applied-ai-018 commited on
Commit
fbc0f3c
·
verified ·
1 Parent(s): 072b113

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/__init__.py +142 -0
  2. llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/__pycache__/__init__.cpython-310.pyc +0 -0
  3. llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/__pycache__/configuration_blenderbot.cpython-310.pyc +0 -0
  4. llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/__pycache__/convert_blenderbot_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc +0 -0
  5. llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/__pycache__/modeling_blenderbot.cpython-310.pyc +0 -0
  6. llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/__pycache__/modeling_flax_blenderbot.cpython-310.pyc +0 -0
  7. llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/__pycache__/modeling_tf_blenderbot.cpython-310.pyc +0 -0
  8. llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/__pycache__/tokenization_blenderbot.cpython-310.pyc +0 -0
  9. llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/__pycache__/tokenization_blenderbot_fast.cpython-310.pyc +0 -0
  10. llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/configuration_blenderbot.py +395 -0
  11. llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/convert_blenderbot_original_pytorch_checkpoint_to_pytorch.py +114 -0
  12. llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/modeling_blenderbot.py +1597 -0
  13. llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/modeling_flax_blenderbot.py +1505 -0
  14. llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/modeling_tf_blenderbot.py +1556 -0
  15. llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/tokenization_blenderbot.py +427 -0
  16. llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/tokenization_blenderbot_fast.py +309 -0
  17. llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/__init__.py +83 -0
  18. llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/__pycache__/__init__.cpython-310.pyc +0 -0
  19. llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/__pycache__/configuration_clvp.cpython-310.pyc +0 -0
  20. llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/__pycache__/convert_clvp_to_hf.cpython-310.pyc +0 -0
  21. llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/__pycache__/feature_extraction_clvp.cpython-310.pyc +0 -0
  22. llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/__pycache__/modeling_clvp.cpython-310.pyc +0 -0
  23. llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/__pycache__/number_normalizer.cpython-310.pyc +0 -0
  24. llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/__pycache__/processing_clvp.cpython-310.pyc +0 -0
  25. llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/configuration_clvp.py +456 -0
  26. llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/convert_clvp_to_hf.py +234 -0
  27. llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/feature_extraction_clvp.py +238 -0
  28. llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/modeling_clvp.py +2022 -0
  29. llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/number_normalizer.py +238 -0
  30. llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/processing_clvp.py +91 -0
  31. llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/tokenization_clvp.py +364 -0
  32. llmeval-env/lib/python3.10/site-packages/transformers/models/dinov2/__init__.py +61 -0
  33. llmeval-env/lib/python3.10/site-packages/transformers/models/dinov2/convert_dinov2_to_hf.py +287 -0
  34. llmeval-env/lib/python3.10/site-packages/transformers/models/dit/__init__.py +0 -0
  35. llmeval-env/lib/python3.10/site-packages/transformers/models/dit/__pycache__/__init__.cpython-310.pyc +0 -0
  36. llmeval-env/lib/python3.10/site-packages/transformers/models/dit/__pycache__/convert_dit_unilm_to_pytorch.cpython-310.pyc +0 -0
  37. llmeval-env/lib/python3.10/site-packages/transformers/models/dit/convert_dit_unilm_to_pytorch.py +231 -0
  38. llmeval-env/lib/python3.10/site-packages/transformers/models/falcon/__init__.py +68 -0
  39. llmeval-env/lib/python3.10/site-packages/transformers/models/falcon/__pycache__/__init__.cpython-310.pyc +0 -0
  40. llmeval-env/lib/python3.10/site-packages/transformers/models/falcon/__pycache__/configuration_falcon.cpython-310.pyc +0 -0
  41. llmeval-env/lib/python3.10/site-packages/transformers/models/falcon/__pycache__/convert_custom_code_checkpoint.cpython-310.pyc +0 -0
  42. llmeval-env/lib/python3.10/site-packages/transformers/models/falcon/__pycache__/modeling_falcon.cpython-310.pyc +0 -0
  43. llmeval-env/lib/python3.10/site-packages/transformers/models/falcon/configuration_falcon.py +201 -0
  44. llmeval-env/lib/python3.10/site-packages/transformers/models/falcon/convert_custom_code_checkpoint.py +74 -0
  45. llmeval-env/lib/python3.10/site-packages/transformers/models/lilt/__init__.py +60 -0
  46. llmeval-env/lib/python3.10/site-packages/transformers/models/lilt/__pycache__/__init__.cpython-310.pyc +0 -0
  47. llmeval-env/lib/python3.10/site-packages/transformers/models/lilt/__pycache__/configuration_lilt.cpython-310.pyc +0 -0
  48. llmeval-env/lib/python3.10/site-packages/transformers/models/lilt/__pycache__/modeling_lilt.cpython-310.pyc +0 -0
  49. llmeval-env/lib/python3.10/site-packages/transformers/models/lilt/configuration_lilt.py +131 -0
  50. llmeval-env/lib/python3.10/site-packages/transformers/models/lilt/modeling_lilt.py +1186 -0
llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/__init__.py ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2020 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from typing import TYPE_CHECKING
16
+
17
+ from ...utils import (
18
+ OptionalDependencyNotAvailable,
19
+ _LazyModule,
20
+ is_flax_available,
21
+ is_tf_available,
22
+ is_tokenizers_available,
23
+ is_torch_available,
24
+ )
25
+
26
+
27
+ _import_structure = {
28
+ "configuration_blenderbot": [
29
+ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP",
30
+ "BlenderbotConfig",
31
+ "BlenderbotOnnxConfig",
32
+ ],
33
+ "tokenization_blenderbot": ["BlenderbotTokenizer"],
34
+ }
35
+
36
+ try:
37
+ if not is_tokenizers_available():
38
+ raise OptionalDependencyNotAvailable()
39
+ except OptionalDependencyNotAvailable:
40
+ pass
41
+ else:
42
+ _import_structure["tokenization_blenderbot_fast"] = ["BlenderbotTokenizerFast"]
43
+
44
+ try:
45
+ if not is_torch_available():
46
+ raise OptionalDependencyNotAvailable()
47
+ except OptionalDependencyNotAvailable:
48
+ pass
49
+ else:
50
+ _import_structure["modeling_blenderbot"] = [
51
+ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST",
52
+ "BlenderbotForCausalLM",
53
+ "BlenderbotForConditionalGeneration",
54
+ "BlenderbotModel",
55
+ "BlenderbotPreTrainedModel",
56
+ ]
57
+
58
+
59
+ try:
60
+ if not is_tf_available():
61
+ raise OptionalDependencyNotAvailable()
62
+ except OptionalDependencyNotAvailable:
63
+ pass
64
+ else:
65
+ _import_structure["modeling_tf_blenderbot"] = [
66
+ "TFBlenderbotForConditionalGeneration",
67
+ "TFBlenderbotModel",
68
+ "TFBlenderbotPreTrainedModel",
69
+ ]
70
+
71
+
72
+ try:
73
+ if not is_flax_available():
74
+ raise OptionalDependencyNotAvailable()
75
+ except OptionalDependencyNotAvailable:
76
+ pass
77
+ else:
78
+ _import_structure["modeling_flax_blenderbot"] = [
79
+ "FlaxBlenderbotForConditionalGeneration",
80
+ "FlaxBlenderbotModel",
81
+ "FlaxBlenderbotPreTrainedModel",
82
+ ]
83
+
84
+
85
+ if TYPE_CHECKING:
86
+ from .configuration_blenderbot import (
87
+ BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP,
88
+ BlenderbotConfig,
89
+ BlenderbotOnnxConfig,
90
+ )
91
+ from .tokenization_blenderbot import BlenderbotTokenizer
92
+
93
+ try:
94
+ if not is_tokenizers_available():
95
+ raise OptionalDependencyNotAvailable()
96
+ except OptionalDependencyNotAvailable:
97
+ pass
98
+ else:
99
+ from .tokenization_blenderbot_fast import BlenderbotTokenizerFast
100
+
101
+ try:
102
+ if not is_torch_available():
103
+ raise OptionalDependencyNotAvailable()
104
+ except OptionalDependencyNotAvailable:
105
+ pass
106
+ else:
107
+ from .modeling_blenderbot import (
108
+ BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST,
109
+ BlenderbotForCausalLM,
110
+ BlenderbotForConditionalGeneration,
111
+ BlenderbotModel,
112
+ BlenderbotPreTrainedModel,
113
+ )
114
+
115
+ try:
116
+ if not is_tf_available():
117
+ raise OptionalDependencyNotAvailable()
118
+ except OptionalDependencyNotAvailable:
119
+ pass
120
+ else:
121
+ from .modeling_tf_blenderbot import (
122
+ TFBlenderbotForConditionalGeneration,
123
+ TFBlenderbotModel,
124
+ TFBlenderbotPreTrainedModel,
125
+ )
126
+
127
+ try:
128
+ if not is_flax_available():
129
+ raise OptionalDependencyNotAvailable()
130
+ except OptionalDependencyNotAvailable:
131
+ pass
132
+ else:
133
+ from .modeling_flax_blenderbot import (
134
+ FlaxBlenderbotForConditionalGeneration,
135
+ FlaxBlenderbotModel,
136
+ FlaxBlenderbotPreTrainedModel,
137
+ )
138
+
139
+ else:
140
+ import sys
141
+
142
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.93 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/__pycache__/configuration_blenderbot.cpython-310.pyc ADDED
Binary file (12.8 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/__pycache__/convert_blenderbot_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc ADDED
Binary file (2.94 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/__pycache__/modeling_blenderbot.cpython-310.pyc ADDED
Binary file (53.4 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/__pycache__/modeling_flax_blenderbot.cpython-310.pyc ADDED
Binary file (41.9 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/__pycache__/modeling_tf_blenderbot.cpython-310.pyc ADDED
Binary file (49.3 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/__pycache__/tokenization_blenderbot.cpython-310.pyc ADDED
Binary file (16.1 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/__pycache__/tokenization_blenderbot_fast.cpython-310.pyc ADDED
Binary file (10.9 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/configuration_blenderbot.py ADDED
@@ -0,0 +1,395 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2021 The Facebook, Inc. and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ Blenderbot model configuration"""
16
+
17
+ from collections import OrderedDict
18
+ from typing import Any, Mapping, Optional
19
+
20
+ from ... import PreTrainedTokenizer
21
+ from ...configuration_utils import PretrainedConfig
22
+ from ...file_utils import TensorType, is_torch_available
23
+ from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeq2SeqConfigWithPast
24
+ from ...onnx.utils import compute_effective_axis_dimension
25
+ from ...utils import logging
26
+
27
+
28
+ logger = logging.get_logger(__name__)
29
+
30
+
31
+ from ..deprecated._archive_maps import BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
32
+
33
+
34
+ class BlenderbotConfig(PretrainedConfig):
35
+ r"""
36
+ This is the configuration class to store the configuration of a [`BlenderbotModel`]. It is used to instantiate an
37
+ Blenderbot model according to the specified arguments, defining the model architecture. Instantiating a
38
+ configuration with the defaults will yield a similar configuration to that of the Blenderbot
39
+ [facebook/blenderbot-3B](https://huggingface.co/facebook/blenderbot-3B) architecture.
40
+
41
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
42
+ documentation from [`PretrainedConfig`] for more information.
43
+
44
+
45
+ Args:
46
+ vocab_size (`int`, *optional*, defaults to 50265):
47
+ Vocabulary size of the Blenderbot model. Defines the number of different tokens that can be represented by
48
+ the `inputs_ids` passed when calling [`BlenderbotModel`] or [`TFBlenderbotModel`].
49
+ d_model (`int`, *optional*, defaults to 1024):
50
+ Dimensionality of the layers and the pooler layer.
51
+ encoder_layers (`int`, *optional*, defaults to 12):
52
+ Number of encoder layers.
53
+ decoder_layers (`int`, *optional*, defaults to 12):
54
+ Number of decoder layers.
55
+ encoder_attention_heads (`int`, *optional*, defaults to 16):
56
+ Number of attention heads for each attention layer in the Transformer encoder.
57
+ decoder_attention_heads (`int`, *optional*, defaults to 16):
58
+ Number of attention heads for each attention layer in the Transformer decoder.
59
+ decoder_ffn_dim (`int`, *optional*, defaults to 4096):
60
+ Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
61
+ encoder_ffn_dim (`int`, *optional*, defaults to 4096):
62
+ Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
63
+ activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
64
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
65
+ `"relu"`, `"silu"` and `"gelu_new"` are supported.
66
+ dropout (`float`, *optional*, defaults to 0.1):
67
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
68
+ attention_dropout (`float`, *optional*, defaults to 0.0):
69
+ The dropout ratio for the attention probabilities.
70
+ activation_dropout (`float`, *optional*, defaults to 0.0):
71
+ The dropout ratio for activations inside the fully connected layer.
72
+ max_position_embeddings (`int`, *optional*, defaults to 128):
73
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
74
+ just in case (e.g., 512 or 1024 or 2048).
75
+ init_std (`float`, *optional*, defaults to 0.02):
76
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
77
+ encoder_layerdrop (`float`, *optional*, defaults to 0.0):
78
+ The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
79
+ for more details.
80
+ decoder_layerdrop (`float`, *optional*, defaults to 0.0):
81
+ The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
82
+ for more details.
83
+ scale_embedding (`bool`, *optional*, defaults to `False`):
84
+ Scale embeddings by diving by sqrt(d_model).
85
+ use_cache (`bool`, *optional*, defaults to `True`):
86
+ Whether or not the model should return the last key/values attentions (not used by all models)
87
+ forced_eos_token_id (`int`, *optional*, defaults to 2):
88
+ The id of the token to force as the last generated token when `max_length` is reached. Usually set to
89
+ `eos_token_id`.
90
+
91
+ Example:
92
+
93
+ ```python
94
+ >>> from transformers import BlenderbotConfig, BlenderbotModel
95
+
96
+ >>> # Initializing a Blenderbot facebook/blenderbot-3B style configuration
97
+ >>> configuration = BlenderbotConfig()
98
+
99
+ >>> # Initializing a model (with random weights) from the facebook/blenderbot-3B style configuration
100
+ >>> model = BlenderbotModel(configuration)
101
+
102
+ >>> # Accessing the model configuration
103
+ >>> configuration = model.config
104
+ ```"""
105
+
106
+ model_type = "blenderbot"
107
+ keys_to_ignore_at_inference = ["past_key_values"]
108
+ attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
109
+
110
+ def __init__(
111
+ self,
112
+ vocab_size=8008,
113
+ max_position_embeddings=128,
114
+ encoder_layers=2,
115
+ encoder_ffn_dim=10240,
116
+ encoder_attention_heads=32,
117
+ decoder_layers=24,
118
+ decoder_ffn_dim=10240,
119
+ decoder_attention_heads=32,
120
+ encoder_layerdrop=0.0,
121
+ decoder_layerdrop=0.0,
122
+ use_cache=True,
123
+ is_encoder_decoder=True,
124
+ activation_function="gelu",
125
+ d_model=2560,
126
+ dropout=0.1,
127
+ attention_dropout=0.0,
128
+ activation_dropout=0.0,
129
+ init_std=0.02,
130
+ decoder_start_token_id=1,
131
+ scale_embedding=False,
132
+ pad_token_id=0,
133
+ bos_token_id=1,
134
+ eos_token_id=2,
135
+ encoder_no_repeat_ngram_size=3,
136
+ forced_eos_token_id=2,
137
+ **kwargs,
138
+ ):
139
+ self.vocab_size = vocab_size
140
+ self.max_position_embeddings = max_position_embeddings
141
+ self.d_model = d_model
142
+ self.encoder_ffn_dim = encoder_ffn_dim
143
+ self.encoder_layers = encoder_layers
144
+ self.encoder_attention_heads = encoder_attention_heads
145
+ self.decoder_ffn_dim = decoder_ffn_dim
146
+ self.decoder_layers = decoder_layers
147
+ self.decoder_attention_heads = decoder_attention_heads
148
+ self.dropout = dropout
149
+ self.attention_dropout = attention_dropout
150
+ self.activation_dropout = activation_dropout
151
+ self.activation_function = activation_function
152
+ self.init_std = init_std
153
+ self.encoder_layerdrop = encoder_layerdrop
154
+ self.decoder_layerdrop = decoder_layerdrop
155
+ self.use_cache = use_cache
156
+ self.num_hidden_layers = encoder_layers
157
+ self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
158
+
159
+ super().__init__(
160
+ pad_token_id=pad_token_id,
161
+ bos_token_id=bos_token_id,
162
+ eos_token_id=eos_token_id,
163
+ is_encoder_decoder=is_encoder_decoder,
164
+ decoder_start_token_id=decoder_start_token_id,
165
+ encoder_no_repeat_ngram_size=encoder_no_repeat_ngram_size,
166
+ forced_eos_token_id=forced_eos_token_id,
167
+ **kwargs,
168
+ )
169
+
170
+
171
+ class BlenderbotOnnxConfig(OnnxSeq2SeqConfigWithPast):
172
+ @property
173
+ def inputs(self) -> Mapping[str, Mapping[int, str]]:
174
+ if self.task in ["default", "seq2seq-lm"]:
175
+ common_inputs = OrderedDict(
176
+ [
177
+ ("input_ids", {0: "batch", 1: "encoder_sequence"}),
178
+ ("attention_mask", {0: "batch", 1: "encoder_sequence"}),
179
+ ]
180
+ )
181
+ if self.use_past:
182
+ common_inputs["decoder_input_ids"] = {0: "batch"}
183
+ common_inputs["decoder_attention_mask"] = {0: "batch", 1: "past_decoder_sequence + sequence"}
184
+ else:
185
+ common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"}
186
+ common_inputs["decoder_attention_mask"] = {0: "batch", 1: "decoder_sequence"}
187
+ if self.use_past:
188
+ self.fill_with_past_key_values_(common_inputs, direction="inputs")
189
+ elif self.task == "causal-lm":
190
+ common_inputs = OrderedDict(
191
+ [
192
+ ("input_ids", {0: "batch", 1: "encoder_sequence"}),
193
+ ("attention_mask", {0: "batch", 1: "encoder_sequence"}),
194
+ ]
195
+ )
196
+ if self.use_past:
197
+ _, num_decoder_layers = self.num_layers
198
+ for i in range(num_decoder_layers):
199
+ common_inputs[f"past_key_values.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"}
200
+ common_inputs[f"past_key_values.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"}
201
+ else:
202
+ common_inputs = OrderedDict(
203
+ [
204
+ ("input_ids", {0: "batch", 1: "encoder_sequence"}),
205
+ ("attention_mask", {0: "batch", 1: "encoder_sequence"}),
206
+ ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}),
207
+ ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}),
208
+ ]
209
+ )
210
+
211
+ return common_inputs
212
+
213
+ @property
214
+ # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs
215
+ def outputs(self) -> Mapping[str, Mapping[int, str]]:
216
+ if self.task in ["default", "seq2seq-lm"]:
217
+ common_outputs = super().outputs
218
+ else:
219
+ common_outputs = super(OnnxConfigWithPast, self).outputs
220
+ if self.use_past:
221
+ num_encoder_layers, _ = self.num_layers
222
+ for i in range(num_encoder_layers):
223
+ common_outputs[f"present.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"}
224
+ common_outputs[f"present.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"}
225
+ return common_outputs
226
+
227
+ def _generate_dummy_inputs_for_default_and_seq2seq_lm(
228
+ self,
229
+ tokenizer: PreTrainedTokenizer,
230
+ batch_size: int = -1,
231
+ seq_length: int = -1,
232
+ is_pair: bool = False,
233
+ framework: Optional[TensorType] = None,
234
+ ) -> Mapping[str, Any]:
235
+ encoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
236
+ tokenizer, batch_size, seq_length, is_pair, framework
237
+ )
238
+ # Generate decoder inputs
239
+ decoder_seq_length = seq_length if not self.use_past else 1
240
+ decoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
241
+ tokenizer, batch_size, decoder_seq_length, is_pair, framework
242
+ )
243
+ decoder_inputs = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()}
244
+ common_inputs = dict(**encoder_inputs, **decoder_inputs)
245
+
246
+ if self.use_past:
247
+ if not is_torch_available():
248
+ raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
249
+ else:
250
+ import torch
251
+ batch, encoder_seq_length = common_inputs["input_ids"].shape
252
+ decoder_seq_length = common_inputs["decoder_input_ids"].shape[1]
253
+ num_encoder_attention_heads, num_decoder_attention_heads = self.num_attention_heads
254
+ encoder_shape = (
255
+ batch,
256
+ num_encoder_attention_heads,
257
+ encoder_seq_length,
258
+ self._config.hidden_size // num_encoder_attention_heads,
259
+ )
260
+ decoder_past_length = decoder_seq_length
261
+ decoder_shape = (
262
+ batch,
263
+ num_decoder_attention_heads,
264
+ decoder_past_length,
265
+ self._config.hidden_size // num_decoder_attention_heads,
266
+ )
267
+ common_inputs["decoder_attention_mask"] = torch.cat(
268
+ [common_inputs["decoder_attention_mask"], torch.ones(batch, decoder_past_length)], dim=1
269
+ )
270
+ common_inputs["past_key_values"] = []
271
+ _, num_decoder_layers = self.num_layers
272
+
273
+ for _ in range(num_decoder_layers):
274
+ common_inputs["past_key_values"].append(
275
+ (
276
+ torch.zeros(decoder_shape),
277
+ torch.zeros(decoder_shape),
278
+ torch.zeros(encoder_shape),
279
+ torch.zeros(encoder_shape),
280
+ )
281
+ )
282
+ return common_inputs
283
+
284
+ def _generate_dummy_inputs_for_causal_lm(
285
+ self,
286
+ tokenizer: PreTrainedTokenizer,
287
+ batch_size: int = -1,
288
+ seq_length: int = -1,
289
+ is_pair: bool = False,
290
+ framework: Optional[TensorType] = None,
291
+ ) -> Mapping[str, Any]:
292
+ common_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
293
+ tokenizer, batch_size, seq_length, is_pair, framework
294
+ )
295
+
296
+ if self.use_past:
297
+ if not is_torch_available():
298
+ raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
299
+ else:
300
+ import torch
301
+ batch, seqlen = common_inputs["input_ids"].shape
302
+ past_key_values_length = seqlen
303
+ _, num_decoder_layers = self.num_layers
304
+ num_encoder_attention_heads, _ = self.num_attention_heads
305
+ past_shape = (
306
+ batch,
307
+ num_encoder_attention_heads,
308
+ past_key_values_length,
309
+ self._config.hidden_size // num_encoder_attention_heads,
310
+ )
311
+ mask_dtype = common_inputs["attention_mask"].dtype
312
+ common_inputs["attention_mask"] = torch.cat(
313
+ [common_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1
314
+ )
315
+ common_inputs["past_key_values"] = [
316
+ (torch.zeros(past_shape), torch.zeros(past_shape)) for _ in range(num_decoder_layers)
317
+ ]
318
+ return common_inputs
319
+
320
+ # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig._generate_dummy_inputs_for_sequence_classification_and_question_answering
321
+ def _generate_dummy_inputs_for_sequence_classification_and_question_answering(
322
+ self,
323
+ tokenizer: PreTrainedTokenizer,
324
+ batch_size: int = -1,
325
+ seq_length: int = -1,
326
+ is_pair: bool = False,
327
+ framework: Optional[TensorType] = None,
328
+ ) -> Mapping[str, Any]:
329
+ # Copied from OnnxConfig.generate_dummy_inputs
330
+ # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity.
331
+ # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
332
+ batch_size = compute_effective_axis_dimension(
333
+ batch_size, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0
334
+ )
335
+
336
+ # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
337
+ token_to_add = tokenizer.num_special_tokens_to_add(is_pair)
338
+ seq_length = compute_effective_axis_dimension(
339
+ seq_length, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=token_to_add
340
+ )
341
+
342
+ # Generate dummy inputs according to compute batch and sequence
343
+ dummy_input = [" ".join([tokenizer.unk_token]) * seq_length] * batch_size
344
+ common_inputs = dict(tokenizer(dummy_input, return_tensors=framework))
345
+ return common_inputs
346
+
347
+ # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.generate_dummy_inputs
348
+ def generate_dummy_inputs(
349
+ self,
350
+ tokenizer: PreTrainedTokenizer,
351
+ batch_size: int = -1,
352
+ seq_length: int = -1,
353
+ is_pair: bool = False,
354
+ framework: Optional[TensorType] = None,
355
+ ) -> Mapping[str, Any]:
356
+ if self.task in ["default", "seq2seq-lm"]:
357
+ common_inputs = self._generate_dummy_inputs_for_default_and_seq2seq_lm(
358
+ tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
359
+ )
360
+
361
+ elif self.task == "causal-lm":
362
+ common_inputs = self._generate_dummy_inputs_for_causal_lm(
363
+ tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
364
+ )
365
+ else:
366
+ common_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
367
+ tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
368
+ )
369
+
370
+ return common_inputs
371
+
372
+ # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig._flatten_past_key_values_
373
+ def _flatten_past_key_values_(self, flattened_output, name, idx, t):
374
+ if self.task in ["default", "seq2seq-lm"]:
375
+ flattened_output = super()._flatten_past_key_values_(flattened_output, name, idx, t)
376
+ else:
377
+ flattened_output = super(OnnxSeq2SeqConfigWithPast, self)._flatten_past_key_values_(
378
+ flattened_output, name, idx, t
379
+ )
380
+
381
+ def fill_with_past_key_values_(self, inputs_or_outputs: Mapping[str, Mapping[int, str]], direction: str):
382
+ if direction not in ["inputs", "outputs"]:
383
+ raise ValueError(f'direction must either be "inputs" or "outputs", but {direction} was given')
384
+
385
+ name = "past_key_values" if direction == "inputs" else "present"
386
+ _, num_decoder_layers = self.num_layers
387
+
388
+ encoder_sequence = "past_encoder_sequence"
389
+ decoder_sequence = "past_decoder_sequence" if direction == "inputs" else "past_decoder_sequence + sequence"
390
+
391
+ for i in range(num_decoder_layers):
392
+ inputs_or_outputs[f"{name}.{i}.decoder.key"] = {0: "batch", 2: decoder_sequence}
393
+ inputs_or_outputs[f"{name}.{i}.decoder.value"] = {0: "batch", 2: decoder_sequence}
394
+ inputs_or_outputs[f"{name}.{i}.encoder.key"] = {0: "batch", 2: encoder_sequence}
395
+ inputs_or_outputs[f"{name}.{i}.encoder.value"] = {0: "batch", 2: encoder_sequence}
llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/convert_blenderbot_original_pytorch_checkpoint_to_pytorch.py ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Convert Blenderbot checkpoint."""
16
+
17
+ import argparse
18
+
19
+ import torch
20
+
21
+ from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration
22
+ from transformers.utils import logging
23
+
24
+
25
+ logging.set_verbosity_info()
26
+ logger = logging.get_logger(__name__)
27
+
28
+ PATTERNS = [
29
+ ["attention", "attn"],
30
+ ["encoder_attention", "encoder_attn"],
31
+ ["q_lin", "q_proj"],
32
+ ["k_lin", "k_proj"],
33
+ ["v_lin", "v_proj"],
34
+ ["out_lin", "out_proj"],
35
+ ["norm_embeddings", "layernorm_embedding"],
36
+ ["position_embeddings", "embed_positions"],
37
+ ["embeddings", "embed_tokens"],
38
+ ["ffn.lin", "fc"],
39
+ ]
40
+
41
+
42
+ def rename_state_dict_key(k):
43
+ if k == "embeddings.weight":
44
+ return "shared.weight"
45
+
46
+ for parlai_name, hf_name in PATTERNS:
47
+ k = k.replace(parlai_name, hf_name)
48
+
49
+ if k.startswith("encoder"):
50
+ k = k.replace(".attn", ".self_attn")
51
+ k = k.replace("norm1", "self_attn_layer_norm")
52
+ k = k.replace("norm2", "final_layer_norm")
53
+ elif k.startswith("decoder"):
54
+ k = k.replace("norm1", "self_attn_layer_norm")
55
+ k = k.replace("norm2", "encoder_attn_layer_norm")
56
+ k = k.replace("norm3", "final_layer_norm")
57
+ return k
58
+
59
+
60
+ def rename_layernorm_keys(sd):
61
+ keys = [
62
+ "model.encoder.layernorm_embedding.weight",
63
+ "model.encoder.layernorm_embedding.bias",
64
+ "model.decoder.layernorm_embedding.weight",
65
+ "model.decoder.layernorm_embedding.bias",
66
+ ]
67
+ for k in keys:
68
+ v = sd.pop(k)
69
+ new_k = k.replace("layernorm_embedding", "layer_norm")
70
+ assert new_k not in sd
71
+ sd[new_k] = v
72
+
73
+
74
+ IGNORE_KEYS = ["START"]
75
+
76
+
77
+ @torch.no_grad()
78
+ def convert_parlai_checkpoint(checkpoint_path, pytorch_dump_folder_path, config_json_path):
79
+ """
80
+ Copy/paste/tweak model's weights to our BERT structure.
81
+ """
82
+ model = torch.load(checkpoint_path, map_location="cpu")
83
+ sd = model["model"]
84
+ cfg = BlenderbotConfig.from_json_file(config_json_path)
85
+ m = BlenderbotForConditionalGeneration(cfg)
86
+ valid_keys = m.model.state_dict().keys()
87
+ failures = []
88
+ mapping = {}
89
+ for k, v in sd.items():
90
+ if k in IGNORE_KEYS:
91
+ continue
92
+
93
+ new_k = rename_state_dict_key(k)
94
+ if new_k not in valid_keys:
95
+ failures.append([k, new_k])
96
+ else:
97
+ mapping[new_k] = v
98
+ if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm
99
+ rename_layernorm_keys(sd)
100
+ m.model.load_state_dict(mapping, strict=True)
101
+ m.half()
102
+ m.save_pretrained(pytorch_dump_folder_path)
103
+
104
+
105
+ if __name__ == "__main__":
106
+ parser = argparse.ArgumentParser()
107
+ # Required parameters
108
+ parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin")
109
+ parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.")
110
+ parser.add_argument(
111
+ "--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use"
112
+ )
113
+ args = parser.parse_args()
114
+ convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/modeling_blenderbot.py ADDED
@@ -0,0 +1,1597 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2021 The Facebook, Inc. and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ PyTorch Blenderbot model."""
16
+
17
+
18
+ import copy
19
+ import math
20
+ import os
21
+ import warnings
22
+ from typing import List, Optional, Tuple, Union
23
+
24
+ import torch
25
+ import torch.utils.checkpoint
26
+ from torch import nn
27
+ from torch.nn import CrossEntropyLoss
28
+
29
+ from ...activations import ACT2FN
30
+ from ...modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_causal_attention_mask
31
+ from ...modeling_outputs import (
32
+ BaseModelOutput,
33
+ BaseModelOutputWithPastAndCrossAttentions,
34
+ CausalLMOutputWithCrossAttentions,
35
+ Seq2SeqLMOutput,
36
+ Seq2SeqModelOutput,
37
+ )
38
+ from ...modeling_utils import PreTrainedModel
39
+ from ...utils import (
40
+ add_end_docstrings,
41
+ add_start_docstrings,
42
+ add_start_docstrings_to_model_forward,
43
+ logging,
44
+ replace_return_docstrings,
45
+ )
46
+ from ..blenderbot_small import BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel
47
+ from .configuration_blenderbot import BlenderbotConfig
48
+
49
+
50
+ logger = logging.get_logger(__name__)
51
+
52
+ _CONFIG_FOR_DOC = "BlenderbotConfig"
53
+ _CHECKPOINT_FOR_DOC = "facebook/blenderbot-400M-distill"
54
+
55
+
56
+ from ..deprecated._archive_maps import BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
57
+
58
+
59
+ # Copied from transformers.models.bart.modeling_bart.shift_tokens_right
60
+ def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
61
+ """
62
+ Shift input ids one token to the right.
63
+ """
64
+ shifted_input_ids = input_ids.new_zeros(input_ids.shape)
65
+ shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
66
+ shifted_input_ids[:, 0] = decoder_start_token_id
67
+
68
+ if pad_token_id is None:
69
+ raise ValueError("self.model.config.pad_token_id has to be defined.")
70
+ # replace possible -100 values in labels by `pad_token_id`
71
+ shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
72
+
73
+ return shifted_input_ids
74
+
75
+
76
+ class BlenderbotLearnedPositionalEmbedding(nn.Embedding):
77
+ """
78
+ This module learns positional embeddings up to a fixed maximum size.
79
+ """
80
+
81
+ def __init__(self, num_embeddings: int, embedding_dim: int):
82
+ super().__init__(num_embeddings, embedding_dim)
83
+
84
+ def forward(self, input_ids_shape: torch.Size, past_key_values_length: int = 0):
85
+ """`input_ids_shape` is expected to be [bsz x seqlen]."""
86
+ bsz, seq_len = input_ids_shape[:2]
87
+ positions = torch.arange(
88
+ past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device
89
+ )
90
+ return super().forward(positions)
91
+
92
+
93
+ # Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->Blenderbot
94
+ class BlenderbotAttention(nn.Module):
95
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
96
+
97
+ def __init__(
98
+ self,
99
+ embed_dim: int,
100
+ num_heads: int,
101
+ dropout: float = 0.0,
102
+ is_decoder: bool = False,
103
+ bias: bool = True,
104
+ is_causal: bool = False,
105
+ config: Optional[BlenderbotConfig] = None,
106
+ ):
107
+ super().__init__()
108
+ self.embed_dim = embed_dim
109
+ self.num_heads = num_heads
110
+ self.dropout = dropout
111
+ self.head_dim = embed_dim // num_heads
112
+ self.config = config
113
+
114
+ if (self.head_dim * num_heads) != self.embed_dim:
115
+ raise ValueError(
116
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
117
+ f" and `num_heads`: {num_heads})."
118
+ )
119
+ self.scaling = self.head_dim**-0.5
120
+ self.is_decoder = is_decoder
121
+ self.is_causal = is_causal
122
+
123
+ self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
124
+ self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
125
+ self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
126
+ self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
127
+
128
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
129
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
130
+
131
+ def forward(
132
+ self,
133
+ hidden_states: torch.Tensor,
134
+ key_value_states: Optional[torch.Tensor] = None,
135
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
136
+ attention_mask: Optional[torch.Tensor] = None,
137
+ layer_head_mask: Optional[torch.Tensor] = None,
138
+ output_attentions: bool = False,
139
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
140
+ """Input shape: Batch x Time x Channel"""
141
+
142
+ # if key_value_states are provided this layer is used as a cross-attention layer
143
+ # for the decoder
144
+ is_cross_attention = key_value_states is not None
145
+
146
+ bsz, tgt_len, _ = hidden_states.size()
147
+
148
+ # get query proj
149
+ query_states = self.q_proj(hidden_states) * self.scaling
150
+ # get key, value proj
151
+ # `past_key_value[0].shape[2] == key_value_states.shape[1]`
152
+ # is checking that the `sequence_length` of the `past_key_value` is the same as
153
+ # the provided `key_value_states` to support prefix tuning
154
+ if (
155
+ is_cross_attention
156
+ and past_key_value is not None
157
+ and past_key_value[0].shape[2] == key_value_states.shape[1]
158
+ ):
159
+ # reuse k,v, cross_attentions
160
+ key_states = past_key_value[0]
161
+ value_states = past_key_value[1]
162
+ elif is_cross_attention:
163
+ # cross_attentions
164
+ key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
165
+ value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
166
+ elif past_key_value is not None:
167
+ # reuse k, v, self_attention
168
+ key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
169
+ value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
170
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
171
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
172
+ else:
173
+ # self_attention
174
+ key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
175
+ value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
176
+
177
+ if self.is_decoder:
178
+ # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
179
+ # Further calls to cross_attention layer can then reuse all cross-attention
180
+ # key/value_states (first "if" case)
181
+ # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
182
+ # all previous decoder key/value_states. Further calls to uni-directional self-attention
183
+ # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
184
+ # if encoder bi-directional self-attention `past_key_value` is always `None`
185
+ past_key_value = (key_states, value_states)
186
+
187
+ proj_shape = (bsz * self.num_heads, -1, self.head_dim)
188
+ query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
189
+ key_states = key_states.reshape(*proj_shape)
190
+ value_states = value_states.reshape(*proj_shape)
191
+
192
+ src_len = key_states.size(1)
193
+ attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
194
+
195
+ if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
196
+ raise ValueError(
197
+ f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
198
+ f" {attn_weights.size()}"
199
+ )
200
+
201
+ if attention_mask is not None:
202
+ if attention_mask.size() != (bsz, 1, tgt_len, src_len):
203
+ raise ValueError(
204
+ f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
205
+ )
206
+ attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
207
+ attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
208
+
209
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
210
+
211
+ if layer_head_mask is not None:
212
+ if layer_head_mask.size() != (self.num_heads,):
213
+ raise ValueError(
214
+ f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
215
+ f" {layer_head_mask.size()}"
216
+ )
217
+ attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
218
+ attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
219
+
220
+ if output_attentions:
221
+ # this operation is a bit awkward, but it's required to
222
+ # make sure that attn_weights keeps its gradient.
223
+ # In order to do so, attn_weights have to be reshaped
224
+ # twice and have to be reused in the following
225
+ attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
226
+ attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
227
+ else:
228
+ attn_weights_reshaped = None
229
+
230
+ attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
231
+
232
+ attn_output = torch.bmm(attn_probs, value_states)
233
+
234
+ if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
235
+ raise ValueError(
236
+ f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
237
+ f" {attn_output.size()}"
238
+ )
239
+
240
+ attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
241
+ attn_output = attn_output.transpose(1, 2)
242
+
243
+ # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
244
+ # partitioned across GPUs when using tensor-parallelism.
245
+ attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
246
+
247
+ attn_output = self.out_proj(attn_output)
248
+
249
+ return attn_output, attn_weights_reshaped, past_key_value
250
+
251
+
252
+ BLENDERBOT_ATTENTION_CLASSES = {"eager": BlenderbotAttention}
253
+
254
+
255
+ # Copied from transformers.models.mbart.modeling_mbart.MBartEncoderLayer with MBart->Blenderbot, MBART->BLENDERBOT
256
+ class BlenderbotEncoderLayer(nn.Module):
257
+ def __init__(self, config: BlenderbotConfig):
258
+ super().__init__()
259
+ self.embed_dim = config.d_model
260
+
261
+ self.self_attn = BLENDERBOT_ATTENTION_CLASSES[config._attn_implementation](
262
+ embed_dim=self.embed_dim,
263
+ num_heads=config.encoder_attention_heads,
264
+ dropout=config.attention_dropout,
265
+ config=config,
266
+ )
267
+ self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
268
+ self.dropout = config.dropout
269
+ self.activation_fn = ACT2FN[config.activation_function]
270
+ self.activation_dropout = config.activation_dropout
271
+ self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
272
+ self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
273
+ self.final_layer_norm = nn.LayerNorm(self.embed_dim)
274
+
275
+ def forward(
276
+ self,
277
+ hidden_states: torch.Tensor,
278
+ attention_mask: torch.Tensor,
279
+ layer_head_mask: torch.Tensor,
280
+ output_attentions: bool = False,
281
+ ) -> torch.Tensor:
282
+ """
283
+ Args:
284
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
285
+ attention_mask (`torch.FloatTensor`): attention mask of size
286
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
287
+ layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
288
+ `(encoder_attention_heads,)`.
289
+ output_attentions (`bool`, *optional*):
290
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
291
+ returned tensors for more detail.
292
+ """
293
+ residual = hidden_states
294
+ hidden_states = self.self_attn_layer_norm(hidden_states)
295
+ hidden_states, attn_weights, _ = self.self_attn(
296
+ hidden_states=hidden_states,
297
+ attention_mask=attention_mask,
298
+ layer_head_mask=layer_head_mask,
299
+ output_attentions=output_attentions,
300
+ )
301
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
302
+ hidden_states = residual + hidden_states
303
+
304
+ residual = hidden_states
305
+ hidden_states = self.final_layer_norm(hidden_states)
306
+ hidden_states = self.activation_fn(self.fc1(hidden_states))
307
+ hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
308
+ hidden_states = self.fc2(hidden_states)
309
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
310
+ hidden_states = residual + hidden_states
311
+
312
+ if hidden_states.dtype == torch.float16 and (
313
+ torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
314
+ ):
315
+ clamp_value = torch.finfo(hidden_states.dtype).max - 1000
316
+ hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
317
+
318
+ outputs = (hidden_states,)
319
+
320
+ if output_attentions:
321
+ outputs += (attn_weights,)
322
+
323
+ return outputs
324
+
325
+
326
+ # Copied from transformers.models.mbart.modeling_mbart.MBartDecoderLayer with MBart->Blenderbot, MBART->BLENDERBOT
327
+ class BlenderbotDecoderLayer(nn.Module):
328
+ def __init__(self, config: BlenderbotConfig):
329
+ super().__init__()
330
+ self.embed_dim = config.d_model
331
+
332
+ self.self_attn = BLENDERBOT_ATTENTION_CLASSES[config._attn_implementation](
333
+ embed_dim=self.embed_dim,
334
+ num_heads=config.decoder_attention_heads,
335
+ dropout=config.attention_dropout,
336
+ is_decoder=True,
337
+ is_causal=True,
338
+ config=config,
339
+ )
340
+ self.dropout = config.dropout
341
+ self.activation_fn = ACT2FN[config.activation_function]
342
+ self.activation_dropout = config.activation_dropout
343
+
344
+ self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
345
+ self.encoder_attn = BLENDERBOT_ATTENTION_CLASSES[config._attn_implementation](
346
+ self.embed_dim,
347
+ config.decoder_attention_heads,
348
+ dropout=config.attention_dropout,
349
+ is_decoder=True,
350
+ config=config,
351
+ )
352
+ self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
353
+ self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
354
+ self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
355
+ self.final_layer_norm = nn.LayerNorm(self.embed_dim)
356
+
357
+ def forward(
358
+ self,
359
+ hidden_states: torch.Tensor,
360
+ attention_mask: Optional[torch.Tensor] = None,
361
+ encoder_hidden_states: Optional[torch.Tensor] = None,
362
+ encoder_attention_mask: Optional[torch.Tensor] = None,
363
+ layer_head_mask: Optional[torch.Tensor] = None,
364
+ cross_attn_layer_head_mask: Optional[torch.Tensor] = None,
365
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
366
+ output_attentions: Optional[bool] = False,
367
+ use_cache: Optional[bool] = True,
368
+ ) -> torch.Tensor:
369
+ """
370
+ Args:
371
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
372
+ attention_mask (`torch.FloatTensor`): attention mask of size
373
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
374
+ encoder_hidden_states (`torch.FloatTensor`):
375
+ cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
376
+ encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
377
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
378
+ layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
379
+ `(encoder_attention_heads,)`.
380
+ cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of
381
+ size `(decoder_attention_heads,)`.
382
+ past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
383
+ output_attentions (`bool`, *optional*):
384
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
385
+ returned tensors for more detail.
386
+ """
387
+ residual = hidden_states
388
+ hidden_states = self.self_attn_layer_norm(hidden_states)
389
+
390
+ # Self Attention
391
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
392
+ self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
393
+ # add present self-attn cache to positions 1,2 of present_key_value tuple
394
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
395
+ hidden_states=hidden_states,
396
+ past_key_value=self_attn_past_key_value,
397
+ attention_mask=attention_mask,
398
+ layer_head_mask=layer_head_mask,
399
+ output_attentions=output_attentions,
400
+ )
401
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
402
+ hidden_states = residual + hidden_states
403
+
404
+ # Cross-Attention Block
405
+ cross_attn_present_key_value = None
406
+ cross_attn_weights = None
407
+ if encoder_hidden_states is not None:
408
+ residual = hidden_states
409
+ hidden_states = self.encoder_attn_layer_norm(hidden_states)
410
+
411
+ # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
412
+ cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
413
+ hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
414
+ hidden_states=hidden_states,
415
+ key_value_states=encoder_hidden_states,
416
+ attention_mask=encoder_attention_mask,
417
+ layer_head_mask=cross_attn_layer_head_mask,
418
+ past_key_value=cross_attn_past_key_value,
419
+ output_attentions=output_attentions,
420
+ )
421
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
422
+ hidden_states = residual + hidden_states
423
+
424
+ # add cross-attn to positions 3,4 of present_key_value tuple
425
+ present_key_value = present_key_value + cross_attn_present_key_value
426
+
427
+ # Fully Connected
428
+ residual = hidden_states
429
+ hidden_states = self.final_layer_norm(hidden_states)
430
+ hidden_states = self.activation_fn(self.fc1(hidden_states))
431
+ hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
432
+ hidden_states = self.fc2(hidden_states)
433
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
434
+ hidden_states = residual + hidden_states
435
+
436
+ outputs = (hidden_states,)
437
+
438
+ if output_attentions:
439
+ outputs += (self_attn_weights, cross_attn_weights)
440
+
441
+ if use_cache:
442
+ outputs += (present_key_value,)
443
+
444
+ return outputs
445
+
446
+
447
+ class BlenderbotPreTrainedModel(PreTrainedModel):
448
+ config_class = BlenderbotConfig
449
+ base_model_prefix = "model"
450
+ supports_gradient_checkpointing = True
451
+
452
+ def _init_weights(self, module):
453
+ std = self.config.init_std
454
+ if isinstance(module, nn.Linear):
455
+ module.weight.data.normal_(mean=0.0, std=std)
456
+ if module.bias is not None:
457
+ module.bias.data.zero_()
458
+ elif isinstance(module, nn.Embedding):
459
+ module.weight.data.normal_(mean=0.0, std=std)
460
+ if module.padding_idx is not None:
461
+ module.weight.data[module.padding_idx].zero_()
462
+
463
+ @property
464
+ def dummy_inputs(self):
465
+ pad_token = self.config.pad_token_id
466
+ input_ids = torch.tensor([[0, 6, 10, 4, 2], [0, 8, 12, 2, pad_token]], device=self.device)
467
+ dummy_inputs = {
468
+ "attention_mask": input_ids.ne(pad_token),
469
+ "input_ids": input_ids,
470
+ "decoder_input_ids": input_ids,
471
+ }
472
+ return dummy_inputs
473
+
474
+
475
+ BLENDERBOT_START_DOCSTRING = r"""
476
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
477
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
478
+ etc.)
479
+
480
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
481
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
482
+ and behavior.
483
+
484
+ Parameters:
485
+ config ([`BlenderbotConfig`]):
486
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
487
+ load the weights associated with the model, only the configuration. Check out the
488
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
489
+ """
490
+
491
+ BLENDERBOT_GENERATION_EXAMPLE = r"""
492
+ Conversation example:
493
+
494
+ ```python
495
+ >>> from transformers import AutoTokenizer, BlenderbotForConditionalGeneration
496
+
497
+ >>> mname = "facebook/blenderbot-400M-distill"
498
+ >>> model = BlenderbotForConditionalGeneration.from_pretrained(mname)
499
+ >>> tokenizer = AutoTokenizer.from_pretrained(mname)
500
+ >>> UTTERANCE = "My friends are cool but they eat too many carbs."
501
+ >>> print("Human: ", UTTERANCE)
502
+ Human: My friends are cool but they eat too many carbs.
503
+
504
+ >>> inputs = tokenizer([UTTERANCE], return_tensors="pt")
505
+ >>> reply_ids = model.generate(**inputs)
506
+ >>> print("Bot: ", tokenizer.batch_decode(reply_ids, skip_special_tokens=True)[0])
507
+ Bot: That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?
508
+
509
+ >>> REPLY = "I'm not sure"
510
+ >>> print("Human: ", REPLY)
511
+ Human: I'm not sure
512
+
513
+ >>> NEXT_UTTERANCE = (
514
+ ... "My friends are cool but they eat too many carbs.</s> <s>That's unfortunate. "
515
+ ... "Are they trying to lose weight or are they just trying to be healthier?</s> "
516
+ ... "<s> I'm not sure."
517
+ ... )
518
+ >>> inputs = tokenizer([NEXT_UTTERANCE], return_tensors="pt")
519
+ >>> next_reply_ids = model.generate(**inputs)
520
+ >>> print("Bot: ", tokenizer.batch_decode(next_reply_ids, skip_special_tokens=True)[0])
521
+ Bot: I see. Well, it's good that they're trying to change their eating habits.
522
+ ```
523
+ """
524
+
525
+ BLENDERBOT_INPUTS_DOCSTRING = r"""
526
+ Args:
527
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
528
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
529
+ it.
530
+
531
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
532
+ [`PreTrainedTokenizer.__call__`] for details.
533
+
534
+ [What are input IDs?](../glossary#input-ids)
535
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
536
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
537
+
538
+ - 1 for tokens that are **not masked**,
539
+ - 0 for tokens that are **masked**.
540
+
541
+ [What are attention masks?](../glossary#attention-mask)
542
+ decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
543
+ Indices of decoder input sequence tokens in the vocabulary.
544
+
545
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
546
+ [`PreTrainedTokenizer.__call__`] for details.
547
+
548
+ [What are decoder input IDs?](../glossary#decoder-input-ids)
549
+
550
+ Blenderbot uses the `bos_token_id` as the starting token for `decoder_input_ids` generation. If
551
+ `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
552
+ `past_key_values`).
553
+ decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
554
+ Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
555
+ be used by default.
556
+ head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
557
+ Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
558
+
559
+ - 1 indicates the head is **not masked**,
560
+ - 0 indicates the head is **masked**.
561
+
562
+ decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
563
+ Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
564
+
565
+ - 1 indicates the head is **not masked**,
566
+ - 0 indicates the head is **masked**.
567
+
568
+ cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
569
+ Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0,
570
+ 1]`:
571
+
572
+ - 1 indicates the head is **not masked**,
573
+ - 0 indicates the head is **masked**.
574
+
575
+ encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
576
+ Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
577
+ `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
578
+ hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
579
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
580
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
581
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
582
+ `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
583
+
584
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
585
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
586
+
587
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
588
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
589
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
590
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
591
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
592
+ This is useful if you want more control over how to convert `input_ids` indices into associated vectors
593
+ than the model's internal embedding lookup matrix.
594
+ decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
595
+ Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
596
+ representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
597
+ input (see `past_key_values`). This is useful if you want more control over how to convert
598
+ `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
599
+
600
+ If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
601
+ of `inputs_embeds`.
602
+ use_cache (`bool`, *optional*):
603
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
604
+ `past_key_values`).
605
+ output_attentions (`bool`, *optional*):
606
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
607
+ tensors for more detail.
608
+ output_hidden_states (`bool`, *optional*):
609
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
610
+ more detail.
611
+ return_dict (`bool`, *optional*):
612
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
613
+ """
614
+
615
+
616
+ class BlenderbotEncoder(BlenderbotPreTrainedModel):
617
+ """
618
+ Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
619
+ [`BlenderbotEncoderLayer`].
620
+
621
+ Args:
622
+ config: BlenderbotConfig
623
+ embed_tokens (nn.Embedding): output embedding
624
+ """
625
+
626
+ def __init__(self, config: BlenderbotConfig, embed_tokens: Optional[nn.Embedding] = None):
627
+ super().__init__(config)
628
+
629
+ self.dropout = config.dropout
630
+ self.layerdrop = config.encoder_layerdrop
631
+
632
+ embed_dim = config.d_model
633
+ self.padding_idx = config.pad_token_id
634
+ self.max_source_positions = config.max_position_embeddings
635
+ self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
636
+
637
+ if embed_tokens is not None:
638
+ self.embed_tokens = embed_tokens
639
+ else:
640
+ self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx)
641
+
642
+ self.embed_positions = BlenderbotLearnedPositionalEmbedding(
643
+ config.max_position_embeddings,
644
+ embed_dim,
645
+ )
646
+ self.layers = nn.ModuleList([BlenderbotEncoderLayer(config) for _ in range(config.encoder_layers)])
647
+ self.layer_norm = nn.LayerNorm(config.d_model)
648
+
649
+ self.gradient_checkpointing = False
650
+ # Initialize weights and apply final processing
651
+ self.post_init()
652
+
653
+ def forward(
654
+ self,
655
+ input_ids=None,
656
+ attention_mask=None,
657
+ head_mask=None,
658
+ inputs_embeds=None,
659
+ output_attentions=None,
660
+ output_hidden_states=None,
661
+ return_dict=None,
662
+ ):
663
+ r"""
664
+ Args:
665
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
666
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
667
+ provide it.
668
+
669
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
670
+ [`PreTrainedTokenizer.__call__`] for details.
671
+
672
+ [What are input IDs?](../glossary#input-ids)
673
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
674
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
675
+
676
+ - 1 for tokens that are **not masked**,
677
+ - 0 for tokens that are **masked**.
678
+
679
+ [What are attention masks?](../glossary#attention-mask)
680
+ head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
681
+ Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
682
+
683
+ - 1 indicates the head is **not masked**,
684
+ - 0 indicates the head is **masked**.
685
+
686
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
687
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
688
+ This is useful if you want more control over how to convert `input_ids` indices into associated vectors
689
+ than the model's internal embedding lookup matrix.
690
+ output_attentions (`bool`, *optional*):
691
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
692
+ returned tensors for more detail.
693
+ output_hidden_states (`bool`, *optional*):
694
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
695
+ for more detail.
696
+ return_dict (`bool`, *optional*):
697
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
698
+ """
699
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
700
+ output_hidden_states = (
701
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
702
+ )
703
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
704
+
705
+ # retrieve input_ids and inputs_embeds
706
+ if input_ids is not None and inputs_embeds is not None:
707
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
708
+ elif input_ids is not None:
709
+ self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
710
+ input_shape = input_ids.size()
711
+ input_ids = input_ids.view(-1, input_shape[-1])
712
+ elif inputs_embeds is not None:
713
+ input_shape = inputs_embeds.size()[:-1]
714
+ else:
715
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
716
+
717
+ if inputs_embeds is None:
718
+ inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
719
+
720
+ embed_pos = self.embed_positions(input_shape)
721
+
722
+ hidden_states = inputs_embeds + embed_pos
723
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
724
+
725
+ # expand attention_mask
726
+ if attention_mask is not None:
727
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
728
+ attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype)
729
+
730
+ encoder_states = () if output_hidden_states else None
731
+ all_attentions = () if output_attentions else None
732
+
733
+ # check if head_mask has a correct number of layers specified if desired
734
+ if head_mask is not None:
735
+ if head_mask.size()[0] != len(self.layers):
736
+ raise ValueError(
737
+ f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
738
+ f" {head_mask.size()[0]}."
739
+ )
740
+ for idx, encoder_layer in enumerate(self.layers):
741
+ if output_hidden_states:
742
+ encoder_states = encoder_states + (hidden_states,)
743
+ # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
744
+ to_drop = False
745
+ if self.training:
746
+ dropout_probability = torch.rand([])
747
+ if dropout_probability < self.layerdrop: # skip the layer
748
+ to_drop = True
749
+
750
+ if to_drop:
751
+ layer_outputs = (None, None)
752
+ else:
753
+ if self.gradient_checkpointing and self.training:
754
+ layer_outputs = self._gradient_checkpointing_func(
755
+ encoder_layer.__call__,
756
+ hidden_states,
757
+ attention_mask,
758
+ (head_mask[idx] if head_mask is not None else None),
759
+ output_attentions,
760
+ )
761
+ else:
762
+ layer_outputs = encoder_layer(
763
+ hidden_states,
764
+ attention_mask,
765
+ layer_head_mask=(head_mask[idx] if head_mask is not None else None),
766
+ output_attentions=output_attentions,
767
+ )
768
+
769
+ hidden_states = layer_outputs[0]
770
+
771
+ if output_attentions:
772
+ all_attentions = all_attentions + (layer_outputs[1],)
773
+
774
+ # add final layer norm
775
+ hidden_states = self.layer_norm(hidden_states)
776
+
777
+ if output_hidden_states:
778
+ encoder_states = encoder_states + (hidden_states,)
779
+
780
+ if not return_dict:
781
+ return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
782
+ return BaseModelOutput(
783
+ last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
784
+ )
785
+
786
+
787
+ class BlenderbotDecoder(BlenderbotPreTrainedModel):
788
+ """
789
+ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`BlenderbotDecoderLayer`]
790
+
791
+ Args:
792
+ config: BlenderbotConfig
793
+ embed_tokens (nn.Embedding): output embedding
794
+ """
795
+
796
+ def __init__(self, config: BlenderbotConfig, embed_tokens: Optional[nn.Embedding] = None):
797
+ super().__init__(config)
798
+ self.dropout = config.dropout
799
+ self.layerdrop = config.decoder_layerdrop
800
+ self.padding_idx = config.pad_token_id
801
+ self.max_target_positions = config.max_position_embeddings
802
+ self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
803
+
804
+ if embed_tokens is not None:
805
+ self.embed_tokens = embed_tokens
806
+ else:
807
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx)
808
+
809
+ self.embed_positions = BlenderbotLearnedPositionalEmbedding(
810
+ config.max_position_embeddings,
811
+ config.d_model,
812
+ )
813
+ self.layers = nn.ModuleList([BlenderbotDecoderLayer(config) for _ in range(config.decoder_layers)])
814
+ self.layer_norm = nn.LayerNorm(config.d_model)
815
+
816
+ self.gradient_checkpointing = False
817
+ # Initialize weights and apply final processing
818
+ self.post_init()
819
+
820
+ def get_input_embeddings(self):
821
+ return self.embed_tokens
822
+
823
+ def set_input_embeddings(self, value):
824
+ self.embed_tokens = value
825
+
826
+ def forward(
827
+ self,
828
+ input_ids=None,
829
+ attention_mask=None,
830
+ encoder_hidden_states=None,
831
+ encoder_attention_mask=None,
832
+ head_mask=None,
833
+ cross_attn_head_mask=None,
834
+ past_key_values=None,
835
+ inputs_embeds=None,
836
+ use_cache=None,
837
+ output_attentions=None,
838
+ output_hidden_states=None,
839
+ return_dict=None,
840
+ ):
841
+ r"""
842
+ Args:
843
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
844
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
845
+ provide it.
846
+
847
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
848
+ [`PreTrainedTokenizer.__call__`] for details.
849
+
850
+ [What are input IDs?](../glossary#input-ids)
851
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
852
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
853
+
854
+ - 1 for tokens that are **not masked**,
855
+ - 0 for tokens that are **masked**.
856
+
857
+ [What are attention masks?](../glossary#attention-mask)
858
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
859
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
860
+ of the decoder.
861
+ encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
862
+ Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
863
+ selected in `[0, 1]`:
864
+
865
+ - 1 for tokens that are **not masked**,
866
+ - 0 for tokens that are **masked**.
867
+
868
+ [What are attention masks?](../glossary#attention-mask)
869
+ head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
870
+ Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0,
871
+ 1]`:
872
+
873
+ - 1 indicates the head is **not masked**,
874
+ - 0 indicates the head is **masked**.
875
+
876
+ cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
877
+ Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing
878
+ cross-attention on hidden heads. Mask values selected in `[0, 1]`:
879
+
880
+ - 1 indicates the head is **not masked**,
881
+ - 0 indicates the head is **masked**.
882
+
883
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
884
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
885
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
886
+ shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
887
+
888
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
889
+ cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
890
+
891
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
892
+ that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
893
+ all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
894
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
895
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
896
+ This is useful if you want more control over how to convert `input_ids` indices into associated vectors
897
+ than the model's internal embedding lookup matrix.
898
+ output_attentions (`bool`, *optional*):
899
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
900
+ returned tensors for more detail.
901
+ output_hidden_states (`bool`, *optional*):
902
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
903
+ for more detail.
904
+ return_dict (`bool`, *optional*):
905
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
906
+ """
907
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
908
+ output_hidden_states = (
909
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
910
+ )
911
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
912
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
913
+
914
+ # retrieve input_ids and inputs_embeds
915
+ if input_ids is not None and inputs_embeds is not None:
916
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
917
+ elif input_ids is not None:
918
+ input_shape = input_ids.size()
919
+ input_ids = input_ids.view(-1, input_shape[-1])
920
+ elif inputs_embeds is not None:
921
+ input_shape = inputs_embeds.size()[:-1]
922
+ else:
923
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
924
+
925
+ # past_key_values_length
926
+ past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
927
+
928
+ if inputs_embeds is None:
929
+ inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
930
+
931
+ attention_mask = _prepare_4d_causal_attention_mask(
932
+ attention_mask, input_shape, inputs_embeds, past_key_values_length
933
+ )
934
+
935
+ # expand encoder attention mask
936
+ if encoder_hidden_states is not None and encoder_attention_mask is not None:
937
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
938
+ encoder_attention_mask = _prepare_4d_attention_mask(
939
+ encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
940
+ )
941
+
942
+ # embed positions
943
+ positions = self.embed_positions(input_shape, past_key_values_length)
944
+
945
+ hidden_states = inputs_embeds + positions
946
+
947
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
948
+
949
+ if self.gradient_checkpointing and self.training:
950
+ if use_cache:
951
+ logger.warning(
952
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
953
+ )
954
+ use_cache = False
955
+ # decoder layers
956
+ all_hidden_states = () if output_hidden_states else None
957
+ all_self_attns = () if output_attentions else None
958
+ all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
959
+ next_decoder_cache = () if use_cache else None
960
+
961
+ # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
962
+ for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
963
+ if attn_mask is not None:
964
+ if attn_mask.size()[0] != len(self.layers):
965
+ raise ValueError(
966
+ f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
967
+ f" {head_mask.size()[0]}."
968
+ )
969
+ for idx, decoder_layer in enumerate(self.layers):
970
+ # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
971
+ if output_hidden_states:
972
+ all_hidden_states += (hidden_states,)
973
+ if self.training:
974
+ dropout_probability = torch.rand([])
975
+ if dropout_probability < self.layerdrop:
976
+ continue
977
+
978
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
979
+
980
+ if self.gradient_checkpointing and self.training:
981
+ layer_outputs = self._gradient_checkpointing_func(
982
+ decoder_layer.__call__,
983
+ hidden_states,
984
+ attention_mask,
985
+ encoder_hidden_states,
986
+ encoder_attention_mask,
987
+ head_mask[idx] if head_mask is not None else None,
988
+ cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
989
+ None,
990
+ output_attentions,
991
+ use_cache,
992
+ )
993
+ else:
994
+ layer_outputs = decoder_layer(
995
+ hidden_states,
996
+ attention_mask=attention_mask,
997
+ encoder_hidden_states=encoder_hidden_states,
998
+ encoder_attention_mask=encoder_attention_mask,
999
+ layer_head_mask=(head_mask[idx] if head_mask is not None else None),
1000
+ cross_attn_layer_head_mask=(
1001
+ cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
1002
+ ),
1003
+ past_key_value=past_key_value,
1004
+ output_attentions=output_attentions,
1005
+ use_cache=use_cache,
1006
+ )
1007
+ hidden_states = layer_outputs[0]
1008
+
1009
+ if use_cache:
1010
+ next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)
1011
+
1012
+ if output_attentions:
1013
+ all_self_attns += (layer_outputs[1],)
1014
+
1015
+ if encoder_hidden_states is not None:
1016
+ all_cross_attentions += (layer_outputs[2],)
1017
+
1018
+ # add final layer norm
1019
+ hidden_states = self.layer_norm(hidden_states)
1020
+
1021
+ # add hidden states from the last decoder layer
1022
+ if output_hidden_states:
1023
+ all_hidden_states += (hidden_states,)
1024
+
1025
+ next_cache = next_decoder_cache if use_cache else None
1026
+ if not return_dict:
1027
+ return tuple(
1028
+ v
1029
+ for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
1030
+ if v is not None
1031
+ )
1032
+ return BaseModelOutputWithPastAndCrossAttentions(
1033
+ last_hidden_state=hidden_states,
1034
+ past_key_values=next_cache,
1035
+ hidden_states=all_hidden_states,
1036
+ attentions=all_self_attns,
1037
+ cross_attentions=all_cross_attentions,
1038
+ )
1039
+
1040
+
1041
+ @add_start_docstrings(
1042
+ "The bare Blenderbot Model outputting raw hidden-states without any specific head on top.",
1043
+ BLENDERBOT_START_DOCSTRING,
1044
+ )
1045
+ class BlenderbotModel(BlenderbotPreTrainedModel):
1046
+ _tied_weights_keys = ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight"]
1047
+
1048
+ def __init__(self, config: BlenderbotConfig):
1049
+ super().__init__(config)
1050
+
1051
+ padding_idx, vocab_size = config.pad_token_id, config.vocab_size
1052
+ self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx)
1053
+
1054
+ self.encoder = BlenderbotEncoder(config, self.shared)
1055
+ self.decoder = BlenderbotDecoder(config, self.shared)
1056
+
1057
+ # Initialize weights and apply final processing
1058
+ self.post_init()
1059
+
1060
+ @classmethod
1061
+ def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs):
1062
+ if pretrained_model_name_or_path == "facebook/blenderbot-90M":
1063
+ warnings.warn(
1064
+ "The checkpoint `facebook/blenderbot-90M` is deprecated. In the future, please use the identical"
1065
+ " checkpoint `facebook/small_blenderbot-90M` with"
1066
+ " `BlenderbotSmallModel.from_pretrained('facebook/small_blenderbot-90M')` instead.",
1067
+ FutureWarning,
1068
+ )
1069
+ return BlenderbotSmallModel.from_pretrained(pretrained_model_name_or_path)
1070
+
1071
+ return super(BlenderbotModel, cls).from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
1072
+
1073
+ def get_input_embeddings(self):
1074
+ return self.shared
1075
+
1076
+ def set_input_embeddings(self, value):
1077
+ self.shared = value
1078
+ self.encoder.embed_tokens = self.shared
1079
+ self.decoder.embed_tokens = self.shared
1080
+
1081
+ def get_encoder(self):
1082
+ return self.encoder
1083
+
1084
+ def get_decoder(self):
1085
+ return self.decoder
1086
+
1087
+ @add_start_docstrings_to_model_forward(BLENDERBOT_INPUTS_DOCSTRING)
1088
+ @replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC)
1089
+ def forward(
1090
+ self,
1091
+ input_ids: Optional[torch.LongTensor] = None,
1092
+ attention_mask: Optional[torch.Tensor] = None,
1093
+ decoder_input_ids: Optional[torch.LongTensor] = None,
1094
+ decoder_attention_mask: Optional[torch.LongTensor] = None,
1095
+ head_mask: Optional[torch.Tensor] = None,
1096
+ decoder_head_mask: Optional[torch.Tensor] = None,
1097
+ cross_attn_head_mask: Optional[torch.Tensor] = None,
1098
+ encoder_outputs: Optional[Union[Tuple, BaseModelOutput]] = None,
1099
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1100
+ inputs_embeds: Optional[torch.Tensor] = None,
1101
+ decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
1102
+ use_cache: Optional[bool] = None,
1103
+ output_attentions: Optional[bool] = None,
1104
+ output_hidden_states: Optional[bool] = None,
1105
+ return_dict: Optional[bool] = None,
1106
+ ) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]:
1107
+ r"""
1108
+ Returns:
1109
+
1110
+ Example:
1111
+
1112
+ ```python
1113
+ >>> from transformers import AutoTokenizer, BlenderbotModel
1114
+
1115
+ >>> model = BlenderbotModel.from_pretrained("facebook/blenderbot-400M-distill")
1116
+ >>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
1117
+
1118
+ >>> inputs = tokenizer("Studies have been shown that owning a dog is good for you", return_tensors="pt")
1119
+ >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1
1120
+ >>> outputs = model(input_ids=inputs.input_ids, decoder_input_ids=decoder_input_ids)
1121
+
1122
+ >>> last_hidden_states = outputs.last_hidden_state
1123
+ >>> list(last_hidden_states.shape)
1124
+ [1, 6, 1280]
1125
+ ```"""
1126
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1127
+ output_hidden_states = (
1128
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1129
+ )
1130
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1131
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1132
+
1133
+ if encoder_outputs is None:
1134
+ encoder_outputs = self.encoder(
1135
+ input_ids=input_ids,
1136
+ attention_mask=attention_mask,
1137
+ head_mask=head_mask,
1138
+ inputs_embeds=inputs_embeds,
1139
+ output_attentions=output_attentions,
1140
+ output_hidden_states=output_hidden_states,
1141
+ return_dict=return_dict,
1142
+ )
1143
+ # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
1144
+ elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
1145
+ encoder_outputs = BaseModelOutput(
1146
+ last_hidden_state=encoder_outputs[0],
1147
+ hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
1148
+ attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
1149
+ )
1150
+
1151
+ # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
1152
+ decoder_outputs = self.decoder(
1153
+ input_ids=decoder_input_ids,
1154
+ attention_mask=decoder_attention_mask,
1155
+ encoder_hidden_states=encoder_outputs[0],
1156
+ encoder_attention_mask=attention_mask,
1157
+ head_mask=decoder_head_mask,
1158
+ cross_attn_head_mask=cross_attn_head_mask,
1159
+ past_key_values=past_key_values,
1160
+ inputs_embeds=decoder_inputs_embeds,
1161
+ use_cache=use_cache,
1162
+ output_attentions=output_attentions,
1163
+ output_hidden_states=output_hidden_states,
1164
+ return_dict=return_dict,
1165
+ )
1166
+
1167
+ if not return_dict:
1168
+ return decoder_outputs + encoder_outputs
1169
+
1170
+ return Seq2SeqModelOutput(
1171
+ last_hidden_state=decoder_outputs.last_hidden_state,
1172
+ past_key_values=decoder_outputs.past_key_values,
1173
+ decoder_hidden_states=decoder_outputs.hidden_states,
1174
+ decoder_attentions=decoder_outputs.attentions,
1175
+ cross_attentions=decoder_outputs.cross_attentions,
1176
+ encoder_last_hidden_state=encoder_outputs.last_hidden_state,
1177
+ encoder_hidden_states=encoder_outputs.hidden_states,
1178
+ encoder_attentions=encoder_outputs.attentions,
1179
+ )
1180
+
1181
+
1182
+ @add_start_docstrings(
1183
+ "The Blenderbot Model with a language modeling head. Can be used for summarization.", BLENDERBOT_START_DOCSTRING
1184
+ )
1185
+ class BlenderbotForConditionalGeneration(BlenderbotPreTrainedModel):
1186
+ base_model_prefix = "model"
1187
+ _keys_to_ignore_on_load_missing = ["final_logits_bias"]
1188
+ _tied_weights_keys = ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "lm_head.weight"]
1189
+
1190
+ def __init__(self, config: BlenderbotConfig):
1191
+ super().__init__(config)
1192
+ self.model = BlenderbotModel(config)
1193
+ self.register_buffer("final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings)))
1194
+ self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False)
1195
+
1196
+ # Initialize weights and apply final processing
1197
+ self.post_init()
1198
+
1199
+ @classmethod
1200
+ def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs):
1201
+ if pretrained_model_name_or_path == "facebook/blenderbot-90M":
1202
+ warnings.warn(
1203
+ "The checkpoint `facebook/blenderbot-90M` is deprecated. In the future, please use the identical"
1204
+ " checkpoint `facebook/small_blenderbot-90M` with"
1205
+ " `BlenderbotSmallForConditionalGeneration.from_pretrained('facebook/small_blenderbot-90M')` instead.",
1206
+ FutureWarning,
1207
+ )
1208
+ return BlenderbotSmallForConditionalGeneration.from_pretrained(pretrained_model_name_or_path)
1209
+
1210
+ return super(BlenderbotForConditionalGeneration, cls).from_pretrained(
1211
+ pretrained_model_name_or_path, *model_args, **kwargs
1212
+ )
1213
+
1214
+ def get_encoder(self):
1215
+ return self.model.get_encoder()
1216
+
1217
+ def get_decoder(self):
1218
+ return self.model.get_decoder()
1219
+
1220
+ def resize_token_embeddings(self, new_num_tokens: int, pad_to_multiple_of: Optional[int] = None) -> nn.Embedding:
1221
+ new_embeddings = super().resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
1222
+ self._resize_final_logits_bias(new_embeddings.weight.shape[0])
1223
+ return new_embeddings
1224
+
1225
+ def _resize_final_logits_bias(self, new_num_tokens: int) -> None:
1226
+ old_num_tokens = self.final_logits_bias.shape[-1]
1227
+ if new_num_tokens <= old_num_tokens:
1228
+ new_bias = self.final_logits_bias[:, :new_num_tokens]
1229
+ else:
1230
+ extra_bias = torch.zeros((1, new_num_tokens - old_num_tokens), device=self.final_logits_bias.device)
1231
+ new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1)
1232
+ self.register_buffer("final_logits_bias", new_bias)
1233
+
1234
+ def get_output_embeddings(self):
1235
+ return self.lm_head
1236
+
1237
+ def set_output_embeddings(self, new_embeddings):
1238
+ self.lm_head = new_embeddings
1239
+
1240
+ @add_start_docstrings_to_model_forward(BLENDERBOT_INPUTS_DOCSTRING)
1241
+ @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
1242
+ @add_end_docstrings(BLENDERBOT_GENERATION_EXAMPLE)
1243
+ def forward(
1244
+ self,
1245
+ input_ids: Optional[torch.LongTensor] = None,
1246
+ attention_mask: Optional[torch.Tensor] = None,
1247
+ decoder_input_ids: Optional[torch.LongTensor] = None,
1248
+ decoder_attention_mask: Optional[torch.LongTensor] = None,
1249
+ head_mask: Optional[torch.Tensor] = None,
1250
+ decoder_head_mask: Optional[torch.Tensor] = None,
1251
+ cross_attn_head_mask: Optional[torch.Tensor] = None,
1252
+ encoder_outputs: Optional[Union[Tuple, BaseModelOutput]] = None,
1253
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1254
+ inputs_embeds: Optional[torch.Tensor] = None,
1255
+ decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
1256
+ labels: Optional[torch.LongTensor] = None,
1257
+ use_cache: Optional[bool] = None,
1258
+ output_attentions: Optional[bool] = None,
1259
+ output_hidden_states: Optional[bool] = None,
1260
+ return_dict: Optional[bool] = None,
1261
+ ) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
1262
+ r"""
1263
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1264
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1265
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1266
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1267
+
1268
+ Returns:
1269
+ """
1270
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1271
+
1272
+ if labels is not None:
1273
+ if use_cache:
1274
+ logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.")
1275
+ use_cache = False
1276
+ if decoder_input_ids is None and decoder_inputs_embeds is None:
1277
+ decoder_input_ids = shift_tokens_right(
1278
+ labels, self.config.pad_token_id, self.config.decoder_start_token_id
1279
+ )
1280
+
1281
+ outputs = self.model(
1282
+ input_ids,
1283
+ attention_mask=attention_mask,
1284
+ decoder_input_ids=decoder_input_ids,
1285
+ encoder_outputs=encoder_outputs,
1286
+ decoder_attention_mask=decoder_attention_mask,
1287
+ head_mask=head_mask,
1288
+ decoder_head_mask=decoder_head_mask,
1289
+ cross_attn_head_mask=cross_attn_head_mask,
1290
+ past_key_values=past_key_values,
1291
+ inputs_embeds=inputs_embeds,
1292
+ decoder_inputs_embeds=decoder_inputs_embeds,
1293
+ use_cache=use_cache,
1294
+ output_attentions=output_attentions,
1295
+ output_hidden_states=output_hidden_states,
1296
+ return_dict=return_dict,
1297
+ )
1298
+ lm_logits = self.lm_head(outputs[0]) + self.final_logits_bias
1299
+
1300
+ masked_lm_loss = None
1301
+ if labels is not None:
1302
+ loss_fct = CrossEntropyLoss()
1303
+ masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
1304
+
1305
+ if not return_dict:
1306
+ output = (lm_logits,) + outputs[1:]
1307
+ return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
1308
+
1309
+ return Seq2SeqLMOutput(
1310
+ loss=masked_lm_loss,
1311
+ logits=lm_logits,
1312
+ past_key_values=outputs.past_key_values,
1313
+ decoder_hidden_states=outputs.decoder_hidden_states,
1314
+ decoder_attentions=outputs.decoder_attentions,
1315
+ cross_attentions=outputs.cross_attentions,
1316
+ encoder_last_hidden_state=outputs.encoder_last_hidden_state,
1317
+ encoder_hidden_states=outputs.encoder_hidden_states,
1318
+ encoder_attentions=outputs.encoder_attentions,
1319
+ )
1320
+
1321
+ def prepare_inputs_for_generation(
1322
+ self,
1323
+ decoder_input_ids,
1324
+ past_key_values=None,
1325
+ attention_mask=None,
1326
+ head_mask=None,
1327
+ decoder_head_mask=None,
1328
+ cross_attn_head_mask=None,
1329
+ use_cache=None,
1330
+ encoder_outputs=None,
1331
+ **kwargs,
1332
+ ):
1333
+ # cut decoder_input_ids if past is used
1334
+ if past_key_values is not None:
1335
+ past_length = past_key_values[0][0].shape[2]
1336
+
1337
+ # Some generation methods already pass only the last input ID
1338
+ if decoder_input_ids.shape[1] > past_length:
1339
+ remove_prefix_length = past_length
1340
+ else:
1341
+ # Default to old behavior: keep only final ID
1342
+ remove_prefix_length = decoder_input_ids.shape[1] - 1
1343
+
1344
+ decoder_input_ids = decoder_input_ids[:, remove_prefix_length:]
1345
+
1346
+ return {
1347
+ "input_ids": None, # encoder_outputs is defined. input_ids not needed
1348
+ "encoder_outputs": encoder_outputs,
1349
+ "past_key_values": past_key_values,
1350
+ "decoder_input_ids": decoder_input_ids,
1351
+ "attention_mask": attention_mask,
1352
+ "head_mask": head_mask,
1353
+ "decoder_head_mask": decoder_head_mask,
1354
+ "cross_attn_head_mask": cross_attn_head_mask,
1355
+ "use_cache": use_cache, # change this to avoid caching (presumably for debugging)
1356
+ }
1357
+
1358
+ @staticmethod
1359
+ def _reorder_cache(past_key_values, beam_idx):
1360
+ reordered_past = ()
1361
+ for layer_past in past_key_values:
1362
+ # cached cross_attention states don't have to be reordered -> they are always the same
1363
+ reordered_past += (
1364
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2])
1365
+ + layer_past[2:],
1366
+ )
1367
+ return reordered_past
1368
+
1369
+
1370
+ # Copied from transformers.models.bart.modeling_bart.BartDecoderWrapper with Bart->Blenderbot
1371
+ class BlenderbotDecoderWrapper(BlenderbotPreTrainedModel):
1372
+ """
1373
+ This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is
1374
+ used in combination with the [`EncoderDecoderModel`] framework.
1375
+ """
1376
+
1377
+ def __init__(self, config):
1378
+ super().__init__(config)
1379
+ self.decoder = BlenderbotDecoder(config)
1380
+
1381
+ def forward(self, *args, **kwargs):
1382
+ return self.decoder(*args, **kwargs)
1383
+
1384
+
1385
+ # Copied from transformers.models.bart.modeling_bart.BartForCausalLM with Bart->Blenderbot, facebook/bart-base->facebook/blenderbot-400M-distill
1386
+ class BlenderbotForCausalLM(BlenderbotPreTrainedModel):
1387
+ _tied_weights_keys = ["lm_head.weight"]
1388
+
1389
+ def __init__(self, config):
1390
+ config = copy.deepcopy(config)
1391
+ config.is_decoder = True
1392
+ config.is_encoder_decoder = False
1393
+ super().__init__(config)
1394
+ self.model = BlenderbotDecoderWrapper(config)
1395
+
1396
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1397
+
1398
+ # Initialize weights and apply final processing
1399
+ self.post_init()
1400
+
1401
+ def get_input_embeddings(self):
1402
+ return self.model.decoder.embed_tokens
1403
+
1404
+ def set_input_embeddings(self, value):
1405
+ self.model.decoder.embed_tokens = value
1406
+
1407
+ def get_output_embeddings(self):
1408
+ return self.lm_head
1409
+
1410
+ def set_output_embeddings(self, new_embeddings):
1411
+ self.lm_head = new_embeddings
1412
+
1413
+ def set_decoder(self, decoder):
1414
+ self.model.decoder = decoder
1415
+
1416
+ def get_decoder(self):
1417
+ return self.model.decoder
1418
+
1419
+ @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
1420
+ def forward(
1421
+ self,
1422
+ input_ids: torch.LongTensor = None,
1423
+ attention_mask: Optional[torch.Tensor] = None,
1424
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
1425
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
1426
+ head_mask: Optional[torch.Tensor] = None,
1427
+ cross_attn_head_mask: Optional[torch.Tensor] = None,
1428
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1429
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1430
+ labels: Optional[torch.LongTensor] = None,
1431
+ use_cache: Optional[bool] = None,
1432
+ output_attentions: Optional[bool] = None,
1433
+ output_hidden_states: Optional[bool] = None,
1434
+ return_dict: Optional[bool] = None,
1435
+ ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
1436
+ r"""
1437
+ Args:
1438
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
1439
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
1440
+ provide it.
1441
+
1442
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1443
+ [`PreTrainedTokenizer.__call__`] for details.
1444
+
1445
+ [What are input IDs?](../glossary#input-ids)
1446
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
1447
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
1448
+
1449
+ - 1 for tokens that are **not masked**,
1450
+ - 0 for tokens that are **masked**.
1451
+
1452
+ [What are attention masks?](../glossary#attention-mask)
1453
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1454
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
1455
+ if the model is configured as a decoder.
1456
+ encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
1457
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used
1458
+ in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
1459
+ head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
1460
+ Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
1461
+
1462
+ - 1 indicates the head is **not masked**,
1463
+ - 0 indicates the head is **masked**.
1464
+
1465
+ cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
1466
+ Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
1467
+
1468
+ - 1 indicates the head is **not masked**,
1469
+ - 0 indicates the head is **masked**.
1470
+
1471
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
1472
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
1473
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
1474
+ shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional
1475
+ tensors are only required when the model is used as a decoder in a Sequence to Sequence model.
1476
+
1477
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
1478
+ cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
1479
+
1480
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
1481
+ that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
1482
+ all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
1483
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1484
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1485
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1486
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1487
+ use_cache (`bool`, *optional*):
1488
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
1489
+ (see `past_key_values`).
1490
+
1491
+ - 1 for tokens that are **not masked**,
1492
+ - 0 for tokens that are **masked**.
1493
+ output_attentions (`bool`, *optional*):
1494
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
1495
+ returned tensors for more detail.
1496
+ output_hidden_states (`bool`, *optional*):
1497
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
1498
+ for more detail.
1499
+ return_dict (`bool`, *optional*):
1500
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
1501
+
1502
+ Returns:
1503
+
1504
+ Example:
1505
+
1506
+ ```python
1507
+ >>> from transformers import AutoTokenizer, BlenderbotForCausalLM
1508
+
1509
+ >>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
1510
+ >>> model = BlenderbotForCausalLM.from_pretrained("facebook/blenderbot-400M-distill", add_cross_attention=False)
1511
+ >>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder."
1512
+ >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
1513
+ >>> outputs = model(**inputs)
1514
+
1515
+ >>> logits = outputs.logits
1516
+ >>> expected_shape = [1, inputs.input_ids.shape[-1], model.config.vocab_size]
1517
+ >>> list(logits.shape) == expected_shape
1518
+ True
1519
+ ```"""
1520
+
1521
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1522
+ output_hidden_states = (
1523
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1524
+ )
1525
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1526
+
1527
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1528
+ outputs = self.model.decoder(
1529
+ input_ids=input_ids,
1530
+ attention_mask=attention_mask,
1531
+ encoder_hidden_states=encoder_hidden_states,
1532
+ encoder_attention_mask=encoder_attention_mask,
1533
+ head_mask=head_mask,
1534
+ cross_attn_head_mask=cross_attn_head_mask,
1535
+ past_key_values=past_key_values,
1536
+ inputs_embeds=inputs_embeds,
1537
+ use_cache=use_cache,
1538
+ output_attentions=output_attentions,
1539
+ output_hidden_states=output_hidden_states,
1540
+ return_dict=return_dict,
1541
+ )
1542
+
1543
+ logits = self.lm_head(outputs[0])
1544
+
1545
+ loss = None
1546
+ if labels is not None:
1547
+ labels = labels.to(logits.device)
1548
+ loss_fct = CrossEntropyLoss()
1549
+ loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
1550
+
1551
+ if not return_dict:
1552
+ output = (logits,) + outputs[1:]
1553
+ return (loss,) + output if loss is not None else output
1554
+
1555
+ return CausalLMOutputWithCrossAttentions(
1556
+ loss=loss,
1557
+ logits=logits,
1558
+ past_key_values=outputs.past_key_values,
1559
+ hidden_states=outputs.hidden_states,
1560
+ attentions=outputs.attentions,
1561
+ cross_attentions=outputs.cross_attentions,
1562
+ )
1563
+
1564
+ def prepare_inputs_for_generation(
1565
+ self, input_ids, past_key_values=None, attention_mask=None, use_cache=None, **kwargs
1566
+ ):
1567
+ # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
1568
+ if attention_mask is None:
1569
+ attention_mask = input_ids.new_ones(input_ids.shape)
1570
+
1571
+ if past_key_values:
1572
+ past_length = past_key_values[0][0].shape[2]
1573
+
1574
+ # Some generation methods already pass only the last input ID
1575
+ if input_ids.shape[1] > past_length:
1576
+ remove_prefix_length = past_length
1577
+ else:
1578
+ # Default to old behavior: keep only final ID
1579
+ remove_prefix_length = input_ids.shape[1] - 1
1580
+
1581
+ input_ids = input_ids[:, remove_prefix_length:]
1582
+ # first step, decoder_cached_states are empty
1583
+ return {
1584
+ "input_ids": input_ids, # encoder_outputs is defined. input_ids not needed
1585
+ "attention_mask": attention_mask,
1586
+ "past_key_values": past_key_values,
1587
+ "use_cache": use_cache,
1588
+ }
1589
+
1590
+ @staticmethod
1591
+ def _reorder_cache(past_key_values, beam_idx):
1592
+ reordered_past = ()
1593
+ for layer_past in past_key_values:
1594
+ reordered_past += (
1595
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1596
+ )
1597
+ return reordered_past
llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/modeling_flax_blenderbot.py ADDED
@@ -0,0 +1,1505 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2021 The Fairseq Authors and The Google Flax Team Authors And The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ Flax Blenderbot model."""
16
+
17
+ import math
18
+ import random
19
+ from functools import partial
20
+ from typing import Callable, Optional, Tuple
21
+
22
+ import flax.linen as nn
23
+ import jax
24
+ import jax.numpy as jnp
25
+ from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
26
+ from flax.linen import combine_masks, make_causal_mask
27
+ from flax.linen.attention import dot_product_attention_weights
28
+ from flax.traverse_util import flatten_dict, unflatten_dict
29
+ from jax import lax
30
+ from jax.random import PRNGKey
31
+
32
+ from ...modeling_flax_outputs import (
33
+ FlaxBaseModelOutput,
34
+ FlaxBaseModelOutputWithPastAndCrossAttentions,
35
+ FlaxCausalLMOutputWithCrossAttentions,
36
+ FlaxSeq2SeqLMOutput,
37
+ FlaxSeq2SeqModelOutput,
38
+ )
39
+ from ...modeling_flax_utils import (
40
+ ACT2FN,
41
+ FlaxPreTrainedModel,
42
+ append_call_sample_docstring,
43
+ append_replace_return_docstrings,
44
+ overwrite_call_docstring,
45
+ )
46
+ from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
47
+ from .configuration_blenderbot import BlenderbotConfig
48
+
49
+
50
+ logger = logging.get_logger(__name__)
51
+
52
+ _CONFIG_FOR_DOC = "BlenderbotConfig"
53
+ _CHECKPOINT_FOR_DOC = "facebook/blenderbot-400M-distill"
54
+
55
+
56
+ BLENDERBOT_START_DOCSTRING = r"""
57
+ This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
58
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
59
+ etc.)
60
+
61
+ This model is also a Flax Linen
62
+ [flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a
63
+ regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
64
+
65
+ Finally, this model supports inherent JAX features such as:
66
+
67
+ - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
68
+ - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
69
+ - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
70
+ - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
71
+
72
+ Parameters:
73
+ config ([`BlenderbotConfig`]): Model configuration class with all the parameters of the model.
74
+ Initializing with a config file does not load the weights associated with the model, only the
75
+ configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
76
+ """
77
+
78
+ BLENDERBOT_INPUTS_DOCSTRING = r"""
79
+ Args:
80
+ input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):
81
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
82
+ it.
83
+
84
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
85
+ [`PreTrainedTokenizer.__call__`] for details.
86
+
87
+ [What are input IDs?](../glossary#input-ids)
88
+ attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
89
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
90
+
91
+ - 1 for tokens that are **not masked**,
92
+ - 0 for tokens that are **masked**.
93
+
94
+ [What are attention masks?](../glossary#attention-mask)
95
+ decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*):
96
+ Indices of decoder input sequence tokens in the vocabulary.
97
+
98
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
99
+ [`PreTrainedTokenizer.__call__`] for details.
100
+
101
+ [What are decoder input IDs?](../glossary#decoder-input-ids)
102
+
103
+ For translation and summarization training, `decoder_input_ids` should be provided. If no
104
+ `decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right
105
+ for denoising pre-training following the paper.
106
+ decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*):
107
+ Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
108
+ be used by default.
109
+
110
+ If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the
111
+ paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy.
112
+ position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
113
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
114
+ config.max_position_embeddings - 1]`.
115
+ decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
116
+ Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
117
+ range `[0, config.max_position_embeddings - 1]`.
118
+ output_attentions (`bool`, *optional*):
119
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
120
+ tensors for more detail.
121
+ output_hidden_states (`bool`, *optional*):
122
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
123
+ more detail.
124
+ return_dict (`bool`, *optional*):
125
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
126
+ """
127
+
128
+
129
+ BLENDERBOT_ENCODE_INPUTS_DOCSTRING = r"""
130
+ Args:
131
+ input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):
132
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
133
+ it.
134
+
135
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
136
+ [`PreTrainedTokenizer.__call__`] for details.
137
+
138
+ [What are input IDs?](../glossary#input-ids)
139
+ attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
140
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
141
+
142
+ - 1 for tokens that are **not masked**,
143
+ - 0 for tokens that are **masked**.
144
+
145
+ [What are attention masks?](../glossary#attention-mask)
146
+ position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
147
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
148
+ config.max_position_embeddings - 1]`.
149
+ output_attentions (`bool`, *optional*):
150
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
151
+ tensors for more detail.
152
+ output_hidden_states (`bool`, *optional*):
153
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
154
+ more detail.
155
+ return_dict (`bool`, *optional*):
156
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
157
+ """
158
+
159
+ BLENDERBOT_DECODE_INPUTS_DOCSTRING = r"""
160
+ Args:
161
+ decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`):
162
+ Indices of decoder input sequence tokens in the vocabulary.
163
+
164
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
165
+ [`PreTrainedTokenizer.__call__`] for details.
166
+
167
+ [What are decoder input IDs?](../glossary#decoder-input-ids)
168
+
169
+ For translation and summarization training, `decoder_input_ids` should be provided. If no
170
+ `decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right
171
+ for denoising pre-training following the paper.
172
+ encoder_outputs (`tuple(tuple(jnp.ndarray)`):
173
+ Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
174
+ `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
175
+ hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
176
+ encoder_attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
177
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
178
+
179
+ - 1 for tokens that are **not masked**,
180
+ - 0 for tokens that are **masked**.
181
+
182
+ [What are attention masks?](../glossary#attention-mask)
183
+ decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*):
184
+ Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
185
+ be used by default.
186
+
187
+ If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the
188
+ paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy.
189
+ decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
190
+ Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
191
+ range `[0, config.max_position_embeddings - 1]`.
192
+ past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`):
193
+ Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast
194
+ auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*.
195
+ output_attentions (`bool`, *optional*):
196
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
197
+ tensors for more detail.
198
+ output_hidden_states (`bool`, *optional*):
199
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
200
+ more detail.
201
+ return_dict (`bool`, *optional*):
202
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
203
+ """
204
+
205
+
206
+ # Copied from transformers.models.bart.modeling_flax_bart.shift_tokens_right
207
+ def shift_tokens_right(input_ids: jnp.ndarray, pad_token_id: int, decoder_start_token_id: int) -> jnp.ndarray:
208
+ """
209
+ Shift input ids one token to the right.
210
+ """
211
+ shifted_input_ids = jnp.zeros_like(input_ids)
212
+ shifted_input_ids = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1])
213
+ shifted_input_ids = shifted_input_ids.at[:, 0].set(decoder_start_token_id)
214
+
215
+ shifted_input_ids = jnp.where(shifted_input_ids == -100, pad_token_id, shifted_input_ids)
216
+ return shifted_input_ids
217
+
218
+
219
+ # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartAttention with Bart->Blenderbot
220
+ class FlaxBlenderbotAttention(nn.Module):
221
+ config: BlenderbotConfig
222
+ embed_dim: int
223
+ num_heads: int
224
+ dropout: float = 0.0
225
+ causal: bool = False
226
+ bias: bool = True
227
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
228
+
229
+ def setup(self) -> None:
230
+ self.head_dim = self.embed_dim // self.num_heads
231
+ if self.head_dim * self.num_heads != self.embed_dim:
232
+ raise ValueError(
233
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
234
+ f" and `num_heads`: {self.num_heads})."
235
+ )
236
+
237
+ dense = partial(
238
+ nn.Dense,
239
+ self.embed_dim,
240
+ use_bias=self.bias,
241
+ dtype=self.dtype,
242
+ kernel_init=jax.nn.initializers.normal(self.config.init_std),
243
+ )
244
+
245
+ self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense()
246
+ self.out_proj = dense()
247
+
248
+ self.dropout_layer = nn.Dropout(rate=self.dropout)
249
+
250
+ if self.causal:
251
+ self.causal_mask = make_causal_mask(
252
+ jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool"
253
+ )
254
+
255
+ def _split_heads(self, hidden_states):
256
+ return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim))
257
+
258
+ def _merge_heads(self, hidden_states):
259
+ return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,))
260
+
261
+ @nn.compact
262
+ def _concatenate_to_cache(self, key, value, query, attention_mask):
263
+ """
264
+ This function takes projected key, value states from a single input token and concatenates the states to cached
265
+ states from previous steps. This function is slighly adapted from the official Flax repository:
266
+ https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252
267
+ """
268
+ # detect if we're initializing by absence of existing cache data.
269
+ is_initialized = self.has_variable("cache", "cached_key")
270
+ cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype)
271
+ cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype)
272
+ cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))
273
+
274
+ if is_initialized:
275
+ *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
276
+ # update key, value caches with our new 1d spatial slices
277
+ cur_index = cache_index.value
278
+ indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
279
+ key = lax.dynamic_update_slice(cached_key.value, key, indices)
280
+ value = lax.dynamic_update_slice(cached_value.value, value, indices)
281
+ cached_key.value = key
282
+ cached_value.value = value
283
+ num_updated_cache_vectors = query.shape[1]
284
+ cache_index.value = cache_index.value + num_updated_cache_vectors
285
+ # causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements.
286
+ pad_mask = jnp.broadcast_to(
287
+ jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
288
+ tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
289
+ )
290
+ attention_mask = combine_masks(pad_mask, attention_mask)
291
+ return key, value, attention_mask
292
+
293
+ def __call__(
294
+ self,
295
+ hidden_states: jnp.ndarray,
296
+ key_value_states: Optional[jnp.ndarray] = None,
297
+ attention_mask: Optional[jnp.ndarray] = None,
298
+ init_cache: bool = False,
299
+ deterministic: bool = True,
300
+ ) -> Tuple[jnp.ndarray]:
301
+ """Input shape: Batch x Time x Channel"""
302
+
303
+ # if key_value_states are provided this layer is used as a cross-attention layer
304
+ # for the decoder
305
+ is_cross_attention = key_value_states is not None
306
+ batch_size = hidden_states.shape[0]
307
+
308
+ # get query proj
309
+ query_states = self.q_proj(hidden_states)
310
+ # get key, value proj
311
+ if is_cross_attention:
312
+ # cross_attentions
313
+ key_states = self.k_proj(key_value_states)
314
+ value_states = self.v_proj(key_value_states)
315
+ else:
316
+ # self_attention
317
+ key_states = self.k_proj(hidden_states)
318
+ value_states = self.v_proj(hidden_states)
319
+
320
+ query_states = self._split_heads(query_states)
321
+ key_states = self._split_heads(key_states)
322
+ value_states = self._split_heads(value_states)
323
+
324
+ # handle cache prepare causal attention mask
325
+ if self.causal:
326
+ query_length, key_length = query_states.shape[1], key_states.shape[1]
327
+ if self.has_variable("cache", "cached_key"):
328
+ mask_shift = self.variables["cache"]["cache_index"]
329
+ max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
330
+ causal_mask = lax.dynamic_slice(
331
+ self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length)
332
+ )
333
+ else:
334
+ causal_mask = self.causal_mask[:, :, :query_length, :key_length]
335
+ causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:])
336
+
337
+ # combine masks if needed
338
+ if attention_mask is not None and self.causal:
339
+ attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape)
340
+ attention_mask = combine_masks(attention_mask, causal_mask)
341
+ elif self.causal:
342
+ attention_mask = causal_mask
343
+ elif attention_mask is not None:
344
+ attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
345
+
346
+ # During fast autoregressive decoding, we feed one position at a time,
347
+ # and cache the keys and values step by step.
348
+ if self.causal and (self.has_variable("cache", "cached_key") or init_cache):
349
+ key_states, value_states, attention_mask = self._concatenate_to_cache(
350
+ key_states, value_states, query_states, attention_mask
351
+ )
352
+
353
+ # Convert the boolean attention mask to an attention bias.
354
+ if attention_mask is not None:
355
+ # attention mask in the form of attention bias
356
+ attention_bias = lax.select(
357
+ attention_mask > 0,
358
+ jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
359
+ jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
360
+ )
361
+ else:
362
+ attention_bias = None
363
+
364
+ dropout_rng = None
365
+ if not deterministic and self.dropout > 0.0:
366
+ dropout_rng = self.make_rng("dropout")
367
+
368
+ attn_weights = dot_product_attention_weights(
369
+ query_states,
370
+ key_states,
371
+ bias=attention_bias,
372
+ dropout_rng=dropout_rng,
373
+ dropout_rate=self.dropout,
374
+ broadcast_dropout=True,
375
+ deterministic=deterministic,
376
+ dtype=self.dtype,
377
+ precision=None,
378
+ )
379
+
380
+ attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
381
+ attn_output = self._merge_heads(attn_output)
382
+ attn_output = self.out_proj(attn_output)
383
+
384
+ return attn_output, attn_weights
385
+
386
+
387
+ # Copied from transformers.models.mbart.modeling_flax_mbart.FlaxMBartEncoderLayer with MBart->Blenderbot
388
+ class FlaxBlenderbotEncoderLayer(nn.Module):
389
+ config: BlenderbotConfig
390
+ dtype: jnp.dtype = jnp.float32
391
+
392
+ def setup(self) -> None:
393
+ self.embed_dim = self.config.d_model
394
+ self.self_attn = FlaxBlenderbotAttention(
395
+ config=self.config,
396
+ embed_dim=self.embed_dim,
397
+ num_heads=self.config.encoder_attention_heads,
398
+ dropout=self.config.attention_dropout,
399
+ dtype=self.dtype,
400
+ )
401
+ self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
402
+ self.dropout_layer = nn.Dropout(rate=self.config.dropout)
403
+ self.activation_fn = ACT2FN[self.config.activation_function]
404
+ self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout)
405
+ self.fc1 = nn.Dense(
406
+ self.config.encoder_ffn_dim,
407
+ dtype=self.dtype,
408
+ kernel_init=jax.nn.initializers.normal(self.config.init_std),
409
+ )
410
+ self.fc2 = nn.Dense(
411
+ self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std)
412
+ )
413
+ self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
414
+
415
+ def __call__(
416
+ self,
417
+ hidden_states: jnp.ndarray,
418
+ attention_mask: jnp.ndarray,
419
+ output_attentions: bool = True,
420
+ deterministic: bool = True,
421
+ ) -> Tuple[jnp.ndarray]:
422
+ residual = hidden_states
423
+ hidden_states = self.self_attn_layer_norm(hidden_states)
424
+ hidden_states, attn_weights = self.self_attn(hidden_states=hidden_states, attention_mask=attention_mask)
425
+ hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
426
+ hidden_states = residual + hidden_states
427
+
428
+ residual = hidden_states
429
+ hidden_states = self.final_layer_norm(hidden_states)
430
+ hidden_states = self.activation_fn(self.fc1(hidden_states))
431
+ hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic)
432
+ hidden_states = self.fc2(hidden_states)
433
+ hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
434
+ hidden_states = residual + hidden_states
435
+
436
+ outputs = (hidden_states,)
437
+
438
+ if output_attentions:
439
+ outputs += (attn_weights,)
440
+
441
+ return outputs
442
+
443
+
444
+ # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartEncoderLayerCollection with Bart->Blenderbot
445
+ class FlaxBlenderbotEncoderLayerCollection(nn.Module):
446
+ config: BlenderbotConfig
447
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
448
+
449
+ def setup(self):
450
+ self.layers = [
451
+ FlaxBlenderbotEncoderLayer(self.config, name=str(i), dtype=self.dtype)
452
+ for i in range(self.config.encoder_layers)
453
+ ]
454
+ self.layerdrop = self.config.encoder_layerdrop
455
+
456
+ def __call__(
457
+ self,
458
+ hidden_states,
459
+ attention_mask,
460
+ deterministic: bool = True,
461
+ output_attentions: bool = False,
462
+ output_hidden_states: bool = False,
463
+ return_dict: bool = True,
464
+ ):
465
+ all_attentions = () if output_attentions else None
466
+ all_hidden_states = () if output_hidden_states else None
467
+
468
+ for encoder_layer in self.layers:
469
+ if output_hidden_states:
470
+ all_hidden_states = all_hidden_states + (hidden_states,)
471
+ # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
472
+ dropout_probability = random.uniform(0, 1)
473
+ if not deterministic and (dropout_probability < self.layerdrop): # skip the layer
474
+ layer_outputs = (None, None)
475
+ else:
476
+ layer_outputs = encoder_layer(
477
+ hidden_states,
478
+ attention_mask,
479
+ output_attentions,
480
+ deterministic,
481
+ )
482
+ hidden_states = layer_outputs[0]
483
+ if output_attentions:
484
+ all_attentions = all_attentions + (layer_outputs[1],)
485
+
486
+ if output_hidden_states:
487
+ all_hidden_states += (hidden_states,)
488
+
489
+ outputs = (hidden_states, all_hidden_states, all_attentions)
490
+
491
+ if not return_dict:
492
+ return tuple(v for v in outputs if v is not None)
493
+
494
+ return FlaxBaseModelOutput(
495
+ last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
496
+ )
497
+
498
+
499
+ # Copied from transformers.models.mbart.modeling_flax_mbart.FlaxMBartDecoderLayer with MBart->Blenderbot
500
+ class FlaxBlenderbotDecoderLayer(nn.Module):
501
+ config: BlenderbotConfig
502
+ dtype: jnp.dtype = jnp.float32
503
+
504
+ def setup(self) -> None:
505
+ self.embed_dim = self.config.d_model
506
+ self.self_attn = FlaxBlenderbotAttention(
507
+ config=self.config,
508
+ embed_dim=self.embed_dim,
509
+ num_heads=self.config.decoder_attention_heads,
510
+ dropout=self.config.attention_dropout,
511
+ causal=True,
512
+ dtype=self.dtype,
513
+ )
514
+ self.dropout_layer = nn.Dropout(rate=self.config.dropout)
515
+ self.activation_fn = ACT2FN[self.config.activation_function]
516
+ self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout)
517
+
518
+ self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
519
+ self.encoder_attn = FlaxBlenderbotAttention(
520
+ config=self.config,
521
+ embed_dim=self.embed_dim,
522
+ num_heads=self.config.decoder_attention_heads,
523
+ dropout=self.config.attention_dropout,
524
+ dtype=self.dtype,
525
+ )
526
+ self.encoder_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
527
+ self.fc1 = nn.Dense(
528
+ self.config.decoder_ffn_dim,
529
+ dtype=self.dtype,
530
+ kernel_init=jax.nn.initializers.normal(self.config.init_std),
531
+ )
532
+ self.fc2 = nn.Dense(
533
+ self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std)
534
+ )
535
+ self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
536
+
537
+ def __call__(
538
+ self,
539
+ hidden_states: jnp.ndarray,
540
+ attention_mask: jnp.ndarray,
541
+ encoder_hidden_states: Optional[jnp.ndarray] = None,
542
+ encoder_attention_mask: Optional[jnp.ndarray] = None,
543
+ init_cache: bool = False,
544
+ output_attentions: bool = True,
545
+ deterministic: bool = True,
546
+ ) -> Tuple[jnp.ndarray]:
547
+ residual = hidden_states
548
+ hidden_states = self.self_attn_layer_norm(hidden_states)
549
+
550
+ # Self Attention
551
+ hidden_states, self_attn_weights = self.self_attn(
552
+ hidden_states=hidden_states, attention_mask=attention_mask, init_cache=init_cache
553
+ )
554
+ hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
555
+ hidden_states = residual + hidden_states
556
+
557
+ # Cross-Attention Block
558
+ cross_attn_weights = None
559
+ if encoder_hidden_states is not None:
560
+ residual = hidden_states
561
+
562
+ hidden_states = self.encoder_attn_layer_norm(hidden_states)
563
+ hidden_states, cross_attn_weights = self.encoder_attn(
564
+ hidden_states=hidden_states,
565
+ key_value_states=encoder_hidden_states,
566
+ attention_mask=encoder_attention_mask,
567
+ )
568
+ hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
569
+ hidden_states = residual + hidden_states
570
+
571
+ # Fully Connected
572
+ residual = hidden_states
573
+ hidden_states = self.final_layer_norm(hidden_states)
574
+ hidden_states = self.activation_fn(self.fc1(hidden_states))
575
+ hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic)
576
+ hidden_states = self.fc2(hidden_states)
577
+ hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
578
+ hidden_states = residual + hidden_states
579
+
580
+ outputs = (hidden_states,)
581
+
582
+ if output_attentions:
583
+ outputs += (self_attn_weights, cross_attn_weights)
584
+
585
+ return outputs
586
+
587
+
588
+ # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartDecoderLayerCollection with Bart->Blenderbot
589
+ class FlaxBlenderbotDecoderLayerCollection(nn.Module):
590
+ config: BlenderbotConfig
591
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
592
+
593
+ def setup(self):
594
+ self.layers = [
595
+ FlaxBlenderbotDecoderLayer(self.config, name=str(i), dtype=self.dtype)
596
+ for i in range(self.config.decoder_layers)
597
+ ]
598
+ self.layerdrop = self.config.decoder_layerdrop
599
+
600
+ def __call__(
601
+ self,
602
+ hidden_states,
603
+ attention_mask,
604
+ encoder_hidden_states: Optional[jnp.ndarray] = None,
605
+ encoder_attention_mask: Optional[jnp.ndarray] = None,
606
+ deterministic: bool = True,
607
+ init_cache: bool = False,
608
+ output_attentions: bool = False,
609
+ output_hidden_states: bool = False,
610
+ return_dict: bool = True,
611
+ ):
612
+ # decoder layers
613
+ all_hidden_states = () if output_hidden_states else None
614
+ all_self_attns = () if output_attentions else None
615
+ all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
616
+
617
+ for decoder_layer in self.layers:
618
+ if output_hidden_states:
619
+ all_hidden_states += (hidden_states,)
620
+ # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
621
+ dropout_probability = random.uniform(0, 1)
622
+ if not deterministic and (dropout_probability < self.layerdrop):
623
+ layer_outputs = (None, None, None)
624
+ else:
625
+ layer_outputs = decoder_layer(
626
+ hidden_states,
627
+ attention_mask=attention_mask,
628
+ encoder_hidden_states=encoder_hidden_states,
629
+ encoder_attention_mask=encoder_attention_mask,
630
+ init_cache=init_cache,
631
+ output_attentions=output_attentions,
632
+ deterministic=deterministic,
633
+ )
634
+
635
+ hidden_states = layer_outputs[0]
636
+ if output_attentions:
637
+ all_self_attns += (layer_outputs[1],)
638
+
639
+ if encoder_hidden_states is not None:
640
+ all_cross_attentions += (layer_outputs[2],)
641
+
642
+ # add hidden states from the last decoder layer
643
+ if output_hidden_states:
644
+ all_hidden_states += (hidden_states,)
645
+
646
+ outputs = [hidden_states, all_hidden_states, all_self_attns, all_cross_attentions]
647
+
648
+ if not return_dict:
649
+ return tuple(v for v in outputs if v is not None)
650
+
651
+ return FlaxBaseModelOutputWithPastAndCrossAttentions(
652
+ last_hidden_state=hidden_states,
653
+ hidden_states=all_hidden_states,
654
+ attentions=all_self_attns,
655
+ cross_attentions=all_cross_attentions,
656
+ )
657
+
658
+
659
+ class FlaxBlenderbotEncoder(nn.Module):
660
+ config: BlenderbotConfig
661
+ embed_tokens: nn.Embed
662
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
663
+
664
+ def setup(self):
665
+ self.dropout_layer = nn.Dropout(rate=self.config.dropout)
666
+
667
+ embed_dim = self.config.d_model
668
+ self.padding_idx = self.config.pad_token_id
669
+ self.max_source_positions = self.config.max_position_embeddings
670
+ self.embed_scale = math.sqrt(embed_dim) if self.config.scale_embedding else 1.0
671
+
672
+ self.embed_positions = nn.Embed(
673
+ self.config.max_position_embeddings,
674
+ embed_dim,
675
+ embedding_init=jax.nn.initializers.normal(self.config.init_std),
676
+ )
677
+ self.layers = FlaxBlenderbotEncoderLayerCollection(self.config, self.dtype)
678
+ self.layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
679
+
680
+ def __call__(
681
+ self,
682
+ input_ids,
683
+ attention_mask,
684
+ position_ids,
685
+ output_attentions: bool = False,
686
+ output_hidden_states: bool = False,
687
+ return_dict: bool = True,
688
+ deterministic: bool = True,
689
+ ):
690
+ input_shape = input_ids.shape
691
+ input_ids = input_ids.reshape(-1, input_shape[-1])
692
+
693
+ inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
694
+
695
+ embed_pos = self.embed_positions(position_ids)
696
+
697
+ hidden_states = inputs_embeds + embed_pos
698
+ hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
699
+
700
+ outputs = self.layers(
701
+ hidden_states,
702
+ attention_mask,
703
+ deterministic=deterministic,
704
+ output_attentions=output_attentions,
705
+ output_hidden_states=output_hidden_states,
706
+ return_dict=return_dict,
707
+ )
708
+ last_hidden_states = outputs[0]
709
+ last_hidden_states = self.layer_norm(last_hidden_states)
710
+
711
+ # update the last element in `hidden_states` after applying `layernorm` above
712
+ hidden_states = None
713
+ if output_hidden_states:
714
+ hidden_states = outputs[1]
715
+ hidden_states = hidden_states[:-1] + (last_hidden_states,)
716
+
717
+ if not return_dict:
718
+ outputs = (last_hidden_states, hidden_states) + (outputs[2:] if output_hidden_states else outputs[1:])
719
+ return tuple(v for v in outputs if v is not None)
720
+
721
+ return FlaxBaseModelOutput(
722
+ last_hidden_state=last_hidden_states,
723
+ hidden_states=hidden_states,
724
+ attentions=outputs.attentions,
725
+ )
726
+
727
+
728
+ class FlaxBlenderbotDecoder(nn.Module):
729
+ config: BlenderbotConfig
730
+ embed_tokens: nn.Embed
731
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
732
+
733
+ def setup(self):
734
+ self.dropout_layer = nn.Dropout(rate=self.config.dropout)
735
+
736
+ embed_dim = self.config.d_model
737
+ self.padding_idx = self.config.pad_token_id
738
+ self.max_target_positions = self.config.max_position_embeddings
739
+ self.embed_scale = math.sqrt(self.config.d_model) if self.config.scale_embedding else 1.0
740
+
741
+ self.embed_positions = nn.Embed(
742
+ self.config.max_position_embeddings,
743
+ embed_dim,
744
+ embedding_init=jax.nn.initializers.normal(self.config.init_std),
745
+ )
746
+
747
+ self.layers = FlaxBlenderbotDecoderLayerCollection(self.config, self.dtype)
748
+ self.layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
749
+
750
+ def __call__(
751
+ self,
752
+ input_ids,
753
+ attention_mask,
754
+ position_ids,
755
+ encoder_hidden_states: Optional[jnp.ndarray] = None,
756
+ encoder_attention_mask: Optional[jnp.ndarray] = None,
757
+ init_cache: bool = False,
758
+ output_attentions: bool = False,
759
+ output_hidden_states: bool = False,
760
+ return_dict: bool = True,
761
+ deterministic: bool = True,
762
+ ):
763
+ input_shape = input_ids.shape
764
+ input_ids = input_ids.reshape(-1, input_shape[-1])
765
+
766
+ inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
767
+
768
+ # embed positions
769
+ positions = self.embed_positions(position_ids)
770
+
771
+ hidden_states = inputs_embeds + positions
772
+ hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
773
+
774
+ outputs = self.layers(
775
+ hidden_states,
776
+ attention_mask,
777
+ encoder_hidden_states,
778
+ encoder_attention_mask,
779
+ deterministic=deterministic,
780
+ init_cache=init_cache,
781
+ output_attentions=output_attentions,
782
+ output_hidden_states=output_hidden_states,
783
+ return_dict=return_dict,
784
+ )
785
+
786
+ last_hidden_states = outputs[0]
787
+ last_hidden_states = self.layer_norm(last_hidden_states)
788
+
789
+ # update the last element in `hidden_states` after applying `layernorm` above
790
+ hidden_states = None
791
+ if output_hidden_states:
792
+ hidden_states = outputs[1]
793
+ hidden_states = hidden_states[:-1] + (last_hidden_states,)
794
+
795
+ if not return_dict:
796
+ outputs = (last_hidden_states, hidden_states) + (outputs[2:] if output_hidden_states else outputs[1:])
797
+ return tuple(v for v in outputs if v is not None)
798
+
799
+ return FlaxBaseModelOutputWithPastAndCrossAttentions(
800
+ last_hidden_state=last_hidden_states,
801
+ hidden_states=hidden_states,
802
+ attentions=outputs.attentions,
803
+ cross_attentions=outputs.cross_attentions,
804
+ )
805
+
806
+
807
+ # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartModule with Bart->Blenderbot
808
+ class FlaxBlenderbotModule(nn.Module):
809
+ config: BlenderbotConfig
810
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
811
+
812
+ def setup(self):
813
+ self.shared = nn.Embed(
814
+ self.config.vocab_size,
815
+ self.config.d_model,
816
+ embedding_init=jax.nn.initializers.normal(self.config.init_std),
817
+ dtype=self.dtype,
818
+ )
819
+
820
+ self.encoder = FlaxBlenderbotEncoder(self.config, dtype=self.dtype, embed_tokens=self.shared)
821
+ self.decoder = FlaxBlenderbotDecoder(self.config, dtype=self.dtype, embed_tokens=self.shared)
822
+
823
+ def _get_encoder_module(self):
824
+ return self.encoder
825
+
826
+ def _get_decoder_module(self):
827
+ return self.decoder
828
+
829
+ def __call__(
830
+ self,
831
+ input_ids,
832
+ attention_mask,
833
+ decoder_input_ids,
834
+ decoder_attention_mask,
835
+ position_ids,
836
+ decoder_position_ids,
837
+ output_attentions: bool = False,
838
+ output_hidden_states: bool = False,
839
+ return_dict: bool = True,
840
+ deterministic: bool = True,
841
+ ):
842
+ encoder_outputs = self.encoder(
843
+ input_ids=input_ids,
844
+ attention_mask=attention_mask,
845
+ position_ids=position_ids,
846
+ output_attentions=output_attentions,
847
+ output_hidden_states=output_hidden_states,
848
+ return_dict=return_dict,
849
+ deterministic=deterministic,
850
+ )
851
+
852
+ decoder_outputs = self.decoder(
853
+ input_ids=decoder_input_ids,
854
+ attention_mask=decoder_attention_mask,
855
+ position_ids=decoder_position_ids,
856
+ encoder_hidden_states=encoder_outputs[0],
857
+ encoder_attention_mask=attention_mask,
858
+ output_attentions=output_attentions,
859
+ output_hidden_states=output_hidden_states,
860
+ return_dict=return_dict,
861
+ deterministic=deterministic,
862
+ )
863
+
864
+ if not return_dict:
865
+ return decoder_outputs + encoder_outputs
866
+
867
+ return FlaxSeq2SeqModelOutput(
868
+ last_hidden_state=decoder_outputs.last_hidden_state,
869
+ decoder_hidden_states=decoder_outputs.hidden_states,
870
+ decoder_attentions=decoder_outputs.attentions,
871
+ cross_attentions=decoder_outputs.cross_attentions,
872
+ encoder_last_hidden_state=encoder_outputs.last_hidden_state,
873
+ encoder_hidden_states=encoder_outputs.hidden_states,
874
+ encoder_attentions=encoder_outputs.attentions,
875
+ )
876
+
877
+
878
+ class FlaxBlenderbotPreTrainedModel(FlaxPreTrainedModel):
879
+ config_class = BlenderbotConfig
880
+ base_model_prefix: str = "model"
881
+ module_class: nn.Module = None
882
+
883
+ def __init__(
884
+ self,
885
+ config: BlenderbotConfig,
886
+ input_shape: Tuple[int] = (1, 1),
887
+ seed: int = 0,
888
+ dtype: jnp.dtype = jnp.float32,
889
+ _do_init: bool = True,
890
+ **kwargs,
891
+ ):
892
+ module = self.module_class(config=config, dtype=dtype, **kwargs)
893
+ super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
894
+
895
+ def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
896
+ # init input tensors
897
+ input_ids = jnp.zeros(input_shape, dtype="i4")
898
+ # make sure initialization pass will work for FlaxBlenderbotForSequenceClassificationModule
899
+ input_ids = input_ids.at[(..., -1)].set(self.config.eos_token_id)
900
+ attention_mask = jnp.ones_like(input_ids)
901
+ decoder_input_ids = input_ids
902
+ decoder_attention_mask = jnp.ones_like(input_ids)
903
+
904
+ batch_size, sequence_length = input_ids.shape
905
+ position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
906
+ decoder_position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
907
+
908
+ params_rng, dropout_rng = jax.random.split(rng)
909
+ rngs = {"params": params_rng, "dropout": dropout_rng}
910
+
911
+ random_params = self.module.init(
912
+ rngs,
913
+ input_ids,
914
+ attention_mask,
915
+ decoder_input_ids,
916
+ decoder_attention_mask,
917
+ position_ids,
918
+ decoder_position_ids,
919
+ )["params"]
920
+
921
+ if params is not None:
922
+ random_params = flatten_dict(unfreeze(random_params))
923
+ params = flatten_dict(unfreeze(params))
924
+ for missing_key in self._missing_keys:
925
+ params[missing_key] = random_params[missing_key]
926
+ self._missing_keys = set()
927
+ return freeze(unflatten_dict(params))
928
+ else:
929
+ return random_params
930
+
931
+ def init_cache(self, batch_size, max_length, encoder_outputs):
932
+ r"""
933
+ Args:
934
+ batch_size (`int`):
935
+ batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
936
+ max_length (`int`):
937
+ maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
938
+ cache.
939
+ encoder_outputs (`Union[FlaxBaseModelOutput, tuple(tuple(jnp.ndarray)]`):
940
+ `encoder_outputs` consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*:
941
+ `attentions`). `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*)
942
+ is a sequence of hidden-states at the output of the last layer of the encoder. Used in the
943
+ cross-attention of the decoder.
944
+ """
945
+ # init input variables to retrieve cache
946
+ decoder_input_ids = jnp.ones((batch_size, max_length), dtype="i4")
947
+ decoder_attention_mask = jnp.ones_like(decoder_input_ids)
948
+ decoder_position_ids = jnp.broadcast_to(
949
+ jnp.arange(jnp.atleast_2d(decoder_input_ids).shape[-1]), decoder_input_ids.shape
950
+ )
951
+
952
+ def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs):
953
+ decoder_module = module._get_decoder_module()
954
+ return decoder_module(
955
+ decoder_input_ids,
956
+ decoder_attention_mask,
957
+ decoder_position_ids,
958
+ **kwargs,
959
+ )
960
+
961
+ init_variables = self.module.init(
962
+ jax.random.PRNGKey(0),
963
+ decoder_input_ids=decoder_input_ids,
964
+ decoder_attention_mask=decoder_attention_mask,
965
+ decoder_position_ids=decoder_position_ids,
966
+ encoder_hidden_states=encoder_outputs[0],
967
+ init_cache=True,
968
+ method=_decoder_forward, # we only need to call the decoder to init the cache
969
+ )
970
+ return unfreeze(init_variables["cache"])
971
+
972
+ @add_start_docstrings(BLENDERBOT_ENCODE_INPUTS_DOCSTRING)
973
+ @replace_return_docstrings(output_type=FlaxBaseModelOutput, config_class=BlenderbotConfig)
974
+ def encode(
975
+ self,
976
+ input_ids: jnp.ndarray,
977
+ attention_mask: Optional[jnp.ndarray] = None,
978
+ position_ids: Optional[jnp.ndarray] = None,
979
+ output_attentions: Optional[bool] = None,
980
+ output_hidden_states: Optional[bool] = None,
981
+ return_dict: Optional[bool] = None,
982
+ train: bool = False,
983
+ params: dict = None,
984
+ dropout_rng: PRNGKey = None,
985
+ ):
986
+ r"""
987
+ Returns:
988
+
989
+ Example:
990
+
991
+ ```python
992
+ >>> from transformers import AutoTokenizer, FlaxBlenderbotForConditionalGeneration
993
+
994
+ >>> model = FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-400M-distill")
995
+ >>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
996
+
997
+ >>> text = "My friends are cool but they eat too many carbs."
998
+ >>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
999
+ >>> encoder_outputs = model.encode(**inputs)
1000
+ ```"""
1001
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1002
+ output_hidden_states = (
1003
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1004
+ )
1005
+ return_dict = return_dict if return_dict is not None else self.config.return_dict
1006
+
1007
+ if attention_mask is None:
1008
+ attention_mask = jnp.ones_like(input_ids)
1009
+ if position_ids is None:
1010
+ batch_size, sequence_length = input_ids.shape
1011
+ position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
1012
+
1013
+ # Handle any PRNG if needed
1014
+ rngs = {}
1015
+ if dropout_rng is not None:
1016
+ rngs["dropout"] = dropout_rng
1017
+
1018
+ def _encoder_forward(module, input_ids, attention_mask, position_ids, **kwargs):
1019
+ encode_module = module._get_encoder_module()
1020
+ return encode_module(input_ids, attention_mask, position_ids, **kwargs)
1021
+
1022
+ return self.module.apply(
1023
+ {"params": params or self.params},
1024
+ input_ids=jnp.array(input_ids, dtype="i4"),
1025
+ attention_mask=jnp.array(attention_mask, dtype="i4"),
1026
+ position_ids=jnp.array(position_ids, dtype="i4"),
1027
+ output_attentions=output_attentions,
1028
+ output_hidden_states=output_hidden_states,
1029
+ return_dict=return_dict,
1030
+ deterministic=not train,
1031
+ rngs=rngs,
1032
+ method=_encoder_forward,
1033
+ )
1034
+
1035
+ @add_start_docstrings(BLENDERBOT_DECODE_INPUTS_DOCSTRING)
1036
+ @replace_return_docstrings(
1037
+ output_type=FlaxBaseModelOutputWithPastAndCrossAttentions, config_class=BlenderbotConfig
1038
+ )
1039
+ def decode(
1040
+ self,
1041
+ decoder_input_ids,
1042
+ encoder_outputs,
1043
+ encoder_attention_mask: Optional[jnp.ndarray] = None,
1044
+ decoder_attention_mask: Optional[jnp.ndarray] = None,
1045
+ decoder_position_ids: Optional[jnp.ndarray] = None,
1046
+ past_key_values: dict = None,
1047
+ output_attentions: Optional[bool] = None,
1048
+ output_hidden_states: Optional[bool] = None,
1049
+ return_dict: Optional[bool] = None,
1050
+ train: bool = False,
1051
+ params: dict = None,
1052
+ dropout_rng: PRNGKey = None,
1053
+ ):
1054
+ r"""
1055
+ Returns:
1056
+
1057
+ Example:
1058
+
1059
+ ```python
1060
+ >>> import jax.numpy as jnp
1061
+ >>> from transformers import AutoTokenizer, FlaxBlenderbotForConditionalGeneration
1062
+
1063
+ >>> model = FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-400M-distill")
1064
+ >>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
1065
+
1066
+ >>> text = "My friends are cool but they eat too many carbs."
1067
+ >>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
1068
+ >>> encoder_outputs = model.encode(**inputs)
1069
+
1070
+ >>> decoder_start_token_id = model.config.decoder_start_token_id
1071
+ >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
1072
+
1073
+ >>> outputs = model.decode(decoder_input_ids, encoder_outputs)
1074
+ >>> last_decoder_hidden_states = outputs.last_hidden_state
1075
+ ```"""
1076
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1077
+ output_hidden_states = (
1078
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1079
+ )
1080
+ return_dict = return_dict if return_dict is not None else self.config.return_dict
1081
+
1082
+ encoder_hidden_states = encoder_outputs[0]
1083
+ if encoder_attention_mask is None:
1084
+ batch_size, sequence_length = encoder_hidden_states.shape[:2]
1085
+ encoder_attention_mask = jnp.ones((batch_size, sequence_length))
1086
+
1087
+ batch_size, sequence_length = decoder_input_ids.shape
1088
+ if decoder_attention_mask is None:
1089
+ decoder_attention_mask = jnp.ones((batch_size, sequence_length))
1090
+
1091
+ if decoder_position_ids is None:
1092
+ if past_key_values is not None:
1093
+ raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.")
1094
+
1095
+ decoder_position_ids = jnp.broadcast_to(
1096
+ jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
1097
+ )
1098
+
1099
+ # Handle any PRNG if needed
1100
+ rngs = {}
1101
+ if dropout_rng is not None:
1102
+ rngs["dropout"] = dropout_rng
1103
+
1104
+ inputs = {"params": params or self.params}
1105
+
1106
+ # if past_key_values are passed then cache is already initialized a private flag init_cache has to be
1107
+ # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that
1108
+ # it can be changed by FlaxBlenderbotAttention module
1109
+ if past_key_values:
1110
+ inputs["cache"] = past_key_values
1111
+ mutable = ["cache"]
1112
+ else:
1113
+ mutable = False
1114
+
1115
+ def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs):
1116
+ decoder_module = module._get_decoder_module()
1117
+ return decoder_module(
1118
+ decoder_input_ids,
1119
+ decoder_attention_mask,
1120
+ decoder_position_ids,
1121
+ **kwargs,
1122
+ )
1123
+
1124
+ outputs = self.module.apply(
1125
+ inputs,
1126
+ decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
1127
+ decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
1128
+ decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
1129
+ encoder_hidden_states=encoder_hidden_states,
1130
+ encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"),
1131
+ output_attentions=output_attentions,
1132
+ output_hidden_states=output_hidden_states,
1133
+ return_dict=return_dict,
1134
+ deterministic=not train,
1135
+ rngs=rngs,
1136
+ mutable=mutable,
1137
+ method=_decoder_forward,
1138
+ )
1139
+
1140
+ # add updated cache to model output
1141
+ if past_key_values is not None and return_dict:
1142
+ outputs, past = outputs
1143
+ outputs["past_key_values"] = unfreeze(past["cache"])
1144
+ return outputs
1145
+ elif past_key_values is not None and not return_dict:
1146
+ outputs, past = outputs
1147
+ outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:]
1148
+
1149
+ return outputs
1150
+
1151
+ @add_start_docstrings_to_model_forward(BLENDERBOT_INPUTS_DOCSTRING)
1152
+ def __call__(
1153
+ self,
1154
+ input_ids: jnp.ndarray,
1155
+ attention_mask: Optional[jnp.ndarray] = None,
1156
+ decoder_input_ids: Optional[jnp.ndarray] = None,
1157
+ decoder_attention_mask: Optional[jnp.ndarray] = None,
1158
+ position_ids: Optional[jnp.ndarray] = None,
1159
+ decoder_position_ids: Optional[jnp.ndarray] = None,
1160
+ output_attentions: Optional[bool] = None,
1161
+ output_hidden_states: Optional[bool] = None,
1162
+ return_dict: Optional[bool] = None,
1163
+ train: bool = False,
1164
+ params: dict = None,
1165
+ dropout_rng: PRNGKey = None,
1166
+ ):
1167
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1168
+ output_hidden_states = (
1169
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1170
+ )
1171
+ return_dict = return_dict if return_dict is not None else self.config.return_dict
1172
+
1173
+ # prepare encoder inputs
1174
+ if attention_mask is None:
1175
+ attention_mask = jnp.ones_like(input_ids)
1176
+ if position_ids is None:
1177
+ batch_size, sequence_length = input_ids.shape
1178
+ position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
1179
+
1180
+ # prepare decoder inputs
1181
+ if decoder_input_ids is None:
1182
+ decoder_input_ids = shift_tokens_right(
1183
+ input_ids, self.config.pad_token_id, decoder_start_token_id=self.config.decoder_start_token_id
1184
+ )
1185
+ if decoder_attention_mask is None:
1186
+ decoder_attention_mask = jnp.ones_like(decoder_input_ids)
1187
+ if decoder_position_ids is None:
1188
+ batch_size, sequence_length = decoder_input_ids.shape
1189
+ decoder_position_ids = jnp.broadcast_to(
1190
+ jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
1191
+ )
1192
+
1193
+ # Handle any PRNG if needed
1194
+ rngs = {"dropout": dropout_rng} if dropout_rng is not None else {}
1195
+
1196
+ return self.module.apply(
1197
+ {"params": params or self.params},
1198
+ input_ids=jnp.array(input_ids, dtype="i4"),
1199
+ attention_mask=jnp.array(attention_mask, dtype="i4"),
1200
+ position_ids=jnp.array(position_ids, dtype="i4"),
1201
+ decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
1202
+ decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
1203
+ decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
1204
+ output_attentions=output_attentions,
1205
+ output_hidden_states=output_hidden_states,
1206
+ return_dict=return_dict,
1207
+ deterministic=not train,
1208
+ rngs=rngs,
1209
+ )
1210
+
1211
+
1212
+ @add_start_docstrings(
1213
+ "The bare MBart Model transformer outputting raw hidden-states without any specific head on top.",
1214
+ BLENDERBOT_START_DOCSTRING,
1215
+ )
1216
+ class FlaxBlenderbotModel(FlaxBlenderbotPreTrainedModel):
1217
+ config: BlenderbotConfig
1218
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
1219
+ module_class = FlaxBlenderbotModule
1220
+
1221
+
1222
+ append_call_sample_docstring(FlaxBlenderbotModel, _CHECKPOINT_FOR_DOC, FlaxSeq2SeqModelOutput, _CONFIG_FOR_DOC)
1223
+
1224
+
1225
+ # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartForConditionalGenerationModule with Bart->Blenderbot
1226
+ class FlaxBlenderbotForConditionalGenerationModule(nn.Module):
1227
+ config: BlenderbotConfig
1228
+ dtype: jnp.dtype = jnp.float32
1229
+ bias_init: Callable[..., jnp.ndarray] = jax.nn.initializers.zeros
1230
+
1231
+ def setup(self):
1232
+ self.model = FlaxBlenderbotModule(config=self.config, dtype=self.dtype)
1233
+ self.lm_head = nn.Dense(
1234
+ self.model.shared.num_embeddings,
1235
+ use_bias=False,
1236
+ dtype=self.dtype,
1237
+ kernel_init=jax.nn.initializers.normal(self.config.init_std),
1238
+ )
1239
+ self.final_logits_bias = self.param("final_logits_bias", self.bias_init, (1, self.model.shared.num_embeddings))
1240
+
1241
+ def _get_encoder_module(self):
1242
+ return self.model.encoder
1243
+
1244
+ def _get_decoder_module(self):
1245
+ return self.model.decoder
1246
+
1247
+ def __call__(
1248
+ self,
1249
+ input_ids,
1250
+ attention_mask,
1251
+ decoder_input_ids,
1252
+ decoder_attention_mask,
1253
+ position_ids,
1254
+ decoder_position_ids,
1255
+ output_attentions: bool = False,
1256
+ output_hidden_states: bool = False,
1257
+ return_dict: bool = True,
1258
+ deterministic: bool = True,
1259
+ ):
1260
+ outputs = self.model(
1261
+ input_ids=input_ids,
1262
+ attention_mask=attention_mask,
1263
+ decoder_input_ids=decoder_input_ids,
1264
+ decoder_attention_mask=decoder_attention_mask,
1265
+ position_ids=position_ids,
1266
+ decoder_position_ids=decoder_position_ids,
1267
+ output_attentions=output_attentions,
1268
+ output_hidden_states=output_hidden_states,
1269
+ return_dict=return_dict,
1270
+ deterministic=deterministic,
1271
+ )
1272
+
1273
+ hidden_states = outputs[0]
1274
+
1275
+ if self.config.tie_word_embeddings:
1276
+ shared_embedding = self.model.variables["params"]["shared"]["embedding"]
1277
+ lm_logits = self.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states)
1278
+ else:
1279
+ lm_logits = self.lm_head(hidden_states)
1280
+
1281
+ lm_logits += jax.lax.stop_gradient(self.final_logits_bias.astype(self.dtype))
1282
+
1283
+ if not return_dict:
1284
+ output = (lm_logits,) + outputs[1:]
1285
+ return output
1286
+
1287
+ return FlaxSeq2SeqLMOutput(
1288
+ logits=lm_logits,
1289
+ decoder_hidden_states=outputs.decoder_hidden_states,
1290
+ decoder_attentions=outputs.decoder_attentions,
1291
+ cross_attentions=outputs.cross_attentions,
1292
+ encoder_last_hidden_state=outputs.encoder_last_hidden_state,
1293
+ encoder_hidden_states=outputs.encoder_hidden_states,
1294
+ encoder_attentions=outputs.encoder_attentions,
1295
+ )
1296
+
1297
+
1298
+ @add_start_docstrings(
1299
+ "The Blenderbot Model with a language modeling head. Can be used for summarization.", BLENDERBOT_START_DOCSTRING
1300
+ )
1301
+ class FlaxBlenderbotForConditionalGeneration(FlaxBlenderbotPreTrainedModel):
1302
+ module_class = FlaxBlenderbotForConditionalGenerationModule
1303
+ dtype: jnp.dtype = jnp.float32
1304
+
1305
+ @add_start_docstrings(BLENDERBOT_DECODE_INPUTS_DOCSTRING)
1306
+ @replace_return_docstrings(output_type=FlaxCausalLMOutputWithCrossAttentions, config_class=BlenderbotConfig)
1307
+ def decode(
1308
+ self,
1309
+ decoder_input_ids,
1310
+ encoder_outputs,
1311
+ encoder_attention_mask: Optional[jnp.ndarray] = None,
1312
+ decoder_attention_mask: Optional[jnp.ndarray] = None,
1313
+ decoder_position_ids: Optional[jnp.ndarray] = None,
1314
+ past_key_values: dict = None,
1315
+ output_attentions: Optional[bool] = None,
1316
+ output_hidden_states: Optional[bool] = None,
1317
+ return_dict: Optional[bool] = None,
1318
+ train: bool = False,
1319
+ params: dict = None,
1320
+ dropout_rng: PRNGKey = None,
1321
+ ):
1322
+ r"""
1323
+ Returns:
1324
+
1325
+ Example:
1326
+
1327
+ ```python
1328
+ >>> import jax.numpy as jnp
1329
+ >>> from transformers import AutoTokenizer, FlaxBlenderbotForConditionalGeneration
1330
+
1331
+ >>> model = FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-400M-distill")
1332
+ >>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
1333
+
1334
+ >>> text = "My friends are cool but they eat too many carbs."
1335
+ >>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
1336
+ >>> encoder_outputs = model.encode(**inputs)
1337
+
1338
+ >>> decoder_start_token_id = model.config.decoder_start_token_id
1339
+ >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
1340
+
1341
+ >>> outputs = model.decode(decoder_input_ids, encoder_outputs)
1342
+ >>> logits = outputs.logits
1343
+ ```"""
1344
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1345
+ output_hidden_states = (
1346
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1347
+ )
1348
+ return_dict = return_dict if return_dict is not None else self.config.return_dict
1349
+
1350
+ encoder_hidden_states = encoder_outputs[0]
1351
+ if encoder_attention_mask is None:
1352
+ batch_size, sequence_length = encoder_hidden_states.shape[:2]
1353
+ encoder_attention_mask = jnp.ones((batch_size, sequence_length))
1354
+
1355
+ batch_size, sequence_length = decoder_input_ids.shape
1356
+ if decoder_attention_mask is None:
1357
+ decoder_attention_mask = jnp.ones((batch_size, sequence_length))
1358
+
1359
+ if decoder_position_ids is None:
1360
+ if past_key_values is not None:
1361
+ raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.")
1362
+
1363
+ decoder_position_ids = jnp.broadcast_to(
1364
+ jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
1365
+ )
1366
+
1367
+ # Handle any PRNG if needed
1368
+ rngs = {}
1369
+ if dropout_rng is not None:
1370
+ rngs["dropout"] = dropout_rng
1371
+
1372
+ inputs = {"params": params or self.params}
1373
+
1374
+ # if past_key_values are passed then cache is already initialized a private flag init_cache has to be
1375
+ # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that
1376
+ # it can be changed by FlaxBlenderbotAttention module
1377
+ if past_key_values:
1378
+ inputs["cache"] = past_key_values
1379
+ mutable = ["cache"]
1380
+ else:
1381
+ mutable = False
1382
+
1383
+ def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs):
1384
+ decoder_module = module._get_decoder_module()
1385
+ outputs = decoder_module(
1386
+ decoder_input_ids,
1387
+ decoder_attention_mask,
1388
+ decoder_position_ids,
1389
+ **kwargs,
1390
+ )
1391
+ hidden_states = outputs[0]
1392
+
1393
+ if self.config.tie_word_embeddings:
1394
+ shared_embedding = module.model.variables["params"]["shared"]["embedding"]
1395
+ lm_logits = module.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states)
1396
+ else:
1397
+ lm_logits = module.lm_head(hidden_states)
1398
+
1399
+ lm_logits += module.final_logits_bias
1400
+ return lm_logits, outputs
1401
+
1402
+ outputs = self.module.apply(
1403
+ inputs,
1404
+ decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
1405
+ decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
1406
+ decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
1407
+ encoder_hidden_states=encoder_hidden_states,
1408
+ encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"),
1409
+ output_attentions=output_attentions,
1410
+ output_hidden_states=output_hidden_states,
1411
+ return_dict=return_dict,
1412
+ deterministic=not train,
1413
+ rngs=rngs,
1414
+ mutable=mutable,
1415
+ method=_decoder_forward,
1416
+ )
1417
+
1418
+ if past_key_values is None:
1419
+ lm_logits, decoder_outputs = outputs
1420
+ else:
1421
+ (lm_logits, decoder_outputs), past = outputs
1422
+
1423
+ if return_dict:
1424
+ outputs = FlaxCausalLMOutputWithCrossAttentions(
1425
+ logits=lm_logits,
1426
+ hidden_states=decoder_outputs.hidden_states,
1427
+ attentions=decoder_outputs.attentions,
1428
+ cross_attentions=decoder_outputs.cross_attentions,
1429
+ )
1430
+ else:
1431
+ outputs = (lm_logits,) + decoder_outputs[1:]
1432
+
1433
+ # add updated cache to model output
1434
+ if past_key_values is not None and return_dict:
1435
+ outputs["past_key_values"] = unfreeze(past["cache"])
1436
+ return outputs
1437
+ elif past_key_values is not None and not return_dict:
1438
+ outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:]
1439
+
1440
+ return outputs
1441
+
1442
+ def prepare_inputs_for_generation(
1443
+ self,
1444
+ decoder_input_ids,
1445
+ max_length,
1446
+ attention_mask: Optional[jax.Array] = None,
1447
+ decoder_attention_mask: Optional[jax.Array] = None,
1448
+ encoder_outputs=None,
1449
+ **kwargs,
1450
+ ):
1451
+ # initializing the cache
1452
+ batch_size, seq_length = decoder_input_ids.shape
1453
+
1454
+ past_key_values = self.init_cache(batch_size, max_length, encoder_outputs)
1455
+ # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
1456
+ # But since the decoder uses a causal mask, those positions are masked anyways.
1457
+ # Thus we can create a single static attention_mask here, which is more efficient for compilation
1458
+ extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
1459
+ if decoder_attention_mask is not None:
1460
+ position_ids = decoder_attention_mask.cumsum(axis=-1) - 1
1461
+ extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, decoder_attention_mask, (0, 0))
1462
+ else:
1463
+ position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length))
1464
+
1465
+ return {
1466
+ "past_key_values": past_key_values,
1467
+ "encoder_outputs": encoder_outputs,
1468
+ "encoder_attention_mask": attention_mask,
1469
+ "decoder_attention_mask": extended_attention_mask,
1470
+ "decoder_position_ids": position_ids,
1471
+ }
1472
+
1473
+ def update_inputs_for_generation(self, model_outputs, model_kwargs):
1474
+ model_kwargs["past_key_values"] = model_outputs.past_key_values
1475
+ model_kwargs["decoder_position_ids"] = model_kwargs["decoder_position_ids"][:, -1:] + 1
1476
+ return model_kwargs
1477
+
1478
+
1479
+ FLAX_BLENDERBOT_CONDITIONAL_GENERATION_DOCSTRING = r"""
1480
+ Returns:
1481
+
1482
+ Conversation example::
1483
+
1484
+ ```py
1485
+ >>> from transformers import AutoTokenizer, FlaxBlenderbotForConditionalGeneration
1486
+
1487
+ >>> model = FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-400M-distill")
1488
+ >>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
1489
+
1490
+ >>> UTTERANCE = "My friends are cool but they eat too many carbs."
1491
+ >>> inputs = tokenizer([UTTERANCE], max_length=1024, return_tensors="np")
1492
+
1493
+ >>> # Generate Reply
1494
+ >>> reply_ids = model.generate(inputs["input_ids"], num_beams=4, max_length=5, early_stopping=True).sequences
1495
+ >>> print([tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in reply_ids])
1496
+ ```
1497
+ """
1498
+
1499
+ overwrite_call_docstring(
1500
+ FlaxBlenderbotForConditionalGeneration,
1501
+ BLENDERBOT_INPUTS_DOCSTRING + FLAX_BLENDERBOT_CONDITIONAL_GENERATION_DOCSTRING,
1502
+ )
1503
+ append_replace_return_docstrings(
1504
+ FlaxBlenderbotForConditionalGeneration, output_type=FlaxSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC
1505
+ )
llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/modeling_tf_blenderbot.py ADDED
@@ -0,0 +1,1556 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2021 The Facebook, Inc and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ TF 2.0 Blenderbot model."""
16
+
17
+
18
+ from __future__ import annotations
19
+
20
+ import os
21
+ import random
22
+ import warnings
23
+ from typing import List, Optional, Tuple, Union
24
+
25
+ import tensorflow as tf
26
+
27
+ from ...activations_tf import get_tf_activation
28
+ from ...modeling_tf_outputs import (
29
+ TFBaseModelOutput,
30
+ TFBaseModelOutputWithPastAndCrossAttentions,
31
+ TFSeq2SeqLMOutput,
32
+ TFSeq2SeqModelOutput,
33
+ )
34
+
35
+ # Public API
36
+ from ...modeling_tf_utils import (
37
+ TFCausalLanguageModelingLoss,
38
+ TFPreTrainedModel,
39
+ keras,
40
+ keras_serializable,
41
+ unpack_inputs,
42
+ )
43
+ from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
44
+ from ...utils import (
45
+ add_code_sample_docstrings,
46
+ add_end_docstrings,
47
+ add_start_docstrings,
48
+ add_start_docstrings_to_model_forward,
49
+ logging,
50
+ replace_return_docstrings,
51
+ )
52
+ from .configuration_blenderbot import BlenderbotConfig
53
+
54
+
55
+ logger = logging.get_logger(__name__)
56
+
57
+ _CHECKPOINT_FOR_DOC = "facebook/blenderbot-400M-distill"
58
+ _CONFIG_FOR_DOC = "BlenderbotConfig"
59
+
60
+
61
+ LARGE_NEGATIVE = -1e8
62
+
63
+
64
+ # Copied from transformers.models.bart.modeling_tf_bart.shift_tokens_right
65
+ def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_token_id: int):
66
+ pad_token_id = tf.cast(pad_token_id, input_ids.dtype)
67
+ decoder_start_token_id = tf.cast(decoder_start_token_id, input_ids.dtype)
68
+ start_tokens = tf.fill(
69
+ (shape_list(input_ids)[0], 1), tf.convert_to_tensor(decoder_start_token_id, input_ids.dtype)
70
+ )
71
+ shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1)
72
+ # replace possible -100 values in labels by `pad_token_id`
73
+ shifted_input_ids = tf.where(
74
+ shifted_input_ids == -100,
75
+ tf.fill(shape_list(shifted_input_ids), tf.convert_to_tensor(pad_token_id, input_ids.dtype)),
76
+ shifted_input_ids,
77
+ )
78
+
79
+ # "Verify that `labels` has only positive values and -100"
80
+ assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=input_ids.dtype))
81
+
82
+ # Make sure the assertion op is called by wrapping the result in an identity no-op
83
+ with tf.control_dependencies([assert_gte0]):
84
+ shifted_input_ids = tf.identity(shifted_input_ids)
85
+
86
+ return shifted_input_ids
87
+
88
+
89
+ # Copied from transformers.models.bart.modeling_tf_bart._make_causal_mask
90
+ def _make_causal_mask(input_ids_shape: tf.TensorShape, past_key_values_length: int = 0):
91
+ """
92
+ Make causal mask used for bi-directional self-attention.
93
+ """
94
+ bsz = input_ids_shape[0]
95
+ tgt_len = input_ids_shape[1]
96
+ mask = tf.ones((tgt_len, tgt_len)) * LARGE_NEGATIVE
97
+ mask_cond = tf.range(shape_list(mask)[-1])
98
+
99
+ mask = tf.where(mask_cond < tf.reshape(mask_cond + 1, (shape_list(mask)[-1], 1)), 0.0, mask)
100
+
101
+ if past_key_values_length > 0:
102
+ mask = tf.concat([tf.zeros((tgt_len, past_key_values_length)), mask], axis=-1)
103
+
104
+ return tf.tile(mask[None, None, :, :], (bsz, 1, 1, 1))
105
+
106
+
107
+ # Copied from transformers.models.bart.modeling_tf_bart._expand_mask
108
+ def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None):
109
+ """
110
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
111
+ """
112
+ src_len = shape_list(mask)[1]
113
+ tgt_len = tgt_len if tgt_len is not None else src_len
114
+ one_cst = tf.constant(1.0)
115
+ mask = tf.cast(mask, dtype=one_cst.dtype)
116
+ expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1))
117
+
118
+ return (one_cst - expanded_mask) * LARGE_NEGATIVE
119
+
120
+
121
+ class TFBlenderbotLearnedPositionalEmbedding(keras.layers.Embedding):
122
+ """
123
+ This module learns positional embeddings up to a fixed maximum size.
124
+ """
125
+
126
+ def __init__(self, num_embeddings: int, embedding_dim: int, **kwargs):
127
+ super().__init__(num_embeddings, embedding_dim, **kwargs)
128
+
129
+ def call(
130
+ self, input_shape: tf.TensorShape, past_key_values_length: int = 0, position_ids: tf.Tensor | None = None
131
+ ):
132
+ """Input is expected to be of size [bsz x seqlen]."""
133
+ if position_ids is None:
134
+ seq_len = input_shape[1]
135
+ position_ids = tf.range(seq_len, delta=1, name="range")
136
+ position_ids += past_key_values_length
137
+
138
+ return super().call(tf.cast(position_ids, dtype=tf.int32))
139
+
140
+
141
+ # Copied from transformers.models.bart.modeling_tf_bart.TFBartAttention with Bart->Blenderbot
142
+ class TFBlenderbotAttention(keras.layers.Layer):
143
+ """Multi-headed attention from "Attention Is All You Need"""
144
+
145
+ def __init__(
146
+ self,
147
+ embed_dim: int,
148
+ num_heads: int,
149
+ dropout: float = 0.0,
150
+ is_decoder: bool = False,
151
+ bias: bool = True,
152
+ **kwargs,
153
+ ):
154
+ super().__init__(**kwargs)
155
+ self.embed_dim = embed_dim
156
+
157
+ self.num_heads = num_heads
158
+ self.dropout = keras.layers.Dropout(dropout)
159
+ self.head_dim = embed_dim // num_heads
160
+ if (self.head_dim * num_heads) != self.embed_dim:
161
+ raise ValueError(
162
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
163
+ f" and `num_heads`: {num_heads})."
164
+ )
165
+ self.scaling = self.head_dim**-0.5
166
+ self.is_decoder = is_decoder
167
+
168
+ self.k_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="k_proj")
169
+ self.q_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj")
170
+ self.v_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj")
171
+ self.out_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj")
172
+
173
+ def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int):
174
+ return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3))
175
+
176
+ def call(
177
+ self,
178
+ hidden_states: tf.Tensor,
179
+ key_value_states: tf.Tensor | None = None,
180
+ past_key_value: Tuple[Tuple[tf.Tensor]] | None = None,
181
+ attention_mask: tf.Tensor | None = None,
182
+ layer_head_mask: tf.Tensor | None = None,
183
+ training: Optional[bool] = False,
184
+ ) -> Tuple[tf.Tensor, tf.Tensor | None]:
185
+ """Input shape: Batch x Time x Channel"""
186
+
187
+ # if key_value_states are provided this layer is used as a cross-attention layer
188
+ # for the decoder
189
+ is_cross_attention = key_value_states is not None
190
+ bsz, tgt_len, embed_dim = shape_list(hidden_states)
191
+
192
+ # get query proj
193
+ query_states = self.q_proj(hidden_states) * self.scaling
194
+ # get key, value proj
195
+ if is_cross_attention and past_key_value is not None:
196
+ # reuse k,v, cross_attentions
197
+ key_states = past_key_value[0]
198
+ value_states = past_key_value[1]
199
+ elif is_cross_attention:
200
+ # cross_attentions
201
+ key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
202
+ value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
203
+ elif past_key_value is not None:
204
+ # reuse k, v, self_attention
205
+ key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
206
+ value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
207
+ key_states = tf.concat([past_key_value[0], key_states], axis=2)
208
+ value_states = tf.concat([past_key_value[1], value_states], axis=2)
209
+ else:
210
+ # self_attention
211
+ key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
212
+ value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
213
+
214
+ if self.is_decoder:
215
+ # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states.
216
+ # Further calls to cross_attention layer can then reuse all cross-attention
217
+ # key/value_states (first "if" case)
218
+ # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of
219
+ # all previous decoder key/value_states. Further calls to uni-directional self-attention
220
+ # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
221
+ # if encoder bi-directional self-attention `past_key_value` is always `None`
222
+ past_key_value = (key_states, value_states)
223
+
224
+ proj_shape = (bsz * self.num_heads, -1, self.head_dim)
225
+ query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape)
226
+ key_states = tf.reshape(key_states, proj_shape)
227
+ value_states = tf.reshape(value_states, proj_shape)
228
+
229
+ src_len = shape_list(key_states)[1]
230
+ attn_weights = tf.matmul(query_states, key_states, transpose_b=True)
231
+
232
+ tf.debugging.assert_equal(
233
+ shape_list(attn_weights),
234
+ [bsz * self.num_heads, tgt_len, src_len],
235
+ message=(
236
+ f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
237
+ f" {shape_list(attn_weights)}"
238
+ ),
239
+ )
240
+
241
+ if attention_mask is not None:
242
+ tf.debugging.assert_equal(
243
+ shape_list(attention_mask),
244
+ [bsz, 1, tgt_len, src_len],
245
+ message=(
246
+ f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
247
+ f" {shape_list(attention_mask)}"
248
+ ),
249
+ )
250
+
251
+ attention_mask = tf.cast(attention_mask, dtype=attn_weights.dtype)
252
+ attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask
253
+ attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len))
254
+
255
+ attn_weights = stable_softmax(attn_weights, axis=-1)
256
+
257
+ if layer_head_mask is not None:
258
+ tf.debugging.assert_equal(
259
+ shape_list(layer_head_mask),
260
+ [self.num_heads],
261
+ message=(
262
+ f"Head mask for a single layer should be of size {(self.num_heads)}, but is"
263
+ f" {shape_list(layer_head_mask)}"
264
+ ),
265
+ )
266
+
267
+ attn_weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape(
268
+ attn_weights, (bsz, self.num_heads, tgt_len, src_len)
269
+ )
270
+ attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len))
271
+
272
+ attn_probs = self.dropout(attn_weights, training=training)
273
+ attn_output = tf.matmul(attn_probs, value_states)
274
+
275
+ tf.debugging.assert_equal(
276
+ shape_list(attn_output),
277
+ [bsz * self.num_heads, tgt_len, self.head_dim],
278
+ message=(
279
+ f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
280
+ f" {shape_list(attn_output)}"
281
+ ),
282
+ )
283
+
284
+ attn_output = tf.transpose(
285
+ tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3)
286
+ )
287
+ attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim))
288
+
289
+ attn_output = self.out_proj(attn_output)
290
+ attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len))
291
+
292
+ return attn_output, attn_weights, past_key_value
293
+
294
+ def build(self, input_shape=None):
295
+ if self.built:
296
+ return
297
+ self.built = True
298
+ if getattr(self, "k_proj", None) is not None:
299
+ with tf.name_scope(self.k_proj.name):
300
+ self.k_proj.build([None, None, self.embed_dim])
301
+ if getattr(self, "q_proj", None) is not None:
302
+ with tf.name_scope(self.q_proj.name):
303
+ self.q_proj.build([None, None, self.embed_dim])
304
+ if getattr(self, "v_proj", None) is not None:
305
+ with tf.name_scope(self.v_proj.name):
306
+ self.v_proj.build([None, None, self.embed_dim])
307
+ if getattr(self, "out_proj", None) is not None:
308
+ with tf.name_scope(self.out_proj.name):
309
+ self.out_proj.build([None, None, self.embed_dim])
310
+
311
+
312
+ # Copied from transformers.models.mbart.modeling_tf_mbart.TFMBartEncoderLayer with MBart->Blenderbot
313
+ class TFBlenderbotEncoderLayer(keras.layers.Layer):
314
+ def __init__(self, config: BlenderbotConfig, **kwargs):
315
+ super().__init__(**kwargs)
316
+ self.embed_dim = config.d_model
317
+ self.self_attn = TFBlenderbotAttention(
318
+ self.embed_dim, config.encoder_attention_heads, dropout=config.attention_dropout, name="self_attn"
319
+ )
320
+ self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm")
321
+ self.dropout = keras.layers.Dropout(config.dropout)
322
+ self.activation_fn = get_tf_activation(config.activation_function)
323
+ self.activation_dropout = keras.layers.Dropout(config.activation_dropout)
324
+ self.fc1 = keras.layers.Dense(config.encoder_ffn_dim, name="fc1")
325
+ self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2")
326
+ self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm")
327
+ self.config = config
328
+
329
+ def call(
330
+ self,
331
+ hidden_states: tf.Tensor,
332
+ attention_mask: tf.Tensor,
333
+ layer_head_mask: tf.Tensor,
334
+ training: Optional[bool] = False,
335
+ ):
336
+ """
337
+ Args:
338
+ hidden_states (`tf.Tensor`): input to the layer of shape *(batch, seq_len, embed_dim)*
339
+ attention_mask (`tf.Tensor`): attention mask of size
340
+ *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
341
+ layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size
342
+ *(encoder_attention_heads,)*
343
+ """
344
+ residual = hidden_states
345
+ hidden_states = self.self_attn_layer_norm(hidden_states)
346
+ hidden_states, self_attn_weights, _ = self.self_attn(
347
+ hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask
348
+ )
349
+
350
+ tf.debugging.assert_equal(
351
+ shape_list(hidden_states),
352
+ shape_list(residual),
353
+ message=f"Self attn modified the shape of query {shape_list(residual)} to {shape_list(hidden_states)}",
354
+ )
355
+
356
+ hidden_states = self.dropout(hidden_states, training=training)
357
+ hidden_states = residual + hidden_states
358
+
359
+ residual = hidden_states
360
+ hidden_states = self.final_layer_norm(hidden_states)
361
+ hidden_states = self.activation_fn(self.fc1(hidden_states))
362
+ hidden_states = self.activation_dropout(hidden_states, training=training)
363
+ hidden_states = self.fc2(hidden_states)
364
+ hidden_states = self.dropout(hidden_states, training=training)
365
+ hidden_states = residual + hidden_states
366
+
367
+ return hidden_states, self_attn_weights
368
+
369
+ def build(self, input_shape=None):
370
+ if self.built:
371
+ return
372
+ self.built = True
373
+ if getattr(self, "self_attn", None) is not None:
374
+ with tf.name_scope(self.self_attn.name):
375
+ self.self_attn.build(None)
376
+ if getattr(self, "self_attn_layer_norm", None) is not None:
377
+ with tf.name_scope(self.self_attn_layer_norm.name):
378
+ self.self_attn_layer_norm.build([None, None, self.embed_dim])
379
+ if getattr(self, "fc1", None) is not None:
380
+ with tf.name_scope(self.fc1.name):
381
+ self.fc1.build([None, None, self.embed_dim])
382
+ if getattr(self, "fc2", None) is not None:
383
+ with tf.name_scope(self.fc2.name):
384
+ self.fc2.build([None, None, self.config.encoder_ffn_dim])
385
+ if getattr(self, "final_layer_norm", None) is not None:
386
+ with tf.name_scope(self.final_layer_norm.name):
387
+ self.final_layer_norm.build([None, None, self.embed_dim])
388
+
389
+
390
+ # Copied from transformers.models.mbart.modeling_tf_mbart.TFMBartDecoderLayer with MBart->Blenderbot
391
+ class TFBlenderbotDecoderLayer(keras.layers.Layer):
392
+ def __init__(self, config: BlenderbotConfig, **kwargs):
393
+ super().__init__(**kwargs)
394
+ self.embed_dim = config.d_model
395
+ self.self_attn = TFBlenderbotAttention(
396
+ embed_dim=self.embed_dim,
397
+ num_heads=config.decoder_attention_heads,
398
+ dropout=config.attention_dropout,
399
+ name="self_attn",
400
+ is_decoder=True,
401
+ )
402
+ self.dropout = keras.layers.Dropout(config.dropout)
403
+ self.activation_fn = get_tf_activation(config.activation_function)
404
+ self.activation_dropout = keras.layers.Dropout(config.activation_dropout)
405
+
406
+ self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm")
407
+ self.encoder_attn = TFBlenderbotAttention(
408
+ self.embed_dim,
409
+ config.decoder_attention_heads,
410
+ dropout=config.attention_dropout,
411
+ name="encoder_attn",
412
+ is_decoder=True,
413
+ )
414
+ self.encoder_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="encoder_attn_layer_norm")
415
+ self.fc1 = keras.layers.Dense(config.decoder_ffn_dim, name="fc1")
416
+ self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2")
417
+ self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm")
418
+ self.config = config
419
+
420
+ def call(
421
+ self,
422
+ hidden_states: tf.Tensor,
423
+ attention_mask: tf.Tensor | None = None,
424
+ encoder_hidden_states: tf.Tensor | None = None,
425
+ encoder_attention_mask: tf.Tensor | None = None,
426
+ layer_head_mask: tf.Tensor | None = None,
427
+ cross_attn_layer_head_mask: tf.Tensor | None = None,
428
+ past_key_value: Tuple[tf.Tensor] | None = None,
429
+ training: Optional[bool] = False,
430
+ ) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]:
431
+ """
432
+ Args:
433
+ hidden_states (`tf.Tensor`): input to the layer of shape *(batch, seq_len, embed_dim)*
434
+ attention_mask (`tf.Tensor`): attention mask of size
435
+ *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
436
+ encoder_hidden_states (`tf.Tensor`):
437
+ cross attention input to the layer of shape *(batch, seq_len, embed_dim)*
438
+ encoder_attention_mask (`tf.Tensor`): encoder attention mask of size
439
+ *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
440
+ layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size
441
+ *(decoder_attention_heads,)*
442
+ cross_attn_layer_head_mask (`tf.Tensor`): mask for heads of the cross-attention module.
443
+ *(decoder_attention_heads,)*
444
+ past_key_value (`Tuple(tf.Tensor)`): cached past key and value projection states
445
+ """
446
+ residual = hidden_states
447
+ hidden_states = self.self_attn_layer_norm(hidden_states)
448
+
449
+ # Self Attention
450
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
451
+ self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
452
+ # add present self-attn cache to positions 1,2 of present_key_value tuple
453
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
454
+ hidden_states=hidden_states,
455
+ past_key_value=self_attn_past_key_value,
456
+ attention_mask=attention_mask,
457
+ layer_head_mask=layer_head_mask,
458
+ )
459
+ hidden_states = self.dropout(hidden_states, training=training)
460
+ hidden_states = residual + hidden_states
461
+
462
+ # Cross-Attention Block
463
+ cross_attn_present_key_value = None
464
+ cross_attn_weights = None
465
+ if encoder_hidden_states is not None:
466
+ residual = hidden_states
467
+ hidden_states = self.encoder_attn_layer_norm(hidden_states)
468
+
469
+ # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
470
+ cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
471
+ hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
472
+ hidden_states=hidden_states,
473
+ key_value_states=encoder_hidden_states,
474
+ attention_mask=encoder_attention_mask,
475
+ layer_head_mask=cross_attn_layer_head_mask,
476
+ past_key_value=cross_attn_past_key_value,
477
+ )
478
+ hidden_states = self.dropout(hidden_states, training=training)
479
+ hidden_states = residual + hidden_states
480
+
481
+ # add cross-attn to positions 3,4 of present_key_value tuple
482
+ present_key_value = present_key_value + cross_attn_present_key_value
483
+
484
+ # Fully Connected
485
+ residual = hidden_states
486
+ hidden_states = self.final_layer_norm(hidden_states)
487
+ hidden_states = self.activation_fn(self.fc1(hidden_states))
488
+ hidden_states = self.activation_dropout(hidden_states, training=training)
489
+ hidden_states = self.fc2(hidden_states)
490
+ hidden_states = self.dropout(hidden_states, training=training)
491
+ hidden_states = residual + hidden_states
492
+
493
+ return (
494
+ hidden_states,
495
+ self_attn_weights,
496
+ cross_attn_weights,
497
+ present_key_value,
498
+ )
499
+
500
+ def build(self, input_shape=None):
501
+ if self.built:
502
+ return
503
+ self.built = True
504
+ if getattr(self, "self_attn", None) is not None:
505
+ with tf.name_scope(self.self_attn.name):
506
+ self.self_attn.build(None)
507
+ if getattr(self, "self_attn_layer_norm", None) is not None:
508
+ with tf.name_scope(self.self_attn_layer_norm.name):
509
+ self.self_attn_layer_norm.build([None, None, self.embed_dim])
510
+ if getattr(self, "encoder_attn", None) is not None:
511
+ with tf.name_scope(self.encoder_attn.name):
512
+ self.encoder_attn.build(None)
513
+ if getattr(self, "encoder_attn_layer_norm", None) is not None:
514
+ with tf.name_scope(self.encoder_attn_layer_norm.name):
515
+ self.encoder_attn_layer_norm.build([None, None, self.embed_dim])
516
+ if getattr(self, "fc1", None) is not None:
517
+ with tf.name_scope(self.fc1.name):
518
+ self.fc1.build([None, None, self.embed_dim])
519
+ if getattr(self, "fc2", None) is not None:
520
+ with tf.name_scope(self.fc2.name):
521
+ self.fc2.build([None, None, self.config.decoder_ffn_dim])
522
+ if getattr(self, "final_layer_norm", None) is not None:
523
+ with tf.name_scope(self.final_layer_norm.name):
524
+ self.final_layer_norm.build([None, None, self.embed_dim])
525
+
526
+
527
+ class TFBlenderbotPreTrainedModel(TFPreTrainedModel):
528
+ config_class = BlenderbotConfig
529
+ base_model_prefix = "model"
530
+
531
+
532
+ BLENDERBOT_START_DOCSTRING = r"""
533
+ This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
534
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
535
+ etc.)
536
+
537
+ This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
538
+ as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
539
+ behavior.
540
+
541
+ <Tip>
542
+
543
+ TensorFlow models and layers in `transformers` accept two formats as input:
544
+
545
+ - having all inputs as keyword arguments (like PyTorch models), or
546
+ - having all inputs as a list, tuple or dict in the first positional argument.
547
+
548
+ The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
549
+ and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
550
+ pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
551
+ format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
552
+ the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
553
+ positional argument:
554
+
555
+ - a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
556
+ - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
557
+ `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
558
+ - a dictionary with one or several input Tensors associated to the input names given in the docstring:
559
+ `model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
560
+
561
+ Note that when creating models and layers with
562
+ [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
563
+ about any of this, as you can just pass inputs like you would to any other Python function!
564
+
565
+ </Tip>
566
+
567
+ Args:
568
+ config ([`BlenderbotConfig`]): Model configuration class with all the parameters of the model.
569
+ Initializing with a config file does not load the weights associated with the model, only the
570
+ configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
571
+ """
572
+
573
+ BLENDERBOT_GENERATION_EXAMPLE = r"""
574
+ Conversation example::
575
+
576
+ ```py
577
+ >>> from transformers import AutoTokenizer, TFBlenderbotForConditionalGeneration
578
+
579
+ >>> mname = "facebook/blenderbot-400M-distill"
580
+ >>> model = TFBlenderbotForConditionalGeneration.from_pretrained(mname)
581
+ >>> tokenizer = AutoTokenizer.from_pretrained(mname)
582
+ >>> UTTERANCE = "My friends are cool but they eat too many carbs."
583
+ >>> print("Human: ", UTTERANCE)
584
+
585
+ >>> inputs = tokenizer([UTTERANCE], return_tensors="tf")
586
+ >>> reply_ids = model.generate(**inputs)
587
+ >>> print("Bot: ", tokenizer.batch_decode(reply_ids, skip_special_tokens=True)[0])
588
+
589
+ >>> REPLY = "I'm not sure"
590
+ >>> print("Human: ", REPLY)
591
+ >>> NEXT_UTTERANCE = (
592
+ ... "My friends are cool but they eat too many carbs.</s> <s>That's unfortunate. "
593
+ ... "Are they trying to lose weight or are they just trying to be healthier?</s> "
594
+ ... "<s> I'm not sure."
595
+ ... )
596
+ >>> inputs = tokenizer([NEXT_UTTERANCE], return_tensors="tf")
597
+ >>> next_reply_ids = model.generate(**inputs)
598
+ >>> print("Bot: ", tokenizer.batch_decode(next_reply_ids, skip_special_tokens=True)[0])
599
+ ```
600
+ """
601
+
602
+ BLENDERBOT_INPUTS_DOCSTRING = r"""
603
+ Args:
604
+ input_ids (`tf.Tensor` of shape `({0})`):
605
+ Indices of input sequence tokens in the vocabulary.
606
+
607
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
608
+ [`PreTrainedTokenizer.__call__`] for details.
609
+
610
+ [What are input IDs?](../glossary#input-ids)
611
+ attention_mask (`tf.Tensor` of shape `({0})`, *optional*):
612
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
613
+
614
+ - 1 for tokens that are **not masked**,
615
+ - 0 for tokens that are **masked**.
616
+
617
+ [What are attention masks?](../glossary#attention-mask)
618
+ decoder_input_ids (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*):
619
+ Indices of decoder input sequence tokens in the vocabulary.
620
+
621
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
622
+ [`PreTrainedTokenizer.__call__`] for details.
623
+
624
+ [What are decoder input IDs?](../glossary#decoder-input-ids)
625
+
626
+ Blenderbot uses the `bos_token_id` as the starting token for `decoder_input_ids` generation. If
627
+ `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
628
+ `past_key_values`).
629
+ decoder_attention_mask (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*):
630
+ will be made by default and ignore pad tokens. It is not recommended to set this for most use cases.
631
+ decoder_position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
632
+ Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
633
+ range `[0, config.max_position_embeddings - 1]`.
634
+ head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
635
+ Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
636
+
637
+ - 1 indicates the head is **not masked**,
638
+ - 0 indicates the head is **masked**.
639
+
640
+ decoder_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
641
+ Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
642
+
643
+ - 1 indicates the head is **not masked**,
644
+ - 0 indicates the head is **masked**.
645
+
646
+ cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
647
+ Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
648
+
649
+ - 1 indicates the head is **not masked**,
650
+ - 0 indicates the head is **masked**.
651
+
652
+ encoder_outputs (`tf.FloatTensor`, *optional*):
653
+ hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
654
+ of shape `(batch_size, sequence_length, hidden_size)` is a sequence of
655
+ past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`)
656
+ contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
657
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
658
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
659
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
660
+ use_cache (`bool`, *optional*, defaults to `True`):
661
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
662
+ `past_key_values`). Set to `False` during training, `True` during generation
663
+ output_attentions (`bool`, *optional*):
664
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
665
+ tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
666
+ config will be used instead.
667
+ output_hidden_states (`bool`, *optional*):
668
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
669
+ more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
670
+ used instead.
671
+ return_dict (`bool`, *optional*):
672
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
673
+ eager mode, in graph mode the value will always be set to True.
674
+ training (`bool`, *optional*, defaults to `False`):
675
+ Whether or not to use the model in training mode (some modules like dropout modules have different
676
+ behaviors between training and evaluation).
677
+ """
678
+
679
+
680
+ @keras_serializable
681
+ class TFBlenderbotEncoder(keras.layers.Layer):
682
+ config_class = BlenderbotConfig
683
+ """
684
+ Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
685
+ [`TFBlenderbotEncoderLayer`].
686
+
687
+ Args:
688
+ config: BlenderbotConfig
689
+ """
690
+
691
+ def __init__(self, config: BlenderbotConfig, embed_tokens: Optional[keras.layers.Embedding] = None, **kwargs):
692
+ super().__init__(**kwargs)
693
+ self.config = config
694
+ self.dropout = keras.layers.Dropout(config.dropout)
695
+ self.layerdrop = config.encoder_layerdrop
696
+ self.padding_idx = config.pad_token_id
697
+ self.max_source_positions = config.max_position_embeddings
698
+ self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0
699
+
700
+ self.embed_tokens = embed_tokens
701
+ self.embed_positions = TFBlenderbotLearnedPositionalEmbedding(
702
+ config.max_position_embeddings,
703
+ config.d_model,
704
+ name="embed_positions",
705
+ )
706
+ self.layers = [TFBlenderbotEncoderLayer(config, name=f"layers.{i}") for i in range(config.encoder_layers)]
707
+ self.layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="layer_norm")
708
+
709
+ def get_embed_tokens(self):
710
+ return self.embed_tokens
711
+
712
+ def set_embed_tokens(self, embed_tokens):
713
+ self.embed_tokens = embed_tokens
714
+
715
+ @unpack_inputs
716
+ def call(
717
+ self,
718
+ input_ids=None,
719
+ inputs_embeds=None,
720
+ attention_mask=None,
721
+ head_mask=None,
722
+ output_attentions=None,
723
+ output_hidden_states=None,
724
+ return_dict=None,
725
+ training=False,
726
+ ):
727
+ """
728
+ Args:
729
+ input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`):
730
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
731
+ provide it.
732
+
733
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
734
+ [`PreTrainedTokenizer.__call__`] for details.
735
+
736
+ [What are input IDs?](../glossary#input-ids)
737
+ attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
738
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
739
+
740
+ - 1 for tokens that are **not masked**,
741
+ - 0 for tokens that are **masked**.
742
+
743
+ [What are attention masks?](../glossary#attention-mask)
744
+ head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, `optional):
745
+ Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
746
+
747
+ - 1 indicates the head is **not masked**,
748
+ - 0 indicates the head is **masked**.
749
+
750
+ inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
751
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
752
+ This is useful if you want more control over how to convert `input_ids` indices into associated vectors
753
+ than the model's internal embedding lookup matrix.
754
+ output_attentions (`bool`, *optional*):
755
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
756
+ returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value
757
+ in the config will be used instead.
758
+ output_hidden_states (`bool`, *optional*):
759
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
760
+ for more detail. This argument can be used only in eager mode, in graph mode the value in the config
761
+ will be used instead.
762
+ return_dict (`bool`, *optional*):
763
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used
764
+ in eager mode, in graph mode the value will always be set to True.
765
+ training (`bool`, *optional*, defaults to `False`):
766
+ Whether or not to use the model in training mode (some modules like dropout modules have different
767
+ behaviors between training and evaluation).
768
+ """
769
+ if input_ids is not None and inputs_embeds is not None:
770
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
771
+ elif input_ids is not None:
772
+ input_shape = shape_list(input_ids)
773
+ elif inputs_embeds is not None:
774
+ input_shape = shape_list(inputs_embeds)[:-1]
775
+ else:
776
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
777
+
778
+ if inputs_embeds is None:
779
+ check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim)
780
+ inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
781
+
782
+ embed_pos = self.embed_positions(input_shape)
783
+ hidden_states = inputs_embeds + embed_pos
784
+ hidden_states = self.dropout(hidden_states, training=training)
785
+
786
+ # check attention mask and invert
787
+ if attention_mask is not None:
788
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
789
+ attention_mask = _expand_mask(attention_mask)
790
+ else:
791
+ attention_mask = None
792
+
793
+ encoder_states = () if output_hidden_states else None
794
+ all_attentions = () if output_attentions else None
795
+
796
+ # check if head_mask has a correct number of layers specified if desired
797
+ if head_mask is not None:
798
+ tf.debugging.assert_equal(
799
+ shape_list(head_mask)[0],
800
+ len(self.layers),
801
+ message=(
802
+ f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
803
+ f" {shape_list(head_mask)[0]}."
804
+ ),
805
+ )
806
+
807
+ # encoder layers
808
+ for idx, encoder_layer in enumerate(self.layers):
809
+ if output_hidden_states:
810
+ encoder_states = encoder_states + (hidden_states,)
811
+ # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
812
+ dropout_probability = random.uniform(0, 1)
813
+ if training and (dropout_probability < self.layerdrop): # skip the layer
814
+ continue
815
+
816
+ hidden_states, attn = encoder_layer(
817
+ hidden_states,
818
+ attention_mask,
819
+ head_mask[idx] if head_mask is not None else None,
820
+ )
821
+
822
+ if output_attentions:
823
+ all_attentions += (attn,)
824
+
825
+ hidden_states = self.layer_norm(hidden_states)
826
+
827
+ if output_hidden_states:
828
+ encoder_states = encoder_states + (hidden_states,)
829
+
830
+ if not return_dict:
831
+ return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
832
+ return TFBaseModelOutput(
833
+ last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
834
+ )
835
+
836
+ def build(self, input_shape=None):
837
+ if self.built:
838
+ return
839
+ self.built = True
840
+ if getattr(self, "embed_positions", None) is not None:
841
+ with tf.name_scope(self.embed_positions.name):
842
+ self.embed_positions.build(None)
843
+ if getattr(self, "layer_norm", None) is not None:
844
+ with tf.name_scope(self.layer_norm.name):
845
+ self.layer_norm.build([None, None, self.config.d_model])
846
+ if getattr(self, "layers", None) is not None:
847
+ for layer in self.layers:
848
+ with tf.name_scope(layer.name):
849
+ layer.build(None)
850
+
851
+
852
+ @keras_serializable
853
+ class TFBlenderbotDecoder(keras.layers.Layer):
854
+ config_class = BlenderbotConfig
855
+ """
856
+ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`TFBlenderbotDecoderLayer`]
857
+
858
+ Args:
859
+ config: BlenderbotConfig
860
+ embed_tokens: output embedding
861
+ """
862
+
863
+ def __init__(self, config: BlenderbotConfig, embed_tokens: Optional[keras.layers.Embedding] = None, **kwargs):
864
+ super().__init__(**kwargs)
865
+ self.config = config
866
+ self.padding_idx = config.pad_token_id
867
+ self.embed_tokens = embed_tokens
868
+ self.layerdrop = config.decoder_layerdrop
869
+ self.embed_positions = TFBlenderbotLearnedPositionalEmbedding(
870
+ config.max_position_embeddings,
871
+ config.d_model,
872
+ name="embed_positions",
873
+ )
874
+ self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0
875
+ self.layers = [TFBlenderbotDecoderLayer(config, name=f"layers.{i}") for i in range(config.decoder_layers)]
876
+ self.layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="layer_norm")
877
+
878
+ self.dropout = keras.layers.Dropout(config.dropout)
879
+
880
+ def get_embed_tokens(self):
881
+ return self.embed_tokens
882
+
883
+ def set_embed_tokens(self, embed_tokens):
884
+ self.embed_tokens = embed_tokens
885
+
886
+ @unpack_inputs
887
+ def call(
888
+ self,
889
+ input_ids=None,
890
+ inputs_embeds=None,
891
+ attention_mask=None,
892
+ position_ids=None,
893
+ encoder_hidden_states=None,
894
+ encoder_attention_mask=None,
895
+ head_mask=None,
896
+ cross_attn_head_mask=None,
897
+ past_key_values=None,
898
+ use_cache=None,
899
+ output_attentions=None,
900
+ output_hidden_states=None,
901
+ return_dict=None,
902
+ training=False,
903
+ ):
904
+ r"""
905
+ Args:
906
+ input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`):
907
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
908
+ provide it.
909
+
910
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
911
+ [`PreTrainedTokenizer.__call__`] for details.
912
+
913
+ [What are input IDs?](../glossary#input-ids)
914
+ attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
915
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
916
+
917
+ - 1 for tokens that are **not masked**,
918
+ - 0 for tokens that are **masked**.
919
+
920
+ [What are attention masks?](../glossary#attention-mask)
921
+ position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
922
+ Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
923
+ range `[0, config.max_position_embeddings - 1]`.
924
+ encoder_hidden_states (`tf.Tensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
925
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
926
+ of the decoder.
927
+ encoder_attention_mask (`tf.Tensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
928
+ Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
929
+ selected in `[0, 1]`:
930
+
931
+ - 1 for tokens that are **not masked**,
932
+ - 0 for tokens that are **masked**.
933
+
934
+ [What are attention masks?](../glossary#attention-mask)
935
+ head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
936
+ Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
937
+
938
+ - 1 indicates the head is **not masked**,
939
+ - 0 indicates the head is **masked**.
940
+
941
+ cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
942
+ Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
943
+
944
+ - 1 indicates the head is **not masked**,
945
+ - 0 indicates the head is **masked**.
946
+
947
+ past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers` with each tuple having 2 tuples each of which has 2 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
948
+ Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up
949
+ decoding.
950
+
951
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
952
+ that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
953
+ all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
954
+ inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
955
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
956
+ This is useful if you want more control over how to convert `input_ids` indices into associated vectors
957
+ than the model's internal embedding lookup matrix.
958
+ output_attentions (`bool`, *optional*):
959
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
960
+ returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value
961
+ in the config will be used instead.
962
+ output_hidden_states (`bool`, *optional*):
963
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
964
+ for more detail. This argument can be used only in eager mode, in graph mode the value in the config
965
+ will be used instead.
966
+ return_dict (`bool`, *optional*):
967
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used
968
+ in eager mode, in graph mode the value will always be set to True.
969
+ training (`bool`, *optional*, defaults to `False`):
970
+ Whether or not to use the model in training mode (some modules like dropout modules have different
971
+ behaviors between training and evaluation).
972
+ """
973
+ if input_ids is not None and inputs_embeds is not None:
974
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
975
+ elif input_ids is not None:
976
+ input_shape = shape_list(input_ids)
977
+ elif inputs_embeds is not None:
978
+ input_shape = shape_list(inputs_embeds)[:-1]
979
+ else:
980
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
981
+
982
+ past_key_values_length = shape_list(past_key_values[0][0])[2] if past_key_values is not None else 0
983
+
984
+ # embed positions
985
+ if position_ids is None:
986
+ positions = self.embed_positions(input_shape, past_key_values_length)
987
+ else:
988
+ positions = self.embed_positions(input_shape, position_ids=position_ids)
989
+
990
+ if inputs_embeds is None:
991
+ check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim)
992
+ inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
993
+
994
+ hidden_states = inputs_embeds
995
+
996
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
997
+ if input_shape[-1] > 1:
998
+ combined_attention_mask = _make_causal_mask(input_shape, past_key_values_length=past_key_values_length)
999
+ else:
1000
+ combined_attention_mask = _expand_mask(
1001
+ tf.ones((input_shape[0], input_shape[1] + past_key_values_length)), tgt_len=input_shape[-1]
1002
+ )
1003
+
1004
+ if attention_mask is not None:
1005
+ combined_attention_mask = combined_attention_mask + _expand_mask(attention_mask, tgt_len=input_shape[-1])
1006
+
1007
+ if encoder_hidden_states is not None and encoder_attention_mask is not None:
1008
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
1009
+ encoder_attention_mask = _expand_mask(encoder_attention_mask, tgt_len=input_shape[-1])
1010
+
1011
+ hidden_states = hidden_states + positions
1012
+ hidden_states = self.dropout(hidden_states, training=training)
1013
+
1014
+ # decoder layers
1015
+ all_hidden_states = () if output_hidden_states else None
1016
+ all_self_attns = () if output_attentions else None
1017
+ all_cross_attns = () if (output_attentions and encoder_hidden_states is not None) else None
1018
+ present_key_values = () if use_cache else None
1019
+
1020
+ # check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired
1021
+ for attn_mask_name, attn_mask in [("head_mask", head_mask), ("cross_attn_head_mask", cross_attn_head_mask)]:
1022
+ if attn_mask is not None:
1023
+ tf.debugging.assert_equal(
1024
+ shape_list(attn_mask)[0],
1025
+ len(self.layers),
1026
+ message=(
1027
+ f"The {attn_mask_name} should be specified for {len(self.layers)} layers, but it is for"
1028
+ f" {shape_list(attn_mask)[0]}."
1029
+ ),
1030
+ )
1031
+ for idx, decoder_layer in enumerate(self.layers):
1032
+ # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
1033
+ if output_hidden_states:
1034
+ all_hidden_states += (hidden_states,)
1035
+ dropout_probability = random.uniform(0, 1)
1036
+
1037
+ if training and (dropout_probability < self.layerdrop):
1038
+ continue
1039
+
1040
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
1041
+
1042
+ hidden_states, layer_self_attn, layer_cross_attn, present_key_value = decoder_layer(
1043
+ hidden_states,
1044
+ attention_mask=combined_attention_mask,
1045
+ encoder_hidden_states=encoder_hidden_states,
1046
+ encoder_attention_mask=encoder_attention_mask,
1047
+ layer_head_mask=head_mask[idx] if head_mask is not None else None,
1048
+ cross_attn_layer_head_mask=cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
1049
+ past_key_value=past_key_value,
1050
+ )
1051
+
1052
+ if use_cache:
1053
+ present_key_values += (present_key_value,)
1054
+
1055
+ if output_attentions:
1056
+ all_self_attns += (layer_self_attn,)
1057
+
1058
+ if encoder_hidden_states is not None:
1059
+ all_cross_attns += (layer_cross_attn,)
1060
+
1061
+ hidden_states = self.layer_norm(hidden_states)
1062
+
1063
+ if output_hidden_states:
1064
+ all_hidden_states += (hidden_states,)
1065
+
1066
+ if not return_dict:
1067
+ return hidden_states, present_key_values, all_hidden_states, all_self_attns, all_cross_attns
1068
+ else:
1069
+ return TFBaseModelOutputWithPastAndCrossAttentions(
1070
+ last_hidden_state=hidden_states,
1071
+ past_key_values=present_key_values,
1072
+ hidden_states=all_hidden_states,
1073
+ attentions=all_self_attns,
1074
+ cross_attentions=all_cross_attns,
1075
+ )
1076
+
1077
+ def build(self, input_shape=None):
1078
+ if self.built:
1079
+ return
1080
+ self.built = True
1081
+ if getattr(self, "embed_positions", None) is not None:
1082
+ with tf.name_scope(self.embed_positions.name):
1083
+ self.embed_positions.build(None)
1084
+ if getattr(self, "layer_norm", None) is not None:
1085
+ with tf.name_scope(self.layer_norm.name):
1086
+ self.layer_norm.build([None, None, self.config.d_model])
1087
+ if getattr(self, "layers", None) is not None:
1088
+ for layer in self.layers:
1089
+ with tf.name_scope(layer.name):
1090
+ layer.build(None)
1091
+
1092
+
1093
+ @keras_serializable
1094
+ class TFBlenderbotMainLayer(keras.layers.Layer):
1095
+ config_class = BlenderbotConfig
1096
+
1097
+ def __init__(self, config: BlenderbotConfig, **kwargs):
1098
+ super().__init__(**kwargs)
1099
+
1100
+ self.config = config
1101
+ self.shared = keras.layers.Embedding(
1102
+ input_dim=config.vocab_size,
1103
+ output_dim=config.d_model,
1104
+ embeddings_initializer=keras.initializers.TruncatedNormal(stddev=self.config.init_std),
1105
+ name="model.shared",
1106
+ )
1107
+ # Additional attribute to specify the expected name scope of the layer (for loading/storing weights)
1108
+ self.shared.load_weight_prefix = "model.shared"
1109
+
1110
+ self.encoder = TFBlenderbotEncoder(config, self.shared, name="encoder")
1111
+ self.decoder = TFBlenderbotDecoder(config, self.shared, name="decoder")
1112
+
1113
+ def get_input_embeddings(self):
1114
+ return self.shared
1115
+
1116
+ def set_input_embeddings(self, new_embeddings):
1117
+ self.shared = new_embeddings
1118
+ self.encoder.embed_tokens = self.shared
1119
+ self.decoder.embed_tokens = self.shared
1120
+
1121
+ @unpack_inputs
1122
+ def call(
1123
+ self,
1124
+ input_ids=None,
1125
+ attention_mask=None,
1126
+ decoder_input_ids=None,
1127
+ decoder_attention_mask=None,
1128
+ decoder_position_ids=None,
1129
+ head_mask=None,
1130
+ decoder_head_mask=None,
1131
+ cross_attn_head_mask=None,
1132
+ encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None,
1133
+ past_key_values=None,
1134
+ inputs_embeds=None,
1135
+ decoder_inputs_embeds=None,
1136
+ use_cache=None,
1137
+ output_attentions=None,
1138
+ output_hidden_states=None,
1139
+ return_dict=None,
1140
+ training=False,
1141
+ **kwargs,
1142
+ ):
1143
+ output_hidden_states = (
1144
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1145
+ )
1146
+
1147
+ if encoder_outputs is None:
1148
+ encoder_outputs = self.encoder(
1149
+ input_ids=input_ids,
1150
+ attention_mask=attention_mask,
1151
+ head_mask=head_mask,
1152
+ inputs_embeds=inputs_embeds,
1153
+ output_attentions=output_attentions,
1154
+ output_hidden_states=output_hidden_states,
1155
+ return_dict=return_dict,
1156
+ training=training,
1157
+ )
1158
+ # If the user passed a tuple for encoder_outputs, we wrap it in a TFBaseModelOutput when return_dict=True
1159
+ elif return_dict and not isinstance(encoder_outputs, TFBaseModelOutput):
1160
+ encoder_outputs = TFBaseModelOutput(
1161
+ last_hidden_state=encoder_outputs[0],
1162
+ hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
1163
+ attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
1164
+ )
1165
+ # If the user passed a TFBaseModelOutput for encoder_outputs, we wrap it in a tuple when return_dict=False
1166
+ elif not return_dict and not isinstance(encoder_outputs, tuple):
1167
+ encoder_outputs = encoder_outputs.to_tuple()
1168
+
1169
+ decoder_outputs = self.decoder(
1170
+ decoder_input_ids,
1171
+ attention_mask=decoder_attention_mask,
1172
+ position_ids=decoder_position_ids,
1173
+ encoder_hidden_states=encoder_outputs[0],
1174
+ encoder_attention_mask=attention_mask,
1175
+ head_mask=decoder_head_mask,
1176
+ cross_attn_head_mask=cross_attn_head_mask,
1177
+ past_key_values=past_key_values,
1178
+ inputs_embeds=decoder_inputs_embeds,
1179
+ use_cache=use_cache,
1180
+ output_attentions=output_attentions,
1181
+ output_hidden_states=output_hidden_states,
1182
+ return_dict=return_dict,
1183
+ training=training,
1184
+ )
1185
+
1186
+ if not return_dict:
1187
+ return decoder_outputs + encoder_outputs
1188
+
1189
+ return TFSeq2SeqModelOutput(
1190
+ last_hidden_state=decoder_outputs.last_hidden_state,
1191
+ past_key_values=decoder_outputs.past_key_values,
1192
+ decoder_hidden_states=decoder_outputs.hidden_states,
1193
+ decoder_attentions=decoder_outputs.attentions,
1194
+ cross_attentions=decoder_outputs.cross_attentions,
1195
+ encoder_last_hidden_state=encoder_outputs.last_hidden_state,
1196
+ encoder_hidden_states=encoder_outputs.hidden_states,
1197
+ encoder_attentions=encoder_outputs.attentions,
1198
+ )
1199
+
1200
+ def build(self, input_shape=None):
1201
+ if self.built:
1202
+ return
1203
+ self.built = True
1204
+ # The shared/tied weights expect to be in the model base namespace
1205
+ # Adding "/" to the end (not the start!) of a tf.name_scope puts it in the root namespace rather than
1206
+ # the current one.
1207
+ with tf.name_scope(self.shared.load_weight_prefix + "/" + self.shared.name + "/"):
1208
+ self.shared.build(None)
1209
+ if getattr(self, "encoder", None) is not None:
1210
+ with tf.name_scope(self.encoder.name):
1211
+ self.encoder.build(None)
1212
+ if getattr(self, "decoder", None) is not None:
1213
+ with tf.name_scope(self.decoder.name):
1214
+ self.decoder.build(None)
1215
+
1216
+
1217
+ @add_start_docstrings(
1218
+ "The bare BLENDERBOT Model outputting raw hidden-states without any specific head on top.",
1219
+ BLENDERBOT_START_DOCSTRING,
1220
+ )
1221
+ class TFBlenderbotModel(TFBlenderbotPreTrainedModel):
1222
+ def __init__(self, config: BlenderbotConfig, *inputs, **kwargs):
1223
+ super().__init__(config, *inputs, **kwargs)
1224
+
1225
+ self.model = TFBlenderbotMainLayer(config, name="model")
1226
+
1227
+ def get_encoder(self):
1228
+ return self.model.encoder
1229
+
1230
+ def get_decoder(self):
1231
+ return self.model.decoder
1232
+
1233
+ @classmethod
1234
+ def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs):
1235
+ if pretrained_model_name_or_path == "facebook/blenderbot-90M":
1236
+ from ..blenderbot_small import TFBlenderbotSmallModel
1237
+
1238
+ warnings.warn(
1239
+ "The checkpoint `facebook/blenderbot-90M` is deprecated. In the future, please use the identical"
1240
+ " checkpoint `facebook/small_blenderbot-90M` with"
1241
+ " `TFBlenderbotSmallForConditionalGeneration.from_pretrained('facebook/small_blenderbot-90M')`"
1242
+ " instead.",
1243
+ FutureWarning,
1244
+ )
1245
+ return TFBlenderbotSmallModel.from_pretrained(pretrained_model_name_or_path)
1246
+
1247
+ return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
1248
+
1249
+ @unpack_inputs
1250
+ @add_start_docstrings_to_model_forward(BLENDERBOT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
1251
+ @add_code_sample_docstrings(
1252
+ checkpoint=_CHECKPOINT_FOR_DOC,
1253
+ output_type=TFSeq2SeqModelOutput,
1254
+ config_class=_CONFIG_FOR_DOC,
1255
+ )
1256
+ def call(
1257
+ self,
1258
+ input_ids: tf.Tensor | None = None,
1259
+ attention_mask: tf.Tensor | None = None,
1260
+ decoder_input_ids: tf.Tensor | None = None,
1261
+ decoder_attention_mask: tf.Tensor | None = None,
1262
+ decoder_position_ids: tf.Tensor | None = None,
1263
+ head_mask: tf.Tensor | None = None,
1264
+ decoder_head_mask: tf.Tensor | None = None,
1265
+ cross_attn_head_mask: tf.Tensor | None = None,
1266
+ encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None,
1267
+ past_key_values: List[tf.Tensor] | None = None,
1268
+ inputs_embeds: tf.Tensor | None = None,
1269
+ decoder_inputs_embeds: tf.Tensor | None = None,
1270
+ use_cache: Optional[bool] = None,
1271
+ output_attentions: Optional[bool] = None,
1272
+ output_hidden_states: Optional[bool] = None,
1273
+ return_dict: Optional[bool] = None,
1274
+ training: Optional[bool] = False,
1275
+ **kwargs,
1276
+ ) -> Union[Tuple[tf.Tensor], TFSeq2SeqModelOutput]:
1277
+ outputs = self.model(
1278
+ input_ids=input_ids,
1279
+ attention_mask=attention_mask,
1280
+ decoder_input_ids=decoder_input_ids,
1281
+ decoder_attention_mask=decoder_attention_mask,
1282
+ decoder_position_ids=decoder_position_ids,
1283
+ head_mask=head_mask,
1284
+ decoder_head_mask=decoder_head_mask,
1285
+ cross_attn_head_mask=cross_attn_head_mask,
1286
+ encoder_outputs=encoder_outputs,
1287
+ past_key_values=past_key_values,
1288
+ inputs_embeds=inputs_embeds,
1289
+ decoder_inputs_embeds=decoder_inputs_embeds,
1290
+ use_cache=use_cache,
1291
+ output_attentions=output_attentions,
1292
+ output_hidden_states=output_hidden_states,
1293
+ return_dict=return_dict,
1294
+ training=training,
1295
+ )
1296
+
1297
+ return outputs
1298
+
1299
+ # Copied from transformers.models.bart.modeling_tf_bart.TFBartModel.serving_output
1300
+ def serving_output(self, output):
1301
+ pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
1302
+ dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None
1303
+ dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None
1304
+ cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None
1305
+ enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None
1306
+ enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None
1307
+
1308
+ return TFSeq2SeqModelOutput(
1309
+ last_hidden_state=output.last_hidden_state,
1310
+ past_key_values=pkv,
1311
+ decoder_hidden_states=dec_hs,
1312
+ decoder_attentions=dec_attns,
1313
+ cross_attentions=cross_attns,
1314
+ encoder_last_hidden_state=output.encoder_last_hidden_state,
1315
+ encoder_hidden_states=enc_hs,
1316
+ encoder_attentions=enc_attns,
1317
+ )
1318
+
1319
+ def build(self, input_shape=None):
1320
+ if self.built:
1321
+ return
1322
+ self.built = True
1323
+ if getattr(self, "model", None) is not None:
1324
+ with tf.name_scope(self.model.name):
1325
+ self.model.build(None)
1326
+
1327
+
1328
+ # Copied from transformers.models.bart.modeling_tf_bart.BiasLayer
1329
+ class BiasLayer(keras.layers.Layer):
1330
+ """
1331
+ Bias as a layer. It is used for serialization purposes: `keras.Model.save_weights` stores on a per-layer basis,
1332
+ so all weights have to be registered in a layer.
1333
+ """
1334
+
1335
+ def __init__(self, shape, initializer, trainable, name, **kwargs):
1336
+ super().__init__(name=name, **kwargs)
1337
+ # Note: the name of this variable will NOT be scoped when serialized, i.e. it will not be in the format of
1338
+ # "outer_layer/inner_layer/.../name:0". Instead, it will be "name:0". For further details, see:
1339
+ # https://github.com/huggingface/transformers/pull/18833#issuecomment-1233090214
1340
+ self.bias = self.add_weight(name=name, shape=shape, initializer=initializer, trainable=trainable)
1341
+
1342
+ def call(self, x):
1343
+ return x + self.bias
1344
+
1345
+
1346
+ @add_start_docstrings(
1347
+ "The BLENDERBOT Model with a language modeling head. Can be used for summarization.",
1348
+ BLENDERBOT_START_DOCSTRING,
1349
+ )
1350
+ class TFBlenderbotForConditionalGeneration(TFBlenderbotPreTrainedModel, TFCausalLanguageModelingLoss):
1351
+ _keys_to_ignore_on_load_unexpected = [
1352
+ r"model.encoder.embed_tokens.weight",
1353
+ r"model.decoder.embed_tokens.weight",
1354
+ ]
1355
+
1356
+ def __init__(self, config, *inputs, **kwargs):
1357
+ super().__init__(config, *inputs, **kwargs)
1358
+ self.model = TFBlenderbotMainLayer(config, name="model")
1359
+ self.use_cache = config.use_cache
1360
+ # final_bias_logits is registered as a buffer in pytorch, so not trainable for the sake of consistency.
1361
+ self.bias_layer = BiasLayer(
1362
+ name="final_logits_bias", shape=[1, config.vocab_size], initializer="zeros", trainable=False
1363
+ )
1364
+
1365
+ def get_decoder(self):
1366
+ return self.model.decoder
1367
+
1368
+ def get_encoder(self):
1369
+ return self.model.encoder
1370
+
1371
+ def get_output_embeddings(self):
1372
+ return self.get_input_embeddings()
1373
+
1374
+ def set_output_embeddings(self, value):
1375
+ self.set_input_embeddings(value)
1376
+
1377
+ def get_bias(self):
1378
+ return {"final_logits_bias": self.bias_layer.bias}
1379
+
1380
+ def set_bias(self, value):
1381
+ # Replaces the existing layers containing bias for correct (de)serialization.
1382
+ vocab_size = value["final_logits_bias"].shape[-1]
1383
+ self.bias_layer = BiasLayer(
1384
+ name="final_logits_bias", shape=[1, vocab_size], initializer="zeros", trainable=False
1385
+ )
1386
+ self.bias_layer.bias.assign(value["final_logits_bias"])
1387
+
1388
+ @classmethod
1389
+ def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs):
1390
+ if pretrained_model_name_or_path == "facebook/blenderbot-90M":
1391
+ from ..blenderbot_small import TFBlenderbotSmallForConditionalGeneration
1392
+
1393
+ warnings.warn(
1394
+ "The checkpoint `facebook/blenderbot-90M` is deprecated. In the future, please use the identical"
1395
+ " checkpoint `facebook/small_blenderbot-90M` with"
1396
+ " `TFBlenderbotSmallForConditionalGeneration.from_pretrained('facebook/small_blenderbot-90M')`"
1397
+ " instead.",
1398
+ FutureWarning,
1399
+ )
1400
+ return TFBlenderbotSmallForConditionalGeneration.from_pretrained(pretrained_model_name_or_path)
1401
+
1402
+ return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
1403
+
1404
+ @unpack_inputs
1405
+ @add_start_docstrings_to_model_forward(BLENDERBOT_INPUTS_DOCSTRING)
1406
+ @replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
1407
+ @add_end_docstrings(BLENDERBOT_GENERATION_EXAMPLE)
1408
+ def call(
1409
+ self,
1410
+ input_ids: tf.Tensor | None = None,
1411
+ attention_mask: tf.Tensor | None = None,
1412
+ decoder_input_ids: tf.Tensor | None = None,
1413
+ decoder_attention_mask: tf.Tensor | None = None,
1414
+ decoder_position_ids: tf.Tensor | None = None,
1415
+ head_mask: tf.Tensor | None = None,
1416
+ decoder_head_mask: tf.Tensor | None = None,
1417
+ cross_attn_head_mask: tf.Tensor | None = None,
1418
+ encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None,
1419
+ past_key_values: List[tf.Tensor] | None = None,
1420
+ inputs_embeds: tf.Tensor | None = None,
1421
+ decoder_inputs_embeds: tf.Tensor | None = None,
1422
+ use_cache: Optional[bool] = None,
1423
+ output_attentions: Optional[bool] = None,
1424
+ output_hidden_states: Optional[bool] = None,
1425
+ return_dict: Optional[bool] = None,
1426
+ labels: tf.Tensor | None = None,
1427
+ training: Optional[bool] = False,
1428
+ ) -> Union[Tuple[tf.Tensor], TFSeq2SeqLMOutput]:
1429
+ r"""
1430
+ labels (`tf.tensor` of shape `(batch_size, sequence_length)`, *optional*):
1431
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1432
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1433
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1434
+
1435
+ Returns:
1436
+
1437
+ """
1438
+ if labels is not None:
1439
+ labels = tf.where(
1440
+ labels == self.config.pad_token_id,
1441
+ tf.cast(tf.fill(shape_list(labels), -100), labels.dtype),
1442
+ labels,
1443
+ )
1444
+ use_cache = False
1445
+ if decoder_input_ids is None and decoder_inputs_embeds is None:
1446
+ decoder_input_ids = shift_tokens_right(
1447
+ labels, self.config.pad_token_id, self.config.decoder_start_token_id
1448
+ )
1449
+
1450
+ outputs = self.model(
1451
+ input_ids,
1452
+ attention_mask=attention_mask,
1453
+ decoder_input_ids=decoder_input_ids,
1454
+ encoder_outputs=encoder_outputs,
1455
+ decoder_attention_mask=decoder_attention_mask,
1456
+ decoder_position_ids=decoder_position_ids,
1457
+ head_mask=head_mask,
1458
+ decoder_head_mask=decoder_head_mask,
1459
+ cross_attn_head_mask=cross_attn_head_mask,
1460
+ past_key_values=past_key_values,
1461
+ inputs_embeds=inputs_embeds,
1462
+ decoder_inputs_embeds=decoder_inputs_embeds,
1463
+ use_cache=use_cache,
1464
+ output_attentions=output_attentions,
1465
+ output_hidden_states=output_hidden_states,
1466
+ return_dict=return_dict,
1467
+ training=training,
1468
+ )
1469
+ lm_logits = tf.matmul(outputs[0], self.model.shared.weights, transpose_b=True)
1470
+ lm_logits = self.bias_layer(lm_logits)
1471
+ masked_lm_loss = None if labels is None else self.hf_compute_loss(labels, lm_logits)
1472
+
1473
+ if not return_dict:
1474
+ output = (lm_logits,) + outputs[1:]
1475
+ return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
1476
+ return TFSeq2SeqLMOutput(
1477
+ loss=masked_lm_loss,
1478
+ logits=lm_logits,
1479
+ past_key_values=outputs.past_key_values, # index 1 of d outputs
1480
+ decoder_hidden_states=outputs.decoder_hidden_states, # index 2 of d outputs
1481
+ decoder_attentions=outputs.decoder_attentions, # index 3 of d outputs
1482
+ cross_attentions=outputs.cross_attentions, # index 4 of d outputs
1483
+ encoder_last_hidden_state=outputs.encoder_last_hidden_state, # index 0 of encoder outputs
1484
+ encoder_hidden_states=outputs.encoder_hidden_states, # 1 of e out
1485
+ encoder_attentions=outputs.encoder_attentions, # 2 of e out
1486
+ )
1487
+
1488
+ # Copied from transformers.models.bart.modeling_tf_bart.TFBartForConditionalGeneration.serving_output
1489
+ def serving_output(self, output):
1490
+ pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
1491
+ dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None
1492
+ dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None
1493
+ cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None
1494
+ enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None
1495
+ enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None
1496
+
1497
+ return TFSeq2SeqLMOutput(
1498
+ logits=output.logits,
1499
+ past_key_values=pkv,
1500
+ decoder_hidden_states=dec_hs,
1501
+ decoder_attentions=dec_attns,
1502
+ cross_attentions=cross_attns,
1503
+ encoder_last_hidden_state=output.encoder_last_hidden_state,
1504
+ encoder_hidden_states=enc_hs,
1505
+ encoder_attentions=enc_attns,
1506
+ )
1507
+
1508
+ # Copied from transformers.models.bart.modeling_tf_bart.TFBartForConditionalGeneration.prepare_inputs_for_generation
1509
+ def prepare_inputs_for_generation(
1510
+ self,
1511
+ decoder_input_ids,
1512
+ past_key_values=None,
1513
+ attention_mask=None,
1514
+ decoder_attention_mask=None,
1515
+ head_mask=None,
1516
+ decoder_head_mask=None,
1517
+ cross_attn_head_mask=None,
1518
+ use_cache=None,
1519
+ encoder_outputs=None,
1520
+ **kwargs,
1521
+ ):
1522
+ # cut decoder_input_ids if past_key_values is used
1523
+ if past_key_values is not None:
1524
+ decoder_input_ids = decoder_input_ids[:, -1:]
1525
+
1526
+ if decoder_attention_mask is not None: # xla
1527
+ decoder_position_ids = tf.math.cumsum(decoder_attention_mask, axis=-1, exclusive=True)[:, -1:]
1528
+ elif past_key_values is not None: # no xla + past_key_values
1529
+ decoder_position_ids = past_key_values[0][0].shape[2]
1530
+ else: # no xla + no past_key_values
1531
+ decoder_position_ids = tf.range(decoder_input_ids.shape[1])
1532
+
1533
+ return {
1534
+ "input_ids": None, # encoder_outputs is defined. input_ids not needed
1535
+ "encoder_outputs": encoder_outputs,
1536
+ "past_key_values": past_key_values,
1537
+ "decoder_input_ids": decoder_input_ids,
1538
+ "attention_mask": attention_mask,
1539
+ "decoder_attention_mask": decoder_attention_mask,
1540
+ "decoder_position_ids": decoder_position_ids,
1541
+ "head_mask": head_mask,
1542
+ "decoder_head_mask": decoder_head_mask,
1543
+ "cross_attn_head_mask": cross_attn_head_mask,
1544
+ "use_cache": use_cache, # change this to avoid caching (presumably for debugging)
1545
+ }
1546
+
1547
+ def build(self, input_shape=None):
1548
+ if self.built:
1549
+ return
1550
+ self.built = True
1551
+ if getattr(self, "model", None) is not None:
1552
+ with tf.name_scope(self.model.name):
1553
+ self.model.build(None)
1554
+ if getattr(self, "bias_layer", None) is not None:
1555
+ with tf.name_scope(self.bias_layer.name):
1556
+ self.bias_layer.build(None)
llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/tokenization_blenderbot.py ADDED
@@ -0,0 +1,427 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2021 The Facebook Inc. and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Tokenization class for Blenderbot."""
16
+
17
+ import json
18
+ import os
19
+ from functools import lru_cache
20
+ from typing import List, Optional, Tuple
21
+
22
+ import regex as re
23
+
24
+ from ...tokenization_utils import AddedToken, PreTrainedTokenizer
25
+ from ...utils import logging
26
+
27
+
28
+ logger = logging.get_logger(__name__)
29
+
30
+
31
+ VOCAB_FILES_NAMES = {
32
+ "vocab_file": "vocab.json",
33
+ "merges_file": "merges.txt",
34
+ "tokenizer_config_file": "tokenizer_config.json",
35
+ }
36
+
37
+
38
+ @lru_cache()
39
+ # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode
40
+ def bytes_to_unicode():
41
+ """
42
+ Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control
43
+ characters the bpe code barfs on.
44
+
45
+ The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab
46
+ if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for
47
+ decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup
48
+ tables between utf-8 bytes and unicode strings.
49
+ """
50
+ bs = (
51
+ list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
52
+ )
53
+ cs = bs[:]
54
+ n = 0
55
+ for b in range(2**8):
56
+ if b not in bs:
57
+ bs.append(b)
58
+ cs.append(2**8 + n)
59
+ n += 1
60
+ cs = [chr(n) for n in cs]
61
+ return dict(zip(bs, cs))
62
+
63
+
64
+ # Copied from transformers.models.roberta.tokenization_roberta.get_pairs
65
+ def get_pairs(word):
66
+ """
67
+ Return set of symbol pairs in a word.
68
+
69
+ Word is represented as tuple of symbols (symbols being variable-length strings).
70
+ """
71
+ pairs = set()
72
+ prev_char = word[0]
73
+ for char in word[1:]:
74
+ pairs.add((prev_char, char))
75
+ prev_char = char
76
+ return pairs
77
+
78
+
79
+ class BlenderbotTokenizer(PreTrainedTokenizer):
80
+ """
81
+ Constructs a Blenderbot tokenizer, derived from the GPT-2 tokenizer, using byte-level Byte-Pair-Encoding.
82
+
83
+ This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
84
+ be encoded differently whether it is at the beginning of the sentence (without space) or not:
85
+
86
+ ```python
87
+ >>> from transformers import BlenderbotTokenizer
88
+
89
+ >>> tokenizer = BlenderbotTokenizer.from_pretrained("facebook/blenderbot-3B")
90
+ >>> tokenizer.add_prefix_space = False
91
+ >>> tokenizer("Hello world")["input_ids"]
92
+ [47, 921, 86, 1085, 2]
93
+
94
+ >>> tokenizer(" Hello world")["input_ids"]
95
+ [6950, 1085, 2]
96
+ ```
97
+
98
+ You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer or when you
99
+ call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance.
100
+
101
+ <Tip>
102
+
103
+ When used with `is_split_into_words=True`, this tokenizer will add a space before each word (even the first one).
104
+
105
+ </Tip>
106
+
107
+ This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
108
+ this superclass for more information regarding those methods.
109
+
110
+ Args:
111
+ vocab_file (`str`):
112
+ Path to the vocabulary file.
113
+ merges_file (`str`):
114
+ Path to the merges file.
115
+ errors (`str`, *optional*, defaults to `"replace"`):
116
+ Paradigm to follow when decoding bytes to UTF-8. See
117
+ [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
118
+ bos_token (`str`, *optional*, defaults to `"<s>"`):
119
+ The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
120
+
121
+ <Tip>
122
+
123
+ When building a sequence using special tokens, this is not the token that is used for the beginning of
124
+ sequence. The token used is the `cls_token`.
125
+
126
+ </Tip>
127
+
128
+ eos_token (`str`, *optional*, defaults to `"</s>"`):
129
+ The end of sequence token.
130
+
131
+ <Tip>
132
+
133
+ When building a sequence using special tokens, this is not the token that is used for the end of sequence.
134
+ The token used is the `sep_token`.
135
+
136
+ </Tip>
137
+
138
+ sep_token (`str`, *optional*, defaults to `"</s>"`):
139
+ The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
140
+ sequence classification or for a text and a question for question answering. It is also used as the last
141
+ token of a sequence built with special tokens.
142
+ cls_token (`str`, *optional*, defaults to `"<s>"`):
143
+ The classifier token which is used when doing sequence classification (classification of the whole sequence
144
+ instead of per-token classification). It is the first token of the sequence when built with special tokens.
145
+ unk_token (`str`, *optional*, defaults to `"<unk>"`):
146
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
147
+ token instead.
148
+ pad_token (`str`, *optional*, defaults to `"<pad>"`):
149
+ The token used for padding, for example when batching sequences of different lengths.
150
+ mask_token (`str`, *optional*, defaults to `"<mask>"`):
151
+ The token used for masking values. This is the token used when training this model with masked language
152
+ modeling. This is the token which the model will try to predict.
153
+ add_prefix_space (`bool`, *optional*, defaults to `False`):
154
+ Whether or not to add an initial space to the input. This allows to treat the leading word just as any
155
+ other word. (Blenderbot tokenizer detect beginning of words by the preceding space).
156
+ """
157
+
158
+ vocab_files_names = VOCAB_FILES_NAMES
159
+ model_input_names = ["input_ids", "attention_mask"]
160
+
161
+ # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.__init__ with Roberta->Blenderbot, RoBERTa->Blenderbot
162
+ def __init__(
163
+ self,
164
+ vocab_file,
165
+ merges_file,
166
+ errors="replace",
167
+ bos_token="<s>",
168
+ eos_token="</s>",
169
+ sep_token="</s>",
170
+ cls_token="<s>",
171
+ unk_token="<unk>",
172
+ pad_token="<pad>",
173
+ mask_token="<mask>",
174
+ add_prefix_space=False,
175
+ **kwargs,
176
+ ):
177
+ bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
178
+ pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
179
+ eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
180
+ unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
181
+ sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token
182
+ cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token
183
+
184
+ # Mask token behave like a normal word, i.e. include the space before it
185
+ mask_token = (
186
+ AddedToken(mask_token, lstrip=True, rstrip=False, normalized=False)
187
+ if isinstance(mask_token, str)
188
+ else mask_token
189
+ )
190
+
191
+ # these special tokens are not part of the vocab.json, let's add them in the correct order
192
+
193
+ with open(vocab_file, encoding="utf-8") as vocab_handle:
194
+ self.encoder = json.load(vocab_handle)
195
+ self.decoder = {v: k for k, v in self.encoder.items()}
196
+ self.errors = errors # how to handle errors in decoding
197
+ self.byte_encoder = bytes_to_unicode()
198
+ self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
199
+ with open(merges_file, encoding="utf-8") as merges_handle:
200
+ bpe_merges = merges_handle.read().split("\n")[1:-1]
201
+ bpe_merges = [tuple(merge.split()) for merge in bpe_merges]
202
+ self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
203
+ self.cache = {}
204
+ self.add_prefix_space = add_prefix_space
205
+
206
+ # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
207
+ self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")
208
+
209
+ super().__init__(
210
+ errors=errors,
211
+ bos_token=bos_token,
212
+ eos_token=eos_token,
213
+ unk_token=unk_token,
214
+ sep_token=sep_token,
215
+ cls_token=cls_token,
216
+ pad_token=pad_token,
217
+ mask_token=mask_token,
218
+ add_prefix_space=add_prefix_space,
219
+ **kwargs,
220
+ )
221
+
222
+ @property
223
+ # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot
224
+ def vocab_size(self):
225
+ return len(self.encoder)
226
+
227
+ # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.get_vocab with Roberta->Blenderbot, RoBERTa->Blenderbot
228
+ def get_vocab(self):
229
+ vocab = dict(self.encoder).copy()
230
+ vocab.update(self.added_tokens_encoder)
231
+ return vocab
232
+
233
+ # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.bpe with Roberta->Blenderbot, RoBERTa->Blenderbot
234
+ def bpe(self, token):
235
+ if token in self.cache:
236
+ return self.cache[token]
237
+ word = tuple(token)
238
+ pairs = get_pairs(word)
239
+
240
+ if not pairs:
241
+ return token
242
+
243
+ while True:
244
+ bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
245
+ if bigram not in self.bpe_ranks:
246
+ break
247
+ first, second = bigram
248
+ new_word = []
249
+ i = 0
250
+ while i < len(word):
251
+ try:
252
+ j = word.index(first, i)
253
+ except ValueError:
254
+ new_word.extend(word[i:])
255
+ break
256
+ else:
257
+ new_word.extend(word[i:j])
258
+ i = j
259
+
260
+ if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
261
+ new_word.append(first + second)
262
+ i += 2
263
+ else:
264
+ new_word.append(word[i])
265
+ i += 1
266
+ new_word = tuple(new_word)
267
+ word = new_word
268
+ if len(word) == 1:
269
+ break
270
+ else:
271
+ pairs = get_pairs(word)
272
+ word = " ".join(word)
273
+ self.cache[token] = word
274
+ return word
275
+
276
+ # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer._tokenize with Roberta->Blenderbot, RoBERTa->Blenderbot
277
+ def _tokenize(self, text):
278
+ """Tokenize a string."""
279
+ bpe_tokens = []
280
+ for token in re.findall(self.pat, text):
281
+ token = "".join(
282
+ self.byte_encoder[b] for b in token.encode("utf-8")
283
+ ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
284
+ bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" "))
285
+ return bpe_tokens
286
+
287
+ # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer._convert_token_to_id with Roberta->Blenderbot, RoBERTa->Blenderbot
288
+ def _convert_token_to_id(self, token):
289
+ """Converts a token (str) in an id using the vocab."""
290
+ return self.encoder.get(token, self.encoder.get(self.unk_token))
291
+
292
+ # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer._convert_id_to_token with Roberta->Blenderbot, RoBERTa->Blenderbot
293
+ def _convert_id_to_token(self, index):
294
+ """Converts an index (integer) in a token (str) using the vocab."""
295
+ return self.decoder.get(index)
296
+
297
+ # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.convert_tokens_to_string with Roberta->Blenderbot, RoBERTa->Blenderbot
298
+ def convert_tokens_to_string(self, tokens):
299
+ """Converts a sequence of tokens (string) in a single string."""
300
+ text = "".join(tokens)
301
+ text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors)
302
+ return text
303
+
304
+ # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.save_vocabulary with Roberta->Blenderbot, RoBERTa->Blenderbot
305
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
306
+ if not os.path.isdir(save_directory):
307
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
308
+ return
309
+ vocab_file = os.path.join(
310
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
311
+ )
312
+ merge_file = os.path.join(
313
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
314
+ )
315
+
316
+ with open(vocab_file, "w", encoding="utf-8") as f:
317
+ f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
318
+
319
+ index = 0
320
+ with open(merge_file, "w", encoding="utf-8") as writer:
321
+ writer.write("#version: 0.2\n")
322
+ for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
323
+ if index != token_index:
324
+ logger.warning(
325
+ f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
326
+ " Please check that the tokenizer is not corrupted!"
327
+ )
328
+ index = token_index
329
+ writer.write(" ".join(bpe_tokens) + "\n")
330
+ index += 1
331
+
332
+ return vocab_file, merge_file
333
+
334
+ # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.get_special_tokens_mask with Roberta->Blenderbot, RoBERTa->Blenderbot
335
+ def get_special_tokens_mask(
336
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
337
+ ) -> List[int]:
338
+ """
339
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
340
+ special tokens using the tokenizer `prepare_for_model` method.
341
+
342
+ Args:
343
+ token_ids_0 (`List[int]`):
344
+ List of IDs.
345
+ token_ids_1 (`List[int]`, *optional*):
346
+ Optional second list of IDs for sequence pairs.
347
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
348
+ Whether or not the token list is already formatted with special tokens for the model.
349
+
350
+ Returns:
351
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
352
+ """
353
+ if already_has_special_tokens:
354
+ return super().get_special_tokens_mask(
355
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
356
+ )
357
+
358
+ if token_ids_1 is None:
359
+ return [1] + ([0] * len(token_ids_0)) + [1]
360
+ return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
361
+
362
+ # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.create_token_type_ids_from_sequences with Roberta->Blenderbot, RoBERTa->Blenderbot
363
+ def create_token_type_ids_from_sequences(
364
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
365
+ ) -> List[int]:
366
+ """
367
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. Blenderbot does not
368
+ make use of token type ids, therefore a list of zeros is returned.
369
+
370
+ Args:
371
+ token_ids_0 (`List[int]`):
372
+ List of IDs.
373
+ token_ids_1 (`List[int]`, *optional*):
374
+ Optional second list of IDs for sequence pairs.
375
+
376
+ Returns:
377
+ `List[int]`: List of zeros.
378
+ """
379
+ sep = [self.sep_token_id]
380
+ cls = [self.cls_token_id]
381
+
382
+ if token_ids_1 is None:
383
+ return len(cls + token_ids_0 + sep) * [0]
384
+ return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
385
+
386
+ # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.prepare_for_tokenization with Roberta->Blenderbot, RoBERTa->Blenderbot
387
+ def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs):
388
+ add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space)
389
+ if (is_split_into_words or add_prefix_space) and (len(text) > 0 and not text[0].isspace()):
390
+ text = " " + text
391
+ return (text, kwargs)
392
+
393
+ def build_inputs_with_special_tokens(self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None):
394
+ """
395
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
396
+ adding special tokens. A Blenderbot sequence has the following format:
397
+ - single sequence: ` X </s>`
398
+
399
+ Args:
400
+ token_ids_0 (`List[int]`):
401
+ List of IDs to which the special tokens will be added
402
+ token_ids_1 (`List[int]`, *optional*):
403
+ Will be ignored
404
+ Returns:
405
+ `List[int]`: list of [input IDs](../glossary#input-ids) with the appropriate special tokens.
406
+ """
407
+ return token_ids_0 + [self.eos_token_id]
408
+
409
+ @property
410
+ def default_chat_template(self):
411
+ """
412
+ A very simple chat template that just adds whitespace between messages.
413
+ """
414
+ logger.warning_once(
415
+ "\nNo chat template is defined for this tokenizer - using the default template "
416
+ f"for the {self.__class__.__name__} class. If the default is not appropriate for "
417
+ "your model, please set `tokenizer.chat_template` to an appropriate template. "
418
+ "See https://huggingface.co/docs/transformers/main/chat_templating for more information.\n"
419
+ )
420
+ return (
421
+ "{% for message in messages %}"
422
+ "{% if message['role'] == 'user' %}{{ ' ' }}{% endif %}"
423
+ "{{ message['content'] }}"
424
+ "{% if not loop.last %}{{ ' ' }}{% endif %}"
425
+ "{% endfor %}"
426
+ "{{ eos_token }}"
427
+ )
llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot/tokenization_blenderbot_fast.py ADDED
@@ -0,0 +1,309 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2021 The Facebook Inc. and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Fast Tokenization class for Blenderbot."""
16
+ import json
17
+ from typing import List, Optional, Tuple
18
+
19
+ from tokenizers import pre_tokenizers, processors
20
+
21
+ from ...tokenization_utils_base import AddedToken, BatchEncoding
22
+ from ...tokenization_utils_fast import PreTrainedTokenizerFast
23
+ from ...utils import logging
24
+ from .tokenization_blenderbot import BlenderbotTokenizer
25
+
26
+
27
+ logger = logging.get_logger(__name__)
28
+
29
+
30
+ VOCAB_FILES_NAMES = {
31
+ "vocab_file": "vocab.json",
32
+ "merges_file": "merges.txt",
33
+ "tokenizer_config_file": "tokenizer_config.json",
34
+ }
35
+
36
+
37
+ class BlenderbotTokenizerFast(PreTrainedTokenizerFast):
38
+ """
39
+ Construct a "fast" Blenderbot tokenizer (backed by HuggingFace's *tokenizers* library), derived from the GPT-2
40
+ tokenizer, using byte-level Byte-Pair-Encoding.
41
+
42
+ This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
43
+ be encoded differently whether it is at the beginning of the sentence (without space) or not:
44
+
45
+ ```python
46
+ >>> from transformers import BlenderbotTokenizerFast
47
+
48
+ >>> tokenizer = BlenderbotTokenizerFast.from_pretrained("facebook/blenderbot-3B")
49
+ >>> tokenizer("Hello world")["input_ids"]
50
+ [6950, 1085, 2]
51
+
52
+ >>> tokenizer(" Hello world")["input_ids"]
53
+ [6950, 1085, 2]
54
+ ```
55
+
56
+ You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer or when you
57
+ call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance.
58
+
59
+ <Tip>
60
+
61
+ When used with `is_split_into_words=True`, this tokenizer needs to be instantiated with `add_prefix_space=True`.
62
+
63
+ </Tip>
64
+
65
+ This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
66
+ refer to this superclass for more information regarding those methods.
67
+
68
+ Args:
69
+ vocab_file (`str`):
70
+ Path to the vocabulary file.
71
+ merges_file (`str`):
72
+ Path to the merges file.
73
+ errors (`str`, *optional*, defaults to `"replace"`):
74
+ Paradigm to follow when decoding bytes to UTF-8. See
75
+ [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
76
+ bos_token (`str`, *optional*, defaults to `"<s>"`):
77
+ The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
78
+
79
+ <Tip>
80
+
81
+ When building a sequence using special tokens, this is not the token that is used for the beginning of
82
+ sequence. The token used is the `cls_token`.
83
+
84
+ </Tip>
85
+
86
+ eos_token (`str`, *optional*, defaults to `"</s>"`):
87
+ The end of sequence token.
88
+
89
+ <Tip>
90
+
91
+ When building a sequence using special tokens, this is not the token that is used for the end of sequence.
92
+ The token used is the `sep_token`.
93
+
94
+ </Tip>
95
+
96
+ sep_token (`str`, *optional*, defaults to `"</s>"`):
97
+ The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
98
+ sequence classification or for a text and a question for question answering. It is also used as the last
99
+ token of a sequence built with special tokens.
100
+ cls_token (`str`, *optional*, defaults to `"<s>"`):
101
+ The classifier token which is used when doing sequence classification (classification of the whole sequence
102
+ instead of per-token classification). It is the first token of the sequence when built with special tokens.
103
+ unk_token (`str`, *optional*, defaults to `"<unk>"`):
104
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
105
+ token instead.
106
+ pad_token (`str`, *optional*, defaults to `"<pad>"`):
107
+ The token used for padding, for example when batching sequences of different lengths.
108
+ mask_token (`str`, *optional*, defaults to `"<mask>"`):
109
+ The token used for masking values. This is the token used when training this model with masked language
110
+ modeling. This is the token which the model will try to predict.
111
+ add_prefix_space (`bool`, *optional*, defaults to `False`):
112
+ Whether or not to add an initial space to the input. This allows to treat the leading word just as any
113
+ other word. (Blenderbot tokenizer detect beginning of words by the preceding space).
114
+ trim_offsets (`bool`, *optional*, defaults to `True`):
115
+ Whether the post processing step should trim offsets to avoid including whitespaces.
116
+ """
117
+
118
+ vocab_files_names = VOCAB_FILES_NAMES
119
+ model_input_names = ["input_ids", "attention_mask"]
120
+ slow_tokenizer_class = BlenderbotTokenizer
121
+
122
+ # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.__init__ with Roberta->Blenderbot, RoBERTa->Blenderbot
123
+ def __init__(
124
+ self,
125
+ vocab_file=None,
126
+ merges_file=None,
127
+ tokenizer_file=None,
128
+ errors="replace",
129
+ bos_token="<s>",
130
+ eos_token="</s>",
131
+ sep_token="</s>",
132
+ cls_token="<s>",
133
+ unk_token="<unk>",
134
+ pad_token="<pad>",
135
+ mask_token="<mask>",
136
+ add_prefix_space=False,
137
+ trim_offsets=True,
138
+ **kwargs,
139
+ ):
140
+ mask_token = (
141
+ AddedToken(mask_token, lstrip=True, rstrip=False, normalized=False)
142
+ if isinstance(mask_token, str)
143
+ else mask_token
144
+ )
145
+ super().__init__(
146
+ vocab_file,
147
+ merges_file,
148
+ tokenizer_file=tokenizer_file,
149
+ errors=errors,
150
+ bos_token=bos_token,
151
+ eos_token=eos_token,
152
+ sep_token=sep_token,
153
+ cls_token=cls_token,
154
+ unk_token=unk_token,
155
+ pad_token=pad_token,
156
+ mask_token=mask_token,
157
+ add_prefix_space=add_prefix_space,
158
+ trim_offsets=trim_offsets,
159
+ **kwargs,
160
+ )
161
+
162
+ pre_tok_state = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__())
163
+ if pre_tok_state.get("add_prefix_space", add_prefix_space) != add_prefix_space:
164
+ pre_tok_class = getattr(pre_tokenizers, pre_tok_state.pop("type"))
165
+ pre_tok_state["add_prefix_space"] = add_prefix_space
166
+ self.backend_tokenizer.pre_tokenizer = pre_tok_class(**pre_tok_state)
167
+
168
+ self.add_prefix_space = add_prefix_space
169
+
170
+ tokenizer_component = "post_processor"
171
+ tokenizer_component_instance = getattr(self.backend_tokenizer, tokenizer_component, None)
172
+ if tokenizer_component_instance:
173
+ state = json.loads(tokenizer_component_instance.__getstate__())
174
+
175
+ # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
176
+ if "sep" in state:
177
+ state["sep"] = tuple(state["sep"])
178
+ if "cls" in state:
179
+ state["cls"] = tuple(state["cls"])
180
+
181
+ changes_to_apply = False
182
+
183
+ if state.get("add_prefix_space", add_prefix_space) != add_prefix_space:
184
+ state["add_prefix_space"] = add_prefix_space
185
+ changes_to_apply = True
186
+
187
+ if state.get("trim_offsets", trim_offsets) != trim_offsets:
188
+ state["trim_offsets"] = trim_offsets
189
+ changes_to_apply = True
190
+
191
+ if changes_to_apply:
192
+ component_class = getattr(processors, state.pop("type"))
193
+ new_value = component_class(**state)
194
+ setattr(self.backend_tokenizer, tokenizer_component, new_value)
195
+
196
+ @property
197
+ # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot
198
+ def mask_token(self) -> str:
199
+ """
200
+ `str`: Mask token, to use when training a model with masked-language modeling. Log an error if used while not
201
+ having been set.
202
+
203
+ Blenderbot tokenizer has a special mask token to be usable in the fill-mask pipeline. The mask token will greedily
204
+ comprise the space before the *<mask>*.
205
+ """
206
+ if self._mask_token is None:
207
+ if self.verbose:
208
+ logger.error("Using mask_token, but it is not set yet.")
209
+ return None
210
+ return str(self._mask_token)
211
+
212
+ @mask_token.setter
213
+ def mask_token(self, value):
214
+ """
215
+ Overriding the default behavior of the mask token to have it eat the space before it.
216
+
217
+ This is needed to preserve backward compatibility with all the previously used models based on Roberta.
218
+ """
219
+ # Mask token behave like a normal word, i.e. include the space before it
220
+ # So we set lstrip to True
221
+ value = AddedToken(value, lstrip=True, rstrip=False) if isinstance(value, str) else value
222
+ self._mask_token = value
223
+
224
+ # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast._batch_encode_plus with Roberta->Blenderbot, RoBERTa->Blenderbot
225
+ def _batch_encode_plus(self, *args, **kwargs) -> BatchEncoding:
226
+ is_split_into_words = kwargs.get("is_split_into_words", False)
227
+ assert self.add_prefix_space or not is_split_into_words, (
228
+ f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
229
+ "to use it with pretokenized inputs."
230
+ )
231
+
232
+ return super()._batch_encode_plus(*args, **kwargs)
233
+
234
+ # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast._encode_plus with Roberta->Blenderbot, RoBERTa->Blenderbot
235
+ def _encode_plus(self, *args, **kwargs) -> BatchEncoding:
236
+ is_split_into_words = kwargs.get("is_split_into_words", False)
237
+
238
+ assert self.add_prefix_space or not is_split_into_words, (
239
+ f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
240
+ "to use it with pretokenized inputs."
241
+ )
242
+
243
+ return super()._encode_plus(*args, **kwargs)
244
+
245
+ # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.save_vocabulary with Roberta->Blenderbot, RoBERTa->Blenderbot
246
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
247
+ files = self._tokenizer.model.save(save_directory, name=filename_prefix)
248
+ return tuple(files)
249
+
250
+ # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.create_token_type_ids_from_sequences with Roberta->Blenderbot, RoBERTa->Blenderbot
251
+ def create_token_type_ids_from_sequences(
252
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
253
+ ) -> List[int]:
254
+ """
255
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. Blenderbot does not
256
+ make use of token type ids, therefore a list of zeros is returned.
257
+
258
+ Args:
259
+ token_ids_0 (`List[int]`):
260
+ List of IDs.
261
+ token_ids_1 (`List[int]`, *optional*):
262
+ Optional second list of IDs for sequence pairs.
263
+
264
+ Returns:
265
+ `List[int]`: List of zeros.
266
+ """
267
+ sep = [self.sep_token_id]
268
+ cls = [self.cls_token_id]
269
+
270
+ if token_ids_1 is None:
271
+ return len(cls + token_ids_0 + sep) * [0]
272
+ return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
273
+
274
+ def build_inputs_with_special_tokens(self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None):
275
+ """
276
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
277
+ adding special tokens. A Blenderbot sequence has the following format:
278
+ - single sequence: ` X </s>`
279
+
280
+ Args:
281
+ token_ids_0 (`List[int]`):
282
+ List of IDs to which the special tokens will be added
283
+ token_ids_1 (`List[int]`, *optional*):
284
+ Will be ignored
285
+ Returns:
286
+ `List[int]`: list of [input IDs](../glossary#input-ids) with the appropriate special tokens.
287
+ """
288
+ return token_ids_0 + [self.eos_token_id]
289
+
290
+ @property
291
+ # Copied from transformers.models.blenderbot.tokenization_blenderbot.BlenderbotTokenizer.default_chat_template
292
+ def default_chat_template(self):
293
+ """
294
+ A very simple chat template that just adds whitespace between messages.
295
+ """
296
+ logger.warning_once(
297
+ "\nNo chat template is defined for this tokenizer - using the default template "
298
+ f"for the {self.__class__.__name__} class. If the default is not appropriate for "
299
+ "your model, please set `tokenizer.chat_template` to an appropriate template. "
300
+ "See https://huggingface.co/docs/transformers/main/chat_templating for more information.\n"
301
+ )
302
+ return (
303
+ "{% for message in messages %}"
304
+ "{% if message['role'] == 'user' %}{{ ' ' }}{% endif %}"
305
+ "{{ message['content'] }}"
306
+ "{% if not loop.last %}{{ ' ' }}{% endif %}"
307
+ "{% endfor %}"
308
+ "{{ eos_token }}"
309
+ )
llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/__init__.py ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from typing import TYPE_CHECKING
15
+
16
+ from ...utils import (
17
+ OptionalDependencyNotAvailable,
18
+ _LazyModule,
19
+ is_torch_available,
20
+ )
21
+
22
+
23
+ _import_structure = {
24
+ "configuration_clvp": [
25
+ "CLVP_PRETRAINED_CONFIG_ARCHIVE_MAP",
26
+ "ClvpConfig",
27
+ "ClvpDecoderConfig",
28
+ "ClvpEncoderConfig",
29
+ ],
30
+ "feature_extraction_clvp": ["ClvpFeatureExtractor"],
31
+ "processing_clvp": ["ClvpProcessor"],
32
+ "tokenization_clvp": ["ClvpTokenizer"],
33
+ }
34
+
35
+
36
+ try:
37
+ if not is_torch_available():
38
+ raise OptionalDependencyNotAvailable()
39
+ except OptionalDependencyNotAvailable:
40
+ pass
41
+ else:
42
+ _import_structure["modeling_clvp"] = [
43
+ "CLVP_PRETRAINED_MODEL_ARCHIVE_LIST",
44
+ "ClvpModelForConditionalGeneration",
45
+ "ClvpForCausalLM",
46
+ "ClvpModel",
47
+ "ClvpPreTrainedModel",
48
+ "ClvpEncoder",
49
+ "ClvpDecoder",
50
+ ]
51
+
52
+
53
+ if TYPE_CHECKING:
54
+ from .configuration_clvp import (
55
+ CLVP_PRETRAINED_CONFIG_ARCHIVE_MAP,
56
+ ClvpConfig,
57
+ ClvpDecoderConfig,
58
+ ClvpEncoderConfig,
59
+ )
60
+ from .feature_extraction_clvp import ClvpFeatureExtractor
61
+ from .processing_clvp import ClvpProcessor
62
+ from .tokenization_clvp import ClvpTokenizer
63
+
64
+ try:
65
+ if not is_torch_available():
66
+ raise OptionalDependencyNotAvailable()
67
+ except OptionalDependencyNotAvailable:
68
+ pass
69
+ else:
70
+ from .modeling_clvp import (
71
+ CLVP_PRETRAINED_MODEL_ARCHIVE_LIST,
72
+ ClvpDecoder,
73
+ ClvpEncoder,
74
+ ClvpForCausalLM,
75
+ ClvpModel,
76
+ ClvpModelForConditionalGeneration,
77
+ ClvpPreTrainedModel,
78
+ )
79
+
80
+ else:
81
+ import sys
82
+
83
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.29 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/__pycache__/configuration_clvp.cpython-310.pyc ADDED
Binary file (17.9 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/__pycache__/convert_clvp_to_hf.cpython-310.pyc ADDED
Binary file (6.2 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/__pycache__/feature_extraction_clvp.cpython-310.pyc ADDED
Binary file (9.23 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/__pycache__/modeling_clvp.cpython-310.pyc ADDED
Binary file (63.7 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/__pycache__/number_normalizer.cpython-310.pyc ADDED
Binary file (6.83 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/__pycache__/processing_clvp.cpython-310.pyc ADDED
Binary file (2.9 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/configuration_clvp.py ADDED
@@ -0,0 +1,456 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ CLVP model configuration"""
16
+
17
+
18
+ import os
19
+ from typing import TYPE_CHECKING, Union
20
+
21
+
22
+ if TYPE_CHECKING:
23
+ pass
24
+
25
+ from ...configuration_utils import PretrainedConfig
26
+ from ...utils import logging
27
+
28
+
29
+ logger = logging.get_logger(__name__)
30
+
31
+
32
+ from ..deprecated._archive_maps import CLVP_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
33
+
34
+
35
+ class ClvpEncoderConfig(PretrainedConfig):
36
+ r"""
37
+ This is the configuration class to store the configuration of a [`ClvpEncoder`]. It is used to instantiate a CLVP
38
+ text or CLVP speech encoder according to the specified arguments. Instantiating a configuration with the defaults
39
+ will yield a similar configuration to that of the encoder of the CLVP
40
+ [susnato/clvp_dev](https://huggingface.co/susnato/clvp_dev) architecture.
41
+
42
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
43
+ documentation from [`PretrainedConfig`] for more information.
44
+
45
+ Args:
46
+ vocab_size (`int`, *optional*, defaults to 256):
47
+ Vocabulary size of the CLVP Encoder model.
48
+ hidden_size (`int`, *optional*, defaults to 768):
49
+ Dimensionality of the encoder layers and the pooler layer.
50
+ intermediate_size (`int`, *optional*, defaults to 1536):
51
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
52
+ projection_dim (`int`, *optional*, defaults to 768):
53
+ Dimensionality of the projection vector.
54
+ num_hidden_layers (`int`, *optional*, defaults to 20):
55
+ Number of hidden layers in the Transformer encoder.
56
+ num_attention_heads (`int`, *optional*, defaults to 12):
57
+ Number of attention heads for each attention layer in the Transformer encoder.
58
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
59
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
60
+ `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
61
+ layer_norm_eps (`float`, *optional*, defaults to 1e-05):
62
+ The epsilon used by the layer normalization layers.
63
+ attention_dropout (`float`, *optional*, defaults to 0.1):
64
+ The dropout ratio for the attention probabilities.
65
+ dropout (`float`, *optional*, defaults to 0.1):
66
+ The dropout ratio for the feed-forward layers in [`ClvpEncoderMLP`].
67
+ use_rotary_embedding (`bool`, *optional*, defaults to `True`):
68
+ Whether to use rotary_embedding or not.
69
+ use_attention_bias (`bool`, *optional*, defaults to `False`):
70
+ Whether to use bias in Query, Key and Value layers during self attention.
71
+ summary_type (`str`, *optional*, defaults to `"mean"`):
72
+ What strategy to use to get pooler_output from the last_hidden_state. `"last"`, `"first"`, `"mean"` and
73
+ `"cls_index"` are supported.
74
+ initializer_factor (`float`, *optional*, defaults to 1.0):
75
+ A factor for initializing all weight matrices (should be kept to 1.0, used internally for initialization
76
+ testing).
77
+ bos_token_id (`int`, *optional*, defaults to 255):
78
+ Beginning of sequence token id.
79
+ eos_token_id (`int`, *optional*, defaults to 0):
80
+ End of sequence token id.
81
+
82
+ Example:
83
+
84
+ ```python
85
+ >>> from transformers import ClvpEncoderConfig, ClvpEncoder
86
+
87
+ >>> # Initializing a ClvpEncoderConfig with susnato/clvp_dev style configuration
88
+ >>> encoder_configuration = ClvpEncoderConfig()
89
+
90
+ >>> # Initializing a ClvpEncoder (with random weights) from the susnato/clvp_dev style configuration
91
+ >>> model = ClvpEncoder(encoder_configuration)
92
+
93
+ >>> # Accessing the model configuration
94
+ >>> configuration = model.config
95
+ ```"""
96
+
97
+ model_type = "clvp_encoder"
98
+
99
+ def __init__(
100
+ self,
101
+ vocab_size=256,
102
+ hidden_size=768,
103
+ intermediate_size=1536,
104
+ projection_dim=768,
105
+ num_hidden_layers=20,
106
+ num_attention_heads=12,
107
+ hidden_act="gelu",
108
+ layer_norm_eps=1e-5,
109
+ attention_dropout=0.1,
110
+ dropout=0.1,
111
+ use_rotary_embedding=True,
112
+ use_attention_bias=False,
113
+ summary_type="mean",
114
+ initializer_factor=1.0,
115
+ bos_token_id=255,
116
+ eos_token_id=0,
117
+ **kwargs,
118
+ ):
119
+ self.vocab_size = vocab_size
120
+ self.hidden_size = hidden_size
121
+ self.intermediate_size = intermediate_size
122
+ self.projection_dim = projection_dim
123
+ self.num_hidden_layers = num_hidden_layers
124
+ self.num_attention_heads = num_attention_heads
125
+ self.layer_norm_eps = layer_norm_eps
126
+ self.hidden_act = hidden_act
127
+ self.initializer_factor = initializer_factor
128
+ self.attention_dropout = attention_dropout
129
+ self.dropout = dropout
130
+ self.use_rotary_embedding = use_rotary_embedding
131
+ self.use_attention_bias = use_attention_bias
132
+ self.summary_type = summary_type
133
+ self.bos_token_id = bos_token_id
134
+ self.eos_token_id = eos_token_id
135
+
136
+ super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
137
+
138
+ @classmethod
139
+ def from_pretrained(
140
+ cls, pretrained_model_name_or_path: Union[str, os.PathLike], config_type: str = "text_config", **kwargs
141
+ ) -> "PretrainedConfig":
142
+ cls._set_token_in_kwargs(kwargs)
143
+
144
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
145
+
146
+ # make sure to have the config_type be either "text_config" or "speech_config"
147
+ # this is to make sure that we can load only text or speech configs from the nested ClvpConfig.
148
+ if config_type not in ["text_config", "speech_config"]:
149
+ raise ValueError(
150
+ f"We can only load either 'text_config' or 'speech_config' but you are trying to load" f"{config_type}"
151
+ )
152
+
153
+ # get the text config dict if we are loading from ClvpConfig
154
+ if config_dict.get("model_type") == "clvp":
155
+ config_dict = config_dict[config_type]
156
+
157
+ if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
158
+ logger.warning(
159
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
160
+ f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
161
+ )
162
+
163
+ return cls.from_dict(config_dict, **kwargs)
164
+
165
+
166
+ class ClvpDecoderConfig(PretrainedConfig):
167
+ r"""
168
+ This is the configuration class to store the configuration of a [`ClvpDecoder`]. It is used to instantiate a CLVP
169
+ Decoder Model according to the specified arguments, defining the model architecture. Instantiating a configuration
170
+ with the defaults will yield a similar configuration to that of the Decoder part of the CLVP
171
+ [susnato/clvp_dev](https://huggingface.co/susnato/clvp_dev) architecture.
172
+
173
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
174
+ documentation from [`PretrainedConfig`] for more information.
175
+
176
+ The architecture is similar to GPT2.
177
+
178
+ Args:
179
+ vocab_size (`int`, *optional*, defaults to 8194):
180
+ Vocabulary size of the model.
181
+ max_position_embeddings (`int`, *optional*, defaults to 608):
182
+ The maximum sequence length of mel tokens that this model might ever be used with. Similar to `n_positions`
183
+ in `GPT2Config`.
184
+ max_text_tokens (`int`, *optional*, defaults to 404):
185
+ The maximum sequence length of text tokens that this model might ever be used with. Similar to
186
+ `n_positions` in `GPT2Config`.
187
+ hidden_size (`int`, *optional*, defaults to 1024):
188
+ Dimensionality of the embeddings and hidden states.
189
+ num_hidden_layers (`int`, *optional*, defaults to 30):
190
+ Number of hidden layers in the Transformer encoder.
191
+ num_attention_heads (`int`, *optional*, defaults to 16):
192
+ Number of attention heads for each attention layer in the Transformer encoder.
193
+ n_inner (`int`, *optional*):
194
+ Dimensionality of the inner feed-forward layers. `None` will set it to 4 times `hidden_size`.
195
+ num_mel_attn_blocks (`int`, *optional*, defaults to 6):
196
+ Denotes the number of self attention layers in [`ClvpConditioningEncoder`].
197
+ activation_function (`str`, *optional*, defaults to `"gelu_new"`):
198
+ Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`.
199
+ resid_pdrop (`float`, *optional*, defaults to 0.1):
200
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
201
+ embd_pdrop (`float`, *optional*, defaults to 0.1):
202
+ The dropout ratio for the embeddings.
203
+ attention_dropout (`float`, *optional*, defaults to 0.1):
204
+ The dropout ratio for the attention.
205
+ layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
206
+ The epsilon to use in the layer normalization layers.
207
+ initializer_range (`float`, *optional*, defaults to 0.02):
208
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
209
+ summary_type (`string`, *optional*, defaults to `"cls_index"`):
210
+ Argument used when doing sequence summary.
211
+
212
+ Has to be one of the following options:
213
+
214
+ - `"last"`: Take the last token hidden state (like XLNet).
215
+ - `"first"`: Take the first token hidden state (like BERT).
216
+ - `"mean"`: Take the mean of all tokens hidden states.
217
+ - `"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2).
218
+ - `"attn"`: Not implemented now, use multi-head attention.
219
+ summary_use_proj (`bool`, *optional*, defaults to `True`):
220
+ Whether or not to add a projection after the vector extraction.
221
+ summary_activation (`str`, *optional*):
222
+ Pass `"tanh"` for a tanh activation to the output, any other value will result in no activation.
223
+ summary_proj_to_labels (`bool`, *optional*, defaults to `True`):
224
+ Whether the projection outputs should have `config.num_labels` or `config.hidden_size` classes.
225
+ summary_first_dropout (`float`, *optional*, defaults to 0.1):
226
+ The dropout ratio to be used after the projection and activation.
227
+ use_cache (`bool`, *optional*, defaults to `True`):
228
+ Whether or not the model should return the last key/values attentions (not used by all models).
229
+ bos_token_id (`int`, *optional*, defaults to 8192):
230
+ Beginning of sequence token id, used at the start of the generation.
231
+ eos_token_id (`int`, *optional*, defaults to 8193):
232
+ End of sequence token id, used in the method
233
+ [`ClvpModelForConditionalGeneration.fix_speech_decoder_output()`] to correct decoder outputs.
234
+ feature_size (`int`, *optional*, defaults to 80):
235
+ The feature dimension of the extracted mel features. This value is used in [`ClvpConditioningEncoder`].
236
+ use_attention_bias (`bool`, *optional*, defaults to `True`):
237
+ Whether to use bias in Query, Key and Value layers during self attention.
238
+ initializer_factor (`float`, *optional*, defaults to 1.0):
239
+ A factor for initializing all weight matrices (should be kept to 1.0, used internally for initialization
240
+ testing).
241
+ decoder_fixing_codes (`list`, *optional*, defaults to `[83, 45, 45, 248]`):
242
+ These values are used in the method `fix_speech_decoder_output` to fix decoder generated outputs.
243
+
244
+ Example:
245
+
246
+ ```python
247
+ >>> from transformers import ClvpDecoderConfig, ClvpDecoder
248
+
249
+ >>> # Initializing a ClvpDecoderConfig with susnato/clvp_dev style configuration
250
+ >>> decoder_configuration = ClvpDecoderConfig()
251
+
252
+ >>> # Initializing a ClvpDecoder (with random weights) from the susnato/clvp_dev style configuration
253
+ >>> model = ClvpDecoder(decoder_configuration)
254
+
255
+ >>> # Accessing the model configuration
256
+ >>> configuration = model.config
257
+ ```"""
258
+
259
+ model_type = "clvp_decoder"
260
+
261
+ def __init__(
262
+ self,
263
+ vocab_size=8194,
264
+ max_position_embeddings=608,
265
+ max_text_tokens=404,
266
+ hidden_size=1024,
267
+ num_hidden_layers=30,
268
+ num_attention_heads=16,
269
+ n_inner=None,
270
+ num_mel_attn_blocks=6,
271
+ activation_function="gelu_new",
272
+ resid_pdrop=0.1,
273
+ embd_pdrop=0.1,
274
+ attention_dropout=0.1,
275
+ layer_norm_epsilon=1e-5,
276
+ initializer_range=0.02,
277
+ summary_type="cls_index",
278
+ summary_use_proj=True,
279
+ summary_activation=None,
280
+ summary_proj_to_labels=True,
281
+ summary_first_dropout=0.1,
282
+ use_cache=True,
283
+ bos_token_id=8192,
284
+ eos_token_id=8193,
285
+ feature_size=80,
286
+ use_attention_bias=True,
287
+ initializer_factor=1.0,
288
+ decoder_fixing_codes=[83, 45, 45, 248],
289
+ **kwargs,
290
+ ):
291
+ self.vocab_size = vocab_size
292
+ self.max_position_embeddings = max_position_embeddings
293
+ self.max_text_tokens = max_text_tokens
294
+ self.hidden_size = hidden_size
295
+ self.num_hidden_layers = num_hidden_layers
296
+ self.num_attention_heads = num_attention_heads
297
+ self.n_inner = n_inner
298
+ self.num_mel_attn_blocks = num_mel_attn_blocks
299
+ self.activation_function = activation_function
300
+ self.resid_pdrop = resid_pdrop
301
+ self.embd_pdrop = embd_pdrop
302
+ self.attention_dropout = attention_dropout
303
+ self.layer_norm_epsilon = layer_norm_epsilon
304
+ self.initializer_range = initializer_range
305
+ self.summary_type = summary_type
306
+ self.summary_use_proj = summary_use_proj
307
+ self.summary_activation = summary_activation
308
+ self.summary_first_dropout = summary_first_dropout
309
+ self.summary_proj_to_labels = summary_proj_to_labels
310
+ self.use_cache = use_cache
311
+ self.feature_size = feature_size
312
+ self.use_attention_bias = use_attention_bias
313
+ self.initializer_factor = initializer_factor
314
+ self.decoder_fixing_codes = decoder_fixing_codes
315
+
316
+ self.bos_token_id = bos_token_id
317
+ self.eos_token_id = eos_token_id
318
+
319
+ super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
320
+
321
+ @classmethod
322
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
323
+ cls._set_token_in_kwargs(kwargs)
324
+
325
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
326
+
327
+ # get the speech config dict if we are loading from ClvpConfig
328
+ if config_dict.get("model_type") == "clvp":
329
+ config_dict = config_dict["decoder_config"]
330
+
331
+ if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
332
+ logger.warning(
333
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
334
+ f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
335
+ )
336
+
337
+ return cls.from_dict(config_dict, **kwargs)
338
+
339
+
340
+ class ClvpConfig(PretrainedConfig):
341
+ r"""
342
+ [`ClvpConfig`] is the configuration class to store the configuration of a [`ClvpModelForConditionalGeneration`]. It
343
+ is used to instantiate a CLVP model according to the specified arguments, defining the text model, speech model and
344
+ decoder model configs. Instantiating a configuration with the defaults will yield a similar configuration to that
345
+ of the CLVP [susnato/clvp_dev](https://huggingface.co/susnato/clvp_dev) architecture.
346
+
347
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
348
+ documentation from [`PretrainedConfig`] for more information.
349
+
350
+ Args:
351
+ text_config (`dict`, *optional*):
352
+ Dictionary of configuration options used to initialize the CLVP text encoder.
353
+ speech_config (`dict`, *optional*):
354
+ Dictionary of configuration options used to initialize CLVP speech encoder.
355
+ decoder_config (`dict`, *optional*):
356
+ Dictionary of configuration options used to initialize [`ClvpDecoderConfig`].
357
+ projection_dim (`int`, *optional*, defaults to 768):
358
+ Dimentionality of text and speech projection layers.
359
+ logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
360
+ The inital value of the *logit_scale* paramter. Default is used as per the original CLVP implementation.
361
+ initializer_factor (`float`, *optional*, defaults to 1.0):
362
+ A factor for initializing all weight matrices (should be kept to 1.0, used internally for initialization
363
+ testing).
364
+ kwargs (*optional*):
365
+ Dictionary of keyword arguments.
366
+
367
+ Example:
368
+
369
+ ```python
370
+ >>> from transformers import ClvpConfig, ClvpModelForConditionalGeneration
371
+
372
+ >>> # Initializing a ClvpConfig with susnato/clvp_dev style configuration
373
+ >>> configuration = ClvpConfig()
374
+
375
+ >>> # Initializing a ClvpModelForConditionalGeneration (with random weights) from the susnato/clvp_dev style configuration
376
+ >>> model = ClvpModelForConditionalGeneration(configuration)
377
+
378
+ >>> # Accessing the model configuration
379
+ >>> configuration = model.config
380
+
381
+ >>> # We can also initialize a CLVPConfig from a CLVPTextConfig, CLVPSpeechConfig and a CLVPAutoRegressiveConfig
382
+ >>> from transformers import ClvpEncoderConfig, ClvpDecoderConfig
383
+
384
+ >>> # Initializing a CLVP text, CLVP speech and CLVP decoder configuration
385
+ >>> config_text = ClvpEncoderConfig()
386
+ >>> config_speech = ClvpEncoderConfig()
387
+ >>> decoder_config = ClvpDecoderConfig()
388
+
389
+ >>> config = ClvpConfig.from_sub_model_configs(config_text, config_speech, decoder_config)
390
+ ```"""
391
+
392
+ model_type = "clvp"
393
+ is_composition = True
394
+
395
+ def __init__(
396
+ self,
397
+ text_config=None,
398
+ speech_config=None,
399
+ decoder_config=None,
400
+ projection_dim=768,
401
+ logit_scale_init_value=2.6592,
402
+ initializer_factor=1.0,
403
+ **kwargs,
404
+ ):
405
+ super().__init__(**kwargs)
406
+
407
+ if text_config is None:
408
+ text_config = {}
409
+ logger.info("`text_config` is `None`. Initializing the `ClvpEncoderConfig` with default values.")
410
+
411
+ if speech_config is None:
412
+ speech_config = {}
413
+ logger.info("`speech_config` is `None`. initializing the `ClvpEncoderConfig` with default values.")
414
+
415
+ if decoder_config is None:
416
+ decoder_config = {}
417
+ logger.info("`decoder_config` is `None`. initializing the `ClvpDecoderConfig` with default values.")
418
+
419
+ self.text_config = ClvpEncoderConfig(**text_config)
420
+ self.speech_config = ClvpEncoderConfig(**speech_config)
421
+ self.decoder_config = ClvpDecoderConfig(**decoder_config)
422
+
423
+ self.projection_dim = projection_dim
424
+ self.logit_scale_init_value = logit_scale_init_value
425
+ self.initializer_factor = initializer_factor
426
+
427
+ @classmethod
428
+ def from_sub_model_configs(
429
+ cls,
430
+ text_config: ClvpEncoderConfig,
431
+ speech_config: ClvpEncoderConfig,
432
+ decoder_config: ClvpDecoderConfig,
433
+ **kwargs,
434
+ ):
435
+ r"""
436
+ Instantiate a [`ClvpConfig`] (or a derived class) from CLVP text model configuration, CLVP speech model
437
+ configuration and CLVP decoder model configuration.
438
+
439
+ Args:
440
+ text_config (`ClvpEncoderConfig`):
441
+ Text model configuration of type [`ClvpEncoderConfig`].
442
+ speech_config (`ClvpEncoderConfig`):
443
+ Speech model configuration of type [`ClvpEncoderConfig`].
444
+ decoder_config (`ClvpDecoderConfig`):
445
+ Decoder model configuration of type [`ClvpDecoderConfig`].
446
+
447
+ Returns:
448
+ [`ClvpConfig`]: An instance of a configuration object
449
+ """
450
+
451
+ return cls(
452
+ text_config=text_config.to_dict(),
453
+ speech_config=speech_config.to_dict(),
454
+ decoder_config=decoder_config.to_dict(),
455
+ **kwargs,
456
+ )
llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/convert_clvp_to_hf.py ADDED
@@ -0,0 +1,234 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """
17
+ Weights conversion script for CLVP
18
+ """
19
+
20
+ import argparse
21
+ import os
22
+
23
+ import torch
24
+ from huggingface_hub import hf_hub_download
25
+
26
+ from transformers import ClvpConfig, ClvpModelForConditionalGeneration
27
+
28
+
29
+ _MODELS = {
30
+ "clvp": "https://huggingface.co/jbetker/tortoise-tts-v2/blob/main/.models/clvp2.pth",
31
+ "decoder": "https://huggingface.co/jbetker/tortoise-tts-v2/blob/main/.models/autoregressive.pth",
32
+ }
33
+
34
+ dim = 1024
35
+ sub_dim = dim // 16
36
+
37
+ CLVP_ENCODERS_MAPPING = {
38
+ "text_transformer.transformer.attn_layers": "text_encoder_model",
39
+ "speech_transformer.transformer.attn_layers": "speech_encoder_model",
40
+ "text_transformer.transformer.norm": "text_encoder_model.final_layer_norm",
41
+ "speech_transformer.transformer.norm": "speech_encoder_model.final_layer_norm",
42
+ "to_text_latent": "text_encoder_model.projection",
43
+ "to_speech_latent": "speech_encoder_model.projection",
44
+ "text_emb": "text_encoder_model.token_embedding",
45
+ "speech_emb": "speech_encoder_model.token_embedding",
46
+ "1.wrap.net.0": "mlp.fc1",
47
+ "1.wrap.net.3": "mlp.fc2",
48
+ "1.wrap": "self_attn",
49
+ "to_out": "out_proj",
50
+ "to_q": "q_proj",
51
+ "to_k": "k_proj",
52
+ "to_v": "v_proj",
53
+ "temperature": "logit_scale",
54
+ }
55
+
56
+ CLVP_DECODER_MAPPING = {
57
+ "conditioning_encoder.init": "conditioning_encoder.mel_conv",
58
+ "conditioning_encoder.attn": "conditioning_encoder.mel_attn_blocks",
59
+ "mel_attn_blocks": "group_norms",
60
+ ".norm.weight": ".weight",
61
+ ".norm.bias": ".bias",
62
+ "text_embedding": "conditioning_encoder.text_token_embedding",
63
+ "text_pos_embedding.emb": "conditioning_encoder.text_position_embedding",
64
+ "final_norm": "speech_decoder_model.final_norm",
65
+ "mel_head": "speech_decoder_model.lm_head",
66
+ "gpt.ln_f": "speech_decoder_model.model.decoder.layer_norm",
67
+ "mel_embedding": "speech_decoder_model.model.decoder.input_embeds_layer",
68
+ "mel_pos_embedding.emb": "speech_decoder_model.model.decoder.position_embeds_layer",
69
+ "gpt.h": "speech_decoder_model.model.decoder.layers",
70
+ "ln_1": "input_layernorm",
71
+ "ln_2": "post_attention_layernorm",
72
+ }
73
+
74
+
75
+ def update_index(present_index):
76
+ if present_index % 2 == 0:
77
+ return int(present_index / 2)
78
+ else:
79
+ return int((present_index - 1) / 2)
80
+
81
+
82
+ def convert_encoder_weights(original_weights):
83
+ converted_weights = {}
84
+ original_weights_keys = sorted(original_weights.keys())
85
+ for original_key in original_weights_keys:
86
+ updated_key = original_key
87
+ # for input_rmsnorm.weight and post_attention_rmsnorm.weight
88
+ if "0.0.g" in updated_key:
89
+ present_index = updated_key.split(".")[4]
90
+ if int(present_index) % 2 == 0:
91
+ updated_key = updated_key.replace("0.0.g", "input_rmsnorm.weight")
92
+ else:
93
+ updated_key = updated_key.replace("0.0.g", "post_attention_rmsnorm.weight")
94
+
95
+ if "transformer.attn_layers.layers" in updated_key:
96
+ present_index = updated_key.split(".")[4]
97
+ updated_index = update_index(int(present_index))
98
+ updated_key = updated_key.replace(
99
+ f"transformer.attn_layers.layers.{present_index}", f"transformer.attn_layers.layers.{updated_index}"
100
+ )
101
+
102
+ for k, v in CLVP_ENCODERS_MAPPING.items():
103
+ if k in updated_key:
104
+ updated_key = updated_key.replace(k, v)
105
+
106
+ converted_weights[updated_key] = original_weights.pop(original_key)
107
+
108
+ return converted_weights
109
+
110
+
111
+ def convert_decoder_weights(original_weights):
112
+ converted_weights = {}
113
+ original_weights_keys = sorted(original_weights.keys())
114
+ for original_key in original_weights_keys:
115
+ updated_key = original_key
116
+ if len(updated_key.split(".")) > 3:
117
+ index, attr = updated_key.split(".")[2], updated_key.split(".")[-1]
118
+
119
+ # for decoder attention
120
+ if "attn.c_attn" in updated_key:
121
+ if attr == "weight":
122
+ slice1, slice2, slice3 = original_weights[updated_key].squeeze(-1).T.split(split_size=dim, dim=0)
123
+ else:
124
+ slice1, slice2, slice3 = original_weights[updated_key].split(split_size=dim, dim=0)
125
+ converted_weights[f"speech_decoder_model.model.decoder.layers.{index}.attn.q_proj.{attr}"] = slice1
126
+ converted_weights[f"speech_decoder_model.model.decoder.layers.{index}.attn.k_proj.{attr}"] = slice2
127
+ converted_weights[f"speech_decoder_model.model.decoder.layers.{index}.attn.v_proj.{attr}"] = slice3
128
+ continue
129
+
130
+ if "attn.c_proj" in updated_key:
131
+ converted_weights[f"speech_decoder_model.model.decoder.layers.{index}.attn.out_proj.{attr}"] = (
132
+ original_weights[updated_key].squeeze(-1).T
133
+ )
134
+ continue
135
+
136
+ if "attn.bias" in updated_key or "attn.masked_bias" in updated_key or "text_head" in updated_key:
137
+ original_weights.pop(updated_key)
138
+ continue
139
+
140
+ # conditional encoder attention
141
+ if "qkv" in updated_key:
142
+ if attr == "weight":
143
+ slice1, slice2, slice3 = original_weights[updated_key].squeeze(-1).split(split_size=dim, dim=0)
144
+ else:
145
+ slice1, slice2, slice3 = original_weights[updated_key].split(split_size=dim, dim=0)
146
+
147
+ indices = torch.arange(dim)
148
+ index1, index2, index3 = (
149
+ indices.unfold(0, sub_dim, sub_dim * 3).flatten(),
150
+ indices[sub_dim:].unfold(0, sub_dim, sub_dim * 3).flatten(),
151
+ indices[2 * sub_dim :].unfold(0, sub_dim, sub_dim * 3).flatten(),
152
+ )
153
+
154
+ converted_weights[f"conditioning_encoder.mel_attn_blocks.{index}.q_proj.{attr}"] = torch.concatenate(
155
+ [slice1[index1], slice2[index3], slice3[index2]],
156
+ axis=0,
157
+ )
158
+ converted_weights[f"conditioning_encoder.mel_attn_blocks.{index}.k_proj.{attr}"] = torch.concatenate(
159
+ [slice1[index2], slice2[index1], slice3[index3]],
160
+ axis=0,
161
+ )
162
+ converted_weights[f"conditioning_encoder.mel_attn_blocks.{index}.v_proj.{attr}"] = torch.concatenate(
163
+ [slice1[index3], slice2[index2], slice3[index1]],
164
+ axis=0,
165
+ )
166
+ continue
167
+
168
+ if "proj_out" in updated_key:
169
+ converted_weights[f"conditioning_encoder.mel_attn_blocks.{index}.out_proj.{attr}"] = original_weights[
170
+ updated_key
171
+ ].squeeze(-1)
172
+ continue
173
+
174
+ for k, v in CLVP_DECODER_MAPPING.items():
175
+ if k in updated_key:
176
+ updated_key = updated_key.replace(k, v)
177
+
178
+ converted_weights[updated_key] = original_weights.pop(original_key)
179
+
180
+ return converted_weights
181
+
182
+
183
+ def _download(url: str, root: str):
184
+ repo_id = f"{url.split('/')[3]}/{url.split('/')[4]}"
185
+ filename = f"{url.split('/')[-2]}/{url.split('/')[-1]}"
186
+ hf_hub_download(
187
+ repo_id=repo_id,
188
+ filename=filename,
189
+ force_filename=root,
190
+ local_dir_use_symlinks=False,
191
+ )
192
+
193
+
194
+ def convert_clvp_weights(checkpoint_path, pytorch_dump_folder_path):
195
+ converted_checkpoint = {}
196
+
197
+ for each_model_name, each_model_url in _MODELS.items():
198
+ each_model_path = os.path.join(checkpoint_path, each_model_url.split("/")[-1])
199
+ if not os.path.exists(each_model_path):
200
+ print(f"\n{each_model_name} was not found! Downloading it to {each_model_path}")
201
+ _download(url=each_model_url, root=each_model_path)
202
+
203
+ if each_model_name == "clvp":
204
+ clvp_checkpoint = torch.load(each_model_path, map_location="cpu")
205
+ else:
206
+ decoder_checkpoint = torch.load(each_model_path, map_location="cpu")
207
+
208
+ # Converting the weights
209
+ converted_checkpoint.update(**convert_encoder_weights(clvp_checkpoint))
210
+ converted_checkpoint.update(**convert_decoder_weights(decoder_checkpoint))
211
+
212
+ config = ClvpConfig.from_pretrained("susnato/clvp_dev")
213
+ model = ClvpModelForConditionalGeneration(config)
214
+
215
+ model.load_state_dict(converted_checkpoint, strict=True)
216
+ model.save_pretrained(pytorch_dump_folder_path)
217
+ print(f"Model saved at {pytorch_dump_folder_path}!")
218
+
219
+
220
+ if __name__ == "__main__":
221
+ parser = argparse.ArgumentParser()
222
+ # # Required parameters
223
+ parser.add_argument(
224
+ "--checkpoint_path", type=str, help="Path to the folder of downloaded checkpoints. (Please enter full path)"
225
+ )
226
+ parser.add_argument(
227
+ "--pytorch_dump_folder_path",
228
+ default=None,
229
+ type=str,
230
+ help="Path to the output PyTorch model. (Please enter full path)",
231
+ )
232
+ args = parser.parse_args()
233
+
234
+ convert_clvp_weights(args.checkpoint_path, args.pytorch_dump_folder_path)
llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/feature_extraction_clvp.py ADDED
@@ -0,0 +1,238 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """
17
+ Feature extractor class for CLVP
18
+ """
19
+
20
+ from typing import List, Optional, Union
21
+
22
+ import numpy as np
23
+
24
+ from ...audio_utils import mel_filter_bank, spectrogram, window_function
25
+ from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
26
+ from ...feature_extraction_utils import BatchFeature
27
+ from ...utils import TensorType, logging
28
+
29
+
30
+ logger = logging.get_logger(__name__)
31
+
32
+
33
+ class ClvpFeatureExtractor(SequenceFeatureExtractor):
34
+ r"""
35
+ Constructs a CLVP feature extractor.
36
+
37
+ This feature extractor inherits from [`~feature_extraction_sequence_utils.SequenceFeatureExtractor`] which contains
38
+ most of the main methods. Users should refer to this superclass for more information regarding those methods.
39
+
40
+ This class extracts log-mel-spectrogram features from raw speech using a custom numpy implementation of the `Short
41
+ Time Fourier Transform` which should match pytorch's `torch.stft` equivalent.
42
+
43
+ Args:
44
+ feature_size (`int`, *optional*, defaults to 80):
45
+ The feature dimension of the extracted features.
46
+ sampling_rate (`int`, *optional*, defaults to 22050):
47
+ The sampling rate at which the audio files should be digitalized expressed in hertz (Hz).
48
+ default_audio_length (`int`, *optional*, defaults to 6):
49
+ The default length of raw audio in seconds. If `max_length` is not set during `__call__` then it will
50
+ automatically be set to default_audio_length * `self.sampling_rate`.
51
+ hop_length (`int`, *optional*, defaults to 256):
52
+ Length of the overlaping windows for the STFT used to obtain the Mel Frequency coefficients.
53
+ chunk_length (`int`, *optional*, defaults to 30):
54
+ The maximum number of chuncks of `sampling_rate` samples used to trim and pad longer or shorter audio
55
+ sequences.
56
+ n_fft (`int`, *optional*, defaults to 1024):
57
+ Size of the Fourier transform.
58
+ padding_value (`float`, *optional*, defaults to 0.0):
59
+ Padding value used to pad the audio. Should correspond to silences.
60
+ mel_norms (`list` of length `feature_size`, *optional*):
61
+ If `mel_norms` is provided then it will be used to normalize the log-mel spectrograms along each
62
+ mel-filter.
63
+ return_attention_mask (`bool`, *optional*, defaults to `False`):
64
+ Whether to return the attention mask. If left to the default, it will return the attention mask.
65
+
66
+ [What are attention masks?](../glossary#attention-mask)
67
+ """
68
+
69
+ model_input_names = ["input_features", "attention_mask"]
70
+
71
+ def __init__(
72
+ self,
73
+ feature_size=80,
74
+ sampling_rate=22050,
75
+ default_audio_length=6,
76
+ hop_length=256,
77
+ chunk_length=30,
78
+ n_fft=1024,
79
+ padding_value=0.0,
80
+ mel_norms=None,
81
+ return_attention_mask=False, # pad inputs to max length with silence token (zero) and no attention mask
82
+ **kwargs,
83
+ ):
84
+ super().__init__(
85
+ feature_size=feature_size,
86
+ sampling_rate=sampling_rate,
87
+ padding_value=padding_value,
88
+ return_attention_mask=return_attention_mask,
89
+ **kwargs,
90
+ )
91
+ self.n_fft = n_fft
92
+ self.hop_length = hop_length
93
+ self.chunk_length = chunk_length
94
+ self.n_samples = chunk_length * sampling_rate
95
+ self.nb_max_frames = self.n_samples // hop_length
96
+ self.sampling_rate = sampling_rate
97
+ self.default_audio_length = default_audio_length
98
+ self.mel_norms = mel_norms
99
+ self.mel_filters = mel_filter_bank(
100
+ num_frequency_bins=1 + (n_fft // 2),
101
+ num_mel_filters=feature_size,
102
+ min_frequency=0.0,
103
+ max_frequency=8000.0,
104
+ sampling_rate=sampling_rate,
105
+ norm="slaney",
106
+ mel_scale="htk",
107
+ )
108
+
109
+ def _np_extract_fbank_features(self, waveform: np.array) -> np.ndarray:
110
+ """
111
+ This method first computes the log-mel spectrogram of the provided audio then applies normalization along the
112
+ each mel-filterbank, if `mel_norms` is provided.
113
+ """
114
+ log_spec = spectrogram(
115
+ waveform,
116
+ window_function(self.n_fft, "hann"),
117
+ frame_length=self.n_fft,
118
+ hop_length=self.hop_length,
119
+ power=2.0,
120
+ mel_filters=self.mel_filters,
121
+ log_mel=None,
122
+ )
123
+
124
+ log_spec = np.log(np.clip(log_spec, a_min=1e-5, a_max=None))
125
+
126
+ if self.mel_norms is not None:
127
+ log_spec = log_spec / np.array(self.mel_norms)[:, None]
128
+
129
+ return log_spec
130
+
131
+ def __call__(
132
+ self,
133
+ raw_speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],
134
+ sampling_rate: Optional[int] = None,
135
+ truncation: bool = True,
136
+ pad_to_multiple_of: Optional[int] = None,
137
+ return_tensors: Optional[Union[str, TensorType]] = None,
138
+ return_attention_mask: Optional[bool] = True,
139
+ padding: Optional[str] = "max_length",
140
+ max_length: Optional[int] = None,
141
+ **kwargs,
142
+ ) -> BatchFeature:
143
+ """
144
+ `ClvpFeatureExtractor` is used to extract various voice specific properties such as the pitch and tone of the
145
+ voice, speaking speed, and even speaking defects like a lisp or stuttering from a sample voice or `raw_speech`.
146
+
147
+ First the voice is padded or truncated in a way such that it becomes a waveform of `self.default_audio_length`
148
+ seconds long and then the log-mel spectrogram is extracted from it.
149
+
150
+ Args:
151
+ raw_speech (`np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[List[float]]`):
152
+ The sequence or batch of sequences to be padded. Each sequence can be a numpy array, a list of float
153
+ values, a list of numpy arrays or a list of list of float values. Must be mono channel audio, not
154
+ stereo, i.e. single float per timestep.
155
+ sampling_rate (`int`, *optional*):
156
+ The sampling rate at which the `raw_speech` input was sampled. It is strongly recommended to pass
157
+ `sampling_rate` at the forward call to prevent silent errors and allow automatic speech recognition
158
+ pipeline.
159
+ truncation (`bool`, *optional*, default to `True`):
160
+ Activates truncation to cut input sequences longer than *max_length* to *max_length*.
161
+ pad_to_multiple_of (`int`, *optional*):
162
+ If set will pad the sequence to a multiple of the provided value.
163
+
164
+ This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
165
+ `>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128.
166
+ return_attention_mask (`bool`, *optional*, defaults to `True`):
167
+ Whether to return the attention mask. If left to the default, it will return the attention mask.
168
+
169
+ [What are attention masks?](../glossary#attention-mask)
170
+ return_tensors (`str` or [`~utils.TensorType`], *optional*):
171
+ If set, will return tensors instead of list of python integers. Acceptable values are:
172
+
173
+ - `'tf'`: Return TensorFlow `tf.constant` objects.
174
+ - `'pt'`: Return PyTorch `torch.Tensor` objects.
175
+ - `'np'`: Return Numpy `np.ndarray` objects.
176
+ padding_value (`float`, defaults to 0.0):
177
+ The value that is used to fill the padding values / vectors.
178
+ max_length (`int`, *optional*):
179
+ The maximum input length of the inputs.
180
+ """
181
+
182
+ if sampling_rate is not None:
183
+ if sampling_rate != self.sampling_rate:
184
+ raise ValueError(
185
+ f"The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a"
186
+ f" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input"
187
+ f" was sampled with {self.sampling_rate} and not {sampling_rate}."
188
+ )
189
+ else:
190
+ logger.warning(
191
+ "It is strongly recommended to pass the `sampling_rate` argument to this function. "
192
+ "Failing to do so can result in silent errors that might be hard to debug."
193
+ )
194
+
195
+ is_batched_numpy = isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1
196
+ if is_batched_numpy and len(raw_speech.shape) > 2:
197
+ raise ValueError(f"Only mono-channel audio is supported for input to {self}")
198
+ is_batched = is_batched_numpy or (
199
+ isinstance(raw_speech, (list, tuple)) and (isinstance(raw_speech[0], (np.ndarray, tuple, list)))
200
+ )
201
+
202
+ if is_batched:
203
+ raw_speech = [np.asarray([speech], dtype=np.float32).T for speech in raw_speech]
204
+ elif not is_batched and not isinstance(raw_speech, np.ndarray):
205
+ raw_speech = np.asarray(raw_speech, dtype=np.float32)
206
+ elif isinstance(raw_speech, np.ndarray) and raw_speech.dtype is np.dtype(np.float64):
207
+ raw_speech = raw_speech.astype(np.float32)
208
+
209
+ # always return batch
210
+ if not is_batched:
211
+ raw_speech = [np.asarray([raw_speech]).T]
212
+
213
+ batched_speech = BatchFeature({"input_features": raw_speech})
214
+
215
+ max_length = self.default_audio_length * self.sampling_rate if max_length is None else max_length
216
+
217
+ padded_inputs = self.pad(
218
+ batched_speech,
219
+ padding=padding,
220
+ max_length=max_length,
221
+ truncation=truncation,
222
+ pad_to_multiple_of=pad_to_multiple_of,
223
+ return_attention_mask=return_attention_mask,
224
+ )
225
+
226
+ # make sure list is in array format
227
+ input_features = padded_inputs.get("input_features").transpose(2, 0, 1)
228
+
229
+ input_features = [
230
+ self._np_extract_fbank_features(waveform).astype(np.float32) for waveform in input_features[0]
231
+ ]
232
+
233
+ if isinstance(input_features[0], List):
234
+ padded_inputs["input_features"] = [np.asarray(feature) for feature in input_features]
235
+ else:
236
+ padded_inputs["input_features"] = input_features
237
+
238
+ return padded_inputs.convert_to_tensors(return_tensors)
llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/modeling_clvp.py ADDED
@@ -0,0 +1,2022 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """ PyTorch CLVP model."""
17
+
18
+
19
+ import copy
20
+ import math
21
+ from dataclasses import dataclass
22
+ from typing import Dict, Optional, Tuple, Union
23
+
24
+ import torch
25
+ import torch.utils.checkpoint
26
+ from torch import nn
27
+ from torch.nn import CrossEntropyLoss
28
+
29
+ from ...activations import ACT2FN
30
+ from ...generation import GenerationConfig
31
+ from ...modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_causal_attention_mask
32
+ from ...modeling_outputs import (
33
+ BaseModelOutput,
34
+ BaseModelOutputWithPastAndCrossAttentions,
35
+ BaseModelOutputWithPooling,
36
+ CausalLMOutputWithCrossAttentions,
37
+ )
38
+ from ...modeling_utils import PreTrainedModel, SequenceSummary
39
+ from ...pytorch_utils import Conv1D
40
+ from ...utils import (
41
+ ModelOutput,
42
+ add_start_docstrings,
43
+ add_start_docstrings_to_model_forward,
44
+ logging,
45
+ replace_return_docstrings,
46
+ )
47
+ from .configuration_clvp import (
48
+ ClvpConfig,
49
+ ClvpDecoderConfig,
50
+ ClvpEncoderConfig,
51
+ )
52
+
53
+
54
+ logger = logging.get_logger(__name__)
55
+
56
+ _CHECKPOINT_FOR_DOC = "susnato/clvp_dev"
57
+
58
+
59
+ from ..deprecated._archive_maps import CLVP_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
60
+
61
+
62
+ # Copied from transformers.models.clip.modeling_clip.contrastive_loss
63
+ def contrastive_loss(logits: torch.Tensor) -> torch.Tensor:
64
+ return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device))
65
+
66
+
67
+ # Copied from transformers.models.clip.modeling_clip.clip_loss with clip->clvp, image_loss->speech_loss
68
+ def clvp_loss(similarity: torch.Tensor) -> torch.Tensor:
69
+ caption_loss = contrastive_loss(similarity)
70
+ speech_loss = contrastive_loss(similarity.t())
71
+ return (caption_loss + speech_loss) / 2.0
72
+
73
+
74
+ # Copied from transformers.models.llama.modeling_llama.rotate_half
75
+ def rotate_half(x):
76
+ """Rotates half the hidden dims of the input."""
77
+ x1 = x[..., : x.shape[-1] // 2]
78
+ x2 = x[..., x.shape[-1] // 2 :]
79
+ return torch.cat((-x2, x1), dim=-1)
80
+
81
+
82
+ def apply_rotary_pos_emb(q, k, v, cos, sin, position_ids, unsqueeze_dim=1):
83
+ """Applies Rotary Position Embedding to the query and key tensors.
84
+
85
+ Args:
86
+ q (`torch.Tensor`): The query tensor.
87
+ k (`torch.Tensor`): The key tensor.
88
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
89
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
90
+ position_ids (`torch.Tensor`):
91
+ The position indices of the tokens corresponding to the query and key tensors. For example, this can be
92
+ used to pass offsetted position ids when working with a KV-cache.
93
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
94
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
95
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
96
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
97
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
98
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
99
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
100
+ Returns:
101
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
102
+ """
103
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim)
104
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim)
105
+ q_embed = (q * cos) + (rotate_half(q) * sin)
106
+ k_embed = (k * cos) + (rotate_half(k) * sin)
107
+ v_embed = (v * cos) + (rotate_half(v) * sin)
108
+ return q_embed, k_embed, v_embed
109
+
110
+
111
+ def _pad_extra_bos_eos_tokens(
112
+ input_ids,
113
+ attention_mask=None,
114
+ pad_token_id=0,
115
+ bos_token_id=255,
116
+ eos_token_id=0,
117
+ add_bos_token=True,
118
+ add_eos_token=True,
119
+ ):
120
+ """
121
+ This method adds extra bos and eos tokens to input_ids and accordingly modifies the attention_mask which is used in
122
+ `ClvpConditioningEncoder` and the generation loop of the `ClvpModelForConditionalGeneration`.
123
+ """
124
+
125
+ # add the bos token at the beginning
126
+ if add_bos_token:
127
+ input_ids = torch.nn.functional.pad(input_ids, (1, 0), value=bos_token_id)
128
+ attention_mask = (
129
+ torch.nn.functional.pad(attention_mask, (1, 0), value=1) if attention_mask is not None else attention_mask
130
+ )
131
+
132
+ modified_input_ids = input_ids
133
+ if add_eos_token:
134
+ modified_input_ids = torch.zeros(
135
+ (input_ids.shape[0], input_ids.shape[1] + 1), dtype=input_ids.dtype, device=input_ids.device
136
+ )
137
+ for i, each_input_id in enumerate(input_ids):
138
+ # locate where the valid tokens end and then add the eos token
139
+ if torch.isin(each_input_id, pad_token_id).sum():
140
+ pos = torch.where(each_input_id == pad_token_id)[0].min()
141
+ modified_input_ids[i] = torch.concatenate(
142
+ [each_input_id[:pos], torch.tensor([eos_token_id], device=input_ids.device), each_input_id[pos:]]
143
+ )
144
+ else:
145
+ # if there are no pad tokens present, then add eos to the end
146
+ modified_input_ids[i] = torch.nn.functional.pad(each_input_id, (0, 1), value=eos_token_id)
147
+ attention_mask = (
148
+ torch.nn.functional.pad(attention_mask, (1, 0), value=1) if attention_mask is not None else attention_mask
149
+ )
150
+
151
+ return modified_input_ids, attention_mask
152
+
153
+
154
+ @dataclass
155
+ class ClvpEncoderOutput(ModelOutput):
156
+ """
157
+ Base class for CLVP encoder's outputs that contains a pooling of the last hidden states as well as a projection
158
+ output (a linear layer on top of the pooled output).
159
+
160
+ Args:
161
+ embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when model is initialized with `with_projection=True`):
162
+ The embeddings obtained by applying the projection layer to the pooler_output.
163
+ last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
164
+ The hidden state of the last layer of the model.
165
+ pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`):
166
+ Pooled output of the `last_hidden_state`.
167
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
168
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
169
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of
170
+ the model at the output of each layer plus the optional initial embedding outputs.
171
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
172
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
173
+ sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
174
+ the self-attention heads.
175
+ """
176
+
177
+ embeds: Optional[torch.FloatTensor] = None
178
+ last_hidden_state: torch.FloatTensor = None
179
+ pooler_output: Optional[torch.FloatTensor] = None
180
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
181
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
182
+
183
+
184
+ @dataclass
185
+ class ClvpOutput(ModelOutput):
186
+ """
187
+ Args:
188
+ loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
189
+ Contrastive loss for speech-text similarity.
190
+ speech_ids (`torch.LongTensor`, *optional*):
191
+ speech_ids (or speech candidates) generated by the `ClvpForCausalLM` model.
192
+ logits_per_speech (`torch.FloatTensor` of shape `(speech_batch_size, text_batch_size)`):
193
+ The scaled dot product scores between `speech_embeds` and `text_embeds`. This represents the speech-text
194
+ similarity scores.
195
+ logits_per_text (`torch.FloatTensor` of shape `(text_batch_size, speech_batch_size)`):
196
+ The scaled dot product scores between `text_embeds` and `speech_embeds`. This represents the text-speech
197
+ similarity scores.
198
+ text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`):
199
+ The text embeddings obtained by applying the projection layer to the pooled output of the text encoder
200
+ model.
201
+ speech_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`):
202
+ The speech embeddings obtained by applying the projection layer to the pooled output of the speech encoder
203
+ model.
204
+ text_model_output (`BaseModelOutputWithPooling`):
205
+ The pooled output of the `last_hidden_state` of the text encoder Model.
206
+ speech_model_output (`BaseModelOutputWithPooling`):
207
+ The pooled output of the `last_hidden_state` of the speech encoder Model.
208
+ decoder_hidden_states (`torch.FloatTensor`, *optional*):
209
+ The hidden states of the decoder model.
210
+ text_encoder_hidden_states (`torch.FloatTensor`, *optional*):
211
+ The hidden states of the text encoder model.
212
+ speech_encoder_hidden_states (`torch.FloatTensor`, *optional*):
213
+ The hidden states of the speech encoder model.
214
+ """
215
+
216
+ loss: Optional[torch.FloatTensor] = None
217
+ speech_ids: Optional[torch.LongTensor] = None
218
+ logits_per_speech: torch.FloatTensor = None
219
+ logits_per_text: torch.FloatTensor = None
220
+ text_embeds: torch.FloatTensor = None
221
+ speech_embeds: torch.FloatTensor = None
222
+ text_model_output: BaseModelOutputWithPooling = None
223
+ speech_model_output: BaseModelOutputWithPooling = None
224
+ decoder_hidden_states: torch.FloatTensor = None
225
+ text_encoder_hidden_states: torch.FloatTensor = None
226
+ speech_encoder_hidden_states: torch.FloatTensor = None
227
+
228
+
229
+ # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Clvp
230
+ class ClvpRMSNorm(nn.Module):
231
+ def __init__(self, hidden_size, eps=1e-6):
232
+ """
233
+ ClvpRMSNorm is equivalent to T5LayerNorm
234
+ """
235
+ super().__init__()
236
+ self.weight = nn.Parameter(torch.ones(hidden_size))
237
+ self.variance_epsilon = eps
238
+
239
+ def forward(self, hidden_states):
240
+ input_dtype = hidden_states.dtype
241
+ hidden_states = hidden_states.to(torch.float32)
242
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
243
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
244
+ return self.weight * hidden_states.to(input_dtype)
245
+
246
+
247
+ class ClvpRotaryPositionalEmbedding(nn.Module):
248
+ """
249
+ Rotary Position Embedding Class for CLVP. It was proposed in the paper 'ROFORMER: ENHANCED TRANSFORMER WITH ROTARY
250
+ POSITION EMBEDDING', Please see https://arxiv.org/pdf/2104.09864v1.pdf .
251
+ """
252
+
253
+ def __init__(self, config):
254
+ super().__init__()
255
+ dim = max(config.projection_dim // (config.num_attention_heads * 2), 32)
256
+ inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, dtype=torch.int64).float() / dim))
257
+
258
+ self.register_buffer("inv_freq", inv_freq)
259
+ self.cached_sequence_length = None
260
+ self.cached_rotary_positional_embedding = None
261
+
262
+ def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
263
+ sequence_length = hidden_states.shape[1]
264
+
265
+ if sequence_length == self.cached_sequence_length and self.cached_rotary_positional_embedding is not None:
266
+ return self.cached_rotary_positional_embedding
267
+
268
+ self.cached_sequence_length = sequence_length
269
+ time_stamps = torch.arange(sequence_length, device=hidden_states.device).type_as(self.inv_freq)
270
+ freqs = torch.einsum("i,j->ij", time_stamps, self.inv_freq)
271
+ embeddings = torch.cat((freqs, freqs), dim=-1)
272
+
273
+ self.cached_rotary_positional_embedding = embeddings.unsqueeze(0)
274
+ return self.cached_rotary_positional_embedding
275
+
276
+
277
+ class ClvpSelfAttention(nn.Module):
278
+ """
279
+ Multi-headed attention to combine Absolute and Rotary Positional Embeddings into a single Attention module.
280
+ """
281
+
282
+ def __init__(self, config):
283
+ super().__init__()
284
+ self.config = config
285
+ self.embed_dim = config.hidden_size
286
+ self.num_heads = config.num_attention_heads
287
+ self.head_dim = self.embed_dim // self.num_heads
288
+ if self.head_dim * self.num_heads != self.embed_dim:
289
+ raise ValueError(
290
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
291
+ f" {self.num_heads})."
292
+ )
293
+ self.scale = self.head_dim**-0.5
294
+ self.dropout = config.attention_dropout
295
+
296
+ if hasattr(config, "max_position_embeddings"):
297
+ max_positions = config.max_position_embeddings
298
+ bias = torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool))
299
+ bias = bias.view(1, 1, max_positions, max_positions)
300
+ self.register_buffer("bias", bias, persistent=False)
301
+
302
+ self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.use_attention_bias)
303
+ self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.use_attention_bias)
304
+ self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.use_attention_bias)
305
+ self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
306
+
307
+ # Copied from transformers.models.clip.modeling_clip.CLIPAttention._shape
308
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
309
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
310
+
311
+ def forward(
312
+ self,
313
+ hidden_states: torch.FloatTensor,
314
+ rotary_pos_emb: Optional[torch.FloatTensor] = None,
315
+ attention_mask: Optional[torch.LongTensor] = None,
316
+ position_ids: Optional[torch.LongTensor] = None,
317
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
318
+ use_cache: Optional[bool] = False,
319
+ head_mask: Optional[torch.FloatTensor] = None,
320
+ output_attentions: Optional[bool] = False,
321
+ ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]:
322
+ # Raise error when position_ids is None but rotary_pos_emb is provided, because we need that when applying
323
+ # rotary_pos_emb to query and key states.
324
+ if rotary_pos_emb is not None and position_ids is None:
325
+ raise ValueError("`position_ids` must be provided when `rotary_pos_emb` is not None.")
326
+
327
+ bsz, _, embed_dim = hidden_states.size()
328
+
329
+ # get query proj
330
+ query_states = self._shape(self.q_proj(hidden_states), -1, bsz) * self.scale
331
+ key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
332
+ value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
333
+
334
+ if past_key_value is not None:
335
+ past_key, past_value = past_key_value
336
+ key_states = torch.cat((past_key, key_states), dim=-2)
337
+ value_states = torch.cat((past_value, value_states), dim=-2)
338
+
339
+ if use_cache is True:
340
+ present = (key_states, value_states)
341
+ else:
342
+ present = None
343
+
344
+ if rotary_pos_emb is not None:
345
+ rotary_emb_dim = rotary_pos_emb.shape[-1]
346
+
347
+ # Partial rotary embedding
348
+ query_rot, query_pass = (
349
+ query_states[..., :rotary_emb_dim],
350
+ query_states[..., rotary_emb_dim:],
351
+ )
352
+ key_rot, key_pass = (
353
+ key_states[..., :rotary_emb_dim],
354
+ key_states[..., rotary_emb_dim:],
355
+ )
356
+ value_rot, value_pass = (
357
+ value_states[..., :rotary_emb_dim],
358
+ value_states[..., rotary_emb_dim:],
359
+ )
360
+
361
+ cos, sin = rotary_pos_emb.cos().squeeze(0), rotary_pos_emb.sin().squeeze(0)
362
+ query_rot, key_rot, value_rot = apply_rotary_pos_emb(query_rot, key_rot, value_rot, cos, sin, position_ids)
363
+
364
+ # [batch_size, num_heads, seq_length, head_dim]
365
+ query_states = torch.cat((query_rot, query_pass), dim=-1)
366
+ key_states = torch.cat((key_rot, key_pass), dim=-1)
367
+ value_states = torch.cat((value_rot, value_pass), dim=-1)
368
+
369
+ tgt_len = query_states.shape[2]
370
+ src_len = key_states.shape[2]
371
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3))
372
+
373
+ if attention_mask is not None:
374
+ if attention_mask.size() != (bsz, 1, tgt_len, src_len):
375
+ raise ValueError(
376
+ f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
377
+ )
378
+ attn_weights = attn_weights + attention_mask
379
+
380
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
381
+
382
+ # Mask heads if we want to
383
+ if head_mask is not None:
384
+ attn_weights = attn_weights * head_mask
385
+
386
+ attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
387
+ attn_output = torch.matmul(attn_probs, value_states)
388
+
389
+ if attn_output.size() != (bsz, self.num_heads, tgt_len, self.head_dim):
390
+ raise ValueError(
391
+ f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
392
+ f" {attn_output.size()}"
393
+ )
394
+
395
+ attn_output = attn_output.transpose(1, 2).contiguous()
396
+ attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
397
+
398
+ attn_output = self.out_proj(attn_output)
399
+
400
+ if not output_attentions:
401
+ attn_weights = None
402
+
403
+ return attn_output, present, attn_weights
404
+
405
+
406
+ class ClvpGatedLinearUnit(nn.Module):
407
+ """
408
+ `ClvpGatedLinearUnit` uses the second half of the `hidden_states` to act as a gate for the first half of the
409
+ `hidden_states` which controls the flow of data from the first of the tensor.
410
+ """
411
+
412
+ def __init__(self, config):
413
+ super().__init__()
414
+ self.activation_fn = ACT2FN[config.hidden_act]
415
+ self.proj = nn.Linear(config.hidden_size, config.intermediate_size * 2)
416
+
417
+ def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
418
+ hidden_states, gate = self.proj(hidden_states).chunk(2, dim=-1)
419
+ return hidden_states * self.activation_fn(gate)
420
+
421
+
422
+ class ClvpEncoderMLP(nn.Module):
423
+ """
424
+ This MLP is used in CLVP speech or text encoder models.
425
+ """
426
+
427
+ def __init__(self, config):
428
+ super().__init__()
429
+ self.config = config
430
+
431
+ self.fc1 = ClvpGatedLinearUnit(config)
432
+ self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
433
+ self.dropout_layer = nn.Dropout(config.dropout)
434
+
435
+ def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
436
+ hidden_states = self.fc1(hidden_states)
437
+ hidden_states = self.dropout_layer(hidden_states)
438
+ hidden_states = self.fc2(hidden_states)
439
+ return hidden_states
440
+
441
+
442
+ class ClvpEncoderLayer(nn.Module):
443
+ def __init__(self, config: ClvpConfig):
444
+ super().__init__()
445
+ self.config = config
446
+ self.embed_dim = config.hidden_size
447
+ self.self_attn = ClvpSelfAttention(config)
448
+ self.mlp = ClvpEncoderMLP(config)
449
+
450
+ self.input_rmsnorm = ClvpRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
451
+ self.post_attention_rmsnorm = ClvpRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
452
+
453
+ def forward(
454
+ self,
455
+ hidden_states: torch.FloatTensor,
456
+ rotary_pos_emb: torch.FloatTensor,
457
+ attention_mask: torch.LongTensor,
458
+ position_ids: torch.LongTensor,
459
+ output_attentions: Optional[bool] = False,
460
+ ) -> Tuple[torch.FloatTensor]:
461
+ """
462
+ Args:
463
+ hidden_states (`torch.FloatTensor` of shape `(batch, seq_len, embed_dim)`):
464
+ input to the layer.
465
+ rotary_pos_emb (`torch.FloatTensor`):
466
+ rotary position embeddings generated by `ClvpRotaryPositionalEmbedding` module.
467
+ attention_mask (`torch.FloatTensor` of shape `(batch, 1, tgt_len, src_len)`):
468
+ attention mask where padding elements are indicated by very large negative values.
469
+ position_ids (`torch.LongTensor`):
470
+ Denotes position ids of the input tokens.
471
+ output_attentions (`bool`, *optional*, defaults to `False`):
472
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
473
+ returned tensors for more detail.
474
+ """
475
+ residual = hidden_states
476
+
477
+ hidden_states = self.input_rmsnorm(hidden_states)
478
+
479
+ attention_outputs = self.self_attn(
480
+ hidden_states=hidden_states,
481
+ rotary_pos_emb=rotary_pos_emb,
482
+ attention_mask=attention_mask,
483
+ position_ids=position_ids,
484
+ output_attentions=output_attentions,
485
+ )
486
+
487
+ hidden_states = attention_outputs[0]
488
+
489
+ hidden_states = residual + hidden_states
490
+
491
+ residual = hidden_states
492
+ hidden_states = self.post_attention_rmsnorm(hidden_states)
493
+ hidden_states = self.mlp(hidden_states)
494
+ hidden_states = residual + hidden_states
495
+
496
+ outputs = (hidden_states,)
497
+
498
+ if output_attentions:
499
+ outputs += (attention_outputs[-1],)
500
+
501
+ return outputs
502
+
503
+
504
+ # Copied from transformers.models.gpt2.modeling_gpt2.GPT2MLP with GPT2->ClvpDecoderMLP
505
+ class ClvpDecoderMLP(nn.Module):
506
+ def __init__(self, intermediate_size, config):
507
+ super().__init__()
508
+ embed_dim = config.hidden_size
509
+ self.c_fc = Conv1D(intermediate_size, embed_dim)
510
+ self.c_proj = Conv1D(embed_dim, intermediate_size)
511
+ self.act = ACT2FN[config.activation_function]
512
+ self.dropout = nn.Dropout(config.resid_pdrop)
513
+
514
+ def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor:
515
+ hidden_states = self.c_fc(hidden_states)
516
+ hidden_states = self.act(hidden_states)
517
+ hidden_states = self.c_proj(hidden_states)
518
+ hidden_states = self.dropout(hidden_states)
519
+ return hidden_states
520
+
521
+
522
+ class ClvpDecoderLayer(nn.Module):
523
+ def __init__(self, config):
524
+ super().__init__()
525
+ hidden_size = config.hidden_size
526
+ inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size
527
+
528
+ self.input_layernorm = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
529
+ self.attn = ClvpSelfAttention(config)
530
+ self.post_attention_layernorm = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
531
+
532
+ self.mlp = ClvpDecoderMLP(inner_dim, config)
533
+
534
+ def forward(
535
+ self,
536
+ hidden_states: Optional[Tuple[torch.FloatTensor]],
537
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
538
+ attention_mask: Optional[torch.LongTensor] = None,
539
+ position_ids: Optional[torch.LongTensor] = None,
540
+ head_mask: Optional[torch.FloatTensor] = None,
541
+ use_cache: Optional[bool] = False,
542
+ output_attentions: Optional[bool] = False,
543
+ ) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]:
544
+ residual = hidden_states
545
+ hidden_states = self.input_layernorm(hidden_states)
546
+ attn_outputs = self.attn(
547
+ hidden_states,
548
+ past_key_value=past_key_value,
549
+ attention_mask=attention_mask,
550
+ position_ids=position_ids,
551
+ head_mask=head_mask,
552
+ use_cache=use_cache,
553
+ output_attentions=output_attentions,
554
+ )
555
+ attn_output = attn_outputs[0]
556
+ outputs = attn_outputs[1:]
557
+ # residual connection
558
+ hidden_states = attn_output + residual
559
+
560
+ residual = hidden_states
561
+ hidden_states = self.post_attention_layernorm(hidden_states)
562
+ feed_forward_hidden_states = self.mlp(hidden_states)
563
+ # residual connection
564
+ hidden_states = residual + feed_forward_hidden_states
565
+
566
+ if use_cache:
567
+ outputs = (hidden_states,) + outputs
568
+ else:
569
+ outputs = (hidden_states,) + outputs[1:]
570
+
571
+ return outputs
572
+
573
+
574
+ class ClvpConditioningEncoder(nn.Module):
575
+ """
576
+ This class processes the log-mel spectrograms(extracted by the Feature Extractor) and text tokens(produced by the
577
+ tokenizer) as inputs for the decoder model.
578
+
579
+ First each log-mel spectrogram is processed into a single vector which captures valuable characteristics from each
580
+ of them, then the text tokens are converted into token embeddings and position embeddings are added afterwards.
581
+ Both of these vectors are concatenated and then passed to the decoder model.
582
+
583
+ The text tokens helps to incorporate the "text information" and the log-mel spectrogram is used to specify the
584
+ "voice characteristics" into the generated mel tokens.
585
+ """
586
+
587
+ def __init__(self, config: ClvpConfig):
588
+ super().__init__()
589
+
590
+ self.text_config = config.text_config
591
+ self.decoder_config = config.decoder_config
592
+
593
+ self.text_token_embedding = nn.Embedding(self.text_config.vocab_size, self.decoder_config.hidden_size)
594
+ self.text_position_embedding = nn.Embedding(
595
+ self.decoder_config.max_text_tokens, self.decoder_config.hidden_size
596
+ )
597
+
598
+ self.mel_conv = nn.Conv1d(self.decoder_config.feature_size, self.decoder_config.hidden_size, kernel_size=1)
599
+
600
+ # define group norms to be used before each attention layer
601
+ num_groups = self.compute_groupnorm_groups(self.decoder_config.hidden_size)
602
+ self.group_norms = nn.ModuleList(
603
+ [
604
+ nn.GroupNorm(num_groups, self.decoder_config.hidden_size, eps=1e-5, affine=True)
605
+ for _ in range(self.decoder_config.num_mel_attn_blocks)
606
+ ]
607
+ )
608
+
609
+ # define the attention layers
610
+ self.mel_attn_blocks = nn.ModuleList(
611
+ [ClvpSelfAttention(self.decoder_config) for _ in range(self.decoder_config.num_mel_attn_blocks)]
612
+ )
613
+
614
+ self.gradient_checkpointing = False
615
+
616
+ def compute_groupnorm_groups(self, channels: int, groups: int = 32):
617
+ """
618
+ Calculates the value of `num_groups` for nn.GroupNorm. This logic is taken from the official tortoise
619
+ repository. link :
620
+ https://github.com/neonbjb/tortoise-tts/blob/4003544b6ff4b68c09856e04d3eff9da26d023c2/tortoise/models/arch_util.py#L26
621
+ """
622
+ if channels <= 16:
623
+ groups = 8
624
+ elif channels <= 64:
625
+ groups = 16
626
+ while channels % groups != 0:
627
+ groups = int(groups / 2)
628
+
629
+ if groups <= 2:
630
+ raise ValueError(
631
+ f"Number of groups for the GroupNorm must be greater than 2, but it is {groups}."
632
+ f"Please consider using a different `hidden_size`"
633
+ )
634
+
635
+ return groups
636
+
637
+ def forward(
638
+ self,
639
+ input_features: torch.FloatTensor,
640
+ input_ids: Optional[torch.LongTensor] = None,
641
+ inputs_embeds: Optional[torch.FloatTensor] = None,
642
+ attention_mask: Optional[torch.LongTensor] = None,
643
+ ):
644
+ # process text
645
+ if input_ids is not None and inputs_embeds is not None:
646
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
647
+ elif input_ids is not None:
648
+ batch_size, seq_length = input_ids.size()
649
+ elif inputs_embeds is not None:
650
+ batch_size, seq_length = inputs_embeds.size()[:-1]
651
+ else:
652
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
653
+
654
+ # construct attention mask if not given
655
+ if attention_mask is None:
656
+ attention_mask = torch.ones([batch_size, seq_length], dtype=torch.long, device=input_ids.device)
657
+
658
+ # We add bos and eos input_ids in the modeling file instead of the tokenizer file to keep the logic simple
659
+ # This logic is specific to ClvpConditioningEncoder and not used by other modules.
660
+ input_ids, attention_mask = _pad_extra_bos_eos_tokens(
661
+ input_ids,
662
+ attention_mask,
663
+ bos_token_id=self.text_config.bos_token_id,
664
+ eos_token_id=self.text_config.eos_token_id,
665
+ )
666
+
667
+ inputs_embeds = self.text_token_embedding(input_ids)
668
+ position_ids = attention_mask.cumsum(-1) - 1
669
+ position_embeds = self.text_position_embedding(position_ids)
670
+ text_embeds = inputs_embeds + position_embeds
671
+
672
+ if self.gradient_checkpointing and self.training:
673
+ # process each log-mel spectrogram into a single vector
674
+ mel_spec = torch.utils.checkpoint.checkpoint(self.mel_conv, input_features)
675
+
676
+ for i, mel_attn_block in enumerate(self.mel_attn_blocks):
677
+ residual_mel_spec = mel_spec.transpose(1, 2)
678
+
679
+ mel_spec = torch.utils.checkpoint.checkpoint(self.group_norms[i], mel_spec).transpose(1, 2)
680
+ mel_spec = torch.utils.checkpoint.checkpoint(mel_attn_block, mel_spec)[0] + residual_mel_spec
681
+ mel_spec = mel_spec.transpose(1, 2)
682
+
683
+ else:
684
+ # process each log-mel spectrogram into a single vector
685
+ mel_spec = self.mel_conv(input_features)
686
+
687
+ for i, mel_attn_block in enumerate(self.mel_attn_blocks):
688
+ residual_mel_spec = mel_spec.transpose(1, 2)
689
+
690
+ mel_spec = self.group_norms[i](mel_spec).transpose(1, 2)
691
+ mel_spec = mel_attn_block(mel_spec)[0] + residual_mel_spec
692
+ mel_spec = mel_spec.transpose(1, 2)
693
+
694
+ mel_spec = mel_spec[:, :, 0]
695
+ mel_spec = mel_spec.unsqueeze(1)
696
+
697
+ # repeat if there is either (1 text vs N audios) or (N texts vs 1 audio)
698
+ if text_embeds.shape[0] == 1 and mel_spec.shape[0] != 1:
699
+ text_embeds = text_embeds.repeat(mel_spec.shape[0], 1, 1)
700
+ elif text_embeds.shape[0] != 1 and mel_spec.shape[0] == 1:
701
+ mel_spec = mel_spec.repeat(text_embeds.shape[0], 1, 1)
702
+ # If there is N texts and M audios we will raise error since the number of text and audio must be same.
703
+ elif text_embeds.shape[0] != mel_spec.shape[0]:
704
+ raise ValueError(
705
+ f"The number of texts and number of audios must be same. "
706
+ f"Found {text_embeds.shape[0]} texts vs {mel_spec.shape[0]} audios"
707
+ )
708
+
709
+ return torch.concat([mel_spec, text_embeds], dim=1)
710
+
711
+
712
+ class ClvpPreTrainedModel(PreTrainedModel):
713
+ """
714
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
715
+ models.
716
+ """
717
+
718
+ config_class = ClvpConfig
719
+ base_model_prefix = "clvp"
720
+ supports_gradient_checkpointing = True
721
+ _skip_keys_device_placement = "past_key_values"
722
+
723
+ def _init_weights(self, module):
724
+ """Initialize the weights"""
725
+ factor = self.config.initializer_factor
726
+ if isinstance(module, nn.Embedding):
727
+ module.weight.data.normal_(mean=0.0, std=factor * 0.02)
728
+ elif isinstance(module, (nn.Linear, Conv1D, nn.Conv1d)):
729
+ module.weight.data.normal_(mean=0.0, std=factor * 0.02)
730
+ if module.bias is not None:
731
+ module.bias.data.zero_()
732
+ elif isinstance(module, ClvpEncoderMLP):
733
+ factor = self.config.initializer_factor
734
+ in_proj_std = (module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
735
+ fc_std = (2 * module.config.hidden_size) ** -0.5 * factor
736
+ nn.init.normal_(module.fc1.proj.weight if getattr(module.fc1, "proj") else module.fc1.weight, std=fc_std)
737
+ nn.init.normal_(module.fc2.weight, std=in_proj_std)
738
+ elif isinstance(module, ClvpEncoder):
739
+ config = self.config.text_config if hasattr(self.config, "text_config") else self.config
740
+ factor = config.initializer_factor
741
+ module.projection.weight.data.normal_(mean=0.0, std=factor * (config.hidden_size**-0.5))
742
+ elif isinstance(module, ClvpConditioningEncoder):
743
+ module.mel_conv.weight.data.normal_(mean=0.0, std=factor)
744
+ module.mel_conv.bias.data.zero_()
745
+ elif isinstance(module, ClvpForCausalLM):
746
+ for name, p in module.named_parameters():
747
+ if name == "c_proj.weight":
748
+ p.data.normal_(
749
+ mean=0.0, std=(self.config.initializer_range / math.sqrt(2 * self.config.num_hidden_layers))
750
+ )
751
+ if isinstance(module, nn.LayerNorm):
752
+ module.bias.data.zero_()
753
+ module.weight.data.fill_(1.0)
754
+
755
+
756
+ CLVP_START_DOCSTRING = r"""
757
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
758
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
759
+ etc.)
760
+
761
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
762
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
763
+ and behavior.
764
+
765
+ Parameters:
766
+ config ([`ClvpConfig`]): Model configuration class with all the parameters of the model.
767
+ Initializing with a config file does not load the weights associated with the model, only the
768
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
769
+ """
770
+
771
+
772
+ CLVP_INPUTS_DOCSTRING = r"""
773
+ Args:
774
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
775
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
776
+ it.
777
+
778
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
779
+ [`PreTrainedTokenizer.__call__`] for details.
780
+
781
+ [What are input IDs?](../glossary#input-ids)
782
+ input_features (`torch.FloatTensor` of shape `(batch_size, feature_size, time_dim)`):
783
+ Indicates log mel-spectrogram representations for audio returned by [`ClvpFeatureExtractor`].
784
+ conditioning_encoder_inputs_embeds (`torch.FloatTensor`, *optional*):
785
+ inputs_embeds for `ClvpConditioningEncoder`. Can be used in place of `input_ids`.
786
+ text_encoder_inputs_embeds (`torch.FloatTensor`, *optional*):
787
+ inputs_embeds for the text encoder model passed in place of `input_ids`.
788
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
789
+ Mask to avoid performing attention on padding text token indices. Mask values selected in `[0, 1]`:
790
+
791
+ - 1 for tokens that are **not masked**,
792
+ - 0 for tokens that are **masked**.
793
+
794
+ [What are attention masks?](../glossary#attention-mask)
795
+ return_loss (`bool`, *optional*):
796
+ Whether or not to return the contrastive loss.
797
+ output_attentions (`bool`, *optional*):
798
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
799
+ tensors for more detail.
800
+ output_hidden_states (`bool`, *optional*):
801
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
802
+ more detail.
803
+ return_dict (`bool`, *optional*):
804
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
805
+ """
806
+
807
+
808
+ CLVP_DECODER_INPUTS_DOCSTRING = r"""
809
+ Args:
810
+ input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
811
+ Indices of input sequence tokens in the vocabulary.
812
+
813
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
814
+ [`PreTrainedTokenizer.__call__`] for details.
815
+
816
+ [What are input IDs?](../glossary#input-ids)
817
+ past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.n_layers`):
818
+ Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
819
+ `past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have
820
+ their past given to this model should not be passed as `input_ids` as they have already been computed.
821
+ attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
822
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
823
+
824
+ - 1 for tokens that are **not masked**,
825
+ - 0 for tokens that are **masked**.
826
+
827
+ If `past_key_values` is used, `attention_mask` needs to contain the masking strategy that was used for
828
+ `past_key_values`. In other words, the `attention_mask` always has to have the length:
829
+ `len(past_key_values) + len(input_ids)`
830
+
831
+ [What are attention masks?](../glossary#attention-mask)
832
+ token_type_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`, *optional*):
833
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
834
+ 1]`:
835
+
836
+ - 0 corresponds to a *sentence A* token,
837
+ - 1 corresponds to a *sentence B* token.
838
+
839
+ [What are token type IDs?](../glossary#token-type-ids)
840
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
841
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
842
+ config.max_position_embeddings - 1]`.
843
+
844
+ [What are position IDs?](../glossary#position-ids)
845
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
846
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
847
+
848
+ - 1 indicates the head is **not masked**,
849
+ - 0 indicates the head is **masked**.
850
+
851
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
852
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
853
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
854
+ model's internal embedding lookup matrix.
855
+
856
+ If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see
857
+ `past_key_values`).
858
+ use_cache (`bool`, *optional*):
859
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
860
+ `past_key_values`).
861
+ output_attentions (`bool`, *optional*):
862
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
863
+ tensors for more detail.
864
+ output_hidden_states (`bool`, *optional*):
865
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
866
+ more detail.
867
+ return_dict (`bool`, *optional*):
868
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
869
+ """
870
+
871
+
872
+ class ClvpEncoder(ClvpPreTrainedModel):
873
+ """
874
+ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
875
+ [`ClvpEncoderLayer`].
876
+
877
+ Args:
878
+ config: ClvpConfig
879
+ """
880
+
881
+ def __init__(self, config: ClvpConfig):
882
+ super().__init__(config)
883
+
884
+ self.config = config
885
+ self.token_embedding = nn.Embedding(config.vocab_size, config.hidden_size)
886
+ self.rotary_pos_emb = ClvpRotaryPositionalEmbedding(config) if config.use_rotary_embedding else None
887
+ self.layers = nn.ModuleList([ClvpEncoderLayer(config) for _ in range(config.num_hidden_layers)])
888
+
889
+ self.sequence_summary = SequenceSummary(config)
890
+ self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
891
+
892
+ self.projection = nn.Linear(config.hidden_size, config.projection_dim, bias=False)
893
+
894
+ self.gradient_checkpointing = False
895
+
896
+ self.post_init()
897
+
898
+ def get_input_embeddings(self):
899
+ return self.token_embedding
900
+
901
+ def set_input_embeddings(self, value):
902
+ self.token_embedding = value
903
+
904
+ def forward(
905
+ self,
906
+ input_ids: Optional[torch.LongTensor] = None,
907
+ inputs_embeds: Optional[torch.LongTensor] = None,
908
+ attention_mask: Optional[torch.LongTensor] = None,
909
+ position_ids: Optional[torch.LongTensor] = None,
910
+ output_attentions: Optional[bool] = None,
911
+ output_hidden_states: Optional[bool] = None,
912
+ return_dict: Optional[bool] = None,
913
+ ) -> Union[Tuple, BaseModelOutput]:
914
+ r"""
915
+ Args:
916
+ input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`, *optional*):
917
+ Indices of input sequence tokens in the vocabulary.
918
+
919
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
920
+ [`PreTrainedTokenizer.__call__`] for details.
921
+
922
+ [What are input IDs?](../glossary#input-ids)
923
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
924
+ input embeddings for the model. This bypasses the model's internal embedding lookup matrix.
925
+ attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
926
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
927
+
928
+ - 1 for tokens that are **not masked**,
929
+ - 0 for tokens that are **masked**.
930
+
931
+ [What are attention masks?](../glossary#attention-mask)
932
+ position_ids (`torch.LongTensor`, *optional*):
933
+ Denotes the position ids of `input_ids`.
934
+ output_attentions (`bool`, *optional*):
935
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
936
+ returned tensors for more detail.
937
+ output_hidden_states (`bool`, *optional*):
938
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
939
+ for more detail.
940
+ return_dict (`bool`, *optional*):
941
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
942
+ """
943
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
944
+ output_hidden_states = (
945
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
946
+ )
947
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
948
+
949
+ if input_ids is not None and inputs_embeds is not None:
950
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
951
+ elif input_ids is not None:
952
+ self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
953
+ input_shape = input_ids.size()
954
+ input_ids = input_ids.view(-1, input_shape[-1])
955
+ inputs_embeds = self.token_embedding(input_ids)
956
+ elif inputs_embeds is not None:
957
+ input_shape = inputs_embeds.size()[:-1]
958
+ else:
959
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
960
+
961
+ # expand attention_mask and create position_ids if needed
962
+ if attention_mask is not None:
963
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
964
+ attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype)
965
+
966
+ if position_ids is None:
967
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
968
+ position_ids = torch.arange(input_shape[1], dtype=torch.long, device=device)
969
+ position_ids = position_ids.unsqueeze(0)
970
+
971
+ encoder_states = () if output_hidden_states else None
972
+ all_attentions = () if output_attentions else None
973
+
974
+ rotary_pos_emb = self.rotary_pos_emb(inputs_embeds) if self.rotary_pos_emb is not None else None
975
+
976
+ hidden_states = inputs_embeds
977
+ for idx, encoder_layer in enumerate(self.layers):
978
+ if output_hidden_states:
979
+ encoder_states = encoder_states + (hidden_states,)
980
+ if self.gradient_checkpointing and self.training:
981
+ layer_outputs = torch.utils.checkpoint.checkpoint(
982
+ encoder_layer.__call__,
983
+ hidden_states,
984
+ rotary_pos_emb,
985
+ attention_mask,
986
+ position_ids,
987
+ )
988
+ else:
989
+ layer_outputs = encoder_layer(
990
+ hidden_states,
991
+ rotary_pos_emb,
992
+ attention_mask,
993
+ position_ids,
994
+ output_attentions=output_attentions,
995
+ )
996
+
997
+ hidden_states = layer_outputs[0]
998
+
999
+ if output_attentions:
1000
+ all_attentions = all_attentions + (layer_outputs[1],)
1001
+
1002
+ if output_hidden_states:
1003
+ encoder_states = encoder_states + (hidden_states,)
1004
+
1005
+ last_hidden_state = hidden_states
1006
+ last_hidden_state = self.final_layer_norm(last_hidden_state)
1007
+
1008
+ # take the mean over axis 1 and get pooled output
1009
+ pooled_output = self.sequence_summary(last_hidden_state)
1010
+
1011
+ # apply the projection layer
1012
+ embeds = self.projection(pooled_output)
1013
+
1014
+ if not return_dict:
1015
+ return tuple(
1016
+ v for v in [embeds, last_hidden_state, pooled_output, encoder_states, all_attentions] if v is not None
1017
+ )
1018
+
1019
+ return ClvpEncoderOutput(
1020
+ embeds=embeds,
1021
+ last_hidden_state=last_hidden_state,
1022
+ pooler_output=pooled_output,
1023
+ hidden_states=encoder_states,
1024
+ attentions=all_attentions,
1025
+ )
1026
+
1027
+
1028
+ class ClvpDecoder(ClvpPreTrainedModel):
1029
+ """
1030
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`ClvpDecoderLayer`]
1031
+ """
1032
+
1033
+ def __init__(self, config):
1034
+ super().__init__(config)
1035
+
1036
+ self.config = config
1037
+
1038
+ self.input_embeds_layer = nn.Embedding(self.config.vocab_size, self.config.hidden_size)
1039
+ self.position_embeds_layer = nn.Embedding(self.config.max_position_embeddings, self.config.hidden_size)
1040
+
1041
+ self.drop = nn.Dropout(self.config.embd_pdrop)
1042
+ self.layers = nn.ModuleList([ClvpDecoderLayer(self.config) for _ in range(self.config.num_hidden_layers)])
1043
+ self.layer_norm = nn.LayerNorm(self.config.hidden_size, eps=self.config.layer_norm_epsilon)
1044
+
1045
+ self.gradient_checkpointing = False
1046
+
1047
+ # Initialize weights and apply final processing
1048
+ self.post_init()
1049
+
1050
+ def get_input_embeddings(self):
1051
+ return self.input_embeds_layer
1052
+
1053
+ def set_input_embeddings(self, new_embeddings):
1054
+ self.input_embeds_layer = new_embeddings
1055
+
1056
+ def _prune_heads(self, heads_to_prune):
1057
+ """
1058
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
1059
+ """
1060
+ for layer, heads in heads_to_prune.items():
1061
+ self.layers[layer].attn.prune_heads(heads)
1062
+
1063
+ @add_start_docstrings_to_model_forward(CLVP_DECODER_INPUTS_DOCSTRING)
1064
+ def forward(
1065
+ self,
1066
+ input_ids: Optional[torch.LongTensor] = None,
1067
+ attention_mask: Optional[torch.FloatTensor] = None,
1068
+ token_type_ids: Optional[torch.LongTensor] = None,
1069
+ position_ids: Optional[torch.LongTensor] = None,
1070
+ head_mask: Optional[torch.FloatTensor] = None,
1071
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
1072
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1073
+ use_cache: Optional[bool] = None,
1074
+ output_attentions: Optional[bool] = None,
1075
+ output_hidden_states: Optional[bool] = None,
1076
+ return_dict: Optional[bool] = None,
1077
+ ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
1078
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1079
+ output_hidden_states = (
1080
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1081
+ )
1082
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1083
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1084
+
1085
+ if input_ids is not None and inputs_embeds is not None:
1086
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
1087
+ elif input_ids is not None:
1088
+ self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
1089
+ input_shape = input_ids.size()
1090
+ input_ids = input_ids.view(-1, input_shape[-1])
1091
+ input_ids.shape[0]
1092
+ elif inputs_embeds is not None:
1093
+ input_shape = inputs_embeds.size()[:-1]
1094
+ inputs_embeds.shape[0]
1095
+ else:
1096
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
1097
+
1098
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1099
+
1100
+ if token_type_ids is not None:
1101
+ token_type_ids = token_type_ids.view(-1, input_shape[-1])
1102
+
1103
+ if past_key_values is None:
1104
+ past_key_values_length = 0
1105
+ past_key_values = tuple([None] * len(self.layers))
1106
+ else:
1107
+ past_key_values_length = past_key_values[0][0].size(-2)
1108
+ if position_ids is None:
1109
+ position_ids = torch.arange(
1110
+ past_key_values_length, input_shape[-1] + past_key_values_length, dtype=torch.long, device=device
1111
+ )
1112
+ position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
1113
+
1114
+ if inputs_embeds is None:
1115
+ inputs_embeds = self.input_embeds_layer(input_ids)
1116
+ position_embeds = self.position_embeds_layer(position_ids)
1117
+ inputs_embeds = inputs_embeds + position_embeds
1118
+
1119
+ attention_mask = _prepare_4d_causal_attention_mask(
1120
+ attention_mask, input_shape, inputs_embeds, past_key_values_length
1121
+ )
1122
+
1123
+ # Prepare head mask if needed
1124
+ # 1.0 in head_mask indicate we keep the head
1125
+ # attention_probs has shape bsz x num_attention_heads x N x N
1126
+ # head_mask has shape num_hidden_layers x batch x num_attention_heads x N x N
1127
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
1128
+
1129
+ hidden_states = inputs_embeds
1130
+
1131
+ if token_type_ids is not None:
1132
+ token_type_embeds = self.input_embeds_layer(token_type_ids)
1133
+ hidden_states = hidden_states + token_type_embeds
1134
+
1135
+ hidden_states = self.drop(hidden_states)
1136
+
1137
+ output_shape = (-1,) + input_shape[1:] + (hidden_states.size(-1),)
1138
+
1139
+ if self.gradient_checkpointing and self.training:
1140
+ if use_cache:
1141
+ logger.warning_once(
1142
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
1143
+ )
1144
+ use_cache = False
1145
+
1146
+ presents = () if use_cache else None
1147
+ all_self_attentions = () if output_attentions else None
1148
+ all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
1149
+ all_hidden_states = () if output_hidden_states else None
1150
+ for i, (block, past_key_value) in enumerate(zip(self.layers, past_key_values)):
1151
+ if output_hidden_states:
1152
+ all_hidden_states = all_hidden_states + (hidden_states,)
1153
+
1154
+ if self.gradient_checkpointing and self.training:
1155
+ outputs = torch.utils.checkpoint.checkpoint(
1156
+ block.__call__,
1157
+ hidden_states,
1158
+ None,
1159
+ attention_mask,
1160
+ position_ids,
1161
+ head_mask[i],
1162
+ )
1163
+ else:
1164
+ outputs = block(
1165
+ hidden_states,
1166
+ past_key_value=past_key_value,
1167
+ attention_mask=attention_mask,
1168
+ position_ids=position_ids,
1169
+ head_mask=head_mask[i],
1170
+ use_cache=use_cache,
1171
+ output_attentions=output_attentions,
1172
+ )
1173
+
1174
+ hidden_states = outputs[0]
1175
+ if use_cache is True:
1176
+ presents = presents + (outputs[1],)
1177
+
1178
+ if output_attentions:
1179
+ all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
1180
+ if self.config.add_cross_attention:
1181
+ all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],)
1182
+
1183
+ hidden_states = self.layer_norm(hidden_states)
1184
+
1185
+ hidden_states = hidden_states.view(output_shape)
1186
+
1187
+ # Add last hidden state
1188
+ if output_hidden_states:
1189
+ all_hidden_states = all_hidden_states + (hidden_states,)
1190
+
1191
+ if not return_dict:
1192
+ return tuple(
1193
+ v
1194
+ for v in [hidden_states, presents, all_hidden_states, all_self_attentions, all_cross_attentions]
1195
+ if v is not None
1196
+ )
1197
+
1198
+ return BaseModelOutputWithPastAndCrossAttentions(
1199
+ last_hidden_state=hidden_states,
1200
+ past_key_values=presents,
1201
+ hidden_states=all_hidden_states,
1202
+ attentions=all_self_attentions,
1203
+ cross_attentions=all_cross_attentions,
1204
+ )
1205
+
1206
+
1207
+ @add_start_docstrings(
1208
+ "The bare Clvp decoder model outputting raw hidden-states without any specific head on top.",
1209
+ CLVP_START_DOCSTRING,
1210
+ )
1211
+ class ClvpModel(ClvpPreTrainedModel):
1212
+ def __init__(self, config: ClvpDecoderConfig):
1213
+ super().__init__(config)
1214
+ self.config = config
1215
+ self.decoder = ClvpDecoder(self.config)
1216
+
1217
+ # Initialize weights and apply final processing
1218
+ self.post_init()
1219
+
1220
+ def get_input_embeddings(self):
1221
+ return self.decoder.input_embeds_layer
1222
+
1223
+ def set_input_embeddings(self, value):
1224
+ self.decoder.input_embeds_layer = value
1225
+
1226
+ def get_decoder(self):
1227
+ return self.decoder
1228
+
1229
+ @add_start_docstrings_to_model_forward(CLVP_DECODER_INPUTS_DOCSTRING)
1230
+ def forward(
1231
+ self,
1232
+ input_ids: Optional[torch.LongTensor] = None,
1233
+ attention_mask: Optional[torch.FloatTensor] = None,
1234
+ token_type_ids: Optional[torch.LongTensor] = None,
1235
+ position_ids: Optional[torch.LongTensor] = None,
1236
+ head_mask: Optional[torch.FloatTensor] = None,
1237
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
1238
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1239
+ use_cache: Optional[bool] = None,
1240
+ output_attentions: Optional[bool] = None,
1241
+ output_hidden_states: Optional[bool] = None,
1242
+ return_dict: Optional[bool] = None,
1243
+ ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
1244
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1245
+ output_hidden_states = (
1246
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1247
+ )
1248
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1249
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1250
+
1251
+ # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
1252
+ decoder_outputs = self.decoder(
1253
+ input_ids=input_ids,
1254
+ attention_mask=attention_mask,
1255
+ token_type_ids=token_type_ids,
1256
+ position_ids=position_ids,
1257
+ head_mask=head_mask,
1258
+ past_key_values=past_key_values,
1259
+ inputs_embeds=inputs_embeds,
1260
+ use_cache=use_cache,
1261
+ output_attentions=output_attentions,
1262
+ output_hidden_states=output_hidden_states,
1263
+ return_dict=return_dict,
1264
+ )
1265
+
1266
+ if not return_dict:
1267
+ return decoder_outputs
1268
+
1269
+ return BaseModelOutputWithPastAndCrossAttentions(
1270
+ last_hidden_state=decoder_outputs.last_hidden_state,
1271
+ past_key_values=decoder_outputs.past_key_values,
1272
+ hidden_states=decoder_outputs.hidden_states,
1273
+ attentions=decoder_outputs.attentions,
1274
+ cross_attentions=decoder_outputs.cross_attentions,
1275
+ )
1276
+
1277
+
1278
+ @add_start_docstrings(
1279
+ "The CLVP decoder model with a language modelling head on top.",
1280
+ CLVP_START_DOCSTRING,
1281
+ )
1282
+ class ClvpForCausalLM(ClvpPreTrainedModel):
1283
+ def __init__(self, config):
1284
+ super().__init__(config)
1285
+
1286
+ self.config = config
1287
+ self.model = ClvpModel(self.config)
1288
+
1289
+ self.final_norm = nn.LayerNorm(self.config.hidden_size)
1290
+ self.lm_head = nn.Linear(self.config.hidden_size, self.config.vocab_size, bias=True)
1291
+
1292
+ # Initialize weights and apply final processing
1293
+ self.post_init()
1294
+
1295
+ def get_input_embeddings(self):
1296
+ return self.model.decoder.input_embeds_layer
1297
+
1298
+ def set_input_embeddings(self, new_embeddings):
1299
+ self.model.decoder.input_embeds_layer = new_embeddings
1300
+
1301
+ def _prepare_model_inputs(
1302
+ self,
1303
+ inputs: Optional[torch.Tensor] = None,
1304
+ bos_token_id: Optional[int] = None,
1305
+ model_kwargs: Optional[Dict[str, torch.Tensor]] = None,
1306
+ ) -> Tuple[torch.Tensor, Optional[str], Dict[str, torch.Tensor]]:
1307
+ """
1308
+ This function extracts the model-specific `inputs` for generation.
1309
+ """
1310
+ input_name = self.main_input_name
1311
+
1312
+ model_kwargs = {k: v for k, v in model_kwargs.items() if v is not None}
1313
+
1314
+ inputs_kwarg = model_kwargs.pop(input_name, None)
1315
+ if inputs_kwarg is not None and inputs is not None:
1316
+ raise ValueError(
1317
+ f"`inputs`: {inputs}` were passed alongside {input_name} which is not allowed."
1318
+ f"Make sure to either pass {inputs} or {input_name}=..."
1319
+ )
1320
+ elif inputs_kwarg is not None:
1321
+ inputs = inputs_kwarg
1322
+
1323
+ if input_name == "input_ids" and "inputs_embeds" in model_kwargs:
1324
+ model_kwargs["input_ids"] = self._maybe_initialize_input_ids_for_generation(
1325
+ inputs, bos_token_id, model_kwargs=model_kwargs
1326
+ )
1327
+ inputs, input_name = model_kwargs["inputs_embeds"], "inputs_embeds"
1328
+
1329
+ # Check if conditioning_embeds are provided or not, if yes then concatenate the bos_token_id at the end of the conditioning_embeds.
1330
+ # Then we must subtract the positional_ids because during the forward pass it will be added anyways, so we must cancel them out here.
1331
+ conditioning_embeds = model_kwargs.get("conditioning_embeds", None)
1332
+
1333
+ if conditioning_embeds is not None:
1334
+ mel_start_token_embedding = self.model.decoder.input_embeds_layer(
1335
+ torch.full(
1336
+ (conditioning_embeds.shape[0], 1),
1337
+ fill_value=self.config.bos_token_id,
1338
+ device=conditioning_embeds.device,
1339
+ )
1340
+ )
1341
+ mel_start_token_embedding += self.model.decoder.position_embeds_layer(
1342
+ torch.full((conditioning_embeds.shape[0], 1), fill_value=0, device=conditioning_embeds.device)
1343
+ )
1344
+ conditioning_embeds = torch.concat([conditioning_embeds, mel_start_token_embedding], dim=1)
1345
+
1346
+ # subtract the positional_ids here
1347
+ if hasattr(model_kwargs, "attention_mask"):
1348
+ position_ids = model_kwargs["attention_mask"].long().cumsum(-1) - 1
1349
+ else:
1350
+ position_ids = torch.range(
1351
+ 0, conditioning_embeds.shape[1] - 1, dtype=torch.long, device=conditioning_embeds.device
1352
+ )
1353
+ position_ids = position_ids.unsqueeze(0).repeat(conditioning_embeds.shape[0], 1)
1354
+
1355
+ model_kwargs["inputs_embeds"] = conditioning_embeds - self.model.decoder.position_embeds_layer(
1356
+ position_ids
1357
+ )
1358
+ model_kwargs["input_ids"] = (
1359
+ torch.ones((model_kwargs["inputs_embeds"].shape[0], 1), dtype=torch.long, device=self.device)
1360
+ * self.config.bos_token_id
1361
+ )
1362
+
1363
+ return model_kwargs["inputs_embeds"], "inputs_embeds", model_kwargs
1364
+
1365
+ inputs = self._maybe_initialize_input_ids_for_generation(inputs, bos_token_id, model_kwargs)
1366
+ return inputs, input_name, model_kwargs
1367
+
1368
+ def prepare_inputs_for_generation(
1369
+ self, input_ids, past_key_values=None, inputs_embeds=None, conditioning_embeds=None, **kwargs
1370
+ ):
1371
+ input_ids_length = input_ids.shape[-1]
1372
+ token_type_ids = kwargs.get("token_type_ids", None)
1373
+ # only last token for inputs_ids if past is defined in kwargs
1374
+ if past_key_values:
1375
+ past_length = past_key_values[0][0].shape[2]
1376
+
1377
+ # Some generation methods already pass only the last input ID
1378
+ if input_ids.shape[1] > past_length:
1379
+ remove_prefix_length = past_length
1380
+ else:
1381
+ # Default to old behavior: keep only final ID
1382
+ remove_prefix_length = input_ids.shape[1] - 1
1383
+
1384
+ input_ids = input_ids[:, remove_prefix_length:]
1385
+ if token_type_ids is not None:
1386
+ token_type_ids = token_type_ids[:, -input_ids.shape[1] :]
1387
+
1388
+ attention_mask = kwargs.get("attention_mask", None)
1389
+ position_ids = kwargs.get("position_ids", None)
1390
+
1391
+ if attention_mask is not None and position_ids is None:
1392
+ # create position_ids on the fly for batch generation
1393
+ position_ids = attention_mask.long().cumsum(-1) - 1
1394
+ position_ids.masked_fill_(attention_mask == 0, 1)
1395
+ if past_key_values:
1396
+ position_ids = position_ids[:, -1].unsqueeze(-1)
1397
+ else:
1398
+ position_ids = None
1399
+
1400
+ if conditioning_embeds is not None and past_key_values is not None:
1401
+ position_ids = torch.tensor([input_ids_length], dtype=torch.long, device=input_ids.device)
1402
+
1403
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1404
+ if inputs_embeds is not None and past_key_values is None:
1405
+ model_inputs = {"inputs_embeds": inputs_embeds}
1406
+ else:
1407
+ model_inputs = {"input_ids": input_ids}
1408
+
1409
+ model_inputs.update(
1410
+ {
1411
+ "past_key_values": past_key_values,
1412
+ "use_cache": kwargs.get("use_cache"),
1413
+ "position_ids": position_ids,
1414
+ "token_type_ids": token_type_ids,
1415
+ }
1416
+ )
1417
+ return model_inputs
1418
+
1419
+ @add_start_docstrings_to_model_forward(CLVP_DECODER_INPUTS_DOCSTRING)
1420
+ def forward(
1421
+ self,
1422
+ input_ids: Optional[torch.LongTensor] = None,
1423
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
1424
+ attention_mask: Optional[torch.FloatTensor] = None,
1425
+ token_type_ids: Optional[torch.LongTensor] = None,
1426
+ position_ids: Optional[torch.LongTensor] = None,
1427
+ head_mask: Optional[torch.FloatTensor] = None,
1428
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1429
+ labels: Optional[torch.LongTensor] = None,
1430
+ use_cache: Optional[bool] = None,
1431
+ output_attentions: Optional[bool] = None,
1432
+ output_hidden_states: Optional[bool] = None,
1433
+ return_dict: Optional[bool] = None,
1434
+ ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
1435
+ r"""
1436
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1437
+ Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
1438
+ `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
1439
+ are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
1440
+ """
1441
+
1442
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1443
+ output_hidden_states = (
1444
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1445
+ )
1446
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1447
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1448
+
1449
+ outputs = self.model(
1450
+ input_ids=input_ids,
1451
+ past_key_values=past_key_values,
1452
+ attention_mask=attention_mask,
1453
+ token_type_ids=token_type_ids,
1454
+ position_ids=position_ids,
1455
+ head_mask=head_mask,
1456
+ inputs_embeds=inputs_embeds,
1457
+ use_cache=use_cache,
1458
+ output_attentions=output_attentions,
1459
+ output_hidden_states=output_hidden_states,
1460
+ return_dict=return_dict,
1461
+ )
1462
+
1463
+ hidden_states = outputs[0]
1464
+
1465
+ lm_logits = self.final_norm(hidden_states)
1466
+ lm_logits = self.lm_head(lm_logits)
1467
+
1468
+ loss = None
1469
+ if labels is not None:
1470
+ labels = labels.to(lm_logits.device)
1471
+ # Shift so that tokens < n predict n
1472
+ shift_logits = lm_logits[..., :-1, :].contiguous()
1473
+ shift_labels = labels[..., 1:].contiguous()
1474
+ # Flatten the tokens
1475
+ loss_fct = CrossEntropyLoss()
1476
+ loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
1477
+
1478
+ if not return_dict:
1479
+ output = (lm_logits,) + outputs[1:]
1480
+ return ((loss,) + output) if loss is not None else output
1481
+
1482
+ return CausalLMOutputWithCrossAttentions(
1483
+ loss=loss,
1484
+ logits=lm_logits,
1485
+ past_key_values=outputs.past_key_values,
1486
+ hidden_states=outputs.hidden_states,
1487
+ attentions=outputs.attentions,
1488
+ cross_attentions=outputs.cross_attentions,
1489
+ )
1490
+
1491
+ @staticmethod
1492
+ # Copied from transformers.models.gpt2.modeling_gpt2.GPT2LMHeadModel._reorder_cache
1493
+ def _reorder_cache(
1494
+ past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
1495
+ ) -> Tuple[Tuple[torch.Tensor]]:
1496
+ """
1497
+ This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
1498
+ [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
1499
+ beam_idx at every generation step.
1500
+ """
1501
+ return tuple(
1502
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
1503
+ for layer_past in past_key_values
1504
+ )
1505
+
1506
+
1507
+ @add_start_docstrings(
1508
+ "The composite CLVP model with a text encoder, speech encoder and speech decoder model."
1509
+ "The speech decoder model generates the speech_ids from the text and the text encoder and speech encoder works"
1510
+ "together to filter out the best speech_ids.",
1511
+ CLVP_START_DOCSTRING,
1512
+ )
1513
+ class ClvpModelForConditionalGeneration(ClvpPreTrainedModel):
1514
+ config_class = ClvpConfig
1515
+
1516
+ def __init__(self, config: ClvpConfig):
1517
+ super().__init__(config)
1518
+
1519
+ if not isinstance(config.text_config, ClvpEncoderConfig):
1520
+ raise ValueError(
1521
+ "config.text_config is expected to be of type `ClvpEncoderConfig` but is of type"
1522
+ f" {type(config.text_config)}."
1523
+ )
1524
+
1525
+ if not isinstance(config.speech_config, ClvpEncoderConfig):
1526
+ raise ValueError(
1527
+ "config.speech_config is expected to be of type `ClvpEncoderConfig` but is of type"
1528
+ f" {type(config.speech_config)}."
1529
+ )
1530
+
1531
+ if not isinstance(config.decoder_config, ClvpDecoderConfig):
1532
+ raise ValueError(
1533
+ "config.decoder_config is expected to be of type `ClvpDecoderConfig` but is of type"
1534
+ f" {type(config.decoder_config)}."
1535
+ )
1536
+
1537
+ self.conditioning_encoder = ClvpConditioningEncoder(config)
1538
+
1539
+ self.speech_decoder_model = ClvpForCausalLM(config.decoder_config)
1540
+
1541
+ self.text_encoder_model = ClvpEncoder(config.text_config)
1542
+ self.speech_encoder_model = ClvpEncoder(config.speech_config)
1543
+
1544
+ self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value))
1545
+
1546
+ # Initialize weights and apply final processing
1547
+ self.post_init()
1548
+
1549
+ # taken from the original repo,
1550
+ # link : https://github.com/neonbjb/tortoise-tts/blob/4003544b6ff4b68c09856e04d3eff9da26d023c2/tortoise/api.py#L117
1551
+ def fix_speech_decoder_output(self, speech_ids: torch.LongTensor) -> torch.LongTensor:
1552
+ """
1553
+ This method modifies the output of the decoder model, such as replacing the `eos_token_id` and changing the
1554
+ last few tokens of each sequence.
1555
+
1556
+ Args:
1557
+ speech_ids (`torch.LongTensor`):
1558
+ This refers to the output of the decoder model.
1559
+ """
1560
+ decoder_fixing_codes = self.config.decoder_config.decoder_fixing_codes
1561
+ speech_ids = speech_ids[:, 1:]
1562
+
1563
+ stop_token_indices = torch.where(speech_ids == self.speech_decoder_model.config.eos_token_id, 1, 0)
1564
+ speech_ids = torch.masked_fill(speech_ids, mask=stop_token_indices.bool(), value=decoder_fixing_codes[0])
1565
+
1566
+ for i, each_seq_stop_token_index in enumerate(stop_token_indices):
1567
+ # This means that no stop tokens were found so the sentence was still being generated, in that case we don't need
1568
+ # to apply any padding so just skip to the next sequence of tokens.
1569
+ if each_seq_stop_token_index.sum() == 0:
1570
+ continue
1571
+
1572
+ stm = each_seq_stop_token_index.argmax()
1573
+ speech_ids[i, stm:] = decoder_fixing_codes[0]
1574
+ if stm - 3 < speech_ids.shape[1]:
1575
+ speech_ids[i, -3:] = torch.tensor(
1576
+ [decoder_fixing_codes[1:]], device=speech_ids.device, dtype=torch.long
1577
+ )
1578
+
1579
+ return speech_ids
1580
+
1581
+ def get_text_features(
1582
+ self,
1583
+ input_ids: Optional[torch.LongTensor] = None,
1584
+ text_encoder_inputs_embeds: Optional[torch.FloatTensor] = None,
1585
+ attention_mask: Optional[torch.LongTensor] = None,
1586
+ ) -> torch.FloatTensor:
1587
+ r"""
1588
+ This method can be used to extract text_embeds from a text. The text embeddings obtained by applying the
1589
+ projection layer to the pooled output of the CLVP text encoder model.
1590
+
1591
+ Args:
1592
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
1593
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
1594
+ provide it.
1595
+
1596
+ [What are input IDs?](../glossary#input-ids)
1597
+ text_encoder_inputs_embeds (`torch.FloatTensor`, *optional*):
1598
+ inputs_embeds for the text encoder model passed in place of `input_ids`.
1599
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
1600
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
1601
+
1602
+ - 1 for tokens that are **not masked**,
1603
+ - 0 for tokens that are **masked**.
1604
+
1605
+ [What are attention masks?](../glossary#attention-mask)
1606
+
1607
+ Returns:
1608
+ `torch.FloatTensor` of shape `(batch_size, output_dim)`:
1609
+ The text embeddings obtained by applying the projection layer to the pooled output of the CLVP Text
1610
+ Model.
1611
+
1612
+ Examples:
1613
+
1614
+ ```python
1615
+ >>> from transformers import ClvpProcessor, ClvpModelForConditionalGeneration
1616
+
1617
+ >>> # Define the Text
1618
+ >>> text = "This is an example text."
1619
+
1620
+ >>> # Define processor and model
1621
+ >>> processor = ClvpProcessor.from_pretrained("susnato/clvp_dev")
1622
+ >>> model = ClvpModelForConditionalGeneration.from_pretrained("susnato/clvp_dev")
1623
+
1624
+ >>> # Generate processor output and text embeds
1625
+ >>> processor_output = processor(text=text, return_tensors="pt")
1626
+ >>> text_embeds = model.get_text_features(input_ids=processor_output["input_ids"])
1627
+ ```
1628
+ """
1629
+
1630
+ outputs = self.text_encoder_model(
1631
+ input_ids=input_ids,
1632
+ inputs_embeds=text_encoder_inputs_embeds,
1633
+ attention_mask=attention_mask,
1634
+ )
1635
+
1636
+ return outputs[0]
1637
+
1638
+ def get_speech_features(
1639
+ self,
1640
+ speech_ids: Optional[torch.LongTensor] = None,
1641
+ input_ids: Optional[torch.LongTensor] = None,
1642
+ input_features: Optional[torch.FloatTensor] = None,
1643
+ conditioning_encoder_inputs_embeds: Optional[torch.FloatTensor] = None,
1644
+ attention_mask: Optional[torch.Tensor] = None,
1645
+ generation_config: Optional[GenerationConfig] = None,
1646
+ **kwargs,
1647
+ ) -> torch.FloatTensor:
1648
+ r"""
1649
+ This method can be used to extract speech_embeds. The speech embeddings are obtained by applying the speech
1650
+ model on speech_ids. If speech_ids is not present but both input_ids and input_features are given then the
1651
+ decoder model will be used to first generate the speech_ids and then applying the speech model.
1652
+
1653
+ Args:
1654
+ speech_ids (`torch.LongTensor` of shape `(batch_size, num_speech_ids)`, *optional*):
1655
+ Speech Tokens. Padding will be ignored by default should you provide it. If speech_ids are provided
1656
+ then input_ids and input_features will be automatically ignored.
1657
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1658
+ Input text Tokens. Processed from the [`ClvpTokenizer`]. If speech_ids is not provided, then input_ids
1659
+ and input_features will be used.
1660
+ input_features (`torch.FloatTensor` of shape `(batch_size, feature_size, time_dim)`, *optional*):
1661
+ Indicates log-melspectrogram representations for audio returned by [`ClvpFeatureExtractor`]. If
1662
+ speech_ids is not provided, then input_ids and input_features will be used.
1663
+ conditioning_encoder_inputs_embeds (`torch.FloatTensor`, *optional*):
1664
+ inputs_embeds for `ClvpConditioningEncoder`. Can be used in place of `input_ids`.
1665
+ attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1666
+ Mask to avoid performing attention on padding speech token indices. Mask values selected in `[0, 1]`:
1667
+
1668
+ - 1 for tokens that are **not masked**,
1669
+ - 0 for tokens that are **masked**.
1670
+
1671
+ [What are attention masks?](../glossary#attention-mask)
1672
+ generation_config (`GenerationConfig`, *optional*):
1673
+ generation config to control the generation of speech_ids if they are not provided.
1674
+
1675
+ Returns:
1676
+ `torch.FloatTensor` of shape `(batch_size, output_dim)`:
1677
+ The speech embeddings obtained by applying the projection layer to the pooled output of the CLVP Speech
1678
+ Model.
1679
+
1680
+ Examples:
1681
+
1682
+ ```python
1683
+ >>> import datasets
1684
+ >>> from transformers import ClvpProcessor, ClvpModelForConditionalGeneration
1685
+
1686
+ >>> # Define the Text and Load the Audio (We are taking an audio example from HuggingFace Hub using `datasets` library)
1687
+ >>> text = "This is an example text."
1688
+ >>> ds = datasets.load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
1689
+ >>> ds = ds.cast_column("audio", datasets.Audio(sampling_rate=22050))
1690
+ >>> _, audio, sr = ds.sort("id").select(range(1))[:1]["audio"][0].values()
1691
+
1692
+ >>> # Define processor and model
1693
+ >>> processor = ClvpProcessor.from_pretrained("susnato/clvp_dev")
1694
+ >>> model = ClvpModelForConditionalGeneration.from_pretrained("susnato/clvp_dev")
1695
+
1696
+ >>> # Generate processor output and model output
1697
+ >>> processor_output = processor(raw_speech=audio, sampling_rate=sr, text=text, return_tensors="pt")
1698
+ >>> speech_embeds = model.get_speech_features(
1699
+ ... input_ids=processor_output["input_ids"], input_features=processor_output["input_features"]
1700
+ ... )
1701
+ ```
1702
+ """
1703
+
1704
+ if speech_ids is None:
1705
+ if (input_ids is None and conditioning_encoder_inputs_embeds is None) or input_features is None:
1706
+ raise ValueError(
1707
+ "Either speech_ids or input_ids/conditioning_encoder_inputs_embeds and input_features must be provided."
1708
+ )
1709
+
1710
+ if generation_config is None:
1711
+ generation_config = self.generation_config
1712
+ generation_config.update(**kwargs)
1713
+
1714
+ conditioning_embeds = self.conditioning_encoder(
1715
+ input_features=input_features,
1716
+ input_ids=input_ids,
1717
+ inputs_embeds=conditioning_encoder_inputs_embeds,
1718
+ attention_mask=attention_mask,
1719
+ )
1720
+
1721
+ speech_ids = self.speech_decoder_model.generate(
1722
+ conditioning_embeds=conditioning_embeds,
1723
+ generation_config=generation_config,
1724
+ )
1725
+
1726
+ speech_ids = self.fix_speech_decoder_output(speech_ids[0])
1727
+
1728
+ outputs = self.speech_encoder_model(
1729
+ input_ids=speech_ids,
1730
+ attention_mask=attention_mask,
1731
+ )
1732
+
1733
+ return outputs[0]
1734
+
1735
+ @add_start_docstrings_to_model_forward(CLVP_INPUTS_DOCSTRING)
1736
+ @replace_return_docstrings(output_type=ClvpOutput, config_class=ClvpConfig)
1737
+ def forward(
1738
+ self,
1739
+ input_ids: torch.LongTensor = None,
1740
+ input_features: torch.FloatTensor = None,
1741
+ conditioning_encoder_inputs_embeds: Optional[torch.FloatTensor] = None,
1742
+ text_encoder_inputs_embeds: Optional[torch.FloatTensor] = None,
1743
+ attention_mask: Optional[torch.LongTensor] = None,
1744
+ return_loss: Optional[bool] = None,
1745
+ output_hidden_states: Optional[bool] = None,
1746
+ output_attentions: Optional[bool] = False,
1747
+ return_dict: Optional[bool] = None,
1748
+ ) -> Union[Tuple, ClvpOutput]:
1749
+ r"""
1750
+ Returns:
1751
+
1752
+ Examples:
1753
+
1754
+ ```python
1755
+ >>> import datasets
1756
+ >>> from transformers import ClvpProcessor, ClvpModelForConditionalGeneration
1757
+
1758
+ >>> # Define the Text and Load the Audio (We are taking an audio example from HuggingFace Hub using `datasets` library)
1759
+ >>> text = "This is an example text."
1760
+
1761
+ >>> ds = datasets.load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
1762
+ >>> ds = ds.cast_column("audio", datasets.Audio(sampling_rate=22050))
1763
+ >>> _, audio, sr = ds.sort("id").select(range(1))[:1]["audio"][0].values()
1764
+
1765
+ >>> # Define processor and model
1766
+ >>> processor = ClvpProcessor.from_pretrained("susnato/clvp_dev")
1767
+ >>> model = ClvpModelForConditionalGeneration.from_pretrained("susnato/clvp_dev")
1768
+
1769
+ >>> # processor outputs and model outputs
1770
+ >>> processor_output = processor(raw_speech=audio, sampling_rate=sr, text=text, return_tensors="pt")
1771
+ >>> outputs = model(
1772
+ ... input_ids=processor_output["input_ids"],
1773
+ ... input_features=processor_output["input_features"],
1774
+ ... return_dict=True,
1775
+ ... )
1776
+ ```
1777
+ """
1778
+
1779
+ # Use CLVP model's config for some fields (if specified) instead of those of speech & text components.
1780
+ output_hidden_states = (
1781
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1782
+ )
1783
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1784
+
1785
+ conditioning_embeds = self.conditioning_encoder(
1786
+ input_features=input_features,
1787
+ input_ids=input_ids,
1788
+ inputs_embeds=conditioning_encoder_inputs_embeds,
1789
+ attention_mask=attention_mask,
1790
+ )
1791
+
1792
+ decoder_outputs = self.speech_decoder_model(
1793
+ inputs_embeds=conditioning_embeds,
1794
+ output_hidden_states=output_hidden_states,
1795
+ return_dict=return_dict,
1796
+ )
1797
+
1798
+ speech_ids = decoder_outputs[0]
1799
+
1800
+ # since we will get the embeds of shape `(batch_size, seq_len, embedding_dim)` during the forward pass
1801
+ # we must convert it to tokens, to make it compaitable with speech_transformer
1802
+ if speech_ids.ndim == 3:
1803
+ speech_ids = speech_ids.argmax(2)
1804
+ speech_ids = self.fix_speech_decoder_output(speech_ids)
1805
+
1806
+ speech_outputs = self.speech_encoder_model(
1807
+ input_ids=speech_ids,
1808
+ output_hidden_states=output_hidden_states,
1809
+ return_dict=return_dict,
1810
+ )
1811
+
1812
+ text_outputs = self.text_encoder_model(
1813
+ input_ids=input_ids,
1814
+ inputs_embeds=text_encoder_inputs_embeds,
1815
+ attention_mask=attention_mask,
1816
+ output_hidden_states=output_hidden_states,
1817
+ return_dict=return_dict,
1818
+ )
1819
+
1820
+ speech_embeds = speech_outputs[0]
1821
+ text_embeds = text_outputs[0]
1822
+
1823
+ # normalized features
1824
+ speech_embeds = speech_embeds / speech_embeds.norm(p=2, dim=-1, keepdim=True)
1825
+ text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
1826
+
1827
+ # cosine similarity as logits
1828
+ logit_scale = self.logit_scale.exp()
1829
+ logits_per_text = torch.matmul(text_embeds, speech_embeds.t()) * logit_scale
1830
+ logits_per_speech = logits_per_text.t()
1831
+
1832
+ loss = None
1833
+ if return_loss:
1834
+ loss = clvp_loss(logits_per_text)
1835
+
1836
+ if not return_dict:
1837
+ output = (
1838
+ logits_per_speech,
1839
+ logits_per_text,
1840
+ text_embeds,
1841
+ speech_embeds,
1842
+ text_outputs[2],
1843
+ speech_outputs[2],
1844
+ )
1845
+ if output_hidden_states:
1846
+ output += (
1847
+ decoder_outputs[-1],
1848
+ text_outputs[-1],
1849
+ speech_outputs[-1],
1850
+ )
1851
+
1852
+ return ((loss,) + output) if loss is not None else output
1853
+
1854
+ return ClvpOutput(
1855
+ loss=loss,
1856
+ logits_per_speech=logits_per_speech,
1857
+ logits_per_text=logits_per_text,
1858
+ text_embeds=text_embeds,
1859
+ speech_embeds=speech_embeds,
1860
+ text_model_output=text_outputs[2],
1861
+ speech_model_output=speech_outputs[2],
1862
+ decoder_hidden_states=decoder_outputs.hidden_states,
1863
+ text_encoder_hidden_states=text_outputs.hidden_states,
1864
+ speech_encoder_hidden_states=speech_outputs.hidden_states,
1865
+ )
1866
+
1867
+ @torch.no_grad()
1868
+ def generate(
1869
+ self,
1870
+ input_ids: torch.LongTensor = None,
1871
+ input_features: torch.FloatTensor = None,
1872
+ attention_mask: Optional[torch.LongTensor] = None,
1873
+ generation_config: Optional[GenerationConfig] = None,
1874
+ pad_to_max_mel_tokens: Optional[int] = None,
1875
+ output_hidden_states: Optional[bool] = None,
1876
+ **kwargs,
1877
+ ):
1878
+ """
1879
+ Generate method for `ClvpModelForConditionalGeneration`, this method calls the `generate` method of
1880
+ `ClvpForCausalLM` and then uses those generated `speech_ids` to process `text_embeds` and `speech_embeds` using
1881
+ `ClvpEncoder`.
1882
+
1883
+ Args:
1884
+ input_ids (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
1885
+ Input text Tokens. Processed from the [`ClvpTokenizer`].
1886
+ input_features (`torch.FloatTensor` of shape `(batch_size, feature_size, time_dim)`, *optional*):
1887
+ Indicates log-melspectrogram representations for audio returned by [`ClvpFeatureExtractor`].
1888
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
1889
+ Mask to avoid performing attention on padding text token indices. Mask values selected in `[0, 1]`:
1890
+
1891
+ - 1 for tokens that are **not masked**,
1892
+ - 0 for tokens that are **masked**.
1893
+
1894
+ [What are attention masks?](../glossary#attention-mask)
1895
+ generation_config (`~generation.GenerationConfig`, *optional*):
1896
+ The generation configuration to be used as base parametrization for the generation call. `**kwargs`
1897
+ passed to generate matching the attributes of `generation_config` will override them. If
1898
+ `generation_config` is not provided, the default will be used, which had the following loading
1899
+ priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model
1900
+ configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s
1901
+ default values, whose documentation should be checked to parameterize generation.
1902
+ pad_to_max_mel_tokens (`int`, *optional*):
1903
+ Pads generated speech_ids to the specified value. This is to implement the same logic from the official
1904
+ repo, link: https://github.com/neonbjb/tortoise-tts/blob/80f89987a5abda5e2b082618cd74f9c7411141dc/tortoise/api.py#L430
1905
+ and to make sure the logits are same.
1906
+ This does not affect generation quality so please don't consider using it since it is less efficient.
1907
+ output_hidden_states (`bool`, *optional*):
1908
+ Whether or not to return the hidden states of decoder model, text encoder and speech encoder models.
1909
+
1910
+ Returns:
1911
+ `ClvpOutput` or tuple: A `ClvpOutput` (if `return_dict_in_generate=True` or when
1912
+ `config.return_dict_in_generate=True`) or a tuple.
1913
+ """
1914
+
1915
+ # If the input sequences are larger than (self.config.decoder_config.max_text_tokens - 3) then raise error,
1916
+ # because we need to add 3 tokens ( 1 bos tokens and 2 eos tokens) to the input_ids in ClvpConditioningEncoder to
1917
+ # properly sample
1918
+ sequence_length = input_ids.shape[-1]
1919
+ if sequence_length > (self.config.decoder_config.max_text_tokens - 3):
1920
+ raise ValueError(
1921
+ f"Maximum sequence length reached! Found input_ids of length {sequence_length}."
1922
+ f"Please make sure that the maximum length of input_ids is {self.config.decoder_config.max_text_tokens - 3}"
1923
+ )
1924
+
1925
+ if generation_config is None:
1926
+ generation_config = self.generation_config
1927
+
1928
+ generation_config = copy.deepcopy(generation_config)
1929
+ model_kwargs = generation_config.update(**kwargs) # All unused kwargs must be model kwargs
1930
+ generation_config.validate()
1931
+ self._validate_model_kwargs(model_kwargs.copy())
1932
+
1933
+ # pad input_ids as specified in the original repo
1934
+ # link: https://github.com/neonbjb/tortoise-tts/blob/80f89987a5abda5e2b082618cd74f9c7411141dc/tortoise/api.py#L380
1935
+ input_ids, attention_mask = _pad_extra_bos_eos_tokens(
1936
+ input_ids,
1937
+ attention_mask,
1938
+ add_bos_token=False,
1939
+ bos_token_id=self.config.text_config.bos_token_id,
1940
+ eos_token_id=self.config.text_config.eos_token_id,
1941
+ )
1942
+
1943
+ conditioning_embeds = self.conditioning_encoder(
1944
+ input_features=input_features,
1945
+ input_ids=input_ids,
1946
+ attention_mask=attention_mask,
1947
+ )
1948
+
1949
+ decoder_outputs = self.speech_decoder_model.generate(
1950
+ conditioning_embeds=conditioning_embeds,
1951
+ generation_config=generation_config,
1952
+ output_hidden_states=output_hidden_states,
1953
+ return_dict=generation_config.return_dict_in_generate,
1954
+ )
1955
+ if isinstance(decoder_outputs, ModelOutput):
1956
+ speech_ids = decoder_outputs.sequences
1957
+
1958
+ # pad to pad_to_max_mel_tokens if given, to replicate the original repo logic
1959
+ # link: https://github.com/neonbjb/tortoise-tts/blob/80f89987a5abda5e2b082618cd74f9c7411141dc/tortoise/api.py#L430
1960
+ if pad_to_max_mel_tokens is not None:
1961
+ padding_needed = pad_to_max_mel_tokens - speech_ids.shape[-1]
1962
+ speech_ids = torch.nn.functional.pad(
1963
+ speech_ids, (0, padding_needed), value=self.generation_config.eos_token_id
1964
+ )
1965
+
1966
+ speech_ids = self.fix_speech_decoder_output(speech_ids)
1967
+
1968
+ speech_outputs = self.speech_encoder_model(
1969
+ input_ids=speech_ids,
1970
+ output_hidden_states=output_hidden_states,
1971
+ return_dict=generation_config.return_dict_in_generate,
1972
+ )
1973
+ text_outputs = self.text_encoder_model(
1974
+ input_ids=input_ids,
1975
+ attention_mask=attention_mask,
1976
+ output_hidden_states=output_hidden_states,
1977
+ return_dict=generation_config.return_dict_in_generate,
1978
+ )
1979
+
1980
+ speech_embeds = speech_outputs[0]
1981
+ text_embeds = text_outputs[0]
1982
+
1983
+ # normalized features
1984
+ speech_embeds = speech_embeds / speech_embeds.norm(p=2, dim=-1, keepdim=True)
1985
+ text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
1986
+
1987
+ # cosine similarity as logits
1988
+ logit_scale = self.logit_scale.exp()
1989
+ logits_per_text = torch.matmul(text_embeds, speech_embeds.t()) * logit_scale
1990
+ logits_per_speech = logits_per_text.t()
1991
+
1992
+ if not generation_config.return_dict_in_generate:
1993
+ output = (
1994
+ speech_ids,
1995
+ logits_per_speech,
1996
+ logits_per_text,
1997
+ text_embeds,
1998
+ speech_embeds,
1999
+ text_outputs[2],
2000
+ speech_outputs[2],
2001
+ )
2002
+ if output_hidden_states:
2003
+ output += (
2004
+ decoder_outputs[-1],
2005
+ text_outputs[-1],
2006
+ speech_outputs[-1],
2007
+ )
2008
+
2009
+ return output
2010
+
2011
+ return ClvpOutput(
2012
+ speech_ids=speech_ids,
2013
+ logits_per_speech=logits_per_speech,
2014
+ logits_per_text=logits_per_text,
2015
+ text_embeds=text_embeds,
2016
+ speech_embeds=speech_embeds,
2017
+ text_model_output=text_outputs[2],
2018
+ speech_model_output=speech_outputs[2],
2019
+ decoder_hidden_states=decoder_outputs.hidden_states,
2020
+ text_encoder_hidden_states=text_outputs.hidden_states,
2021
+ speech_encoder_hidden_states=speech_outputs.hidden_states,
2022
+ )
llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/number_normalizer.py ADDED
@@ -0,0 +1,238 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """English Normalizer class for CLVP."""
17
+
18
+
19
+ import re
20
+
21
+
22
+ class EnglishNormalizer:
23
+ def __init__(self):
24
+ # List of (regular expression, replacement) pairs for abbreviations:
25
+ self._abbreviations = [
26
+ (re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
27
+ for x in [
28
+ ("mrs", "misess"),
29
+ ("mr", "mister"),
30
+ ("dr", "doctor"),
31
+ ("st", "saint"),
32
+ ("co", "company"),
33
+ ("jr", "junior"),
34
+ ("maj", "major"),
35
+ ("gen", "general"),
36
+ ("drs", "doctors"),
37
+ ("rev", "reverend"),
38
+ ("lt", "lieutenant"),
39
+ ("hon", "honorable"),
40
+ ("sgt", "sergeant"),
41
+ ("capt", "captain"),
42
+ ("esq", "esquire"),
43
+ ("ltd", "limited"),
44
+ ("col", "colonel"),
45
+ ("ft", "fort"),
46
+ ]
47
+ ]
48
+
49
+ self.ones = ["", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
50
+ self.teens = [
51
+ "ten",
52
+ "eleven",
53
+ "twelve",
54
+ "thirteen",
55
+ "fourteen",
56
+ "fifteen",
57
+ "sixteen",
58
+ "seventeen",
59
+ "eighteen",
60
+ "nineteen",
61
+ ]
62
+ self.tens = ["", "", "twenty", "thirty", "forty", "fifty", "sixty", "seventy", "eighty", "ninety"]
63
+
64
+ def number_to_words(self, num: int) -> str:
65
+ """
66
+ Converts numbers(`int`) to words(`str`).
67
+
68
+ Please note that it only supports upto - "'nine hundred ninety-nine quadrillion, nine hundred ninety-nine
69
+ trillion, nine hundred ninety-nine billion, nine hundred ninety-nine million, nine hundred ninety-nine
70
+ thousand, nine hundred ninety-nine'" or `number_to_words(999_999_999_999_999_999)`.
71
+ """
72
+ if num == 0:
73
+ return "zero"
74
+ elif num < 0:
75
+ return "minus " + self.number_to_words(abs(num))
76
+ elif num < 10:
77
+ return self.ones[num]
78
+ elif num < 20:
79
+ return self.teens[num - 10]
80
+ elif num < 100:
81
+ return self.tens[num // 10] + ("-" + self.number_to_words(num % 10) if num % 10 != 0 else "")
82
+ elif num < 1000:
83
+ return (
84
+ self.ones[num // 100] + " hundred" + (" " + self.number_to_words(num % 100) if num % 100 != 0 else "")
85
+ )
86
+ elif num < 1_000_000:
87
+ return (
88
+ self.number_to_words(num // 1000)
89
+ + " thousand"
90
+ + (", " + self.number_to_words(num % 1000) if num % 1000 != 0 else "")
91
+ )
92
+ elif num < 1_000_000_000:
93
+ return (
94
+ self.number_to_words(num // 1_000_000)
95
+ + " million"
96
+ + (", " + self.number_to_words(num % 1_000_000) if num % 1_000_000 != 0 else "")
97
+ )
98
+ elif num < 1_000_000_000_000:
99
+ return (
100
+ self.number_to_words(num // 1_000_000_000)
101
+ + " billion"
102
+ + (", " + self.number_to_words(num % 1_000_000_000) if num % 1_000_000_000 != 0 else "")
103
+ )
104
+ elif num < 1_000_000_000_000_000:
105
+ return (
106
+ self.number_to_words(num // 1_000_000_000_000)
107
+ + " trillion"
108
+ + (", " + self.number_to_words(num % 1_000_000_000_000) if num % 1_000_000_000_000 != 0 else "")
109
+ )
110
+ elif num < 1_000_000_000_000_000_000:
111
+ return (
112
+ self.number_to_words(num // 1_000_000_000_000_000)
113
+ + " quadrillion"
114
+ + (
115
+ ", " + self.number_to_words(num % 1_000_000_000_000_000)
116
+ if num % 1_000_000_000_000_000 != 0
117
+ else ""
118
+ )
119
+ )
120
+ else:
121
+ return "number out of range"
122
+
123
+ def convert_to_ascii(self, text: str) -> str:
124
+ """
125
+ Converts unicode to ascii
126
+ """
127
+ return text.encode("ascii", "ignore").decode("utf-8")
128
+
129
+ def _expand_dollars(self, m: str) -> str:
130
+ """
131
+ This method is used to expand numerical dollar values into spoken words.
132
+ """
133
+ match = m.group(1)
134
+ parts = match.split(".")
135
+ if len(parts) > 2:
136
+ return match + " dollars" # Unexpected format
137
+
138
+ dollars = int(parts[0]) if parts[0] else 0
139
+ cents = int(parts[1]) if len(parts) > 1 and parts[1] else 0
140
+ if dollars and cents:
141
+ dollar_unit = "dollar" if dollars == 1 else "dollars"
142
+ cent_unit = "cent" if cents == 1 else "cents"
143
+ return "%s %s, %s %s" % (dollars, dollar_unit, cents, cent_unit)
144
+ elif dollars:
145
+ dollar_unit = "dollar" if dollars == 1 else "dollars"
146
+ return "%s %s" % (dollars, dollar_unit)
147
+ elif cents:
148
+ cent_unit = "cent" if cents == 1 else "cents"
149
+ return "%s %s" % (cents, cent_unit)
150
+ else:
151
+ return "zero dollars"
152
+
153
+ def _remove_commas(self, m: str) -> str:
154
+ """
155
+ This method is used to remove commas from sentences.
156
+ """
157
+ return m.group(1).replace(",", "")
158
+
159
+ def _expand_decimal_point(self, m: str) -> str:
160
+ """
161
+ This method is used to expand '.' into spoken word ' point '.
162
+ """
163
+ return m.group(1).replace(".", " point ")
164
+
165
+ def _expand_ordinal(self, num: str) -> str:
166
+ """
167
+ This method is used to expand ordinals such as '1st', '2nd' into spoken words.
168
+ """
169
+ ordinal_suffixes = {1: "st", 2: "nd", 3: "rd"}
170
+
171
+ num = int(num.group(0)[:-2])
172
+ if 10 <= num % 100 and num % 100 <= 20:
173
+ suffix = "th"
174
+ else:
175
+ suffix = ordinal_suffixes.get(num % 10, "th")
176
+ return self.number_to_words(num) + suffix
177
+
178
+ def _expand_number(self, m: str) -> str:
179
+ """
180
+ This method acts as a preprocessing step for numbers between 1000 and 3000 (same as the original repository,
181
+ link :
182
+ https://github.com/neonbjb/tortoise-tts/blob/4003544b6ff4b68c09856e04d3eff9da26d023c2/tortoise/utils/tokenizer.py#L86)
183
+ """
184
+ num = int(m.group(0))
185
+
186
+ if num > 1000 and num < 3000:
187
+ if num == 2000:
188
+ return "two thousand"
189
+ elif num > 2000 and num < 2010:
190
+ return "two thousand " + self.number_to_words(num % 100)
191
+ elif num % 100 == 0:
192
+ return self.number_to_words(num // 100) + " hundred"
193
+ else:
194
+ return self.number_to_words(num)
195
+ else:
196
+ return self.number_to_words(num)
197
+
198
+ def normalize_numbers(self, text: str) -> str:
199
+ """
200
+ This method is used to normalize numbers within a text such as converting the numbers to words, removing
201
+ commas, etc.
202
+ """
203
+ text = re.sub(re.compile(r"([0-9][0-9\,]+[0-9])"), self._remove_commas, text)
204
+ text = re.sub(re.compile(r"£([0-9\,]*[0-9]+)"), r"\1 pounds", text)
205
+ text = re.sub(re.compile(r"\$([0-9\.\,]*[0-9]+)"), self._expand_dollars, text)
206
+ text = re.sub(re.compile(r"([0-9]+\.[0-9]+)"), self._expand_decimal_point, text)
207
+ text = re.sub(re.compile(r"[0-9]+(st|nd|rd|th)"), self._expand_ordinal, text)
208
+ text = re.sub(re.compile(r"[0-9]+"), self._expand_number, text)
209
+ return text
210
+
211
+ def expand_abbreviations(self, text: str) -> str:
212
+ """
213
+ Expands the abbreviate words.
214
+ """
215
+ for regex, replacement in self._abbreviations:
216
+ text = re.sub(regex, replacement, text)
217
+ return text
218
+
219
+ def collapse_whitespace(self, text: str) -> str:
220
+ """
221
+ Removes multiple whitespaces
222
+ """
223
+ return re.sub(re.compile(r"\s+"), " ", text)
224
+
225
+ def __call__(self, text):
226
+ """
227
+ Converts text to ascii, numbers / number-like quantities to their spelt-out counterparts and expands
228
+ abbreviations
229
+ """
230
+
231
+ text = self.convert_to_ascii(text)
232
+ text = text.lower()
233
+ text = self.normalize_numbers(text)
234
+ text = self.expand_abbreviations(text)
235
+ text = self.collapse_whitespace(text)
236
+ text = text.replace('"', "")
237
+
238
+ return text
llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/processing_clvp.py ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """
17
+ Processor class for CLVP
18
+ """
19
+
20
+
21
+ from ...processing_utils import ProcessorMixin
22
+
23
+
24
+ class ClvpProcessor(ProcessorMixin):
25
+ r"""
26
+ Constructs a CLVP processor which wraps a CLVP Feature Extractor and a CLVP Tokenizer into a single processor.
27
+
28
+ [`ClvpProcessor`] offers all the functionalities of [`ClvpFeatureExtractor`] and [`ClvpTokenizer`]. See the
29
+ [`~ClvpProcessor.__call__`], [`~ClvpProcessor.decode`] and [`~ClvpProcessor.batch_decode`] for more information.
30
+
31
+ Args:
32
+ feature_extractor (`ClvpFeatureExtractor`):
33
+ An instance of [`ClvpFeatureExtractor`]. The feature extractor is a required input.
34
+ tokenizer (`ClvpTokenizer`):
35
+ An instance of [`ClvpTokenizer`]. The tokenizer is a required input.
36
+ """
37
+
38
+ feature_extractor_class = "ClvpFeatureExtractor"
39
+ tokenizer_class = "ClvpTokenizer"
40
+ model_input_names = [
41
+ "input_ids",
42
+ "input_features",
43
+ "attention_mask",
44
+ ]
45
+
46
+ def __init__(self, feature_extractor, tokenizer):
47
+ super().__init__(feature_extractor, tokenizer)
48
+
49
+ def __call__(self, *args, **kwargs):
50
+ """
51
+ Forwards the `audio` and `sampling_rate` arguments to [`~ClvpFeatureExtractor.__call__`] and the `text`
52
+ argument to [`~ClvpTokenizer.__call__`]. Please refer to the doctsring of the above two methods for more
53
+ information.
54
+ """
55
+
56
+ raw_speech = kwargs.pop("raw_speech", None)
57
+ sampling_rate = kwargs.pop("sampling_rate", None)
58
+ text = kwargs.pop("text", None)
59
+
60
+ if raw_speech is None and text is None:
61
+ raise ValueError("You need to specify either an `raw_speech` or `text` input to process.")
62
+
63
+ if raw_speech is not None:
64
+ inputs = self.feature_extractor(raw_speech, sampling_rate=sampling_rate, **kwargs)
65
+ if text is not None:
66
+ encodings = self.tokenizer(text, **kwargs)
67
+
68
+ if text is None:
69
+ return inputs
70
+ elif raw_speech is None:
71
+ return encodings
72
+ else:
73
+ inputs["input_ids"] = encodings["input_ids"]
74
+ inputs["attention_mask"] = encodings["attention_mask"]
75
+ return inputs
76
+
77
+ # Copied from transformers.models.whisper.processing_whisper.WhisperProcessor.batch_decode with Whisper->Clvp
78
+ def batch_decode(self, *args, **kwargs):
79
+ """
80
+ This method forwards all its arguments to ClvpTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
81
+ refer to the docstring of this method for more information.
82
+ """
83
+ return self.tokenizer.batch_decode(*args, **kwargs)
84
+
85
+ # Copied from transformers.models.whisper.processing_whisper.WhisperProcessor.decode with Whisper->Clvp
86
+ def decode(self, *args, **kwargs):
87
+ """
88
+ This method forwards all its arguments to ClvpTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to
89
+ the docstring of this method for more information.
90
+ """
91
+ return self.tokenizer.decode(*args, **kwargs)
llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/tokenization_clvp.py ADDED
@@ -0,0 +1,364 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Tokenization class for CLVP."""
16
+
17
+ import json
18
+ import os
19
+ from functools import lru_cache
20
+ from typing import List, Optional, Tuple
21
+
22
+ import regex as re
23
+
24
+ from ...tokenization_utils import AddedToken, PreTrainedTokenizer
25
+ from ...utils import logging
26
+ from .number_normalizer import EnglishNormalizer
27
+
28
+
29
+ logger = logging.get_logger(__name__)
30
+
31
+ VOCAB_FILES_NAMES = {
32
+ "vocab_file": "vocab.json",
33
+ "merges_file": "merges.txt",
34
+ }
35
+
36
+
37
+ @lru_cache()
38
+ # Copied from transformers.models.gpt2.tokenization_gpt2.bytes_to_unicode
39
+ def bytes_to_unicode():
40
+ """
41
+ Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control
42
+ characters the bpe code barfs on.
43
+
44
+ The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab
45
+ if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for
46
+ decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup
47
+ tables between utf-8 bytes and unicode strings.
48
+ """
49
+ bs = (
50
+ list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
51
+ )
52
+ cs = bs[:]
53
+ n = 0
54
+ for b in range(2**8):
55
+ if b not in bs:
56
+ bs.append(b)
57
+ cs.append(2**8 + n)
58
+ n += 1
59
+ cs = [chr(n) for n in cs]
60
+ return dict(zip(bs, cs))
61
+
62
+
63
+ # Copied from transformers.models.gpt2.tokenization_gpt2.get_pairs
64
+ def get_pairs(word):
65
+ """
66
+ Return set of symbol pairs in a word.
67
+
68
+ Word is represented as tuple of symbols (symbols being variable-length strings).
69
+ """
70
+ pairs = set()
71
+ prev_char = word[0]
72
+ for char in word[1:]:
73
+ pairs.add((prev_char, char))
74
+ prev_char = char
75
+ return pairs
76
+
77
+
78
+ class ClvpTokenizer(PreTrainedTokenizer):
79
+ """
80
+ Construct a CLVP tokenizer. Based on byte-level Byte-Pair-Encoding.
81
+
82
+ This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
83
+ be encoded differently whether it is at the beginning of the sentence (without space) or not:
84
+
85
+ ```python
86
+ >>> from transformers import ClvpTokenizer
87
+
88
+ >>> tokenizer = ClvpTokenizer.from_pretrained("susnato/clvp_dev")
89
+ >>> tokenizer("Hello world")["input_ids"]
90
+ [62, 84, 28, 2, 179, 79]
91
+
92
+ >>> tokenizer(" Hello world")["input_ids"]
93
+ [2, 62, 84, 28, 2, 179, 79]
94
+ ```
95
+
96
+ You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer or when you
97
+ call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance.
98
+
99
+ <Tip>
100
+
101
+ When used with `is_split_into_words=True`, this tokenizer will add a space before each word (even the first one).
102
+
103
+ </Tip>
104
+
105
+ This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
106
+ this superclass for more information regarding those methods.
107
+
108
+ Args:
109
+ vocab_file (`str`):
110
+ Path to the vocabulary file.
111
+ merges_file (`str`):
112
+ Path to the merges file.
113
+ errors (`str`, *optional*, defaults to `"replace"`):
114
+ Paradigm to follow when decoding bytes to UTF-8. See
115
+ [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
116
+ unk_token (`str`, *optional*, defaults to `"[UNK]"`):
117
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
118
+ token instead.
119
+ bos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
120
+ The beginning of sequence token.
121
+ eos_token (`str`, *optional*, defaults to `"[STOP]"`):
122
+ The end of sequence token.
123
+ pad_token (`str`, *optional*, defaults to `"[STOP]"`):
124
+ The pad token of the sequence.
125
+ add_prefix_space (`bool`, *optional*, defaults to `False`):
126
+ Whether or not to add an initial space to the input. This allows to treat the leading word just as any
127
+ other word. (CLVP tokenizer detect beginning of words by the preceding space).
128
+ add_bos_token (`bool`, *optional*, defaults to `False`):
129
+ Whether to add `bos_token` in front of the sequence when add_special_tokens=True.
130
+ add_eos_token (`bool`, *optional*, defaults to `False`):
131
+ Whether to add `eos_token` in end of the sequence when add_special_tokens=True.
132
+ """
133
+
134
+ vocab_files_names = VOCAB_FILES_NAMES
135
+ model_input_names = [
136
+ "input_ids",
137
+ "attention_mask",
138
+ ]
139
+
140
+ def __init__(
141
+ self,
142
+ vocab_file,
143
+ merges_file,
144
+ errors="replace",
145
+ unk_token="[UNK]",
146
+ bos_token="<|endoftext|>",
147
+ eos_token="[STOP]",
148
+ pad_token="[STOP]",
149
+ add_prefix_space=False,
150
+ add_bos_token=False,
151
+ add_eos_token=False,
152
+ **kwargs,
153
+ ):
154
+ bos_token = AddedToken(bos_token, special=True) if isinstance(bos_token, str) else bos_token
155
+ eos_token = AddedToken(eos_token, special=True) if isinstance(eos_token, str) else eos_token
156
+ unk_token = AddedToken(unk_token, special=True) if isinstance(unk_token, str) else unk_token
157
+ pad_token = AddedToken(pad_token, special=True) if isinstance(pad_token, str) else pad_token
158
+
159
+ self.add_bos_token = add_bos_token
160
+ self.add_eos_token = add_eos_token
161
+ self._normalizer = None
162
+
163
+ with open(vocab_file, encoding="utf-8") as vocab_handle:
164
+ self.encoder = json.load(vocab_handle)
165
+ self.decoder = {v: k for k, v in self.encoder.items()}
166
+ self.errors = errors # how to handle errors in decoding
167
+ self.byte_encoder = bytes_to_unicode()
168
+ self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
169
+ with open(merges_file, encoding="utf-8") as merges_handle:
170
+ bpe_merges = merges_handle.read().split("\n")[1:-1]
171
+ bpe_merges = [tuple(merge.split()) for merge in bpe_merges]
172
+ self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
173
+ self.cache = {}
174
+ self.add_prefix_space = add_prefix_space
175
+
176
+ # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
177
+ self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")
178
+
179
+ super().__init__(
180
+ errors=errors,
181
+ unk_token=unk_token,
182
+ bos_token=bos_token,
183
+ eos_token=eos_token,
184
+ pad_token=pad_token,
185
+ add_prefix_space=add_prefix_space,
186
+ add_bos_token=add_bos_token,
187
+ add_eos_token=add_eos_token,
188
+ **kwargs,
189
+ )
190
+
191
+ @property
192
+ def vocab_size(self):
193
+ return len(self.encoder)
194
+
195
+ @property
196
+ def normalizer(self):
197
+ if self._normalizer is None:
198
+ self._normalizer = EnglishNormalizer()
199
+ return self._normalizer
200
+
201
+ def get_vocab(self):
202
+ return dict(self.encoder, **self.added_tokens_encoder)
203
+
204
+ # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.bpe
205
+ def bpe(self, token):
206
+ if token in self.cache:
207
+ return self.cache[token]
208
+ word = tuple(token)
209
+ pairs = get_pairs(word)
210
+
211
+ if not pairs:
212
+ return token
213
+
214
+ while True:
215
+ bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
216
+ if bigram not in self.bpe_ranks:
217
+ break
218
+ first, second = bigram
219
+ new_word = []
220
+ i = 0
221
+ while i < len(word):
222
+ try:
223
+ j = word.index(first, i)
224
+ except ValueError:
225
+ new_word.extend(word[i:])
226
+ break
227
+ else:
228
+ new_word.extend(word[i:j])
229
+ i = j
230
+
231
+ if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
232
+ new_word.append(first + second)
233
+ i += 2
234
+ else:
235
+ new_word.append(word[i])
236
+ i += 1
237
+ new_word = tuple(new_word)
238
+ word = new_word
239
+ if len(word) == 1:
240
+ break
241
+ else:
242
+ pairs = get_pairs(word)
243
+ word = " ".join(word)
244
+ self.cache[token] = word
245
+ return word
246
+
247
+ # Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.build_inputs_with_special_tokens
248
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
249
+ bos_token_id = [self.bos_token_id] if self.add_bos_token else []
250
+ eos_token_id = [self.eos_token_id] if self.add_eos_token else []
251
+
252
+ output = bos_token_id + token_ids_0 + eos_token_id
253
+
254
+ if token_ids_1 is not None:
255
+ output = output + bos_token_id + token_ids_1 + eos_token_id
256
+
257
+ return output
258
+
259
+ # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.get_special_tokens_mask
260
+ def get_special_tokens_mask(
261
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
262
+ ) -> List[int]:
263
+ """
264
+ Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
265
+ special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods.
266
+
267
+ Args:
268
+ token_ids_0 (`List[int]`):
269
+ List of IDs.
270
+ token_ids_1 (`List[int]`, *optional*):
271
+ Optional second list of IDs for sequence pairs.
272
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
273
+ Whether or not the token list is already formatted with special tokens for the model.
274
+
275
+ Returns:
276
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
277
+ """
278
+ if already_has_special_tokens:
279
+ return super().get_special_tokens_mask(
280
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
281
+ )
282
+
283
+ if not self.add_bos_token:
284
+ return super().get_special_tokens_mask(
285
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=False
286
+ )
287
+
288
+ if token_ids_1 is None:
289
+ return [1] + ([0] * len(token_ids_0))
290
+ return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1))
291
+
292
+ def _tokenize(self, text):
293
+ """Tokenize a string."""
294
+ bpe_tokens = []
295
+ text = self.normalizer(text)
296
+ for token in re.findall(self.pat, text):
297
+ token = "".join(
298
+ self.byte_encoder[b] for b in token.encode("utf-8")
299
+ ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
300
+
301
+ # if the token is "Ġ" we replace it with "[SPACE]" (if "[SPACE]" is present in the vocab), otherwise we keep the "Ġ".
302
+ bpe_tokens.extend(
303
+ "[SPACE]" if bpe_token == "\u0120" and "[SPACE]" in self.encoder.keys() else bpe_token
304
+ for bpe_token in self.bpe(token).split(" ")
305
+ )
306
+
307
+ return bpe_tokens
308
+
309
+ # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._convert_token_to_id
310
+ def _convert_token_to_id(self, token):
311
+ """Converts a token (str) in an id using the vocab."""
312
+ return self.encoder.get(token, self.encoder.get(self.unk_token))
313
+
314
+ # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._convert_id_to_token
315
+ def _convert_id_to_token(self, index):
316
+ """Converts an index (integer) in a token (str) using the vocab."""
317
+ return self.decoder.get(index)
318
+
319
+ # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.convert_tokens_to_string
320
+ def convert_tokens_to_string(self, tokens):
321
+ """Converts a sequence of tokens (string) in a single string."""
322
+ text = "".join(tokens)
323
+ text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors)
324
+ return text
325
+
326
+ def clean_up_tokenization(self, text):
327
+ text = "".join(text)
328
+ vocab_tokens = list(self.encoder.keys()) + list(self.added_tokens_encoder.keys())
329
+
330
+ text = text.replace("[SPACE]", " ") if "[SPACE]" in vocab_tokens else text
331
+ text = text.replace("[STOP]", " ") if "[STOP]" in vocab_tokens else text
332
+
333
+ text = text.replace(self.unk_token, "").replace(" ", " ").replace(" ", " ")
334
+ return text
335
+
336
+ # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.save_vocabulary
337
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
338
+ if not os.path.isdir(save_directory):
339
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
340
+ return
341
+ vocab_file = os.path.join(
342
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
343
+ )
344
+ merge_file = os.path.join(
345
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
346
+ )
347
+
348
+ with open(vocab_file, "w", encoding="utf-8") as f:
349
+ f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
350
+
351
+ index = 0
352
+ with open(merge_file, "w", encoding="utf-8") as writer:
353
+ writer.write("#version: 0.2\n")
354
+ for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
355
+ if index != token_index:
356
+ logger.warning(
357
+ f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
358
+ " Please check that the tokenizer is not corrupted!"
359
+ )
360
+ index = token_index
361
+ writer.write(" ".join(bpe_tokens) + "\n")
362
+ index += 1
363
+
364
+ return vocab_file, merge_file
llmeval-env/lib/python3.10/site-packages/transformers/models/dinov2/__init__.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from typing import TYPE_CHECKING
15
+
16
+ from ...utils import (
17
+ OptionalDependencyNotAvailable,
18
+ _LazyModule,
19
+ is_torch_available,
20
+ )
21
+
22
+
23
+ _import_structure = {
24
+ "configuration_dinov2": ["DINOV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Dinov2Config", "Dinov2OnnxConfig"]
25
+ }
26
+
27
+ try:
28
+ if not is_torch_available():
29
+ raise OptionalDependencyNotAvailable()
30
+ except OptionalDependencyNotAvailable:
31
+ pass
32
+ else:
33
+ _import_structure["modeling_dinov2"] = [
34
+ "DINOV2_PRETRAINED_MODEL_ARCHIVE_LIST",
35
+ "Dinov2ForImageClassification",
36
+ "Dinov2Model",
37
+ "Dinov2PreTrainedModel",
38
+ "Dinov2Backbone",
39
+ ]
40
+
41
+ if TYPE_CHECKING:
42
+ from .configuration_dinov2 import DINOV2_PRETRAINED_CONFIG_ARCHIVE_MAP, Dinov2Config, Dinov2OnnxConfig
43
+
44
+ try:
45
+ if not is_torch_available():
46
+ raise OptionalDependencyNotAvailable()
47
+ except OptionalDependencyNotAvailable:
48
+ pass
49
+ else:
50
+ from .modeling_dinov2 import (
51
+ DINOV2_PRETRAINED_MODEL_ARCHIVE_LIST,
52
+ Dinov2Backbone,
53
+ Dinov2ForImageClassification,
54
+ Dinov2Model,
55
+ Dinov2PreTrainedModel,
56
+ )
57
+
58
+ else:
59
+ import sys
60
+
61
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
llmeval-env/lib/python3.10/site-packages/transformers/models/dinov2/convert_dinov2_to_hf.py ADDED
@@ -0,0 +1,287 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Convert DINOv2 checkpoints from the original repository.
16
+
17
+ URL: https://github.com/facebookresearch/dinov2/tree/main
18
+ """
19
+
20
+
21
+ import argparse
22
+ import json
23
+ from pathlib import Path
24
+
25
+ import requests
26
+ import torch
27
+ import torch.nn as nn
28
+ from huggingface_hub import hf_hub_download
29
+ from PIL import Image
30
+ from torchvision import transforms
31
+
32
+ from transformers import BitImageProcessor, Dinov2Config, Dinov2ForImageClassification, Dinov2Model
33
+ from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling
34
+ from transformers.utils import logging
35
+
36
+
37
+ logging.set_verbosity_info()
38
+ logger = logging.get_logger(__name__)
39
+
40
+
41
+ def get_dinov2_config(model_name, image_classifier=False):
42
+ config = Dinov2Config(image_size=518, patch_size=14)
43
+
44
+ # size of the architecture
45
+ if "vits" in model_name:
46
+ config.hidden_size = 384
47
+ config.num_attention_heads = 6
48
+ elif "vitb" in model_name:
49
+ pass
50
+ elif "vitl" in model_name:
51
+ config.hidden_size = 1024
52
+ config.num_hidden_layers = 24
53
+ config.num_attention_heads = 16
54
+ elif "vitg" in model_name:
55
+ config.use_swiglu_ffn = True
56
+ config.hidden_size = 1536
57
+ config.num_hidden_layers = 40
58
+ config.num_attention_heads = 24
59
+ else:
60
+ raise ValueError("Model not supported")
61
+
62
+ if image_classifier:
63
+ repo_id = "huggingface/label-files"
64
+ filename = "imagenet-1k-id2label.json"
65
+ config.num_labels = 1000
66
+ config.id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
67
+ config.id2label = {int(k): v for k, v in config.id2label.items()}
68
+
69
+ return config
70
+
71
+
72
+ def create_rename_keys(config):
73
+ rename_keys = []
74
+ # fmt: off
75
+
76
+ # patch embedding layer
77
+ rename_keys.append(("cls_token", "embeddings.cls_token"))
78
+ rename_keys.append(("mask_token", "embeddings.mask_token"))
79
+ rename_keys.append(("pos_embed", "embeddings.position_embeddings"))
80
+ rename_keys.append(("patch_embed.proj.weight", "embeddings.patch_embeddings.projection.weight"))
81
+ rename_keys.append(("patch_embed.proj.bias", "embeddings.patch_embeddings.projection.bias"))
82
+
83
+ for i in range(config.num_hidden_layers):
84
+ # layernorms
85
+ rename_keys.append((f"blocks.{i}.norm1.weight", f"encoder.layer.{i}.norm1.weight"))
86
+ rename_keys.append((f"blocks.{i}.norm1.bias", f"encoder.layer.{i}.norm1.bias"))
87
+ rename_keys.append((f"blocks.{i}.norm2.weight", f"encoder.layer.{i}.norm2.weight"))
88
+ rename_keys.append((f"blocks.{i}.norm2.bias", f"encoder.layer.{i}.norm2.bias"))
89
+ # MLP
90
+ if config.use_swiglu_ffn:
91
+ rename_keys.append((f"blocks.{i}.mlp.w12.weight", f"encoder.layer.{i}.mlp.w12.weight"))
92
+ rename_keys.append((f"blocks.{i}.mlp.w12.bias", f"encoder.layer.{i}.mlp.w12.bias"))
93
+ rename_keys.append((f"blocks.{i}.mlp.w3.weight", f"encoder.layer.{i}.mlp.w3.weight"))
94
+ rename_keys.append((f"blocks.{i}.mlp.w3.bias", f"encoder.layer.{i}.mlp.w3.bias"))
95
+ else:
96
+ rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"encoder.layer.{i}.mlp.fc1.weight"))
97
+ rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"encoder.layer.{i}.mlp.fc1.bias"))
98
+ rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"encoder.layer.{i}.mlp.fc2.weight"))
99
+ rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"encoder.layer.{i}.mlp.fc2.bias"))
100
+ # layerscale
101
+ rename_keys.append((f"blocks.{i}.ls1.gamma", f"encoder.layer.{i}.layer_scale1.lambda1"))
102
+ rename_keys.append((f"blocks.{i}.ls2.gamma", f"encoder.layer.{i}.layer_scale2.lambda1"))
103
+ # attention projection layer
104
+ rename_keys.append((f"blocks.{i}.attn.proj.weight", f"encoder.layer.{i}.attention.output.dense.weight"))
105
+ rename_keys.append((f"blocks.{i}.attn.proj.bias", f"encoder.layer.{i}.attention.output.dense.bias"))
106
+
107
+ # final layernorm
108
+ rename_keys.append(("norm.weight", "layernorm.weight"))
109
+ rename_keys.append(("norm.bias", "layernorm.bias"))
110
+
111
+ # fmt: on
112
+ return rename_keys
113
+
114
+
115
+ def rename_key(dct, old, new):
116
+ val = dct.pop(old)
117
+ dct[new] = val
118
+
119
+
120
+ # we split up the matrix of each encoder layer into queries, keys and values
121
+ def read_in_q_k_v(state_dict, config):
122
+ for i in range(config.num_hidden_layers):
123
+ # read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
124
+ in_proj_weight = state_dict.pop(f"blocks.{i}.attn.qkv.weight")
125
+ in_proj_bias = state_dict.pop(f"blocks.{i}.attn.qkv.bias")
126
+ # next, add query, keys and values (in that order) to the state dict
127
+ state_dict[f"encoder.layer.{i}.attention.attention.query.weight"] = in_proj_weight[: config.hidden_size, :]
128
+ state_dict[f"encoder.layer.{i}.attention.attention.query.bias"] = in_proj_bias[: config.hidden_size]
129
+ state_dict[f"encoder.layer.{i}.attention.attention.key.weight"] = in_proj_weight[
130
+ config.hidden_size : config.hidden_size * 2, :
131
+ ]
132
+ state_dict[f"encoder.layer.{i}.attention.attention.key.bias"] = in_proj_bias[
133
+ config.hidden_size : config.hidden_size * 2
134
+ ]
135
+ state_dict[f"encoder.layer.{i}.attention.attention.value.weight"] = in_proj_weight[-config.hidden_size :, :]
136
+ state_dict[f"encoder.layer.{i}.attention.attention.value.bias"] = in_proj_bias[-config.hidden_size :]
137
+
138
+
139
+ # We will verify our results on an image of cute cats
140
+ def prepare_img():
141
+ url = "http://images.cocodataset.org/val2017/000000039769.jpg"
142
+ image = Image.open(requests.get(url, stream=True).raw)
143
+ return image
144
+
145
+
146
+ @torch.no_grad()
147
+ def convert_dinov2_checkpoint(model_name, pytorch_dump_folder_path, push_to_hub=False):
148
+ """
149
+ Copy/paste/tweak model's weights to our DINOv2 structure.
150
+ """
151
+
152
+ # define default Dinov2 configuration
153
+ image_classifier = "1layer" in model_name
154
+ config = get_dinov2_config(model_name, image_classifier=image_classifier)
155
+
156
+ # load original model from torch hub
157
+ original_model = torch.hub.load("facebookresearch/dinov2", model_name.replace("_1layer", ""))
158
+ original_model.eval()
159
+
160
+ # load state_dict of original model, remove and rename some keys
161
+ state_dict = original_model.state_dict()
162
+ rename_keys = create_rename_keys(config)
163
+ for src, dest in rename_keys:
164
+ rename_key(state_dict, src, dest)
165
+ read_in_q_k_v(state_dict, config)
166
+
167
+ for key, val in state_dict.copy().items():
168
+ val = state_dict.pop(key)
169
+ if "w12" in key:
170
+ key = key.replace("w12", "weights_in")
171
+ if "w3" in key:
172
+ key = key.replace("w3", "weights_out")
173
+ state_dict[key] = val
174
+
175
+ # load HuggingFace model
176
+ if image_classifier:
177
+ model = Dinov2ForImageClassification(config).eval()
178
+ model.dinov2.load_state_dict(state_dict)
179
+ model_name_to_classifier_dict_url = {
180
+ "dinov2_vits14_1layer": "https://dl.fbaipublicfiles.com/dinov2/dinov2_vits14/dinov2_vits14_linear_head.pth",
181
+ "dinov2_vitb14_1layer": "https://dl.fbaipublicfiles.com/dinov2/dinov2_vitb14/dinov2_vitb14_linear_head.pth",
182
+ "dinov2_vitl14_1layer": "https://dl.fbaipublicfiles.com/dinov2/dinov2_vitl14/dinov2_vitl14_linear_head.pth",
183
+ "dinov2_vitg14_1layer": "https://dl.fbaipublicfiles.com/dinov2/dinov2_vitg14/dinov2_vitg14_linear_head.pth",
184
+ }
185
+ url = model_name_to_classifier_dict_url[model_name]
186
+ classifier_state_dict = torch.hub.load_state_dict_from_url(url, map_location="cpu")
187
+ model.classifier.weight = nn.Parameter(classifier_state_dict["weight"])
188
+ model.classifier.bias = nn.Parameter(classifier_state_dict["bias"])
189
+ else:
190
+ model = Dinov2Model(config).eval()
191
+ model.load_state_dict(state_dict)
192
+
193
+ # load image
194
+ url = "http://images.cocodataset.org/val2017/000000039769.jpg"
195
+ image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
196
+
197
+ # preprocess image
198
+ transformations = transforms.Compose(
199
+ [
200
+ transforms.Resize(256, interpolation=transforms.InterpolationMode.BICUBIC),
201
+ transforms.CenterCrop(224),
202
+ transforms.ToTensor(),
203
+ transforms.Normalize(
204
+ mean=IMAGENET_DEFAULT_MEAN, # these are RGB mean+std values
205
+ std=IMAGENET_DEFAULT_STD, # across a large photo dataset.
206
+ ),
207
+ ]
208
+ )
209
+
210
+ original_pixel_values = transformations(image).unsqueeze(0) # insert batch dimension
211
+
212
+ processor = BitImageProcessor(
213
+ size={"shortest_edge": 256},
214
+ resample=PILImageResampling.BICUBIC,
215
+ image_mean=IMAGENET_DEFAULT_MEAN,
216
+ image_std=IMAGENET_DEFAULT_STD,
217
+ )
218
+ pixel_values = processor(image, return_tensors="pt").pixel_values
219
+
220
+ assert torch.allclose(original_pixel_values, pixel_values)
221
+
222
+ with torch.no_grad():
223
+ outputs = model(pixel_values, output_hidden_states=True)
224
+ original_outputs = original_model(pixel_values)
225
+
226
+ # assert values
227
+ if image_classifier:
228
+ print("Predicted class:")
229
+ class_idx = outputs.logits.argmax(-1).item()
230
+ print(model.config.id2label[class_idx])
231
+ else:
232
+ assert outputs.last_hidden_state[:, 0].shape == original_outputs.shape
233
+ assert torch.allclose(outputs.last_hidden_state[:, 0], original_outputs, atol=1e-3)
234
+ print("Looks ok!")
235
+
236
+ if pytorch_dump_folder_path is not None:
237
+ Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
238
+ print(f"Saving model {model_name} to {pytorch_dump_folder_path}")
239
+ model.save_pretrained(pytorch_dump_folder_path)
240
+ print(f"Saving image processor to {pytorch_dump_folder_path}")
241
+ processor.save_pretrained(pytorch_dump_folder_path)
242
+
243
+ if push_to_hub:
244
+ model_name_to_hf_name = {
245
+ "dinov2_vits14": "dinov2-small",
246
+ "dinov2_vitb14": "dinov2-base",
247
+ "dinov2_vitl14": "dinov2-large",
248
+ "dinov2_vitg14": "dinov2-giant",
249
+ "dinov2_vits14_1layer": "dinov2-small-imagenet1k-1-layer",
250
+ "dinov2_vitb14_1layer": "dinov2-base-imagenet1k-1-layer",
251
+ "dinov2_vitl14_1layer": "dinov2-large-imagenet1k-1-layer",
252
+ "dinov2_vitg14_1layer": "dinov2-giant-imagenet1k-1-layer",
253
+ }
254
+
255
+ name = model_name_to_hf_name[model_name]
256
+ model.push_to_hub(f"facebook/{name}")
257
+ processor.push_to_hub(f"facebook/{name}")
258
+
259
+
260
+ if __name__ == "__main__":
261
+ parser = argparse.ArgumentParser()
262
+ # Required parameters
263
+ parser.add_argument(
264
+ "--model_name",
265
+ default="dinov2_vitb14",
266
+ type=str,
267
+ choices=[
268
+ "dinov2_vits14",
269
+ "dinov2_vitb14",
270
+ "dinov2_vitl14",
271
+ "dinov2_vitg14",
272
+ "dinov2_vits14_1layer",
273
+ "dinov2_vitb14_1layer",
274
+ "dinov2_vitl14_1layer",
275
+ "dinov2_vitg14_1layer",
276
+ ],
277
+ help="Name of the model you'd like to convert.",
278
+ )
279
+ parser.add_argument(
280
+ "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
281
+ )
282
+ parser.add_argument(
283
+ "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
284
+ )
285
+
286
+ args = parser.parse_args()
287
+ convert_dinov2_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
llmeval-env/lib/python3.10/site-packages/transformers/models/dit/__init__.py ADDED
File without changes
llmeval-env/lib/python3.10/site-packages/transformers/models/dit/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (196 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/dit/__pycache__/convert_dit_unilm_to_pytorch.cpython-310.pyc ADDED
Binary file (6.45 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/dit/convert_dit_unilm_to_pytorch.py ADDED
@@ -0,0 +1,231 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Convert DiT checkpoints from the unilm repository."""
16
+
17
+
18
+ import argparse
19
+ import json
20
+ from pathlib import Path
21
+
22
+ import requests
23
+ import torch
24
+ from huggingface_hub import hf_hub_download
25
+ from PIL import Image
26
+
27
+ from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor
28
+ from transformers.image_utils import PILImageResampling
29
+ from transformers.utils import logging
30
+
31
+
32
+ logging.set_verbosity_info()
33
+ logger = logging.get_logger(__name__)
34
+
35
+
36
+ # here we list all keys to be renamed (original name on the left, our name on the right)
37
+ def create_rename_keys(config, has_lm_head=False, is_semantic=False):
38
+ prefix = "backbone." if is_semantic else ""
39
+
40
+ rename_keys = []
41
+ for i in range(config.num_hidden_layers):
42
+ # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
43
+ rename_keys.append((f"{prefix}blocks.{i}.norm1.weight", f"beit.encoder.layer.{i}.layernorm_before.weight"))
44
+ rename_keys.append((f"{prefix}blocks.{i}.norm1.bias", f"beit.encoder.layer.{i}.layernorm_before.bias"))
45
+ rename_keys.append(
46
+ (f"{prefix}blocks.{i}.attn.proj.weight", f"beit.encoder.layer.{i}.attention.output.dense.weight")
47
+ )
48
+ rename_keys.append(
49
+ (f"{prefix}blocks.{i}.attn.proj.bias", f"beit.encoder.layer.{i}.attention.output.dense.bias")
50
+ )
51
+ rename_keys.append((f"{prefix}blocks.{i}.norm2.weight", f"beit.encoder.layer.{i}.layernorm_after.weight"))
52
+ rename_keys.append((f"{prefix}blocks.{i}.norm2.bias", f"beit.encoder.layer.{i}.layernorm_after.bias"))
53
+ rename_keys.append((f"{prefix}blocks.{i}.mlp.fc1.weight", f"beit.encoder.layer.{i}.intermediate.dense.weight"))
54
+ rename_keys.append((f"{prefix}blocks.{i}.mlp.fc1.bias", f"beit.encoder.layer.{i}.intermediate.dense.bias"))
55
+ rename_keys.append((f"{prefix}blocks.{i}.mlp.fc2.weight", f"beit.encoder.layer.{i}.output.dense.weight"))
56
+ rename_keys.append((f"{prefix}blocks.{i}.mlp.fc2.bias", f"beit.encoder.layer.{i}.output.dense.bias"))
57
+
58
+ # projection layer + position embeddings
59
+ rename_keys.extend(
60
+ [
61
+ (f"{prefix}cls_token", "beit.embeddings.cls_token"),
62
+ (f"{prefix}patch_embed.proj.weight", "beit.embeddings.patch_embeddings.projection.weight"),
63
+ (f"{prefix}patch_embed.proj.bias", "beit.embeddings.patch_embeddings.projection.bias"),
64
+ (f"{prefix}pos_embed", "beit.embeddings.position_embeddings"),
65
+ ]
66
+ )
67
+
68
+ if has_lm_head:
69
+ # mask token + layernorm
70
+ rename_keys.extend(
71
+ [
72
+ ("mask_token", "beit.embeddings.mask_token"),
73
+ ("norm.weight", "layernorm.weight"),
74
+ ("norm.bias", "layernorm.bias"),
75
+ ]
76
+ )
77
+ else:
78
+ # layernorm + classification head
79
+ rename_keys.extend(
80
+ [
81
+ ("fc_norm.weight", "beit.pooler.layernorm.weight"),
82
+ ("fc_norm.bias", "beit.pooler.layernorm.bias"),
83
+ ("head.weight", "classifier.weight"),
84
+ ("head.bias", "classifier.bias"),
85
+ ]
86
+ )
87
+
88
+ return rename_keys
89
+
90
+
91
+ # we split up the matrix of each encoder layer into queries, keys and values
92
+ def read_in_q_k_v(state_dict, config, has_lm_head=False, is_semantic=False):
93
+ for i in range(config.num_hidden_layers):
94
+ prefix = "backbone." if is_semantic else ""
95
+ # queries, keys and values
96
+ in_proj_weight = state_dict.pop(f"{prefix}blocks.{i}.attn.qkv.weight")
97
+ q_bias = state_dict.pop(f"{prefix}blocks.{i}.attn.q_bias")
98
+ v_bias = state_dict.pop(f"{prefix}blocks.{i}.attn.v_bias")
99
+
100
+ state_dict[f"beit.encoder.layer.{i}.attention.attention.query.weight"] = in_proj_weight[
101
+ : config.hidden_size, :
102
+ ]
103
+ state_dict[f"beit.encoder.layer.{i}.attention.attention.query.bias"] = q_bias
104
+ state_dict[f"beit.encoder.layer.{i}.attention.attention.key.weight"] = in_proj_weight[
105
+ config.hidden_size : config.hidden_size * 2, :
106
+ ]
107
+ state_dict[f"beit.encoder.layer.{i}.attention.attention.value.weight"] = in_proj_weight[
108
+ -config.hidden_size :, :
109
+ ]
110
+ state_dict[f"beit.encoder.layer.{i}.attention.attention.value.bias"] = v_bias
111
+
112
+ # gamma_1 and gamma_2
113
+ # we call them lambda because otherwise they are renamed when using .from_pretrained
114
+ gamma_1 = state_dict.pop(f"{prefix}blocks.{i}.gamma_1")
115
+ gamma_2 = state_dict.pop(f"{prefix}blocks.{i}.gamma_2")
116
+
117
+ state_dict[f"beit.encoder.layer.{i}.lambda_1"] = gamma_1
118
+ state_dict[f"beit.encoder.layer.{i}.lambda_2"] = gamma_2
119
+
120
+
121
+ def rename_key(dct, old, new):
122
+ val = dct.pop(old)
123
+ dct[new] = val
124
+
125
+
126
+ # We will verify our results on an image of cute cats
127
+ def prepare_img():
128
+ url = "http://images.cocodataset.org/val2017/000000039769.jpg"
129
+ im = Image.open(requests.get(url, stream=True).raw)
130
+ return im
131
+
132
+
133
+ @torch.no_grad()
134
+ def convert_dit_checkpoint(checkpoint_url, pytorch_dump_folder_path, push_to_hub=False):
135
+ """
136
+ Copy/paste/tweak model's weights to our BEiT structure.
137
+ """
138
+
139
+ # define default BEiT configuration
140
+ has_lm_head = False if "rvlcdip" in checkpoint_url else True
141
+ config = BeitConfig(use_absolute_position_embeddings=True, use_mask_token=has_lm_head)
142
+
143
+ # size of the architecture
144
+ if "large" in checkpoint_url or "dit-l" in checkpoint_url:
145
+ config.hidden_size = 1024
146
+ config.intermediate_size = 4096
147
+ config.num_hidden_layers = 24
148
+ config.num_attention_heads = 16
149
+
150
+ # labels
151
+ if "rvlcdip" in checkpoint_url:
152
+ config.num_labels = 16
153
+ repo_id = "huggingface/label-files"
154
+ filename = "rvlcdip-id2label.json"
155
+ id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
156
+ id2label = {int(k): v for k, v in id2label.items()}
157
+ config.id2label = id2label
158
+ config.label2id = {v: k for k, v in id2label.items()}
159
+
160
+ # load state_dict of original model, remove and rename some keys
161
+ state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu")["model"]
162
+
163
+ rename_keys = create_rename_keys(config, has_lm_head=has_lm_head)
164
+ for src, dest in rename_keys:
165
+ rename_key(state_dict, src, dest)
166
+ read_in_q_k_v(state_dict, config, has_lm_head=has_lm_head)
167
+
168
+ # load HuggingFace model
169
+ model = BeitForMaskedImageModeling(config) if has_lm_head else BeitForImageClassification(config)
170
+ model.eval()
171
+ model.load_state_dict(state_dict)
172
+
173
+ # Check outputs on an image
174
+ image_processor = BeitImageProcessor(
175
+ size=config.image_size, resample=PILImageResampling.BILINEAR, do_center_crop=False
176
+ )
177
+ image = prepare_img()
178
+
179
+ encoding = image_processor(images=image, return_tensors="pt")
180
+ pixel_values = encoding["pixel_values"]
181
+
182
+ outputs = model(pixel_values)
183
+ logits = outputs.logits
184
+
185
+ # verify logits
186
+ expected_shape = [1, 16] if "rvlcdip" in checkpoint_url else [1, 196, 8192]
187
+ assert logits.shape == torch.Size(expected_shape), "Shape of logits not as expected"
188
+
189
+ Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
190
+ print(f"Saving model to {pytorch_dump_folder_path}")
191
+ model.save_pretrained(pytorch_dump_folder_path)
192
+ print(f"Saving image processor to {pytorch_dump_folder_path}")
193
+ image_processor.save_pretrained(pytorch_dump_folder_path)
194
+
195
+ if push_to_hub:
196
+ if has_lm_head:
197
+ model_name = "dit-base" if "base" in checkpoint_url else "dit-large"
198
+ else:
199
+ model_name = "dit-base-finetuned-rvlcdip" if "dit-b" in checkpoint_url else "dit-large-finetuned-rvlcdip"
200
+ image_processor.push_to_hub(
201
+ repo_path_or_name=Path(pytorch_dump_folder_path, model_name),
202
+ organization="nielsr",
203
+ commit_message="Add image processor",
204
+ use_temp_dir=True,
205
+ )
206
+ model.push_to_hub(
207
+ repo_path_or_name=Path(pytorch_dump_folder_path, model_name),
208
+ organization="nielsr",
209
+ commit_message="Add model",
210
+ use_temp_dir=True,
211
+ )
212
+
213
+
214
+ if __name__ == "__main__":
215
+ parser = argparse.ArgumentParser()
216
+
217
+ parser.add_argument(
218
+ "--checkpoint_url",
219
+ default="https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth",
220
+ type=str,
221
+ help="URL to the original PyTorch checkpoint (.pth file).",
222
+ )
223
+ parser.add_argument(
224
+ "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
225
+ )
226
+ parser.add_argument(
227
+ "--push_to_hub",
228
+ action="store_true",
229
+ )
230
+ args = parser.parse_args()
231
+ convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
llmeval-env/lib/python3.10/site-packages/transformers/models/falcon/__init__.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 the Falcon authors and HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ from typing import TYPE_CHECKING
16
+
17
+ from ...utils import (
18
+ OptionalDependencyNotAvailable,
19
+ _LazyModule,
20
+ is_torch_available,
21
+ )
22
+
23
+
24
+ _import_structure = {
25
+ "configuration_falcon": ["FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP", "FalconConfig"],
26
+ }
27
+
28
+ try:
29
+ if not is_torch_available():
30
+ raise OptionalDependencyNotAvailable()
31
+ except OptionalDependencyNotAvailable:
32
+ pass
33
+ else:
34
+ _import_structure["modeling_falcon"] = [
35
+ "FALCON_PRETRAINED_MODEL_ARCHIVE_LIST",
36
+ "FalconForCausalLM",
37
+ "FalconModel",
38
+ "FalconPreTrainedModel",
39
+ "FalconForSequenceClassification",
40
+ "FalconForTokenClassification",
41
+ "FalconForQuestionAnswering",
42
+ ]
43
+
44
+
45
+ if TYPE_CHECKING:
46
+ from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig
47
+
48
+ try:
49
+ if not is_torch_available():
50
+ raise OptionalDependencyNotAvailable()
51
+ except OptionalDependencyNotAvailable:
52
+ pass
53
+ else:
54
+ from .modeling_falcon import (
55
+ FALCON_PRETRAINED_MODEL_ARCHIVE_LIST,
56
+ FalconForCausalLM,
57
+ FalconForQuestionAnswering,
58
+ FalconForSequenceClassification,
59
+ FalconForTokenClassification,
60
+ FalconModel,
61
+ FalconPreTrainedModel,
62
+ )
63
+
64
+
65
+ else:
66
+ import sys
67
+
68
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
llmeval-env/lib/python3.10/site-packages/transformers/models/falcon/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.07 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/falcon/__pycache__/configuration_falcon.cpython-310.pyc ADDED
Binary file (8.2 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/falcon/__pycache__/convert_custom_code_checkpoint.cpython-310.pyc ADDED
Binary file (2.07 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/falcon/__pycache__/modeling_falcon.cpython-310.pyc ADDED
Binary file (44.5 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/falcon/configuration_falcon.py ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 the Falcon authors and HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Falcon configuration"""
16
+
17
+ from ...configuration_utils import PretrainedConfig
18
+ from ...utils import logging
19
+
20
+
21
+ logger = logging.get_logger(__name__)
22
+
23
+
24
+ from ..deprecated._archive_maps import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
25
+
26
+
27
+ class FalconConfig(PretrainedConfig):
28
+ r"""
29
+ This is the configuration class to store the configuration of a [`FalconModel`]. It is used to instantiate a Falcon
30
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
31
+ defaults will yield a similar configuration to that of the
32
+ [tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b) architecture.
33
+
34
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
35
+ documentation from [`PretrainedConfig`] for more information.
36
+
37
+
38
+ Args:
39
+ vocab_size (`int`, *optional*, defaults to 65024):
40
+ Vocabulary size of the Falcon model. Defines the number of different tokens that can be represented by the
41
+ `inputs_ids` passed when calling [`FalconModel`]
42
+ hidden_size (`int`, *optional*, defaults to 4544):
43
+ Dimension of the hidden representations.
44
+ num_hidden_layers (`int`, *optional*, defaults to 32):
45
+ Number of hidden layers in the Transformer decoder.
46
+ num_attention_heads (`int`, *optional*, defaults to 71):
47
+ Number of attention heads for each attention layer in the Transformer encoder.
48
+ layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
49
+ The epsilon used by the layer normalization layers.
50
+ initializer_range (`float`, *optional*, defaults to 0.02):
51
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
52
+ use_cache (`bool`, *optional*, defaults to `True`):
53
+ Whether the model should return the last key/values attentions (not used by all models). Only relevant if
54
+ `config.is_decoder=True`.
55
+ hidden_dropout (`float`, *optional*, defaults to 0.0):
56
+ The dropout probability for MLP layers.
57
+ attention_dropout (`float`, *optional*, defaults to 0.0):
58
+ The dropout probability for attention layers.
59
+ num_kv_heads (`int`, *optional*):
60
+ Number of key-value heads to use per attention layer. If unset, defaults to the same value as
61
+ `num_attention_heads`.
62
+ alibi (`bool`, *optional*, defaults to `False`):
63
+ Whether to use ALiBi positional biases during self-attention.
64
+ new_decoder_architecture (`bool`, *optional*, defaults to `False`):
65
+ Whether to use the new (Falcon-40B) decoder architecture. If `True`, the `multi_query` and `parallel_attn`
66
+ arguments are ignored, as the new decoder always uses parallel attention.
67
+ multi_query (`bool`, *optional*, defaults to `True`):
68
+ Whether to use multi-query attention in the decoder. Ignored when `new_decoder_architecture` is `True`.
69
+ parallel_attn (`bool`, *optional*, defaults to `True`):
70
+ Whether to compute attention in parallel with the feedforward layer. If False, they are consecutive
71
+ instead, as in the original Transformer architecture. Ignored when `new_decoder_architecture` is `True`.
72
+ bias (`bool`, *optional*, defaults to `False`):
73
+ Whether to use bias on Linear layers.
74
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
75
+ The maximum sequence length that this model might ever be used with, when `alibi` is `False`. Pretrained
76
+ Falcon models with RoPE support up to 2048 tokens.
77
+ rope_theta (`float`, *optional*, defaults to 10000.0):
78
+ The base period of the RoPE embeddings.
79
+ rope_scaling (`Dict`, *optional*):
80
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
81
+ strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
82
+ `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
83
+ `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
84
+ these scaling strategies behave:
85
+ https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
86
+ experimental feature, subject to breaking API changes in future versions.
87
+ bos_token_id (`int`, *optional*, defaults to 11):
88
+ The id of the "beginning-of-sequence" token.
89
+ eos_token_id (`int`, *optional*, defaults to 11):
90
+ The id of the "end-of-sequence" token.
91
+ ffn_hidden_size (`int`, *optional*):
92
+ The hidden size of the feedforward layer in the Transformer decoder.
93
+ defaults to 4x hidden dim
94
+ activation (`str`, *optional*, defaults to `"gelu"`):
95
+ The activation function used in the feedforward layer.
96
+
97
+ Example:
98
+
99
+ ```python
100
+ >>> from transformers import FalconModel, FalconConfig
101
+
102
+ >>> # Initializing a small (2-layer) Falcon configuration
103
+ >>> configuration = FalconConfig(num_hidden_layers=2)
104
+
105
+ >>> # Initializing a model from the small configuration
106
+ >>> model = FalconModel(configuration)
107
+
108
+ >>> # Accessing the model configuration
109
+ >>> configuration = model.config
110
+ ```"""
111
+
112
+ model_type = "falcon"
113
+ keys_to_ignore_at_inference = ["past_key_values"]
114
+
115
+ def __init__(
116
+ self,
117
+ vocab_size=65024,
118
+ hidden_size=4544,
119
+ num_hidden_layers=32,
120
+ num_attention_heads=71,
121
+ layer_norm_epsilon=1e-5,
122
+ initializer_range=0.02,
123
+ use_cache=True,
124
+ hidden_dropout=0.0,
125
+ attention_dropout=0.0,
126
+ num_kv_heads=None,
127
+ alibi=False,
128
+ new_decoder_architecture=False,
129
+ multi_query=True,
130
+ parallel_attn=True,
131
+ bias=False,
132
+ max_position_embeddings=2048,
133
+ rope_theta=10000.0,
134
+ rope_scaling=None,
135
+ bos_token_id=11,
136
+ eos_token_id=11,
137
+ ffn_hidden_size=None,
138
+ activation="gelu",
139
+ **kwargs,
140
+ ):
141
+ self.vocab_size = vocab_size
142
+ # Backward compatibility with n_embed kwarg
143
+ n_embed = kwargs.pop("n_embed", None)
144
+ self.hidden_size = hidden_size if n_embed is None else n_embed
145
+ self.num_hidden_layers = num_hidden_layers
146
+ self.num_attention_heads = num_attention_heads
147
+ self.layer_norm_epsilon = layer_norm_epsilon
148
+ self.initializer_range = initializer_range
149
+ self.use_cache = use_cache
150
+ self.hidden_dropout = hidden_dropout
151
+ self.attention_dropout = attention_dropout
152
+ self.bos_token_id = bos_token_id
153
+ self.eos_token_id = eos_token_id
154
+ self.num_kv_heads = num_attention_heads if num_kv_heads is None else num_kv_heads
155
+ self.alibi = alibi
156
+ self.new_decoder_architecture = new_decoder_architecture
157
+ self.multi_query = multi_query # Ignored when new_decoder_architecture is True
158
+ self.parallel_attn = parallel_attn
159
+ self.bias = bias
160
+ self.max_position_embeddings = max_position_embeddings
161
+ self.rope_theta = rope_theta
162
+ self.rope_scaling = rope_scaling
163
+ self.activation = activation
164
+ if ffn_hidden_size is None:
165
+ self.ffn_hidden_size = hidden_size * 4
166
+ else:
167
+ self.ffn_hidden_size = ffn_hidden_size
168
+ self._rope_scaling_validation()
169
+
170
+ super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
171
+
172
+ @property
173
+ def head_dim(self):
174
+ return self.hidden_size // self.num_attention_heads
175
+
176
+ @property
177
+ def rotary(self):
178
+ return not self.alibi
179
+
180
+ def _rope_scaling_validation(self):
181
+ """
182
+ Validate the `rope_scaling` configuration.
183
+ """
184
+ if self.rope_scaling is None:
185
+ return
186
+
187
+ if self.alibi:
188
+ raise ValueError("`rope_scaling` is not supported when `alibi` is `True`.")
189
+
190
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
191
+ raise ValueError(
192
+ "`rope_scaling` must be a dictionary with two fields, `type` and `factor`, " f"got {self.rope_scaling}"
193
+ )
194
+ rope_scaling_type = self.rope_scaling.get("type", None)
195
+ rope_scaling_factor = self.rope_scaling.get("factor", None)
196
+ if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
197
+ raise ValueError(
198
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
199
+ )
200
+ if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
201
+ raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
llmeval-env/lib/python3.10/site-packages/transformers/models/falcon/convert_custom_code_checkpoint.py ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ from argparse import ArgumentParser
3
+ from pathlib import Path
4
+
5
+
6
+ """
7
+ This script converts Falcon custom code checkpoints to modern Falcon checkpoints that use code in the Transformers
8
+ library. After conversion, performance (especially for generation) should improve and the checkpoint can be loaded
9
+ without needing trust_remote_code=True.
10
+ """
11
+
12
+ if __name__ == "__main__":
13
+ parser = ArgumentParser()
14
+ parser.add_argument(
15
+ "--checkpoint_dir",
16
+ type=Path,
17
+ required=True,
18
+ help="Directory containing a custom code checkpoint to convert to a modern Falcon checkpoint.",
19
+ )
20
+ args = parser.parse_args()
21
+
22
+ if not args.checkpoint_dir.is_dir():
23
+ raise ValueError("--checkpoint_dir argument should be a directory!")
24
+
25
+ if (
26
+ not (args.checkpoint_dir / "configuration_RW.py").is_file()
27
+ or not (args.checkpoint_dir / "modelling_RW.py").is_file()
28
+ ):
29
+ raise ValueError(
30
+ "The model directory should contain configuration_RW.py and modelling_RW.py files! Are you sure this is a custom code checkpoint?"
31
+ )
32
+ (args.checkpoint_dir / "configuration_RW.py").unlink()
33
+ (args.checkpoint_dir / "modelling_RW.py").unlink()
34
+
35
+ config = args.checkpoint_dir / "config.json"
36
+ text = config.read_text()
37
+ text = text.replace("RWForCausalLM", "FalconForCausalLM")
38
+ text = text.replace("RefinedWebModel", "falcon")
39
+ text = text.replace("RefinedWeb", "falcon")
40
+ json_config = json.loads(text)
41
+ del json_config["auto_map"]
42
+
43
+ if "n_head" in json_config:
44
+ json_config["num_attention_heads"] = json_config.pop("n_head")
45
+ if "n_layer" in json_config:
46
+ json_config["num_hidden_layers"] = json_config.pop("n_layer")
47
+ if "n_head_kv" in json_config:
48
+ json_config["num_kv_heads"] = json_config.pop("n_head_kv")
49
+ json_config["new_decoder_architecture"] = True
50
+ else:
51
+ json_config["new_decoder_architecture"] = False
52
+ bos_token_id = json_config.get("bos_token_id", 1)
53
+ eos_token_id = json_config.get("eos_token_id", 2)
54
+ config.unlink()
55
+ config.write_text(json.dumps(json_config, indent=2, sort_keys=True))
56
+
57
+ tokenizer_config = args.checkpoint_dir / "tokenizer_config.json"
58
+ if tokenizer_config.is_file():
59
+ text = tokenizer_config.read_text()
60
+ json_config = json.loads(text)
61
+ if json_config["tokenizer_class"] == "PreTrainedTokenizerFast":
62
+ json_config["model_input_names"] = ["input_ids", "attention_mask"]
63
+ tokenizer_config.unlink()
64
+ tokenizer_config.write_text(json.dumps(json_config, indent=2, sort_keys=True))
65
+
66
+ generation_config_path = args.checkpoint_dir / "generation_config.json"
67
+ generation_dict = {
68
+ "_from_model_config": True,
69
+ "bos_token_id": bos_token_id,
70
+ "eos_token_id": eos_token_id,
71
+ "transformers_version": "4.33.0.dev0",
72
+ }
73
+ generation_config_path.write_text(json.dumps(generation_dict, indent=2, sort_keys=True))
74
+ print("Done! Please double-check that the new checkpoint works as expected.")
llmeval-env/lib/python3.10/site-packages/transformers/models/lilt/__init__.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2022 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from typing import TYPE_CHECKING
16
+
17
+ from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
18
+
19
+
20
+ _import_structure = {
21
+ "configuration_lilt": ["LILT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LiltConfig"],
22
+ }
23
+
24
+ try:
25
+ if not is_torch_available():
26
+ raise OptionalDependencyNotAvailable()
27
+ except OptionalDependencyNotAvailable:
28
+ pass
29
+ else:
30
+ _import_structure["modeling_lilt"] = [
31
+ "LILT_PRETRAINED_MODEL_ARCHIVE_LIST",
32
+ "LiltForQuestionAnswering",
33
+ "LiltForSequenceClassification",
34
+ "LiltForTokenClassification",
35
+ "LiltModel",
36
+ "LiltPreTrainedModel",
37
+ ]
38
+
39
+ if TYPE_CHECKING:
40
+ from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig
41
+
42
+ try:
43
+ if not is_torch_available():
44
+ raise OptionalDependencyNotAvailable()
45
+ except OptionalDependencyNotAvailable:
46
+ pass
47
+ else:
48
+ from .modeling_lilt import (
49
+ LILT_PRETRAINED_MODEL_ARCHIVE_LIST,
50
+ LiltForQuestionAnswering,
51
+ LiltForSequenceClassification,
52
+ LiltForTokenClassification,
53
+ LiltModel,
54
+ LiltPreTrainedModel,
55
+ )
56
+
57
+ else:
58
+ import sys
59
+
60
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
llmeval-env/lib/python3.10/site-packages/transformers/models/lilt/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (983 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/lilt/__pycache__/configuration_lilt.cpython-310.pyc ADDED
Binary file (5.98 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/lilt/__pycache__/modeling_lilt.cpython-310.pyc ADDED
Binary file (34.5 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/lilt/configuration_lilt.py ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ LiLT configuration"""
16
+
17
+ from ...configuration_utils import PretrainedConfig
18
+ from ...utils import logging
19
+
20
+
21
+ logger = logging.get_logger(__name__)
22
+
23
+
24
+ from ..deprecated._archive_maps import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
25
+
26
+
27
+ class LiltConfig(PretrainedConfig):
28
+ r"""
29
+ This is the configuration class to store the configuration of a [`LiltModel`]. It is used to instantiate a LiLT
30
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
31
+ defaults will yield a similar configuration to that of the LiLT
32
+ [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) architecture.
33
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
34
+ documentation from [`PretrainedConfig`] for more information.
35
+
36
+ Args:
37
+ vocab_size (`int`, *optional*, defaults to 30522):
38
+ Vocabulary size of the LiLT model. Defines the number of different tokens that can be represented by the
39
+ `inputs_ids` passed when calling [`LiltModel`].
40
+ hidden_size (`int`, *optional*, defaults to 768):
41
+ Dimensionality of the encoder layers and the pooler layer. Should be a multiple of 24.
42
+ num_hidden_layers (`int`, *optional*, defaults to 12):
43
+ Number of hidden layers in the Transformer encoder.
44
+ num_attention_heads (`int`, *optional*, defaults to 12):
45
+ Number of attention heads for each attention layer in the Transformer encoder.
46
+ intermediate_size (`int`, *optional*, defaults to 3072):
47
+ Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
48
+ hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
49
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
50
+ `"relu"`, `"silu"` and `"gelu_new"` are supported.
51
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
52
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
53
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
54
+ The dropout ratio for the attention probabilities.
55
+ max_position_embeddings (`int`, *optional*, defaults to 512):
56
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
57
+ just in case (e.g., 512 or 1024 or 2048).
58
+ type_vocab_size (`int`, *optional*, defaults to 2):
59
+ The vocabulary size of the `token_type_ids` passed when calling [`LiltModel`].
60
+ initializer_range (`float`, *optional*, defaults to 0.02):
61
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
62
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
63
+ The epsilon used by the layer normalization layers.
64
+ position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
65
+ Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
66
+ positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
67
+ [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
68
+ For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
69
+ with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
70
+ classifier_dropout (`float`, *optional*):
71
+ The dropout ratio for the classification head.
72
+ channel_shrink_ratio (`int`, *optional*, defaults to 4):
73
+ The shrink ratio compared to the `hidden_size` for the channel dimension of the layout embeddings.
74
+ max_2d_position_embeddings (`int`, *optional*, defaults to 1024):
75
+ The maximum value that the 2D position embedding might ever be used with. Typically set this to something
76
+ large just in case (e.g., 1024).
77
+
78
+ Examples:
79
+
80
+ ```python
81
+ >>> from transformers import LiltConfig, LiltModel
82
+
83
+ >>> # Initializing a LiLT SCUT-DLVCLab/lilt-roberta-en-base style configuration
84
+ >>> configuration = LiltConfig()
85
+ >>> # Randomly initializing a model from the SCUT-DLVCLab/lilt-roberta-en-base style configuration
86
+ >>> model = LiltModel(configuration)
87
+ >>> # Accessing the model configuration
88
+ >>> configuration = model.config
89
+ ```"""
90
+
91
+ model_type = "lilt"
92
+
93
+ def __init__(
94
+ self,
95
+ vocab_size=30522,
96
+ hidden_size=768,
97
+ num_hidden_layers=12,
98
+ num_attention_heads=12,
99
+ intermediate_size=3072,
100
+ hidden_act="gelu",
101
+ hidden_dropout_prob=0.1,
102
+ attention_probs_dropout_prob=0.1,
103
+ max_position_embeddings=512,
104
+ type_vocab_size=2,
105
+ initializer_range=0.02,
106
+ layer_norm_eps=1e-12,
107
+ pad_token_id=0,
108
+ position_embedding_type="absolute",
109
+ classifier_dropout=None,
110
+ channel_shrink_ratio=4,
111
+ max_2d_position_embeddings=1024,
112
+ **kwargs,
113
+ ):
114
+ super().__init__(pad_token_id=pad_token_id, **kwargs)
115
+
116
+ self.vocab_size = vocab_size
117
+ self.hidden_size = hidden_size
118
+ self.num_hidden_layers = num_hidden_layers
119
+ self.num_attention_heads = num_attention_heads
120
+ self.hidden_act = hidden_act
121
+ self.intermediate_size = intermediate_size
122
+ self.hidden_dropout_prob = hidden_dropout_prob
123
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
124
+ self.max_position_embeddings = max_position_embeddings
125
+ self.type_vocab_size = type_vocab_size
126
+ self.initializer_range = initializer_range
127
+ self.layer_norm_eps = layer_norm_eps
128
+ self.position_embedding_type = position_embedding_type
129
+ self.classifier_dropout = classifier_dropout
130
+ self.channel_shrink_ratio = channel_shrink_ratio
131
+ self.max_2d_position_embeddings = max_2d_position_embeddings
llmeval-env/lib/python3.10/site-packages/transformers/models/lilt/modeling_lilt.py ADDED
@@ -0,0 +1,1186 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """PyTorch LiLT model."""
16
+
17
+ import math
18
+ from typing import Optional, Tuple, Union
19
+
20
+ import torch
21
+ import torch.utils.checkpoint
22
+ from torch import nn
23
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
24
+
25
+ from ...activations import ACT2FN
26
+ from ...modeling_outputs import (
27
+ BaseModelOutput,
28
+ BaseModelOutputWithPooling,
29
+ QuestionAnsweringModelOutput,
30
+ SequenceClassifierOutput,
31
+ TokenClassifierOutput,
32
+ )
33
+ from ...modeling_utils import PreTrainedModel
34
+ from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
35
+ from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
36
+ from .configuration_lilt import LiltConfig
37
+
38
+
39
+ logger = logging.get_logger(__name__)
40
+
41
+ _CONFIG_FOR_DOC = "LiltConfig"
42
+
43
+
44
+ from ..deprecated._archive_maps import LILT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
45
+
46
+
47
+ class LiltTextEmbeddings(nn.Module):
48
+ def __init__(self, config):
49
+ super().__init__()
50
+ self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
51
+ self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
52
+ self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
53
+
54
+ # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
55
+ # any TensorFlow checkpoint file
56
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
57
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
58
+
59
+ # position_ids (1, len position emb) is contiguous in memory and exported when serialized
60
+ self.register_buffer(
61
+ "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
62
+ )
63
+ self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
64
+
65
+ # End copy
66
+ self.padding_idx = config.pad_token_id
67
+ self.position_embeddings = nn.Embedding(
68
+ config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
69
+ )
70
+
71
+ def forward(
72
+ self,
73
+ input_ids=None,
74
+ token_type_ids=None,
75
+ position_ids=None,
76
+ inputs_embeds=None,
77
+ ):
78
+ if position_ids is None:
79
+ if input_ids is not None:
80
+ # Create the position ids from the input token ids. Any padded tokens remain padded.
81
+ position_ids = self.create_position_ids_from_input_ids(input_ids, self.padding_idx).to(
82
+ input_ids.device
83
+ )
84
+ else:
85
+ position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds)
86
+
87
+ if input_ids is not None:
88
+ input_shape = input_ids.size()
89
+ else:
90
+ input_shape = inputs_embeds.size()[:-1]
91
+
92
+ if token_type_ids is None:
93
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
94
+
95
+ if inputs_embeds is None:
96
+ inputs_embeds = self.word_embeddings(input_ids)
97
+ token_type_embeddings = self.token_type_embeddings(token_type_ids)
98
+
99
+ embeddings = inputs_embeds + token_type_embeddings
100
+ if self.position_embedding_type == "absolute":
101
+ position_embeddings = self.position_embeddings(position_ids)
102
+ embeddings += position_embeddings
103
+ embeddings = self.LayerNorm(embeddings)
104
+ embeddings = self.dropout(embeddings)
105
+ return embeddings, position_ids
106
+
107
+ def create_position_ids_from_input_ids(self, input_ids, padding_idx):
108
+ """
109
+ Args:
110
+ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding
111
+ symbols are ignored. This is modified from fairseq's `utils.make_positions`.
112
+ x: torch.Tensor x:
113
+ Returns: torch.Tensor
114
+ """
115
+ # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
116
+ mask = input_ids.ne(padding_idx).int()
117
+ incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask)) * mask
118
+ return incremental_indices.long() + padding_idx
119
+
120
+ def create_position_ids_from_inputs_embeds(self, inputs_embeds):
121
+ """
122
+ Args:
123
+ We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.:
124
+ inputs_embeds: torch.Tensor
125
+ Returns: torch.Tensor
126
+ """
127
+ input_shape = inputs_embeds.size()[:-1]
128
+ sequence_length = input_shape[1]
129
+
130
+ position_ids = torch.arange(
131
+ self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
132
+ )
133
+ return position_ids.unsqueeze(0).expand(input_shape)
134
+
135
+
136
+ class LiltLayoutEmbeddings(nn.Module):
137
+ def __init__(self, config):
138
+ super().__init__()
139
+ # we divide the hidden_size by 6 here as there are 6 different layout embeddings,
140
+ # namely left_position, upper_position, right_position, lower_position, height, width
141
+ self.x_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.hidden_size // 6)
142
+ self.y_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.hidden_size // 6)
143
+ self.h_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.hidden_size // 6)
144
+ self.w_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.hidden_size // 6)
145
+
146
+ self.padding_idx = config.pad_token_id
147
+ self.box_position_embeddings = nn.Embedding(
148
+ config.max_position_embeddings,
149
+ config.hidden_size // config.channel_shrink_ratio,
150
+ padding_idx=self.padding_idx,
151
+ )
152
+ self.box_linear_embeddings = nn.Linear(
153
+ in_features=config.hidden_size, out_features=config.hidden_size // config.channel_shrink_ratio
154
+ )
155
+ self.LayerNorm = nn.LayerNorm(config.hidden_size // config.channel_shrink_ratio, eps=config.layer_norm_eps)
156
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
157
+
158
+ def forward(self, bbox=None, position_ids=None):
159
+ try:
160
+ left_position_embeddings = self.x_position_embeddings(bbox[:, :, 0])
161
+ upper_position_embeddings = self.y_position_embeddings(bbox[:, :, 1])
162
+ right_position_embeddings = self.x_position_embeddings(bbox[:, :, 2])
163
+ lower_position_embeddings = self.y_position_embeddings(bbox[:, :, 3])
164
+ except IndexError as e:
165
+ raise IndexError("The `bbox` coordinate values should be within 0-1000 range.") from e
166
+
167
+ h_position_embeddings = self.h_position_embeddings(bbox[:, :, 3] - bbox[:, :, 1])
168
+ w_position_embeddings = self.w_position_embeddings(bbox[:, :, 2] - bbox[:, :, 0])
169
+
170
+ spatial_position_embeddings = torch.cat(
171
+ [
172
+ left_position_embeddings,
173
+ upper_position_embeddings,
174
+ right_position_embeddings,
175
+ lower_position_embeddings,
176
+ h_position_embeddings,
177
+ w_position_embeddings,
178
+ ],
179
+ dim=-1,
180
+ )
181
+ spatial_position_embeddings = self.box_linear_embeddings(spatial_position_embeddings)
182
+ box_position_embeddings = self.box_position_embeddings(position_ids)
183
+
184
+ spatial_position_embeddings = spatial_position_embeddings + box_position_embeddings
185
+
186
+ spatial_position_embeddings = self.LayerNorm(spatial_position_embeddings)
187
+ spatial_position_embeddings = self.dropout(spatial_position_embeddings)
188
+
189
+ return spatial_position_embeddings
190
+
191
+
192
+ class LiltSelfAttention(nn.Module):
193
+ def __init__(self, config, position_embedding_type=None):
194
+ super().__init__()
195
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
196
+ raise ValueError(
197
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
198
+ f"heads ({config.num_attention_heads})"
199
+ )
200
+
201
+ self.num_attention_heads = config.num_attention_heads
202
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
203
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
204
+
205
+ self.query = nn.Linear(config.hidden_size, self.all_head_size)
206
+ self.key = nn.Linear(config.hidden_size, self.all_head_size)
207
+ self.value = nn.Linear(config.hidden_size, self.all_head_size)
208
+
209
+ self.layout_query = nn.Linear(
210
+ config.hidden_size // config.channel_shrink_ratio, self.all_head_size // config.channel_shrink_ratio
211
+ )
212
+ self.layout_key = nn.Linear(
213
+ config.hidden_size // config.channel_shrink_ratio, self.all_head_size // config.channel_shrink_ratio
214
+ )
215
+ self.layout_value = nn.Linear(
216
+ config.hidden_size // config.channel_shrink_ratio, self.all_head_size // config.channel_shrink_ratio
217
+ )
218
+
219
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
220
+ self.position_embedding_type = position_embedding_type or getattr(
221
+ config, "position_embedding_type", "absolute"
222
+ )
223
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
224
+ self.max_position_embeddings = config.max_position_embeddings
225
+ self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
226
+
227
+ self.channel_shrink_ratio = config.channel_shrink_ratio
228
+
229
+ def transpose_for_scores(self, x, r=1):
230
+ new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size // r)
231
+ x = x.view(*new_x_shape)
232
+ return x.permute(0, 2, 1, 3)
233
+
234
+ def forward(
235
+ self,
236
+ hidden_states,
237
+ layout_inputs,
238
+ attention_mask=None,
239
+ head_mask=None,
240
+ output_attentions=False,
241
+ ):
242
+ layout_value_layer = self.transpose_for_scores(self.layout_value(layout_inputs), r=self.channel_shrink_ratio)
243
+ layout_key_layer = self.transpose_for_scores(self.layout_key(layout_inputs), r=self.channel_shrink_ratio)
244
+ layout_query_layer = self.transpose_for_scores(self.layout_query(layout_inputs), r=self.channel_shrink_ratio)
245
+
246
+ mixed_query_layer = self.query(hidden_states)
247
+
248
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
249
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
250
+ query_layer = self.transpose_for_scores(mixed_query_layer)
251
+
252
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
253
+ layout_attention_scores = torch.matmul(layout_query_layer, layout_key_layer.transpose(-1, -2))
254
+
255
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
256
+ seq_length = hidden_states.size()[1]
257
+ position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
258
+ position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
259
+ distance = position_ids_l - position_ids_r
260
+ positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
261
+ positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
262
+
263
+ if self.position_embedding_type == "relative_key":
264
+ relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
265
+ attention_scores = attention_scores + relative_position_scores
266
+ elif self.position_embedding_type == "relative_key_query":
267
+ relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
268
+ relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
269
+ attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
270
+
271
+ tmp_attention_scores = attention_scores / math.sqrt(self.attention_head_size)
272
+ tmp_layout_attention_scores = layout_attention_scores / math.sqrt(
273
+ self.attention_head_size // self.channel_shrink_ratio
274
+ )
275
+ attention_scores = tmp_attention_scores + tmp_layout_attention_scores
276
+ layout_attention_scores = tmp_layout_attention_scores + tmp_attention_scores
277
+
278
+ if attention_mask is not None:
279
+ # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
280
+ layout_attention_scores = layout_attention_scores + attention_mask
281
+
282
+ # Normalize the attention scores to probabilities.
283
+ layout_attention_probs = nn.Softmax(dim=-1)(layout_attention_scores)
284
+
285
+ # This is actually dropping out entire tokens to attend to, which might
286
+ # seem a bit unusual, but is taken from the original Transformer paper.
287
+ layout_attention_probs = self.dropout(layout_attention_probs)
288
+
289
+ # Mask heads if we want to
290
+ if head_mask is not None:
291
+ layout_attention_probs = layout_attention_probs * head_mask
292
+
293
+ layout_context_layer = torch.matmul(layout_attention_probs, layout_value_layer)
294
+
295
+ layout_context_layer = layout_context_layer.permute(0, 2, 1, 3).contiguous()
296
+ new_context_layer_shape = layout_context_layer.size()[:-2] + (self.all_head_size // self.channel_shrink_ratio,)
297
+ layout_context_layer = layout_context_layer.view(*new_context_layer_shape)
298
+
299
+ if attention_mask is not None:
300
+ # Apply the attention mask is (precomputed for all layers in RobertaModel forward() function)
301
+ attention_scores = attention_scores + attention_mask
302
+
303
+ # Normalize the attention scores to probabilities.
304
+ attention_probs = nn.Softmax(dim=-1)(attention_scores)
305
+
306
+ # This is actually dropping out entire tokens to attend to, which might
307
+ # seem a bit unusual, but is taken from the original Transformer paper.
308
+ attention_probs = self.dropout(attention_probs)
309
+
310
+ # Mask heads if we want to
311
+ if head_mask is not None:
312
+ attention_probs = attention_probs * head_mask
313
+
314
+ context_layer = torch.matmul(attention_probs, value_layer)
315
+
316
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
317
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
318
+ context_layer = context_layer.view(*new_context_layer_shape)
319
+
320
+ outputs = (
321
+ ((context_layer, layout_context_layer), attention_probs)
322
+ if output_attentions
323
+ else ((context_layer, layout_context_layer),)
324
+ )
325
+
326
+ return outputs
327
+
328
+
329
+ # Copied from transformers.models.bert.modeling_bert.BertSelfOutput
330
+ class LiltSelfOutput(nn.Module):
331
+ def __init__(self, config):
332
+ super().__init__()
333
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
334
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
335
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
336
+
337
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
338
+ hidden_states = self.dense(hidden_states)
339
+ hidden_states = self.dropout(hidden_states)
340
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
341
+ return hidden_states
342
+
343
+
344
+ class LiltAttention(nn.Module):
345
+ def __init__(self, config, position_embedding_type=None):
346
+ super().__init__()
347
+ self.self = LiltSelfAttention(config, position_embedding_type=position_embedding_type)
348
+ self.output = LiltSelfOutput(config)
349
+ self.pruned_heads = set()
350
+
351
+ ori_hidden_size = config.hidden_size
352
+ config.hidden_size = config.hidden_size // config.channel_shrink_ratio
353
+ self.layout_output = LiltSelfOutput(config)
354
+ config.hidden_size = ori_hidden_size
355
+
356
+ # Copied from transformers.models.bert.modeling_bert.BertAttention.prune_heads
357
+ def prune_heads(self, heads):
358
+ if len(heads) == 0:
359
+ return
360
+ heads, index = find_pruneable_heads_and_indices(
361
+ heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
362
+ )
363
+
364
+ # Prune linear layers
365
+ self.self.query = prune_linear_layer(self.self.query, index)
366
+ self.self.key = prune_linear_layer(self.self.key, index)
367
+ self.self.value = prune_linear_layer(self.self.value, index)
368
+ self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
369
+
370
+ # Update hyper params and store pruned heads
371
+ self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
372
+ self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
373
+ self.pruned_heads = self.pruned_heads.union(heads)
374
+
375
+ def forward(
376
+ self,
377
+ hidden_states: torch.Tensor,
378
+ layout_inputs: torch.Tensor,
379
+ attention_mask: Optional[torch.FloatTensor] = None,
380
+ head_mask: Optional[torch.FloatTensor] = None,
381
+ output_attentions: Optional[bool] = False,
382
+ ) -> Tuple[torch.Tensor]:
383
+ self_outputs = self.self(
384
+ hidden_states,
385
+ layout_inputs,
386
+ attention_mask,
387
+ head_mask,
388
+ output_attentions,
389
+ )
390
+ attention_output = self.output(self_outputs[0][0], hidden_states)
391
+ layout_attention_output = self.layout_output(self_outputs[0][1], layout_inputs)
392
+ outputs = ((attention_output, layout_attention_output),) + self_outputs[1:] # add attentions if we output them
393
+ return outputs
394
+
395
+
396
+ # Copied from transformers.models.bert.modeling_bert.BertIntermediate
397
+ class LiltIntermediate(nn.Module):
398
+ def __init__(self, config):
399
+ super().__init__()
400
+ self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
401
+ if isinstance(config.hidden_act, str):
402
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
403
+ else:
404
+ self.intermediate_act_fn = config.hidden_act
405
+
406
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
407
+ hidden_states = self.dense(hidden_states)
408
+ hidden_states = self.intermediate_act_fn(hidden_states)
409
+ return hidden_states
410
+
411
+
412
+ # Copied from transformers.models.bert.modeling_bert.BertOutput
413
+ class LiltOutput(nn.Module):
414
+ def __init__(self, config):
415
+ super().__init__()
416
+ self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
417
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
418
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
419
+
420
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
421
+ hidden_states = self.dense(hidden_states)
422
+ hidden_states = self.dropout(hidden_states)
423
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
424
+ return hidden_states
425
+
426
+
427
+ class LiltLayer(nn.Module):
428
+ def __init__(self, config):
429
+ super().__init__()
430
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
431
+ self.seq_len_dim = 1
432
+ self.attention = LiltAttention(config)
433
+ self.intermediate = LiltIntermediate(config)
434
+ self.output = LiltOutput(config)
435
+
436
+ ori_hidden_size = config.hidden_size
437
+ ori_intermediate_size = config.intermediate_size
438
+ config.hidden_size = config.hidden_size // config.channel_shrink_ratio
439
+ config.intermediate_size = config.intermediate_size // config.channel_shrink_ratio
440
+ self.layout_intermediate = LiltIntermediate(config)
441
+ self.layout_output = LiltOutput(config)
442
+ config.hidden_size = ori_hidden_size
443
+ config.intermediate_size = ori_intermediate_size
444
+
445
+ def forward(
446
+ self,
447
+ hidden_states: torch.Tensor,
448
+ layout_inputs: torch.Tensor,
449
+ attention_mask: Optional[torch.FloatTensor] = None,
450
+ head_mask: Optional[torch.FloatTensor] = None,
451
+ output_attentions: Optional[bool] = False,
452
+ ) -> Tuple[torch.Tensor]:
453
+ self_attention_outputs = self.attention(
454
+ hidden_states,
455
+ layout_inputs,
456
+ attention_mask,
457
+ head_mask,
458
+ output_attentions=output_attentions,
459
+ )
460
+ attention_output = self_attention_outputs[0][0]
461
+ layout_attention_output = self_attention_outputs[0][1]
462
+
463
+ outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
464
+
465
+ layer_output = apply_chunking_to_forward(
466
+ self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
467
+ )
468
+ layout_layer_output = apply_chunking_to_forward(
469
+ self.layout_feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, layout_attention_output
470
+ )
471
+ outputs = ((layer_output, layout_layer_output),) + outputs
472
+
473
+ return outputs
474
+
475
+ # Copied from transformers.models.bert.modeling_bert.BertLayer.feed_forward_chunk
476
+ def feed_forward_chunk(self, attention_output):
477
+ intermediate_output = self.intermediate(attention_output)
478
+ layer_output = self.output(intermediate_output, attention_output)
479
+ return layer_output
480
+
481
+ def layout_feed_forward_chunk(self, attention_output):
482
+ intermediate_output = self.layout_intermediate(attention_output)
483
+ layer_output = self.layout_output(intermediate_output, attention_output)
484
+ return layer_output
485
+
486
+
487
+ class LiltEncoder(nn.Module):
488
+ # Copied from transformers.models.bert.modeling_bert.BertEncoder.__init__ with Bert->Lilt
489
+ def __init__(self, config):
490
+ super().__init__()
491
+ self.config = config
492
+ self.layer = nn.ModuleList([LiltLayer(config) for _ in range(config.num_hidden_layers)])
493
+ self.gradient_checkpointing = False
494
+
495
+ def forward(
496
+ self,
497
+ hidden_states: torch.Tensor,
498
+ layout_inputs: torch.Tensor,
499
+ attention_mask: Optional[torch.FloatTensor] = None,
500
+ head_mask: Optional[torch.FloatTensor] = None,
501
+ output_attentions: Optional[bool] = False,
502
+ output_hidden_states: Optional[bool] = False,
503
+ return_dict: Optional[bool] = True,
504
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutput]:
505
+ all_hidden_states = () if output_hidden_states else None
506
+ all_self_attentions = () if output_attentions else None
507
+
508
+ for i, layer_module in enumerate(self.layer):
509
+ if output_hidden_states:
510
+ all_hidden_states = all_hidden_states + (hidden_states,)
511
+
512
+ layer_head_mask = head_mask[i] if head_mask is not None else None
513
+
514
+ if self.gradient_checkpointing and self.training:
515
+ layer_outputs = self._gradient_checkpointing_func(
516
+ layer_module.__call__,
517
+ hidden_states,
518
+ layout_inputs,
519
+ attention_mask,
520
+ layer_head_mask,
521
+ output_attentions,
522
+ )
523
+ else:
524
+ layer_outputs = layer_module(
525
+ hidden_states,
526
+ layout_inputs,
527
+ attention_mask,
528
+ layer_head_mask,
529
+ output_attentions,
530
+ )
531
+
532
+ hidden_states = layer_outputs[0][0]
533
+ layout_inputs = layer_outputs[0][1]
534
+
535
+ if output_attentions:
536
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
537
+
538
+ if output_hidden_states:
539
+ all_hidden_states = all_hidden_states + (hidden_states,)
540
+
541
+ if not return_dict:
542
+ return tuple(
543
+ v
544
+ for v in [
545
+ hidden_states,
546
+ all_hidden_states,
547
+ all_self_attentions,
548
+ ]
549
+ if v is not None
550
+ )
551
+ return BaseModelOutput(
552
+ last_hidden_state=hidden_states,
553
+ hidden_states=all_hidden_states,
554
+ attentions=all_self_attentions,
555
+ )
556
+
557
+
558
+ # Copied from transformers.models.bert.modeling_bert.BertPooler
559
+ class LiltPooler(nn.Module):
560
+ def __init__(self, config):
561
+ super().__init__()
562
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
563
+ self.activation = nn.Tanh()
564
+
565
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
566
+ # We "pool" the model by simply taking the hidden state corresponding
567
+ # to the first token.
568
+ first_token_tensor = hidden_states[:, 0]
569
+ pooled_output = self.dense(first_token_tensor)
570
+ pooled_output = self.activation(pooled_output)
571
+ return pooled_output
572
+
573
+
574
+ class LiltPreTrainedModel(PreTrainedModel):
575
+ """
576
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
577
+ models.
578
+ """
579
+
580
+ config_class = LiltConfig
581
+ base_model_prefix = "lilt"
582
+ supports_gradient_checkpointing = True
583
+ _no_split_modules = []
584
+
585
+ # Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights
586
+ def _init_weights(self, module):
587
+ """Initialize the weights"""
588
+ if isinstance(module, nn.Linear):
589
+ # Slightly different from the TF version which uses truncated_normal for initialization
590
+ # cf https://github.com/pytorch/pytorch/pull/5617
591
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
592
+ if module.bias is not None:
593
+ module.bias.data.zero_()
594
+ elif isinstance(module, nn.Embedding):
595
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
596
+ if module.padding_idx is not None:
597
+ module.weight.data[module.padding_idx].zero_()
598
+ elif isinstance(module, nn.LayerNorm):
599
+ module.bias.data.zero_()
600
+ module.weight.data.fill_(1.0)
601
+
602
+
603
+ LILT_START_DOCSTRING = r"""
604
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
605
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
606
+ etc.)
607
+
608
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
609
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
610
+ and behavior.
611
+
612
+ Parameters:
613
+ config ([`LiltConfig`]): Model configuration class with all the parameters of the
614
+ model. Initializing with a config file does not load the weights associated with the model, only the
615
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
616
+ """
617
+
618
+ LILT_INPUTS_DOCSTRING = r"""
619
+ Args:
620
+ input_ids (`torch.LongTensor` of shape `({0})`):
621
+ Indices of input sequence tokens in the vocabulary.
622
+
623
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
624
+ [`PreTrainedTokenizer.__call__`] for details.
625
+
626
+ [What are input IDs?](../glossary#input-ids)
627
+
628
+ bbox (`torch.LongTensor` of shape `({0}, 4)`, *optional*):
629
+ Bounding boxes of each input sequence tokens. Selected in the range `[0,
630
+ config.max_2d_position_embeddings-1]`. Each bounding box should be a normalized version in (x0, y0, x1, y1)
631
+ format, where (x0, y0) corresponds to the position of the upper left corner in the bounding box, and (x1,
632
+ y1) represents the position of the lower right corner. See [Overview](#Overview) for normalization.
633
+
634
+ attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
635
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
636
+
637
+ - 1 for tokens that are **not masked**,
638
+ - 0 for tokens that are **masked**.
639
+
640
+ [What are attention masks?](../glossary#attention-mask)
641
+ token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
642
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
643
+ 1]`:
644
+
645
+ - 0 corresponds to a *sentence A* token,
646
+ - 1 corresponds to a *sentence B* token.
647
+
648
+ [What are token type IDs?](../glossary#token-type-ids)
649
+ position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
650
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
651
+ config.max_position_embeddings - 1]`.
652
+
653
+ [What are position IDs?](../glossary#position-ids)
654
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
655
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
656
+
657
+ - 1 indicates the head is **not masked**,
658
+ - 0 indicates the head is **masked**.
659
+
660
+ inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
661
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
662
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
663
+ model's internal embedding lookup matrix.
664
+ output_attentions (`bool`, *optional*):
665
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
666
+ tensors for more detail.
667
+ output_hidden_states (`bool`, *optional*):
668
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
669
+ more detail.
670
+ return_dict (`bool`, *optional*):
671
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
672
+ """
673
+
674
+
675
+ @add_start_docstrings(
676
+ "The bare LiLT Model transformer outputting raw hidden-states without any specific head on top.",
677
+ LILT_START_DOCSTRING,
678
+ )
679
+ class LiltModel(LiltPreTrainedModel):
680
+ def __init__(self, config, add_pooling_layer=True):
681
+ super().__init__(config)
682
+ self.config = config
683
+
684
+ self.embeddings = LiltTextEmbeddings(config)
685
+ self.layout_embeddings = LiltLayoutEmbeddings(config)
686
+ self.encoder = LiltEncoder(config)
687
+
688
+ self.pooler = LiltPooler(config) if add_pooling_layer else None
689
+
690
+ # Initialize weights and apply final processing
691
+ self.post_init()
692
+
693
+ def get_input_embeddings(self):
694
+ return self.embeddings.word_embeddings
695
+
696
+ def set_input_embeddings(self, value):
697
+ self.embeddings.word_embeddings = value
698
+
699
+ def _prune_heads(self, heads_to_prune):
700
+ """
701
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
702
+ class PreTrainedModel
703
+ """
704
+ for layer, heads in heads_to_prune.items():
705
+ self.encoder.layer[layer].attention.prune_heads(heads)
706
+
707
+ @add_start_docstrings_to_model_forward(LILT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
708
+ @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC)
709
+ def forward(
710
+ self,
711
+ input_ids: Optional[torch.Tensor] = None,
712
+ bbox: Optional[torch.Tensor] = None,
713
+ attention_mask: Optional[torch.Tensor] = None,
714
+ token_type_ids: Optional[torch.Tensor] = None,
715
+ position_ids: Optional[torch.Tensor] = None,
716
+ head_mask: Optional[torch.Tensor] = None,
717
+ inputs_embeds: Optional[torch.Tensor] = None,
718
+ output_attentions: Optional[bool] = None,
719
+ output_hidden_states: Optional[bool] = None,
720
+ return_dict: Optional[bool] = None,
721
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPooling]:
722
+ r"""
723
+
724
+ Returns:
725
+
726
+ Examples:
727
+
728
+ ```python
729
+ >>> from transformers import AutoTokenizer, AutoModel
730
+ >>> from datasets import load_dataset
731
+
732
+ >>> tokenizer = AutoTokenizer.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base")
733
+ >>> model = AutoModel.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base")
734
+
735
+ >>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train")
736
+ >>> example = dataset[0]
737
+ >>> words = example["tokens"]
738
+ >>> boxes = example["bboxes"]
739
+
740
+ >>> encoding = tokenizer(words, boxes=boxes, return_tensors="pt")
741
+
742
+ >>> outputs = model(**encoding)
743
+ >>> last_hidden_states = outputs.last_hidden_state
744
+ ```"""
745
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
746
+ output_hidden_states = (
747
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
748
+ )
749
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
750
+
751
+ if input_ids is not None and inputs_embeds is not None:
752
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
753
+ elif input_ids is not None:
754
+ self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
755
+ input_shape = input_ids.size()
756
+ elif inputs_embeds is not None:
757
+ input_shape = inputs_embeds.size()[:-1]
758
+ else:
759
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
760
+
761
+ batch_size, seq_length = input_shape
762
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
763
+
764
+ if bbox is None:
765
+ bbox = torch.zeros(input_shape + (4,), dtype=torch.long, device=device)
766
+
767
+ if attention_mask is None:
768
+ attention_mask = torch.ones(((batch_size, seq_length)), device=device)
769
+
770
+ if token_type_ids is None:
771
+ if hasattr(self.embeddings, "token_type_ids"):
772
+ buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
773
+ buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
774
+ token_type_ids = buffered_token_type_ids_expanded
775
+ else:
776
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
777
+
778
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
779
+ # ourselves in which case we just need to make it broadcastable to all heads.
780
+ extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
781
+
782
+ # Prepare head mask if needed
783
+ # 1.0 in head_mask indicate we keep the head
784
+ # attention_probs has shape bsz x n_heads x N x N
785
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
786
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
787
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
788
+
789
+ embedding_output, position_ids = self.embeddings(
790
+ input_ids=input_ids,
791
+ position_ids=position_ids,
792
+ token_type_ids=token_type_ids,
793
+ inputs_embeds=inputs_embeds,
794
+ )
795
+
796
+ layout_embedding_output = self.layout_embeddings(bbox=bbox, position_ids=position_ids)
797
+
798
+ encoder_outputs = self.encoder(
799
+ embedding_output,
800
+ layout_embedding_output,
801
+ attention_mask=extended_attention_mask,
802
+ head_mask=head_mask,
803
+ output_attentions=output_attentions,
804
+ output_hidden_states=output_hidden_states,
805
+ return_dict=return_dict,
806
+ )
807
+ sequence_output = encoder_outputs[0]
808
+ pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
809
+
810
+ if not return_dict:
811
+ return (sequence_output, pooled_output) + encoder_outputs[1:]
812
+
813
+ return BaseModelOutputWithPooling(
814
+ last_hidden_state=sequence_output,
815
+ pooler_output=pooled_output,
816
+ hidden_states=encoder_outputs.hidden_states,
817
+ attentions=encoder_outputs.attentions,
818
+ )
819
+
820
+
821
+ @add_start_docstrings(
822
+ """
823
+ LiLT Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
824
+ output) e.g. for GLUE tasks.
825
+ """,
826
+ LILT_START_DOCSTRING,
827
+ )
828
+ class LiltForSequenceClassification(LiltPreTrainedModel):
829
+ # Copied from transformers.models.roberta.modeling_roberta.RobertaForSequenceClassification.__init__ with Roberta->Lilt, roberta->lilt
830
+ def __init__(self, config):
831
+ super().__init__(config)
832
+ self.num_labels = config.num_labels
833
+ self.config = config
834
+
835
+ self.lilt = LiltModel(config, add_pooling_layer=False)
836
+ self.classifier = LiltClassificationHead(config)
837
+
838
+ # Initialize weights and apply final processing
839
+ self.post_init()
840
+
841
+ @add_start_docstrings_to_model_forward(LILT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
842
+ @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC)
843
+ def forward(
844
+ self,
845
+ input_ids: Optional[torch.LongTensor] = None,
846
+ bbox: Optional[torch.Tensor] = None,
847
+ attention_mask: Optional[torch.FloatTensor] = None,
848
+ token_type_ids: Optional[torch.LongTensor] = None,
849
+ position_ids: Optional[torch.LongTensor] = None,
850
+ head_mask: Optional[torch.FloatTensor] = None,
851
+ inputs_embeds: Optional[torch.FloatTensor] = None,
852
+ labels: Optional[torch.LongTensor] = None,
853
+ output_attentions: Optional[bool] = None,
854
+ output_hidden_states: Optional[bool] = None,
855
+ return_dict: Optional[bool] = None,
856
+ ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
857
+ r"""
858
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
859
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
860
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
861
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
862
+
863
+ Returns:
864
+
865
+ Examples:
866
+
867
+ ```python
868
+ >>> from transformers import AutoTokenizer, AutoModelForSequenceClassification
869
+ >>> from datasets import load_dataset
870
+
871
+ >>> tokenizer = AutoTokenizer.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base")
872
+ >>> model = AutoModelForSequenceClassification.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base")
873
+
874
+ >>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train")
875
+ >>> example = dataset[0]
876
+ >>> words = example["tokens"]
877
+ >>> boxes = example["bboxes"]
878
+
879
+ >>> encoding = tokenizer(words, boxes=boxes, return_tensors="pt")
880
+
881
+ >>> outputs = model(**encoding)
882
+ >>> predicted_class_idx = outputs.logits.argmax(-1).item()
883
+ >>> predicted_class = model.config.id2label[predicted_class_idx]
884
+ ```"""
885
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
886
+
887
+ outputs = self.lilt(
888
+ input_ids,
889
+ bbox=bbox,
890
+ attention_mask=attention_mask,
891
+ token_type_ids=token_type_ids,
892
+ position_ids=position_ids,
893
+ head_mask=head_mask,
894
+ inputs_embeds=inputs_embeds,
895
+ output_attentions=output_attentions,
896
+ output_hidden_states=output_hidden_states,
897
+ return_dict=return_dict,
898
+ )
899
+ sequence_output = outputs[0]
900
+ logits = self.classifier(sequence_output)
901
+
902
+ loss = None
903
+ if labels is not None:
904
+ # move labels to correct device to enable model parallelism
905
+ labels = labels.to(logits.device)
906
+ if self.config.problem_type is None:
907
+ if self.num_labels == 1:
908
+ self.config.problem_type = "regression"
909
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
910
+ self.config.problem_type = "single_label_classification"
911
+ else:
912
+ self.config.problem_type = "multi_label_classification"
913
+
914
+ if self.config.problem_type == "regression":
915
+ loss_fct = MSELoss()
916
+ if self.num_labels == 1:
917
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
918
+ else:
919
+ loss = loss_fct(logits, labels)
920
+ elif self.config.problem_type == "single_label_classification":
921
+ loss_fct = CrossEntropyLoss()
922
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
923
+ elif self.config.problem_type == "multi_label_classification":
924
+ loss_fct = BCEWithLogitsLoss()
925
+ loss = loss_fct(logits, labels)
926
+
927
+ if not return_dict:
928
+ output = (logits,) + outputs[2:]
929
+ return ((loss,) + output) if loss is not None else output
930
+
931
+ return SequenceClassifierOutput(
932
+ loss=loss,
933
+ logits=logits,
934
+ hidden_states=outputs.hidden_states,
935
+ attentions=outputs.attentions,
936
+ )
937
+
938
+
939
+ @add_start_docstrings(
940
+ """
941
+ Lilt Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
942
+ Named-Entity-Recognition (NER) tasks.
943
+ """,
944
+ LILT_START_DOCSTRING,
945
+ )
946
+ class LiltForTokenClassification(LiltPreTrainedModel):
947
+ # Copied from transformers.models.roberta.modeling_roberta.RobertaForTokenClassification.__init__ with Roberta->Lilt, roberta->lilt
948
+ def __init__(self, config):
949
+ super().__init__(config)
950
+ self.num_labels = config.num_labels
951
+
952
+ self.lilt = LiltModel(config, add_pooling_layer=False)
953
+ classifier_dropout = (
954
+ config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
955
+ )
956
+ self.dropout = nn.Dropout(classifier_dropout)
957
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
958
+
959
+ # Initialize weights and apply final processing
960
+ self.post_init()
961
+
962
+ @add_start_docstrings_to_model_forward(LILT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
963
+ @replace_return_docstrings(output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC)
964
+ def forward(
965
+ self,
966
+ input_ids: Optional[torch.LongTensor] = None,
967
+ bbox: Optional[torch.LongTensor] = None,
968
+ attention_mask: Optional[torch.FloatTensor] = None,
969
+ token_type_ids: Optional[torch.LongTensor] = None,
970
+ position_ids: Optional[torch.LongTensor] = None,
971
+ head_mask: Optional[torch.FloatTensor] = None,
972
+ inputs_embeds: Optional[torch.FloatTensor] = None,
973
+ labels: Optional[torch.LongTensor] = None,
974
+ output_attentions: Optional[bool] = None,
975
+ output_hidden_states: Optional[bool] = None,
976
+ return_dict: Optional[bool] = None,
977
+ ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
978
+ r"""
979
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
980
+ Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
981
+
982
+ Returns:
983
+
984
+ Examples:
985
+
986
+ ```python
987
+ >>> from transformers import AutoTokenizer, AutoModelForTokenClassification
988
+ >>> from datasets import load_dataset
989
+
990
+ >>> tokenizer = AutoTokenizer.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base")
991
+ >>> model = AutoModelForTokenClassification.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base")
992
+
993
+ >>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train")
994
+ >>> example = dataset[0]
995
+ >>> words = example["tokens"]
996
+ >>> boxes = example["bboxes"]
997
+
998
+ >>> encoding = tokenizer(words, boxes=boxes, return_tensors="pt")
999
+
1000
+ >>> outputs = model(**encoding)
1001
+ >>> predicted_class_indices = outputs.logits.argmax(-1)
1002
+ ```"""
1003
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1004
+
1005
+ outputs = self.lilt(
1006
+ input_ids,
1007
+ bbox=bbox,
1008
+ attention_mask=attention_mask,
1009
+ token_type_ids=token_type_ids,
1010
+ position_ids=position_ids,
1011
+ head_mask=head_mask,
1012
+ inputs_embeds=inputs_embeds,
1013
+ output_attentions=output_attentions,
1014
+ output_hidden_states=output_hidden_states,
1015
+ return_dict=return_dict,
1016
+ )
1017
+
1018
+ sequence_output = outputs[0]
1019
+
1020
+ sequence_output = self.dropout(sequence_output)
1021
+ logits = self.classifier(sequence_output)
1022
+
1023
+ loss = None
1024
+ if labels is not None:
1025
+ # move labels to correct device to enable model parallelism
1026
+ labels = labels.to(logits.device)
1027
+ loss_fct = CrossEntropyLoss()
1028
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1029
+
1030
+ if not return_dict:
1031
+ output = (logits,) + outputs[2:]
1032
+ return ((loss,) + output) if loss is not None else output
1033
+
1034
+ return TokenClassifierOutput(
1035
+ loss=loss,
1036
+ logits=logits,
1037
+ hidden_states=outputs.hidden_states,
1038
+ attentions=outputs.attentions,
1039
+ )
1040
+
1041
+
1042
+ # Copied from transformers.models.roberta.modeling_roberta.RobertaClassificationHead with Roberta->Lilt
1043
+ class LiltClassificationHead(nn.Module):
1044
+ """Head for sentence-level classification tasks."""
1045
+
1046
+ def __init__(self, config):
1047
+ super().__init__()
1048
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
1049
+ classifier_dropout = (
1050
+ config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
1051
+ )
1052
+ self.dropout = nn.Dropout(classifier_dropout)
1053
+ self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
1054
+
1055
+ def forward(self, features, **kwargs):
1056
+ x = features[:, 0, :] # take <s> token (equiv. to [CLS])
1057
+ x = self.dropout(x)
1058
+ x = self.dense(x)
1059
+ x = torch.tanh(x)
1060
+ x = self.dropout(x)
1061
+ x = self.out_proj(x)
1062
+ return x
1063
+
1064
+
1065
+ @add_start_docstrings(
1066
+ """
1067
+ Lilt Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
1068
+ layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
1069
+ """,
1070
+ LILT_START_DOCSTRING,
1071
+ )
1072
+ class LiltForQuestionAnswering(LiltPreTrainedModel):
1073
+ # Copied from transformers.models.roberta.modeling_roberta.RobertaForQuestionAnswering.__init__ with Roberta->Lilt, roberta->lilt
1074
+ def __init__(self, config):
1075
+ super().__init__(config)
1076
+ self.num_labels = config.num_labels
1077
+
1078
+ self.lilt = LiltModel(config, add_pooling_layer=False)
1079
+ self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
1080
+
1081
+ # Initialize weights and apply final processing
1082
+ self.post_init()
1083
+
1084
+ @add_start_docstrings_to_model_forward(LILT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
1085
+ @replace_return_docstrings(output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC)
1086
+ def forward(
1087
+ self,
1088
+ input_ids: Optional[torch.LongTensor] = None,
1089
+ bbox: Optional[torch.LongTensor] = None,
1090
+ attention_mask: Optional[torch.FloatTensor] = None,
1091
+ token_type_ids: Optional[torch.LongTensor] = None,
1092
+ position_ids: Optional[torch.LongTensor] = None,
1093
+ head_mask: Optional[torch.FloatTensor] = None,
1094
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1095
+ start_positions: Optional[torch.LongTensor] = None,
1096
+ end_positions: Optional[torch.LongTensor] = None,
1097
+ output_attentions: Optional[bool] = None,
1098
+ output_hidden_states: Optional[bool] = None,
1099
+ return_dict: Optional[bool] = None,
1100
+ ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
1101
+ r"""
1102
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1103
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
1104
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1105
+ are not taken into account for computing the loss.
1106
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1107
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
1108
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1109
+ are not taken into account for computing the loss.
1110
+
1111
+ Returns:
1112
+
1113
+ Examples:
1114
+
1115
+ ```python
1116
+ >>> from transformers import AutoTokenizer, AutoModelForQuestionAnswering
1117
+ >>> from datasets import load_dataset
1118
+
1119
+ >>> tokenizer = AutoTokenizer.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base")
1120
+ >>> model = AutoModelForQuestionAnswering.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base")
1121
+
1122
+ >>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train")
1123
+ >>> example = dataset[0]
1124
+ >>> words = example["tokens"]
1125
+ >>> boxes = example["bboxes"]
1126
+
1127
+ >>> encoding = tokenizer(words, boxes=boxes, return_tensors="pt")
1128
+
1129
+ >>> outputs = model(**encoding)
1130
+
1131
+ >>> answer_start_index = outputs.start_logits.argmax()
1132
+ >>> answer_end_index = outputs.end_logits.argmax()
1133
+
1134
+ >>> predict_answer_tokens = encoding.input_ids[0, answer_start_index : answer_end_index + 1]
1135
+ >>> predicted_answer = tokenizer.decode(predict_answer_tokens)
1136
+ ```"""
1137
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1138
+
1139
+ outputs = self.lilt(
1140
+ input_ids,
1141
+ bbox=bbox,
1142
+ attention_mask=attention_mask,
1143
+ token_type_ids=token_type_ids,
1144
+ position_ids=position_ids,
1145
+ head_mask=head_mask,
1146
+ inputs_embeds=inputs_embeds,
1147
+ output_attentions=output_attentions,
1148
+ output_hidden_states=output_hidden_states,
1149
+ return_dict=return_dict,
1150
+ )
1151
+
1152
+ sequence_output = outputs[0]
1153
+
1154
+ logits = self.qa_outputs(sequence_output)
1155
+ start_logits, end_logits = logits.split(1, dim=-1)
1156
+ start_logits = start_logits.squeeze(-1).contiguous()
1157
+ end_logits = end_logits.squeeze(-1).contiguous()
1158
+
1159
+ total_loss = None
1160
+ if start_positions is not None and end_positions is not None:
1161
+ # If we are on multi-GPU, split add a dimension
1162
+ if len(start_positions.size()) > 1:
1163
+ start_positions = start_positions.squeeze(-1)
1164
+ if len(end_positions.size()) > 1:
1165
+ end_positions = end_positions.squeeze(-1)
1166
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
1167
+ ignored_index = start_logits.size(1)
1168
+ start_positions = start_positions.clamp(0, ignored_index)
1169
+ end_positions = end_positions.clamp(0, ignored_index)
1170
+
1171
+ loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
1172
+ start_loss = loss_fct(start_logits, start_positions)
1173
+ end_loss = loss_fct(end_logits, end_positions)
1174
+ total_loss = (start_loss + end_loss) / 2
1175
+
1176
+ if not return_dict:
1177
+ output = (start_logits, end_logits) + outputs[2:]
1178
+ return ((total_loss,) + output) if total_loss is not None else output
1179
+
1180
+ return QuestionAnsweringModelOutput(
1181
+ loss=total_loss,
1182
+ start_logits=start_logits,
1183
+ end_logits=end_logits,
1184
+ hidden_states=outputs.hidden_states,
1185
+ attentions=outputs.attentions,
1186
+ )