gf_diff(f, p, K), p, K) == [K.one]
|
1537 |
+
|
1538 |
+
|
1539 |
+
def gf_sqf_part(f, p, K):
|
1540 |
+
"""
|
1541 |
+
Return square-free part of a ``GF(p)[x]`` polynomial.
|
1542 |
+
|
1543 |
+
Examples
|
1544 |
+
========
|
1545 |
+
|
1546 |
+
>>> from sympy.polys.domains import ZZ
|
1547 |
+
>>> from sympy.polys.galoistools import gf_sqf_part
|
1548 |
+
|
1549 |
+
>>> gf_sqf_part(ZZ.map([1, 1, 3, 0, 1, 0, 2, 2, 1]), 5, ZZ)
|
1550 |
+
[1, 4, 3]
|
1551 |
+
|
1552 |
+
"""
|
1553 |
+
_, sqf = gf_sqf_list(f, p, K)
|
1554 |
+
|
1555 |
+
g = [K.one]
|
1556 |
+
|
1557 |
+
for f, _ in sqf:
|
1558 |
+
g = gf_mul(g, f, p, K)
|
1559 |
+
|
1560 |
+
return g
|
1561 |
+
|
1562 |
+
|
1563 |
+
def gf_sqf_list(f, p, K, all=False):
|
1564 |
+
"""
|
1565 |
+
Return the square-free decomposition of a ``GF(p)[x]`` polynomial.
|
1566 |
+
|
1567 |
+
Given a polynomial ``f`` in ``GF(p)[x]``, returns the leading coefficient
|
1568 |
+
of ``f`` and a square-free decomposition ``f_1**e_1 f_2**e_2 ... f_k**e_k``
|
1569 |
+
such that all ``f_i`` are monic polynomials and ``(f_i, f_j)`` for ``i != j``
|
1570 |
+
are co-prime and ``e_1 ... e_k`` are given in increasing order. All trivial
|
1571 |
+
terms (i.e. ``f_i = 1``) are not included in the output.
|
1572 |
+
|
1573 |
+
Consider polynomial ``f = x**11 + 1`` over ``GF(11)[x]``::
|
1574 |
+
|
1575 |
+
>>> from sympy.polys.domains import ZZ
|
1576 |
+
|
1577 |
+
>>> from sympy.polys.galoistools import (
|
1578 |
+
... gf_from_dict, gf_diff, gf_sqf_list, gf_pow,
|
1579 |
+
... )
|
1580 |
+
... # doctest: +NORMALIZE_WHITESPACE
|
1581 |
+
|
1582 |
+
>>> f = gf_from_dict({11: ZZ(1), 0: ZZ(1)}, 11, ZZ)
|
1583 |
+
|
1584 |
+
Note that ``f'(x) = 0``::
|
1585 |
+
|
1586 |
+
>>> gf_diff(f, 11, ZZ)
|
1587 |
+
[]
|
1588 |
+
|
1589 |
+
This phenomenon does not happen in characteristic zero. However we can
|
1590 |
+
still compute square-free decomposition of ``f`` using ``gf_sqf()``::
|
1591 |
+
|
1592 |
+
>>> gf_sqf_list(f, 11, ZZ)
|
1593 |
+
(1, [([1, 1], 11)])
|
1594 |
+
|
1595 |
+
We obtained factorization ``f = (x + 1)**11``. This is correct because::
|
1596 |
+
|
1597 |
+
>>> gf_pow([1, 1], 11, 11, ZZ) == f
|
1598 |
+
True
|
1599 |
+
|
1600 |
+
References
|
1601 |
+
==========
|
1602 |
+
|
1603 |
+
.. [1] [Geddes92]_
|
1604 |
+
|
1605 |
+
"""
|
1606 |
+
n, sqf, factors, r = 1, False, [], int(p)
|
1607 |
+
|
1608 |
+
lc, f = gf_monic(f, p, K)
|
1609 |
+
|
1610 |
+
if gf_degree(f) < 1:
|
1611 |
+
return lc, []
|
1612 |
+
|
1613 |
+
while True:
|
1614 |
+
F = gf_diff(f, p, K)
|
1615 |
+
|
1616 |
+
if F != []:
|
1617 |
+
g = gf_gcd(f, F, p, K)
|
1618 |
+
h = gf_quo(f, g, p, K)
|
1619 |
+
|
1620 |
+
i = 1
|
1621 |
+
|
1622 |
+
while h != [K.one]:
|
1623 |
+
G = gf_gcd(g, h, p, K)
|
1624 |
+
H = gf_quo(h, G, p, K)
|
1625 |
+
|
1626 |
+
if gf_degree(H) > 0:
|
1627 |
+
factors.append((H, i*n))
|
1628 |
+
|
1629 |
+
g, h, i = gf_quo(g, G, p, K), G, i + 1
|
1630 |
+
|
1631 |
+
if g == [K.one]:
|
1632 |
+
sqf = True
|
1633 |
+
else:
|
1634 |
+
f = g
|
1635 |
+
|
1636 |
+
if not sqf:
|
1637 |
+
d = gf_degree(f) // r
|
1638 |
+
|
1639 |
+
for i in range(0, d + 1):
|
1640 |
+
f[i] = f[i*r]
|
1641 |
+
|
1642 |
+
f, n = f[:d + 1], n*r
|
1643 |
+
else:
|
1644 |
+
break
|
1645 |
+
|
1646 |
+
if all:
|
1647 |
+
raise ValueError("'all=True' is not supported yet")
|
1648 |
+
|
1649 |
+
return lc, factors
|
1650 |
+
|
1651 |
+
|
1652 |
+
def gf_Qmatrix(f, p, K):
|
1653 |
+
"""
|
1654 |
+
Calculate Berlekamp's ``Q`` matrix.
|
1655 |
+
|
1656 |
+
Examples
|
1657 |
+
========
|
1658 |
+
|
1659 |
+
>>> from sympy.polys.domains import ZZ
|
1660 |
+
>>> from sympy.polys.galoistools import gf_Qmatrix
|
1661 |
+
|
1662 |
+
>>> gf_Qmatrix([3, 2, 4], 5, ZZ)
|
1663 |
+
[[1, 0],
|
1664 |
+
[3, 4]]
|
1665 |
+
|
1666 |
+
>>> gf_Qmatrix([1, 0, 0, 0, 1], 5, ZZ)
|
1667 |
+
[[1, 0, 0, 0],
|
1668 |
+
[0, 4, 0, 0],
|
1669 |
+
[0, 0, 1, 0],
|
1670 |
+
[0, 0, 0, 4]]
|
1671 |
+
|
1672 |
+
"""
|
1673 |
+
n, r = gf_degree(f), int(p)
|
1674 |
+
|
1675 |
+
q = [K.one] + [K.zero]*(n - 1)
|
1676 |
+
Q = [list(q)] + [[]]*(n - 1)
|
1677 |
+
|
1678 |
+
for i in range(1, (n - 1)*r + 1):
|
1679 |
+
qq, c = [(-q[-1]*f[-1]) % p], q[-1]
|
1680 |
+
|
1681 |
+
for j in range(1, n):
|
1682 |
+
qq.append((q[j - 1] - c*f[-j - 1]) % p)
|
1683 |
+
|
1684 |
+
if not (i % r):
|
1685 |
+
Q[i//r] = list(qq)
|
1686 |
+
|
1687 |
+
q = qq
|
1688 |
+
|
1689 |
+
return Q
|
1690 |
+
|
1691 |
+
|
1692 |
+
def gf_Qbasis(Q, p, K):
|
1693 |
+
"""
|
1694 |
+
Compute a basis of the kernel of ``Q``.
|
1695 |
+
|
1696 |
+
Examples
|
1697 |
+
========
|
1698 |
+
|
1699 |
+
>>> from sympy.polys.domains import ZZ
|
1700 |
+
>>> from sympy.polys.galoistools import gf_Qmatrix, gf_Qbasis
|
1701 |
+
|
1702 |
+
>>> gf_Qbasis(gf_Qmatrix([1, 0, 0, 0, 1], 5, ZZ), 5, ZZ)
|
1703 |
+
[[1, 0, 0, 0], [0, 0, 1, 0]]
|
1704 |
+
|
1705 |
+
>>> gf_Qbasis(gf_Qmatrix([3, 2, 4], 5, ZZ), 5, ZZ)
|
1706 |
+
[[1, 0]]
|
1707 |
+
|
1708 |
+
"""
|
1709 |
+
Q, n = [ list(q) for q in Q ], len(Q)
|
1710 |
+
|
1711 |
+
for k in range(0, n):
|
1712 |
+
Q[k][k] = (Q[k][k] - K.one) % p
|
1713 |
+
|
1714 |
+
for k in range(0, n):
|
1715 |
+
for i in range(k, n):
|
1716 |
+
if Q[k][i]:
|
1717 |
+
break
|
1718 |
+
else:
|
1719 |
+
continue
|
1720 |
+
|
1721 |
+
inv = K.invert(Q[k][i], p)
|
1722 |
+
|
1723 |
+
for j in range(0, n):
|
1724 |
+
Q[j][i] = (Q[j][i]*inv) % p
|
1725 |
+
|
1726 |
+
for j in range(0, n):
|
1727 |
+
t = Q[j][k]
|
1728 |
+
Q[j][k] = Q[j][i]
|
1729 |
+
Q[j][i] = t
|
1730 |
+
|
1731 |
+
for i in range(0, n):
|
1732 |
+
if i != k:
|
1733 |
+
q = Q[k][i]
|
1734 |
+
|
1735 |
+
for j in range(0, n):
|
1736 |
+
Q[j][i] = (Q[j][i] - Q[j][k]*q) % p
|
1737 |
+
|
1738 |
+
for i in range(0, n):
|
1739 |
+
for j in range(0, n):
|
1740 |
+
if i == j:
|
1741 |
+
Q[i][j] = (K.one - Q[i][j]) % p
|
1742 |
+
else:
|
1743 |
+
Q[i][j] = (-Q[i][j]) % p
|
1744 |
+
|
1745 |
+
basis = []
|
1746 |
+
|
1747 |
+
for q in Q:
|
1748 |
+
if any(q):
|
1749 |
+
basis.append(q)
|
1750 |
+
|
1751 |
+
return basis
|
1752 |
+
|
1753 |
+
|
1754 |
+
def gf_berlekamp(f, p, K):
|
1755 |
+
"""
|
1756 |
+
Factor a square-free ``f`` in ``GF(p)[x]`` for small ``p``.
|
1757 |
+
|
1758 |
+
Examples
|
1759 |
+
========
|
1760 |
+
|
1761 |
+
>>> from sympy.polys.domains import ZZ
|
1762 |
+
>>> from sympy.polys.galoistools import gf_berlekamp
|
1763 |
+
|
1764 |
+
>>> gf_berlekamp([1, 0, 0, 0, 1], 5, ZZ)
|
1765 |
+
[[1, 0, 2], [1, 0, 3]]
|
1766 |
+
|
1767 |
+
"""
|
1768 |
+
Q = gf_Qmatrix(f, p, K)
|
1769 |
+
V = gf_Qbasis(Q, p, K)
|
1770 |
+
|
1771 |
+
for i, v in enumerate(V):
|
1772 |
+
V[i] = gf_strip(list(reversed(v)))
|
1773 |
+
|
1774 |
+
factors = [f]
|
1775 |
+
|
1776 |
+
for k in range(1, len(V)):
|
1777 |
+
for f in list(factors):
|
1778 |
+
s = K.zero
|
1779 |
+
|
1780 |
+
while s < p:
|
1781 |
+
g = gf_sub_ground(V[k], s, p, K)
|
1782 |
+
h = gf_gcd(f, g, p, K)
|
1783 |
+
|
1784 |
+
if h != [K.one] and h != f:
|
1785 |
+
factors.remove(f)
|
1786 |
+
|
1787 |
+
f = gf_quo(f, h, p, K)
|
1788 |
+
factors.extend([f, h])
|
1789 |
+
|
1790 |
+
if len(factors) == len(V):
|
1791 |
+
return _sort_factors(factors, multiple=False)
|
1792 |
+
|
1793 |
+
s += K.one
|
1794 |
+
|
1795 |
+
return _sort_factors(factors, multiple=False)
|
1796 |
+
|
1797 |
+
|
1798 |
+
def gf_ddf_zassenhaus(f, p, K):
|
1799 |
+
"""
|
1800 |
+
Cantor-Zassenhaus: Deterministic Distinct Degree Factorization
|
1801 |
+
|
1802 |
+
Given a monic square-free polynomial ``f`` in ``GF(p)[x]``, computes
|
1803 |
+
partial distinct degree factorization ``f_1 ... f_d`` of ``f`` where
|
1804 |
+
``deg(f_i) != deg(f_j)`` for ``i != j``. The result is returned as a
|
1805 |
+
list of pairs ``(f_i, e_i)`` where ``deg(f_i) > 0`` and ``e_i > 0``
|
1806 |
+
is an argument to the equal degree factorization routine.
|
1807 |
+
|
1808 |
+
Consider the polynomial ``x**15 - 1`` in ``GF(11)[x]``::
|
1809 |
+
|
1810 |
+
>>> from sympy.polys.domains import ZZ
|
1811 |
+
>>> from sympy.polys.galoistools import gf_from_dict
|
1812 |
+
|
1813 |
+
>>> f = gf_from_dict({15: ZZ(1), 0: ZZ(-1)}, 11, ZZ)
|
1814 |
+
|
1815 |
+
Distinct degree factorization gives::
|
1816 |
+
|
1817 |
+
>>> from sympy.polys.galoistools import gf_ddf_zassenhaus
|
1818 |
+
|
1819 |
+
>>> gf_ddf_zassenhaus(f, 11, ZZ)
|
1820 |
+
[([1, 0, 0, 0, 0, 10], 1), ([1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], 2)]
|
1821 |
+
|
1822 |
+
which means ``x**15 - 1 = (x**5 - 1) (x**10 + x**5 + 1)``. To obtain
|
1823 |
+
factorization into irreducibles, use equal degree factorization
|
1824 |
+
procedure (EDF) with each of the factors.
|
1825 |
+
|
1826 |
+
References
|
1827 |
+
==========
|
1828 |
+
|
1829 |
+
.. [1] [Gathen99]_
|
1830 |
+
.. [2] [Geddes92]_
|
1831 |
+
|
1832 |
+
"""
|
1833 |
+
i, g, factors = 1, [K.one, K.zero], []
|
1834 |
+
|
1835 |
+
b = gf_frobenius_monomial_base(f, p, K)
|
1836 |
+
while 2*i <= gf_degree(f):
|
1837 |
+
g = gf_frobenius_map(g, f, b, p, K)
|
1838 |
+
h = gf_gcd(f, gf_sub(g, [K.one, K.zero], p, K), p, K)
|
1839 |
+
|
1840 |
+
if h != [K.one]:
|
1841 |
+
factors.append((h, i))
|
1842 |
+
|
1843 |
+
f = gf_quo(f, h, p, K)
|
1844 |
+
g = gf_rem(g, f, p, K)
|
1845 |
+
b = gf_frobenius_monomial_base(f, p, K)
|
1846 |
+
|
1847 |
+
i += 1
|
1848 |
+
|
1849 |
+
if f != [K.one]:
|
1850 |
+
return factors + [(f, gf_degree(f))]
|
1851 |
+
else:
|
1852 |
+
return factors
|
1853 |
+
|
1854 |
+
|
1855 |
+
def gf_edf_zassenhaus(f, n, p, K):
|
1856 |
+
"""
|
1857 |
+
Cantor-Zassenhaus: Probabilistic Equal Degree Factorization
|
1858 |
+
|
1859 |
+
Given a monic square-free polynomial ``f`` in ``GF(p)[x]`` and
|
1860 |
+
an integer ``n``, such that ``n`` divides ``deg(f)``, returns all
|
1861 |
+
irreducible factors ``f_1,...,f_d`` of ``f``, each of degree ``n``.
|
1862 |
+
EDF procedure gives complete factorization over Galois fields.
|
1863 |
+
|
1864 |
+
Consider the square-free polynomial ``f = x**3 + x**2 + x + 1`` in
|
1865 |
+
``GF(5)[x]``. Let's compute its irreducible factors of degree one::
|
1866 |
+
|
1867 |
+
>>> from sympy.polys.domains import ZZ
|
1868 |
+
>>> from sympy.polys.galoistools import gf_edf_zassenhaus
|
1869 |
+
|
1870 |
+
>>> gf_edf_zassenhaus([1,1,1,1], 1, 5, ZZ)
|
1871 |
+
[[1, 1], [1, 2], [1, 3]]
|
1872 |
+
|
1873 |
+
Notes
|
1874 |
+
=====
|
1875 |
+
|
1876 |
+
The case p == 2 is handled by Cohen's Algorithm 3.4.8. The case p odd is
|
1877 |
+
as in Geddes Algorithm 8.9 (or Cohen's Algorithm 3.4.6).
|
1878 |
+
|
1879 |
+
References
|
1880 |
+
==========
|
1881 |
+
|
1882 |
+
.. [1] [Gathen99]_
|
1883 |
+
.. [2] [Geddes92]_ Algorithm 8.9
|
1884 |
+
.. [3] [Cohen93]_ Algorithm 3.4.8
|
1885 |
+
|
1886 |
+
"""
|
1887 |
+
factors = [f]
|
1888 |
+
|
1889 |
+
if gf_degree(f) <= n:
|
1890 |
+
return factors
|
1891 |
+
|
1892 |
+
N = gf_degree(f) // n
|
1893 |
+
if p != 2:
|
1894 |
+
b = gf_frobenius_monomial_base(f, p, K)
|
1895 |
+
|
1896 |
+
t = [K.one, K.zero]
|
1897 |
+
while len(factors) < N:
|
1898 |
+
if p == 2:
|
1899 |
+
h = r = t
|
1900 |
+
|
1901 |
+
for i in range(n - 1):
|
1902 |
+
r = gf_pow_mod(r, 2, f, p, K)
|
1903 |
+
h = gf_add(h, r, p, K)
|
1904 |
+
|
1905 |
+
g = gf_gcd(f, h, p, K)
|
1906 |
+
t += [K.zero, K.zero]
|
1907 |
+
else:
|
1908 |
+
r = gf_random(2 * n - 1, p, K)
|
1909 |
+
h = _gf_pow_pnm1d2(r, n, f, b, p, K)
|
1910 |
+
g = gf_gcd(f, gf_sub_ground(h, K.one, p, K), p, K)
|
1911 |
+
|
1912 |
+
if g != [K.one] and g != f:
|
1913 |
+
factors = gf_edf_zassenhaus(g, n, p, K) \
|
1914 |
+
+ gf_edf_zassenhaus(gf_quo(f, g, p, K), n, p, K)
|
1915 |
+
|
1916 |
+
return _sort_factors(factors, multiple=False)
|
1917 |
+
|
1918 |
+
|
1919 |
+
def gf_ddf_shoup(f, p, K):
|
1920 |
+
"""
|
1921 |
+
Kaltofen-Shoup: Deterministic Distinct Degree Factorization
|
1922 |
+
|
1923 |
+
Given a monic square-free polynomial ``f`` in ``GF(p)[x]``, computes
|
1924 |
+
partial distinct degree factorization ``f_1,...,f_d`` of ``f`` where
|
1925 |
+
``deg(f_i) != deg(f_j)`` for ``i != j``. The result is returned as a
|
1926 |
+
list of pairs ``(f_i, e_i)`` where ``deg(f_i) > 0`` and ``e_i > 0``
|
1927 |
+
is an argument to the equal degree factorization routine.
|
1928 |
+
|
1929 |
+
This algorithm is an improved version of Zassenhaus algorithm for
|
1930 |
+
large ``deg(f)`` and modulus ``p`` (especially for ``deg(f) ~ lg(p)``).
|
1931 |
+
|
1932 |
+
Examples
|
1933 |
+
========
|
1934 |
+
|
1935 |
+
>>> from sympy.polys.domains import ZZ
|
1936 |
+
>>> from sympy.polys.galoistools import gf_ddf_shoup, gf_from_dict
|
1937 |
+
|
1938 |
+
>>> f = gf_from_dict({6: ZZ(1), 5: ZZ(-1), 4: ZZ(1), 3: ZZ(1), 1: ZZ(-1)}, 3, ZZ)
|
1939 |
+
|
1940 |
+
>>> gf_ddf_shoup(f, 3, ZZ)
|
1941 |
+
[([1, 1, 0], 1), ([1, 1, 0, 1, 2], 2)]
|
1942 |
+
|
1943 |
+
References
|
1944 |
+
==========
|
1945 |
+
|
1946 |
+
.. [1] [Kaltofen98]_
|
1947 |
+
.. [2] [Shoup95]_
|
1948 |
+
.. [3] [Gathen92]_
|
1949 |
+
|
1950 |
+
"""
|
1951 |
+
n = gf_degree(f)
|
1952 |
+
k = int(_ceil(_sqrt(n//2)))
|
1953 |
+
b = gf_frobenius_monomial_base(f, p, K)
|
1954 |
+
h = gf_frobenius_map([K.one, K.zero], f, b, p, K)
|
1955 |
+
# U[i] = x**(p**i)
|
1956 |
+
U = [[K.one, K.zero], h] + [K.zero]*(k - 1)
|
1957 |
+
|
1958 |
+
for i in range(2, k + 1):
|
1959 |
+
U[i] = gf_frobenius_map(U[i-1], f, b, p, K)
|
1960 |
+
|
1961 |
+
h, U = U[k], U[:k]
|
1962 |
+
# V[i] = x**(p**(k*(i+1)))
|
1963 |
+
V = [h] + [K.zero]*(k - 1)
|
1964 |
+
|
1965 |
+
for i in range(1, k):
|
1966 |
+
V[i] = gf_compose_mod(V[i - 1], h, f, p, K)
|
1967 |
+
|
1968 |
+
factors = []
|
1969 |
+
|
1970 |
+
for i, v in enumerate(V):
|
1971 |
+
h, j = [K.one], k - 1
|
1972 |
+
|
1973 |
+
for u in U:
|
1974 |
+
g = gf_sub(v, u, p, K)
|
1975 |
+
h = gf_mul(h, g, p, K)
|
1976 |
+
h = gf_rem(h, f, p, K)
|
1977 |
+
|
1978 |
+
g = gf_gcd(f, h, p, K)
|
1979 |
+
f = gf_quo(f, g, p, K)
|
1980 |
+
|
1981 |
+
for u in reversed(U):
|
1982 |
+
h = gf_sub(v, u, p, K)
|
1983 |
+
F = gf_gcd(g, h, p, K)
|
1984 |
+
|
1985 |
+
if F != [K.one]:
|
1986 |
+
factors.append((F, k*(i + 1) - j))
|
1987 |
+
|
1988 |
+
g, j = gf_quo(g, F, p, K), j - 1
|
1989 |
+
|
1990 |
+
if f != [K.one]:
|
1991 |
+
factors.append((f, gf_degree(f)))
|
1992 |
+
|
1993 |
+
return factors
|
1994 |
+
|
1995 |
+
def gf_edf_shoup(f, n, p, K):
|
1996 |
+
"""
|
1997 |
+
Gathen-Shoup: Probabilistic Equal Degree Factorization
|
1998 |
+
|
1999 |
+
Given a monic square-free polynomial ``f`` in ``GF(p)[x]`` and integer
|
2000 |
+
``n`` such that ``n`` divides ``deg(f)``, returns all irreducible factors
|
2001 |
+
``f_1,...,f_d`` of ``f``, each of degree ``n``. This is a complete
|
2002 |
+
factorization over Galois fields.
|
2003 |
+
|
2004 |
+
This algorithm is an improved version of Zassenhaus algorithm for
|
2005 |
+
large ``deg(f)`` and modulus ``p`` (especially for ``deg(f) ~ lg(p)``).
|
2006 |
+
|
2007 |
+
Examples
|
2008 |
+
========
|
2009 |
+
|
2010 |
+
>>> from sympy.polys.domains import ZZ
|
2011 |
+
>>> from sympy.polys.galoistools import gf_edf_shoup
|
2012 |
+
|
2013 |
+
>>> gf_edf_shoup(ZZ.map([1, 2837, 2277]), 1, 2917, ZZ)
|
2014 |
+
[[1, 852], [1, 1985]]
|
2015 |
+
|
2016 |
+
References
|
2017 |
+
==========
|
2018 |
+
|
2019 |
+
.. [1] [Shoup91]_
|
2020 |
+
.. [2] [Gathen92]_
|
2021 |
+
|
2022 |
+
"""
|
2023 |
+
N, q = gf_degree(f), int(p)
|
2024 |
+
|
2025 |
+
if not N:
|
2026 |
+
return []
|
2027 |
+
if N <= n:
|
2028 |
+
return [f]
|
2029 |
+
|
2030 |
+
factors, x = [f], [K.one, K.zero]
|
2031 |
+
|
2032 |
+
r = gf_random(N - 1, p, K)
|
2033 |
+
|
2034 |
+
if p == 2:
|
2035 |
+
h = gf_pow_mod(x, q, f, p, K)
|
2036 |
+
H = gf_trace_map(r, h, x, n - 1, f, p, K)[1]
|
2037 |
+
h1 = gf_gcd(f, H, p, K)
|
2038 |
+
h2 = gf_quo(f, h1, p, K)
|
2039 |
+
|
2040 |
+
factors = gf_edf_shoup(h1, n, p, K) \
|
2041 |
+
+ gf_edf_shoup(h2, n, p, K)
|
2042 |
+
else:
|
2043 |
+
b = gf_frobenius_monomial_base(f, p, K)
|
2044 |
+
H = _gf_trace_map(r, n, f, b, p, K)
|
2045 |
+
h = gf_pow_mod(H, (q - 1)//2, f, p, K)
|
2046 |
+
|
2047 |
+
h1 = gf_gcd(f, h, p, K)
|
2048 |
+
h2 = gf_gcd(f, gf_sub_ground(h, K.one, p, K), p, K)
|
2049 |
+
h3 = gf_quo(f, gf_mul(h1, h2, p, K), p, K)
|
2050 |
+
|
2051 |
+
factors = gf_edf_shoup(h1, n, p, K) \
|
2052 |
+
+ gf_edf_shoup(h2, n, p, K) \
|
2053 |
+
+ gf_edf_shoup(h3, n, p, K)
|
2054 |
+
|
2055 |
+
return _sort_factors(factors, multiple=False)
|
2056 |
+
|
2057 |
+
|
2058 |
+
def gf_zassenhaus(f, p, K):
|
2059 |
+
"""
|
2060 |
+
Factor a square-free ``f`` in ``GF(p)[x]`` for medium ``p``.
|
2061 |
+
|
2062 |
+
Examples
|
2063 |
+
========
|
2064 |
+
|
2065 |
+
>>> from sympy.polys.domains import ZZ
|
2066 |
+
>>> from sympy.polys.galoistools import gf_zassenhaus
|
2067 |
+
|
2068 |
+
>>> gf_zassenhaus(ZZ.map([1, 4, 3]), 5, ZZ)
|
2069 |
+
[[1, 1], [1, 3]]
|
2070 |
+
|
2071 |
+
"""
|
2072 |
+
factors = []
|
2073 |
+
|
2074 |
+
for factor, n in gf_ddf_zassenhaus(f, p, K):
|
2075 |
+
factors += gf_edf_zassenhaus(factor, n, p, K)
|
2076 |
+
|
2077 |
+
return _sort_factors(factors, multiple=False)
|
2078 |
+
|
2079 |
+
|
2080 |
+
def gf_shoup(f, p, K):
|
2081 |
+
"""
|
2082 |
+
Factor a square-free ``f`` in ``GF(p)[x]`` for large ``p``.
|
2083 |
+
|
2084 |
+
Examples
|
2085 |
+
========
|
2086 |
+
|
2087 |
+
>>> from sympy.polys.domains import ZZ
|
2088 |
+
>>> from sympy.polys.galoistools import gf_shoup
|
2089 |
+
|
2090 |
+
>>> gf_shoup(ZZ.map([1, 4, 3]), 5, ZZ)
|
2091 |
+
[[1, 1], [1, 3]]
|
2092 |
+
|
2093 |
+
"""
|
2094 |
+
factors = []
|
2095 |
+
|
2096 |
+
for factor, n in gf_ddf_shoup(f, p, K):
|
2097 |
+
factors += gf_edf_shoup(factor, n, p, K)
|
2098 |
+
|
2099 |
+
return _sort_factors(factors, multiple=False)
|
2100 |
+
|
2101 |
+
_factor_methods = {
|
2102 |
+
'berlekamp': gf_berlekamp, # ``p`` : small
|
2103 |
+
'zassenhaus': gf_zassenhaus, # ``p`` : medium
|
2104 |
+
'shoup': gf_shoup, # ``p`` : large
|
2105 |
+
}
|
2106 |
+
|
2107 |
+
|
2108 |
+
def gf_factor_sqf(f, p, K, method=None):
|
2109 |
+
"""
|
2110 |
+
Factor a square-free polynomial ``f`` in ``GF(p)[x]``.
|
2111 |
+
|
2112 |
+
Examples
|
2113 |
+
========
|
2114 |
+
|
2115 |
+
>>> from sympy.polys.domains import ZZ
|
2116 |
+
>>> from sympy.polys.galoistools import gf_factor_sqf
|
2117 |
+
|
2118 |
+
>>> gf_factor_sqf(ZZ.map([3, 2, 4]), 5, ZZ)
|
2119 |
+
(3, [[1, 1], [1, 3]])
|
2120 |
+
|
2121 |
+
"""
|
2122 |
+
lc, f = gf_monic(f, p, K)
|
2123 |
+
|
2124 |
+
if gf_degree(f) < 1:
|
2125 |
+
return lc, []
|
2126 |
+
|
2127 |
+
method = method or query('GF_FACTOR_METHOD')
|
2128 |
+
|
2129 |
+
if method is not None:
|
2130 |
+
factors = _factor_methods[method](f, p, K)
|
2131 |
+
else:
|
2132 |
+
factors = gf_zassenhaus(f, p, K)
|
2133 |
+
|
2134 |
+
return lc, factors
|
2135 |
+
|
2136 |
+
|
2137 |
+
def gf_factor(f, p, K):
|
2138 |
+
"""
|
2139 |
+
Factor (non square-free) polynomials in ``GF(p)[x]``.
|
2140 |
+
|
2141 |
+
Given a possibly non square-free polynomial ``f`` in ``GF(p)[x]``,
|
2142 |
+
returns its complete factorization into irreducibles::
|
2143 |
+
|
2144 |
+
f_1(x)**e_1 f_2(x)**e_2 ... f_d(x)**e_d
|
2145 |
+
|
2146 |
+
where each ``f_i`` is a monic polynomial and ``gcd(f_i, f_j) == 1``,
|
2147 |
+
for ``i != j``. The result is given as a tuple consisting of the
|
2148 |
+
leading coefficient of ``f`` and a list of factors of ``f`` with
|
2149 |
+
their multiplicities.
|
2150 |
+
|
2151 |
+
The algorithm proceeds by first computing square-free decomposition
|
2152 |
+
of ``f`` and then iteratively factoring each of square-free factors.
|
2153 |
+
|
2154 |
+
Consider a non square-free polynomial ``f = (7*x + 1) (x + 2)**2`` in
|
2155 |
+
``GF(11)[x]``. We obtain its factorization into irreducibles as follows::
|
2156 |
+
|
2157 |
+
>>> from sympy.polys.domains import ZZ
|
2158 |
+
>>> from sympy.polys.galoistools import gf_factor
|
2159 |
+
|
2160 |
+
>>> gf_factor(ZZ.map([5, 2, 7, 2]), 11, ZZ)
|
2161 |
+
(5, [([1, 2], 1), ([1, 8], 2)])
|
2162 |
+
|
2163 |
+
We arrived with factorization ``f = 5 (x + 2) (x + 8)**2``. We did not
|
2164 |
+
recover the exact form of the input polynomial because we requested to
|
2165 |
+
get monic factors of ``f`` and its leading coefficient separately.
|
2166 |
+
|
2167 |
+
Square-free factors of ``f`` can be factored into irreducibles over
|
2168 |
+
``GF(p)`` using three very different methods:
|
2169 |
+
|
2170 |
+
Berlekamp
|
2171 |
+
efficient for very small values of ``p`` (usually ``p < 25``)
|
2172 |
+
Cantor-Zassenhaus
|
2173 |
+
efficient on average input and with "typical" ``p``
|
2174 |
+
Shoup-Kaltofen-Gathen
|
2175 |
+
efficient with very large inputs and modulus
|
2176 |
+
|
2177 |
+
If you want to use a specific factorization method, instead of the default
|
2178 |
+
one, set ``GF_FACTOR_METHOD`` with one of ``berlekamp``, ``zassenhaus`` or
|
2179 |
+
``shoup`` values.
|
2180 |
+
|
2181 |
+
References
|
2182 |
+
==========
|
2183 |
+
|
2184 |
+
.. [1] [Gathen99]_
|
2185 |
+
|
2186 |
+
"""
|
2187 |
+
lc, f = gf_monic(f, p, K)
|
2188 |
+
|
2189 |
+
if gf_degree(f) < 1:
|
2190 |
+
return lc, []
|
2191 |
+
|
2192 |
+
factors = []
|
2193 |
+
|
2194 |
+
for g, n in gf_sqf_list(f, p, K)[1]:
|
2195 |
+
for h in gf_factor_sqf(g, p, K)[1]:
|
2196 |
+
factors.append((h, n))
|
2197 |
+
|
2198 |
+
return lc, _sort_factors(factors)
|
2199 |
+
|
2200 |
+
|
2201 |
+
def gf_value(f, a):
|
2202 |
+
"""
|
2203 |
+
Value of polynomial 'f' at 'a' in field R.
|
2204 |
+
|
2205 |
+
Examples
|
2206 |
+
========
|
2207 |
+
|
2208 |
+
>>> from sympy.polys.galoistools import gf_value
|
2209 |
+
|
2210 |
+
>>> gf_value([1, 7, 2, 4], 11)
|
2211 |
+
2204
|
2212 |
+
|
2213 |
+
"""
|
2214 |
+
result = 0
|
2215 |
+
for c in f:
|
2216 |
+
result *= a
|
2217 |
+
result += c
|
2218 |
+
return result
|
2219 |
+
|
2220 |
+
|
2221 |
+
def linear_congruence(a, b, m):
|
2222 |
+
"""
|
2223 |
+
Returns the values of x satisfying a*x congruent b mod(m)
|
2224 |
+
|
2225 |
+
Here m is positive integer and a, b are natural numbers.
|
2226 |
+
This function returns only those values of x which are distinct mod(m).
|
2227 |
+
|
2228 |
+
Examples
|
2229 |
+
========
|
2230 |
+
|
2231 |
+
>>> from sympy.polys.galoistools import linear_congruence
|
2232 |
+
|
2233 |
+
>>> linear_congruence(3, 12, 15)
|
2234 |
+
[4, 9, 14]
|
2235 |
+
|
2236 |
+
There are 3 solutions distinct mod(15) since gcd(a, m) = gcd(3, 15) = 3.
|
2237 |
+
|
2238 |
+
References
|
2239 |
+
==========
|
2240 |
+
|
2241 |
+
.. [1] https://en.wikipedia.org/wiki/Linear_congruence_theorem
|
2242 |
+
|
2243 |
+
"""
|
2244 |
+
from sympy.polys.polytools import gcdex
|
2245 |
+
if a % m == 0:
|
2246 |
+
if b % m == 0:
|
2247 |
+
return list(range(m))
|
2248 |
+
else:
|
2249 |
+
return []
|
2250 |
+
r, _, g = gcdex(a, m)
|
2251 |
+
if b % g != 0:
|
2252 |
+
return []
|
2253 |
+
return [(r * b // g + t * m // g) % m for t in range(g)]
|
2254 |
+
|
2255 |
+
|
2256 |
+
def _raise_mod_power(x, s, p, f):
|
2257 |
+
"""
|
2258 |
+
Used in gf_csolve to generate solutions of f(x) cong 0 mod(p**(s + 1))
|
2259 |
+
from the solutions of f(x) cong 0 mod(p**s).
|
2260 |
+
|
2261 |
+
Examples
|
2262 |
+
========
|
2263 |
+
|
2264 |
+
>>> from sympy.polys.galoistools import _raise_mod_power
|
2265 |
+
>>> from sympy.polys.galoistools import csolve_prime
|
2266 |
+
|
2267 |
+
These is the solutions of f(x) = x**2 + x + 7 cong 0 mod(3)
|
2268 |
+
|
2269 |
+
>>> f = [1, 1, 7]
|
2270 |
+
>>> csolve_prime(f, 3)
|
2271 |
+
[1]
|
2272 |
+
>>> [ i for i in range(3) if not (i**2 + i + 7) % 3]
|
2273 |
+
[1]
|
2274 |
+
|
2275 |
+
The solutions of f(x) cong 0 mod(9) are constructed from the
|
2276 |
+
values returned from _raise_mod_power:
|
2277 |
+
|
2278 |
+
>>> x, s, p = 1, 1, 3
|
2279 |
+
>>> V = _raise_mod_power(x, s, p, f)
|
2280 |
+
>>> [x + v * p**s for v in V]
|
2281 |
+
[1, 4, 7]
|
2282 |
+
|
2283 |
+
And these are confirmed with the following:
|
2284 |
+
|
2285 |
+
>>> [ i for i in range(3**2) if not (i**2 + i + 7) % 3**2]
|
2286 |
+
[1, 4, 7]
|
2287 |
+
|
2288 |
+
"""
|
2289 |
+
from sympy.polys.domains import ZZ
|
2290 |
+
f_f = gf_diff(f, p, ZZ)
|
2291 |
+
alpha = gf_value(f_f, x)
|
2292 |
+
beta = - gf_value(f, x) // p**s
|
2293 |
+
return linear_congruence(alpha, beta, p)
|
2294 |
+
|
2295 |
+
|
2296 |
+
def csolve_prime(f, p, e=1):
|
2297 |
+
"""
|
2298 |
+
Solutions of f(x) congruent 0 mod(p**e).
|
2299 |
+
|
2300 |
+
Examples
|
2301 |
+
========
|
2302 |
+
|
2303 |
+
>>> from sympy.polys.galoistools import csolve_prime
|
2304 |
+
|
2305 |
+
>>> csolve_prime([1, 1, 7], 3, 1)
|
2306 |
+
[1]
|
2307 |
+
>>> csolve_prime([1, 1, 7], 3, 2)
|
2308 |
+
[1, 4, 7]
|
2309 |
+
|
2310 |
+
Solutions [7, 4, 1] (mod 3**2) are generated by ``_raise_mod_power()``
|
2311 |
+
from solution [1] (mod 3).
|
2312 |
+
"""
|
2313 |
+
from sympy.polys.domains import ZZ
|
2314 |
+
X1 = [i for i in range(p) if gf_eval(f, i, p, ZZ) == 0]
|
2315 |
+
if e == 1:
|
2316 |
+
return X1
|
2317 |
+
X = []
|
2318 |
+
S = list(zip(X1, [1]*len(X1)))
|
2319 |
+
while S:
|
2320 |
+
x, s = S.pop()
|
2321 |
+
if s == e:
|
2322 |
+
X.append(x)
|
2323 |
+
else:
|
2324 |
+
s1 = s + 1
|
2325 |
+
ps = p**s
|
2326 |
+
S.extend([(x + v*ps, s1) for v in _raise_mod_power(x, s, p, f)])
|
2327 |
+
return sorted(X)
|
2328 |
+
|
2329 |
+
|
2330 |
+
def gf_csolve(f, n):
|
2331 |
+
"""
|
2332 |
+
To solve f(x) congruent 0 mod(n).
|
2333 |
+
|
2334 |
+
n is divided into canonical factors and f(x) cong 0 mod(p**e) will be
|
2335 |
+
solved for each factor. Applying the Chinese Remainder Theorem to the
|
2336 |
+
results returns the final answers.
|
2337 |
+
|
2338 |
+
Examples
|
2339 |
+
========
|
2340 |
+
|
2341 |
+
Solve [1, 1, 7] congruent 0 mod(189):
|
2342 |
+
|
2343 |
+
>>> from sympy.polys.galoistools import gf_csolve
|
2344 |
+
>>> gf_csolve([1, 1, 7], 189)
|
2345 |
+
[13, 49, 76, 112, 139, 175]
|
2346 |
+
|
2347 |
+
References
|
2348 |
+
==========
|
2349 |
+
|
2350 |
+
.. [1] 'An introduction to the Theory of Numbers' 5th Edition by Ivan Niven,
|
2351 |
+
Zuckerman and Montgomery.
|
2352 |
+
|
2353 |
+
"""
|
2354 |
+
from sympy.polys.domains import ZZ
|
2355 |
+
from sympy.ntheory import factorint
|
2356 |
+
P = factorint(n)
|
2357 |
+
X = [csolve_prime(f, p, e) for p, e in P.items()]
|
2358 |
+
pools = list(map(tuple, X))
|
2359 |
+
perms = [[]]
|
2360 |
+
for pool in pools:
|
2361 |
+
perms = [x + [y] for x in perms for y in pool]
|
2362 |
+
dist_factors = [pow(p, e) for p, e in P.items()]
|
2363 |
+
return sorted([gf_crt(per, dist_factors, ZZ) for per in perms])
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/groebnertools.py
ADDED
@@ -0,0 +1,862 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Groebner bases algorithms. """
|
2 |
+
|
3 |
+
|
4 |
+
from sympy.core.symbol import Dummy
|
5 |
+
from sympy.polys.monomials import monomial_mul, monomial_lcm, monomial_divides, term_div
|
6 |
+
from sympy.polys.orderings import lex
|
7 |
+
from sympy.polys.polyerrors import DomainError
|
8 |
+
from sympy.polys.polyconfig import query
|
9 |
+
|
10 |
+
def groebner(seq, ring, method=None):
|
11 |
+
"""
|
12 |
+
Computes Groebner basis for a set of polynomials in `K[X]`.
|
13 |
+
|
14 |
+
Wrapper around the (default) improved Buchberger and the other algorithms
|
15 |
+
for computing Groebner bases. The choice of algorithm can be changed via
|
16 |
+
``method`` argument or :func:`sympy.polys.polyconfig.setup`, where
|
17 |
+
``method`` can be either ``buchberger`` or ``f5b``.
|
18 |
+
|
19 |
+
"""
|
20 |
+
if method is None:
|
21 |
+
method = query('groebner')
|
22 |
+
|
23 |
+
_groebner_methods = {
|
24 |
+
'buchberger': _buchberger,
|
25 |
+
'f5b': _f5b,
|
26 |
+
}
|
27 |
+
|
28 |
+
try:
|
29 |
+
_groebner = _groebner_methods[method]
|
30 |
+
except KeyError:
|
31 |
+
raise ValueError("'%s' is not a valid Groebner bases algorithm (valid are 'buchberger' and 'f5b')" % method)
|
32 |
+
|
33 |
+
domain, orig = ring.domain, None
|
34 |
+
|
35 |
+
if not domain.is_Field or not domain.has_assoc_Field:
|
36 |
+
try:
|
37 |
+
orig, ring = ring, ring.clone(domain=domain.get_field())
|
38 |
+
except DomainError:
|
39 |
+
raise DomainError("Cannot compute a Groebner basis over %s" % domain)
|
40 |
+
else:
|
41 |
+
seq = [ s.set_ring(ring) for s in seq ]
|
42 |
+
|
43 |
+
G = _groebner(seq, ring)
|
44 |
+
|
45 |
+
if orig is not None:
|
46 |
+
G = [ g.clear_denoms()[1].set_ring(orig) for g in G ]
|
47 |
+
|
48 |
+
return G
|
49 |
+
|
50 |
+
def _buchberger(f, ring):
|
51 |
+
"""
|
52 |
+
Computes Groebner basis for a set of polynomials in `K[X]`.
|
53 |
+
|
54 |
+
Given a set of multivariate polynomials `F`, finds another
|
55 |
+
set `G`, such that Ideal `F = Ideal G` and `G` is a reduced
|
56 |
+
Groebner basis.
|
57 |
+
|
58 |
+
The resulting basis is unique and has monic generators if the
|
59 |
+
ground domains is a field. Otherwise the result is non-unique
|
60 |
+
but Groebner bases over e.g. integers can be computed (if the
|
61 |
+
input polynomials are monic).
|
62 |
+
|
63 |
+
Groebner bases can be used to choose specific generators for a
|
64 |
+
polynomial ideal. Because these bases are unique you can check
|
65 |
+
for ideal equality by comparing the Groebner bases. To see if
|
66 |
+
one polynomial lies in an ideal, divide by the elements in the
|
67 |
+
base and see if the remainder vanishes.
|
68 |
+
|
69 |
+
They can also be used to solve systems of polynomial equations
|
70 |
+
as, by choosing lexicographic ordering, you can eliminate one
|
71 |
+
variable at a time, provided that the ideal is zero-dimensional
|
72 |
+
(finite number of solutions).
|
73 |
+
|
74 |
+
Notes
|
75 |
+
=====
|
76 |
+
|
77 |
+
Algorithm used: an improved version of Buchberger's algorithm
|
78 |
+
as presented in T. Becker, V. Weispfenning, Groebner Bases: A
|
79 |
+
Computational Approach to Commutative Algebra, Springer, 1993,
|
80 |
+
page 232.
|
81 |
+
|
82 |
+
References
|
83 |
+
==========
|
84 |
+
|
85 |
+
.. [1] [Bose03]_
|
86 |
+
.. [2] [Giovini91]_
|
87 |
+
.. [3] [Ajwa95]_
|
88 |
+
.. [4] [Cox97]_
|
89 |
+
|
90 |
+
"""
|
91 |
+
order = ring.order
|
92 |
+
|
93 |
+
monomial_mul = ring.monomial_mul
|
94 |
+
monomial_div = ring.monomial_div
|
95 |
+
monomial_lcm = ring.monomial_lcm
|
96 |
+
|
97 |
+
def select(P):
|
98 |
+
# normal selection strategy
|
99 |
+
# select the pair with minimum LCM(LM(f), LM(g))
|
100 |
+
pr = min(P, key=lambda pair: order(monomial_lcm(f[pair[0]].LM, f[pair[1]].LM)))
|
101 |
+
return pr
|
102 |
+
|
103 |
+
def normal(g, J):
|
104 |
+
h = g.rem([ f[j] for j in J ])
|
105 |
+
|
106 |
+
if not h:
|
107 |
+
return None
|
108 |
+
else:
|
109 |
+
h = h.monic()
|
110 |
+
|
111 |
+
if h not in I:
|
112 |
+
I[h] = len(f)
|
113 |
+
f.append(h)
|
114 |
+
|
115 |
+
return h.LM, I[h]
|
116 |
+
|
117 |
+
def update(G, B, ih):
|
118 |
+
# update G using the set of critical pairs B and h
|
119 |
+
# [BW] page 230
|
120 |
+
h = f[ih]
|
121 |
+
mh = h.LM
|
122 |
+
|
123 |
+
# filter new pairs (h, g), g in G
|
124 |
+
C = G.copy()
|
125 |
+
D = set()
|
126 |
+
|
127 |
+
while C:
|
128 |
+
# select a pair (h, g) by popping an element from C
|
129 |
+
ig = C.pop()
|
130 |
+
g = f[ig]
|
131 |
+
mg = g.LM
|
132 |
+
LCMhg = monomial_lcm(mh, mg)
|
133 |
+
|
134 |
+
def lcm_divides(ip):
|
135 |
+
# LCM(LM(h), LM(p)) divides LCM(LM(h), LM(g))
|
136 |
+
m = monomial_lcm(mh, f[ip].LM)
|
137 |
+
return monomial_div(LCMhg, m)
|
138 |
+
|
139 |
+
# HT(h) and HT(g) disjoint: mh*mg == LCMhg
|
140 |
+
if monomial_mul(mh, mg) == LCMhg or (
|
141 |
+
not any(lcm_divides(ipx) for ipx in C) and
|
142 |
+
not any(lcm_divides(pr[1]) for pr in D)):
|
143 |
+
D.add((ih, ig))
|
144 |
+
|
145 |
+
E = set()
|
146 |
+
|
147 |
+
while D:
|
148 |
+
# select h, g from D (h the same as above)
|
149 |
+
ih, ig = D.pop()
|
150 |
+
mg = f[ig].LM
|
151 |
+
LCMhg = monomial_lcm(mh, mg)
|
152 |
+
|
153 |
+
if not monomial_mul(mh, mg) == LCMhg:
|
154 |
+
E.add((ih, ig))
|
155 |
+
|
156 |
+
# filter old pairs
|
157 |
+
B_new = set()
|
158 |
+
|
159 |
+
while B:
|
160 |
+
# select g1, g2 from B (-> CP)
|
161 |
+
ig1, ig2 = B.pop()
|
162 |
+
mg1 = f[ig1].LM
|
163 |
+
mg2 = f[ig2].LM
|
164 |
+
LCM12 = monomial_lcm(mg1, mg2)
|
165 |
+
|
166 |
+
# if HT(h) does not divide lcm(HT(g1), HT(g2))
|
167 |
+
if not monomial_div(LCM12, mh) or \
|
168 |
+
monomial_lcm(mg1, mh) == LCM12 or \
|
169 |
+
monomial_lcm(mg2, mh) == LCM12:
|
170 |
+
B_new.add((ig1, ig2))
|
171 |
+
|
172 |
+
B_new |= E
|
173 |
+
|
174 |
+
# filter polynomials
|
175 |
+
G_new = set()
|
176 |
+
|
177 |
+
while G:
|
178 |
+
ig = G.pop()
|
179 |
+
mg = f[ig].LM
|
180 |
+
|
181 |
+
if not monomial_div(mg, mh):
|
182 |
+
G_new.add(ig)
|
183 |
+
|
184 |
+
G_new.add(ih)
|
185 |
+
|
186 |
+
return G_new, B_new
|
187 |
+
# end of update ################################
|
188 |
+
|
189 |
+
if not f:
|
190 |
+
return []
|
191 |
+
|
192 |
+
# replace f with a reduced list of initial polynomials; see [BW] page 203
|
193 |
+
f1 = f[:]
|
194 |
+
|
195 |
+
while True:
|
196 |
+
f = f1[:]
|
197 |
+
f1 = []
|
198 |
+
|
199 |
+
for i in range(len(f)):
|
200 |
+
p = f[i]
|
201 |
+
r = p.rem(f[:i])
|
202 |
+
|
203 |
+
if r:
|
204 |
+
f1.append(r.monic())
|
205 |
+
|
206 |
+
if f == f1:
|
207 |
+
break
|
208 |
+
|
209 |
+
I = {} # ip = I[p]; p = f[ip]
|
210 |
+
F = set() # set of indices of polynomials
|
211 |
+
G = set() # set of indices of intermediate would-be Groebner basis
|
212 |
+
CP = set() # set of pairs of indices of critical pairs
|
213 |
+
|
214 |
+
for i, h in enumerate(f):
|
215 |
+
I[h] = i
|
216 |
+
F.add(i)
|
217 |
+
|
218 |
+
#####################################
|
219 |
+
# algorithm GROEBNERNEWS2 in [BW] page 232
|
220 |
+
|
221 |
+
while F:
|
222 |
+
# select p with minimum monomial according to the monomial ordering
|
223 |
+
h = min([f[x] for x in F], key=lambda f: order(f.LM))
|
224 |
+
ih = I[h]
|
225 |
+
F.remove(ih)
|
226 |
+
G, CP = update(G, CP, ih)
|
227 |
+
|
228 |
+
# count the number of critical pairs which reduce to zero
|
229 |
+
reductions_to_zero = 0
|
230 |
+
|
231 |
+
while CP:
|
232 |
+
ig1, ig2 = select(CP)
|
233 |
+
CP.remove((ig1, ig2))
|
234 |
+
|
235 |
+
h = spoly(f[ig1], f[ig2], ring)
|
236 |
+
# ordering divisors is on average more efficient [Cox] page 111
|
237 |
+
G1 = sorted(G, key=lambda g: order(f[g].LM))
|
238 |
+
ht = normal(h, G1)
|
239 |
+
|
240 |
+
if ht:
|
241 |
+
G, CP = update(G, CP, ht[1])
|
242 |
+
else:
|
243 |
+
reductions_to_zero += 1
|
244 |
+
|
245 |
+
######################################
|
246 |
+
# now G is a Groebner basis; reduce it
|
247 |
+
Gr = set()
|
248 |
+
|
249 |
+
for ig in G:
|
250 |
+
ht = normal(f[ig], G - {ig})
|
251 |
+
|
252 |
+
if ht:
|
253 |
+
Gr.add(ht[1])
|
254 |
+
|
255 |
+
Gr = [f[ig] for ig in Gr]
|
256 |
+
|
257 |
+
# order according to the monomial ordering
|
258 |
+
Gr = sorted(Gr, key=lambda f: order(f.LM), reverse=True)
|
259 |
+
|
260 |
+
return Gr
|
261 |
+
|
262 |
+
def spoly(p1, p2, ring):
|
263 |
+
"""
|
264 |
+
Compute LCM(LM(p1), LM(p2))/LM(p1)*p1 - LCM(LM(p1), LM(p2))/LM(p2)*p2
|
265 |
+
This is the S-poly provided p1 and p2 are monic
|
266 |
+
"""
|
267 |
+
LM1 = p1.LM
|
268 |
+
LM2 = p2.LM
|
269 |
+
LCM12 = ring.monomial_lcm(LM1, LM2)
|
270 |
+
m1 = ring.monomial_div(LCM12, LM1)
|
271 |
+
m2 = ring.monomial_div(LCM12, LM2)
|
272 |
+
s1 = p1.mul_monom(m1)
|
273 |
+
s2 = p2.mul_monom(m2)
|
274 |
+
s = s1 - s2
|
275 |
+
return s
|
276 |
+
|
277 |
+
# F5B
|
278 |
+
|
279 |
+
# convenience functions
|
280 |
+
|
281 |
+
|
282 |
+
def Sign(f):
|
283 |
+
return f[0]
|
284 |
+
|
285 |
+
|
286 |
+
def Polyn(f):
|
287 |
+
return f[1]
|
288 |
+
|
289 |
+
|
290 |
+
def Num(f):
|
291 |
+
return f[2]
|
292 |
+
|
293 |
+
|
294 |
+
def sig(monomial, index):
|
295 |
+
return (monomial, index)
|
296 |
+
|
297 |
+
|
298 |
+
def lbp(signature, polynomial, number):
|
299 |
+
return (signature, polynomial, number)
|
300 |
+
|
301 |
+
# signature functions
|
302 |
+
|
303 |
+
|
304 |
+
def sig_cmp(u, v, order):
|
305 |
+
"""
|
306 |
+
Compare two signatures by extending the term order to K[X]^n.
|
307 |
+
|
308 |
+
u < v iff
|
309 |
+
- the index of v is greater than the index of u
|
310 |
+
or
|
311 |
+
- the index of v is equal to the index of u and u[0] < v[0] w.r.t. order
|
312 |
+
|
313 |
+
u > v otherwise
|
314 |
+
"""
|
315 |
+
if u[1] > v[1]:
|
316 |
+
return -1
|
317 |
+
if u[1] == v[1]:
|
318 |
+
#if u[0] == v[0]:
|
319 |
+
# return 0
|
320 |
+
if order(u[0]) < order(v[0]):
|
321 |
+
return -1
|
322 |
+
return 1
|
323 |
+
|
324 |
+
|
325 |
+
def sig_key(s, order):
|
326 |
+
"""
|
327 |
+
Key for comparing two signatures.
|
328 |
+
|
329 |
+
s = (m, k), t = (n, l)
|
330 |
+
|
331 |
+
s < t iff [k > l] or [k == l and m < n]
|
332 |
+
s > t otherwise
|
333 |
+
"""
|
334 |
+
return (-s[1], order(s[0]))
|
335 |
+
|
336 |
+
|
337 |
+
def sig_mult(s, m):
|
338 |
+
"""
|
339 |
+
Multiply a signature by a monomial.
|
340 |
+
|
341 |
+
The product of a signature (m, i) and a monomial n is defined as
|
342 |
+
(m * t, i).
|
343 |
+
"""
|
344 |
+
return sig(monomial_mul(s[0], m), s[1])
|
345 |
+
|
346 |
+
# labeled polynomial functions
|
347 |
+
|
348 |
+
|
349 |
+
def lbp_sub(f, g):
|
350 |
+
"""
|
351 |
+
Subtract labeled polynomial g from f.
|
352 |
+
|
353 |
+
The signature and number of the difference of f and g are signature
|
354 |
+
and number of the maximum of f and g, w.r.t. lbp_cmp.
|
355 |
+
"""
|
356 |
+
if sig_cmp(Sign(f), Sign(g), Polyn(f).ring.order) < 0:
|
357 |
+
max_poly = g
|
358 |
+
else:
|
359 |
+
max_poly = f
|
360 |
+
|
361 |
+
ret = Polyn(f) - Polyn(g)
|
362 |
+
|
363 |
+
return lbp(Sign(max_poly), ret, Num(max_poly))
|
364 |
+
|
365 |
+
|
366 |
+
def lbp_mul_term(f, cx):
|
367 |
+
"""
|
368 |
+
Multiply a labeled polynomial with a term.
|
369 |
+
|
370 |
+
The product of a labeled polynomial (s, p, k) by a monomial is
|
371 |
+
defined as (m * s, m * p, k).
|
372 |
+
"""
|
373 |
+
return lbp(sig_mult(Sign(f), cx[0]), Polyn(f).mul_term(cx), Num(f))
|
374 |
+
|
375 |
+
|
376 |
+
def lbp_cmp(f, g):
|
377 |
+
"""
|
378 |
+
Compare two labeled polynomials.
|
379 |
+
|
380 |
+
f < g iff
|
381 |
+
- Sign(f) < Sign(g)
|
382 |
+
or
|
383 |
+
- Sign(f) == Sign(g) and Num(f) > Num(g)
|
384 |
+
|
385 |
+
f > g otherwise
|
386 |
+
"""
|
387 |
+
if sig_cmp(Sign(f), Sign(g), Polyn(f).ring.order) == -1:
|
388 |
+
return -1
|
389 |
+
if Sign(f) == Sign(g):
|
390 |
+
if Num(f) > Num(g):
|
391 |
+
return -1
|
392 |
+
#if Num(f) == Num(g):
|
393 |
+
# return 0
|
394 |
+
return 1
|
395 |
+
|
396 |
+
|
397 |
+
def lbp_key(f):
|
398 |
+
"""
|
399 |
+
Key for comparing two labeled polynomials.
|
400 |
+
"""
|
401 |
+
return (sig_key(Sign(f), Polyn(f).ring.order), -Num(f))
|
402 |
+
|
403 |
+
# algorithm and helper functions
|
404 |
+
|
405 |
+
|
406 |
+
def critical_pair(f, g, ring):
|
407 |
+
"""
|
408 |
+
Compute the critical pair corresponding to two labeled polynomials.
|
409 |
+
|
410 |
+
A critical pair is a tuple (um, f, vm, g), where um and vm are
|
411 |
+
terms such that um * f - vm * g is the S-polynomial of f and g (so,
|
412 |
+
wlog assume um * f > vm * g).
|
413 |
+
For performance sake, a critical pair is represented as a tuple
|
414 |
+
(Sign(um * f), um, f, Sign(vm * g), vm, g), since um * f creates
|
415 |
+
a new, relatively expensive object in memory, whereas Sign(um *
|
416 |
+
f) and um are lightweight and f (in the tuple) is a reference to
|
417 |
+
an already existing object in memory.
|
418 |
+
"""
|
419 |
+
domain = ring.domain
|
420 |
+
|
421 |
+
ltf = Polyn(f).LT
|
422 |
+
ltg = Polyn(g).LT
|
423 |
+
lt = (monomial_lcm(ltf[0], ltg[0]), domain.one)
|
424 |
+
|
425 |
+
um = term_div(lt, ltf, domain)
|
426 |
+
vm = term_div(lt, ltg, domain)
|
427 |
+
|
428 |
+
# The full information is not needed (now), so only the product
|
429 |
+
# with the leading term is considered:
|
430 |
+
fr = lbp_mul_term(lbp(Sign(f), Polyn(f).leading_term(), Num(f)), um)
|
431 |
+
gr = lbp_mul_term(lbp(Sign(g), Polyn(g).leading_term(), Num(g)), vm)
|
432 |
+
|
433 |
+
# return in proper order, such that the S-polynomial is just
|
434 |
+
# u_first * f_first - u_second * f_second:
|
435 |
+
if lbp_cmp(fr, gr) == -1:
|
436 |
+
return (Sign(gr), vm, g, Sign(fr), um, f)
|
437 |
+
else:
|
438 |
+
return (Sign(fr), um, f, Sign(gr), vm, g)
|
439 |
+
|
440 |
+
|
441 |
+
def cp_cmp(c, d):
|
442 |
+
"""
|
443 |
+
Compare two critical pairs c and d.
|
444 |
+
|
445 |
+
c < d iff
|
446 |
+
- lbp(c[0], _, Num(c[2]) < lbp(d[0], _, Num(d[2])) (this
|
447 |
+
corresponds to um_c * f_c and um_d * f_d)
|
448 |
+
or
|
449 |
+
- lbp(c[0], _, Num(c[2]) >< lbp(d[0], _, Num(d[2])) and
|
450 |
+
lbp(c[3], _, Num(c[5])) < lbp(d[3], _, Num(d[5])) (this
|
451 |
+
corresponds to vm_c * g_c and vm_d * g_d)
|
452 |
+
|
453 |
+
c > d otherwise
|
454 |
+
"""
|
455 |
+
zero = Polyn(c[2]).ring.zero
|
456 |
+
|
457 |
+
c0 = lbp(c[0], zero, Num(c[2]))
|
458 |
+
d0 = lbp(d[0], zero, Num(d[2]))
|
459 |
+
|
460 |
+
r = lbp_cmp(c0, d0)
|
461 |
+
|
462 |
+
if r == -1:
|
463 |
+
return -1
|
464 |
+
if r == 0:
|
465 |
+
c1 = lbp(c[3], zero, Num(c[5]))
|
466 |
+
d1 = lbp(d[3], zero, Num(d[5]))
|
467 |
+
|
468 |
+
r = lbp_cmp(c1, d1)
|
469 |
+
|
470 |
+
if r == -1:
|
471 |
+
return -1
|
472 |
+
#if r == 0:
|
473 |
+
# return 0
|
474 |
+
return 1
|
475 |
+
|
476 |
+
|
477 |
+
def cp_key(c, ring):
|
478 |
+
"""
|
479 |
+
Key for comparing critical pairs.
|
480 |
+
"""
|
481 |
+
return (lbp_key(lbp(c[0], ring.zero, Num(c[2]))), lbp_key(lbp(c[3], ring.zero, Num(c[5]))))
|
482 |
+
|
483 |
+
|
484 |
+
def s_poly(cp):
|
485 |
+
"""
|
486 |
+
Compute the S-polynomial of a critical pair.
|
487 |
+
|
488 |
+
The S-polynomial of a critical pair cp is cp[1] * cp[2] - cp[4] * cp[5].
|
489 |
+
"""
|
490 |
+
return lbp_sub(lbp_mul_term(cp[2], cp[1]), lbp_mul_term(cp[5], cp[4]))
|
491 |
+
|
492 |
+
|
493 |
+
def is_rewritable_or_comparable(sign, num, B):
|
494 |
+
"""
|
495 |
+
Check if a labeled polynomial is redundant by checking if its
|
496 |
+
signature and number imply rewritability or comparability.
|
497 |
+
|
498 |
+
(sign, num) is comparable if there exists a labeled polynomial
|
499 |
+
h in B, such that sign[1] (the index) is less than Sign(h)[1]
|
500 |
+
and sign[0] is divisible by the leading monomial of h.
|
501 |
+
|
502 |
+
(sign, num) is rewritable if there exists a labeled polynomial
|
503 |
+
h in B, such thatsign[1] is equal to Sign(h)[1], num < Num(h)
|
504 |
+
and sign[0] is divisible by Sign(h)[0].
|
505 |
+
"""
|
506 |
+
for h in B:
|
507 |
+
# comparable
|
508 |
+
if sign[1] < Sign(h)[1]:
|
509 |
+
if monomial_divides(Polyn(h).LM, sign[0]):
|
510 |
+
return True
|
511 |
+
|
512 |
+
# rewritable
|
513 |
+
if sign[1] == Sign(h)[1]:
|
514 |
+
if num < Num(h):
|
515 |
+
if monomial_divides(Sign(h)[0], sign[0]):
|
516 |
+
return True
|
517 |
+
return False
|
518 |
+
|
519 |
+
|
520 |
+
def f5_reduce(f, B):
|
521 |
+
"""
|
522 |
+
F5-reduce a labeled polynomial f by B.
|
523 |
+
|
524 |
+
Continuously searches for non-zero labeled polynomial h in B, such
|
525 |
+
that the leading term lt_h of h divides the leading term lt_f of
|
526 |
+
f and Sign(lt_h * h) < Sign(f). If such a labeled polynomial h is
|
527 |
+
found, f gets replaced by f - lt_f / lt_h * h. If no such h can be
|
528 |
+
found or f is 0, f is no further F5-reducible and f gets returned.
|
529 |
+
|
530 |
+
A polynomial that is reducible in the usual sense need not be
|
531 |
+
F5-reducible, e.g.:
|
532 |
+
|
533 |
+
>>> from sympy.polys.groebnertools import lbp, sig, f5_reduce, Polyn
|
534 |
+
>>> from sympy.polys import ring, QQ, lex
|
535 |
+
|
536 |
+
>>> R, x,y,z = ring("x,y,z", QQ, lex)
|
537 |
+
|
538 |
+
>>> f = lbp(sig((1, 1, 1), 4), x, 3)
|
539 |
+
>>> g = lbp(sig((0, 0, 0), 2), x, 2)
|
540 |
+
|
541 |
+
>>> Polyn(f).rem([Polyn(g)])
|
542 |
+
0
|
543 |
+
>>> f5_reduce(f, [g])
|
544 |
+
(((1, 1, 1), 4), x, 3)
|
545 |
+
|
546 |
+
"""
|
547 |
+
order = Polyn(f).ring.order
|
548 |
+
domain = Polyn(f).ring.domain
|
549 |
+
|
550 |
+
if not Polyn(f):
|
551 |
+
return f
|
552 |
+
|
553 |
+
while True:
|
554 |
+
g = f
|
555 |
+
|
556 |
+
for h in B:
|
557 |
+
if Polyn(h):
|
558 |
+
if monomial_divides(Polyn(h).LM, Polyn(f).LM):
|
559 |
+
t = term_div(Polyn(f).LT, Polyn(h).LT, domain)
|
560 |
+
if sig_cmp(sig_mult(Sign(h), t[0]), Sign(f), order) < 0:
|
561 |
+
# The following check need not be done and is in general slower than without.
|
562 |
+
#if not is_rewritable_or_comparable(Sign(gp), Num(gp), B):
|
563 |
+
hp = lbp_mul_term(h, t)
|
564 |
+
f = lbp_sub(f, hp)
|
565 |
+
break
|
566 |
+
|
567 |
+
if g == f or not Polyn(f):
|
568 |
+
return f
|
569 |
+
|
570 |
+
|
571 |
+
def _f5b(F, ring):
|
572 |
+
"""
|
573 |
+
Computes a reduced Groebner basis for the ideal generated by F.
|
574 |
+
|
575 |
+
f5b is an implementation of the F5B algorithm by Yao Sun and
|
576 |
+
Dingkang Wang. Similarly to Buchberger's algorithm, the algorithm
|
577 |
+
proceeds by computing critical pairs, computing the S-polynomial,
|
578 |
+
reducing it and adjoining the reduced S-polynomial if it is not 0.
|
579 |
+
|
580 |
+
Unlike Buchberger's algorithm, each polynomial contains additional
|
581 |
+
information, namely a signature and a number. The signature
|
582 |
+
specifies the path of computation (i.e. from which polynomial in
|
583 |
+
the original basis was it derived and how), the number says when
|
584 |
+
the polynomial was added to the basis. With this information it
|
585 |
+
is (often) possible to decide if an S-polynomial will reduce to
|
586 |
+
0 and can be discarded.
|
587 |
+
|
588 |
+
Optimizations include: Reducing the generators before computing
|
589 |
+
a Groebner basis, removing redundant critical pairs when a new
|
590 |
+
polynomial enters the basis and sorting the critical pairs and
|
591 |
+
the current basis.
|
592 |
+
|
593 |
+
Once a Groebner basis has been found, it gets reduced.
|
594 |
+
|
595 |
+
References
|
596 |
+
==========
|
597 |
+
|
598 |
+
.. [1] Yao Sun, Dingkang Wang: "A New Proof for the Correctness of F5
|
599 |
+
(F5-Like) Algorithm", https://arxiv.org/abs/1004.0084 (specifically
|
600 |
+
v4)
|
601 |
+
|
602 |
+
.. [2] Thomas Becker, Volker Weispfenning, Groebner bases: A computational
|
603 |
+
approach to commutative algebra, 1993, p. 203, 216
|
604 |
+
"""
|
605 |
+
order = ring.order
|
606 |
+
|
607 |
+
# reduce polynomials (like in Mario Pernici's implementation) (Becker, Weispfenning, p. 203)
|
608 |
+
B = F
|
609 |
+
while True:
|
610 |
+
F = B
|
611 |
+
B = []
|
612 |
+
|
613 |
+
for i in range(len(F)):
|
614 |
+
p = F[i]
|
615 |
+
r = p.rem(F[:i])
|
616 |
+
|
617 |
+
if r:
|
618 |
+
B.append(r)
|
619 |
+
|
620 |
+
if F == B:
|
621 |
+
break
|
622 |
+
|
623 |
+
# basis
|
624 |
+
B = [lbp(sig(ring.zero_monom, i + 1), F[i], i + 1) for i in range(len(F))]
|
625 |
+
B.sort(key=lambda f: order(Polyn(f).LM), reverse=True)
|
626 |
+
|
627 |
+
# critical pairs
|
628 |
+
CP = [critical_pair(B[i], B[j], ring) for i in range(len(B)) for j in range(i + 1, len(B))]
|
629 |
+
CP.sort(key=lambda cp: cp_key(cp, ring), reverse=True)
|
630 |
+
|
631 |
+
k = len(B)
|
632 |
+
|
633 |
+
reductions_to_zero = 0
|
634 |
+
|
635 |
+
while len(CP):
|
636 |
+
cp = CP.pop()
|
637 |
+
|
638 |
+
# discard redundant critical pairs:
|
639 |
+
if is_rewritable_or_comparable(cp[0], Num(cp[2]), B):
|
640 |
+
continue
|
641 |
+
if is_rewritable_or_comparable(cp[3], Num(cp[5]), B):
|
642 |
+
continue
|
643 |
+
|
644 |
+
s = s_poly(cp)
|
645 |
+
|
646 |
+
p = f5_reduce(s, B)
|
647 |
+
|
648 |
+
p = lbp(Sign(p), Polyn(p).monic(), k + 1)
|
649 |
+
|
650 |
+
if Polyn(p):
|
651 |
+
# remove old critical pairs, that become redundant when adding p:
|
652 |
+
indices = []
|
653 |
+
for i, cp in enumerate(CP):
|
654 |
+
if is_rewritable_or_comparable(cp[0], Num(cp[2]), [p]):
|
655 |
+
indices.append(i)
|
656 |
+
elif is_rewritable_or_comparable(cp[3], Num(cp[5]), [p]):
|
657 |
+
indices.append(i)
|
658 |
+
|
659 |
+
for i in reversed(indices):
|
660 |
+
del CP[i]
|
661 |
+
|
662 |
+
# only add new critical pairs that are not made redundant by p:
|
663 |
+
for g in B:
|
664 |
+
if Polyn(g):
|
665 |
+
cp = critical_pair(p, g, ring)
|
666 |
+
if is_rewritable_or_comparable(cp[0], Num(cp[2]), [p]):
|
667 |
+
continue
|
668 |
+
elif is_rewritable_or_comparable(cp[3], Num(cp[5]), [p]):
|
669 |
+
continue
|
670 |
+
|
671 |
+
CP.append(cp)
|
672 |
+
|
673 |
+
# sort (other sorting methods/selection strategies were not as successful)
|
674 |
+
CP.sort(key=lambda cp: cp_key(cp, ring), reverse=True)
|
675 |
+
|
676 |
+
# insert p into B:
|
677 |
+
m = Polyn(p).LM
|
678 |
+
if order(m) <= order(Polyn(B[-1]).LM):
|
679 |
+
B.append(p)
|
680 |
+
else:
|
681 |
+
for i, q in enumerate(B):
|
682 |
+
if order(m) > order(Polyn(q).LM):
|
683 |
+
B.insert(i, p)
|
684 |
+
break
|
685 |
+
|
686 |
+
k += 1
|
687 |
+
|
688 |
+
#print(len(B), len(CP), "%d critical pairs removed" % len(indices))
|
689 |
+
else:
|
690 |
+
reductions_to_zero += 1
|
691 |
+
|
692 |
+
# reduce Groebner basis:
|
693 |
+
H = [Polyn(g).monic() for g in B]
|
694 |
+
H = red_groebner(H, ring)
|
695 |
+
|
696 |
+
return sorted(H, key=lambda f: order(f.LM), reverse=True)
|
697 |
+
|
698 |
+
|
699 |
+
def red_groebner(G, ring):
|
700 |
+
"""
|
701 |
+
Compute reduced Groebner basis, from BeckerWeispfenning93, p. 216
|
702 |
+
|
703 |
+
Selects a subset of generators, that already generate the ideal
|
704 |
+
and computes a reduced Groebner basis for them.
|
705 |
+
"""
|
706 |
+
def reduction(P):
|
707 |
+
"""
|
708 |
+
The actual reduction algorithm.
|
709 |
+
"""
|
710 |
+
Q = []
|
711 |
+
for i, p in enumerate(P):
|
712 |
+
h = p.rem(P[:i] + P[i + 1:])
|
713 |
+
if h:
|
714 |
+
Q.append(h)
|
715 |
+
|
716 |
+
return [p.monic() for p in Q]
|
717 |
+
|
718 |
+
F = G
|
719 |
+
H = []
|
720 |
+
|
721 |
+
while F:
|
722 |
+
f0 = F.pop()
|
723 |
+
|
724 |
+
if not any(monomial_divides(f.LM, f0.LM) for f in F + H):
|
725 |
+
H.append(f0)
|
726 |
+
|
727 |
+
# Becker, Weispfenning, p. 217: H is Groebner basis of the ideal generated by G.
|
728 |
+
return reduction(H)
|
729 |
+
|
730 |
+
|
731 |
+
def is_groebner(G, ring):
|
732 |
+
"""
|
733 |
+
Check if G is a Groebner basis.
|
734 |
+
"""
|
735 |
+
for i in range(len(G)):
|
736 |
+
for j in range(i + 1, len(G)):
|
737 |
+
s = spoly(G[i], G[j], ring)
|
738 |
+
s = s.rem(G)
|
739 |
+
if s:
|
740 |
+
return False
|
741 |
+
|
742 |
+
return True
|
743 |
+
|
744 |
+
|
745 |
+
def is_minimal(G, ring):
|
746 |
+
"""
|
747 |
+
Checks if G is a minimal Groebner basis.
|
748 |
+
"""
|
749 |
+
order = ring.order
|
750 |
+
domain = ring.domain
|
751 |
+
|
752 |
+
G.sort(key=lambda g: order(g.LM))
|
753 |
+
|
754 |
+
for i, g in enumerate(G):
|
755 |
+
if g.LC != domain.one:
|
756 |
+
return False
|
757 |
+
|
758 |
+
for h in G[:i] + G[i + 1:]:
|
759 |
+
if monomial_divides(h.LM, g.LM):
|
760 |
+
return False
|
761 |
+
|
762 |
+
return True
|
763 |
+
|
764 |
+
|
765 |
+
def is_reduced(G, ring):
|
766 |
+
"""
|
767 |
+
Checks if G is a reduced Groebner basis.
|
768 |
+
"""
|
769 |
+
order = ring.order
|
770 |
+
domain = ring.domain
|
771 |
+
|
772 |
+
G.sort(key=lambda g: order(g.LM))
|
773 |
+
|
774 |
+
for i, g in enumerate(G):
|
775 |
+
if g.LC != domain.one:
|
776 |
+
return False
|
777 |
+
|
778 |
+
for term in g.terms():
|
779 |
+
for h in G[:i] + G[i + 1:]:
|
780 |
+
if monomial_divides(h.LM, term[0]):
|
781 |
+
return False
|
782 |
+
|
783 |
+
return True
|
784 |
+
|
785 |
+
def groebner_lcm(f, g):
|
786 |
+
"""
|
787 |
+
Computes LCM of two polynomials using Groebner bases.
|
788 |
+
|
789 |
+
The LCM is computed as the unique generator of the intersection
|
790 |
+
of the two ideals generated by `f` and `g`. The approach is to
|
791 |
+
compute a Groebner basis with respect to lexicographic ordering
|
792 |
+
of `t*f` and `(1 - t)*g`, where `t` is an unrelated variable and
|
793 |
+
then filtering out the solution that does not contain `t`.
|
794 |
+
|
795 |
+
References
|
796 |
+
==========
|
797 |
+
|
798 |
+
.. [1] [Cox97]_
|
799 |
+
|
800 |
+
"""
|
801 |
+
if f.ring != g.ring:
|
802 |
+
raise ValueError("Values should be equal")
|
803 |
+
|
804 |
+
ring = f.ring
|
805 |
+
domain = ring.domain
|
806 |
+
|
807 |
+
if not f or not g:
|
808 |
+
return ring.zero
|
809 |
+
|
810 |
+
if len(f) <= 1 and len(g) <= 1:
|
811 |
+
monom = monomial_lcm(f.LM, g.LM)
|
812 |
+
coeff = domain.lcm(f.LC, g.LC)
|
813 |
+
return ring.term_new(monom, coeff)
|
814 |
+
|
815 |
+
fc, f = f.primitive()
|
816 |
+
gc, g = g.primitive()
|
817 |
+
|
818 |
+
lcm = domain.lcm(fc, gc)
|
819 |
+
|
820 |
+
f_terms = [ ((1,) + monom, coeff) for monom, coeff in f.terms() ]
|
821 |
+
g_terms = [ ((0,) + monom, coeff) for monom, coeff in g.terms() ] \
|
822 |
+
+ [ ((1,) + monom,-coeff) for monom, coeff in g.terms() ]
|
823 |
+
|
824 |
+
t = Dummy("t")
|
825 |
+
t_ring = ring.clone(symbols=(t,) + ring.symbols, order=lex)
|
826 |
+
|
827 |
+
F = t_ring.from_terms(f_terms)
|
828 |
+
G = t_ring.from_terms(g_terms)
|
829 |
+
|
830 |
+
basis = groebner([F, G], t_ring)
|
831 |
+
|
832 |
+
def is_independent(h, j):
|
833 |
+
return not any(monom[j] for monom in h.monoms())
|
834 |
+
|
835 |
+
H = [ h for h in basis if is_independent(h, 0) ]
|
836 |
+
|
837 |
+
h_terms = [ (monom[1:], coeff*lcm) for monom, coeff in H[0].terms() ]
|
838 |
+
h = ring.from_terms(h_terms)
|
839 |
+
|
840 |
+
return h
|
841 |
+
|
842 |
+
def groebner_gcd(f, g):
|
843 |
+
"""Computes GCD of two polynomials using Groebner bases. """
|
844 |
+
if f.ring != g.ring:
|
845 |
+
raise ValueError("Values should be equal")
|
846 |
+
domain = f.ring.domain
|
847 |
+
|
848 |
+
if not domain.is_Field:
|
849 |
+
fc, f = f.primitive()
|
850 |
+
gc, g = g.primitive()
|
851 |
+
gcd = domain.gcd(fc, gc)
|
852 |
+
|
853 |
+
H = (f*g).quo([groebner_lcm(f, g)])
|
854 |
+
|
855 |
+
if len(H) != 1:
|
856 |
+
raise ValueError("Length should be 1")
|
857 |
+
h = H[0]
|
858 |
+
|
859 |
+
if not domain.is_Field:
|
860 |
+
return gcd*h
|
861 |
+
else:
|
862 |
+
return h.monic()
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/heuristicgcd.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Heuristic polynomial GCD algorithm (HEUGCD). """
|
2 |
+
|
3 |
+
from .polyerrors import HeuristicGCDFailed
|
4 |
+
|
5 |
+
HEU_GCD_MAX = 6
|
6 |
+
|
7 |
+
def heugcd(f, g):
|
8 |
+
"""
|
9 |
+
Heuristic polynomial GCD in ``Z[X]``.
|
10 |
+
|
11 |
+
Given univariate polynomials ``f`` and ``g`` in ``Z[X]``, returns
|
12 |
+
their GCD and cofactors, i.e. polynomials ``h``, ``cff`` and ``cfg``
|
13 |
+
such that::
|
14 |
+
|
15 |
+
h = gcd(f, g), cff = quo(f, h) and cfg = quo(g, h)
|
16 |
+
|
17 |
+
The algorithm is purely heuristic which means it may fail to compute
|
18 |
+
the GCD. This will be signaled by raising an exception. In this case
|
19 |
+
you will need to switch to another GCD method.
|
20 |
+
|
21 |
+
The algorithm computes the polynomial GCD by evaluating polynomials
|
22 |
+
``f`` and ``g`` at certain points and computing (fast) integer GCD
|
23 |
+
of those evaluations. The polynomial GCD is recovered from the integer
|
24 |
+
image by interpolation. The evaluation process reduces f and g variable
|
25 |
+
by variable into a large integer. The final step is to verify if the
|
26 |
+
interpolated polynomial is the correct GCD. This gives cofactors of
|
27 |
+
the input polynomials as a side effect.
|
28 |
+
|
29 |
+
Examples
|
30 |
+
========
|
31 |
+
|
32 |
+
>>> from sympy.polys.heuristicgcd import heugcd
|
33 |
+
>>> from sympy.polys import ring, ZZ
|
34 |
+
|
35 |
+
>>> R, x,y, = ring("x,y", ZZ)
|
36 |
+
|
37 |
+
>>> f = x**2 + 2*x*y + y**2
|
38 |
+
>>> g = x**2 + x*y
|
39 |
+
|
40 |
+
>>> h, cff, cfg = heugcd(f, g)
|
41 |
+
>>> h, cff, cfg
|
42 |
+
(x + y, x + y, x)
|
43 |
+
|
44 |
+
>>> cff*h == f
|
45 |
+
True
|
46 |
+
>>> cfg*h == g
|
47 |
+
True
|
48 |
+
|
49 |
+
References
|
50 |
+
==========
|
51 |
+
|
52 |
+
.. [1] [Liao95]_
|
53 |
+
|
54 |
+
"""
|
55 |
+
assert f.ring == g.ring and f.ring.domain.is_ZZ
|
56 |
+
|
57 |
+
ring = f.ring
|
58 |
+
x0 = ring.gens[0]
|
59 |
+
domain = ring.domain
|
60 |
+
|
61 |
+
gcd, f, g = f.extract_ground(g)
|
62 |
+
|
63 |
+
f_norm = f.max_norm()
|
64 |
+
g_norm = g.max_norm()
|
65 |
+
|
66 |
+
B = domain(2*min(f_norm, g_norm) + 29)
|
67 |
+
|
68 |
+
x = max(min(B, 99*domain.sqrt(B)),
|
69 |
+
2*min(f_norm // abs(f.LC),
|
70 |
+
g_norm // abs(g.LC)) + 4)
|
71 |
+
|
72 |
+
for i in range(0, HEU_GCD_MAX):
|
73 |
+
ff = f.evaluate(x0, x)
|
74 |
+
gg = g.evaluate(x0, x)
|
75 |
+
|
76 |
+
if ff and gg:
|
77 |
+
if ring.ngens == 1:
|
78 |
+
h, cff, cfg = domain.cofactors(ff, gg)
|
79 |
+
else:
|
80 |
+
h, cff, cfg = heugcd(ff, gg)
|
81 |
+
|
82 |
+
h = _gcd_interpolate(h, x, ring)
|
83 |
+
h = h.primitive()[1]
|
84 |
+
|
85 |
+
cff_, r = f.div(h)
|
86 |
+
|
87 |
+
if not r:
|
88 |
+
cfg_, r = g.div(h)
|
89 |
+
|
90 |
+
if not r:
|
91 |
+
h = h.mul_ground(gcd)
|
92 |
+
return h, cff_, cfg_
|
93 |
+
|
94 |
+
cff = _gcd_interpolate(cff, x, ring)
|
95 |
+
|
96 |
+
h, r = f.div(cff)
|
97 |
+
|
98 |
+
if not r:
|
99 |
+
cfg_, r = g.div(h)
|
100 |
+
|
101 |
+
if not r:
|
102 |
+
h = h.mul_ground(gcd)
|
103 |
+
return h, cff, cfg_
|
104 |
+
|
105 |
+
cfg = _gcd_interpolate(cfg, x, ring)
|
106 |
+
|
107 |
+
h, r = g.div(cfg)
|
108 |
+
|
109 |
+
if not r:
|
110 |
+
cff_, r = f.div(h)
|
111 |
+
|
112 |
+
if not r:
|
113 |
+
h = h.mul_ground(gcd)
|
114 |
+
return h, cff_, cfg
|
115 |
+
|
116 |
+
x = 73794*x * domain.sqrt(domain.sqrt(x)) // 27011
|
117 |
+
|
118 |
+
raise HeuristicGCDFailed('no luck')
|
119 |
+
|
120 |
+
def _gcd_interpolate(h, x, ring):
|
121 |
+
"""Interpolate polynomial GCD from integer GCD. """
|
122 |
+
f, i = ring.zero, 0
|
123 |
+
|
124 |
+
# TODO: don't expose poly repr implementation details
|
125 |
+
if ring.ngens == 1:
|
126 |
+
while h:
|
127 |
+
g = h % x
|
128 |
+
if g > x // 2: g -= x
|
129 |
+
h = (h - g) // x
|
130 |
+
|
131 |
+
# f += X**i*g
|
132 |
+
if g:
|
133 |
+
f[(i,)] = g
|
134 |
+
i += 1
|
135 |
+
else:
|
136 |
+
while h:
|
137 |
+
g = h.trunc_ground(x)
|
138 |
+
h = (h - g).quo_ground(x)
|
139 |
+
|
140 |
+
# f += X**i*g
|
141 |
+
if g:
|
142 |
+
for monom, coeff in g.iterterms():
|
143 |
+
f[(i,) + monom] = coeff
|
144 |
+
i += 1
|
145 |
+
|
146 |
+
if f.LC < 0:
|
147 |
+
return -f
|
148 |
+
else:
|
149 |
+
return f
|