applied-ai-018 commited on
Commit
fe9f72d
·
verified ·
1 Parent(s): b7f68e3

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. llmeval-env/lib/python3.10/site-packages/transformers/models/convnextv2/__init__.py +97 -0
  2. llmeval-env/lib/python3.10/site-packages/transformers/models/convnextv2/__pycache__/__init__.cpython-310.pyc +0 -0
  3. llmeval-env/lib/python3.10/site-packages/transformers/models/convnextv2/__pycache__/configuration_convnextv2.cpython-310.pyc +0 -0
  4. llmeval-env/lib/python3.10/site-packages/transformers/models/convnextv2/__pycache__/convert_convnextv2_to_pytorch.cpython-310.pyc +0 -0
  5. llmeval-env/lib/python3.10/site-packages/transformers/models/convnextv2/__pycache__/modeling_convnextv2.cpython-310.pyc +0 -0
  6. llmeval-env/lib/python3.10/site-packages/transformers/models/convnextv2/__pycache__/modeling_tf_convnextv2.cpython-310.pyc +0 -0
  7. llmeval-env/lib/python3.10/site-packages/transformers/models/convnextv2/configuration_convnextv2.py +117 -0
  8. llmeval-env/lib/python3.10/site-packages/transformers/models/convnextv2/convert_convnextv2_to_pytorch.py +286 -0
  9. llmeval-env/lib/python3.10/site-packages/transformers/models/convnextv2/modeling_convnextv2.py +574 -0
  10. llmeval-env/lib/python3.10/site-packages/transformers/models/convnextv2/modeling_tf_convnextv2.py +681 -0
  11. llmeval-env/lib/python3.10/site-packages/transformers/models/dpt/convert_dinov2_depth_to_hf.py +384 -0
  12. llmeval-env/lib/python3.10/site-packages/transformers/models/ernie/__init__.py +70 -0
  13. llmeval-env/lib/python3.10/site-packages/transformers/models/ernie/__pycache__/__init__.cpython-310.pyc +0 -0
  14. llmeval-env/lib/python3.10/site-packages/transformers/models/ernie/__pycache__/configuration_ernie.cpython-310.pyc +0 -0
  15. llmeval-env/lib/python3.10/site-packages/transformers/models/ernie/__pycache__/modeling_ernie.cpython-310.pyc +0 -0
  16. llmeval-env/lib/python3.10/site-packages/transformers/models/ernie/configuration_ernie.py +162 -0
  17. llmeval-env/lib/python3.10/site-packages/transformers/models/ernie/modeling_ernie.py +1820 -0
  18. llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_bigcode/configuration_gpt_bigcode.py +144 -0
  19. llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_bigcode/modeling_gpt_bigcode.py +1504 -0
  20. llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_neox_japanese/__init__.py +62 -0
  21. llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_neox_japanese/__pycache__/__init__.cpython-310.pyc +0 -0
  22. llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_neox_japanese/__pycache__/configuration_gpt_neox_japanese.cpython-310.pyc +0 -0
  23. llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_neox_japanese/__pycache__/modeling_gpt_neox_japanese.cpython-310.pyc +0 -0
  24. llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_neox_japanese/__pycache__/tokenization_gpt_neox_japanese.cpython-310.pyc +0 -0
  25. llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_neox_japanese/configuration_gpt_neox_japanese.py +120 -0
  26. llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_neox_japanese/modeling_gpt_neox_japanese.py +729 -0
  27. llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_neox_japanese/tokenization_gpt_neox_japanese.py +368 -0
  28. llmeval-env/lib/python3.10/site-packages/transformers/models/mobilevit/__init__.py +110 -0
  29. llmeval-env/lib/python3.10/site-packages/transformers/models/mobilevit/__pycache__/__init__.cpython-310.pyc +0 -0
  30. llmeval-env/lib/python3.10/site-packages/transformers/models/mobilevit/__pycache__/configuration_mobilevit.cpython-310.pyc +0 -0
  31. llmeval-env/lib/python3.10/site-packages/transformers/models/mobilevit/__pycache__/convert_mlcvnets_to_pytorch.cpython-310.pyc +0 -0
  32. llmeval-env/lib/python3.10/site-packages/transformers/models/mobilevit/__pycache__/feature_extraction_mobilevit.cpython-310.pyc +0 -0
  33. llmeval-env/lib/python3.10/site-packages/transformers/models/mobilevit/__pycache__/image_processing_mobilevit.cpython-310.pyc +0 -0
  34. llmeval-env/lib/python3.10/site-packages/transformers/models/mobilevit/__pycache__/modeling_mobilevit.cpython-310.pyc +0 -0
  35. llmeval-env/lib/python3.10/site-packages/transformers/models/mobilevit/__pycache__/modeling_tf_mobilevit.cpython-310.pyc +0 -0
  36. llmeval-env/lib/python3.10/site-packages/transformers/models/mobilevit/configuration_mobilevit.py +172 -0
  37. llmeval-env/lib/python3.10/site-packages/transformers/models/mobilevit/convert_mlcvnets_to_pytorch.py +312 -0
  38. llmeval-env/lib/python3.10/site-packages/transformers/models/mobilevit/feature_extraction_mobilevit.py +33 -0
  39. llmeval-env/lib/python3.10/site-packages/transformers/models/mobilevit/image_processing_mobilevit.py +493 -0
  40. llmeval-env/lib/python3.10/site-packages/transformers/models/mobilevit/modeling_mobilevit.py +1066 -0
  41. llmeval-env/lib/python3.10/site-packages/transformers/models/mobilevit/modeling_tf_mobilevit.py +1373 -0
  42. llmeval-env/lib/python3.10/site-packages/transformers/models/seggpt/__init__.py +71 -0
  43. llmeval-env/lib/python3.10/site-packages/transformers/models/seggpt/__pycache__/__init__.cpython-310.pyc +0 -0
  44. llmeval-env/lib/python3.10/site-packages/transformers/models/seggpt/__pycache__/configuration_seggpt.cpython-310.pyc +0 -0
  45. llmeval-env/lib/python3.10/site-packages/transformers/models/seggpt/__pycache__/convert_seggpt_to_hf.cpython-310.pyc +0 -0
  46. llmeval-env/lib/python3.10/site-packages/transformers/models/seggpt/__pycache__/image_processing_seggpt.cpython-310.pyc +0 -0
  47. llmeval-env/lib/python3.10/site-packages/transformers/models/seggpt/__pycache__/modeling_seggpt.cpython-310.pyc +0 -0
  48. llmeval-env/lib/python3.10/site-packages/transformers/models/seggpt/configuration_seggpt.py +144 -0
  49. llmeval-env/lib/python3.10/site-packages/transformers/models/seggpt/convert_seggpt_to_hf.py +222 -0
  50. llmeval-env/lib/python3.10/site-packages/transformers/models/seggpt/image_processing_seggpt.py +626 -0
llmeval-env/lib/python3.10/site-packages/transformers/models/convnextv2/__init__.py ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # flake8: noqa
2
+ # There's no way to ignore "F401 '...' imported but unused" warnings in this
3
+ # module, but to preserve other warnings. So, don't check this module at all.
4
+
5
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
6
+ #
7
+ # Licensed under the Apache License, Version 2.0 (the "License");
8
+ # you may not use this file except in compliance with the License.
9
+ # You may obtain a copy of the License at
10
+ #
11
+ # http://www.apache.org/licenses/LICENSE-2.0
12
+ #
13
+ # Unless required by applicable law or agreed to in writing, software
14
+ # distributed under the License is distributed on an "AS IS" BASIS,
15
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16
+ # See the License for the specific language governing permissions and
17
+ # limitations under the License.
18
+ from typing import TYPE_CHECKING
19
+
20
+ # rely on isort to merge the imports
21
+ from ...utils import (
22
+ OptionalDependencyNotAvailable,
23
+ _LazyModule,
24
+ is_torch_available,
25
+ is_tf_available,
26
+ )
27
+
28
+
29
+ _import_structure = {
30
+ "configuration_convnextv2": [
31
+ "CONVNEXTV2_PRETRAINED_CONFIG_ARCHIVE_MAP",
32
+ "ConvNextV2Config",
33
+ ]
34
+ }
35
+
36
+ try:
37
+ if not is_torch_available():
38
+ raise OptionalDependencyNotAvailable()
39
+ except OptionalDependencyNotAvailable:
40
+ pass
41
+ else:
42
+ _import_structure["modeling_convnextv2"] = [
43
+ "CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST",
44
+ "ConvNextV2ForImageClassification",
45
+ "ConvNextV2Model",
46
+ "ConvNextV2PreTrainedModel",
47
+ "ConvNextV2Backbone",
48
+ ]
49
+
50
+ try:
51
+ if not is_tf_available():
52
+ raise OptionalDependencyNotAvailable()
53
+ except OptionalDependencyNotAvailable:
54
+ pass
55
+ else:
56
+ _import_structure["modeling_tf_convnextv2"] = [
57
+ "TFConvNextV2ForImageClassification",
58
+ "TFConvNextV2Model",
59
+ "TFConvNextV2PreTrainedModel",
60
+ ]
61
+
62
+ if TYPE_CHECKING:
63
+ from .configuration_convnextv2 import (
64
+ CONVNEXTV2_PRETRAINED_CONFIG_ARCHIVE_MAP,
65
+ ConvNextV2Config,
66
+ )
67
+
68
+ try:
69
+ if not is_torch_available():
70
+ raise OptionalDependencyNotAvailable()
71
+ except OptionalDependencyNotAvailable:
72
+ pass
73
+ else:
74
+ from .modeling_convnextv2 import (
75
+ CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST,
76
+ ConvNextV2Backbone,
77
+ ConvNextV2ForImageClassification,
78
+ ConvNextV2Model,
79
+ ConvNextV2PreTrainedModel,
80
+ )
81
+
82
+ try:
83
+ if not is_tf_available():
84
+ raise OptionalDependencyNotAvailable()
85
+ except OptionalDependencyNotAvailable:
86
+ pass
87
+ else:
88
+ from .modeling_tf_convnextv2 import (
89
+ TFConvNextV2ForImageClassification,
90
+ TFConvNextV2Model,
91
+ TFConvNextV2PreTrainedModel,
92
+ )
93
+
94
+ else:
95
+ import sys
96
+
97
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
llmeval-env/lib/python3.10/site-packages/transformers/models/convnextv2/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.29 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/convnextv2/__pycache__/configuration_convnextv2.cpython-310.pyc ADDED
Binary file (5.08 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/convnextv2/__pycache__/convert_convnextv2_to_pytorch.cpython-310.pyc ADDED
Binary file (9.14 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/convnextv2/__pycache__/modeling_convnextv2.cpython-310.pyc ADDED
Binary file (18.7 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/convnextv2/__pycache__/modeling_tf_convnextv2.cpython-310.pyc ADDED
Binary file (22.2 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/convnextv2/configuration_convnextv2.py ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ ConvNeXTV2 model configuration"""
16
+
17
+
18
+ from ...configuration_utils import PretrainedConfig
19
+ from ...utils import logging
20
+ from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
21
+
22
+
23
+ logger = logging.get_logger(__name__)
24
+
25
+
26
+ from ..deprecated._archive_maps import CONVNEXTV2_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
27
+
28
+
29
+ class ConvNextV2Config(BackboneConfigMixin, PretrainedConfig):
30
+ r"""
31
+ This is the configuration class to store the configuration of a [`ConvNextV2Model`]. It is used to instantiate an
32
+ ConvNeXTV2 model according to the specified arguments, defining the model architecture. Instantiating a
33
+ configuration with the defaults will yield a similar configuration to that of the ConvNeXTV2
34
+ [facebook/convnextv2-tiny-1k-224](https://huggingface.co/facebook/convnextv2-tiny-1k-224) architecture.
35
+
36
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
37
+ documentation from [`PretrainedConfig`] for more information.
38
+
39
+ Args:
40
+ num_channels (`int`, *optional*, defaults to 3):
41
+ The number of input channels.
42
+ patch_size (`int`, optional, defaults to 4):
43
+ Patch size to use in the patch embedding layer.
44
+ num_stages (`int`, optional, defaults to 4):
45
+ The number of stages in the model.
46
+ hidden_sizes (`List[int]`, *optional*, defaults to `[96, 192, 384, 768]`):
47
+ Dimensionality (hidden size) at each stage.
48
+ depths (`List[int]`, *optional*, defaults to `[3, 3, 9, 3]`):
49
+ Depth (number of blocks) for each stage.
50
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
51
+ The non-linear activation function (function or string) in each block. If string, `"gelu"`, `"relu"`,
52
+ `"selu"` and `"gelu_new"` are supported.
53
+ initializer_range (`float`, *optional*, defaults to 0.02):
54
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
55
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
56
+ The epsilon used by the layer normalization layers.
57
+ drop_path_rate (`float`, *optional*, defaults to 0.0):
58
+ The drop rate for stochastic depth.
59
+ out_features (`List[str]`, *optional*):
60
+ If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc.
61
+ (depending on how many stages the model has). If unset and `out_indices` is set, will default to the
62
+ corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the
63
+ same order as defined in the `stage_names` attribute.
64
+ out_indices (`List[int]`, *optional*):
65
+ If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how
66
+ many stages the model has). If unset and `out_features` is set, will default to the corresponding stages.
67
+ If unset and `out_features` is unset, will default to the last stage. Must be in the
68
+ same order as defined in the `stage_names` attribute.
69
+
70
+ Example:
71
+ ```python
72
+ >>> from transformers import ConvNeXTV2Config, ConvNextV2Model
73
+
74
+ >>> # Initializing a ConvNeXTV2 convnextv2-tiny-1k-224 style configuration
75
+ >>> configuration = ConvNeXTV2Config()
76
+
77
+ >>> # Initializing a model (with random weights) from the convnextv2-tiny-1k-224 style configuration
78
+ >>> model = ConvNextV2Model(configuration)
79
+
80
+ >>> # Accessing the model configuration
81
+ >>> configuration = model.config
82
+ ```"""
83
+
84
+ model_type = "convnextv2"
85
+
86
+ def __init__(
87
+ self,
88
+ num_channels=3,
89
+ patch_size=4,
90
+ num_stages=4,
91
+ hidden_sizes=None,
92
+ depths=None,
93
+ hidden_act="gelu",
94
+ initializer_range=0.02,
95
+ layer_norm_eps=1e-12,
96
+ drop_path_rate=0.0,
97
+ image_size=224,
98
+ out_features=None,
99
+ out_indices=None,
100
+ **kwargs,
101
+ ):
102
+ super().__init__(**kwargs)
103
+
104
+ self.num_channels = num_channels
105
+ self.patch_size = patch_size
106
+ self.num_stages = num_stages
107
+ self.hidden_sizes = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes
108
+ self.depths = [3, 3, 9, 3] if depths is None else depths
109
+ self.hidden_act = hidden_act
110
+ self.initializer_range = initializer_range
111
+ self.layer_norm_eps = layer_norm_eps
112
+ self.drop_path_rate = drop_path_rate
113
+ self.image_size = image_size
114
+ self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, len(self.depths) + 1)]
115
+ self._out_features, self._out_indices = get_aligned_output_features_output_indices(
116
+ out_features=out_features, out_indices=out_indices, stage_names=self.stage_names
117
+ )
llmeval-env/lib/python3.10/site-packages/transformers/models/convnextv2/convert_convnextv2_to_pytorch.py ADDED
@@ -0,0 +1,286 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Convert ConvNeXTV2 checkpoints from the original repository.
16
+
17
+ URL: https://github.com/facebookresearch/ConvNeXt"""
18
+
19
+ import argparse
20
+ import json
21
+ import os
22
+
23
+ import requests
24
+ import torch
25
+ from huggingface_hub import hf_hub_download
26
+ from PIL import Image
27
+
28
+ from transformers import ConvNextImageProcessor, ConvNextV2Config, ConvNextV2ForImageClassification
29
+ from transformers.image_utils import PILImageResampling
30
+ from transformers.utils import logging
31
+
32
+
33
+ logging.set_verbosity_info()
34
+ logger = logging.get_logger(__name__)
35
+
36
+
37
+ def get_convnextv2_config(checkpoint_url):
38
+ config = ConvNextV2Config()
39
+
40
+ if "atto" in checkpoint_url:
41
+ depths = [2, 2, 6, 2]
42
+ hidden_sizes = [40, 80, 160, 320]
43
+ if "femto" in checkpoint_url:
44
+ depths = [2, 2, 6, 2]
45
+ hidden_sizes = [48, 96, 192, 384]
46
+ if "pico" in checkpoint_url:
47
+ depths = [2, 2, 6, 2]
48
+ hidden_sizes = [64, 128, 256, 512]
49
+ if "nano" in checkpoint_url:
50
+ depths = [2, 2, 8, 2]
51
+ hidden_sizes = [80, 160, 320, 640]
52
+ if "tiny" in checkpoint_url:
53
+ depths = [3, 3, 9, 3]
54
+ hidden_sizes = [96, 192, 384, 768]
55
+ if "base" in checkpoint_url:
56
+ depths = [3, 3, 27, 3]
57
+ hidden_sizes = [128, 256, 512, 1024]
58
+ if "large" in checkpoint_url:
59
+ depths = [3, 3, 27, 3]
60
+ hidden_sizes = [192, 384, 768, 1536]
61
+ if "huge" in checkpoint_url:
62
+ depths = [3, 3, 27, 3]
63
+ hidden_sizes = [352, 704, 1408, 2816]
64
+
65
+ num_labels = 1000
66
+ filename = "imagenet-1k-id2label.json"
67
+ expected_shape = (1, 1000)
68
+
69
+ repo_id = "huggingface/label-files"
70
+ config.num_labels = num_labels
71
+ id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
72
+ id2label = {int(k): v for k, v in id2label.items()}
73
+
74
+ config.id2label = id2label
75
+ config.label2id = {v: k for k, v in id2label.items()}
76
+ config.hidden_sizes = hidden_sizes
77
+ config.depths = depths
78
+
79
+ return config, expected_shape
80
+
81
+
82
+ def rename_key(name):
83
+ if "downsample_layers.0.0" in name:
84
+ name = name.replace("downsample_layers.0.0", "embeddings.patch_embeddings")
85
+ if "downsample_layers.0.1" in name:
86
+ name = name.replace("downsample_layers.0.1", "embeddings.norm") # we rename to layernorm later on
87
+ if "downsample_layers.1.0" in name:
88
+ name = name.replace("downsample_layers.1.0", "stages.1.downsampling_layer.0")
89
+ if "downsample_layers.1.1" in name:
90
+ name = name.replace("downsample_layers.1.1", "stages.1.downsampling_layer.1")
91
+ if "downsample_layers.2.0" in name:
92
+ name = name.replace("downsample_layers.2.0", "stages.2.downsampling_layer.0")
93
+ if "downsample_layers.2.1" in name:
94
+ name = name.replace("downsample_layers.2.1", "stages.2.downsampling_layer.1")
95
+ if "downsample_layers.3.0" in name:
96
+ name = name.replace("downsample_layers.3.0", "stages.3.downsampling_layer.0")
97
+ if "downsample_layers.3.1" in name:
98
+ name = name.replace("downsample_layers.3.1", "stages.3.downsampling_layer.1")
99
+ if "stages" in name and "downsampling_layer" not in name:
100
+ # stages.0.0. for instance should be renamed to stages.0.layers.0.
101
+ name = name[: len("stages.0")] + ".layers" + name[len("stages.0") :]
102
+ if "gamma" in name:
103
+ name = name.replace("gamma", "weight")
104
+ if "beta" in name:
105
+ name = name.replace("beta", "bias")
106
+ if "stages" in name:
107
+ name = name.replace("stages", "encoder.stages")
108
+ if "norm" in name:
109
+ name = name.replace("norm", "layernorm")
110
+ if "head" in name:
111
+ name = name.replace("head", "classifier")
112
+
113
+ return name
114
+
115
+
116
+ # We will verify our results on an image of cute cats
117
+ def prepare_img():
118
+ url = "http://images.cocodataset.org/val2017/000000039769.jpg"
119
+ im = Image.open(requests.get(url, stream=True).raw)
120
+ return im
121
+
122
+
123
+ def convert_preprocessor(checkpoint_url):
124
+ if "224" in checkpoint_url:
125
+ size = 224
126
+ crop_pct = 224 / 256
127
+ elif "384" in checkpoint_url:
128
+ size = 384
129
+ crop_pct = None
130
+ else:
131
+ size = 512
132
+ crop_pct = None
133
+
134
+ return ConvNextImageProcessor(
135
+ size=size,
136
+ crop_pct=crop_pct,
137
+ image_mean=[0.485, 0.456, 0.406],
138
+ image_std=[0.229, 0.224, 0.225],
139
+ resample=PILImageResampling.BICUBIC,
140
+ )
141
+
142
+
143
+ @torch.no_grad()
144
+ def convert_convnextv2_checkpoint(checkpoint_url, pytorch_dump_folder_path, save_model, push_to_hub):
145
+ """
146
+ Copy/paste/tweak model's weights to our ConvNeXTV2 structure.
147
+ """
148
+ print("Downloading original model from checkpoint...")
149
+ # define ConvNeXTV2 configuration based on URL
150
+ config, expected_shape = get_convnextv2_config(checkpoint_url)
151
+ # load original state_dict from URL
152
+ state_dict = torch.hub.load_state_dict_from_url(checkpoint_url)["model"]
153
+
154
+ print("Converting model parameters...")
155
+ # rename keys
156
+ for key in state_dict.copy().keys():
157
+ val = state_dict.pop(key)
158
+ state_dict[rename_key(key)] = val
159
+ # add prefix to all keys expect classifier head
160
+ for key in state_dict.copy().keys():
161
+ val = state_dict.pop(key)
162
+ if not key.startswith("classifier"):
163
+ key = "convnextv2." + key
164
+ state_dict[key] = val
165
+
166
+ # load HuggingFace model
167
+ model = ConvNextV2ForImageClassification(config)
168
+ model.load_state_dict(state_dict)
169
+ model.eval()
170
+
171
+ # Check outputs on an image, prepared by ConvNextImageProcessor
172
+ preprocessor = convert_preprocessor(checkpoint_url)
173
+ inputs = preprocessor(images=prepare_img(), return_tensors="pt")
174
+ logits = model(**inputs).logits
175
+
176
+ # note: the logits below were obtained without center cropping
177
+ if checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_atto_1k_224_ema.pt":
178
+ expected_logits = torch.tensor([-0.3930, 0.1747, -0.5246, 0.4177, 0.4295])
179
+ elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_femto_1k_224_ema.pt":
180
+ expected_logits = torch.tensor([-0.1727, -0.5341, -0.7818, -0.4745, -0.6566])
181
+ elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_pico_1k_224_ema.pt":
182
+ expected_logits = torch.tensor([-0.0333, 0.1563, -0.9137, 0.1054, 0.0381])
183
+ elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_nano_1k_224_ema.pt":
184
+ expected_logits = torch.tensor([-0.1744, -0.1555, -0.0713, 0.0950, -0.1431])
185
+ elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_tiny_1k_224_ema.pt":
186
+ expected_logits = torch.tensor([0.9996, 0.1966, -0.4386, -0.3472, 0.6661])
187
+ elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_base_1k_224_ema.pt":
188
+ expected_logits = torch.tensor([-0.2553, -0.6708, -0.1359, 0.2518, -0.2488])
189
+ elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_large_1k_224_ema.pt":
190
+ expected_logits = torch.tensor([-0.0673, -0.5627, -0.3753, -0.2722, 0.0178])
191
+ elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_huge_1k_224_ema.pt":
192
+ expected_logits = torch.tensor([-0.6377, -0.7458, -0.2150, 0.1184, -0.0597])
193
+ elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_nano_22k_224_ema.pt":
194
+ expected_logits = torch.tensor([1.0799, 0.2322, -0.8860, 1.0219, 0.6231])
195
+ elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_nano_22k_384_ema.pt":
196
+ expected_logits = torch.tensor([0.3766, 0.4917, -1.1426, 0.9942, 0.6024])
197
+ elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_tiny_22k_224_ema.pt":
198
+ expected_logits = torch.tensor([0.4220, -0.6919, -0.4317, -0.2881, -0.6609])
199
+ elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_tiny_22k_384_ema.pt":
200
+ expected_logits = torch.tensor([0.1082, -0.8286, -0.5095, 0.4681, -0.8085])
201
+ elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_base_22k_224_ema.pt":
202
+ expected_logits = torch.tensor([-0.2419, -0.6221, 0.2176, -0.0980, -0.7527])
203
+ elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_base_22k_384_ema.pt":
204
+ expected_logits = torch.tensor([0.0391, -0.4371, 0.3786, 0.1251, -0.2784])
205
+ elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_large_22k_224_ema.pt":
206
+ expected_logits = torch.tensor([-0.0504, 0.5636, -0.1729, -0.6507, -0.3949])
207
+ elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_large_22k_384_ema.pt":
208
+ expected_logits = torch.tensor([0.3560, 0.9486, 0.3149, -0.2667, -0.5138])
209
+ elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_huge_22k_384_ema.pt":
210
+ expected_logits = torch.tensor([-0.2469, -0.4550, -0.5853, -0.0810, 0.0309])
211
+ elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_huge_22k_512_ema.pt":
212
+ expected_logits = torch.tensor([-0.3090, 0.0802, -0.0682, -0.1979, -0.2826])
213
+ else:
214
+ raise ValueError(f"Unknown URL: {checkpoint_url}")
215
+
216
+ assert torch.allclose(logits[0, :5], expected_logits, atol=1e-3)
217
+ assert logits.shape == expected_shape
218
+ print("Model outputs match the original results!")
219
+
220
+ if save_model:
221
+ print("Saving model to local...")
222
+ # Create folder to save model
223
+ if not os.path.isdir(pytorch_dump_folder_path):
224
+ os.mkdir(pytorch_dump_folder_path)
225
+
226
+ model.save_pretrained(pytorch_dump_folder_path)
227
+ preprocessor.save_pretrained(pytorch_dump_folder_path)
228
+
229
+ model_name = "convnextv2"
230
+ if "atto" in checkpoint_url:
231
+ model_name += "-atto"
232
+ if "femto" in checkpoint_url:
233
+ model_name += "-femto"
234
+ if "pico" in checkpoint_url:
235
+ model_name += "-pico"
236
+ if "nano" in checkpoint_url:
237
+ model_name += "-nano"
238
+ elif "tiny" in checkpoint_url:
239
+ model_name += "-tiny"
240
+ elif "base" in checkpoint_url:
241
+ model_name += "-base"
242
+ elif "large" in checkpoint_url:
243
+ model_name += "-large"
244
+ elif "huge" in checkpoint_url:
245
+ model_name += "-huge"
246
+ if "22k" in checkpoint_url and "1k" not in checkpoint_url:
247
+ model_name += "-22k"
248
+ elif "22k" in checkpoint_url and "1k" in checkpoint_url:
249
+ model_name += "-22k-1k"
250
+ elif "1k" in checkpoint_url:
251
+ model_name += "-1k"
252
+ if "224" in checkpoint_url:
253
+ model_name += "-224"
254
+ elif "384" in checkpoint_url:
255
+ model_name += "-384"
256
+ elif "512" in checkpoint_url:
257
+ model_name += "-512"
258
+
259
+ if push_to_hub:
260
+ print(f"Pushing {model_name} to the hub...")
261
+ model.push_to_hub(model_name)
262
+ preprocessor.push_to_hub(model_name)
263
+
264
+
265
+ if __name__ == "__main__":
266
+ parser = argparse.ArgumentParser()
267
+ # Required parameters
268
+ parser.add_argument(
269
+ "--checkpoint_url",
270
+ default="https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_atto_1k_224_ema.pt",
271
+ type=str,
272
+ help="URL of the original ConvNeXTV2 checkpoint you'd like to convert.",
273
+ )
274
+ parser.add_argument(
275
+ "--pytorch_dump_folder_path",
276
+ default="model",
277
+ type=str,
278
+ help="Path to the output PyTorch model directory.",
279
+ )
280
+ parser.add_argument("--save_model", action="store_true", help="Save model to local")
281
+ parser.add_argument("--push_to_hub", action="store_true", help="Push model and image preprocessor to the hub")
282
+
283
+ args = parser.parse_args()
284
+ convert_convnextv2_checkpoint(
285
+ args.checkpoint_url, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub
286
+ )
llmeval-env/lib/python3.10/site-packages/transformers/models/convnextv2/modeling_convnextv2.py ADDED
@@ -0,0 +1,574 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ PyTorch ConvNextV2 model."""
16
+
17
+
18
+ from typing import Optional, Tuple, Union
19
+
20
+ import torch
21
+ import torch.utils.checkpoint
22
+ from torch import nn
23
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
24
+
25
+ from ...activations import ACT2FN
26
+ from ...modeling_outputs import (
27
+ BackboneOutput,
28
+ BaseModelOutputWithNoAttention,
29
+ BaseModelOutputWithPoolingAndNoAttention,
30
+ ImageClassifierOutputWithNoAttention,
31
+ )
32
+ from ...modeling_utils import PreTrainedModel
33
+ from ...utils import (
34
+ add_code_sample_docstrings,
35
+ add_start_docstrings,
36
+ add_start_docstrings_to_model_forward,
37
+ logging,
38
+ replace_return_docstrings,
39
+ )
40
+ from ...utils.backbone_utils import BackboneMixin
41
+ from .configuration_convnextv2 import ConvNextV2Config
42
+
43
+
44
+ logger = logging.get_logger(__name__)
45
+
46
+ # General docstring
47
+ _CONFIG_FOR_DOC = "ConvNextV2Config"
48
+
49
+ # Base docstring
50
+ _CHECKPOINT_FOR_DOC = "facebook/convnextv2-tiny-1k-224"
51
+ _EXPECTED_OUTPUT_SHAPE = [1, 768, 7, 7]
52
+
53
+ # Image classification docstring
54
+ _IMAGE_CLASS_CHECKPOINT = "facebook/convnextv2-tiny-1k-224"
55
+ _IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
56
+
57
+
58
+ from ..deprecated._archive_maps import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
59
+
60
+
61
+ # Copied from transformers.models.beit.modeling_beit.drop_path
62
+ def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
63
+ """
64
+ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
65
+
66
+ Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
67
+ however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
68
+ See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
69
+ layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
70
+ argument.
71
+ """
72
+ if drop_prob == 0.0 or not training:
73
+ return input
74
+ keep_prob = 1 - drop_prob
75
+ shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
76
+ random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
77
+ random_tensor.floor_() # binarize
78
+ output = input.div(keep_prob) * random_tensor
79
+ return output
80
+
81
+
82
+ # Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->ConvNextV2
83
+ class ConvNextV2DropPath(nn.Module):
84
+ """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
85
+
86
+ def __init__(self, drop_prob: Optional[float] = None) -> None:
87
+ super().__init__()
88
+ self.drop_prob = drop_prob
89
+
90
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
91
+ return drop_path(hidden_states, self.drop_prob, self.training)
92
+
93
+ def extra_repr(self) -> str:
94
+ return "p={}".format(self.drop_prob)
95
+
96
+
97
+ class ConvNextV2GRN(nn.Module):
98
+ """GRN (Global Response Normalization) layer"""
99
+
100
+ def __init__(self, dim: int):
101
+ super().__init__()
102
+ self.weight = nn.Parameter(torch.zeros(1, 1, 1, dim))
103
+ self.bias = nn.Parameter(torch.zeros(1, 1, 1, dim))
104
+
105
+ def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
106
+ # Compute and normalize global spatial feature maps
107
+ global_features = torch.norm(hidden_states, p=2, dim=(1, 2), keepdim=True)
108
+ norm_features = global_features / (global_features.mean(dim=-1, keepdim=True) + 1e-6)
109
+ hidden_states = self.weight * (hidden_states * norm_features) + self.bias + hidden_states
110
+
111
+ return hidden_states
112
+
113
+
114
+ # Copied from transformers.models.convnext.modeling_convnext.ConvNextLayerNorm with ConvNext->ConvNextV2
115
+ class ConvNextV2LayerNorm(nn.Module):
116
+ r"""LayerNorm that supports two data formats: channels_last (default) or channels_first.
117
+ The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch_size, height,
118
+ width, channels) while channels_first corresponds to inputs with shape (batch_size, channels, height, width).
119
+ """
120
+
121
+ def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
122
+ super().__init__()
123
+ self.weight = nn.Parameter(torch.ones(normalized_shape))
124
+ self.bias = nn.Parameter(torch.zeros(normalized_shape))
125
+ self.eps = eps
126
+ self.data_format = data_format
127
+ if self.data_format not in ["channels_last", "channels_first"]:
128
+ raise NotImplementedError(f"Unsupported data format: {self.data_format}")
129
+ self.normalized_shape = (normalized_shape,)
130
+
131
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
132
+ if self.data_format == "channels_last":
133
+ x = torch.nn.functional.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
134
+ elif self.data_format == "channels_first":
135
+ input_dtype = x.dtype
136
+ x = x.float()
137
+ u = x.mean(1, keepdim=True)
138
+ s = (x - u).pow(2).mean(1, keepdim=True)
139
+ x = (x - u) / torch.sqrt(s + self.eps)
140
+ x = x.to(dtype=input_dtype)
141
+ x = self.weight[:, None, None] * x + self.bias[:, None, None]
142
+ return x
143
+
144
+
145
+ # Copied from transformers.models.convnext.modeling_convnext.ConvNextEmbeddings with ConvNext->ConvNextV2
146
+ class ConvNextV2Embeddings(nn.Module):
147
+ """This class is comparable to (and inspired by) the SwinEmbeddings class
148
+ found in src/transformers/models/swin/modeling_swin.py.
149
+ """
150
+
151
+ def __init__(self, config):
152
+ super().__init__()
153
+ self.patch_embeddings = nn.Conv2d(
154
+ config.num_channels, config.hidden_sizes[0], kernel_size=config.patch_size, stride=config.patch_size
155
+ )
156
+ self.layernorm = ConvNextV2LayerNorm(config.hidden_sizes[0], eps=1e-6, data_format="channels_first")
157
+ self.num_channels = config.num_channels
158
+
159
+ def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
160
+ num_channels = pixel_values.shape[1]
161
+ if num_channels != self.num_channels:
162
+ raise ValueError(
163
+ "Make sure that the channel dimension of the pixel values match with the one set in the configuration."
164
+ )
165
+ embeddings = self.patch_embeddings(pixel_values)
166
+ embeddings = self.layernorm(embeddings)
167
+ return embeddings
168
+
169
+
170
+ class ConvNextV2Layer(nn.Module):
171
+ """This corresponds to the `Block` class in the original implementation.
172
+
173
+ There are two equivalent implementations: [DwConv, LayerNorm (channels_first), Conv, GELU,1x1 Conv]; all in (N, C,
174
+ H, W) (2) [DwConv, Permute to (N, H, W, C), LayerNorm (channels_last), Linear, GELU, Linear]; Permute back
175
+
176
+ The authors used (2) as they find it slightly faster in PyTorch.
177
+
178
+ Args:
179
+ config ([`ConvNextV2Config`]): Model configuration class.
180
+ dim (`int`): Number of input channels.
181
+ drop_path (`float`): Stochastic depth rate. Default: 0.0.
182
+ """
183
+
184
+ def __init__(self, config, dim, drop_path=0):
185
+ super().__init__()
186
+ # depthwise conv
187
+ self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim)
188
+ self.layernorm = ConvNextV2LayerNorm(dim, eps=1e-6)
189
+ # pointwise/1x1 convs, implemented with linear layers
190
+ self.pwconv1 = nn.Linear(dim, 4 * dim)
191
+ self.act = ACT2FN[config.hidden_act]
192
+ self.grn = ConvNextV2GRN(4 * dim)
193
+ self.pwconv2 = nn.Linear(4 * dim, dim)
194
+ self.drop_path = ConvNextV2DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
195
+
196
+ def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor:
197
+ input = hidden_states
198
+ x = self.dwconv(hidden_states)
199
+ # (batch_size, num_channels, height, width) -> (batch_size, height, width, num_channels)
200
+ x = x.permute(0, 2, 3, 1)
201
+ x = self.layernorm(x)
202
+ x = self.pwconv1(x)
203
+ x = self.act(x)
204
+ x = self.grn(x)
205
+ x = self.pwconv2(x)
206
+ # (batch_size, height, width, num_channels) -> (batch_size, num_channels, height, width)
207
+ x = x.permute(0, 3, 1, 2)
208
+
209
+ x = input + self.drop_path(x)
210
+ return x
211
+
212
+
213
+ # Copied from transformers.models.convnext.modeling_convnext.ConvNextStage with ConvNeXT->ConvNeXTV2, ConvNext->ConvNextV2
214
+ class ConvNextV2Stage(nn.Module):
215
+ """ConvNeXTV2 stage, consisting of an optional downsampling layer + multiple residual blocks.
216
+
217
+ Args:
218
+ config ([`ConvNextV2Config`]): Model configuration class.
219
+ in_channels (`int`): Number of input channels.
220
+ out_channels (`int`): Number of output channels.
221
+ depth (`int`): Number of residual blocks.
222
+ drop_path_rates(`List[float]`): Stochastic depth rates for each layer.
223
+ """
224
+
225
+ def __init__(self, config, in_channels, out_channels, kernel_size=2, stride=2, depth=2, drop_path_rates=None):
226
+ super().__init__()
227
+
228
+ if in_channels != out_channels or stride > 1:
229
+ self.downsampling_layer = nn.Sequential(
230
+ ConvNextV2LayerNorm(in_channels, eps=1e-6, data_format="channels_first"),
231
+ nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride),
232
+ )
233
+ else:
234
+ self.downsampling_layer = nn.Identity()
235
+ drop_path_rates = drop_path_rates or [0.0] * depth
236
+ self.layers = nn.Sequential(
237
+ *[ConvNextV2Layer(config, dim=out_channels, drop_path=drop_path_rates[j]) for j in range(depth)]
238
+ )
239
+
240
+ def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor:
241
+ hidden_states = self.downsampling_layer(hidden_states)
242
+ hidden_states = self.layers(hidden_states)
243
+ return hidden_states
244
+
245
+
246
+ # Copied from transformers.models.convnext.modeling_convnext.ConvNextEncoder with ConvNext->ConvNextV2
247
+ class ConvNextV2Encoder(nn.Module):
248
+ def __init__(self, config):
249
+ super().__init__()
250
+ self.stages = nn.ModuleList()
251
+ drop_path_rates = [
252
+ x.tolist() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths)).split(config.depths)
253
+ ]
254
+ prev_chs = config.hidden_sizes[0]
255
+ for i in range(config.num_stages):
256
+ out_chs = config.hidden_sizes[i]
257
+ stage = ConvNextV2Stage(
258
+ config,
259
+ in_channels=prev_chs,
260
+ out_channels=out_chs,
261
+ stride=2 if i > 0 else 1,
262
+ depth=config.depths[i],
263
+ drop_path_rates=drop_path_rates[i],
264
+ )
265
+ self.stages.append(stage)
266
+ prev_chs = out_chs
267
+
268
+ def forward(
269
+ self,
270
+ hidden_states: torch.FloatTensor,
271
+ output_hidden_states: Optional[bool] = False,
272
+ return_dict: Optional[bool] = True,
273
+ ) -> Union[Tuple, BaseModelOutputWithNoAttention]:
274
+ all_hidden_states = () if output_hidden_states else None
275
+
276
+ for i, layer_module in enumerate(self.stages):
277
+ if output_hidden_states:
278
+ all_hidden_states = all_hidden_states + (hidden_states,)
279
+
280
+ hidden_states = layer_module(hidden_states)
281
+
282
+ if output_hidden_states:
283
+ all_hidden_states = all_hidden_states + (hidden_states,)
284
+
285
+ if not return_dict:
286
+ return tuple(v for v in [hidden_states, all_hidden_states] if v is not None)
287
+
288
+ return BaseModelOutputWithNoAttention(
289
+ last_hidden_state=hidden_states,
290
+ hidden_states=all_hidden_states,
291
+ )
292
+
293
+
294
+ # Copied from transformers.models.convnext.modeling_convnext.ConvNextPreTrainedModel with ConvNext->ConvNextV2, convnext->convnextv2
295
+ class ConvNextV2PreTrainedModel(PreTrainedModel):
296
+ """
297
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
298
+ models.
299
+ """
300
+
301
+ config_class = ConvNextV2Config
302
+ base_model_prefix = "convnextv2"
303
+ main_input_name = "pixel_values"
304
+
305
+ def _init_weights(self, module):
306
+ """Initialize the weights"""
307
+ if isinstance(module, (nn.Linear, nn.Conv2d)):
308
+ # Slightly different from the TF version which uses truncated_normal for initialization
309
+ # cf https://github.com/pytorch/pytorch/pull/5617
310
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
311
+ if module.bias is not None:
312
+ module.bias.data.zero_()
313
+ elif isinstance(module, nn.LayerNorm):
314
+ module.bias.data.zero_()
315
+ module.weight.data.fill_(1.0)
316
+
317
+
318
+ CONVNEXTV2_START_DOCSTRING = r"""
319
+ This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
320
+ as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
321
+ behavior.
322
+
323
+ Parameters:
324
+ config ([`ConvNextV2Config`]): Model configuration class with all the parameters of the model.
325
+ Initializing with a config file does not load the weights associated with the model, only the
326
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
327
+ """
328
+
329
+ CONVNEXTV2_INPUTS_DOCSTRING = r"""
330
+ Args:
331
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
332
+ Pixel values. Pixel values can be obtained using [`ConvNextImageProcessor`]. See
333
+ [`ConvNextImageProcessor.__call__`] for details.
334
+ output_hidden_states (`bool`, *optional*):
335
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
336
+ more detail.
337
+ return_dict (`bool`, *optional*):
338
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
339
+ """
340
+
341
+
342
+ @add_start_docstrings(
343
+ "The bare ConvNextV2 model outputting raw features without any specific head on top.",
344
+ CONVNEXTV2_START_DOCSTRING,
345
+ )
346
+ # Copied from transformers.models.convnext.modeling_convnext.ConvNextModel with CONVNEXT->CONVNEXTV2, ConvNext->ConvNextV2
347
+ class ConvNextV2Model(ConvNextV2PreTrainedModel):
348
+ def __init__(self, config):
349
+ super().__init__(config)
350
+ self.config = config
351
+
352
+ self.embeddings = ConvNextV2Embeddings(config)
353
+ self.encoder = ConvNextV2Encoder(config)
354
+
355
+ # final layernorm layer
356
+ self.layernorm = nn.LayerNorm(config.hidden_sizes[-1], eps=config.layer_norm_eps)
357
+
358
+ # Initialize weights and apply final processing
359
+ self.post_init()
360
+
361
+ @add_start_docstrings_to_model_forward(CONVNEXTV2_INPUTS_DOCSTRING)
362
+ @add_code_sample_docstrings(
363
+ checkpoint=_CHECKPOINT_FOR_DOC,
364
+ output_type=BaseModelOutputWithPoolingAndNoAttention,
365
+ config_class=_CONFIG_FOR_DOC,
366
+ modality="vision",
367
+ expected_output=_EXPECTED_OUTPUT_SHAPE,
368
+ )
369
+ def forward(
370
+ self,
371
+ pixel_values: torch.FloatTensor = None,
372
+ output_hidden_states: Optional[bool] = None,
373
+ return_dict: Optional[bool] = None,
374
+ ) -> Union[Tuple, BaseModelOutputWithPoolingAndNoAttention]:
375
+ output_hidden_states = (
376
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
377
+ )
378
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
379
+
380
+ if pixel_values is None:
381
+ raise ValueError("You have to specify pixel_values")
382
+
383
+ embedding_output = self.embeddings(pixel_values)
384
+
385
+ encoder_outputs = self.encoder(
386
+ embedding_output,
387
+ output_hidden_states=output_hidden_states,
388
+ return_dict=return_dict,
389
+ )
390
+
391
+ last_hidden_state = encoder_outputs[0]
392
+
393
+ # global average pooling, (N, C, H, W) -> (N, C)
394
+ pooled_output = self.layernorm(last_hidden_state.mean([-2, -1]))
395
+
396
+ if not return_dict:
397
+ return (last_hidden_state, pooled_output) + encoder_outputs[1:]
398
+
399
+ return BaseModelOutputWithPoolingAndNoAttention(
400
+ last_hidden_state=last_hidden_state,
401
+ pooler_output=pooled_output,
402
+ hidden_states=encoder_outputs.hidden_states,
403
+ )
404
+
405
+
406
+ @add_start_docstrings(
407
+ """
408
+ ConvNextV2 Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
409
+ ImageNet.
410
+ """,
411
+ CONVNEXTV2_START_DOCSTRING,
412
+ )
413
+ # Copied from transformers.models.convnext.modeling_convnext.ConvNextForImageClassification with CONVNEXT->CONVNEXTV2,ConvNext->ConvNextV2,convnext->convnextv2
414
+ class ConvNextV2ForImageClassification(ConvNextV2PreTrainedModel):
415
+ def __init__(self, config):
416
+ super().__init__(config)
417
+
418
+ self.num_labels = config.num_labels
419
+ self.convnextv2 = ConvNextV2Model(config)
420
+
421
+ # Classifier head
422
+ self.classifier = (
423
+ nn.Linear(config.hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity()
424
+ )
425
+
426
+ # Initialize weights and apply final processing
427
+ self.post_init()
428
+
429
+ @add_start_docstrings_to_model_forward(CONVNEXTV2_INPUTS_DOCSTRING)
430
+ @add_code_sample_docstrings(
431
+ checkpoint=_IMAGE_CLASS_CHECKPOINT,
432
+ output_type=ImageClassifierOutputWithNoAttention,
433
+ config_class=_CONFIG_FOR_DOC,
434
+ expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
435
+ )
436
+ def forward(
437
+ self,
438
+ pixel_values: torch.FloatTensor = None,
439
+ labels: Optional[torch.LongTensor] = None,
440
+ output_hidden_states: Optional[bool] = None,
441
+ return_dict: Optional[bool] = None,
442
+ ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]:
443
+ r"""
444
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
445
+ Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
446
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
447
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
448
+ """
449
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
450
+
451
+ outputs = self.convnextv2(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict)
452
+
453
+ pooled_output = outputs.pooler_output if return_dict else outputs[1]
454
+
455
+ logits = self.classifier(pooled_output)
456
+
457
+ loss = None
458
+ if labels is not None:
459
+ if self.config.problem_type is None:
460
+ if self.num_labels == 1:
461
+ self.config.problem_type = "regression"
462
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
463
+ self.config.problem_type = "single_label_classification"
464
+ else:
465
+ self.config.problem_type = "multi_label_classification"
466
+
467
+ if self.config.problem_type == "regression":
468
+ loss_fct = MSELoss()
469
+ if self.num_labels == 1:
470
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
471
+ else:
472
+ loss = loss_fct(logits, labels)
473
+ elif self.config.problem_type == "single_label_classification":
474
+ loss_fct = CrossEntropyLoss()
475
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
476
+ elif self.config.problem_type == "multi_label_classification":
477
+ loss_fct = BCEWithLogitsLoss()
478
+ loss = loss_fct(logits, labels)
479
+ if not return_dict:
480
+ output = (logits,) + outputs[2:]
481
+ return ((loss,) + output) if loss is not None else output
482
+
483
+ return ImageClassifierOutputWithNoAttention(
484
+ loss=loss,
485
+ logits=logits,
486
+ hidden_states=outputs.hidden_states,
487
+ )
488
+
489
+
490
+ @add_start_docstrings(
491
+ """
492
+ ConvNeXT V2 backbone, to be used with frameworks like DETR and MaskFormer.
493
+ """,
494
+ CONVNEXTV2_START_DOCSTRING,
495
+ )
496
+ # Copied from transformers.models.convnext.modeling_convnext.ConvNextBackbone with CONVNEXT->CONVNEXTV2,ConvNext->ConvNextV2,facebook/convnext-tiny-224->facebook/convnextv2-tiny-1k-224
497
+ class ConvNextV2Backbone(ConvNextV2PreTrainedModel, BackboneMixin):
498
+ def __init__(self, config):
499
+ super().__init__(config)
500
+ super()._init_backbone(config)
501
+
502
+ self.embeddings = ConvNextV2Embeddings(config)
503
+ self.encoder = ConvNextV2Encoder(config)
504
+ self.num_features = [config.hidden_sizes[0]] + config.hidden_sizes
505
+
506
+ # Add layer norms to hidden states of out_features
507
+ hidden_states_norms = {}
508
+ for stage, num_channels in zip(self._out_features, self.channels):
509
+ hidden_states_norms[stage] = ConvNextV2LayerNorm(num_channels, data_format="channels_first")
510
+ self.hidden_states_norms = nn.ModuleDict(hidden_states_norms)
511
+
512
+ # initialize weights and apply final processing
513
+ self.post_init()
514
+
515
+ @add_start_docstrings_to_model_forward(CONVNEXTV2_INPUTS_DOCSTRING)
516
+ @replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC)
517
+ def forward(
518
+ self,
519
+ pixel_values: torch.Tensor,
520
+ output_hidden_states: Optional[bool] = None,
521
+ return_dict: Optional[bool] = None,
522
+ ) -> BackboneOutput:
523
+ """
524
+ Returns:
525
+
526
+ Examples:
527
+
528
+ ```python
529
+ >>> from transformers import AutoImageProcessor, AutoBackbone
530
+ >>> import torch
531
+ >>> from PIL import Image
532
+ >>> import requests
533
+
534
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
535
+ >>> image = Image.open(requests.get(url, stream=True).raw)
536
+
537
+ >>> processor = AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224")
538
+ >>> model = AutoBackbone.from_pretrained("facebook/convnextv2-tiny-1k-224")
539
+
540
+ >>> inputs = processor(image, return_tensors="pt")
541
+ >>> outputs = model(**inputs)
542
+ ```"""
543
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
544
+ output_hidden_states = (
545
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
546
+ )
547
+
548
+ embedding_output = self.embeddings(pixel_values)
549
+
550
+ outputs = self.encoder(
551
+ embedding_output,
552
+ output_hidden_states=True,
553
+ return_dict=return_dict,
554
+ )
555
+
556
+ hidden_states = outputs.hidden_states if return_dict else outputs[1]
557
+
558
+ feature_maps = ()
559
+ for stage, hidden_state in zip(self.stage_names, hidden_states):
560
+ if stage in self.out_features:
561
+ hidden_state = self.hidden_states_norms[stage](hidden_state)
562
+ feature_maps += (hidden_state,)
563
+
564
+ if not return_dict:
565
+ output = (feature_maps,)
566
+ if output_hidden_states:
567
+ output += (hidden_states,)
568
+ return output
569
+
570
+ return BackboneOutput(
571
+ feature_maps=feature_maps,
572
+ hidden_states=hidden_states if output_hidden_states else None,
573
+ attentions=None,
574
+ )
llmeval-env/lib/python3.10/site-packages/transformers/models/convnextv2/modeling_tf_convnextv2.py ADDED
@@ -0,0 +1,681 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 Meta Platforms Inc. and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ TF 2.0 ConvNextV2 model."""
16
+
17
+
18
+ from __future__ import annotations
19
+
20
+ from typing import List, Optional, Tuple, Union
21
+
22
+ import numpy as np
23
+ import tensorflow as tf
24
+
25
+ from ...activations_tf import get_tf_activation
26
+ from ...modeling_tf_outputs import (
27
+ TFBaseModelOutputWithNoAttention,
28
+ TFBaseModelOutputWithPooling,
29
+ TFBaseModelOutputWithPoolingAndNoAttention,
30
+ TFImageClassifierOutputWithNoAttention,
31
+ )
32
+ from ...modeling_tf_utils import (
33
+ TFModelInputType,
34
+ TFPreTrainedModel,
35
+ TFSequenceClassificationLoss,
36
+ get_initializer,
37
+ keras,
38
+ keras_serializable,
39
+ unpack_inputs,
40
+ )
41
+ from ...tf_utils import shape_list
42
+ from ...utils import (
43
+ add_code_sample_docstrings,
44
+ add_start_docstrings,
45
+ add_start_docstrings_to_model_forward,
46
+ logging,
47
+ )
48
+ from .configuration_convnextv2 import ConvNextV2Config
49
+
50
+
51
+ logger = logging.get_logger(__name__)
52
+
53
+ # General docstring
54
+ _CONFIG_FOR_DOC = "ConvNextV2Config"
55
+
56
+ # Base docstring
57
+ _CHECKPOINT_FOR_DOC = "facebook/convnextv2-tiny-1k-224"
58
+ _EXPECTED_OUTPUT_SHAPE = [1, 768, 7, 7]
59
+
60
+ # Image classification docstring
61
+ _IMAGE_CLASS_CHECKPOINT = "facebook/convnextv2-tiny-1k-224"
62
+ _IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
63
+
64
+
65
+ # Copied from transformers.models.convnext.modeling_tf_convnext.TFConvNextDropPath with ConvNext->ConvNextV2
66
+ class TFConvNextV2DropPath(keras.layers.Layer):
67
+ """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
68
+ References:
69
+ (1) github.com:rwightman/pytorch-image-models
70
+ """
71
+
72
+ def __init__(self, drop_path: float, **kwargs):
73
+ super().__init__(**kwargs)
74
+ self.drop_path = drop_path
75
+
76
+ def call(self, x: tf.Tensor, training=None):
77
+ if training:
78
+ keep_prob = 1 - self.drop_path
79
+ shape = (tf.shape(x)[0],) + (1,) * (len(tf.shape(x)) - 1)
80
+ random_tensor = keep_prob + tf.random.uniform(shape, 0, 1)
81
+ random_tensor = tf.floor(random_tensor)
82
+ return (x / keep_prob) * random_tensor
83
+ return x
84
+
85
+
86
+ class TFConvNextV2GRN(keras.layers.Layer):
87
+ """GRN (Global Response Normalization) layer"""
88
+
89
+ def __init__(self, config: ConvNextV2Config, dim: int, **kwargs):
90
+ super().__init__(**kwargs)
91
+ self.dim = dim
92
+
93
+ def build(self, input_shape: tf.TensorShape = None):
94
+ # PT's `nn.Parameters` must be mapped to a TF layer weight to inherit the same name hierarchy (and vice-versa)
95
+ self.weight = self.add_weight(
96
+ name="weight",
97
+ shape=(1, 1, 1, self.dim),
98
+ initializer=keras.initializers.Zeros(),
99
+ )
100
+ self.bias = self.add_weight(
101
+ name="bias",
102
+ shape=(1, 1, 1, self.dim),
103
+ initializer=keras.initializers.Zeros(),
104
+ )
105
+ return super().build(input_shape)
106
+
107
+ def call(self, hidden_states: tf.Tensor):
108
+ global_features = tf.norm(hidden_states, ord="euclidean", axis=(1, 2), keepdims=True)
109
+ norm_features = global_features / (tf.reduce_mean(global_features, axis=-1, keepdims=True) + 1e-6)
110
+ hidden_states = self.weight * (hidden_states * norm_features) + self.bias + hidden_states
111
+ return hidden_states
112
+
113
+
114
+ # Copied from transformers.models.convnext.modeling_tf_convnext.TFConvNextEmbeddings with ConvNext->ConvNextV2
115
+ class TFConvNextV2Embeddings(keras.layers.Layer):
116
+ """This class is comparable to (and inspired by) the SwinEmbeddings class
117
+ found in src/transformers/models/swin/modeling_swin.py.
118
+ """
119
+
120
+ def __init__(self, config: ConvNextV2Config, **kwargs):
121
+ super().__init__(**kwargs)
122
+ self.patch_embeddings = keras.layers.Conv2D(
123
+ filters=config.hidden_sizes[0],
124
+ kernel_size=config.patch_size,
125
+ strides=config.patch_size,
126
+ name="patch_embeddings",
127
+ kernel_initializer=get_initializer(config.initializer_range),
128
+ bias_initializer=keras.initializers.Zeros(),
129
+ )
130
+ self.layernorm = keras.layers.LayerNormalization(epsilon=1e-6, name="layernorm")
131
+ self.num_channels = config.num_channels
132
+ self.config = config
133
+
134
+ def call(self, pixel_values):
135
+ if isinstance(pixel_values, dict):
136
+ pixel_values = pixel_values["pixel_values"]
137
+
138
+ tf.debugging.assert_equal(
139
+ shape_list(pixel_values)[1],
140
+ self.num_channels,
141
+ message="Make sure that the channel dimension of the pixel values match with the one set in the configuration.",
142
+ )
143
+
144
+ # When running on CPU, `keras.layers.Conv2D` doesn't support `NCHW` format.
145
+ # So change the input format from `NCHW` to `NHWC`.
146
+ # shape = (batch_size, in_height, in_width, in_channels)
147
+ pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1))
148
+
149
+ embeddings = self.patch_embeddings(pixel_values)
150
+ embeddings = self.layernorm(embeddings)
151
+ return embeddings
152
+
153
+ def build(self, input_shape=None):
154
+ if self.built:
155
+ return
156
+ self.built = True
157
+ if getattr(self, "patch_embeddings", None) is not None:
158
+ with tf.name_scope(self.patch_embeddings.name):
159
+ self.patch_embeddings.build([None, None, None, self.config.num_channels])
160
+ if getattr(self, "layernorm", None) is not None:
161
+ with tf.name_scope(self.layernorm.name):
162
+ self.layernorm.build([None, None, None, self.config.hidden_sizes[0]])
163
+
164
+
165
+ class TFConvNextV2Layer(keras.layers.Layer):
166
+ """This corresponds to the `Block` class in the original implementation.
167
+
168
+ There are two equivalent implementations: [DwConv, LayerNorm (channels_first), Conv, GELU,1x1 Conv]; all in (N, C,
169
+ H, W) (2) [DwConv, Permute to (N, H, W, C), LayerNorm (channels_last), Linear, GELU, Linear]; Permute back
170
+
171
+ The authors used (2) as they find it slightly faster in PyTorch. Since we already permuted the inputs to follow
172
+ NHWC ordering, we can just apply the operations straight-away without the permutation.
173
+
174
+ Args:
175
+ config (`ConvNextV2Config`):
176
+ Model configuration class.
177
+ dim (`int`):
178
+ Number of input channels.
179
+ drop_path (`float`, defaults to 0.0):
180
+ Stochastic depth rate.
181
+ """
182
+
183
+ def __init__(self, config: ConvNextV2Config, dim: int, drop_path: float = 0.0, **kwargs):
184
+ super().__init__(**kwargs)
185
+ self.dim = dim
186
+ self.config = config
187
+ self.dwconv = keras.layers.Conv2D(
188
+ filters=dim,
189
+ kernel_size=7,
190
+ padding="same",
191
+ groups=dim,
192
+ kernel_initializer=get_initializer(config.initializer_range),
193
+ bias_initializer=keras.initializers.Zeros(),
194
+ name="dwconv",
195
+ ) # depthwise conv
196
+ self.layernorm = keras.layers.LayerNormalization(
197
+ epsilon=1e-6,
198
+ name="layernorm",
199
+ )
200
+ self.pwconv1 = keras.layers.Dense(
201
+ units=4 * dim,
202
+ kernel_initializer=get_initializer(config.initializer_range),
203
+ bias_initializer=keras.initializers.Zeros(),
204
+ name="pwconv1",
205
+ ) # pointwise/1x1 convs, implemented with linear layers
206
+ self.act = get_tf_activation(config.hidden_act)
207
+ self.grn = TFConvNextV2GRN(config, 4 * dim, dtype=tf.float32, name="grn")
208
+ self.pwconv2 = keras.layers.Dense(
209
+ units=dim,
210
+ kernel_initializer=get_initializer(config.initializer_range),
211
+ bias_initializer=keras.initializers.Zeros(),
212
+ name="pwconv2",
213
+ )
214
+ # Using `layers.Activation` instead of `tf.identity` to better control `training`
215
+ # behaviour.
216
+ self.drop_path = (
217
+ TFConvNextV2DropPath(drop_path, name="drop_path")
218
+ if drop_path > 0.0
219
+ else keras.layers.Activation("linear", name="drop_path")
220
+ )
221
+
222
+ def call(self, hidden_states, training=False):
223
+ input = hidden_states
224
+ x = self.dwconv(hidden_states)
225
+ x = self.layernorm(x)
226
+ x = self.pwconv1(x)
227
+ x = self.act(x)
228
+ x = self.grn(x)
229
+ x = self.pwconv2(x)
230
+ x = self.drop_path(x, training=training)
231
+ x = input + x
232
+ return x
233
+
234
+ def build(self, input_shape=None):
235
+ if self.built:
236
+ return
237
+ self.built = True
238
+ if getattr(self, "dwconv", None) is not None:
239
+ with tf.name_scope(self.dwconv.name):
240
+ self.dwconv.build([None, None, None, self.dim])
241
+ if getattr(self, "layernorm", None) is not None:
242
+ with tf.name_scope(self.layernorm.name):
243
+ self.layernorm.build([None, None, None, self.dim])
244
+ if getattr(self, "pwconv1", None) is not None:
245
+ with tf.name_scope(self.pwconv1.name):
246
+ self.pwconv1.build([None, None, self.dim])
247
+ if getattr(self, "grn", None) is not None:
248
+ with tf.name_scope(self.grn.name):
249
+ self.grn.build(None)
250
+ if getattr(self, "pwconv2", None) is not None:
251
+ with tf.name_scope(self.pwconv2.name):
252
+ self.pwconv2.build([None, None, 4 * self.dim])
253
+ if getattr(self, "drop_path", None) is not None:
254
+ with tf.name_scope(self.drop_path.name):
255
+ self.drop_path.build(None)
256
+
257
+
258
+ # Copied from transformers.models.convnext.modeling_tf_convnext.TFConvNextStage with ConvNext->ConvNextV2
259
+ class TFConvNextV2Stage(keras.layers.Layer):
260
+ """ConvNextV2 stage, consisting of an optional downsampling layer + multiple residual blocks.
261
+
262
+ Args:
263
+ config (`ConvNextV2V2Config`):
264
+ Model configuration class.
265
+ in_channels (`int`):
266
+ Number of input channels.
267
+ out_channels (`int`):
268
+ Number of output channels.
269
+ depth (`int`):
270
+ Number of residual blocks.
271
+ drop_path_rates(`List[float]`):
272
+ Stochastic depth rates for each layer.
273
+ """
274
+
275
+ def __init__(
276
+ self,
277
+ config: ConvNextV2Config,
278
+ in_channels: int,
279
+ out_channels: int,
280
+ kernel_size: int = 2,
281
+ stride: int = 2,
282
+ depth: int = 2,
283
+ drop_path_rates: Optional[List[float]] = None,
284
+ **kwargs,
285
+ ):
286
+ super().__init__(**kwargs)
287
+ if in_channels != out_channels or stride > 1:
288
+ self.downsampling_layer = [
289
+ keras.layers.LayerNormalization(
290
+ epsilon=1e-6,
291
+ name="downsampling_layer.0",
292
+ ),
293
+ # Inputs to this layer will follow NHWC format since we
294
+ # transposed the inputs from NCHW to NHWC in the `TFConvNextV2Embeddings`
295
+ # layer. All the outputs throughout the model will be in NHWC
296
+ # from this point on until the output where we again change to
297
+ # NCHW.
298
+ keras.layers.Conv2D(
299
+ filters=out_channels,
300
+ kernel_size=kernel_size,
301
+ strides=stride,
302
+ kernel_initializer=get_initializer(config.initializer_range),
303
+ bias_initializer=keras.initializers.Zeros(),
304
+ name="downsampling_layer.1",
305
+ ),
306
+ ]
307
+ else:
308
+ self.downsampling_layer = [tf.identity]
309
+
310
+ drop_path_rates = drop_path_rates or [0.0] * depth
311
+ self.layers = [
312
+ TFConvNextV2Layer(
313
+ config,
314
+ dim=out_channels,
315
+ drop_path=drop_path_rates[j],
316
+ name=f"layers.{j}",
317
+ )
318
+ for j in range(depth)
319
+ ]
320
+ self.in_channels = in_channels
321
+ self.out_channels = out_channels
322
+ self.stride = stride
323
+
324
+ def call(self, hidden_states):
325
+ for layer in self.downsampling_layer:
326
+ hidden_states = layer(hidden_states)
327
+ for layer in self.layers:
328
+ hidden_states = layer(hidden_states)
329
+ return hidden_states
330
+
331
+ def build(self, input_shape=None):
332
+ if self.built:
333
+ return
334
+ self.built = True
335
+ if getattr(self, "layers", None) is not None:
336
+ for layer in self.layers:
337
+ with tf.name_scope(layer.name):
338
+ layer.build(None)
339
+ if self.in_channels != self.out_channels or self.stride > 1:
340
+ with tf.name_scope(self.downsampling_layer[0].name):
341
+ self.downsampling_layer[0].build([None, None, None, self.in_channels])
342
+ with tf.name_scope(self.downsampling_layer[1].name):
343
+ self.downsampling_layer[1].build([None, None, None, self.in_channels])
344
+
345
+
346
+ class TFConvNextV2Encoder(keras.layers.Layer):
347
+ def __init__(self, config: ConvNextV2Config, **kwargs):
348
+ super().__init__(**kwargs)
349
+ self.stages = []
350
+ drop_path_rates = tf.linspace(0.0, config.drop_path_rate, sum(config.depths))
351
+ drop_path_rates = tf.split(drop_path_rates, config.depths)
352
+ drop_path_rates = [x.numpy().tolist() for x in drop_path_rates]
353
+ prev_chs = config.hidden_sizes[0]
354
+ for i in range(config.num_stages):
355
+ out_chs = config.hidden_sizes[i]
356
+ stage = TFConvNextV2Stage(
357
+ config,
358
+ in_channels=prev_chs,
359
+ out_channels=out_chs,
360
+ stride=2 if i > 0 else 1,
361
+ depth=config.depths[i],
362
+ drop_path_rates=drop_path_rates[i],
363
+ name=f"stages.{i}",
364
+ )
365
+ self.stages.append(stage)
366
+ prev_chs = out_chs
367
+
368
+ def call(
369
+ self,
370
+ hidden_states: tf.Tensor,
371
+ output_hidden_states: Optional[bool] = False,
372
+ return_dict: Optional[bool] = True,
373
+ ) -> Union[Tuple, TFBaseModelOutputWithNoAttention]:
374
+ all_hidden_states = () if output_hidden_states else None
375
+
376
+ for i, layer_module in enumerate(self.stages):
377
+ if output_hidden_states:
378
+ all_hidden_states = all_hidden_states + (hidden_states,)
379
+
380
+ hidden_states = layer_module(hidden_states)
381
+
382
+ if output_hidden_states:
383
+ all_hidden_states = all_hidden_states + (hidden_states,)
384
+
385
+ if not return_dict:
386
+ return tuple(v for v in [hidden_states, all_hidden_states] if v is not None)
387
+
388
+ return TFBaseModelOutputWithNoAttention(last_hidden_state=hidden_states, hidden_states=all_hidden_states)
389
+
390
+ def build(self, input_shape=None):
391
+ for stage in self.stages:
392
+ with tf.name_scope(stage.name):
393
+ stage.build(None)
394
+
395
+
396
+ @keras_serializable
397
+ class TFConvNextV2MainLayer(keras.layers.Layer):
398
+ config_class = ConvNextV2Config
399
+
400
+ def __init__(self, config: ConvNextV2Config, **kwargs):
401
+ super().__init__(**kwargs)
402
+
403
+ self.config = config
404
+ self.embeddings = TFConvNextV2Embeddings(config, name="embeddings")
405
+ self.encoder = TFConvNextV2Encoder(config, name="encoder")
406
+ self.layernorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm")
407
+ # We are setting the `data_format` like so because from here on we will revert to the
408
+ # NCHW output format
409
+ self.pooler = keras.layers.GlobalAvgPool2D(data_format="channels_last")
410
+
411
+ @unpack_inputs
412
+ def call(
413
+ self,
414
+ pixel_values: TFModelInputType | None = None,
415
+ output_hidden_states: Optional[bool] = None,
416
+ return_dict: Optional[bool] = None,
417
+ training: bool = False,
418
+ ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
419
+ output_hidden_states = (
420
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
421
+ )
422
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
423
+
424
+ if pixel_values is None:
425
+ raise ValueError("You have to specify pixel_values")
426
+
427
+ embedding_output = self.embeddings(pixel_values, training=training)
428
+
429
+ encoder_outputs = self.encoder(
430
+ embedding_output,
431
+ output_hidden_states=output_hidden_states,
432
+ return_dict=return_dict,
433
+ training=training,
434
+ )
435
+
436
+ last_hidden_state = encoder_outputs[0]
437
+
438
+ # Change to NCHW output format have uniformity in the modules
439
+ pooled_output = self.pooler(last_hidden_state)
440
+ last_hidden_state = tf.transpose(last_hidden_state, perm=(0, 3, 1, 2))
441
+ pooled_output = self.layernorm(pooled_output)
442
+
443
+ # Change the other hidden state outputs to NCHW as well
444
+ if output_hidden_states:
445
+ hidden_states = tuple([tf.transpose(h, perm=(0, 3, 1, 2)) for h in encoder_outputs[1]])
446
+
447
+ if not return_dict:
448
+ hidden_states = hidden_states if output_hidden_states else ()
449
+ return (last_hidden_state, pooled_output) + hidden_states
450
+
451
+ return TFBaseModelOutputWithPoolingAndNoAttention(
452
+ last_hidden_state=last_hidden_state,
453
+ pooler_output=pooled_output,
454
+ hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states,
455
+ )
456
+
457
+ def build(self, input_shape=None):
458
+ if self.built:
459
+ return
460
+ self.built = True
461
+ if getattr(self, "embeddings", None) is not None:
462
+ with tf.name_scope(self.embeddings.name):
463
+ self.embeddings.build(None)
464
+ if getattr(self, "encoder", None) is not None:
465
+ with tf.name_scope(self.encoder.name):
466
+ self.encoder.build(None)
467
+ if getattr(self, "layernorm", None) is not None:
468
+ with tf.name_scope(self.layernorm.name):
469
+ self.layernorm.build([None, self.config.hidden_sizes[-1]])
470
+
471
+
472
+ class TFConvNextV2PreTrainedModel(TFPreTrainedModel):
473
+ """
474
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
475
+ models.
476
+ """
477
+
478
+ config_class = ConvNextV2Config
479
+ base_model_prefix = "convnextv2"
480
+ main_input_name = "pixel_values"
481
+
482
+
483
+ CONVNEXTV2_START_DOCSTRING = r"""
484
+ This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
485
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
486
+ etc.)
487
+
488
+ This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
489
+ as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
490
+ behavior.
491
+
492
+ <Tip>
493
+
494
+ TensorFlow models and layers in `transformers` accept two formats as input:
495
+
496
+ - having all inputs as keyword arguments (like PyTorch models), or
497
+ - having all inputs as a list, tuple or dict in the first positional argument.
498
+
499
+ The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
500
+ and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
501
+ pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
502
+ format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
503
+ the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
504
+ positional argument:
505
+
506
+ - a single Tensor with `pixel_values` only and nothing else: `model(pixel_values)`
507
+ - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
508
+ `model([pixel_values, attention_mask])` or `model([pixel_values, attention_mask, token_type_ids])`
509
+ - a dictionary with one or several input Tensors associated to the input names given in the docstring:
510
+ `model({"pixel_values": pixel_values, "token_type_ids": token_type_ids})`
511
+
512
+ Note that when creating models and layers with
513
+ [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
514
+ about any of this, as you can just pass inputs like you would to any other Python function!
515
+
516
+ </Tip>
517
+
518
+ Parameters:
519
+ config ([`ConvNextV2Config`]): Model configuration class with all the parameters of the model.
520
+ Initializing with a config file does not load the weights associated with the model, only the
521
+ configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
522
+ """
523
+
524
+ CONVNEXTV2_INPUTS_DOCSTRING = r"""
525
+ Args:
526
+ pixel_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]`, `Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`):
527
+ Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
528
+ [`ConvNextImageProcessor.__call__`] for details.
529
+
530
+ output_hidden_states (`bool`, *optional*):
531
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
532
+ more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
533
+ used instead.
534
+ return_dict (`bool`, *optional*):
535
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
536
+ eager mode, in graph mode the value will always be set to `True`.
537
+ """
538
+
539
+
540
+ @add_start_docstrings(
541
+ "The bare ConvNextV2 model outputting raw features without any specific head on top.",
542
+ CONVNEXTV2_START_DOCSTRING,
543
+ )
544
+ class TFConvNextV2Model(TFConvNextV2PreTrainedModel):
545
+ def __init__(self, config: ConvNextV2Config, *inputs, **kwargs):
546
+ super().__init__(config, *inputs, **kwargs)
547
+ self.convnextv2 = TFConvNextV2MainLayer(config, name="convnextv2")
548
+
549
+ @unpack_inputs
550
+ @add_start_docstrings_to_model_forward(CONVNEXTV2_INPUTS_DOCSTRING)
551
+ @add_code_sample_docstrings(
552
+ checkpoint=_CHECKPOINT_FOR_DOC,
553
+ output_type=TFBaseModelOutputWithPoolingAndNoAttention,
554
+ config_class=_CONFIG_FOR_DOC,
555
+ modality="vision",
556
+ expected_output=_EXPECTED_OUTPUT_SHAPE,
557
+ )
558
+ def call(
559
+ self,
560
+ pixel_values: TFModelInputType | None = None,
561
+ output_hidden_states: Optional[bool] = None,
562
+ return_dict: Optional[bool] = None,
563
+ training: bool = False,
564
+ ) -> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]:
565
+ output_hidden_states = (
566
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
567
+ )
568
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
569
+
570
+ if pixel_values is None:
571
+ raise ValueError("You have to specify pixel_values")
572
+
573
+ outputs = self.convnextv2(
574
+ pixel_values=pixel_values,
575
+ output_hidden_states=output_hidden_states,
576
+ return_dict=return_dict,
577
+ training=training,
578
+ )
579
+
580
+ if not return_dict:
581
+ return outputs[:]
582
+
583
+ return TFBaseModelOutputWithPoolingAndNoAttention(
584
+ last_hidden_state=outputs.last_hidden_state,
585
+ pooler_output=outputs.pooler_output,
586
+ hidden_states=outputs.hidden_states,
587
+ )
588
+
589
+ def build(self, input_shape=None):
590
+ if self.built:
591
+ return
592
+ self.built = True
593
+ if getattr(self, "convnextv2", None) is not None:
594
+ with tf.name_scope(self.convnextv2.name):
595
+ self.convnextv2.build(None)
596
+
597
+
598
+ @add_start_docstrings(
599
+ """
600
+ ConvNextV2 Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
601
+ ImageNet.
602
+ """,
603
+ CONVNEXTV2_START_DOCSTRING,
604
+ )
605
+ class TFConvNextV2ForImageClassification(TFConvNextV2PreTrainedModel, TFSequenceClassificationLoss):
606
+ def __init__(self, config: ConvNextV2Config, *inputs, **kwargs):
607
+ super().__init__(config, *inputs, **kwargs)
608
+
609
+ self.num_labels = config.num_labels
610
+ self.convnextv2 = TFConvNextV2MainLayer(config, name="convnextv2")
611
+
612
+ # Classifier head
613
+ self.classifier = keras.layers.Dense(
614
+ units=config.num_labels,
615
+ kernel_initializer=get_initializer(config.initializer_range),
616
+ bias_initializer=keras.initializers.Zeros(),
617
+ name="classifier",
618
+ )
619
+
620
+ @unpack_inputs
621
+ @add_start_docstrings_to_model_forward(CONVNEXTV2_INPUTS_DOCSTRING)
622
+ @add_code_sample_docstrings(
623
+ checkpoint=_IMAGE_CLASS_CHECKPOINT,
624
+ output_type=TFImageClassifierOutputWithNoAttention,
625
+ config_class=_CONFIG_FOR_DOC,
626
+ expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
627
+ )
628
+ def call(
629
+ self,
630
+ pixel_values: TFModelInputType | None = None,
631
+ output_hidden_states: Optional[bool] = None,
632
+ return_dict: Optional[bool] = None,
633
+ labels: np.ndarray | tf.Tensor | None = None,
634
+ training: Optional[bool] = False,
635
+ ) -> Union[TFImageClassifierOutputWithNoAttention, Tuple[tf.Tensor]]:
636
+ r"""
637
+ labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
638
+ Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
639
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
640
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
641
+ """
642
+ output_hidden_states = (
643
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
644
+ )
645
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
646
+
647
+ if pixel_values is None:
648
+ raise ValueError("You have to specify pixel_values")
649
+
650
+ outputs = self.convnextv2(
651
+ pixel_values,
652
+ output_hidden_states=output_hidden_states,
653
+ return_dict=return_dict,
654
+ training=training,
655
+ )
656
+
657
+ pooled_output = outputs.pooler_output if return_dict else outputs[1]
658
+
659
+ logits = self.classifier(pooled_output)
660
+ loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits)
661
+
662
+ if not return_dict:
663
+ output = (logits,) + outputs[2:]
664
+ return ((loss,) + output) if loss is not None else output
665
+
666
+ return TFImageClassifierOutputWithNoAttention(
667
+ loss=loss,
668
+ logits=logits,
669
+ hidden_states=outputs.hidden_states,
670
+ )
671
+
672
+ def build(self, input_shape=None):
673
+ if self.built:
674
+ return
675
+ self.built = True
676
+ if getattr(self, "convnextv2", None) is not None:
677
+ with tf.name_scope(self.convnextv2.name):
678
+ self.convnextv2.build(None)
679
+ if getattr(self, "classifier", None) is not None:
680
+ with tf.name_scope(self.classifier.name):
681
+ self.classifier.build([None, None, self.config.hidden_sizes[-1]])
llmeval-env/lib/python3.10/site-packages/transformers/models/dpt/convert_dinov2_depth_to_hf.py ADDED
@@ -0,0 +1,384 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Convert DINOv2 + DPT checkpoints from the original repository. URL:
16
+ https://github.com/facebookresearch/dinov2/tree/main"""
17
+
18
+
19
+ import argparse
20
+ import itertools
21
+ import math
22
+ from pathlib import Path
23
+
24
+ import requests
25
+ import torch
26
+ from PIL import Image
27
+ from torchvision import transforms
28
+
29
+ from transformers import Dinov2Config, DPTConfig, DPTForDepthEstimation, DPTImageProcessor
30
+ from transformers.utils import logging
31
+
32
+
33
+ logging.set_verbosity_info()
34
+ logger = logging.get_logger(__name__)
35
+
36
+
37
+ def get_dpt_config(model_name):
38
+ if "small" in model_name:
39
+ # equivalent to stage 3, stage 6, stage 9, stage 12
40
+ backbone_config = Dinov2Config.from_pretrained(
41
+ "facebook/dinov2-small", out_indices=[3, 6, 9, 12], apply_layernorm=False, reshape_hidden_states=False
42
+ )
43
+ neck_hidden_sizes = [48, 96, 192, 384]
44
+ elif "base" in model_name:
45
+ backbone_config = Dinov2Config.from_pretrained(
46
+ "facebook/dinov2-base", out_indices=[3, 6, 9, 12], apply_layernorm=False, reshape_hidden_states=False
47
+ )
48
+ neck_hidden_sizes = [96, 192, 384, 768]
49
+ elif "large" in model_name:
50
+ backbone_config = Dinov2Config.from_pretrained(
51
+ "facebook/dinov2-large", out_indices=[5, 12, 18, 24], apply_layernorm=False, reshape_hidden_states=False
52
+ )
53
+ neck_hidden_sizes = [128, 256, 512, 1024]
54
+ elif "giant" in model_name:
55
+ backbone_config = Dinov2Config.from_pretrained(
56
+ "facebook/dinov2-giant", out_indices=[10, 20, 30, 40], apply_layernorm=False, reshape_hidden_states=False
57
+ )
58
+ neck_hidden_sizes = [192, 384, 768, 1536]
59
+ else:
60
+ raise NotImplementedError("To do")
61
+
62
+ config = DPTConfig(
63
+ backbone_config=backbone_config,
64
+ neck_hidden_sizes=neck_hidden_sizes,
65
+ use_bias_in_fusion_residual=False,
66
+ add_projection=True,
67
+ )
68
+
69
+ return config
70
+
71
+
72
+ # here we list all DPT keys to be renamed (original name on the left, our name on the right)
73
+ def create_rename_keys_dpt(config):
74
+ rename_keys = []
75
+
76
+ # fmt: off
77
+ # activation postprocessing (projections, readout projections + resize blocks)
78
+ for i in range(4):
79
+ rename_keys.append((f"decode_head.reassemble_blocks.projects.{i}.conv.weight", f"neck.reassemble_stage.layers.{i}.projection.weight"))
80
+ rename_keys.append((f"decode_head.reassemble_blocks.projects.{i}.conv.bias", f"neck.reassemble_stage.layers.{i}.projection.bias"))
81
+
82
+ rename_keys.append((f"decode_head.reassemble_blocks.readout_projects.{i}.0.weight", f"neck.reassemble_stage.readout_projects.{i}.0.weight"))
83
+ rename_keys.append((f"decode_head.reassemble_blocks.readout_projects.{i}.0.bias", f"neck.reassemble_stage.readout_projects.{i}.0.bias"))
84
+
85
+ if i != 2:
86
+ rename_keys.append((f"decode_head.reassemble_blocks.resize_layers.{i}.weight", f"neck.reassemble_stage.layers.{i}.resize.weight"))
87
+ rename_keys.append((f"decode_head.reassemble_blocks.resize_layers.{i}.bias", f"neck.reassemble_stage.layers.{i}.resize.bias"))
88
+
89
+ # fusion layers
90
+ for i in range(4):
91
+ rename_keys.append((f"decode_head.fusion_blocks.{i}.project.conv.weight", f"neck.fusion_stage.layers.{i}.projection.weight"))
92
+ rename_keys.append((f"decode_head.fusion_blocks.{i}.project.conv.bias", f"neck.fusion_stage.layers.{i}.projection.bias"))
93
+ if i != 0:
94
+ rename_keys.append((f"decode_head.fusion_blocks.{i}.res_conv_unit1.conv1.conv.weight", f"neck.fusion_stage.layers.{i}.residual_layer1.convolution1.weight"))
95
+ rename_keys.append((f"decode_head.fusion_blocks.{i}.res_conv_unit1.conv2.conv.weight", f"neck.fusion_stage.layers.{i}.residual_layer1.convolution2.weight"))
96
+ rename_keys.append((f"decode_head.fusion_blocks.{i}.res_conv_unit2.conv1.conv.weight", f"neck.fusion_stage.layers.{i}.residual_layer2.convolution1.weight"))
97
+ rename_keys.append((f"decode_head.fusion_blocks.{i}.res_conv_unit2.conv2.conv.weight", f"neck.fusion_stage.layers.{i}.residual_layer2.convolution2.weight"))
98
+
99
+ # neck convolutions
100
+ for i in range(4):
101
+ rename_keys.append((f"decode_head.convs.{i}.conv.weight", f"neck.convs.{i}.weight"))
102
+
103
+ # head
104
+ rename_keys.append(("decode_head.project.conv.weight", "head.projection.weight"))
105
+ rename_keys.append(("decode_head.project.conv.bias", "head.projection.bias"))
106
+
107
+ for i in range(0, 5, 2):
108
+ rename_keys.append((f"decode_head.conv_depth.head.{i}.weight", f"head.head.{i}.weight"))
109
+ rename_keys.append((f"decode_head.conv_depth.head.{i}.bias", f"head.head.{i}.bias"))
110
+ # fmt: on
111
+
112
+ return rename_keys
113
+
114
+
115
+ # here we list all backbone keys to be renamed (original name on the left, our name on the right)
116
+ def create_rename_keys_backbone(config):
117
+ rename_keys = []
118
+
119
+ # fmt: off
120
+ # patch embedding layer
121
+ rename_keys.append(("cls_token", "backbone.embeddings.cls_token"))
122
+ rename_keys.append(("mask_token", "backbone.embeddings.mask_token"))
123
+ rename_keys.append(("pos_embed", "backbone.embeddings.position_embeddings"))
124
+ rename_keys.append(("patch_embed.proj.weight", "backbone.embeddings.patch_embeddings.projection.weight"))
125
+ rename_keys.append(("patch_embed.proj.bias", "backbone.embeddings.patch_embeddings.projection.bias"))
126
+
127
+ # Transfomer encoder
128
+ for i in range(config.backbone_config.num_hidden_layers):
129
+ # layernorms
130
+ rename_keys.append((f"blocks.{i}.norm1.weight", f"backbone.encoder.layer.{i}.norm1.weight"))
131
+ rename_keys.append((f"blocks.{i}.norm1.bias", f"backbone.encoder.layer.{i}.norm1.bias"))
132
+ rename_keys.append((f"blocks.{i}.norm2.weight", f"backbone.encoder.layer.{i}.norm2.weight"))
133
+ rename_keys.append((f"blocks.{i}.norm2.bias", f"backbone.encoder.layer.{i}.norm2.bias"))
134
+ # MLP
135
+ if config.backbone_config.use_swiglu_ffn:
136
+ rename_keys.append((f"blocks.{i}.mlp.w12.weight", f"backbone.encoder.layer.{i}.mlp.w12.weight"))
137
+ rename_keys.append((f"blocks.{i}.mlp.w12.bias", f"backbone.encoder.layer.{i}.mlp.w12.bias"))
138
+ rename_keys.append((f"blocks.{i}.mlp.w3.weight", f"backbone.encoder.layer.{i}.mlp.w3.weight"))
139
+ rename_keys.append((f"blocks.{i}.mlp.w3.bias", f"backbone.encoder.layer.{i}.mlp.w3.bias"))
140
+ else:
141
+ rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"backbone.encoder.layer.{i}.mlp.fc1.weight"))
142
+ rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"backbone.encoder.layer.{i}.mlp.fc1.bias"))
143
+ rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"backbone.encoder.layer.{i}.mlp.fc2.weight"))
144
+ rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"backbone.encoder.layer.{i}.mlp.fc2.bias"))
145
+ # layerscale
146
+ rename_keys.append((f"blocks.{i}.ls1.gamma", f"backbone.encoder.layer.{i}.layer_scale1.lambda1"))
147
+ rename_keys.append((f"blocks.{i}.ls2.gamma", f"backbone.encoder.layer.{i}.layer_scale2.lambda1"))
148
+ # attention projection layer
149
+ rename_keys.append((f"blocks.{i}.attn.proj.weight", f"backbone.encoder.layer.{i}.attention.output.dense.weight"))
150
+ rename_keys.append((f"blocks.{i}.attn.proj.bias", f"backbone.encoder.layer.{i}.attention.output.dense.bias"))
151
+ # fmt: on
152
+
153
+ rename_keys.append(("norm.weight", "backbone.layernorm.weight"))
154
+ rename_keys.append(("norm.bias", "backbone.layernorm.bias"))
155
+
156
+ return rename_keys
157
+
158
+
159
+ # we split up the matrix of each encoder layer into queries, keys and values
160
+ def read_in_q_k_v(state_dict, config):
161
+ for i in range(config.backbone_config.num_hidden_layers):
162
+ # read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
163
+ in_proj_weight = state_dict.pop(f"blocks.{i}.attn.qkv.weight")
164
+ in_proj_bias = state_dict.pop(f"blocks.{i}.attn.qkv.bias")
165
+ hidden_size = config.backbone_config.hidden_size
166
+ # next, add query, keys and values (in that order) to the state dict
167
+ state_dict[f"backbone.encoder.layer.{i}.attention.attention.query.weight"] = in_proj_weight[:hidden_size, :]
168
+ state_dict[f"backbone.encoder.layer.{i}.attention.attention.query.bias"] = in_proj_bias[:hidden_size]
169
+ state_dict[f"backbone.encoder.layer.{i}.attention.attention.key.weight"] = in_proj_weight[
170
+ hidden_size : hidden_size * 2, :
171
+ ]
172
+ state_dict[f"backbone.encoder.layer.{i}.attention.attention.key.bias"] = in_proj_bias[
173
+ hidden_size : hidden_size * 2
174
+ ]
175
+ state_dict[f"backbone.encoder.layer.{i}.attention.attention.value.weight"] = in_proj_weight[-hidden_size:, :]
176
+ state_dict[f"backbone.encoder.layer.{i}.attention.attention.value.bias"] = in_proj_bias[-hidden_size:]
177
+
178
+
179
+ def rename_key(dct, old, new):
180
+ val = dct.pop(old)
181
+ dct[new] = val
182
+
183
+
184
+ # We will verify our results on an image of cute cats
185
+ def prepare_img():
186
+ url = "https://dl.fbaipublicfiles.com/dinov2/images/example.jpg"
187
+ im = Image.open(requests.get(url, stream=True).raw)
188
+ return im
189
+
190
+
191
+ name_to_url = {
192
+ "dpt-dinov2-small-nyu": "https://dl.fbaipublicfiles.com/dinov2/dinov2_vits14/dinov2_vits14_nyu_dpt_head.pth",
193
+ "dpt-dinov2-small-kitti": "https://dl.fbaipublicfiles.com/dinov2/dinov2_vits14/dinov2_vits14_kitti_dpt_head.pth",
194
+ "dpt-dinov2-base-nyu": "https://dl.fbaipublicfiles.com/dinov2/dinov2_vitb14/dinov2_vitb14_nyu_dpt_head.pth",
195
+ "dpt-dinov2-base-kitti": "https://dl.fbaipublicfiles.com/dinov2/dinov2_vitb14/dinov2_vitb14_kitti_dpt_head.pth",
196
+ "dpt-dinov2-large-nyu": "https://dl.fbaipublicfiles.com/dinov2/dinov2_vitl14/dinov2_vitl14_nyu_dpt_head.pth",
197
+ "dpt-dinov2-large-kitti": "https://dl.fbaipublicfiles.com/dinov2/dinov2_vitl14/dinov2_vitl14_kitti_dpt_head.pth",
198
+ "dpt-dinov2-giant-nyu": "https://dl.fbaipublicfiles.com/dinov2/dinov2_vitg14/dinov2_vitg14_nyu_dpt_head.pth",
199
+ "dpt-dinov2-giant-kitti": "https://dl.fbaipublicfiles.com/dinov2/dinov2_vitg14/dinov2_vitg14_kitti_dpt_head.pth",
200
+ }
201
+
202
+
203
+ def get_original_pixel_values(image):
204
+ class CenterPadding(object):
205
+ def __init__(self, multiple):
206
+ super().__init__()
207
+ self.multiple = multiple
208
+
209
+ def _get_pad(self, size):
210
+ new_size = math.ceil(size / self.multiple) * self.multiple
211
+ pad_size = new_size - size
212
+ pad_size_left = pad_size // 2
213
+ pad_size_right = pad_size - pad_size_left
214
+ return pad_size_left, pad_size_right
215
+
216
+ def __call__(self, img):
217
+ pads = list(itertools.chain.from_iterable(self._get_pad(m) for m in img.shape[-2:][::-1]))
218
+ output = torch.nn.functional.pad(img, pads)
219
+ return output
220
+
221
+ def __repr__(self):
222
+ return self.__class__.__name__ + "()"
223
+
224
+ def make_depth_transform() -> transforms.Compose:
225
+ return transforms.Compose(
226
+ [
227
+ transforms.ToTensor(),
228
+ lambda x: 255.0 * x[:3], # Discard alpha component and scale by 255
229
+ transforms.Normalize(
230
+ mean=(123.675, 116.28, 103.53),
231
+ std=(58.395, 57.12, 57.375),
232
+ ),
233
+ CenterPadding(multiple=14),
234
+ ]
235
+ )
236
+
237
+ transform = make_depth_transform()
238
+ original_pixel_values = transform(image).unsqueeze(0)
239
+
240
+ return original_pixel_values
241
+
242
+
243
+ @torch.no_grad()
244
+ def convert_dpt_checkpoint(model_name, pytorch_dump_folder_path, push_to_hub, verify_logits):
245
+ """
246
+ Copy/paste/tweak model's weights to our DPT structure.
247
+ """
248
+
249
+ # define DPT configuration based on URL
250
+ checkpoint_url = name_to_url[model_name]
251
+ config = get_dpt_config(model_name)
252
+
253
+ # load original DPT state_dict from URL
254
+ print("URL:", checkpoint_url)
255
+ dpt_state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu")["state_dict"]
256
+ # rename keys
257
+ rename_keys = create_rename_keys_dpt(config)
258
+ for src, dest in rename_keys:
259
+ rename_key(dpt_state_dict, src, dest)
260
+
261
+ # load original backbone state_dict from URL
262
+ if "small" in model_name:
263
+ original_model = torch.hub.load("facebookresearch/dinov2", "dinov2_vits14")
264
+ elif "base" in model_name:
265
+ original_model = torch.hub.load("facebookresearch/dinov2", "dinov2_vitb14")
266
+ elif "large" in model_name:
267
+ original_model = torch.hub.load("facebookresearch/dinov2", "dinov2_vitl14")
268
+ elif "giant" in model_name:
269
+ original_model = torch.hub.load("facebookresearch/dinov2", "dinov2_vitg14")
270
+ else:
271
+ raise NotImplementedError("To do")
272
+ original_model.eval()
273
+ backbone_state_dict = original_model.state_dict()
274
+
275
+ # rename keys
276
+ rename_keys = create_rename_keys_backbone(config)
277
+ for src, dest in rename_keys:
278
+ rename_key(backbone_state_dict, src, dest)
279
+
280
+ # read in qkv matrices
281
+ read_in_q_k_v(backbone_state_dict, config)
282
+
283
+ for key, val in backbone_state_dict.copy().items():
284
+ val = backbone_state_dict.pop(key)
285
+ if "w12" in key:
286
+ key = key.replace("w12", "weights_in")
287
+ if "w3" in key:
288
+ key = key.replace("w3", "weights_out")
289
+ backbone_state_dict[key] = val
290
+
291
+ # merge state_dicts
292
+ state_dict = {**backbone_state_dict, **dpt_state_dict}
293
+
294
+ # load HuggingFace model
295
+ model = DPTForDepthEstimation(config)
296
+ missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
297
+ print("Missing keys:", missing_keys)
298
+ print("Unexpected keys:", unexpected_keys)
299
+ assert missing_keys == [
300
+ "neck.fusion_stage.layers.0.residual_layer1.convolution1.weight",
301
+ "neck.fusion_stage.layers.0.residual_layer1.convolution2.weight",
302
+ ]
303
+ model.eval()
304
+
305
+ # Verify image processor
306
+ processor = DPTImageProcessor(
307
+ do_resize=False,
308
+ do_rescale=False,
309
+ do_pad=True,
310
+ size_divisor=14,
311
+ do_normalize=True,
312
+ image_mean=(123.675, 116.28, 103.53),
313
+ image_std=(58.395, 57.12, 57.375),
314
+ )
315
+
316
+ image = prepare_img()
317
+ pixel_values = processor(image, return_tensors="pt").pixel_values.float()
318
+ original_pixel_values = get_original_pixel_values(image)
319
+
320
+ assert torch.allclose(pixel_values, original_pixel_values)
321
+
322
+ # Verify forward pass
323
+ with torch.no_grad():
324
+ outputs = model(pixel_values)
325
+
326
+ predicted_depth = outputs.predicted_depth
327
+
328
+ print("Shape of predicted depth:", predicted_depth.shape)
329
+ print("First values of predicted depth:", predicted_depth[0, :3, :3])
330
+
331
+ # assert logits
332
+ if verify_logits:
333
+ if model_name == "dpt-dinov2-small-nyu":
334
+ expected_shape = torch.Size([1, 576, 736])
335
+ expected_slice = torch.tensor(
336
+ [[3.3576, 3.4741, 3.4345], [3.4324, 3.5012, 3.2775], [3.2560, 3.3563, 3.2354]]
337
+ )
338
+
339
+ assert predicted_depth.shape == torch.Size(expected_shape)
340
+ assert torch.allclose(predicted_depth[0, :3, :3], expected_slice, atol=1e-5)
341
+ print("Looks ok!")
342
+
343
+ if pytorch_dump_folder_path is not None:
344
+ Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
345
+ print(f"Saving model and processor to {pytorch_dump_folder_path}")
346
+ model.save_pretrained(pytorch_dump_folder_path)
347
+ processor.save_pretrained(pytorch_dump_folder_path)
348
+
349
+ if push_to_hub:
350
+ print("Pushing model and processor to hub...")
351
+ model.push_to_hub(repo_id=f"facebook/{model_name}")
352
+ processor.push_to_hub(repo_id=f"facebook/{model_name}")
353
+
354
+
355
+ if __name__ == "__main__":
356
+ parser = argparse.ArgumentParser()
357
+ # Required parameters
358
+ parser.add_argument(
359
+ "--model_name",
360
+ default="dpt-dinov2-small-nyu",
361
+ type=str,
362
+ choices=name_to_url.keys(),
363
+ help="Name of the model you'd like to convert.",
364
+ )
365
+ parser.add_argument(
366
+ "--pytorch_dump_folder_path",
367
+ default=None,
368
+ type=str,
369
+ help="Path to the output PyTorch model directory.",
370
+ )
371
+ parser.add_argument(
372
+ "--push_to_hub",
373
+ action="store_true",
374
+ help="Whether to push the model to the hub after conversion.",
375
+ )
376
+ parser.add_argument(
377
+ "--verify_logits",
378
+ action="store_true",
379
+ required=False,
380
+ help="Path to the output PyTorch model directory.",
381
+ )
382
+
383
+ args = parser.parse_args()
384
+ convert_dpt_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.verify_logits)
llmeval-env/lib/python3.10/site-packages/transformers/models/ernie/__init__.py ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2022 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from typing import TYPE_CHECKING
16
+
17
+ from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available
18
+
19
+
20
+ _import_structure = {
21
+ "configuration_ernie": ["ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ErnieConfig", "ErnieOnnxConfig"],
22
+ }
23
+
24
+ try:
25
+ if not is_torch_available():
26
+ raise OptionalDependencyNotAvailable()
27
+ except OptionalDependencyNotAvailable:
28
+ pass
29
+ else:
30
+ _import_structure["modeling_ernie"] = [
31
+ "ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST",
32
+ "ErnieForCausalLM",
33
+ "ErnieForMaskedLM",
34
+ "ErnieForMultipleChoice",
35
+ "ErnieForNextSentencePrediction",
36
+ "ErnieForPreTraining",
37
+ "ErnieForQuestionAnswering",
38
+ "ErnieForSequenceClassification",
39
+ "ErnieForTokenClassification",
40
+ "ErnieModel",
41
+ "ErniePreTrainedModel",
42
+ ]
43
+
44
+ if TYPE_CHECKING:
45
+ from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig
46
+
47
+ try:
48
+ if not is_torch_available():
49
+ raise OptionalDependencyNotAvailable()
50
+ except OptionalDependencyNotAvailable:
51
+ pass
52
+ else:
53
+ from .modeling_ernie import (
54
+ ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST,
55
+ ErnieForCausalLM,
56
+ ErnieForMaskedLM,
57
+ ErnieForMultipleChoice,
58
+ ErnieForNextSentencePrediction,
59
+ ErnieForPreTraining,
60
+ ErnieForQuestionAnswering,
61
+ ErnieForSequenceClassification,
62
+ ErnieForTokenClassification,
63
+ ErnieModel,
64
+ ErniePreTrainedModel,
65
+ )
66
+
67
+ else:
68
+ import sys
69
+
70
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
llmeval-env/lib/python3.10/site-packages/transformers/models/ernie/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.21 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/ernie/__pycache__/configuration_ernie.cpython-310.pyc ADDED
Binary file (6.89 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/ernie/__pycache__/modeling_ernie.cpython-310.pyc ADDED
Binary file (52.9 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/ernie/configuration_ernie.py ADDED
@@ -0,0 +1,162 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The Google AI Language Team Authors and The HuggingFace Inc. team.
3
+ # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """ ERNIE model configuration"""
17
+ from collections import OrderedDict
18
+ from typing import Mapping
19
+
20
+ from ...configuration_utils import PretrainedConfig
21
+ from ...onnx import OnnxConfig
22
+ from ...utils import logging
23
+
24
+
25
+ logger = logging.get_logger(__name__)
26
+
27
+
28
+ from ..deprecated._archive_maps import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
29
+
30
+
31
+ class ErnieConfig(PretrainedConfig):
32
+ r"""
33
+ This is the configuration class to store the configuration of a [`ErnieModel`] or a [`TFErnieModel`]. It is used to
34
+ instantiate a ERNIE model according to the specified arguments, defining the model architecture. Instantiating a
35
+ configuration with the defaults will yield a similar configuration to that of the ERNIE
36
+ [nghuyong/ernie-3.0-base-zh](https://huggingface.co/nghuyong/ernie-3.0-base-zh) architecture.
37
+
38
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
39
+ documentation from [`PretrainedConfig`] for more information.
40
+
41
+
42
+ Args:
43
+ vocab_size (`int`, *optional*, defaults to 30522):
44
+ Vocabulary size of the ERNIE model. Defines the number of different tokens that can be represented by the
45
+ `inputs_ids` passed when calling [`ErnieModel`] or [`TFErnieModel`].
46
+ hidden_size (`int`, *optional*, defaults to 768):
47
+ Dimensionality of the encoder layers and the pooler layer.
48
+ num_hidden_layers (`int`, *optional*, defaults to 12):
49
+ Number of hidden layers in the Transformer encoder.
50
+ num_attention_heads (`int`, *optional*, defaults to 12):
51
+ Number of attention heads for each attention layer in the Transformer encoder.
52
+ intermediate_size (`int`, *optional*, defaults to 3072):
53
+ Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
54
+ hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
55
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
56
+ `"relu"`, `"silu"` and `"gelu_new"` are supported.
57
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
58
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
59
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
60
+ The dropout ratio for the attention probabilities.
61
+ max_position_embeddings (`int`, *optional*, defaults to 512):
62
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
63
+ just in case (e.g., 512 or 1024 or 2048).
64
+ type_vocab_size (`int`, *optional*, defaults to 2):
65
+ The vocabulary size of the `token_type_ids` passed when calling [`ErnieModel`] or [`TFErnieModel`].
66
+ task_type_vocab_size (`int`, *optional*, defaults to 3):
67
+ The vocabulary size of the `task_type_ids` for ERNIE2.0/ERNIE3.0 model
68
+ use_task_id (`bool`, *optional*, defaults to `False`):
69
+ Whether or not the model support `task_type_ids`
70
+ initializer_range (`float`, *optional*, defaults to 0.02):
71
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
72
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
73
+ The epsilon used by the layer normalization layers.
74
+ pad_token_id (`int`, *optional*, defaults to 0):
75
+ Padding token id.
76
+ position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
77
+ Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
78
+ positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
79
+ [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
80
+ For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
81
+ with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
82
+ use_cache (`bool`, *optional*, defaults to `True`):
83
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
84
+ relevant if `config.is_decoder=True`.
85
+ classifier_dropout (`float`, *optional*):
86
+ The dropout ratio for the classification head.
87
+
88
+ Examples:
89
+
90
+ ```python
91
+ >>> from transformers import ErnieConfig, ErnieModel
92
+
93
+ >>> # Initializing a ERNIE nghuyong/ernie-3.0-base-zh style configuration
94
+ >>> configuration = ErnieConfig()
95
+
96
+ >>> # Initializing a model (with random weights) from the nghuyong/ernie-3.0-base-zh style configuration
97
+ >>> model = ErnieModel(configuration)
98
+
99
+ >>> # Accessing the model configuration
100
+ >>> configuration = model.config
101
+ ```"""
102
+
103
+ model_type = "ernie"
104
+
105
+ def __init__(
106
+ self,
107
+ vocab_size=30522,
108
+ hidden_size=768,
109
+ num_hidden_layers=12,
110
+ num_attention_heads=12,
111
+ intermediate_size=3072,
112
+ hidden_act="gelu",
113
+ hidden_dropout_prob=0.1,
114
+ attention_probs_dropout_prob=0.1,
115
+ max_position_embeddings=512,
116
+ type_vocab_size=2,
117
+ task_type_vocab_size=3,
118
+ use_task_id=False,
119
+ initializer_range=0.02,
120
+ layer_norm_eps=1e-12,
121
+ pad_token_id=0,
122
+ position_embedding_type="absolute",
123
+ use_cache=True,
124
+ classifier_dropout=None,
125
+ **kwargs,
126
+ ):
127
+ super().__init__(pad_token_id=pad_token_id, **kwargs)
128
+
129
+ self.vocab_size = vocab_size
130
+ self.hidden_size = hidden_size
131
+ self.num_hidden_layers = num_hidden_layers
132
+ self.num_attention_heads = num_attention_heads
133
+ self.hidden_act = hidden_act
134
+ self.intermediate_size = intermediate_size
135
+ self.hidden_dropout_prob = hidden_dropout_prob
136
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
137
+ self.max_position_embeddings = max_position_embeddings
138
+ self.type_vocab_size = type_vocab_size
139
+ self.task_type_vocab_size = task_type_vocab_size
140
+ self.use_task_id = use_task_id
141
+ self.initializer_range = initializer_range
142
+ self.layer_norm_eps = layer_norm_eps
143
+ self.position_embedding_type = position_embedding_type
144
+ self.use_cache = use_cache
145
+ self.classifier_dropout = classifier_dropout
146
+
147
+
148
+ class ErnieOnnxConfig(OnnxConfig):
149
+ @property
150
+ def inputs(self) -> Mapping[str, Mapping[int, str]]:
151
+ if self.task == "multiple-choice":
152
+ dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
153
+ else:
154
+ dynamic_axis = {0: "batch", 1: "sequence"}
155
+ return OrderedDict(
156
+ [
157
+ ("input_ids", dynamic_axis),
158
+ ("attention_mask", dynamic_axis),
159
+ ("token_type_ids", dynamic_axis),
160
+ ("task_type_ids", dynamic_axis),
161
+ ]
162
+ )
llmeval-env/lib/python3.10/site-packages/transformers/models/ernie/modeling_ernie.py ADDED
@@ -0,0 +1,1820 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """PyTorch ERNIE model."""
16
+
17
+
18
+ import math
19
+ import warnings
20
+ from dataclasses import dataclass
21
+ from typing import List, Optional, Tuple, Union
22
+
23
+ import torch
24
+ import torch.utils.checkpoint
25
+ from torch import nn
26
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
27
+
28
+ from ...activations import ACT2FN
29
+ from ...modeling_outputs import (
30
+ BaseModelOutputWithPastAndCrossAttentions,
31
+ BaseModelOutputWithPoolingAndCrossAttentions,
32
+ CausalLMOutputWithCrossAttentions,
33
+ MaskedLMOutput,
34
+ MultipleChoiceModelOutput,
35
+ NextSentencePredictorOutput,
36
+ QuestionAnsweringModelOutput,
37
+ SequenceClassifierOutput,
38
+ TokenClassifierOutput,
39
+ )
40
+ from ...modeling_utils import PreTrainedModel
41
+ from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
42
+ from ...utils import (
43
+ ModelOutput,
44
+ add_code_sample_docstrings,
45
+ add_start_docstrings,
46
+ add_start_docstrings_to_model_forward,
47
+ logging,
48
+ replace_return_docstrings,
49
+ )
50
+ from .configuration_ernie import ErnieConfig
51
+
52
+
53
+ logger = logging.get_logger(__name__)
54
+
55
+ _CHECKPOINT_FOR_DOC = "nghuyong/ernie-1.0-base-zh"
56
+ _CONFIG_FOR_DOC = "ErnieConfig"
57
+
58
+
59
+ from ..deprecated._archive_maps import ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
60
+
61
+
62
+ class ErnieEmbeddings(nn.Module):
63
+ """Construct the embeddings from word, position and token_type embeddings."""
64
+
65
+ def __init__(self, config):
66
+ super().__init__()
67
+ self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
68
+ self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
69
+ self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
70
+ self.use_task_id = config.use_task_id
71
+ if config.use_task_id:
72
+ self.task_type_embeddings = nn.Embedding(config.task_type_vocab_size, config.hidden_size)
73
+
74
+ # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
75
+ # any TensorFlow checkpoint file
76
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
77
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
78
+ # position_ids (1, len position emb) is contiguous in memory and exported when serialized
79
+ self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
80
+ self.register_buffer(
81
+ "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
82
+ )
83
+ self.register_buffer(
84
+ "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
85
+ )
86
+
87
+ def forward(
88
+ self,
89
+ input_ids: Optional[torch.LongTensor] = None,
90
+ token_type_ids: Optional[torch.LongTensor] = None,
91
+ task_type_ids: Optional[torch.LongTensor] = None,
92
+ position_ids: Optional[torch.LongTensor] = None,
93
+ inputs_embeds: Optional[torch.FloatTensor] = None,
94
+ past_key_values_length: int = 0,
95
+ ) -> torch.Tensor:
96
+ if input_ids is not None:
97
+ input_shape = input_ids.size()
98
+ else:
99
+ input_shape = inputs_embeds.size()[:-1]
100
+
101
+ seq_length = input_shape[1]
102
+
103
+ if position_ids is None:
104
+ position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
105
+
106
+ # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
107
+ # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
108
+ # issue #5664
109
+ if token_type_ids is None:
110
+ if hasattr(self, "token_type_ids"):
111
+ buffered_token_type_ids = self.token_type_ids[:, :seq_length]
112
+ buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
113
+ token_type_ids = buffered_token_type_ids_expanded
114
+ else:
115
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
116
+
117
+ if inputs_embeds is None:
118
+ inputs_embeds = self.word_embeddings(input_ids)
119
+ token_type_embeddings = self.token_type_embeddings(token_type_ids)
120
+
121
+ embeddings = inputs_embeds + token_type_embeddings
122
+ if self.position_embedding_type == "absolute":
123
+ position_embeddings = self.position_embeddings(position_ids)
124
+ embeddings += position_embeddings
125
+
126
+ # add `task_type_id` for ERNIE model
127
+ if self.use_task_id:
128
+ if task_type_ids is None:
129
+ task_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
130
+ task_type_embeddings = self.task_type_embeddings(task_type_ids)
131
+ embeddings += task_type_embeddings
132
+
133
+ embeddings = self.LayerNorm(embeddings)
134
+ embeddings = self.dropout(embeddings)
135
+ return embeddings
136
+
137
+
138
+ # Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->Ernie
139
+ class ErnieSelfAttention(nn.Module):
140
+ def __init__(self, config, position_embedding_type=None):
141
+ super().__init__()
142
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
143
+ raise ValueError(
144
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
145
+ f"heads ({config.num_attention_heads})"
146
+ )
147
+
148
+ self.num_attention_heads = config.num_attention_heads
149
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
150
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
151
+
152
+ self.query = nn.Linear(config.hidden_size, self.all_head_size)
153
+ self.key = nn.Linear(config.hidden_size, self.all_head_size)
154
+ self.value = nn.Linear(config.hidden_size, self.all_head_size)
155
+
156
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
157
+ self.position_embedding_type = position_embedding_type or getattr(
158
+ config, "position_embedding_type", "absolute"
159
+ )
160
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
161
+ self.max_position_embeddings = config.max_position_embeddings
162
+ self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
163
+
164
+ self.is_decoder = config.is_decoder
165
+
166
+ def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
167
+ new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
168
+ x = x.view(new_x_shape)
169
+ return x.permute(0, 2, 1, 3)
170
+
171
+ def forward(
172
+ self,
173
+ hidden_states: torch.Tensor,
174
+ attention_mask: Optional[torch.FloatTensor] = None,
175
+ head_mask: Optional[torch.FloatTensor] = None,
176
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
177
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
178
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
179
+ output_attentions: Optional[bool] = False,
180
+ ) -> Tuple[torch.Tensor]:
181
+ mixed_query_layer = self.query(hidden_states)
182
+
183
+ # If this is instantiated as a cross-attention module, the keys
184
+ # and values come from an encoder; the attention mask needs to be
185
+ # such that the encoder's padding tokens are not attended to.
186
+ is_cross_attention = encoder_hidden_states is not None
187
+
188
+ if is_cross_attention and past_key_value is not None:
189
+ # reuse k,v, cross_attentions
190
+ key_layer = past_key_value[0]
191
+ value_layer = past_key_value[1]
192
+ attention_mask = encoder_attention_mask
193
+ elif is_cross_attention:
194
+ key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
195
+ value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
196
+ attention_mask = encoder_attention_mask
197
+ elif past_key_value is not None:
198
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
199
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
200
+ key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
201
+ value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
202
+ else:
203
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
204
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
205
+
206
+ query_layer = self.transpose_for_scores(mixed_query_layer)
207
+
208
+ use_cache = past_key_value is not None
209
+ if self.is_decoder:
210
+ # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
211
+ # Further calls to cross_attention layer can then reuse all cross-attention
212
+ # key/value_states (first "if" case)
213
+ # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
214
+ # all previous decoder key/value_states. Further calls to uni-directional self-attention
215
+ # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
216
+ # if encoder bi-directional self-attention `past_key_value` is always `None`
217
+ past_key_value = (key_layer, value_layer)
218
+
219
+ # Take the dot product between "query" and "key" to get the raw attention scores.
220
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
221
+
222
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
223
+ query_length, key_length = query_layer.shape[2], key_layer.shape[2]
224
+ if use_cache:
225
+ position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
226
+ -1, 1
227
+ )
228
+ else:
229
+ position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
230
+ position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
231
+ distance = position_ids_l - position_ids_r
232
+
233
+ positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
234
+ positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
235
+
236
+ if self.position_embedding_type == "relative_key":
237
+ relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
238
+ attention_scores = attention_scores + relative_position_scores
239
+ elif self.position_embedding_type == "relative_key_query":
240
+ relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
241
+ relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
242
+ attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
243
+
244
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
245
+ if attention_mask is not None:
246
+ # Apply the attention mask is (precomputed for all layers in ErnieModel forward() function)
247
+ attention_scores = attention_scores + attention_mask
248
+
249
+ # Normalize the attention scores to probabilities.
250
+ attention_probs = nn.functional.softmax(attention_scores, dim=-1)
251
+
252
+ # This is actually dropping out entire tokens to attend to, which might
253
+ # seem a bit unusual, but is taken from the original Transformer paper.
254
+ attention_probs = self.dropout(attention_probs)
255
+
256
+ # Mask heads if we want to
257
+ if head_mask is not None:
258
+ attention_probs = attention_probs * head_mask
259
+
260
+ context_layer = torch.matmul(attention_probs, value_layer)
261
+
262
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
263
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
264
+ context_layer = context_layer.view(new_context_layer_shape)
265
+
266
+ outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
267
+
268
+ if self.is_decoder:
269
+ outputs = outputs + (past_key_value,)
270
+ return outputs
271
+
272
+
273
+ # Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->Ernie
274
+ class ErnieSelfOutput(nn.Module):
275
+ def __init__(self, config):
276
+ super().__init__()
277
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
278
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
279
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
280
+
281
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
282
+ hidden_states = self.dense(hidden_states)
283
+ hidden_states = self.dropout(hidden_states)
284
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
285
+ return hidden_states
286
+
287
+
288
+ # Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->Ernie
289
+ class ErnieAttention(nn.Module):
290
+ def __init__(self, config, position_embedding_type=None):
291
+ super().__init__()
292
+ self.self = ErnieSelfAttention(config, position_embedding_type=position_embedding_type)
293
+ self.output = ErnieSelfOutput(config)
294
+ self.pruned_heads = set()
295
+
296
+ def prune_heads(self, heads):
297
+ if len(heads) == 0:
298
+ return
299
+ heads, index = find_pruneable_heads_and_indices(
300
+ heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
301
+ )
302
+
303
+ # Prune linear layers
304
+ self.self.query = prune_linear_layer(self.self.query, index)
305
+ self.self.key = prune_linear_layer(self.self.key, index)
306
+ self.self.value = prune_linear_layer(self.self.value, index)
307
+ self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
308
+
309
+ # Update hyper params and store pruned heads
310
+ self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
311
+ self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
312
+ self.pruned_heads = self.pruned_heads.union(heads)
313
+
314
+ def forward(
315
+ self,
316
+ hidden_states: torch.Tensor,
317
+ attention_mask: Optional[torch.FloatTensor] = None,
318
+ head_mask: Optional[torch.FloatTensor] = None,
319
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
320
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
321
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
322
+ output_attentions: Optional[bool] = False,
323
+ ) -> Tuple[torch.Tensor]:
324
+ self_outputs = self.self(
325
+ hidden_states,
326
+ attention_mask,
327
+ head_mask,
328
+ encoder_hidden_states,
329
+ encoder_attention_mask,
330
+ past_key_value,
331
+ output_attentions,
332
+ )
333
+ attention_output = self.output(self_outputs[0], hidden_states)
334
+ outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
335
+ return outputs
336
+
337
+
338
+ # Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->Ernie
339
+ class ErnieIntermediate(nn.Module):
340
+ def __init__(self, config):
341
+ super().__init__()
342
+ self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
343
+ if isinstance(config.hidden_act, str):
344
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
345
+ else:
346
+ self.intermediate_act_fn = config.hidden_act
347
+
348
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
349
+ hidden_states = self.dense(hidden_states)
350
+ hidden_states = self.intermediate_act_fn(hidden_states)
351
+ return hidden_states
352
+
353
+
354
+ # Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->Ernie
355
+ class ErnieOutput(nn.Module):
356
+ def __init__(self, config):
357
+ super().__init__()
358
+ self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
359
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
360
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
361
+
362
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
363
+ hidden_states = self.dense(hidden_states)
364
+ hidden_states = self.dropout(hidden_states)
365
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
366
+ return hidden_states
367
+
368
+
369
+ # Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->Ernie
370
+ class ErnieLayer(nn.Module):
371
+ def __init__(self, config):
372
+ super().__init__()
373
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
374
+ self.seq_len_dim = 1
375
+ self.attention = ErnieAttention(config)
376
+ self.is_decoder = config.is_decoder
377
+ self.add_cross_attention = config.add_cross_attention
378
+ if self.add_cross_attention:
379
+ if not self.is_decoder:
380
+ raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
381
+ self.crossattention = ErnieAttention(config, position_embedding_type="absolute")
382
+ self.intermediate = ErnieIntermediate(config)
383
+ self.output = ErnieOutput(config)
384
+
385
+ def forward(
386
+ self,
387
+ hidden_states: torch.Tensor,
388
+ attention_mask: Optional[torch.FloatTensor] = None,
389
+ head_mask: Optional[torch.FloatTensor] = None,
390
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
391
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
392
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
393
+ output_attentions: Optional[bool] = False,
394
+ ) -> Tuple[torch.Tensor]:
395
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
396
+ self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
397
+ self_attention_outputs = self.attention(
398
+ hidden_states,
399
+ attention_mask,
400
+ head_mask,
401
+ output_attentions=output_attentions,
402
+ past_key_value=self_attn_past_key_value,
403
+ )
404
+ attention_output = self_attention_outputs[0]
405
+
406
+ # if decoder, the last output is tuple of self-attn cache
407
+ if self.is_decoder:
408
+ outputs = self_attention_outputs[1:-1]
409
+ present_key_value = self_attention_outputs[-1]
410
+ else:
411
+ outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
412
+
413
+ cross_attn_present_key_value = None
414
+ if self.is_decoder and encoder_hidden_states is not None:
415
+ if not hasattr(self, "crossattention"):
416
+ raise ValueError(
417
+ f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
418
+ " by setting `config.add_cross_attention=True`"
419
+ )
420
+
421
+ # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
422
+ cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
423
+ cross_attention_outputs = self.crossattention(
424
+ attention_output,
425
+ attention_mask,
426
+ head_mask,
427
+ encoder_hidden_states,
428
+ encoder_attention_mask,
429
+ cross_attn_past_key_value,
430
+ output_attentions,
431
+ )
432
+ attention_output = cross_attention_outputs[0]
433
+ outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
434
+
435
+ # add cross-attn cache to positions 3,4 of present_key_value tuple
436
+ cross_attn_present_key_value = cross_attention_outputs[-1]
437
+ present_key_value = present_key_value + cross_attn_present_key_value
438
+
439
+ layer_output = apply_chunking_to_forward(
440
+ self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
441
+ )
442
+ outputs = (layer_output,) + outputs
443
+
444
+ # if decoder, return the attn key/values as the last output
445
+ if self.is_decoder:
446
+ outputs = outputs + (present_key_value,)
447
+
448
+ return outputs
449
+
450
+ def feed_forward_chunk(self, attention_output):
451
+ intermediate_output = self.intermediate(attention_output)
452
+ layer_output = self.output(intermediate_output, attention_output)
453
+ return layer_output
454
+
455
+
456
+ # Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->Ernie
457
+ class ErnieEncoder(nn.Module):
458
+ def __init__(self, config):
459
+ super().__init__()
460
+ self.config = config
461
+ self.layer = nn.ModuleList([ErnieLayer(config) for _ in range(config.num_hidden_layers)])
462
+ self.gradient_checkpointing = False
463
+
464
+ def forward(
465
+ self,
466
+ hidden_states: torch.Tensor,
467
+ attention_mask: Optional[torch.FloatTensor] = None,
468
+ head_mask: Optional[torch.FloatTensor] = None,
469
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
470
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
471
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
472
+ use_cache: Optional[bool] = None,
473
+ output_attentions: Optional[bool] = False,
474
+ output_hidden_states: Optional[bool] = False,
475
+ return_dict: Optional[bool] = True,
476
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
477
+ all_hidden_states = () if output_hidden_states else None
478
+ all_self_attentions = () if output_attentions else None
479
+ all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
480
+
481
+ if self.gradient_checkpointing and self.training:
482
+ if use_cache:
483
+ logger.warning_once(
484
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
485
+ )
486
+ use_cache = False
487
+
488
+ next_decoder_cache = () if use_cache else None
489
+ for i, layer_module in enumerate(self.layer):
490
+ if output_hidden_states:
491
+ all_hidden_states = all_hidden_states + (hidden_states,)
492
+
493
+ layer_head_mask = head_mask[i] if head_mask is not None else None
494
+ past_key_value = past_key_values[i] if past_key_values is not None else None
495
+
496
+ if self.gradient_checkpointing and self.training:
497
+ layer_outputs = self._gradient_checkpointing_func(
498
+ layer_module.__call__,
499
+ hidden_states,
500
+ attention_mask,
501
+ layer_head_mask,
502
+ encoder_hidden_states,
503
+ encoder_attention_mask,
504
+ past_key_value,
505
+ output_attentions,
506
+ )
507
+ else:
508
+ layer_outputs = layer_module(
509
+ hidden_states,
510
+ attention_mask,
511
+ layer_head_mask,
512
+ encoder_hidden_states,
513
+ encoder_attention_mask,
514
+ past_key_value,
515
+ output_attentions,
516
+ )
517
+
518
+ hidden_states = layer_outputs[0]
519
+ if use_cache:
520
+ next_decoder_cache += (layer_outputs[-1],)
521
+ if output_attentions:
522
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
523
+ if self.config.add_cross_attention:
524
+ all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
525
+
526
+ if output_hidden_states:
527
+ all_hidden_states = all_hidden_states + (hidden_states,)
528
+
529
+ if not return_dict:
530
+ return tuple(
531
+ v
532
+ for v in [
533
+ hidden_states,
534
+ next_decoder_cache,
535
+ all_hidden_states,
536
+ all_self_attentions,
537
+ all_cross_attentions,
538
+ ]
539
+ if v is not None
540
+ )
541
+ return BaseModelOutputWithPastAndCrossAttentions(
542
+ last_hidden_state=hidden_states,
543
+ past_key_values=next_decoder_cache,
544
+ hidden_states=all_hidden_states,
545
+ attentions=all_self_attentions,
546
+ cross_attentions=all_cross_attentions,
547
+ )
548
+
549
+
550
+ # Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->Ernie
551
+ class ErniePooler(nn.Module):
552
+ def __init__(self, config):
553
+ super().__init__()
554
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
555
+ self.activation = nn.Tanh()
556
+
557
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
558
+ # We "pool" the model by simply taking the hidden state corresponding
559
+ # to the first token.
560
+ first_token_tensor = hidden_states[:, 0]
561
+ pooled_output = self.dense(first_token_tensor)
562
+ pooled_output = self.activation(pooled_output)
563
+ return pooled_output
564
+
565
+
566
+ # Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform with Bert->Ernie
567
+ class ErniePredictionHeadTransform(nn.Module):
568
+ def __init__(self, config):
569
+ super().__init__()
570
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
571
+ if isinstance(config.hidden_act, str):
572
+ self.transform_act_fn = ACT2FN[config.hidden_act]
573
+ else:
574
+ self.transform_act_fn = config.hidden_act
575
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
576
+
577
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
578
+ hidden_states = self.dense(hidden_states)
579
+ hidden_states = self.transform_act_fn(hidden_states)
580
+ hidden_states = self.LayerNorm(hidden_states)
581
+ return hidden_states
582
+
583
+
584
+ # Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->Ernie
585
+ class ErnieLMPredictionHead(nn.Module):
586
+ def __init__(self, config):
587
+ super().__init__()
588
+ self.transform = ErniePredictionHeadTransform(config)
589
+
590
+ # The output weights are the same as the input embeddings, but there is
591
+ # an output-only bias for each token.
592
+ self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
593
+
594
+ self.bias = nn.Parameter(torch.zeros(config.vocab_size))
595
+
596
+ # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
597
+ self.decoder.bias = self.bias
598
+
599
+ def forward(self, hidden_states):
600
+ hidden_states = self.transform(hidden_states)
601
+ hidden_states = self.decoder(hidden_states)
602
+ return hidden_states
603
+
604
+
605
+ # Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->Ernie
606
+ class ErnieOnlyMLMHead(nn.Module):
607
+ def __init__(self, config):
608
+ super().__init__()
609
+ self.predictions = ErnieLMPredictionHead(config)
610
+
611
+ def forward(self, sequence_output: torch.Tensor) -> torch.Tensor:
612
+ prediction_scores = self.predictions(sequence_output)
613
+ return prediction_scores
614
+
615
+
616
+ # Copied from transformers.models.bert.modeling_bert.BertOnlyNSPHead with Bert->Ernie
617
+ class ErnieOnlyNSPHead(nn.Module):
618
+ def __init__(self, config):
619
+ super().__init__()
620
+ self.seq_relationship = nn.Linear(config.hidden_size, 2)
621
+
622
+ def forward(self, pooled_output):
623
+ seq_relationship_score = self.seq_relationship(pooled_output)
624
+ return seq_relationship_score
625
+
626
+
627
+ # Copied from transformers.models.bert.modeling_bert.BertPreTrainingHeads with Bert->Ernie
628
+ class ErniePreTrainingHeads(nn.Module):
629
+ def __init__(self, config):
630
+ super().__init__()
631
+ self.predictions = ErnieLMPredictionHead(config)
632
+ self.seq_relationship = nn.Linear(config.hidden_size, 2)
633
+
634
+ def forward(self, sequence_output, pooled_output):
635
+ prediction_scores = self.predictions(sequence_output)
636
+ seq_relationship_score = self.seq_relationship(pooled_output)
637
+ return prediction_scores, seq_relationship_score
638
+
639
+
640
+ class ErniePreTrainedModel(PreTrainedModel):
641
+ """
642
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
643
+ models.
644
+ """
645
+
646
+ config_class = ErnieConfig
647
+ base_model_prefix = "ernie"
648
+ supports_gradient_checkpointing = True
649
+
650
+ def _init_weights(self, module):
651
+ """Initialize the weights"""
652
+ if isinstance(module, nn.Linear):
653
+ # Slightly different from the TF version which uses truncated_normal for initialization
654
+ # cf https://github.com/pytorch/pytorch/pull/5617
655
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
656
+ if module.bias is not None:
657
+ module.bias.data.zero_()
658
+ elif isinstance(module, nn.Embedding):
659
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
660
+ if module.padding_idx is not None:
661
+ module.weight.data[module.padding_idx].zero_()
662
+ elif isinstance(module, nn.LayerNorm):
663
+ module.bias.data.zero_()
664
+ module.weight.data.fill_(1.0)
665
+
666
+
667
+ @dataclass
668
+ # Copied from transformers.models.bert.modeling_bert.BertForPreTrainingOutput with Bert->Ernie
669
+ class ErnieForPreTrainingOutput(ModelOutput):
670
+ """
671
+ Output type of [`ErnieForPreTraining`].
672
+
673
+ Args:
674
+ loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
675
+ Total loss as the sum of the masked language modeling loss and the next sequence prediction
676
+ (classification) loss.
677
+ prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
678
+ Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
679
+ seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`):
680
+ Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation
681
+ before SoftMax).
682
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
683
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
684
+ shape `(batch_size, sequence_length, hidden_size)`.
685
+
686
+ Hidden-states of the model at the output of each layer plus the initial embedding outputs.
687
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
688
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
689
+ sequence_length)`.
690
+
691
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
692
+ heads.
693
+ """
694
+
695
+ loss: Optional[torch.FloatTensor] = None
696
+ prediction_logits: torch.FloatTensor = None
697
+ seq_relationship_logits: torch.FloatTensor = None
698
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
699
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
700
+
701
+
702
+ ERNIE_START_DOCSTRING = r"""
703
+
704
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
705
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
706
+ etc.)
707
+
708
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
709
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
710
+ and behavior.
711
+
712
+ Parameters:
713
+ config ([`ErnieConfig`]): Model configuration class with all the parameters of the model.
714
+ Initializing with a config file does not load the weights associated with the model, only the
715
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
716
+ """
717
+
718
+ ERNIE_INPUTS_DOCSTRING = r"""
719
+ Args:
720
+ input_ids (`torch.LongTensor` of shape `({0})`):
721
+ Indices of input sequence tokens in the vocabulary.
722
+
723
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
724
+ [`PreTrainedTokenizer.__call__`] for details.
725
+
726
+ [What are input IDs?](../glossary#input-ids)
727
+ attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
728
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
729
+
730
+ - 1 for tokens that are **not masked**,
731
+ - 0 for tokens that are **masked**.
732
+
733
+ [What are attention masks?](../glossary#attention-mask)
734
+ token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
735
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
736
+ 1]`:
737
+
738
+ - 0 corresponds to a *sentence A* token,
739
+ - 1 corresponds to a *sentence B* token.
740
+
741
+ [What are token type IDs?](../glossary#token-type-ids)
742
+ task_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
743
+ Task type embedding is a special embedding to represent the characteristic of different tasks, such as
744
+ word-aware pre-training task, structure-aware pre-training task and semantic-aware pre-training task. We
745
+ assign a `task_type_id` to each task and the `task_type_id` is in the range `[0,
746
+ config.task_type_vocab_size-1]
747
+ position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
748
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
749
+ config.max_position_embeddings - 1]`.
750
+
751
+ [What are position IDs?](../glossary#position-ids)
752
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
753
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
754
+
755
+ - 1 indicates the head is **not masked**,
756
+ - 0 indicates the head is **masked**.
757
+
758
+ inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
759
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
760
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
761
+ model's internal embedding lookup matrix.
762
+ output_attentions (`bool`, *optional*):
763
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
764
+ tensors for more detail.
765
+ output_hidden_states (`bool`, *optional*):
766
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
767
+ more detail.
768
+ return_dict (`bool`, *optional*):
769
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
770
+ """
771
+
772
+
773
+ @add_start_docstrings(
774
+ "The bare Ernie Model transformer outputting raw hidden-states without any specific head on top.",
775
+ ERNIE_START_DOCSTRING,
776
+ )
777
+ class ErnieModel(ErniePreTrainedModel):
778
+ """
779
+
780
+ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
781
+ cross-attention is added between the self-attention layers, following the architecture described in [Attention is
782
+ all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
783
+ Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
784
+
785
+ To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
786
+ to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
787
+ `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
788
+ """
789
+
790
+ # Copied from transformers.models.bert.modeling_bert.BertModel.__init__ with Bert->Ernie
791
+ def __init__(self, config, add_pooling_layer=True):
792
+ super().__init__(config)
793
+ self.config = config
794
+
795
+ self.embeddings = ErnieEmbeddings(config)
796
+ self.encoder = ErnieEncoder(config)
797
+
798
+ self.pooler = ErniePooler(config) if add_pooling_layer else None
799
+
800
+ # Initialize weights and apply final processing
801
+ self.post_init()
802
+
803
+ # Copied from transformers.models.bert.modeling_bert.BertModel.get_input_embeddings
804
+ def get_input_embeddings(self):
805
+ return self.embeddings.word_embeddings
806
+
807
+ # Copied from transformers.models.bert.modeling_bert.BertModel.set_input_embeddings
808
+ def set_input_embeddings(self, value):
809
+ self.embeddings.word_embeddings = value
810
+
811
+ # Copied from transformers.models.bert.modeling_bert.BertModel._prune_heads
812
+ def _prune_heads(self, heads_to_prune):
813
+ """
814
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
815
+ class PreTrainedModel
816
+ """
817
+ for layer, heads in heads_to_prune.items():
818
+ self.encoder.layer[layer].attention.prune_heads(heads)
819
+
820
+ @add_start_docstrings_to_model_forward(ERNIE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
821
+ @add_code_sample_docstrings(
822
+ checkpoint=_CHECKPOINT_FOR_DOC,
823
+ output_type=BaseModelOutputWithPoolingAndCrossAttentions,
824
+ config_class=_CONFIG_FOR_DOC,
825
+ )
826
+ def forward(
827
+ self,
828
+ input_ids: Optional[torch.Tensor] = None,
829
+ attention_mask: Optional[torch.Tensor] = None,
830
+ token_type_ids: Optional[torch.Tensor] = None,
831
+ task_type_ids: Optional[torch.Tensor] = None,
832
+ position_ids: Optional[torch.Tensor] = None,
833
+ head_mask: Optional[torch.Tensor] = None,
834
+ inputs_embeds: Optional[torch.Tensor] = None,
835
+ encoder_hidden_states: Optional[torch.Tensor] = None,
836
+ encoder_attention_mask: Optional[torch.Tensor] = None,
837
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
838
+ use_cache: Optional[bool] = None,
839
+ output_attentions: Optional[bool] = None,
840
+ output_hidden_states: Optional[bool] = None,
841
+ return_dict: Optional[bool] = None,
842
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
843
+ r"""
844
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
845
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
846
+ the model is configured as a decoder.
847
+ encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
848
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
849
+ the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
850
+
851
+ - 1 for tokens that are **not masked**,
852
+ - 0 for tokens that are **masked**.
853
+ past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
854
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
855
+
856
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
857
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
858
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
859
+ use_cache (`bool`, *optional*):
860
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
861
+ `past_key_values`).
862
+ """
863
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
864
+ output_hidden_states = (
865
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
866
+ )
867
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
868
+
869
+ if self.config.is_decoder:
870
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
871
+ else:
872
+ use_cache = False
873
+
874
+ if input_ids is not None and inputs_embeds is not None:
875
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
876
+ elif input_ids is not None:
877
+ self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
878
+ input_shape = input_ids.size()
879
+ elif inputs_embeds is not None:
880
+ input_shape = inputs_embeds.size()[:-1]
881
+ else:
882
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
883
+
884
+ batch_size, seq_length = input_shape
885
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
886
+
887
+ # past_key_values_length
888
+ past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
889
+
890
+ if attention_mask is None:
891
+ attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
892
+
893
+ if token_type_ids is None:
894
+ if hasattr(self.embeddings, "token_type_ids"):
895
+ buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
896
+ buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
897
+ token_type_ids = buffered_token_type_ids_expanded
898
+ else:
899
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
900
+
901
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
902
+ # ourselves in which case we just need to make it broadcastable to all heads.
903
+ extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
904
+
905
+ # If a 2D or 3D attention mask is provided for the cross-attention
906
+ # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
907
+ if self.config.is_decoder and encoder_hidden_states is not None:
908
+ encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
909
+ encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
910
+ if encoder_attention_mask is None:
911
+ encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
912
+ encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
913
+ else:
914
+ encoder_extended_attention_mask = None
915
+
916
+ # Prepare head mask if needed
917
+ # 1.0 in head_mask indicate we keep the head
918
+ # attention_probs has shape bsz x n_heads x N x N
919
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
920
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
921
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
922
+
923
+ embedding_output = self.embeddings(
924
+ input_ids=input_ids,
925
+ position_ids=position_ids,
926
+ token_type_ids=token_type_ids,
927
+ task_type_ids=task_type_ids,
928
+ inputs_embeds=inputs_embeds,
929
+ past_key_values_length=past_key_values_length,
930
+ )
931
+ encoder_outputs = self.encoder(
932
+ embedding_output,
933
+ attention_mask=extended_attention_mask,
934
+ head_mask=head_mask,
935
+ encoder_hidden_states=encoder_hidden_states,
936
+ encoder_attention_mask=encoder_extended_attention_mask,
937
+ past_key_values=past_key_values,
938
+ use_cache=use_cache,
939
+ output_attentions=output_attentions,
940
+ output_hidden_states=output_hidden_states,
941
+ return_dict=return_dict,
942
+ )
943
+ sequence_output = encoder_outputs[0]
944
+ pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
945
+
946
+ if not return_dict:
947
+ return (sequence_output, pooled_output) + encoder_outputs[1:]
948
+
949
+ return BaseModelOutputWithPoolingAndCrossAttentions(
950
+ last_hidden_state=sequence_output,
951
+ pooler_output=pooled_output,
952
+ past_key_values=encoder_outputs.past_key_values,
953
+ hidden_states=encoder_outputs.hidden_states,
954
+ attentions=encoder_outputs.attentions,
955
+ cross_attentions=encoder_outputs.cross_attentions,
956
+ )
957
+
958
+
959
+ @add_start_docstrings(
960
+ """
961
+ Ernie Model with two heads on top as done during the pretraining: a `masked language modeling` head and a `next
962
+ sentence prediction (classification)` head.
963
+ """,
964
+ ERNIE_START_DOCSTRING,
965
+ )
966
+ class ErnieForPreTraining(ErniePreTrainedModel):
967
+ _tied_weights_keys = ["cls.predictions.decoder.bias", "cls.predictions.decoder.weight"]
968
+
969
+ # Copied from transformers.models.bert.modeling_bert.BertForPreTraining.__init__ with Bert->Ernie,bert->ernie
970
+ def __init__(self, config):
971
+ super().__init__(config)
972
+
973
+ self.ernie = ErnieModel(config)
974
+ self.cls = ErniePreTrainingHeads(config)
975
+
976
+ # Initialize weights and apply final processing
977
+ self.post_init()
978
+
979
+ # Copied from transformers.models.bert.modeling_bert.BertForPreTraining.get_output_embeddings
980
+ def get_output_embeddings(self):
981
+ return self.cls.predictions.decoder
982
+
983
+ # Copied from transformers.models.bert.modeling_bert.BertForPreTraining.set_output_embeddings
984
+ def set_output_embeddings(self, new_embeddings):
985
+ self.cls.predictions.decoder = new_embeddings
986
+
987
+ @add_start_docstrings_to_model_forward(ERNIE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
988
+ @replace_return_docstrings(output_type=ErnieForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
989
+ def forward(
990
+ self,
991
+ input_ids: Optional[torch.Tensor] = None,
992
+ attention_mask: Optional[torch.Tensor] = None,
993
+ token_type_ids: Optional[torch.Tensor] = None,
994
+ task_type_ids: Optional[torch.Tensor] = None,
995
+ position_ids: Optional[torch.Tensor] = None,
996
+ head_mask: Optional[torch.Tensor] = None,
997
+ inputs_embeds: Optional[torch.Tensor] = None,
998
+ labels: Optional[torch.Tensor] = None,
999
+ next_sentence_label: Optional[torch.Tensor] = None,
1000
+ output_attentions: Optional[bool] = None,
1001
+ output_hidden_states: Optional[bool] = None,
1002
+ return_dict: Optional[bool] = None,
1003
+ ) -> Union[Tuple[torch.Tensor], ErnieForPreTrainingOutput]:
1004
+ r"""
1005
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1006
+ Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
1007
+ config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked),
1008
+ the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
1009
+ next_sentence_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1010
+ Labels for computing the next sequence prediction (classification) loss. Input should be a sequence
1011
+ pair (see `input_ids` docstring) Indices should be in `[0, 1]`:
1012
+
1013
+ - 0 indicates sequence B is a continuation of sequence A,
1014
+ - 1 indicates sequence B is a random sequence.
1015
+ kwargs (`Dict[str, any]`, optional, defaults to *{}*):
1016
+ Used to hide legacy arguments that have been deprecated.
1017
+
1018
+ Returns:
1019
+
1020
+ Example:
1021
+
1022
+ ```python
1023
+ >>> from transformers import AutoTokenizer, ErnieForPreTraining
1024
+ >>> import torch
1025
+
1026
+ >>> tokenizer = AutoTokenizer.from_pretrained("nghuyong/ernie-1.0-base-zh")
1027
+ >>> model = ErnieForPreTraining.from_pretrained("nghuyong/ernie-1.0-base-zh")
1028
+
1029
+ >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
1030
+ >>> outputs = model(**inputs)
1031
+
1032
+ >>> prediction_logits = outputs.prediction_logits
1033
+ >>> seq_relationship_logits = outputs.seq_relationship_logits
1034
+ ```
1035
+ """
1036
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1037
+
1038
+ outputs = self.ernie(
1039
+ input_ids,
1040
+ attention_mask=attention_mask,
1041
+ token_type_ids=token_type_ids,
1042
+ task_type_ids=task_type_ids,
1043
+ position_ids=position_ids,
1044
+ head_mask=head_mask,
1045
+ inputs_embeds=inputs_embeds,
1046
+ output_attentions=output_attentions,
1047
+ output_hidden_states=output_hidden_states,
1048
+ return_dict=return_dict,
1049
+ )
1050
+
1051
+ sequence_output, pooled_output = outputs[:2]
1052
+ prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)
1053
+
1054
+ total_loss = None
1055
+ if labels is not None and next_sentence_label is not None:
1056
+ loss_fct = CrossEntropyLoss()
1057
+ masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
1058
+ next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
1059
+ total_loss = masked_lm_loss + next_sentence_loss
1060
+
1061
+ if not return_dict:
1062
+ output = (prediction_scores, seq_relationship_score) + outputs[2:]
1063
+ return ((total_loss,) + output) if total_loss is not None else output
1064
+
1065
+ return ErnieForPreTrainingOutput(
1066
+ loss=total_loss,
1067
+ prediction_logits=prediction_scores,
1068
+ seq_relationship_logits=seq_relationship_score,
1069
+ hidden_states=outputs.hidden_states,
1070
+ attentions=outputs.attentions,
1071
+ )
1072
+
1073
+
1074
+ @add_start_docstrings(
1075
+ """Ernie Model with a `language modeling` head on top for CLM fine-tuning.""", ERNIE_START_DOCSTRING
1076
+ )
1077
+ class ErnieForCausalLM(ErniePreTrainedModel):
1078
+ _tied_weights_keys = ["cls.predictions.decoder.bias", "cls.predictions.decoder.weight"]
1079
+
1080
+ # Copied from transformers.models.bert.modeling_bert.BertLMHeadModel.__init__ with BertLMHeadModel->ErnieForCausalLM,Bert->Ernie,bert->ernie
1081
+ def __init__(self, config):
1082
+ super().__init__(config)
1083
+
1084
+ if not config.is_decoder:
1085
+ logger.warning("If you want to use `ErnieForCausalLM` as a standalone, add `is_decoder=True.`")
1086
+
1087
+ self.ernie = ErnieModel(config, add_pooling_layer=False)
1088
+ self.cls = ErnieOnlyMLMHead(config)
1089
+
1090
+ # Initialize weights and apply final processing
1091
+ self.post_init()
1092
+
1093
+ # Copied from transformers.models.bert.modeling_bert.BertLMHeadModel.get_output_embeddings
1094
+ def get_output_embeddings(self):
1095
+ return self.cls.predictions.decoder
1096
+
1097
+ # Copied from transformers.models.bert.modeling_bert.BertLMHeadModel.set_output_embeddings
1098
+ def set_output_embeddings(self, new_embeddings):
1099
+ self.cls.predictions.decoder = new_embeddings
1100
+
1101
+ @add_start_docstrings_to_model_forward(ERNIE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
1102
+ @add_code_sample_docstrings(
1103
+ checkpoint=_CHECKPOINT_FOR_DOC,
1104
+ output_type=CausalLMOutputWithCrossAttentions,
1105
+ config_class=_CONFIG_FOR_DOC,
1106
+ )
1107
+ def forward(
1108
+ self,
1109
+ input_ids: Optional[torch.Tensor] = None,
1110
+ attention_mask: Optional[torch.Tensor] = None,
1111
+ token_type_ids: Optional[torch.Tensor] = None,
1112
+ task_type_ids: Optional[torch.Tensor] = None,
1113
+ position_ids: Optional[torch.Tensor] = None,
1114
+ head_mask: Optional[torch.Tensor] = None,
1115
+ inputs_embeds: Optional[torch.Tensor] = None,
1116
+ encoder_hidden_states: Optional[torch.Tensor] = None,
1117
+ encoder_attention_mask: Optional[torch.Tensor] = None,
1118
+ labels: Optional[torch.Tensor] = None,
1119
+ past_key_values: Optional[List[torch.Tensor]] = None,
1120
+ use_cache: Optional[bool] = None,
1121
+ output_attentions: Optional[bool] = None,
1122
+ output_hidden_states: Optional[bool] = None,
1123
+ return_dict: Optional[bool] = None,
1124
+ ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
1125
+ r"""
1126
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1127
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
1128
+ the model is configured as a decoder.
1129
+ encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
1130
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
1131
+ the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
1132
+
1133
+ - 1 for tokens that are **not masked**,
1134
+ - 0 for tokens that are **masked**.
1135
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1136
+ Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
1137
+ `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
1138
+ ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`
1139
+ past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
1140
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
1141
+
1142
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
1143
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
1144
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
1145
+ use_cache (`bool`, *optional*):
1146
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
1147
+ `past_key_values`).
1148
+ """
1149
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1150
+ if labels is not None:
1151
+ use_cache = False
1152
+
1153
+ outputs = self.ernie(
1154
+ input_ids,
1155
+ attention_mask=attention_mask,
1156
+ token_type_ids=token_type_ids,
1157
+ task_type_ids=task_type_ids,
1158
+ position_ids=position_ids,
1159
+ head_mask=head_mask,
1160
+ inputs_embeds=inputs_embeds,
1161
+ encoder_hidden_states=encoder_hidden_states,
1162
+ encoder_attention_mask=encoder_attention_mask,
1163
+ past_key_values=past_key_values,
1164
+ use_cache=use_cache,
1165
+ output_attentions=output_attentions,
1166
+ output_hidden_states=output_hidden_states,
1167
+ return_dict=return_dict,
1168
+ )
1169
+
1170
+ sequence_output = outputs[0]
1171
+ prediction_scores = self.cls(sequence_output)
1172
+
1173
+ lm_loss = None
1174
+ if labels is not None:
1175
+ # we are doing next-token prediction; shift prediction scores and input ids by one
1176
+ shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
1177
+ labels = labels[:, 1:].contiguous()
1178
+ loss_fct = CrossEntropyLoss()
1179
+ lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
1180
+
1181
+ if not return_dict:
1182
+ output = (prediction_scores,) + outputs[2:]
1183
+ return ((lm_loss,) + output) if lm_loss is not None else output
1184
+
1185
+ return CausalLMOutputWithCrossAttentions(
1186
+ loss=lm_loss,
1187
+ logits=prediction_scores,
1188
+ past_key_values=outputs.past_key_values,
1189
+ hidden_states=outputs.hidden_states,
1190
+ attentions=outputs.attentions,
1191
+ cross_attentions=outputs.cross_attentions,
1192
+ )
1193
+
1194
+ # Copied from transformers.models.bert.modeling_bert.BertLMHeadModel.prepare_inputs_for_generation
1195
+ def prepare_inputs_for_generation(
1196
+ self, input_ids, past_key_values=None, attention_mask=None, use_cache=True, **model_kwargs
1197
+ ):
1198
+ input_shape = input_ids.shape
1199
+ # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
1200
+ if attention_mask is None:
1201
+ attention_mask = input_ids.new_ones(input_shape)
1202
+
1203
+ # cut decoder_input_ids if past_key_values is used
1204
+ if past_key_values is not None:
1205
+ past_length = past_key_values[0][0].shape[2]
1206
+
1207
+ # Some generation methods already pass only the last input ID
1208
+ if input_ids.shape[1] > past_length:
1209
+ remove_prefix_length = past_length
1210
+ else:
1211
+ # Default to old behavior: keep only final ID
1212
+ remove_prefix_length = input_ids.shape[1] - 1
1213
+
1214
+ input_ids = input_ids[:, remove_prefix_length:]
1215
+
1216
+ return {
1217
+ "input_ids": input_ids,
1218
+ "attention_mask": attention_mask,
1219
+ "past_key_values": past_key_values,
1220
+ "use_cache": use_cache,
1221
+ }
1222
+
1223
+ # Copied from transformers.models.bert.modeling_bert.BertLMHeadModel._reorder_cache
1224
+ def _reorder_cache(self, past_key_values, beam_idx):
1225
+ reordered_past = ()
1226
+ for layer_past in past_key_values:
1227
+ reordered_past += (
1228
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1229
+ )
1230
+ return reordered_past
1231
+
1232
+
1233
+ @add_start_docstrings("""Ernie Model with a `language modeling` head on top.""", ERNIE_START_DOCSTRING)
1234
+ class ErnieForMaskedLM(ErniePreTrainedModel):
1235
+ _tied_weights_keys = ["cls.predictions.decoder.bias", "cls.predictions.decoder.weight"]
1236
+
1237
+ # Copied from transformers.models.bert.modeling_bert.BertForMaskedLM.__init__ with Bert->Ernie,bert->ernie
1238
+ def __init__(self, config):
1239
+ super().__init__(config)
1240
+
1241
+ if config.is_decoder:
1242
+ logger.warning(
1243
+ "If you want to use `ErnieForMaskedLM` make sure `config.is_decoder=False` for "
1244
+ "bi-directional self-attention."
1245
+ )
1246
+
1247
+ self.ernie = ErnieModel(config, add_pooling_layer=False)
1248
+ self.cls = ErnieOnlyMLMHead(config)
1249
+
1250
+ # Initialize weights and apply final processing
1251
+ self.post_init()
1252
+
1253
+ # Copied from transformers.models.bert.modeling_bert.BertForMaskedLM.get_output_embeddings
1254
+ def get_output_embeddings(self):
1255
+ return self.cls.predictions.decoder
1256
+
1257
+ # Copied from transformers.models.bert.modeling_bert.BertForMaskedLM.set_output_embeddings
1258
+ def set_output_embeddings(self, new_embeddings):
1259
+ self.cls.predictions.decoder = new_embeddings
1260
+
1261
+ @add_start_docstrings_to_model_forward(ERNIE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
1262
+ @add_code_sample_docstrings(
1263
+ checkpoint=_CHECKPOINT_FOR_DOC,
1264
+ output_type=MaskedLMOutput,
1265
+ config_class=_CONFIG_FOR_DOC,
1266
+ expected_output="'paris'",
1267
+ expected_loss=0.88,
1268
+ )
1269
+ def forward(
1270
+ self,
1271
+ input_ids: Optional[torch.Tensor] = None,
1272
+ attention_mask: Optional[torch.Tensor] = None,
1273
+ token_type_ids: Optional[torch.Tensor] = None,
1274
+ task_type_ids: Optional[torch.Tensor] = None,
1275
+ position_ids: Optional[torch.Tensor] = None,
1276
+ head_mask: Optional[torch.Tensor] = None,
1277
+ inputs_embeds: Optional[torch.Tensor] = None,
1278
+ encoder_hidden_states: Optional[torch.Tensor] = None,
1279
+ encoder_attention_mask: Optional[torch.Tensor] = None,
1280
+ labels: Optional[torch.Tensor] = None,
1281
+ output_attentions: Optional[bool] = None,
1282
+ output_hidden_states: Optional[bool] = None,
1283
+ return_dict: Optional[bool] = None,
1284
+ ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
1285
+ r"""
1286
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1287
+ Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
1288
+ config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
1289
+ loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
1290
+ """
1291
+
1292
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1293
+
1294
+ outputs = self.ernie(
1295
+ input_ids,
1296
+ attention_mask=attention_mask,
1297
+ token_type_ids=token_type_ids,
1298
+ task_type_ids=task_type_ids,
1299
+ position_ids=position_ids,
1300
+ head_mask=head_mask,
1301
+ inputs_embeds=inputs_embeds,
1302
+ encoder_hidden_states=encoder_hidden_states,
1303
+ encoder_attention_mask=encoder_attention_mask,
1304
+ output_attentions=output_attentions,
1305
+ output_hidden_states=output_hidden_states,
1306
+ return_dict=return_dict,
1307
+ )
1308
+
1309
+ sequence_output = outputs[0]
1310
+ prediction_scores = self.cls(sequence_output)
1311
+
1312
+ masked_lm_loss = None
1313
+ if labels is not None:
1314
+ loss_fct = CrossEntropyLoss() # -100 index = padding token
1315
+ masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
1316
+
1317
+ if not return_dict:
1318
+ output = (prediction_scores,) + outputs[2:]
1319
+ return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
1320
+
1321
+ return MaskedLMOutput(
1322
+ loss=masked_lm_loss,
1323
+ logits=prediction_scores,
1324
+ hidden_states=outputs.hidden_states,
1325
+ attentions=outputs.attentions,
1326
+ )
1327
+
1328
+ # Copied from transformers.models.bert.modeling_bert.BertForMaskedLM.prepare_inputs_for_generation
1329
+ def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs):
1330
+ input_shape = input_ids.shape
1331
+ effective_batch_size = input_shape[0]
1332
+
1333
+ # add a dummy token
1334
+ if self.config.pad_token_id is None:
1335
+ raise ValueError("The PAD token should be defined for generation")
1336
+
1337
+ attention_mask = torch.cat([attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1)
1338
+ dummy_token = torch.full(
1339
+ (effective_batch_size, 1), self.config.pad_token_id, dtype=torch.long, device=input_ids.device
1340
+ )
1341
+ input_ids = torch.cat([input_ids, dummy_token], dim=1)
1342
+
1343
+ return {"input_ids": input_ids, "attention_mask": attention_mask}
1344
+
1345
+
1346
+ @add_start_docstrings(
1347
+ """Ernie Model with a `next sentence prediction (classification)` head on top.""",
1348
+ ERNIE_START_DOCSTRING,
1349
+ )
1350
+ class ErnieForNextSentencePrediction(ErniePreTrainedModel):
1351
+ # Copied from transformers.models.bert.modeling_bert.BertForNextSentencePrediction.__init__ with Bert->Ernie,bert->ernie
1352
+ def __init__(self, config):
1353
+ super().__init__(config)
1354
+
1355
+ self.ernie = ErnieModel(config)
1356
+ self.cls = ErnieOnlyNSPHead(config)
1357
+
1358
+ # Initialize weights and apply final processing
1359
+ self.post_init()
1360
+
1361
+ @add_start_docstrings_to_model_forward(ERNIE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
1362
+ @replace_return_docstrings(output_type=NextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC)
1363
+ def forward(
1364
+ self,
1365
+ input_ids: Optional[torch.Tensor] = None,
1366
+ attention_mask: Optional[torch.Tensor] = None,
1367
+ token_type_ids: Optional[torch.Tensor] = None,
1368
+ task_type_ids: Optional[torch.Tensor] = None,
1369
+ position_ids: Optional[torch.Tensor] = None,
1370
+ head_mask: Optional[torch.Tensor] = None,
1371
+ inputs_embeds: Optional[torch.Tensor] = None,
1372
+ labels: Optional[torch.Tensor] = None,
1373
+ output_attentions: Optional[bool] = None,
1374
+ output_hidden_states: Optional[bool] = None,
1375
+ return_dict: Optional[bool] = None,
1376
+ **kwargs,
1377
+ ) -> Union[Tuple[torch.Tensor], NextSentencePredictorOutput]:
1378
+ r"""
1379
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1380
+ Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair
1381
+ (see `input_ids` docstring). Indices should be in `[0, 1]`:
1382
+
1383
+ - 0 indicates sequence B is a continuation of sequence A,
1384
+ - 1 indicates sequence B is a random sequence.
1385
+
1386
+ Returns:
1387
+
1388
+ Example:
1389
+
1390
+ ```python
1391
+ >>> from transformers import AutoTokenizer, ErnieForNextSentencePrediction
1392
+ >>> import torch
1393
+
1394
+ >>> tokenizer = AutoTokenizer.from_pretrained("nghuyong/ernie-1.0-base-zh")
1395
+ >>> model = ErnieForNextSentencePrediction.from_pretrained("nghuyong/ernie-1.0-base-zh")
1396
+
1397
+ >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
1398
+ >>> next_sentence = "The sky is blue due to the shorter wavelength of blue light."
1399
+ >>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt")
1400
+
1401
+ >>> outputs = model(**encoding, labels=torch.LongTensor([1]))
1402
+ >>> logits = outputs.logits
1403
+ >>> assert logits[0, 0] < logits[0, 1] # next sentence was random
1404
+ ```
1405
+ """
1406
+
1407
+ if "next_sentence_label" in kwargs:
1408
+ warnings.warn(
1409
+ "The `next_sentence_label` argument is deprecated and will be removed in a future version, use"
1410
+ " `labels` instead.",
1411
+ FutureWarning,
1412
+ )
1413
+ labels = kwargs.pop("next_sentence_label")
1414
+
1415
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1416
+
1417
+ outputs = self.ernie(
1418
+ input_ids,
1419
+ attention_mask=attention_mask,
1420
+ token_type_ids=token_type_ids,
1421
+ task_type_ids=task_type_ids,
1422
+ position_ids=position_ids,
1423
+ head_mask=head_mask,
1424
+ inputs_embeds=inputs_embeds,
1425
+ output_attentions=output_attentions,
1426
+ output_hidden_states=output_hidden_states,
1427
+ return_dict=return_dict,
1428
+ )
1429
+
1430
+ pooled_output = outputs[1]
1431
+
1432
+ seq_relationship_scores = self.cls(pooled_output)
1433
+
1434
+ next_sentence_loss = None
1435
+ if labels is not None:
1436
+ loss_fct = CrossEntropyLoss()
1437
+ next_sentence_loss = loss_fct(seq_relationship_scores.view(-1, 2), labels.view(-1))
1438
+
1439
+ if not return_dict:
1440
+ output = (seq_relationship_scores,) + outputs[2:]
1441
+ return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output
1442
+
1443
+ return NextSentencePredictorOutput(
1444
+ loss=next_sentence_loss,
1445
+ logits=seq_relationship_scores,
1446
+ hidden_states=outputs.hidden_states,
1447
+ attentions=outputs.attentions,
1448
+ )
1449
+
1450
+
1451
+ @add_start_docstrings(
1452
+ """
1453
+ Ernie Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
1454
+ output) e.g. for GLUE tasks.
1455
+ """,
1456
+ ERNIE_START_DOCSTRING,
1457
+ )
1458
+ class ErnieForSequenceClassification(ErniePreTrainedModel):
1459
+ # Copied from transformers.models.bert.modeling_bert.BertForSequenceClassification.__init__ with Bert->Ernie,bert->ernie
1460
+ def __init__(self, config):
1461
+ super().__init__(config)
1462
+ self.num_labels = config.num_labels
1463
+ self.config = config
1464
+
1465
+ self.ernie = ErnieModel(config)
1466
+ classifier_dropout = (
1467
+ config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
1468
+ )
1469
+ self.dropout = nn.Dropout(classifier_dropout)
1470
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
1471
+
1472
+ # Initialize weights and apply final processing
1473
+ self.post_init()
1474
+
1475
+ @add_start_docstrings_to_model_forward(ERNIE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
1476
+ def forward(
1477
+ self,
1478
+ input_ids: Optional[torch.Tensor] = None,
1479
+ attention_mask: Optional[torch.Tensor] = None,
1480
+ token_type_ids: Optional[torch.Tensor] = None,
1481
+ task_type_ids: Optional[torch.Tensor] = None,
1482
+ position_ids: Optional[torch.Tensor] = None,
1483
+ head_mask: Optional[torch.Tensor] = None,
1484
+ inputs_embeds: Optional[torch.Tensor] = None,
1485
+ labels: Optional[torch.Tensor] = None,
1486
+ output_attentions: Optional[bool] = None,
1487
+ output_hidden_states: Optional[bool] = None,
1488
+ return_dict: Optional[bool] = None,
1489
+ ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
1490
+ r"""
1491
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1492
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1493
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1494
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1495
+ """
1496
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1497
+
1498
+ outputs = self.ernie(
1499
+ input_ids,
1500
+ attention_mask=attention_mask,
1501
+ token_type_ids=token_type_ids,
1502
+ task_type_ids=task_type_ids,
1503
+ position_ids=position_ids,
1504
+ head_mask=head_mask,
1505
+ inputs_embeds=inputs_embeds,
1506
+ output_attentions=output_attentions,
1507
+ output_hidden_states=output_hidden_states,
1508
+ return_dict=return_dict,
1509
+ )
1510
+
1511
+ pooled_output = outputs[1]
1512
+
1513
+ pooled_output = self.dropout(pooled_output)
1514
+ logits = self.classifier(pooled_output)
1515
+
1516
+ loss = None
1517
+ if labels is not None:
1518
+ if self.config.problem_type is None:
1519
+ if self.num_labels == 1:
1520
+ self.config.problem_type = "regression"
1521
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1522
+ self.config.problem_type = "single_label_classification"
1523
+ else:
1524
+ self.config.problem_type = "multi_label_classification"
1525
+
1526
+ if self.config.problem_type == "regression":
1527
+ loss_fct = MSELoss()
1528
+ if self.num_labels == 1:
1529
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
1530
+ else:
1531
+ loss = loss_fct(logits, labels)
1532
+ elif self.config.problem_type == "single_label_classification":
1533
+ loss_fct = CrossEntropyLoss()
1534
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1535
+ elif self.config.problem_type == "multi_label_classification":
1536
+ loss_fct = BCEWithLogitsLoss()
1537
+ loss = loss_fct(logits, labels)
1538
+ if not return_dict:
1539
+ output = (logits,) + outputs[2:]
1540
+ return ((loss,) + output) if loss is not None else output
1541
+
1542
+ return SequenceClassifierOutput(
1543
+ loss=loss,
1544
+ logits=logits,
1545
+ hidden_states=outputs.hidden_states,
1546
+ attentions=outputs.attentions,
1547
+ )
1548
+
1549
+
1550
+ @add_start_docstrings(
1551
+ """
1552
+ Ernie Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
1553
+ softmax) e.g. for RocStories/SWAG tasks.
1554
+ """,
1555
+ ERNIE_START_DOCSTRING,
1556
+ )
1557
+ class ErnieForMultipleChoice(ErniePreTrainedModel):
1558
+ # Copied from transformers.models.bert.modeling_bert.BertForMultipleChoice.__init__ with Bert->Ernie,bert->ernie
1559
+ def __init__(self, config):
1560
+ super().__init__(config)
1561
+
1562
+ self.ernie = ErnieModel(config)
1563
+ classifier_dropout = (
1564
+ config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
1565
+ )
1566
+ self.dropout = nn.Dropout(classifier_dropout)
1567
+ self.classifier = nn.Linear(config.hidden_size, 1)
1568
+
1569
+ # Initialize weights and apply final processing
1570
+ self.post_init()
1571
+
1572
+ @add_start_docstrings_to_model_forward(ERNIE_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
1573
+ @add_code_sample_docstrings(
1574
+ checkpoint=_CHECKPOINT_FOR_DOC,
1575
+ output_type=MultipleChoiceModelOutput,
1576
+ config_class=_CONFIG_FOR_DOC,
1577
+ )
1578
+ def forward(
1579
+ self,
1580
+ input_ids: Optional[torch.Tensor] = None,
1581
+ attention_mask: Optional[torch.Tensor] = None,
1582
+ token_type_ids: Optional[torch.Tensor] = None,
1583
+ task_type_ids: Optional[torch.Tensor] = None,
1584
+ position_ids: Optional[torch.Tensor] = None,
1585
+ head_mask: Optional[torch.Tensor] = None,
1586
+ inputs_embeds: Optional[torch.Tensor] = None,
1587
+ labels: Optional[torch.Tensor] = None,
1588
+ output_attentions: Optional[bool] = None,
1589
+ output_hidden_states: Optional[bool] = None,
1590
+ return_dict: Optional[bool] = None,
1591
+ ) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
1592
+ r"""
1593
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1594
+ Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
1595
+ num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
1596
+ `input_ids` above)
1597
+ """
1598
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1599
+ num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
1600
+
1601
+ input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
1602
+ attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
1603
+ token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
1604
+ position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
1605
+ inputs_embeds = (
1606
+ inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
1607
+ if inputs_embeds is not None
1608
+ else None
1609
+ )
1610
+
1611
+ outputs = self.ernie(
1612
+ input_ids,
1613
+ attention_mask=attention_mask,
1614
+ token_type_ids=token_type_ids,
1615
+ task_type_ids=task_type_ids,
1616
+ position_ids=position_ids,
1617
+ head_mask=head_mask,
1618
+ inputs_embeds=inputs_embeds,
1619
+ output_attentions=output_attentions,
1620
+ output_hidden_states=output_hidden_states,
1621
+ return_dict=return_dict,
1622
+ )
1623
+
1624
+ pooled_output = outputs[1]
1625
+
1626
+ pooled_output = self.dropout(pooled_output)
1627
+ logits = self.classifier(pooled_output)
1628
+ reshaped_logits = logits.view(-1, num_choices)
1629
+
1630
+ loss = None
1631
+ if labels is not None:
1632
+ loss_fct = CrossEntropyLoss()
1633
+ loss = loss_fct(reshaped_logits, labels)
1634
+
1635
+ if not return_dict:
1636
+ output = (reshaped_logits,) + outputs[2:]
1637
+ return ((loss,) + output) if loss is not None else output
1638
+
1639
+ return MultipleChoiceModelOutput(
1640
+ loss=loss,
1641
+ logits=reshaped_logits,
1642
+ hidden_states=outputs.hidden_states,
1643
+ attentions=outputs.attentions,
1644
+ )
1645
+
1646
+
1647
+ @add_start_docstrings(
1648
+ """
1649
+ Ernie Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
1650
+ Named-Entity-Recognition (NER) tasks.
1651
+ """,
1652
+ ERNIE_START_DOCSTRING,
1653
+ )
1654
+ class ErnieForTokenClassification(ErniePreTrainedModel):
1655
+ # Copied from transformers.models.bert.modeling_bert.BertForTokenClassification.__init__ with Bert->Ernie,bert->ernie
1656
+ def __init__(self, config):
1657
+ super().__init__(config)
1658
+ self.num_labels = config.num_labels
1659
+
1660
+ self.ernie = ErnieModel(config, add_pooling_layer=False)
1661
+ classifier_dropout = (
1662
+ config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
1663
+ )
1664
+ self.dropout = nn.Dropout(classifier_dropout)
1665
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
1666
+
1667
+ # Initialize weights and apply final processing
1668
+ self.post_init()
1669
+
1670
+ @add_start_docstrings_to_model_forward(ERNIE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
1671
+ def forward(
1672
+ self,
1673
+ input_ids: Optional[torch.Tensor] = None,
1674
+ attention_mask: Optional[torch.Tensor] = None,
1675
+ token_type_ids: Optional[torch.Tensor] = None,
1676
+ task_type_ids: Optional[torch.Tensor] = None,
1677
+ position_ids: Optional[torch.Tensor] = None,
1678
+ head_mask: Optional[torch.Tensor] = None,
1679
+ inputs_embeds: Optional[torch.Tensor] = None,
1680
+ labels: Optional[torch.Tensor] = None,
1681
+ output_attentions: Optional[bool] = None,
1682
+ output_hidden_states: Optional[bool] = None,
1683
+ return_dict: Optional[bool] = None,
1684
+ ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
1685
+ r"""
1686
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1687
+ Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
1688
+ """
1689
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1690
+
1691
+ outputs = self.ernie(
1692
+ input_ids,
1693
+ attention_mask=attention_mask,
1694
+ token_type_ids=token_type_ids,
1695
+ task_type_ids=task_type_ids,
1696
+ position_ids=position_ids,
1697
+ head_mask=head_mask,
1698
+ inputs_embeds=inputs_embeds,
1699
+ output_attentions=output_attentions,
1700
+ output_hidden_states=output_hidden_states,
1701
+ return_dict=return_dict,
1702
+ )
1703
+
1704
+ sequence_output = outputs[0]
1705
+
1706
+ sequence_output = self.dropout(sequence_output)
1707
+ logits = self.classifier(sequence_output)
1708
+
1709
+ loss = None
1710
+ if labels is not None:
1711
+ loss_fct = CrossEntropyLoss()
1712
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1713
+
1714
+ if not return_dict:
1715
+ output = (logits,) + outputs[2:]
1716
+ return ((loss,) + output) if loss is not None else output
1717
+
1718
+ return TokenClassifierOutput(
1719
+ loss=loss,
1720
+ logits=logits,
1721
+ hidden_states=outputs.hidden_states,
1722
+ attentions=outputs.attentions,
1723
+ )
1724
+
1725
+
1726
+ @add_start_docstrings(
1727
+ """
1728
+ Ernie Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
1729
+ layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
1730
+ """,
1731
+ ERNIE_START_DOCSTRING,
1732
+ )
1733
+ class ErnieForQuestionAnswering(ErniePreTrainedModel):
1734
+ # Copied from transformers.models.bert.modeling_bert.BertForQuestionAnswering.__init__ with Bert->Ernie,bert->ernie
1735
+ def __init__(self, config):
1736
+ super().__init__(config)
1737
+ self.num_labels = config.num_labels
1738
+
1739
+ self.ernie = ErnieModel(config, add_pooling_layer=False)
1740
+ self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
1741
+
1742
+ # Initialize weights and apply final processing
1743
+ self.post_init()
1744
+
1745
+ @add_start_docstrings_to_model_forward(ERNIE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
1746
+ def forward(
1747
+ self,
1748
+ input_ids: Optional[torch.Tensor] = None,
1749
+ attention_mask: Optional[torch.Tensor] = None,
1750
+ token_type_ids: Optional[torch.Tensor] = None,
1751
+ task_type_ids: Optional[torch.Tensor] = None,
1752
+ position_ids: Optional[torch.Tensor] = None,
1753
+ head_mask: Optional[torch.Tensor] = None,
1754
+ inputs_embeds: Optional[torch.Tensor] = None,
1755
+ start_positions: Optional[torch.Tensor] = None,
1756
+ end_positions: Optional[torch.Tensor] = None,
1757
+ output_attentions: Optional[bool] = None,
1758
+ output_hidden_states: Optional[bool] = None,
1759
+ return_dict: Optional[bool] = None,
1760
+ ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
1761
+ r"""
1762
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1763
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
1764
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1765
+ are not taken into account for computing the loss.
1766
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1767
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
1768
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1769
+ are not taken into account for computing the loss.
1770
+ """
1771
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1772
+
1773
+ outputs = self.ernie(
1774
+ input_ids,
1775
+ attention_mask=attention_mask,
1776
+ token_type_ids=token_type_ids,
1777
+ task_type_ids=task_type_ids,
1778
+ position_ids=position_ids,
1779
+ head_mask=head_mask,
1780
+ inputs_embeds=inputs_embeds,
1781
+ output_attentions=output_attentions,
1782
+ output_hidden_states=output_hidden_states,
1783
+ return_dict=return_dict,
1784
+ )
1785
+
1786
+ sequence_output = outputs[0]
1787
+
1788
+ logits = self.qa_outputs(sequence_output)
1789
+ start_logits, end_logits = logits.split(1, dim=-1)
1790
+ start_logits = start_logits.squeeze(-1).contiguous()
1791
+ end_logits = end_logits.squeeze(-1).contiguous()
1792
+
1793
+ total_loss = None
1794
+ if start_positions is not None and end_positions is not None:
1795
+ # If we are on multi-GPU, split add a dimension
1796
+ if len(start_positions.size()) > 1:
1797
+ start_positions = start_positions.squeeze(-1)
1798
+ if len(end_positions.size()) > 1:
1799
+ end_positions = end_positions.squeeze(-1)
1800
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
1801
+ ignored_index = start_logits.size(1)
1802
+ start_positions = start_positions.clamp(0, ignored_index)
1803
+ end_positions = end_positions.clamp(0, ignored_index)
1804
+
1805
+ loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
1806
+ start_loss = loss_fct(start_logits, start_positions)
1807
+ end_loss = loss_fct(end_logits, end_positions)
1808
+ total_loss = (start_loss + end_loss) / 2
1809
+
1810
+ if not return_dict:
1811
+ output = (start_logits, end_logits) + outputs[2:]
1812
+ return ((total_loss,) + output) if total_loss is not None else output
1813
+
1814
+ return QuestionAnsweringModelOutput(
1815
+ loss=total_loss,
1816
+ start_logits=start_logits,
1817
+ end_logits=end_logits,
1818
+ hidden_states=outputs.hidden_states,
1819
+ attentions=outputs.attentions,
1820
+ )
llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_bigcode/configuration_gpt_bigcode.py ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 The BigCode team and HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ GPTBigCode configuration"""
16
+
17
+ from ...configuration_utils import PretrainedConfig
18
+ from ...utils import logging
19
+
20
+
21
+ logger = logging.get_logger(__name__)
22
+
23
+
24
+ from ..deprecated._archive_maps import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
25
+
26
+
27
+ class GPTBigCodeConfig(PretrainedConfig):
28
+ """
29
+ This is the configuration class to store the configuration of a [`GPTBigCodeModel`]. It is used to instantiate a
30
+ GPTBigCode model according to the specified arguments, defining the model architecture. Instantiating a
31
+ configuration with the defaults will yield a similar configuration to that of the GPTBigCode
32
+ [gpt_bigcode](https://huggingface.co/gpt_bigcode) architecture.
33
+
34
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
35
+ documentation from [`PretrainedConfig`] for more information.
36
+
37
+
38
+ Args:
39
+ vocab_size (`int`, *optional*, defaults to 50257):
40
+ Vocabulary size of the GPT-2 model. Defines the number of different tokens that can be represented by the
41
+ `inputs_ids` passed when calling [`GPTBigCodeModel`].
42
+ n_positions (`int`, *optional*, defaults to 1024):
43
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
44
+ just in case (e.g., 512 or 1024 or 2048).
45
+ n_embd (`int`, *optional*, defaults to 768):
46
+ Dimensionality of the embeddings and hidden states.
47
+ n_layer (`int`, *optional*, defaults to 12):
48
+ Number of hidden layers in the Transformer encoder.
49
+ n_head (`int`, *optional*, defaults to 12):
50
+ Number of attention heads for each attention layer in the Transformer encoder.
51
+ n_inner (`int`, *optional*, defaults to None):
52
+ Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd
53
+ activation_function (`str`, *optional*, defaults to `"gelu_pytorch_tanh"`):
54
+ Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new",
55
+ "gelu_pytorch_tanh"]`.
56
+ resid_pdrop (`float`, *optional*, defaults to 0.1):
57
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
58
+ embd_pdrop (`float`, *optional*, defaults to 0.1):
59
+ The dropout ratio for the embeddings.
60
+ attn_pdrop (`float`, *optional*, defaults to 0.1):
61
+ The dropout ratio for the attention.
62
+ layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
63
+ The epsilon to use in the layer normalization layers.
64
+ initializer_range (`float`, *optional*, defaults to 0.02):
65
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
66
+ scale_attn_weights (`bool`, *optional*, defaults to `True`):
67
+ Scale attention weights by dividing by sqrt(hidden_size)..
68
+ use_cache (`bool`, *optional*, defaults to `True`):
69
+ Whether or not the model should return the last key/values attentions (not used by all models).
70
+ attention_softmax_in_fp32 (`bool`, *optional*, defaults to `True`):
71
+ Whether to call the fused softmax in float32.
72
+ scale_attention_softmax_in_fp32 (`bool`, *optional*, defaults to `True`):
73
+ Whether to scale the attention softmax in float32.
74
+ attention_type (`bool`, *optional*, defaults to `True`):
75
+ Whether to use Multi-Query Attion (`True`) or Multi-Head Attention (`False`).
76
+ Example:
77
+
78
+ ```python
79
+ >>> from transformers import GPTBigCodeConfig, GPTBigCodeModel
80
+
81
+ >>> # Initializing a GPTBigCode configuration
82
+ >>> configuration = GPTBigCodeConfig()
83
+
84
+ >>> # Initializing a model (with random weights) from the configuration
85
+ >>> model = GPTBigCodeModel(configuration)
86
+
87
+ >>> # Accessing the model configuration
88
+ >>> configuration = model.config
89
+ ```"""
90
+
91
+ model_type = "gpt_bigcode"
92
+ keys_to_ignore_at_inference = ["past_key_values"]
93
+ attribute_map = {
94
+ "hidden_size": "n_embd",
95
+ "max_position_embeddings": "n_positions",
96
+ "num_attention_heads": "n_head",
97
+ "num_hidden_layers": "n_layer",
98
+ }
99
+
100
+ def __init__(
101
+ self,
102
+ vocab_size=50257,
103
+ n_positions=1024,
104
+ n_embd=768,
105
+ n_layer=12,
106
+ n_head=12,
107
+ n_inner=None,
108
+ activation_function="gelu_pytorch_tanh",
109
+ resid_pdrop=0.1,
110
+ embd_pdrop=0.1,
111
+ attn_pdrop=0.1,
112
+ layer_norm_epsilon=1e-5,
113
+ initializer_range=0.02,
114
+ scale_attn_weights=True,
115
+ use_cache=True,
116
+ bos_token_id=50256,
117
+ eos_token_id=50256,
118
+ attention_softmax_in_fp32=True,
119
+ scale_attention_softmax_in_fp32=True,
120
+ multi_query=True,
121
+ **kwargs,
122
+ ):
123
+ self.vocab_size = vocab_size
124
+ self.n_positions = n_positions
125
+ self.n_embd = n_embd
126
+ self.n_layer = n_layer
127
+ self.n_head = n_head
128
+ self.n_inner = n_inner
129
+ self.activation_function = activation_function
130
+ self.resid_pdrop = resid_pdrop
131
+ self.embd_pdrop = embd_pdrop
132
+ self.attn_pdrop = attn_pdrop
133
+ self.layer_norm_epsilon = layer_norm_epsilon
134
+ self.initializer_range = initializer_range
135
+ self.scale_attn_weights = scale_attn_weights
136
+ self.use_cache = use_cache
137
+ self.attention_softmax_in_fp32 = attention_softmax_in_fp32
138
+ self.scale_attention_softmax_in_fp32 = scale_attention_softmax_in_fp32
139
+ self.multi_query = multi_query
140
+
141
+ self.bos_token_id = bos_token_id
142
+ self.eos_token_id = eos_token_id
143
+
144
+ super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_bigcode/modeling_gpt_bigcode.py ADDED
@@ -0,0 +1,1504 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 The Bigcode team and HuggingFace Inc. team.
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """PyTorch GPTBigCode model."""
15
+ import math
16
+ from typing import List, Optional, Tuple, Union
17
+
18
+ import torch
19
+ import torch.nn.functional as F
20
+ import torch.utils.checkpoint
21
+ from torch import nn
22
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
23
+
24
+ from ...activations import ACT2FN
25
+ from ...modeling_attn_mask_utils import AttentionMaskConverter
26
+ from ...modeling_outputs import (
27
+ BaseModelOutputWithPastAndCrossAttentions,
28
+ CausalLMOutputWithCrossAttentions,
29
+ SequenceClassifierOutputWithPast,
30
+ TokenClassifierOutput,
31
+ )
32
+ from ...modeling_utils import PreTrainedModel
33
+ from ...pytorch_utils import is_torch_greater_or_equal_than_2_2
34
+ from ...utils import (
35
+ add_code_sample_docstrings,
36
+ add_start_docstrings,
37
+ add_start_docstrings_to_model_forward,
38
+ is_flash_attn_2_available,
39
+ is_flash_attn_greater_or_equal_2_10,
40
+ logging,
41
+ )
42
+ from .configuration_gpt_bigcode import GPTBigCodeConfig
43
+
44
+
45
+ if is_flash_attn_2_available():
46
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
47
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
48
+
49
+
50
+ logger = logging.get_logger(__name__)
51
+
52
+ _CHECKPOINT_FOR_DOC = "bigcode/gpt_bigcode-santacoder"
53
+ _CONFIG_FOR_DOC = "GPTBigCodeConfig"
54
+
55
+
56
+ from ..deprecated._archive_maps import GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
57
+
58
+
59
+ # Fused kernels
60
+ # Use separate functions for each case because conditionals prevent kernel fusion.
61
+ # TODO: Could have better fused kernels depending on scaling, dropout and head mask.
62
+ # Is it doable without writing 32 functions?
63
+ @torch.jit.script
64
+ def upcast_masked_softmax(
65
+ x: torch.Tensor, mask: torch.Tensor, mask_value: torch.Tensor, scale: float, softmax_dtype: torch.dtype
66
+ ):
67
+ input_dtype = x.dtype
68
+ x = x.to(softmax_dtype) * scale
69
+ x = torch.where(mask, x, mask_value)
70
+ x = torch.nn.functional.softmax(x, dim=-1).to(input_dtype)
71
+ return x
72
+
73
+
74
+ @torch.jit.script
75
+ def upcast_softmax(x: torch.Tensor, scale: float, softmax_dtype: torch.dtype):
76
+ input_dtype = x.dtype
77
+ x = x.to(softmax_dtype) * scale
78
+ x = torch.nn.functional.softmax(x, dim=-1).to(input_dtype)
79
+ return x
80
+
81
+
82
+ @torch.jit.script
83
+ def masked_softmax(x: torch.Tensor, mask: torch.Tensor, mask_value: torch.Tensor):
84
+ x = torch.where(mask, x, mask_value)
85
+ x = torch.nn.functional.softmax(x, dim=-1)
86
+ return x
87
+
88
+
89
+ # Copied from transformers.models.llama.modeling_llama._get_unpad_data
90
+ def _get_unpad_data(attention_mask):
91
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
92
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
93
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
94
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
95
+ return (
96
+ indices,
97
+ cu_seqlens,
98
+ max_seqlen_in_batch,
99
+ )
100
+
101
+
102
+ class GPTBigCodeAttention(nn.Module):
103
+ def __init__(self, config, is_cross_attention=False, layer_idx=None):
104
+ super().__init__()
105
+ self.config = config
106
+
107
+ self.mask_value = None
108
+ self.multi_query = config.multi_query
109
+ self.embed_dim = config.hidden_size
110
+ self.num_heads = config.num_attention_heads
111
+ self.head_dim = self.embed_dim // self.num_heads
112
+ self.kv_heads = 1 if self.multi_query else self.num_heads
113
+ self.kv_dim = self.kv_heads * self.head_dim
114
+ self.split_size = self.embed_dim
115
+ self.is_causal = True
116
+
117
+ if self.head_dim * self.num_heads != self.embed_dim:
118
+ raise ValueError(
119
+ f"`embed_dim` must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
120
+ f" {self.num_heads})."
121
+ )
122
+
123
+ self.scale_attn_weights = config.scale_attn_weights
124
+ self.is_cross_attention = is_cross_attention
125
+
126
+ self.layer_idx = layer_idx
127
+ self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32
128
+ self.scale_attention_softmax_in_fp32 = (
129
+ config.scale_attention_softmax_in_fp32 and config.attention_softmax_in_fp32
130
+ )
131
+ self.attn_pdrop = config.attn_pdrop
132
+
133
+ if self.is_cross_attention:
134
+ if self.multi_query:
135
+ raise NotImplementedError("Multi-Query Attention not supported for cross_attention")
136
+
137
+ self.c_attn = nn.Linear(self.embed_dim, 2 * self.embed_dim)
138
+ self.q_attn = nn.Linear(self.embed_dim, self.embed_dim)
139
+ else:
140
+ self.c_attn = nn.Linear(self.embed_dim, self.embed_dim + 2 * self.kv_dim)
141
+
142
+ self.c_proj = nn.Linear(self.embed_dim, self.embed_dim)
143
+
144
+ self.attn_dropout = nn.Dropout(config.attn_pdrop)
145
+ self.resid_dropout = nn.Dropout(config.resid_pdrop)
146
+
147
+ def _get_mask_value(self, device, dtype):
148
+ # torch.where expects a tensor. We use a cache to avoid recreating it every time.
149
+ if self.mask_value is None or self.mask_value.dtype != dtype or self.mask_value.device != device:
150
+ self.mask_value = torch.full([], torch.finfo(dtype).min, dtype=dtype, device=device)
151
+ return self.mask_value
152
+
153
+ def _attn(self, query, key, value, attention_mask=None, head_mask=None):
154
+ dtype = query.dtype
155
+ softmax_dtype = torch.float32 if self.attention_softmax_in_fp32 else dtype
156
+ upcast = dtype != softmax_dtype
157
+
158
+ unscale = self.layer_idx + 1 if self.scale_attention_softmax_in_fp32 and upcast else 1
159
+ scale_factor = unscale**-1
160
+ if self.scale_attn_weights:
161
+ scale_factor /= self.head_dim**0.5
162
+
163
+ # MQA models: (batch_size, query_length, num_heads * head_dim)
164
+ # MHA models: (batch_size, num_heads, query_length, head_dim)
165
+ query_shape = query.shape
166
+ batch_size = query_shape[0]
167
+ key_length = key.size(-1)
168
+ if self.multi_query:
169
+ # (batch_size, query_length, num_heads, head_dim) x (batch_size, head_dim, key_length)
170
+ # -> (batch_size, query_length, num_heads, key_length)
171
+ query_length = query_shape[1]
172
+ attn_shape = (batch_size, query_length, self.num_heads, key_length)
173
+ attn_view = (batch_size, query_length * self.num_heads, key_length)
174
+ # No copy needed for MQA 2, or when layer_past is provided.
175
+ query = query.reshape(batch_size, query_length * self.num_heads, self.head_dim)
176
+ else:
177
+ # (batch_size, num_heads, query_length, head_dim) x (batch_size, num_heads, head_dim, key_length)
178
+ # -> (batch_size, num_heads, query_length, key_length)
179
+ query_length = query_shape[2]
180
+ attn_shape = (batch_size, self.num_heads, query_length, key_length)
181
+ attn_view = (batch_size * self.num_heads, query_length, key_length)
182
+ # Always copies
183
+ query = query.reshape(batch_size * self.num_heads, query_length, self.head_dim)
184
+ # No copy when layer_past is provided.
185
+ key = key.reshape(batch_size * self.num_heads, self.head_dim, key_length)
186
+
187
+ attn_weights = torch.empty(attn_view, device=query.device, dtype=query.dtype)
188
+ if query.device.type == "cpu":
189
+ # This is needed because of a bug in pytorch https://github.com/pytorch/pytorch/issues/80588.
190
+ # The bug was fixed in https://github.com/pytorch/pytorch/pull/96086,
191
+ # but the fix has not been released as of pytorch version 2.0.0.
192
+ attn_weights = torch.zeros_like(attn_weights)
193
+ beta = 1
194
+ else:
195
+ beta = 0
196
+ attn_weights = torch.baddbmm(attn_weights, query, key, beta=beta, alpha=scale_factor).view(attn_shape)
197
+
198
+ if upcast:
199
+ # Use a fused kernel to prevent a large overhead from casting and scaling.
200
+ # Sub-optimal when the key length is not a multiple of 8.
201
+ if attention_mask is None:
202
+ attn_weights = upcast_softmax(attn_weights, unscale, softmax_dtype)
203
+ else:
204
+ mask_value = self._get_mask_value(attn_weights.device, softmax_dtype)
205
+ attn_weights = upcast_masked_softmax(attn_weights, attention_mask, mask_value, unscale, softmax_dtype)
206
+ else:
207
+ if attention_mask is not None:
208
+ mask_value = self._get_mask_value(attn_weights.device, softmax_dtype)
209
+
210
+ # The fused kernel is very slow when the key length is not a multiple of 8, so we skip fusion.
211
+ attn_weights = torch.where(attention_mask, attn_weights, mask_value)
212
+
213
+ attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1)
214
+
215
+ attn_weights = self.attn_dropout(attn_weights)
216
+
217
+ # Mask heads if we want to
218
+ if head_mask is not None:
219
+ if self.multi_query:
220
+ head_mask = head_mask.transpose(1, 2)
221
+ attn_weights = attn_weights * head_mask
222
+
223
+ if self.multi_query:
224
+ attn_output = torch.bmm(attn_weights.view(attn_view), value).view(query_shape)
225
+ else:
226
+ attn_output = torch.matmul(attn_weights, value)
227
+
228
+ return attn_output, attn_weights
229
+
230
+ def forward(
231
+ self,
232
+ hidden_states: torch.Tensor,
233
+ layer_past: Optional[torch.Tensor] = None,
234
+ attention_mask: Optional[torch.Tensor] = None,
235
+ head_mask: Optional[torch.Tensor] = None,
236
+ encoder_hidden_states: Optional[torch.Tensor] = None,
237
+ encoder_attention_mask: Optional[torch.Tensor] = None,
238
+ use_cache: Optional[bool] = False,
239
+ output_attentions: Optional[bool] = False,
240
+ ) -> Union[
241
+ Tuple[torch.Tensor, Optional[torch.Tensor]],
242
+ Tuple[torch.Tensor, Optional[torch.Tensor], Tuple[torch.Tensor, ...]],
243
+ ]:
244
+ if encoder_hidden_states is not None:
245
+ if not hasattr(self, "q_attn") or not self.is_cross_attention:
246
+ raise ValueError(
247
+ "If class is used as cross attention, the weights `q_attn` have to be defined. "
248
+ "Please make sure to instantiate class with `GPTBigCodeAttention(..., is_cross_attention=True)`."
249
+ )
250
+
251
+ query = self.q_attn(hidden_states)
252
+ key_value = self.c_attn(encoder_hidden_states)
253
+ attention_mask = encoder_attention_mask
254
+ elif self.multi_query:
255
+ query, key_value = self.c_attn(hidden_states).split((self.embed_dim, 2 * self.kv_dim), dim=2)
256
+ else:
257
+ # Note: We split as (self.num_heads, 3, self.head_dim) instead of (3, self.num_heads, self.head_dim),
258
+ # i.e., the memory layout is not the same as GPT2.
259
+ # This makes the concatenation with past_key_value more efficient.
260
+ query, key_value = (
261
+ self.c_attn(hidden_states)
262
+ .view(*hidden_states.shape[:2], self.num_heads, 3 * self.head_dim)
263
+ .transpose(1, 2)
264
+ .split((self.head_dim, 2 * self.head_dim), dim=3)
265
+ )
266
+
267
+ if layer_past is not None:
268
+ key_value = torch.cat((layer_past, key_value), dim=-2)
269
+ present = key_value if use_cache else None
270
+
271
+ key, value = key_value.split((self.head_dim, self.head_dim), dim=-1)
272
+
273
+ attn_output, attn_weights = self._attn(query, key.transpose(-1, -2), value, attention_mask, head_mask)
274
+
275
+ if not self.multi_query:
276
+ attn_output = attn_output.transpose(1, 2).reshape(hidden_states.shape)
277
+ attn_output = self.c_proj(attn_output)
278
+ attn_output = self.resid_dropout(attn_output)
279
+
280
+ outputs = (attn_output, present)
281
+ if output_attentions:
282
+ if self.multi_query:
283
+ # Transpose to return weights in the usual format (batch_size, num_heads, query_length, key_length)
284
+ attn_weights = attn_weights.transpose(1, 2)
285
+ outputs += (attn_weights,)
286
+
287
+ return outputs # a, present, (attentions)
288
+
289
+
290
+ class GPTBigCodeFlashAttention2(GPTBigCodeAttention):
291
+ """
292
+ GPTBigCode flash attention module. This module inherits from `GPTBigCodeAttention` as the weights of the module
293
+ stays untouched. The only required change would be on the forward pass where it needs to correctly call the public
294
+ API of flash attention and deal with padding tokens in case the input contains any of them.
295
+ """
296
+
297
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
298
+ def __init__(self, *args, **kwargs):
299
+ super().__init__(*args, **kwargs)
300
+
301
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
302
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
303
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
304
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
305
+
306
+ def forward(
307
+ self,
308
+ hidden_states: torch.Tensor,
309
+ layer_past: Optional[torch.Tensor] = None,
310
+ attention_mask: Optional[torch.Tensor] = None,
311
+ head_mask: Optional[torch.Tensor] = None,
312
+ encoder_hidden_states: Optional[torch.Tensor] = None,
313
+ encoder_attention_mask: Optional[torch.Tensor] = None,
314
+ use_cache: Optional[bool] = False,
315
+ output_attentions: Optional[bool] = False,
316
+ ) -> Union[
317
+ Tuple[torch.Tensor, Optional[torch.Tensor]],
318
+ Tuple[torch.Tensor, Optional[torch.Tensor], Tuple[torch.Tensor, ...]],
319
+ ]:
320
+ if encoder_hidden_states is not None:
321
+ if not hasattr(self, "q_attn") or not self.is_cross_attention:
322
+ raise ValueError(
323
+ "If class is used as cross attention, the weights `q_attn` have to be defined. "
324
+ "Please make sure to instantiate class with `GPTBigCodeAttention(..., is_cross_attention=True)`."
325
+ )
326
+
327
+ query = self.q_attn(hidden_states)
328
+ key_value = self.c_attn(encoder_hidden_states)
329
+ attention_mask = encoder_attention_mask
330
+ elif self.multi_query:
331
+ query, key_value = self.c_attn(hidden_states).split((self.embed_dim, 2 * self.kv_dim), dim=2)
332
+ else:
333
+ # Note: We split as (self.num_heads, 3, self.head_dim) instead of (3, self.num_heads, self.head_dim),
334
+ # i.e., the memory layout is not the same as GPT2.
335
+ # This makes the concatenation with past_key_value more efficient.
336
+ query, key_value = (
337
+ self.c_attn(hidden_states)
338
+ .view(*hidden_states.shape[:2], self.num_heads, 3 * self.head_dim)
339
+ .transpose(1, 2)
340
+ .split((self.head_dim, 2 * self.head_dim), dim=3)
341
+ )
342
+
343
+ if layer_past is not None:
344
+ key_value = torch.cat((layer_past, key_value), dim=-2)
345
+ present = key_value if use_cache else None
346
+
347
+ key, value = key_value.split((self.head_dim, self.head_dim), dim=-1)
348
+
349
+ # Flash attention requires the input to have the shape
350
+ # batch_size x seq_length x head_dim x hidden_dim
351
+ if self.multi_query:
352
+ batch_size, query_length, _ = query.shape
353
+ query = query.reshape(batch_size, query_length, self.num_heads, self.head_dim)
354
+ key = key.unsqueeze(2)
355
+ value = value.unsqueeze(2)
356
+ else:
357
+ query_length = query.shape[2]
358
+ batch_size, _, tgt, _ = key.shape
359
+ query = query.transpose(1, 2).reshape(batch_size, query_length, self.num_heads, self.head_dim)
360
+ key = key.transpose(1, 2).reshape(batch_size, tgt, self.num_heads, self.head_dim)
361
+ value = value.transpose(1, 2).reshape(batch_size, tgt, self.num_heads, self.head_dim)
362
+
363
+ attn_dropout = self.attn_pdrop if self.training else 0.0
364
+
365
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
366
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
367
+ # cast them back in float16 just to be sure everything works as expected.
368
+ input_dtype = query.dtype
369
+ if input_dtype == torch.float32:
370
+ if torch.is_autocast_enabled():
371
+ target_dtype = torch.get_autocast_gpu_dtype()
372
+ # Handle the case where the model is quantized
373
+ elif hasattr(self.config, "_pre_quantization_dtype"):
374
+ target_dtype = self.config._pre_quantization_dtype
375
+ else:
376
+ target_dtype = self.c_attn.weight.dtype
377
+
378
+ logger.warning_once(
379
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
380
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
381
+ f" {target_dtype}."
382
+ )
383
+ query = query.to(target_dtype)
384
+ key = key.to(target_dtype)
385
+ value = value.to(target_dtype)
386
+
387
+ attn_output = self._flash_attention_forward(
388
+ query, key, value, attention_mask, query_length, dropout=attn_dropout
389
+ )
390
+
391
+ attn_weights_reshaped = attn_output.reshape(batch_size, query_length, self.num_heads * self.head_dim)
392
+ attn_output = self.c_proj(attn_weights_reshaped)
393
+ attn_output = self.resid_dropout(attn_output)
394
+
395
+ outputs = (attn_output, present)
396
+
397
+ if output_attentions:
398
+ if self.multi_query:
399
+ # Transpose to return weights in the usual format (batch_size, num_heads, query_length, key_length)
400
+ attn_weights_reshaped = attn_weights_reshaped.transpose(1, 2)
401
+ else:
402
+ attn_weights_reshaped = None
403
+
404
+ outputs += (attn_weights_reshaped,)
405
+
406
+ return outputs # a, present, (attentions)
407
+
408
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._flash_attention_forward
409
+ def _flash_attention_forward(
410
+ self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
411
+ ):
412
+ """
413
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
414
+ first unpad the input, then computes the attention scores and pad the final attention scores.
415
+
416
+ Args:
417
+ query_states (`torch.Tensor`):
418
+ Input query states to be passed to Flash Attention API
419
+ key_states (`torch.Tensor`):
420
+ Input key states to be passed to Flash Attention API
421
+ value_states (`torch.Tensor`):
422
+ Input value states to be passed to Flash Attention API
423
+ attention_mask (`torch.Tensor`):
424
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
425
+ position of padding tokens and 1 for the position of non-padding tokens.
426
+ dropout (`float`):
427
+ Attention dropout
428
+ softmax_scale (`float`, *optional*):
429
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
430
+ """
431
+ if not self._flash_attn_uses_top_left_mask:
432
+ causal = self.is_causal
433
+ else:
434
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
435
+ causal = self.is_causal and query_length != 1
436
+
437
+ # Contains at least one padding token in the sequence
438
+ if attention_mask is not None:
439
+ batch_size = query_states.shape[0]
440
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
441
+ query_states, key_states, value_states, attention_mask, query_length
442
+ )
443
+
444
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
445
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
446
+
447
+ attn_output_unpad = flash_attn_varlen_func(
448
+ query_states,
449
+ key_states,
450
+ value_states,
451
+ cu_seqlens_q=cu_seqlens_q,
452
+ cu_seqlens_k=cu_seqlens_k,
453
+ max_seqlen_q=max_seqlen_in_batch_q,
454
+ max_seqlen_k=max_seqlen_in_batch_k,
455
+ dropout_p=dropout,
456
+ softmax_scale=softmax_scale,
457
+ causal=causal,
458
+ )
459
+
460
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
461
+ else:
462
+ attn_output = flash_attn_func(
463
+ query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
464
+ )
465
+
466
+ return attn_output
467
+
468
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._upad_input
469
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
470
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
471
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
472
+
473
+ key_layer = index_first_axis(
474
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
475
+ )
476
+ value_layer = index_first_axis(
477
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
478
+ )
479
+ if query_length == kv_seq_len:
480
+ query_layer = index_first_axis(
481
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
482
+ )
483
+ cu_seqlens_q = cu_seqlens_k
484
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
485
+ indices_q = indices_k
486
+ elif query_length == 1:
487
+ max_seqlen_in_batch_q = 1
488
+ cu_seqlens_q = torch.arange(
489
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
490
+ ) # There is a memcpy here, that is very bad.
491
+ indices_q = cu_seqlens_q[:-1]
492
+ query_layer = query_layer.squeeze(1)
493
+ else:
494
+ # The -q_len: slice assumes left padding.
495
+ attention_mask = attention_mask[:, -query_length:]
496
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
497
+
498
+ return (
499
+ query_layer,
500
+ key_layer,
501
+ value_layer,
502
+ indices_q,
503
+ (cu_seqlens_q, cu_seqlens_k),
504
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
505
+ )
506
+
507
+
508
+ class GPTBigCodeSdpaAttention(GPTBigCodeAttention):
509
+ def _attn(self, query, key, value, attention_mask=None, head_mask=None):
510
+ if head_mask is not None:
511
+ # The super dispatch is done in the forward.
512
+ raise ValueError(
513
+ "PyTorch SDPA does not support head_mask. Please open an issue in Transformers repository."
514
+ )
515
+
516
+ scale = None
517
+ if not self.scale_attn_weights:
518
+ scale = 1
519
+
520
+ # MQA models: (batch_size, query_length, num_heads * head_dim)
521
+ # MHA models: (batch_size, num_heads, query_length, head_dim)
522
+ query_shape = query.shape
523
+ batch_size = query_shape[0]
524
+ key.shape[-2]
525
+
526
+ if self.multi_query:
527
+ query_length = query_shape[1]
528
+
529
+ # SDPA requires the dimension [..., sequence_length, head_dim].
530
+ query = query.view(batch_size, query_length, self.num_heads, self.head_dim).transpose(1, 2)
531
+
532
+ # Without these unsqueeze, SDPA complains as the query and key/value have a different number of dimensions.
533
+ key = key.unsqueeze(1)
534
+ value = value.unsqueeze(1)
535
+
536
+ # Although these expand are not numerically useful, PyTorch can not dispatch to memory-efficient backend
537
+ # and flash attention backend (No available kernel. Aborting execution.) from the shapes
538
+ # query = [batch_size, num_heads, query_length, head_dim]
539
+ # key = [batch_size, 1, past_length, head_dim]
540
+ # value = [batch_size, 1, past_length, head_dim]
541
+ #
542
+ # torch==2.1.2 is bugged with non-contiguous inputs with custom attn_mask (https://github.com/pytorch/pytorch/issues/112577), hence the check.
543
+ if is_torch_greater_or_equal_than_2_2:
544
+ key = key.expand(-1, self.num_heads, -1, -1)
545
+ value = value.expand(-1, self.num_heads, -1, -1)
546
+ else:
547
+ query_length = query_shape[-1]
548
+
549
+ # See the comment above.
550
+ if query.device.type == "cuda" and attention_mask is not None:
551
+ query = query.contiguous()
552
+ key = key.contiguous()
553
+ value = value.contiguous()
554
+
555
+ sdpa_result = torch.nn.functional.scaled_dot_product_attention(
556
+ query,
557
+ key,
558
+ value,
559
+ attn_mask=attention_mask,
560
+ dropout_p=self.attn_pdrop if self.training else 0.0,
561
+ # The query_length > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case query_length == 1.
562
+ is_causal=self.is_causal and attention_mask is None and query_length > 1,
563
+ scale=scale,
564
+ )
565
+
566
+ if self.multi_query:
567
+ # (batch_size, num_heads, seq_len, head_dim) --> (batch_size, seq_len, num_heads, head_dim)
568
+ sdpa_result = sdpa_result.transpose(1, 2)
569
+
570
+ # Reshape is kind of expensive here, as it does a memory copy,
571
+ # but I did not manage to make away without it (logits do not match when using view)
572
+ # (batch_size, seq_len, num_heads, head_dim) --> (batch_size, seq_len, num_heads * head_dim)
573
+ sdpa_result = sdpa_result.reshape(query_shape)
574
+
575
+ return sdpa_result, None
576
+
577
+ def forward(
578
+ self,
579
+ hidden_states: torch.Tensor,
580
+ layer_past: Optional[torch.Tensor] = None,
581
+ attention_mask: Optional[torch.Tensor] = None,
582
+ head_mask: Optional[torch.Tensor] = None,
583
+ encoder_hidden_states: Optional[torch.Tensor] = None,
584
+ encoder_attention_mask: Optional[torch.Tensor] = None,
585
+ use_cache: Optional[bool] = False,
586
+ output_attentions: Optional[bool] = False,
587
+ ) -> Union[
588
+ Tuple[torch.Tensor, Optional[torch.Tensor]],
589
+ Tuple[torch.Tensor, Optional[torch.Tensor], Tuple[torch.Tensor, ...]],
590
+ ]:
591
+ if encoder_hidden_states is not None:
592
+ if not hasattr(self, "q_attn") or not self.is_cross_attention:
593
+ raise ValueError(
594
+ "If class is used as cross attention, the weights `q_attn` have to be defined. "
595
+ "Please make sure to instantiate class with `GPTBigCodeAttention(..., is_cross_attention=True)`."
596
+ )
597
+
598
+ query = self.q_attn(hidden_states)
599
+ key_value = self.c_attn(encoder_hidden_states)
600
+ attention_mask = encoder_attention_mask
601
+ elif self.multi_query:
602
+ query, key_value = self.c_attn(hidden_states).split((self.embed_dim, 2 * self.kv_dim), dim=2)
603
+ else:
604
+ # Note: We split as (self.num_heads, 3, self.head_dim) instead of (3, self.num_heads, self.head_dim),
605
+ # i.e., the memory layout is not the same as GPT2.
606
+ # This makes the concatenation with past_key_value more efficient.
607
+ query, key_value = (
608
+ self.c_attn(hidden_states)
609
+ .view(*hidden_states.shape[:2], self.num_heads, 3 * self.head_dim)
610
+ .transpose(1, 2)
611
+ .split((self.head_dim, 2 * self.head_dim), dim=3)
612
+ )
613
+
614
+ if layer_past is not None:
615
+ key_value = torch.cat((layer_past, key_value), dim=-2)
616
+ present = key_value if use_cache else None
617
+
618
+ key, value = key_value.split((self.head_dim, self.head_dim), dim=-1)
619
+
620
+ if not output_attentions and head_mask is None:
621
+ # Difference with the original implementation: there is no need to transpose the key here,
622
+ # as SDPA expects seq_length to be at index -2 for the key as well
623
+ attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
624
+ else:
625
+ # TODO: Improve this warning with e.g. `model.config._attn_implementation = "manual"` once this is implemented.
626
+ logger.warning_once(
627
+ "GPTBigCodeModel is using GPTBigCodeSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True` and `head_mask` not None."
628
+ ' Falling back to the manual attention implementation, but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
629
+ )
630
+ attn_output, attn_weights = super()._attn(query, key.transpose(-1, -2), value, attention_mask, head_mask)
631
+
632
+ if not self.multi_query:
633
+ attn_output = attn_output.transpose(1, 2).reshape(hidden_states.shape)
634
+ attn_output = self.c_proj(attn_output)
635
+ attn_output = self.resid_dropout(attn_output)
636
+
637
+ outputs = (attn_output, present)
638
+ if output_attentions:
639
+ if self.multi_query:
640
+ # Transpose to return weights in the usual format (batch_size, num_heads, query_length, key_length)
641
+ attn_weights = attn_weights.transpose(1, 2)
642
+ outputs += (attn_weights,)
643
+
644
+ return outputs
645
+
646
+
647
+ class GPTBigCodeMLP(nn.Module):
648
+ def __init__(self, intermediate_size, config):
649
+ super().__init__()
650
+ embed_dim = config.hidden_size
651
+ self.c_fc = nn.Linear(embed_dim, intermediate_size)
652
+ self.c_proj = nn.Linear(intermediate_size, embed_dim)
653
+ self.act = ACT2FN[config.activation_function]
654
+ self.dropout = nn.Dropout(config.resid_pdrop)
655
+
656
+ # Copied from transformers.models.gpt2.modeling_gpt2.GPT2MLP.forward
657
+ def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor:
658
+ hidden_states = self.c_fc(hidden_states)
659
+ hidden_states = self.act(hidden_states)
660
+ hidden_states = self.c_proj(hidden_states)
661
+ hidden_states = self.dropout(hidden_states)
662
+ return hidden_states
663
+
664
+
665
+ GPTBIGCODE_ATTENTION_CLASSES = {
666
+ "eager": GPTBigCodeAttention,
667
+ "flash_attention_2": GPTBigCodeFlashAttention2,
668
+ "sdpa": GPTBigCodeSdpaAttention,
669
+ }
670
+
671
+
672
+ class GPTBigCodeBlock(nn.Module):
673
+ def __init__(self, config, layer_idx=None):
674
+ super().__init__()
675
+ hidden_size = config.hidden_size
676
+ self.inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size
677
+
678
+ self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
679
+
680
+ self.attn = GPTBIGCODE_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx=layer_idx)
681
+
682
+ self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
683
+
684
+ if config.add_cross_attention:
685
+ if config.multi_query:
686
+ raise NotImplementedError("Cross-attention not implemented for MQA")
687
+
688
+ self.crossattention = GPTBIGCODE_ATTENTION_CLASSES[config._attn_implementation](
689
+ config, is_cross_attention=True, layer_idx=layer_idx
690
+ )
691
+
692
+ self.ln_cross_attn = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
693
+
694
+ self.mlp = GPTBigCodeMLP(self.inner_dim, config)
695
+
696
+ def forward(
697
+ self,
698
+ hidden_states: Optional[Tuple[torch.Tensor]],
699
+ layer_past: Optional[torch.Tensor] = None,
700
+ attention_mask: Optional[torch.Tensor] = None,
701
+ head_mask: Optional[torch.Tensor] = None,
702
+ encoder_hidden_states: Optional[torch.Tensor] = None,
703
+ encoder_attention_mask: Optional[torch.Tensor] = None,
704
+ use_cache: Optional[bool] = False,
705
+ output_attentions: Optional[bool] = False,
706
+ ) -> Union[
707
+ Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor, torch.Tensor, torch.Tensor]
708
+ ]:
709
+ residual = hidden_states
710
+ hidden_states = self.ln_1(hidden_states)
711
+ attn_outputs = self.attn(
712
+ hidden_states,
713
+ layer_past=layer_past,
714
+ attention_mask=attention_mask,
715
+ head_mask=head_mask,
716
+ use_cache=use_cache,
717
+ output_attentions=output_attentions,
718
+ )
719
+ attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
720
+ outputs = attn_outputs[1:]
721
+ # residual connection
722
+ hidden_states = attn_output + residual
723
+
724
+ if encoder_hidden_states is not None:
725
+ # add one self-attention block for cross-attention
726
+ if not hasattr(self, "crossattention"):
727
+ raise ValueError(
728
+ f"If `encoder_hidden_states` are passed, {self} has to be instantiated with "
729
+ "cross-attention layers by setting `config.add_cross_attention=True`"
730
+ )
731
+ residual = hidden_states
732
+ hidden_states = self.ln_cross_attn(hidden_states)
733
+ cross_attn_outputs = self.crossattention(
734
+ hidden_states,
735
+ attention_mask=attention_mask,
736
+ head_mask=head_mask,
737
+ encoder_hidden_states=encoder_hidden_states,
738
+ encoder_attention_mask=encoder_attention_mask,
739
+ output_attentions=output_attentions,
740
+ )
741
+ attn_output = cross_attn_outputs[0]
742
+ # residual connection
743
+ hidden_states = residual + attn_output
744
+ outputs = outputs + cross_attn_outputs[2:] # add cross attentions if we output attention weights
745
+
746
+ residual = hidden_states
747
+ hidden_states = self.ln_2(hidden_states)
748
+ feed_forward_hidden_states = self.mlp(hidden_states)
749
+ # residual connection
750
+ hidden_states = residual + feed_forward_hidden_states
751
+
752
+ if use_cache:
753
+ outputs = (hidden_states,) + outputs
754
+ else:
755
+ outputs = (hidden_states,) + outputs[1:]
756
+
757
+ return outputs # hidden_states, present, (attentions, cross_attentions)
758
+
759
+
760
+ class GPTBigCodePreTrainedModel(PreTrainedModel):
761
+ """
762
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
763
+ models.
764
+ """
765
+
766
+ config_class = GPTBigCodeConfig
767
+ base_model_prefix = "transformer"
768
+ supports_gradient_checkpointing = True
769
+ _no_split_modules = ["GPTBigCodeBlock"]
770
+ _skip_keys_device_placement = "past_key_values"
771
+ _supports_flash_attn_2 = True
772
+ _supports_sdpa = True
773
+
774
+ def __init__(self, *inputs, **kwargs):
775
+ super().__init__(*inputs, **kwargs)
776
+
777
+ def _init_weights(self, module):
778
+ """Initialize the weights."""
779
+ if isinstance(module, (GPTBigCodeMLP, GPTBigCodeAttention)):
780
+ # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
781
+ # > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
782
+ # > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
783
+ # > -- GPT-2 :: https://openai.com/blog/better-language-models/
784
+ #
785
+ # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
786
+ module.c_proj.weight.data.normal_(
787
+ mean=0.0, std=(self.config.initializer_range / math.sqrt(2 * self.config.n_layer))
788
+ )
789
+ module.c_proj._is_hf_initialized = True
790
+ elif isinstance(module, nn.Linear):
791
+ # Slightly different from the TF version which uses truncated_normal for initialization
792
+ # cf https://github.com/pytorch/pytorch/pull/5617
793
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
794
+ if module.bias is not None:
795
+ module.bias.data.zero_()
796
+ elif isinstance(module, nn.Embedding):
797
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
798
+ if module.padding_idx is not None:
799
+ module.weight.data[module.padding_idx].zero_()
800
+ elif isinstance(module, nn.LayerNorm):
801
+ module.bias.data.zero_()
802
+ module.weight.data.fill_(1.0)
803
+
804
+
805
+ GPT_BIGCODE_START_DOCSTRING = r"""
806
+
807
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
808
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
809
+ etc.)
810
+
811
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
812
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
813
+ and behavior.
814
+
815
+ Parameters:
816
+ config ([`GPTBigCodeConfig`]): Model configuration class with all the parameters of the model.
817
+ Initializing with a config file does not load the weights associated with the model, only the
818
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
819
+ """
820
+
821
+ GPT_BIGCODE_INPUTS_DOCSTRING = r"""
822
+ Args:
823
+ input_ids (`torch.Tensor` of shape `(batch_size, input_ids_length)`):
824
+ `input_ids_length` = `sequence_length` if `past_key_values` is `None` else
825
+ `past_key_values[0][0].shape[-2]` (`sequence_length` of input past key value states). Indices of input
826
+ sequence tokens in the vocabulary.
827
+
828
+ If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as
829
+ `input_ids`.
830
+
831
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
832
+ [`PreTrainedTokenizer.__call__`] for details.
833
+
834
+ [What are input IDs?](../glossary#input-ids)
835
+ past_key_values (`Tuple[torch.Tensor]` of length `config.n_layers`):
836
+ Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
837
+ `past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have
838
+ their past given to this model should not be passed as `input_ids` as they have already been computed.
839
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
840
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
841
+
842
+ - 1 for tokens that are **not masked**,
843
+ - 0 for tokens that are **masked**.
844
+
845
+ If `past_key_values` is used, `attention_mask` needs to contain the masking strategy that was used for
846
+ `past_key_values`. In other words, the `attention_mask` always has to have the length:
847
+ `len(past_key_values) + len(input_ids)`
848
+
849
+ [What are attention masks?](../glossary#attention-mask)
850
+ token_type_ids (`torch.Tensor` of shape `(batch_size, input_ids_length)`, *optional*):
851
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
852
+ 1]`:
853
+
854
+ - 0 corresponds to a *sentence A* token,
855
+ - 1 corresponds to a *sentence B* token.
856
+
857
+ [What are token type IDs?](../glossary#token-type-ids)
858
+ position_ids (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
859
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
860
+ config.max_position_embeddings - 1]`.
861
+
862
+ [What are position IDs?](../glossary#position-ids)
863
+ head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
864
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
865
+
866
+ - 1 indicates the head is **not masked**,
867
+ - 0 indicates the head is **masked**.
868
+
869
+ inputs_embeds (`torch.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
870
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
871
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
872
+ model's internal embedding lookup matrix.
873
+
874
+ If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see
875
+ `past_key_values`).
876
+ use_cache (`bool`, *optional*):
877
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
878
+ `past_key_values`).
879
+ output_attentions (`bool`, *optional*):
880
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
881
+ tensors for more detail.
882
+ output_hidden_states (`bool`, *optional*):
883
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
884
+ more detail.
885
+ return_dict (`bool`, *optional*):
886
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
887
+ """
888
+
889
+
890
+ @add_start_docstrings(
891
+ "The bare GPT_BIGCODE Model transformer outputting raw hidden-states without any specific head on top.",
892
+ GPT_BIGCODE_START_DOCSTRING,
893
+ )
894
+ class GPTBigCodeModel(GPTBigCodePreTrainedModel):
895
+ def __init__(self, config):
896
+ super().__init__(config)
897
+ self.multi_query = config.multi_query
898
+ self.embed_dim = config.hidden_size
899
+
900
+ self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
901
+ self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim)
902
+
903
+ self.drop = nn.Dropout(config.embd_pdrop)
904
+ self.h = nn.ModuleList([GPTBigCodeBlock(config, layer_idx=i) for i in range(config.num_hidden_layers)])
905
+ self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
906
+
907
+ max_positions = config.max_position_embeddings
908
+ self.register_buffer(
909
+ "bias", torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)), persistent=False
910
+ )
911
+
912
+ self.gradient_checkpointing = False
913
+
914
+ self._use_sdpa = config._attn_implementation == "sdpa"
915
+ self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
916
+
917
+ # Initialize weights and apply final processing
918
+ self.post_init()
919
+
920
+ def get_input_embeddings(self):
921
+ return self.wte
922
+
923
+ def set_input_embeddings(self, new_embeddings):
924
+ self.wte = new_embeddings
925
+
926
+ @add_start_docstrings_to_model_forward(GPT_BIGCODE_INPUTS_DOCSTRING)
927
+ @add_code_sample_docstrings(
928
+ checkpoint=_CHECKPOINT_FOR_DOC,
929
+ output_type=BaseModelOutputWithPastAndCrossAttentions,
930
+ config_class=_CONFIG_FOR_DOC,
931
+ )
932
+ def forward(
933
+ self,
934
+ input_ids: Optional[torch.Tensor] = None,
935
+ past_key_values: Optional[List[torch.Tensor]] = None,
936
+ attention_mask: Optional[torch.Tensor] = None,
937
+ token_type_ids: Optional[torch.Tensor] = None,
938
+ position_ids: Optional[torch.Tensor] = None,
939
+ head_mask: Optional[torch.Tensor] = None,
940
+ inputs_embeds: Optional[torch.Tensor] = None,
941
+ encoder_hidden_states: Optional[torch.Tensor] = None,
942
+ encoder_attention_mask: Optional[torch.Tensor] = None,
943
+ use_cache: Optional[bool] = None,
944
+ output_attentions: Optional[bool] = None,
945
+ output_hidden_states: Optional[bool] = None,
946
+ return_dict: Optional[bool] = None,
947
+ ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
948
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
949
+ output_hidden_states = (
950
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
951
+ )
952
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
953
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
954
+
955
+ if input_ids is not None and inputs_embeds is not None:
956
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
957
+ elif input_ids is not None:
958
+ self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
959
+ input_shape = input_ids.size()
960
+ input_ids = input_ids.view(-1, input_shape[-1])
961
+ batch_size = input_ids.shape[0]
962
+ elif inputs_embeds is not None:
963
+ input_shape = inputs_embeds.size()[:-1]
964
+ batch_size = inputs_embeds.shape[0]
965
+ else:
966
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
967
+
968
+ if batch_size <= 0:
969
+ raise ValueError("batch_size has to be defined and > 0")
970
+
971
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
972
+
973
+ if token_type_ids is not None:
974
+ token_type_ids = token_type_ids.view(-1, input_shape[-1])
975
+
976
+ if past_key_values is None:
977
+ past_length = 0
978
+ past_key_values = tuple([None] * len(self.h))
979
+ else:
980
+ past_length = past_key_values[0].size(-2)
981
+
982
+ if attention_mask is not None and len(attention_mask.shape) == 2 and position_ids is None:
983
+ # create position_ids on the fly for batch generation
984
+ position_ids = attention_mask.long().cumsum(-1) - 1
985
+ position_ids.masked_fill_(attention_mask == 0, 1)
986
+ if past_length > 0:
987
+ position_ids = position_ids[:, past_length : input_shape[-1] + past_length :]
988
+ elif position_ids is None:
989
+ position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
990
+ position_ids = position_ids.unsqueeze(0)
991
+
992
+ # Self-attention mask.
993
+ query_length = input_shape[-1]
994
+ key_length = past_length + query_length
995
+ self_attention_mask = self.bias[None, key_length - query_length : key_length, :key_length]
996
+
997
+ if self._use_flash_attention_2:
998
+ # 2d mask is passed through the layers
999
+ attention_mask = attention_mask.bool() if (attention_mask is not None and 0 in attention_mask) else None
1000
+ encoder_attention_mask = (
1001
+ encoder_attention_mask.bool()
1002
+ if (encoder_attention_mask is not None and 0 in encoder_attention_mask)
1003
+ else None
1004
+ )
1005
+ else:
1006
+ # 4d mask is passed through the layers
1007
+ if attention_mask is not None:
1008
+ self_attention_mask = self_attention_mask * attention_mask.view(batch_size, 1, -1).to(
1009
+ dtype=torch.bool, device=self_attention_mask.device
1010
+ )
1011
+
1012
+ # MQA models: (batch_size, query_length, n_heads, key_length)
1013
+ # MHA models: (batch_size, n_heads, query_length, key_length)
1014
+ self_attention_mask = self_attention_mask.unsqueeze(2 if self.multi_query else 1)
1015
+
1016
+ if self._use_sdpa and head_mask is None and not output_attentions:
1017
+ # SDPA with a custom mask is much faster in fp16/fp32 dtype rather than bool. Cast here to floating point instead of at every layer.
1018
+ dtype = self.wte.weight.dtype
1019
+ min_dtype = torch.finfo(dtype).min
1020
+ self_attention_mask = torch.where(
1021
+ self_attention_mask,
1022
+ torch.full([], 0.0, dtype=dtype, device=self_attention_mask.device),
1023
+ torch.full([], min_dtype, dtype=dtype, device=self_attention_mask.device),
1024
+ )
1025
+
1026
+ # output_attentions=True can not be supported when using SDPA, and we fall back on
1027
+ # the manual implementation that requires a 4D causal mask in all cases.
1028
+ if self.multi_query:
1029
+ # gpt_bigcode using MQA has the bad taste to use a causal mask with shape
1030
+ # [batch_size, target_length, 1, source_length], not compatible with SDPA, hence this transpose.
1031
+ self_attention_mask = self_attention_mask.transpose(1, 2)
1032
+
1033
+ if query_length > 1 and attention_mask is not None and attention_mask.device.type == "cuda":
1034
+ # From PyTorch 2.1 onwards, F.scaled_dot_product_attention with the memory-efficient attention backend
1035
+ # produces nans if sequences are completely unattended in the attention mask. Details: https://github.com/pytorch/pytorch/issues/110213
1036
+ self_attention_mask = AttentionMaskConverter._unmask_unattended(
1037
+ self_attention_mask, min_dtype=min_dtype
1038
+ )
1039
+
1040
+ attention_mask = self_attention_mask
1041
+
1042
+ # If a 2D or 3D attention mask is provided for the cross-attention
1043
+ # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
1044
+ if (
1045
+ self.config.add_cross_attention
1046
+ and encoder_hidden_states is not None
1047
+ and encoder_attention_mask is not None
1048
+ ):
1049
+ if encoder_attention_mask.dim() == 2:
1050
+ encoder_attention_mask.unsqueeze(1)
1051
+ assert encoder_attention_mask.dim() == 3
1052
+ encoder_attention_mask = encoder_attention_mask.bool().unsqueeze(2 if self.multi_query else 1)
1053
+ else:
1054
+ encoder_attention_mask = None
1055
+
1056
+ # Prepare head mask if needed
1057
+ # 1.0 in head_mask indicate we keep the head
1058
+ # attention_probs has shape bsz x n_heads x N x N
1059
+ # head_mask has shape n_layer x batch x n_heads x N x N
1060
+ head_mask = self.get_head_mask(head_mask, self.config.n_layer)
1061
+
1062
+ if inputs_embeds is None:
1063
+ inputs_embeds = self.wte(input_ids)
1064
+ position_embeds = self.wpe(position_ids)
1065
+ hidden_states = inputs_embeds + position_embeds
1066
+
1067
+ if token_type_ids is not None:
1068
+ token_type_embeds = self.wte(token_type_ids)
1069
+ hidden_states = hidden_states + token_type_embeds
1070
+
1071
+ hidden_states = self.drop(hidden_states)
1072
+
1073
+ output_shape = input_shape + (hidden_states.size(-1),)
1074
+
1075
+ presents = [] if use_cache else None
1076
+ all_self_attentions = () if output_attentions else None
1077
+ all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
1078
+ all_hidden_states = () if output_hidden_states else None
1079
+ for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
1080
+ if output_hidden_states:
1081
+ all_hidden_states = all_hidden_states + (hidden_states,)
1082
+
1083
+ if self.gradient_checkpointing and self.training:
1084
+ outputs = self._gradient_checkpointing_func(
1085
+ block.__call__,
1086
+ hidden_states,
1087
+ None,
1088
+ attention_mask,
1089
+ head_mask[i],
1090
+ encoder_hidden_states,
1091
+ encoder_attention_mask,
1092
+ use_cache,
1093
+ output_attentions,
1094
+ )
1095
+ else:
1096
+ outputs = block(
1097
+ hidden_states,
1098
+ layer_past=layer_past,
1099
+ attention_mask=attention_mask,
1100
+ head_mask=head_mask[i],
1101
+ encoder_hidden_states=encoder_hidden_states,
1102
+ encoder_attention_mask=encoder_attention_mask,
1103
+ use_cache=use_cache,
1104
+ output_attentions=output_attentions,
1105
+ )
1106
+
1107
+ hidden_states = outputs[0]
1108
+ if use_cache:
1109
+ presents.append(outputs[1])
1110
+
1111
+ if output_attentions:
1112
+ all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
1113
+ if self.config.add_cross_attention:
1114
+ all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],)
1115
+
1116
+ hidden_states = self.ln_f(hidden_states)
1117
+
1118
+ hidden_states = hidden_states.view(output_shape)
1119
+ # Add last hidden state
1120
+ if output_hidden_states:
1121
+ all_hidden_states = all_hidden_states + (hidden_states,)
1122
+
1123
+ if not return_dict:
1124
+ return tuple(
1125
+ v
1126
+ for v in [hidden_states, presents, all_hidden_states, all_self_attentions, all_cross_attentions]
1127
+ if v is not None
1128
+ )
1129
+
1130
+ return BaseModelOutputWithPastAndCrossAttentions(
1131
+ last_hidden_state=hidden_states,
1132
+ past_key_values=presents,
1133
+ hidden_states=all_hidden_states,
1134
+ attentions=all_self_attentions,
1135
+ cross_attentions=all_cross_attentions,
1136
+ )
1137
+
1138
+
1139
+ @add_start_docstrings(
1140
+ """
1141
+ The GPT_BIGCODE Model transformer with a language modeling head on top (linear layer with weights tied to the input
1142
+ embeddings).
1143
+ """,
1144
+ GPT_BIGCODE_START_DOCSTRING,
1145
+ )
1146
+ class GPTBigCodeForCausalLM(GPTBigCodePreTrainedModel):
1147
+ _tied_weights_keys = ["lm_head.weight"]
1148
+
1149
+ def __init__(self, config):
1150
+ super().__init__(config)
1151
+ self.transformer = GPTBigCodeModel(config)
1152
+ self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
1153
+
1154
+ # Initialize weights and apply final processing
1155
+ self.post_init()
1156
+
1157
+ def get_output_embeddings(self):
1158
+ return self.lm_head
1159
+
1160
+ def set_output_embeddings(self, new_embeddings):
1161
+ self.lm_head = new_embeddings
1162
+
1163
+ def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
1164
+ token_type_ids = kwargs.get("token_type_ids", None)
1165
+ # Omit tokens covered by past_key_values
1166
+ if past_key_values:
1167
+ if self.config.multi_query:
1168
+ past_length = past_key_values[0].shape[1]
1169
+ else:
1170
+ past_length = past_key_values[0].shape[2]
1171
+
1172
+ # Some generation methods already pass only the last input ID
1173
+ if input_ids.shape[1] > past_length:
1174
+ remove_prefix_length = past_length
1175
+ else:
1176
+ # Default to old behavior: keep only final ID
1177
+ remove_prefix_length = input_ids.shape[1] - 1
1178
+
1179
+ input_ids = input_ids[:, remove_prefix_length:]
1180
+ if token_type_ids is not None:
1181
+ token_type_ids = token_type_ids[:, -input_ids.shape[1] :]
1182
+
1183
+ attention_mask = kwargs.get("attention_mask", None)
1184
+ position_ids = kwargs.get("position_ids", None)
1185
+
1186
+ if attention_mask is not None and position_ids is None:
1187
+ # create position_ids on the fly for batch generation
1188
+ position_ids = attention_mask.long().cumsum(-1) - 1
1189
+ position_ids.masked_fill_(attention_mask == 0, 1)
1190
+ if past_key_values:
1191
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1192
+ else:
1193
+ position_ids = None
1194
+
1195
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1196
+ if inputs_embeds is not None and past_key_values is None:
1197
+ model_inputs = {"inputs_embeds": inputs_embeds}
1198
+ else:
1199
+ model_inputs = {"input_ids": input_ids}
1200
+
1201
+ model_inputs.update(
1202
+ {
1203
+ "past_key_values": past_key_values,
1204
+ "use_cache": kwargs.get("use_cache"),
1205
+ "position_ids": position_ids,
1206
+ "attention_mask": attention_mask,
1207
+ "token_type_ids": token_type_ids,
1208
+ }
1209
+ )
1210
+ return model_inputs
1211
+
1212
+ @add_start_docstrings_to_model_forward(GPT_BIGCODE_INPUTS_DOCSTRING)
1213
+ @add_code_sample_docstrings(
1214
+ checkpoint=_CHECKPOINT_FOR_DOC,
1215
+ output_type=CausalLMOutputWithCrossAttentions,
1216
+ config_class=_CONFIG_FOR_DOC,
1217
+ )
1218
+ def forward(
1219
+ self,
1220
+ input_ids: Optional[torch.Tensor] = None,
1221
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
1222
+ attention_mask: Optional[torch.Tensor] = None,
1223
+ token_type_ids: Optional[torch.Tensor] = None,
1224
+ position_ids: Optional[torch.Tensor] = None,
1225
+ head_mask: Optional[torch.Tensor] = None,
1226
+ inputs_embeds: Optional[torch.Tensor] = None,
1227
+ encoder_hidden_states: Optional[torch.Tensor] = None,
1228
+ encoder_attention_mask: Optional[torch.Tensor] = None,
1229
+ labels: Optional[torch.Tensor] = None,
1230
+ use_cache: Optional[bool] = None,
1231
+ output_attentions: Optional[bool] = None,
1232
+ output_hidden_states: Optional[bool] = None,
1233
+ return_dict: Optional[bool] = None,
1234
+ ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
1235
+ r"""
1236
+ labels (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
1237
+ Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
1238
+ `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
1239
+ are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
1240
+ """
1241
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1242
+
1243
+ transformer_outputs = self.transformer(
1244
+ input_ids,
1245
+ past_key_values=past_key_values,
1246
+ attention_mask=attention_mask,
1247
+ token_type_ids=token_type_ids,
1248
+ position_ids=position_ids,
1249
+ head_mask=head_mask,
1250
+ inputs_embeds=inputs_embeds,
1251
+ encoder_hidden_states=encoder_hidden_states,
1252
+ encoder_attention_mask=encoder_attention_mask,
1253
+ use_cache=use_cache,
1254
+ output_attentions=output_attentions,
1255
+ output_hidden_states=output_hidden_states,
1256
+ return_dict=return_dict,
1257
+ )
1258
+ hidden_states = transformer_outputs[0]
1259
+
1260
+ lm_logits = self.lm_head(hidden_states)
1261
+
1262
+ loss = None
1263
+ if labels is not None:
1264
+ # Shift so that tokens < n predict n
1265
+ shift_logits = lm_logits[..., :-1, :].contiguous()
1266
+ shift_labels = labels[..., 1:].contiguous().to(shift_logits.device)
1267
+ # Flatten the tokens
1268
+ loss_fct = CrossEntropyLoss()
1269
+ loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
1270
+
1271
+ if not return_dict:
1272
+ output = (lm_logits,) + transformer_outputs[1:]
1273
+ return ((loss,) + output) if loss is not None else output
1274
+
1275
+ return CausalLMOutputWithCrossAttentions(
1276
+ loss=loss,
1277
+ logits=lm_logits,
1278
+ past_key_values=transformer_outputs.past_key_values,
1279
+ hidden_states=transformer_outputs.hidden_states,
1280
+ attentions=transformer_outputs.attentions,
1281
+ cross_attentions=transformer_outputs.cross_attentions,
1282
+ )
1283
+
1284
+ @staticmethod
1285
+ def _reorder_cache(
1286
+ past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
1287
+ ) -> Tuple[Tuple[torch.Tensor]]:
1288
+ """
1289
+ This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
1290
+ [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
1291
+ beam_idx at every generation step.
1292
+ """
1293
+ return tuple(layer_past.index_select(0, beam_idx.to(layer_past.device)) for layer_past in past_key_values)
1294
+
1295
+
1296
+ @add_start_docstrings(
1297
+ """
1298
+ The GPTBigCode Model transformer with a sequence classification head on top (linear layer).
1299
+
1300
+ [`GPTBigCodeForSequenceClassification`] uses the last token in order to do the classification, as other causal
1301
+ models (e.g. GPT-1) do.
1302
+
1303
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1304
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1305
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1306
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1307
+ each row of the batch).
1308
+ """,
1309
+ GPT_BIGCODE_START_DOCSTRING,
1310
+ )
1311
+ class GPTBigCodeForSequenceClassification(GPTBigCodePreTrainedModel):
1312
+ def __init__(self, config):
1313
+ super().__init__(config)
1314
+ self.num_labels = config.num_labels
1315
+ self.transformer = GPTBigCodeModel(config)
1316
+ self.score = nn.Linear(config.n_embd, self.num_labels, bias=False)
1317
+
1318
+ # Initialize weights and apply final processing
1319
+ self.post_init()
1320
+
1321
+ @add_start_docstrings_to_model_forward(GPT_BIGCODE_INPUTS_DOCSTRING)
1322
+ def forward(
1323
+ self,
1324
+ input_ids: Optional[torch.Tensor] = None,
1325
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
1326
+ attention_mask: Optional[torch.Tensor] = None,
1327
+ token_type_ids: Optional[torch.Tensor] = None,
1328
+ position_ids: Optional[torch.Tensor] = None,
1329
+ head_mask: Optional[torch.Tensor] = None,
1330
+ inputs_embeds: Optional[torch.Tensor] = None,
1331
+ labels: Optional[torch.Tensor] = None,
1332
+ use_cache: Optional[bool] = None,
1333
+ output_attentions: Optional[bool] = None,
1334
+ output_hidden_states: Optional[bool] = None,
1335
+ return_dict: Optional[bool] = None,
1336
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1337
+ r"""
1338
+ labels (`torch.Tensor` of shape `(batch_size,)`, *optional*):
1339
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1340
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1341
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1342
+ """
1343
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1344
+
1345
+ transformer_outputs = self.transformer(
1346
+ input_ids,
1347
+ past_key_values=past_key_values,
1348
+ attention_mask=attention_mask,
1349
+ token_type_ids=token_type_ids,
1350
+ position_ids=position_ids,
1351
+ head_mask=head_mask,
1352
+ inputs_embeds=inputs_embeds,
1353
+ use_cache=use_cache,
1354
+ output_attentions=output_attentions,
1355
+ output_hidden_states=output_hidden_states,
1356
+ return_dict=return_dict,
1357
+ )
1358
+ hidden_states = transformer_outputs[0]
1359
+ logits = self.score(hidden_states)
1360
+
1361
+ if input_ids is not None:
1362
+ batch_size, sequence_length = input_ids.shape[:2]
1363
+ else:
1364
+ batch_size, sequence_length = inputs_embeds.shape[:2]
1365
+
1366
+ assert (
1367
+ self.config.pad_token_id is not None or batch_size == 1
1368
+ ), "Cannot handle batch sizes > 1 if no padding token is defined."
1369
+ if self.config.pad_token_id is None:
1370
+ sequence_lengths = -1
1371
+ else:
1372
+ if input_ids is not None:
1373
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
1374
+ sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1375
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
1376
+ sequence_lengths = sequence_lengths.to(logits.device)
1377
+ else:
1378
+ sequence_lengths = -1
1379
+ logger.warning(
1380
+ f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
1381
+ "unexpected if using padding tokens in conjunction with `inputs_embeds.`"
1382
+ )
1383
+
1384
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1385
+
1386
+ loss = None
1387
+ if labels is not None:
1388
+ labels = labels.to(logits.device)
1389
+
1390
+ if self.config.problem_type is None:
1391
+ if self.num_labels == 1:
1392
+ self.config.problem_type = "regression"
1393
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1394
+ self.config.problem_type = "single_label_classification"
1395
+ else:
1396
+ self.config.problem_type = "multi_label_classification"
1397
+
1398
+ if self.config.problem_type == "regression":
1399
+ loss_fct = MSELoss()
1400
+ if self.num_labels == 1:
1401
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1402
+ else:
1403
+ loss = loss_fct(pooled_logits, labels)
1404
+ elif self.config.problem_type == "single_label_classification":
1405
+ loss_fct = CrossEntropyLoss()
1406
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1407
+ elif self.config.problem_type == "multi_label_classification":
1408
+ loss_fct = BCEWithLogitsLoss()
1409
+ loss = loss_fct(pooled_logits, labels)
1410
+ if not return_dict:
1411
+ output = (pooled_logits,) + transformer_outputs[1:]
1412
+ return ((loss,) + output) if loss is not None else output
1413
+
1414
+ return SequenceClassifierOutputWithPast(
1415
+ loss=loss,
1416
+ logits=pooled_logits,
1417
+ past_key_values=transformer_outputs.past_key_values,
1418
+ hidden_states=transformer_outputs.hidden_states,
1419
+ attentions=transformer_outputs.attentions,
1420
+ )
1421
+
1422
+
1423
+ @add_start_docstrings(
1424
+ """
1425
+ GPT_BIGCODE Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g.
1426
+ for Named-Entity-Recognition (NER) tasks.
1427
+ """,
1428
+ GPT_BIGCODE_START_DOCSTRING,
1429
+ )
1430
+ class GPTBigCodeForTokenClassification(GPTBigCodePreTrainedModel):
1431
+ def __init__(self, config):
1432
+ super().__init__(config)
1433
+ self.num_labels = config.num_labels
1434
+
1435
+ self.transformer = GPTBigCodeModel(config)
1436
+ if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None:
1437
+ classifier_dropout = config.classifier_dropout
1438
+ elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None:
1439
+ classifier_dropout = config.hidden_dropout
1440
+ else:
1441
+ classifier_dropout = 0.1
1442
+ self.dropout = nn.Dropout(classifier_dropout)
1443
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
1444
+
1445
+ # Initialize weights and apply final processing
1446
+ self.post_init()
1447
+
1448
+ @add_start_docstrings_to_model_forward(GPT_BIGCODE_INPUTS_DOCSTRING)
1449
+ def forward(
1450
+ self,
1451
+ input_ids: Optional[torch.Tensor] = None,
1452
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
1453
+ attention_mask: Optional[torch.Tensor] = None,
1454
+ token_type_ids: Optional[torch.Tensor] = None,
1455
+ position_ids: Optional[torch.Tensor] = None,
1456
+ head_mask: Optional[torch.Tensor] = None,
1457
+ inputs_embeds: Optional[torch.Tensor] = None,
1458
+ labels: Optional[torch.Tensor] = None,
1459
+ use_cache: Optional[bool] = None,
1460
+ output_attentions: Optional[bool] = None,
1461
+ output_hidden_states: Optional[bool] = None,
1462
+ return_dict: Optional[bool] = None,
1463
+ ) -> Union[Tuple, TokenClassifierOutput]:
1464
+ r"""
1465
+ labels (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
1466
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1467
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1468
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1469
+ """
1470
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1471
+
1472
+ transformer_outputs = self.transformer(
1473
+ input_ids,
1474
+ past_key_values=past_key_values,
1475
+ attention_mask=attention_mask,
1476
+ token_type_ids=token_type_ids,
1477
+ position_ids=position_ids,
1478
+ head_mask=head_mask,
1479
+ inputs_embeds=inputs_embeds,
1480
+ use_cache=use_cache,
1481
+ output_attentions=output_attentions,
1482
+ output_hidden_states=output_hidden_states,
1483
+ return_dict=return_dict,
1484
+ )
1485
+
1486
+ hidden_states = transformer_outputs[0]
1487
+ hidden_states = self.dropout(hidden_states)
1488
+ logits = self.classifier(hidden_states)
1489
+
1490
+ loss = None
1491
+ if labels is not None:
1492
+ loss_fct = CrossEntropyLoss()
1493
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1).to(logits.device))
1494
+
1495
+ if not return_dict:
1496
+ output = (logits,) + transformer_outputs[2:]
1497
+ return ((loss,) + output) if loss is not None else output
1498
+
1499
+ return TokenClassifierOutput(
1500
+ loss=loss,
1501
+ logits=logits,
1502
+ hidden_states=transformer_outputs.hidden_states,
1503
+ attentions=transformer_outputs.attentions,
1504
+ )
llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_neox_japanese/__init__.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2022 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from typing import TYPE_CHECKING
15
+
16
+ from ...file_utils import _LazyModule, is_torch_available
17
+ from ...utils import OptionalDependencyNotAvailable
18
+
19
+
20
+ _import_structure = {
21
+ "configuration_gpt_neox_japanese": ["GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoXJapaneseConfig"],
22
+ "tokenization_gpt_neox_japanese": ["GPTNeoXJapaneseTokenizer"],
23
+ }
24
+
25
+ try:
26
+ if not is_torch_available():
27
+ raise OptionalDependencyNotAvailable()
28
+ except OptionalDependencyNotAvailable:
29
+ pass
30
+ else:
31
+ _import_structure["modeling_gpt_neox_japanese"] = [
32
+ "GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST",
33
+ "GPTNeoXJapaneseForCausalLM",
34
+ "GPTNeoXJapaneseLayer",
35
+ "GPTNeoXJapaneseModel",
36
+ "GPTNeoXJapanesePreTrainedModel",
37
+ ]
38
+
39
+
40
+ if TYPE_CHECKING:
41
+ from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig
42
+ from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer
43
+
44
+ try:
45
+ if not is_torch_available():
46
+ raise OptionalDependencyNotAvailable()
47
+ except OptionalDependencyNotAvailable:
48
+ pass
49
+ else:
50
+ from .modeling_gpt_neox_japanese import (
51
+ GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST,
52
+ GPTNeoXJapaneseForCausalLM,
53
+ GPTNeoXJapaneseLayer,
54
+ GPTNeoXJapaneseModel,
55
+ GPTNeoXJapanesePreTrainedModel,
56
+ )
57
+
58
+
59
+ else:
60
+ import sys
61
+
62
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_neox_japanese/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.16 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_neox_japanese/__pycache__/configuration_gpt_neox_japanese.cpython-310.pyc ADDED
Binary file (5.02 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_neox_japanese/__pycache__/modeling_gpt_neox_japanese.cpython-310.pyc ADDED
Binary file (23.3 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_neox_japanese/__pycache__/tokenization_gpt_neox_japanese.cpython-310.pyc ADDED
Binary file (15.3 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_neox_japanese/configuration_gpt_neox_japanese.py ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 ABEJA, Inc. and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ GPTNeoX Japanese model configuration"""
16
+
17
+ from ...configuration_utils import PretrainedConfig
18
+ from ...utils import logging
19
+
20
+
21
+ logger = logging.get_logger(__name__)
22
+
23
+
24
+ from ..deprecated._archive_maps import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
25
+
26
+
27
+ class GPTNeoXJapaneseConfig(PretrainedConfig):
28
+ r"""
29
+ This is the configuration class to store the configuration of a [`GPTNeoXModelJapanese`]. It is used to instantiate
30
+ a GPTNeoX model according to the specified arguments, defining the model architecture. Instantiating a
31
+ configuration with the defaults will yield a similar configuration to that of the GPTNeoXJapanese
32
+ [abeja/gpt-neox-japanese-2.7b](https://huggingface.co/abeja/gpt-neox-japanese-2.7b) architecture.
33
+
34
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
35
+ documentation from [`PretrainedConfig`] for more information. Default configs is set as 2.7B model
36
+
37
+ Args:
38
+ vocab_size (`int`, *optional*, defaults to 32000):
39
+ Vocabulary size of the GPTNeoXJapanese model. Defines the number of different tokens that can be
40
+ represented by the `inputs_ids` passed when calling [`GPTNeoXJapanese`].
41
+ hidden_size (`int`, *optional*, defaults to 2560):
42
+ Dimension of the encoder layers and the pooler layer.
43
+ num_hidden_layers (`int`, *optional*, defaults to 32):
44
+ Number of hidden layers in the Transformer encoder.
45
+ num_attention_heads (`int`, *optional*, defaults to 32):
46
+ Number of attention heads for each attention layer in the Transformer encoder.
47
+ intermediate_multiple_size (`int`, *optional*, defaults to 4):
48
+ Dimension of the "intermediate" layer in the Transformer encoder is calculated by hidden_size *
49
+ intermediate_multiple_size.
50
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
51
+ The non-linear activation function (function or string) in the encoder and pooler.
52
+ rotary_pct (`float`, *optional*, defaults to 1.00):
53
+ percentage of hidden dimensions to allocate to rotary embeddings
54
+ rotary_emb_base (`int`, *optional*, defaults to 10000)
55
+ base for computing rotary embeddings frequency
56
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
57
+ The maximum sequence length that this model might ever be used with.
58
+ initializer_range (`float`, *optional*, defaults to 0.02):
59
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
60
+ layer_norm_eps (`float`, *optional*, defaults to 1e-5):
61
+ The epsilon used by the layer normalization layers.
62
+ use_cache (`bool`, *optional*, defaults to `True`):
63
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
64
+ relevant if `config.is_decoder=True`.
65
+ attention_dropout (`float`, *optional*, defaults to 0.1):
66
+ The dropout ratio for the attention.
67
+ hidden_dropout (`float`, *optional*, defaults to 0.0):
68
+ The dropout ratio for the hidden layer.
69
+ Example:
70
+
71
+ ```python
72
+ >>> from transformers import GPTNeoXJapaneseConfig, GPTNeoXJapaneseModel
73
+
74
+ >>> # Initializing a GPTNeoXJapanese gpt-neox-japanese-2.7b style configuration
75
+ >>> configuration = GPTNeoXJapaneseConfig()
76
+
77
+ >>> # Initializing a model (with random weights) from the gpt-neox-japanese-2.7b style configuration
78
+ >>> model = GPTNeoXJapaneseModel(configuration)
79
+
80
+ >>> # Accessing the model configuration
81
+ >>> configuration = model.config
82
+ ```"""
83
+
84
+ model_type = "gpt_neox_japanese"
85
+
86
+ def __init__(
87
+ self,
88
+ vocab_size=32000,
89
+ hidden_size=2560,
90
+ num_hidden_layers=32,
91
+ num_attention_heads=32,
92
+ intermediate_multiple_size=4,
93
+ hidden_act="gelu",
94
+ rotary_pct=1.00,
95
+ rotary_emb_base=10000,
96
+ max_position_embeddings=2048,
97
+ initializer_range=0.02,
98
+ layer_norm_eps=1e-5,
99
+ use_cache=True,
100
+ bos_token_id=31996,
101
+ eos_token_id=31999,
102
+ attention_dropout=0.1,
103
+ hidden_dropout=0.0,
104
+ **kwargs,
105
+ ):
106
+ super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
107
+ self.vocab_size = vocab_size
108
+ self.max_position_embeddings = max_position_embeddings
109
+ self.hidden_size = hidden_size
110
+ self.num_hidden_layers = num_hidden_layers
111
+ self.num_attention_heads = num_attention_heads
112
+ self.intermediate_multiple_size = intermediate_multiple_size
113
+ self.hidden_act = hidden_act
114
+ self.rotary_pct = rotary_pct
115
+ self.rotary_emb_base = rotary_emb_base
116
+ self.initializer_range = initializer_range
117
+ self.layer_norm_eps = layer_norm_eps
118
+ self.use_cache = use_cache
119
+ self.attention_dropout = attention_dropout
120
+ self.hidden_dropout = hidden_dropout
llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_neox_japanese/modeling_gpt_neox_japanese.py ADDED
@@ -0,0 +1,729 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 ABEJA, Inc. and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ PyTorch GPTNeoX model."""
16
+
17
+ from typing import Optional, Tuple, Union
18
+
19
+ import torch
20
+ import torch.utils.checkpoint
21
+ from torch import Tensor, nn
22
+ from torch.nn import CrossEntropyLoss
23
+
24
+ from ...activations import ACT2FN
25
+ from ...file_utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings
26
+ from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
27
+ from ...modeling_utils import PreTrainedModel
28
+ from ...utils import logging
29
+ from .configuration_gpt_neox_japanese import GPTNeoXJapaneseConfig
30
+
31
+
32
+ logger = logging.get_logger(__name__)
33
+
34
+ _CHECKPOINT_FOR_DOC = "abeja/gpt-neox-japanese-2.7b"
35
+ _CONFIG_FOR_DOC = "GPTNeoXJapaneseConfig"
36
+
37
+
38
+ from ..deprecated._archive_maps import GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
39
+
40
+
41
+ class GPTNeoXJapanesePreTrainedModel(PreTrainedModel):
42
+ """
43
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
44
+ models.
45
+ """
46
+
47
+ config_class = GPTNeoXJapaneseConfig
48
+ base_model_prefix = "gpt_neox_japanese"
49
+ _no_split_modules = ["GPTNeoXJapaneseLayer"]
50
+ _skip_keys_device_placement = "past_key_values"
51
+
52
+ def _init_weights(self, module):
53
+ """Initialize the weights"""
54
+ if isinstance(module, nn.Linear):
55
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
56
+ if module.bias is not None:
57
+ module.bias.data.zero_()
58
+ elif isinstance(module, nn.Embedding):
59
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
60
+ if module.padding_idx is not None:
61
+ module.weight.data[module.padding_idx].zero_()
62
+ elif isinstance(module, nn.LayerNorm):
63
+ module.bias.data.zero_()
64
+ module.weight.data.fill_(1.0)
65
+
66
+
67
+ class GPTNeoXJapaneseAttention(nn.Module):
68
+ def __init__(self, config, use_bias=False):
69
+ super().__init__()
70
+ self.num_attention_heads = config.num_attention_heads
71
+ self.hidden_size = config.hidden_size
72
+ self.head_size = self.hidden_size // self.num_attention_heads
73
+
74
+ self.rotary_ndims = int(self.head_size * config.rotary_pct)
75
+ self.rotary_emb = RotaryEmbedding(
76
+ self.rotary_ndims, config.max_position_embeddings, base=config.rotary_emb_base
77
+ )
78
+ self.max_positions = config.max_position_embeddings
79
+ self.attention_dropout = nn.Dropout(config.attention_dropout)
80
+ self.norm_factor = torch.sqrt(torch.tensor(self.head_size, dtype=torch.float32)).to(torch.get_default_dtype())
81
+
82
+ self.query_key_value = nn.Linear(config.hidden_size, 3 * config.hidden_size, bias=False)
83
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size, bias=False)
84
+ # Activate bias if the last layer
85
+ self.use_bias = use_bias
86
+ self.dense_bias = nn.Parameter(torch.zeros(config.hidden_size)) if use_bias else None
87
+
88
+ def forward(
89
+ self,
90
+ hidden_states,
91
+ attention_mask,
92
+ head_mask=None,
93
+ layer_past=None,
94
+ use_cache=False,
95
+ output_attentions=False,
96
+ ):
97
+ has_layer_past = layer_past is not None and layer_past[0].numel() > 0
98
+
99
+ # Compute QKV
100
+ # Attention heads [batch, seq_len, hidden_size]
101
+ # --> [batch, seq_len, (np * 3 * head_size)]
102
+ qkv = self.query_key_value(hidden_states)
103
+
104
+ # [batch, seq_len, (num_heads * 3 * head_size)]
105
+ # --> [batch, seq_len, num_heads, 3 * head_size]
106
+ new_qkv_shape = qkv.size()[:-1] + (self.num_attention_heads, 3 * self.head_size)
107
+ qkv = qkv.view(*new_qkv_shape)
108
+
109
+ # [batch, seq_len, num_attention_heads, 3 * head_size] --> 3 [batch, num_attention_heads, seq_len, head_size]
110
+ query = qkv[..., : self.head_size].permute(0, 2, 1, 3)
111
+ key = qkv[..., self.head_size : 2 * self.head_size].permute(0, 2, 1, 3)
112
+ value = qkv[..., 2 * self.head_size :].permute(0, 2, 1, 3)
113
+
114
+ # Compute rotary embeddings on rotary_ndims
115
+ query_rot = query[..., : self.rotary_ndims]
116
+ query_pass = query[..., self.rotary_ndims :]
117
+ key_rot = key[..., : self.rotary_ndims]
118
+ key_pass = key[..., self.rotary_ndims :]
119
+
120
+ # Compute token offset for rotary embeddings (when decoding)
121
+ seq_len = key.shape[-2]
122
+ offset = 0
123
+ if has_layer_past:
124
+ offset = layer_past[0].shape[-2]
125
+ seq_len += offset
126
+ cos, sin = self.rotary_emb(value, seq_len=seq_len)
127
+ query, key = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, offset=offset)
128
+ query = torch.cat((query, query_pass), dim=-1)
129
+ key = torch.cat((key, key_pass), dim=-1)
130
+
131
+ # Cache QKV values
132
+ if has_layer_past:
133
+ past_key = layer_past[0]
134
+ past_value = layer_past[1]
135
+ key = torch.cat((past_key, key), dim=-2)
136
+ value = torch.cat((past_value, value), dim=-2)
137
+ present = (key, value) if use_cache else None
138
+
139
+ # Compute attention
140
+ attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
141
+
142
+ # Reshape outputs
143
+ attn_output = self._merge_heads(attn_output, self.num_attention_heads, self.head_size)
144
+ attn_output = self.dense(attn_output)
145
+
146
+ outputs = (attn_output, present)
147
+ if output_attentions:
148
+ outputs += (attn_weights,)
149
+
150
+ return outputs, self.dense_bias
151
+
152
+ @classmethod
153
+ def _split_heads(cls, tensor, num_attention_heads, attn_head_size):
154
+ """
155
+ Splits hidden dim into attn_head_size and num_attention_heads
156
+ """
157
+ # tensor: [bs, seq_len, hidden_size]
158
+ new_shape = tensor.size()[:-1] + (num_attention_heads, attn_head_size)
159
+ # -> [bs, seq_len, num_attention_heads, attn_head_size]
160
+ tensor = tensor.view(new_shape)
161
+ # -> [bs, num_attention_heads, seq_len, attn_head_size]
162
+ tensor = tensor.permute(0, 2, 1, 3)
163
+ return tensor
164
+
165
+ @classmethod
166
+ def _merge_heads(cls, tensor, num_attention_heads, attn_head_size):
167
+ """
168
+ Merges attn_head_size dim and num_attn_heads dim into hidden dim
169
+ """
170
+ # tensor [bs, num_attention_heads, seq_len, attn_head_size]
171
+ tensor = tensor.permute(0, 2, 1, 3).contiguous()
172
+ # -> [bs, seq_len, num_attention_heads, attn_head_size]
173
+ tensor = tensor.view(tensor.size(0), tensor.size(1), num_attention_heads * attn_head_size)
174
+ # -> [bs, seq_len, hidden_size]
175
+ return tensor
176
+
177
+ def _create_causal_mask(self, key_length, query_length):
178
+ causal_mask = torch.tril(
179
+ torch.ones((self.max_positions, self.max_positions), dtype=torch.bool).view(
180
+ 1, 1, self.max_positions, self.max_positions
181
+ )
182
+ )
183
+ return causal_mask[:, :, key_length - query_length : key_length, :key_length]
184
+
185
+ def _attn(self, query, key, value, attention_mask=None, head_mask=None):
186
+ # q, k, v: [bs, num_attention_heads, seq_len, attn_head_size]
187
+ # compute causal mask from causal mask buffer
188
+ batch_size, num_attention_heads, query_length, attn_head_size = query.size()
189
+ key_length = key.size(-2)
190
+
191
+ causal_mask = self._create_causal_mask(key_length, query_length)
192
+
193
+ query = query.view(batch_size * num_attention_heads, query_length, attn_head_size)
194
+ key = key.view(batch_size * num_attention_heads, key_length, attn_head_size)
195
+ attn_scores = torch.zeros(
196
+ batch_size * num_attention_heads,
197
+ query_length,
198
+ key_length,
199
+ dtype=query.dtype,
200
+ device=key.device,
201
+ )
202
+ attn_scores = torch.baddbmm(
203
+ attn_scores,
204
+ query,
205
+ key.transpose(1, 2),
206
+ beta=1.0,
207
+ alpha=(torch.tensor(1.0, dtype=self.norm_factor.dtype, device=self.norm_factor.device) / self.norm_factor),
208
+ )
209
+ attn_scores = attn_scores.view(batch_size, num_attention_heads, query_length, key_length)
210
+
211
+ mask_value = torch.finfo(attn_scores.dtype).min
212
+ # Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
213
+ # Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
214
+ mask_value = torch.tensor(mask_value, dtype=attn_scores.dtype).to(attn_scores.device)
215
+ causal_mask = causal_mask.to(attn_scores.device)
216
+ attn_scores = torch.where(causal_mask, attn_scores, mask_value)
217
+
218
+ if attention_mask is not None:
219
+ # Apply the attention mask
220
+ attn_scores = attn_scores + attention_mask
221
+
222
+ attn_weights = nn.functional.softmax(attn_scores, dim=-1)
223
+ attn_weights = self.attention_dropout(attn_weights)
224
+ attn_weights = attn_weights.to(value.dtype)
225
+
226
+ # Mask heads if we want to
227
+ if head_mask is not None:
228
+ attn_weights = attn_weights * head_mask
229
+
230
+ attn_output = torch.matmul(attn_weights, value)
231
+ return attn_output, attn_weights
232
+
233
+
234
+ # Copied from transformers.models.gpt_neox.modeling_gpt_neox.GPTNeoXRotaryEmbedding with GPTNeoXRotaryEmbedding->RotaryEmbedding
235
+ class RotaryEmbedding(nn.Module):
236
+ # Copied from transformers.models.mistral.modeling_mistral.MistralRotaryEmbedding.__init__
237
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
238
+ super().__init__()
239
+
240
+ self.dim = dim
241
+ self.max_position_embeddings = max_position_embeddings
242
+ self.base = base
243
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
244
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
245
+
246
+ # Build here to make `torch.jit.trace` work.
247
+ self._set_cos_sin_cache(
248
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
249
+ )
250
+
251
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
252
+ self.max_seq_len_cached = seq_len
253
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
254
+
255
+ freqs = torch.outer(t, self.inv_freq)
256
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
257
+ emb = torch.cat((freqs, freqs), dim=-1)
258
+ self.register_buffer("cos_cached", emb.cos(), persistent=False)
259
+ self.register_buffer("sin_cached", emb.sin(), persistent=False)
260
+
261
+ def forward(self, x, seq_len=None):
262
+ # x: [bs, num_attention_heads, seq_len, head_size]
263
+ if seq_len > self.max_seq_len_cached:
264
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
265
+
266
+ return (
267
+ self.cos_cached[:seq_len],
268
+ self.sin_cached[:seq_len],
269
+ )
270
+
271
+
272
+ def rotate_half(x):
273
+ """Rotates half the hidden dims of the input."""
274
+ x1 = x[..., : x.shape[-1] // 2]
275
+ x2 = x[..., x.shape[-1] // 2 :]
276
+ return torch.cat((-x2, x1), dim=-1)
277
+
278
+
279
+ def apply_rotary_pos_emb(q, k, cos, sin, offset: int = 0):
280
+ cos = cos[..., offset : q.shape[-2] + offset, :]
281
+ sin = sin[..., offset : q.shape[-2] + offset, :]
282
+ q_embed = (q * cos) + (rotate_half(q) * sin)
283
+ k_embed = (k * cos) + (rotate_half(k) * sin)
284
+ return q_embed, k_embed
285
+
286
+
287
+ def bias_dropout_add(x: Tensor, bias: Tensor, residual: Optional[Tensor], prob: float, training: bool) -> Tensor:
288
+ """add bias to x, apply dropout and residual connection
289
+
290
+ Args:
291
+ x (Tensor): main path of output
292
+ bias (Tensor): None or attn_bias of the last attention layer
293
+ residual (Optional[Tensor]): residual value
294
+ prob (float): dropout probability
295
+ training (bool): whether in training mode or not
296
+
297
+ Returns:
298
+ Tensor: dropout(x + bias) + residual
299
+ """
300
+ if bias is not None:
301
+ x = x + bias
302
+ out = torch.nn.functional.dropout(x, p=prob, training=training)
303
+ if residual is not None:
304
+ out = residual + out
305
+ return out
306
+
307
+
308
+ class GPTNeoXJapaneseMLP(nn.Module):
309
+ def __init__(self, config):
310
+ super().__init__()
311
+ intermediate_size = int(config.hidden_size * config.intermediate_multiple_size)
312
+ self.dense_h_to_4h = nn.Linear(config.hidden_size, intermediate_size, bias=False)
313
+ # Project back to h.
314
+ self.dense_4h_to_h = nn.Linear(intermediate_size, config.hidden_size, bias=False)
315
+ self.act = ACT2FN[config.hidden_act]
316
+
317
+ def forward(self, hidden_states):
318
+ intermediate = self.dense_h_to_4h(hidden_states)
319
+ intermediate = self.act(intermediate)
320
+ output = self.dense_4h_to_h(intermediate)
321
+ return output
322
+
323
+
324
+ class GPTNeoXJapaneseLayer(nn.Module):
325
+ def __init__(self, config, layer_number):
326
+ super().__init__()
327
+ self.layer_number = layer_number
328
+ self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
329
+ self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
330
+ # activate bias only last layer
331
+ self.attention = GPTNeoXJapaneseAttention(config=config, use_bias=layer_number == config.num_hidden_layers - 1)
332
+ self.mlp = GPTNeoXJapaneseMLP(config)
333
+ self.hidden_dropout = config.hidden_dropout
334
+
335
+ def forward(
336
+ self,
337
+ hidden_states,
338
+ attention_mask=None,
339
+ head_mask=None,
340
+ use_cache=False,
341
+ layer_past=None,
342
+ output_attentions=False,
343
+ ):
344
+ residual = hidden_states
345
+ ln_out = self.input_layernorm(hidden_states)
346
+ attention_layer_outputs, attn_bias = self.attention(
347
+ ln_out,
348
+ attention_mask=attention_mask,
349
+ layer_past=layer_past,
350
+ head_mask=head_mask,
351
+ use_cache=use_cache,
352
+ output_attentions=output_attentions,
353
+ )
354
+ attn_output = attention_layer_outputs[0] # output_attn: a, present, (attentions)
355
+ outputs = attention_layer_outputs[1:]
356
+
357
+ # attn_output = (atten_output + bias) + residual
358
+ attn_output = bias_dropout_add(
359
+ attn_output,
360
+ bias=attn_bias.expand_as(residual) if attn_bias is not None else attn_bias,
361
+ residual=residual,
362
+ prob=self.hidden_dropout,
363
+ training=self.training,
364
+ )
365
+ mlp_output = self.mlp(self.post_attention_layernorm(attn_output))
366
+
367
+ # attn_output = (mlp_output + mlp_bias) + atten_output
368
+ attn_output = bias_dropout_add(
369
+ mlp_output, bias=None, residual=attn_output, prob=self.hidden_dropout, training=self.training
370
+ )
371
+
372
+ if use_cache:
373
+ outputs = (attn_output,) + outputs
374
+ else:
375
+ outputs = (attn_output,) + outputs[1:]
376
+
377
+ return outputs # hidden_states, present, (attentions)
378
+
379
+
380
+ GPT_NEOX_JAPANESE_START_DOCSTRING = r"""
381
+ This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
382
+ it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
383
+ behavior.
384
+
385
+ Parameters:
386
+ config ([`~GPTNeoXJapaneseConfig`]): Model configuration class with all the parameters of the model.
387
+ Initializing with a config file does not load the weights associated with the model, only the
388
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
389
+ """
390
+
391
+ GPT_NEOX_JAPANESE_INPUTS_DOCSTRING = r"""
392
+ Args:
393
+ input_ids (`torch.LongTensor` of shape `({0})`):
394
+ Indices of input sequence tokens in the vocabulary.
395
+
396
+ Indices can be obtained using [`AutoTokenizer`].
397
+
398
+ attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
399
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
400
+
401
+ - 1 for tokens that are **not masked**,
402
+ - 0 for tokens that are **masked**.
403
+
404
+ token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
405
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
406
+ 1]`:
407
+
408
+ - 0 corresponds to a *sentence A* token,
409
+ - 1 corresponds to a *sentence B* token.
410
+
411
+ position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
412
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
413
+ config.max_position_embeddings - 1]`.
414
+
415
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
416
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
417
+
418
+ - 1 indicates the head is **not masked**,
419
+ - 0 indicates the head is **masked**.
420
+
421
+ inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
422
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
423
+ is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
424
+ model's internal embedding lookup matrix.
425
+ output_attentions (`bool`, *optional*):
426
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
427
+ tensors for more detail.
428
+ output_hidden_states (`bool`, *optional*):
429
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
430
+ more detail.
431
+ return_dict (`bool`, *optional*):
432
+ Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
433
+ """
434
+
435
+
436
+ @add_start_docstrings(
437
+ "The bare GPTNeoXJapanese Model transformer outputting raw hidden-states without any specific head on top.",
438
+ GPT_NEOX_JAPANESE_START_DOCSTRING,
439
+ )
440
+ class GPTNeoXJapaneseModel(GPTNeoXJapanesePreTrainedModel):
441
+ def __init__(self, config):
442
+ super().__init__(config)
443
+ self.config = config
444
+
445
+ self.embed_in = nn.Embedding(config.vocab_size, config.hidden_size)
446
+ self.layers = nn.ModuleList(
447
+ [GPTNeoXJapaneseLayer(config=config, layer_number=i) for i in range(config.num_hidden_layers)]
448
+ )
449
+ self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
450
+
451
+ # Initialize weights and apply final processing
452
+ self.post_init()
453
+
454
+ def get_input_embeddings(self):
455
+ return self.embed_in
456
+
457
+ def set_input_embeddings(self, value):
458
+ self.embed_in = value
459
+
460
+ @add_start_docstrings_to_model_forward(GPT_NEOX_JAPANESE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
461
+ @replace_return_docstrings(output_type=BaseModelOutputWithPast, config_class=_CONFIG_FOR_DOC)
462
+ def forward(
463
+ self,
464
+ input_ids: Optional[torch.LongTensor] = None,
465
+ attention_mask: Optional[torch.FloatTensor] = None,
466
+ head_mask: Optional[torch.FloatTensor] = None,
467
+ inputs_embeds: Optional[torch.FloatTensor] = None,
468
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
469
+ use_cache: Optional[bool] = None,
470
+ output_attentions: Optional[bool] = None,
471
+ output_hidden_states: Optional[bool] = None,
472
+ return_dict: Optional[bool] = None,
473
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
474
+ r"""
475
+ past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
476
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
477
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
478
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
479
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
480
+ use_cache (`bool`, *optional*):
481
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
482
+ `past_key_values`).
483
+
484
+ Returns:
485
+
486
+ Example:
487
+
488
+ ```python
489
+ >>> from transformers import AutoTokenizer, GPTNeoXJapaneseModel
490
+ >>> import torch
491
+
492
+ >>> tokenizer = AutoTokenizer.from_pretrained("abeja/gpt-neox-japanese-2.7b")
493
+ >>> model = GPTNeoXJapaneseModel.from_pretrained("abeja/gpt-neox-japanese-2.7b")
494
+
495
+ >>> inputs = tokenizer("日本語のGPT-neoxがHugging Faceで使えます😀", return_tensors="pt")
496
+ >>> outputs = model(**inputs)
497
+
498
+ >>> last_hidden_states = outputs.last_hidden_state
499
+ ```
500
+ """
501
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
502
+ output_hidden_states = (
503
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
504
+ )
505
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
506
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
507
+
508
+ if input_ids is not None and inputs_embeds is not None:
509
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
510
+ elif input_ids is not None:
511
+ self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
512
+ input_shape = input_ids.size()
513
+ elif inputs_embeds is not None:
514
+ input_shape = inputs_embeds.size()[:-1]
515
+ else:
516
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
517
+
518
+ batch_size, seq_length = input_shape
519
+
520
+ if past_key_values is None:
521
+ past_key_values = tuple([None] * self.config.num_hidden_layers)
522
+
523
+ # Attention mask.
524
+ if attention_mask is not None:
525
+ if not batch_size > 0:
526
+ raise ValueError("batch_size has to be defined and > 0")
527
+ attention_mask = attention_mask.view(batch_size, -1)
528
+ # We create a 3D attention mask from a 2D tensor mask.
529
+ # Sizes are [batch_size, 1, 1, to_seq_length]
530
+ # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
531
+ # this attention mask is more simple than the triangular masking of causal attention
532
+ # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
533
+ attention_mask = attention_mask[:, None, None, :]
534
+
535
+ # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
536
+ # masked positions, this operation will create a tensor which is 0.0 for
537
+ # positions we want to attend and -10000.0 for masked positions.
538
+ # Since we are adding it to the raw scores before the softmax, this is
539
+ # effectively the same as removing these entirely.
540
+ attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
541
+ attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
542
+
543
+ # Prepare head mask if needed
544
+ # 1.0 in head_mask indicate we keep the head
545
+ # attention_probs has shape bsz x n_heads x N x N
546
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
547
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
548
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
549
+
550
+ if inputs_embeds is None:
551
+ inputs_embeds = self.embed_in(input_ids)
552
+
553
+ hidden_states = inputs_embeds
554
+
555
+ presents = () if use_cache else None
556
+ all_attentions = () if output_attentions else None
557
+ all_hidden_states = () if output_hidden_states else None
558
+ for i, (layer, layer_past) in enumerate(zip(self.layers, past_key_values)):
559
+ if output_hidden_states:
560
+ all_hidden_states = all_hidden_states + (hidden_states,)
561
+ outputs = layer(
562
+ hidden_states,
563
+ attention_mask=attention_mask,
564
+ head_mask=head_mask[i],
565
+ layer_past=layer_past,
566
+ use_cache=use_cache,
567
+ output_attentions=output_attentions,
568
+ )
569
+ hidden_states = outputs[0]
570
+ if use_cache is True:
571
+ presents = presents + (outputs[1],)
572
+ if output_attentions:
573
+ all_attentions = all_attentions + (outputs[2 if use_cache else 1],)
574
+
575
+ hidden_states = self.final_layer_norm(hidden_states)
576
+ # Add last hidden state
577
+ if output_hidden_states:
578
+ all_hidden_states = all_hidden_states + (hidden_states,)
579
+
580
+ if not return_dict:
581
+ return tuple(v for v in [hidden_states, presents, all_hidden_states, all_attentions] if v is not None)
582
+
583
+ return BaseModelOutputWithPast(
584
+ last_hidden_state=hidden_states,
585
+ past_key_values=presents,
586
+ hidden_states=all_hidden_states,
587
+ attentions=all_attentions,
588
+ )
589
+
590
+
591
+ @add_start_docstrings(
592
+ """GPTNeoXJapanese Model with a `language modeling` head on top for Classifier Model fine-tuning.""",
593
+ GPT_NEOX_JAPANESE_START_DOCSTRING,
594
+ )
595
+ class GPTNeoXJapaneseForCausalLM(GPTNeoXJapanesePreTrainedModel):
596
+ _tied_weights_keys = ["embed_out.weight"]
597
+
598
+ def __init__(self, config):
599
+ super().__init__(config)
600
+ self.config = config
601
+
602
+ self.gpt_neox_japanese = GPTNeoXJapaneseModel(config)
603
+ self.embed_out = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
604
+
605
+ # Initialize weights and apply final processing
606
+ self.post_init()
607
+
608
+ def get_output_embeddings(self):
609
+ return self.embed_out
610
+
611
+ def set_output_embeddings(self, new_embeddings):
612
+ self.embed_out = new_embeddings
613
+
614
+ @add_start_docstrings_to_model_forward(GPT_NEOX_JAPANESE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
615
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
616
+ def forward(
617
+ self,
618
+ input_ids: Optional[torch.LongTensor] = None,
619
+ attention_mask: Optional[torch.FloatTensor] = None,
620
+ inputs_embeds: Optional[torch.FloatTensor] = None,
621
+ head_mask: Optional[torch.FloatTensor] = None,
622
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
623
+ labels: Optional[torch.LongTensor] = None,
624
+ use_cache: Optional[bool] = None,
625
+ output_attentions: Optional[bool] = None,
626
+ output_hidden_states: Optional[bool] = None,
627
+ return_dict: Optional[bool] = None,
628
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
629
+ r"""
630
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
631
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
632
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
633
+ `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional tensors are
634
+ only required when the model is used as a decoder in a Sequence to Sequence model.
635
+
636
+ Contains pre-computed hidden-states (key and values in the self-attention blocks that can be used (see
637
+ `past_key_values` input) to speed up sequential decoding.
638
+
639
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
640
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
641
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
642
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
643
+ Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
644
+ `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
645
+ ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`.
646
+ use_cache (`bool`, *optional*):
647
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
648
+ `past_key_values`).
649
+
650
+ Returns:
651
+
652
+ Example:
653
+
654
+ ```python
655
+ >>> from transformers import AutoTokenizer, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseConfig
656
+ >>> import torch
657
+
658
+ >>> tokenizer = AutoTokenizer.from_pretrained("abeja/gpt-neox-japanese-2.7b")
659
+ >>> config = GPTNeoXJapaneseConfig.from_pretrained("abeja/gpt-neox-japanese-2.7b")
660
+ >>> config.is_decoder = True
661
+ >>> model = GPTNeoXJapaneseForCausalLM.from_pretrained("abeja/gpt-neox-japanese-2.7b", config=config)
662
+
663
+ >>> inputs = tokenizer("日本語のGPT-neoxがHugging Faceで使えます😀", return_tensors="pt")
664
+ >>> outputs = model(**inputs)
665
+
666
+ >>> prediction_logits = outputs.logits
667
+ ```
668
+ """
669
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
670
+
671
+ outputs = self.gpt_neox_japanese(
672
+ input_ids,
673
+ attention_mask=attention_mask,
674
+ head_mask=head_mask,
675
+ inputs_embeds=inputs_embeds,
676
+ past_key_values=past_key_values,
677
+ use_cache=use_cache,
678
+ output_attentions=output_attentions,
679
+ output_hidden_states=output_hidden_states,
680
+ return_dict=return_dict,
681
+ )
682
+
683
+ hidden_states = outputs[0]
684
+ lm_logits = self.embed_out(hidden_states)
685
+
686
+ lm_loss = None
687
+ if labels is not None:
688
+ # move labels to correct device to enable model parallelism
689
+ labels = labels.to(lm_logits.device)
690
+
691
+ # we are doing next-token prediction; shift prediction scores and input ids by one
692
+ shift_logits = lm_logits[:, :-1, :].contiguous()
693
+ labels = labels[:, 1:].contiguous()
694
+ loss_fct = CrossEntropyLoss()
695
+ lm_loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), labels.view(-1))
696
+
697
+ if not return_dict:
698
+ output = (lm_logits,) + outputs[1:]
699
+ return ((lm_loss,) + output) if lm_loss is not None else output
700
+
701
+ return CausalLMOutputWithPast(
702
+ loss=lm_loss,
703
+ logits=lm_logits,
704
+ past_key_values=outputs.past_key_values,
705
+ hidden_states=outputs.hidden_states,
706
+ attentions=outputs.attentions,
707
+ )
708
+
709
+ def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs):
710
+ input_shape = input_ids.shape
711
+
712
+ # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
713
+ if attention_mask is None:
714
+ attention_mask = input_ids.new_ones(input_shape)
715
+
716
+ # cut decoder_input_ids if past is used
717
+ if past_key_values and past_key_values[0] is not None:
718
+ input_ids = input_ids[:, -1:]
719
+
720
+ return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values}
721
+
722
+ def _reorder_cache(self, past_key_values, beam_idx):
723
+ reordered_past = ()
724
+ for layer_past in past_key_values:
725
+ reordered_past += (
726
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2])
727
+ + layer_past[2:],
728
+ )
729
+ return reordered_past
llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_neox_japanese/tokenization_gpt_neox_japanese.py ADDED
@@ -0,0 +1,368 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 ABEJA, Inc. and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Tokenization classes for GPTNeoXJapanese."""
16
+ import collections
17
+ import json
18
+ import os
19
+ import re
20
+ from typing import Optional, Tuple
21
+
22
+ import numpy as np
23
+
24
+ from ...tokenization_utils_fast import PreTrainedTokenizer
25
+ from ...utils import logging
26
+
27
+
28
+ logger = logging.get_logger(__name__)
29
+
30
+ VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "emoji_file": "emoji.json"}
31
+
32
+
33
+ def load_vocab_and_emoji(vocab_file, emoji_file):
34
+ """Loads a vocabulary file and emoji file into a dictionary."""
35
+ with open(emoji_file, "r", encoding="utf-8") as f:
36
+ emoji = json.loads(f.read())
37
+
38
+ vocab = collections.OrderedDict()
39
+ raw_vocab = collections.OrderedDict()
40
+ ids_to_tokens = collections.OrderedDict()
41
+ with open(vocab_file, "r", encoding="utf-8") as f:
42
+ token = f.readlines()
43
+ token = [[t.rstrip("\n")] if (t == "," or "," not in t) else t.rstrip("\n").split(",") for t in token]
44
+ for idx, b in enumerate(token):
45
+ ids_to_tokens[idx] = b
46
+ raw_vocab[",".join(b)] = idx
47
+ for wd in b:
48
+ vocab[wd] = idx
49
+
50
+ return vocab, raw_vocab, ids_to_tokens, emoji
51
+
52
+
53
+ class GPTNeoXJapaneseTokenizer(PreTrainedTokenizer):
54
+ """
55
+ This tokenizer inherits from [`PreTrainedTokenizer`] and is based on Japanese special Sub-Word-Encoding that is
56
+ used in this repository (https://github.com/tanreinama/Japanese-BPEEncoder_V2). Check the repository for details.
57
+ Japanese has a relatively large vocabulary and there is no separation between words. Furthermore, the language is a
58
+ combination of hiragana, katakana, and kanji, and variants such as "1" and "①" are often used. In order to cope
59
+ with these, this tokenizer has the following features
60
+ - Subword-by-subword segmentation, which is intermediate between byte strings and morphological analysis.
61
+ - BPEs are created for each Kanji, Hiragana, and Katakana character, and there are no BPEs that cross character
62
+ types, such as Kanji + Hiragana or Hiragana + Katakana.
63
+ - All-byte encoding that does not require <unk>.
64
+ - Independent of UTF codes such as 2-byte and 3-byte characters
65
+ - Conversion of heterographs to the same token_id
66
+ - Emoji and Emoticon are grouped into 12 types as special tags.
67
+
68
+ Example:
69
+
70
+ ```python
71
+ >>> from transformers import GPTNeoXJapaneseTokenizer
72
+
73
+ >>> tokenizer = GPTNeoXJapaneseTokenizer.from_pretrained("abeja/gpt-neox-japanese-2.7b")
74
+ >>> # You can confirm both 慶応 and 慶應 are encoded to 17749
75
+ >>> tokenizer("吾輩は猫である🐯。実は慶応(慶應)大学出身")["input_ids"]
76
+ [30014, 26883, 26638, 27228, 25, 26650, 31732, 31679, 27809, 26638, 17749, 31592, 17749, 31593, 321, 1281]
77
+
78
+ >>> # Both 慶応 and 慶應 are decoded to 慶応
79
+ >>> tokenizer.decode(tokenizer("吾輩は猫である🐯。実は慶応(慶應)大学出身")["input_ids"])
80
+ '吾輩は猫である🐯。実は慶応(慶応)大学出身'
81
+ ```
82
+
83
+ Args:
84
+ vocab_file (`str`):
85
+ File containing the vocabulary.
86
+ emoji_file (`str`):
87
+ File containing the emoji.
88
+ unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
89
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
90
+ token instead.
91
+ pad_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
92
+ The token used for padding
93
+ bos_token (`str`, *optional*, defaults to `"<|startoftext|>"`):
94
+ The beginning of sequence token.
95
+ eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
96
+ The end of sequence token.
97
+ do_clean_text (`bool`, *optional*, defaults to `False`):
98
+ Whether or not to clean text for URL, EMAIL, TEL, Japanese DATE and Japanese PRICE.
99
+ """
100
+
101
+ vocab_files_names = VOCAB_FILES_NAMES
102
+ model_input_names = ["input_ids", "attention_mask"]
103
+
104
+ def __init__(
105
+ self,
106
+ vocab_file,
107
+ emoji_file,
108
+ unk_token="<|endoftext|>",
109
+ pad_token="<|endoftext|>",
110
+ bos_token="<|startoftext|>",
111
+ eos_token="<|endoftext|>",
112
+ do_clean_text=False,
113
+ **kwargs,
114
+ ):
115
+ if not os.path.isfile(vocab_file):
116
+ raise ValueError(
117
+ f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
118
+ " model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
119
+ )
120
+ if not os.path.isfile(emoji_file):
121
+ raise ValueError(
122
+ f"Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google"
123
+ " pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
124
+ )
125
+ self.do_clean_text = do_clean_text
126
+ self.vocab, self.raw_vocab, self.ids_to_tokens, self.emoji = load_vocab_and_emoji(vocab_file, emoji_file)
127
+ self.subword_tokenizer = SubWordJapaneseTokenizer(
128
+ vocab=self.vocab, ids_to_tokens=self.ids_to_tokens, emoji=self.emoji
129
+ )
130
+ super().__init__(
131
+ unk_token=unk_token,
132
+ pad_token=pad_token,
133
+ bos_token=bos_token,
134
+ eos_token=eos_token,
135
+ do_clean_text=do_clean_text,
136
+ **kwargs,
137
+ )
138
+
139
+ @property
140
+ def vocab_size(self):
141
+ # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab
142
+ return len(self.raw_vocab)
143
+
144
+ def get_vocab(self):
145
+ return dict(self.raw_vocab, **self.added_tokens_encoder)
146
+
147
+ def _tokenize(self, text):
148
+ return self.subword_tokenizer.tokenize(text, clean=self.do_clean_text)
149
+
150
+ def _convert_token_to_id(self, token):
151
+ """Converts a token (str) in an id using the vocab."""
152
+ return self.vocab.get(token, self.vocab.get(self.unk_token))
153
+
154
+ def _convert_id_to_token(self, index):
155
+ """Converts an index (integer) in a token (str) using the vocab."""
156
+ return self.subword_tokenizer.convert_id_to_token(index)
157
+
158
+ def convert_tokens_to_string(self, tokens):
159
+ """Converts a sequence of tokens (string) in a single string."""
160
+ out_string = "".join(tokens).strip()
161
+ return out_string
162
+
163
+ @property
164
+ def default_chat_template(self):
165
+ """
166
+ A simple chat template that just adds BOS/EOS tokens around messages while discarding role information.
167
+ """
168
+ logger.warning_once(
169
+ "\nNo chat template is defined for this tokenizer - using the default template "
170
+ f"for the {self.__class__.__name__} class. If the default is not appropriate for "
171
+ "your model, please set `tokenizer.chat_template` to an appropriate template. "
172
+ "See https://huggingface.co/docs/transformers/main/chat_templating for more information.\n"
173
+ )
174
+ return (
175
+ "{% for message in messages %}"
176
+ "{{ bos_token + eos_token + message.content + eos_token }}"
177
+ "{% endfor %}"
178
+ "{% if add_generation_prompt %} {{ bos_token + eos_token }} {% endif %}"
179
+ )
180
+
181
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
182
+ index = 0
183
+ if os.path.isdir(save_directory):
184
+ vocab_file = os.path.join(
185
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
186
+ )
187
+ emoji_file = os.path.join(
188
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["emoji_file"]
189
+ )
190
+ else:
191
+ vocab_file = (
192
+ (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["vocab_file"]
193
+ )
194
+ emoji_file = (
195
+ (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["emoji_file"]
196
+ )
197
+ with open(vocab_file, "w", encoding="utf-8") as writer:
198
+ for token_index, token in self.ids_to_tokens.items():
199
+ if index != token_index:
200
+ logger.warning(
201
+ f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
202
+ " Please check that the vocabulary is not corrupted!"
203
+ )
204
+ index = token_index
205
+ writer.write(",".join(token) + "\n")
206
+ index += 1
207
+ with open(emoji_file, "w", encoding="utf-8") as writer:
208
+ json.dump(self.emoji, writer)
209
+ return vocab_file, emoji_file
210
+
211
+
212
+ class SubWordJapaneseTokenizer(object):
213
+ """
214
+ https://github.com/tanreinama/Japanese-BPEEncoder_V2 This tokenizer class is under MIT Lisence according to the
215
+ original repository.
216
+
217
+ MIT License
218
+
219
+ Copyright (c) 2020 tanreinama
220
+
221
+ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
222
+ documentation files (the "Software"), to deal in the Software without restriction, including without limitation the
223
+ rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
224
+ permit persons to whom the Software is furnished to do so, subject to the following conditions:
225
+
226
+ The above copyright notice and this permission notice shall be included in all copies or substantial portions of
227
+ the Software.
228
+
229
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
230
+ THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
231
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
232
+ TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
233
+ SOFTWARE.
234
+ """
235
+
236
+ def __init__(self, vocab, ids_to_tokens, emoji):
237
+ self.vocab = vocab # same as swe
238
+ self.ids_to_tokens = ids_to_tokens # same as bpe
239
+ self.emoji = emoji
240
+ self.maxlen = np.max([len(w) for w in self.vocab.keys()])
241
+ self.content_repatter1 = re.compile(r"(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)")
242
+ self.content_repatter2 = re.compile(r"[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*")
243
+ self.content_repatter3 = re.compile(r"[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}")
244
+ self.content_repatter4 = re.compile(
245
+ r"([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*"
246
+ )
247
+ self.content_repatter5 = re.compile(
248
+ r"(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*"
249
+ )
250
+ self.content_repatter6 = re.compile(
251
+ r"((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*"
252
+ )
253
+ keisen = "─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿"
254
+ blocks = "▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟"
255
+ self.content_trans1 = str.maketrans({k: "<BLOCK>" for k in keisen + blocks})
256
+
257
+ def __len__(self):
258
+ return len(self.ids_to_tokens)
259
+
260
+ def clean_text(self, content):
261
+ content = self.content_repatter1.sub("<URL>", content)
262
+ content = self.content_repatter2.sub("<EMAIL>", content)
263
+ content = self.content_repatter3.sub("<TEL>", content)
264
+ content = self.content_repatter4.sub("<DATE>", content)
265
+ content = self.content_repatter5.sub("<DATE>", content)
266
+ content = self.content_repatter6.sub("<PRICE>", content)
267
+ content = content.translate(self.content_trans1)
268
+ while "<BLOCK><BLOCK>" in content:
269
+ content = content.replace("<BLOCK><BLOCK>", "<BLOCK>")
270
+ return content
271
+
272
+ def tokenize(self, text, clean=False):
273
+ text = text.replace(" ", "<SP>")
274
+ text = text.replace(" ", "<SP>")
275
+ text = text.replace("\r\n", "<BR>")
276
+ text = text.replace("\n", "<BR>")
277
+ text = text.replace("\r", "<BR>")
278
+ text = text.replace("\t", "<TAB>")
279
+ text = text.replace("—", "ー")
280
+ text = text.replace("−", "ー")
281
+ for k, v in self.emoji["emoji"].items():
282
+ if k in text:
283
+ text = text.replace(k, v)
284
+ if clean:
285
+ text = self.clean_text(text)
286
+
287
+ def check_simbol(x):
288
+ e = x.encode()
289
+ if len(x) == 1 and len(e) == 2:
290
+ c = (int(e[0]) << 8) + int(e[1])
291
+ if (
292
+ (c >= 0xC2A1 and c <= 0xC2BF)
293
+ or (c >= 0xC780 and c <= 0xC783)
294
+ or (c >= 0xCAB9 and c <= 0xCBBF)
295
+ or (c >= 0xCC80 and c <= 0xCDA2)
296
+ ):
297
+ return True
298
+ return False
299
+
300
+ def checku2e(x):
301
+ e = x.encode()
302
+ if len(x) == 1 and len(e) == 3:
303
+ c = (int(e[0]) << 16) + (int(e[1]) << 8) + int(e[2])
304
+ if c >= 0xE28080 and c <= 0xE2B07F:
305
+ return True
306
+ return False
307
+
308
+ pos = 0
309
+ result = []
310
+ while pos < len(text):
311
+ end = min(len(text), pos + self.maxlen + 1) if text[pos] == "<" else pos + 3
312
+ candidates = [] # (token_id, token, pos)
313
+ for e in range(end, pos, -1):
314
+ wd = text[pos:e]
315
+ if wd in self.vocab:
316
+ if wd[0] == "<" and len(wd) > 2:
317
+ candidates = [(self.vocab[wd], wd, e)]
318
+ break
319
+ else:
320
+ candidates.append((self.vocab[wd], wd, e))
321
+ if len(candidates) > 0:
322
+ # the smallest token_id is adopted
323
+ _, wd, e = sorted(candidates, key=lambda x: x[0])[0]
324
+ result.append(wd)
325
+ pos = e
326
+ else:
327
+ end = pos + 1
328
+ wd = text[pos:end]
329
+ if check_simbol(wd):
330
+ result.append("<KIGOU>")
331
+ elif checku2e(wd):
332
+ result.append("<U2000U2BFF>")
333
+ else:
334
+ for i in wd.encode("utf-8"):
335
+ result.append("<|byte%d|>" % i)
336
+ pos = end
337
+ return result
338
+
339
+ def convert_id_to_token(self, index, breakline="\n"):
340
+ words = []
341
+ byte_tokens = []
342
+ word = self.ids_to_tokens[index][0]
343
+ if word[:6] == "<|byte" and word[-2:] == "|>":
344
+ byte_tokens.append(int(word[6:-2]))
345
+ else:
346
+ if len(byte_tokens) > 0:
347
+ words.append(bytearray(byte_tokens).decode("utf-8", errors="replace"))
348
+ byte_tokens = []
349
+ if word[:7] == "<|emoji" and word[-2:] == "|>":
350
+ words.append(self.emoji["emoji_inv"][word])
351
+ elif word == "<SP>":
352
+ words.append(" ")
353
+ elif word == "<BR>":
354
+ words.append(breakline)
355
+ elif word == "<TAB>":
356
+ words.append("\t")
357
+ elif word == "<BLOCK>":
358
+ words.append("▀")
359
+ elif word == "<KIGOU>":
360
+ words.append("ǀ")
361
+ elif word == "<U2000U2BFF>":
362
+ words.append("‖")
363
+ else:
364
+ words.append(word)
365
+ if len(byte_tokens) > 0:
366
+ words.append(bytearray(byte_tokens).decode("utf-8", errors="replace"))
367
+ text = "".join(words)
368
+ return text
llmeval-env/lib/python3.10/site-packages/transformers/models/mobilevit/__init__.py ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2022 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from typing import TYPE_CHECKING
15
+
16
+ from ...utils import (
17
+ OptionalDependencyNotAvailable,
18
+ _LazyModule,
19
+ is_tf_available,
20
+ is_torch_available,
21
+ is_vision_available,
22
+ )
23
+
24
+
25
+ _import_structure = {
26
+ "configuration_mobilevit": ["MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileViTConfig", "MobileViTOnnxConfig"],
27
+ }
28
+
29
+ try:
30
+ if not is_vision_available():
31
+ raise OptionalDependencyNotAvailable()
32
+ except OptionalDependencyNotAvailable:
33
+ pass
34
+ else:
35
+ _import_structure["feature_extraction_mobilevit"] = ["MobileViTFeatureExtractor"]
36
+ _import_structure["image_processing_mobilevit"] = ["MobileViTImageProcessor"]
37
+
38
+ try:
39
+ if not is_torch_available():
40
+ raise OptionalDependencyNotAvailable()
41
+ except OptionalDependencyNotAvailable:
42
+ pass
43
+ else:
44
+ _import_structure["modeling_mobilevit"] = [
45
+ "MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
46
+ "MobileViTForImageClassification",
47
+ "MobileViTForSemanticSegmentation",
48
+ "MobileViTModel",
49
+ "MobileViTPreTrainedModel",
50
+ ]
51
+
52
+ try:
53
+ if not is_tf_available():
54
+ raise OptionalDependencyNotAvailable()
55
+ except OptionalDependencyNotAvailable:
56
+ pass
57
+ else:
58
+ _import_structure["modeling_tf_mobilevit"] = [
59
+ "TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
60
+ "TFMobileViTForImageClassification",
61
+ "TFMobileViTForSemanticSegmentation",
62
+ "TFMobileViTModel",
63
+ "TFMobileViTPreTrainedModel",
64
+ ]
65
+
66
+ if TYPE_CHECKING:
67
+ from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig
68
+
69
+ try:
70
+ if not is_vision_available():
71
+ raise OptionalDependencyNotAvailable()
72
+ except OptionalDependencyNotAvailable:
73
+ pass
74
+ else:
75
+ from .feature_extraction_mobilevit import MobileViTFeatureExtractor
76
+ from .image_processing_mobilevit import MobileViTImageProcessor
77
+
78
+ try:
79
+ if not is_torch_available():
80
+ raise OptionalDependencyNotAvailable()
81
+ except OptionalDependencyNotAvailable:
82
+ pass
83
+ else:
84
+ from .modeling_mobilevit import (
85
+ MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
86
+ MobileViTForImageClassification,
87
+ MobileViTForSemanticSegmentation,
88
+ MobileViTModel,
89
+ MobileViTPreTrainedModel,
90
+ )
91
+
92
+ try:
93
+ if not is_tf_available():
94
+ raise OptionalDependencyNotAvailable()
95
+ except OptionalDependencyNotAvailable:
96
+ pass
97
+ else:
98
+ from .modeling_tf_mobilevit import (
99
+ TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
100
+ TFMobileViTForImageClassification,
101
+ TFMobileViTForSemanticSegmentation,
102
+ TFMobileViTModel,
103
+ TFMobileViTPreTrainedModel,
104
+ )
105
+
106
+
107
+ else:
108
+ import sys
109
+
110
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
llmeval-env/lib/python3.10/site-packages/transformers/models/mobilevit/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.73 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/mobilevit/__pycache__/configuration_mobilevit.cpython-310.pyc ADDED
Binary file (6.98 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/mobilevit/__pycache__/convert_mlcvnets_to_pytorch.cpython-310.pyc ADDED
Binary file (8.74 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/mobilevit/__pycache__/feature_extraction_mobilevit.cpython-310.pyc ADDED
Binary file (1.05 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/mobilevit/__pycache__/image_processing_mobilevit.cpython-310.pyc ADDED
Binary file (16.1 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/mobilevit/__pycache__/modeling_mobilevit.cpython-310.pyc ADDED
Binary file (28.2 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/mobilevit/__pycache__/modeling_tf_mobilevit.cpython-310.pyc ADDED
Binary file (40.1 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/mobilevit/configuration_mobilevit.py ADDED
@@ -0,0 +1,172 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ MobileViT model configuration"""
16
+
17
+ from collections import OrderedDict
18
+ from typing import Mapping
19
+
20
+ from packaging import version
21
+
22
+ from ...configuration_utils import PretrainedConfig
23
+ from ...onnx import OnnxConfig
24
+ from ...utils import logging
25
+
26
+
27
+ logger = logging.get_logger(__name__)
28
+
29
+
30
+ from ..deprecated._archive_maps import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
31
+
32
+
33
+ class MobileViTConfig(PretrainedConfig):
34
+ r"""
35
+ This is the configuration class to store the configuration of a [`MobileViTModel`]. It is used to instantiate a
36
+ MobileViT model according to the specified arguments, defining the model architecture. Instantiating a
37
+ configuration with the defaults will yield a similar configuration to that of the MobileViT
38
+ [apple/mobilevit-small](https://huggingface.co/apple/mobilevit-small) architecture.
39
+
40
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
41
+ documentation from [`PretrainedConfig`] for more information.
42
+
43
+ Args:
44
+ num_channels (`int`, *optional*, defaults to 3):
45
+ The number of input channels.
46
+ image_size (`int`, *optional*, defaults to 256):
47
+ The size (resolution) of each image.
48
+ patch_size (`int`, *optional*, defaults to 2):
49
+ The size (resolution) of each patch.
50
+ hidden_sizes (`List[int]`, *optional*, defaults to `[144, 192, 240]`):
51
+ Dimensionality (hidden size) of the Transformer encoders at each stage.
52
+ neck_hidden_sizes (`List[int]`, *optional*, defaults to `[16, 32, 64, 96, 128, 160, 640]`):
53
+ The number of channels for the feature maps of the backbone.
54
+ num_attention_heads (`int`, *optional*, defaults to 4):
55
+ Number of attention heads for each attention layer in the Transformer encoder.
56
+ mlp_ratio (`float`, *optional*, defaults to 2.0):
57
+ The ratio of the number of channels in the output of the MLP to the number of channels in the input.
58
+ expand_ratio (`float`, *optional*, defaults to 4.0):
59
+ Expansion factor for the MobileNetv2 layers.
60
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
61
+ The non-linear activation function (function or string) in the Transformer encoder and convolution layers.
62
+ conv_kernel_size (`int`, *optional*, defaults to 3):
63
+ The size of the convolutional kernel in the MobileViT layer.
64
+ output_stride (`int`, *optional*, defaults to 32):
65
+ The ratio of the spatial resolution of the output to the resolution of the input image.
66
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
67
+ The dropout probability for all fully connected layers in the Transformer encoder.
68
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
69
+ The dropout ratio for the attention probabilities.
70
+ classifier_dropout_prob (`float`, *optional*, defaults to 0.1):
71
+ The dropout ratio for attached classifiers.
72
+ initializer_range (`float`, *optional*, defaults to 0.02):
73
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
74
+ layer_norm_eps (`float`, *optional*, defaults to 1e-05):
75
+ The epsilon used by the layer normalization layers.
76
+ qkv_bias (`bool`, *optional*, defaults to `True`):
77
+ Whether to add a bias to the queries, keys and values.
78
+ aspp_out_channels (`int`, *optional*, defaults to 256):
79
+ Number of output channels used in the ASPP layer for semantic segmentation.
80
+ atrous_rates (`List[int]`, *optional*, defaults to `[6, 12, 18]`):
81
+ Dilation (atrous) factors used in the ASPP layer for semantic segmentation.
82
+ aspp_dropout_prob (`float`, *optional*, defaults to 0.1):
83
+ The dropout ratio for the ASPP layer for semantic segmentation.
84
+ semantic_loss_ignore_index (`int`, *optional*, defaults to 255):
85
+ The index that is ignored by the loss function of the semantic segmentation model.
86
+
87
+ Example:
88
+
89
+ ```python
90
+ >>> from transformers import MobileViTConfig, MobileViTModel
91
+
92
+ >>> # Initializing a mobilevit-small style configuration
93
+ >>> configuration = MobileViTConfig()
94
+
95
+ >>> # Initializing a model from the mobilevit-small style configuration
96
+ >>> model = MobileViTModel(configuration)
97
+
98
+ >>> # Accessing the model configuration
99
+ >>> configuration = model.config
100
+ ```"""
101
+
102
+ model_type = "mobilevit"
103
+
104
+ def __init__(
105
+ self,
106
+ num_channels=3,
107
+ image_size=256,
108
+ patch_size=2,
109
+ hidden_sizes=[144, 192, 240],
110
+ neck_hidden_sizes=[16, 32, 64, 96, 128, 160, 640],
111
+ num_attention_heads=4,
112
+ mlp_ratio=2.0,
113
+ expand_ratio=4.0,
114
+ hidden_act="silu",
115
+ conv_kernel_size=3,
116
+ output_stride=32,
117
+ hidden_dropout_prob=0.1,
118
+ attention_probs_dropout_prob=0.0,
119
+ classifier_dropout_prob=0.1,
120
+ initializer_range=0.02,
121
+ layer_norm_eps=1e-5,
122
+ qkv_bias=True,
123
+ aspp_out_channels=256,
124
+ atrous_rates=[6, 12, 18],
125
+ aspp_dropout_prob=0.1,
126
+ semantic_loss_ignore_index=255,
127
+ **kwargs,
128
+ ):
129
+ super().__init__(**kwargs)
130
+
131
+ self.num_channels = num_channels
132
+ self.image_size = image_size
133
+ self.patch_size = patch_size
134
+ self.hidden_sizes = hidden_sizes
135
+ self.neck_hidden_sizes = neck_hidden_sizes
136
+ self.num_attention_heads = num_attention_heads
137
+ self.mlp_ratio = mlp_ratio
138
+ self.expand_ratio = expand_ratio
139
+ self.hidden_act = hidden_act
140
+ self.conv_kernel_size = conv_kernel_size
141
+ self.output_stride = output_stride
142
+ self.hidden_dropout_prob = hidden_dropout_prob
143
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
144
+ self.classifier_dropout_prob = classifier_dropout_prob
145
+ self.initializer_range = initializer_range
146
+ self.layer_norm_eps = layer_norm_eps
147
+ self.qkv_bias = qkv_bias
148
+
149
+ # decode head attributes for semantic segmentation
150
+ self.aspp_out_channels = aspp_out_channels
151
+ self.atrous_rates = atrous_rates
152
+ self.aspp_dropout_prob = aspp_dropout_prob
153
+ self.semantic_loss_ignore_index = semantic_loss_ignore_index
154
+
155
+
156
+ class MobileViTOnnxConfig(OnnxConfig):
157
+ torch_onnx_minimum_version = version.parse("1.11")
158
+
159
+ @property
160
+ def inputs(self) -> Mapping[str, Mapping[int, str]]:
161
+ return OrderedDict([("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"})])
162
+
163
+ @property
164
+ def outputs(self) -> Mapping[str, Mapping[int, str]]:
165
+ if self.task == "image-classification":
166
+ return OrderedDict([("logits", {0: "batch"})])
167
+ else:
168
+ return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})])
169
+
170
+ @property
171
+ def atol_for_validation(self) -> float:
172
+ return 1e-4
llmeval-env/lib/python3.10/site-packages/transformers/models/mobilevit/convert_mlcvnets_to_pytorch.py ADDED
@@ -0,0 +1,312 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Convert MobileViT checkpoints from the ml-cvnets library."""
16
+
17
+
18
+ import argparse
19
+ import json
20
+ from pathlib import Path
21
+
22
+ import requests
23
+ import torch
24
+ from huggingface_hub import hf_hub_download
25
+ from PIL import Image
26
+
27
+ from transformers import (
28
+ MobileViTConfig,
29
+ MobileViTForImageClassification,
30
+ MobileViTForSemanticSegmentation,
31
+ MobileViTImageProcessor,
32
+ )
33
+ from transformers.utils import logging
34
+
35
+
36
+ logging.set_verbosity_info()
37
+ logger = logging.get_logger(__name__)
38
+
39
+
40
+ def get_mobilevit_config(mobilevit_name):
41
+ config = MobileViTConfig()
42
+
43
+ # size of the architecture
44
+ if "mobilevit_s" in mobilevit_name:
45
+ config.hidden_sizes = [144, 192, 240]
46
+ config.neck_hidden_sizes = [16, 32, 64, 96, 128, 160, 640]
47
+ elif "mobilevit_xs" in mobilevit_name:
48
+ config.hidden_sizes = [96, 120, 144]
49
+ config.neck_hidden_sizes = [16, 32, 48, 64, 80, 96, 384]
50
+ elif "mobilevit_xxs" in mobilevit_name:
51
+ config.hidden_sizes = [64, 80, 96]
52
+ config.neck_hidden_sizes = [16, 16, 24, 48, 64, 80, 320]
53
+ config.hidden_dropout_prob = 0.05
54
+ config.expand_ratio = 2.0
55
+
56
+ if mobilevit_name.startswith("deeplabv3_"):
57
+ config.image_size = 512
58
+ config.output_stride = 16
59
+ config.num_labels = 21
60
+ filename = "pascal-voc-id2label.json"
61
+ else:
62
+ config.num_labels = 1000
63
+ filename = "imagenet-1k-id2label.json"
64
+
65
+ repo_id = "huggingface/label-files"
66
+ id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
67
+ id2label = {int(k): v for k, v in id2label.items()}
68
+ config.id2label = id2label
69
+ config.label2id = {v: k for k, v in id2label.items()}
70
+
71
+ return config
72
+
73
+
74
+ def rename_key(name, base_model=False):
75
+ for i in range(1, 6):
76
+ if f"layer_{i}." in name:
77
+ name = name.replace(f"layer_{i}.", f"encoder.layer.{i - 1}.")
78
+
79
+ if "conv_1." in name:
80
+ name = name.replace("conv_1.", "conv_stem.")
81
+ if ".block." in name:
82
+ name = name.replace(".block.", ".")
83
+
84
+ if "exp_1x1" in name:
85
+ name = name.replace("exp_1x1", "expand_1x1")
86
+ if "red_1x1" in name:
87
+ name = name.replace("red_1x1", "reduce_1x1")
88
+ if ".local_rep.conv_3x3." in name:
89
+ name = name.replace(".local_rep.conv_3x3.", ".conv_kxk.")
90
+ if ".local_rep.conv_1x1." in name:
91
+ name = name.replace(".local_rep.conv_1x1.", ".conv_1x1.")
92
+ if ".norm." in name:
93
+ name = name.replace(".norm.", ".normalization.")
94
+ if ".conv." in name:
95
+ name = name.replace(".conv.", ".convolution.")
96
+ if ".conv_proj." in name:
97
+ name = name.replace(".conv_proj.", ".conv_projection.")
98
+
99
+ for i in range(0, 2):
100
+ for j in range(0, 4):
101
+ if f".{i}.{j}." in name:
102
+ name = name.replace(f".{i}.{j}.", f".{i}.layer.{j}.")
103
+
104
+ for i in range(2, 6):
105
+ for j in range(0, 4):
106
+ if f".{i}.{j}." in name:
107
+ name = name.replace(f".{i}.{j}.", f".{i}.")
108
+ if "expand_1x1" in name:
109
+ name = name.replace("expand_1x1", "downsampling_layer.expand_1x1")
110
+ if "conv_3x3" in name:
111
+ name = name.replace("conv_3x3", "downsampling_layer.conv_3x3")
112
+ if "reduce_1x1" in name:
113
+ name = name.replace("reduce_1x1", "downsampling_layer.reduce_1x1")
114
+
115
+ for i in range(2, 5):
116
+ if f".global_rep.{i}.weight" in name:
117
+ name = name.replace(f".global_rep.{i}.weight", ".layernorm.weight")
118
+ if f".global_rep.{i}.bias" in name:
119
+ name = name.replace(f".global_rep.{i}.bias", ".layernorm.bias")
120
+
121
+ if ".global_rep." in name:
122
+ name = name.replace(".global_rep.", ".transformer.")
123
+ if ".pre_norm_mha.0." in name:
124
+ name = name.replace(".pre_norm_mha.0.", ".layernorm_before.")
125
+ if ".pre_norm_mha.1.out_proj." in name:
126
+ name = name.replace(".pre_norm_mha.1.out_proj.", ".attention.output.dense.")
127
+ if ".pre_norm_ffn.0." in name:
128
+ name = name.replace(".pre_norm_ffn.0.", ".layernorm_after.")
129
+ if ".pre_norm_ffn.1." in name:
130
+ name = name.replace(".pre_norm_ffn.1.", ".intermediate.dense.")
131
+ if ".pre_norm_ffn.4." in name:
132
+ name = name.replace(".pre_norm_ffn.4.", ".output.dense.")
133
+ if ".transformer." in name:
134
+ name = name.replace(".transformer.", ".transformer.layer.")
135
+
136
+ if ".aspp_layer." in name:
137
+ name = name.replace(".aspp_layer.", ".")
138
+ if ".aspp_pool." in name:
139
+ name = name.replace(".aspp_pool.", ".")
140
+ if "seg_head." in name:
141
+ name = name.replace("seg_head.", "segmentation_head.")
142
+ if "segmentation_head.classifier.classifier." in name:
143
+ name = name.replace("segmentation_head.classifier.classifier.", "segmentation_head.classifier.")
144
+
145
+ if "classifier.fc." in name:
146
+ name = name.replace("classifier.fc.", "classifier.")
147
+ elif (not base_model) and ("segmentation_head." not in name):
148
+ name = "mobilevit." + name
149
+
150
+ return name
151
+
152
+
153
+ def convert_state_dict(orig_state_dict, model, base_model=False):
154
+ if base_model:
155
+ model_prefix = ""
156
+ else:
157
+ model_prefix = "mobilevit."
158
+
159
+ for key in orig_state_dict.copy().keys():
160
+ val = orig_state_dict.pop(key)
161
+
162
+ if key[:8] == "encoder.":
163
+ key = key[8:]
164
+
165
+ if "qkv" in key:
166
+ key_split = key.split(".")
167
+ layer_num = int(key_split[0][6:]) - 1
168
+ transformer_num = int(key_split[3])
169
+ layer = model.get_submodule(f"{model_prefix}encoder.layer.{layer_num}")
170
+ dim = layer.transformer.layer[transformer_num].attention.attention.all_head_size
171
+ prefix = (
172
+ f"{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention."
173
+ )
174
+ if "weight" in key:
175
+ orig_state_dict[prefix + "query.weight"] = val[:dim, :]
176
+ orig_state_dict[prefix + "key.weight"] = val[dim : dim * 2, :]
177
+ orig_state_dict[prefix + "value.weight"] = val[-dim:, :]
178
+ else:
179
+ orig_state_dict[prefix + "query.bias"] = val[:dim]
180
+ orig_state_dict[prefix + "key.bias"] = val[dim : dim * 2]
181
+ orig_state_dict[prefix + "value.bias"] = val[-dim:]
182
+ else:
183
+ orig_state_dict[rename_key(key, base_model)] = val
184
+
185
+ return orig_state_dict
186
+
187
+
188
+ # We will verify our results on an image of cute cats
189
+ def prepare_img():
190
+ url = "http://images.cocodataset.org/val2017/000000039769.jpg"
191
+ im = Image.open(requests.get(url, stream=True).raw)
192
+ return im
193
+
194
+
195
+ @torch.no_grad()
196
+ def convert_movilevit_checkpoint(mobilevit_name, checkpoint_path, pytorch_dump_folder_path, push_to_hub=False):
197
+ """
198
+ Copy/paste/tweak model's weights to our MobileViT structure.
199
+ """
200
+ config = get_mobilevit_config(mobilevit_name)
201
+
202
+ # load original state_dict
203
+ state_dict = torch.load(checkpoint_path, map_location="cpu")
204
+
205
+ # load 🤗 model
206
+ if mobilevit_name.startswith("deeplabv3_"):
207
+ model = MobileViTForSemanticSegmentation(config).eval()
208
+ else:
209
+ model = MobileViTForImageClassification(config).eval()
210
+
211
+ new_state_dict = convert_state_dict(state_dict, model)
212
+ model.load_state_dict(new_state_dict)
213
+
214
+ # Check outputs on an image, prepared by MobileViTImageProcessor
215
+ image_processor = MobileViTImageProcessor(crop_size=config.image_size, size=config.image_size + 32)
216
+ encoding = image_processor(images=prepare_img(), return_tensors="pt")
217
+ outputs = model(**encoding)
218
+ logits = outputs.logits
219
+
220
+ if mobilevit_name.startswith("deeplabv3_"):
221
+ assert logits.shape == (1, 21, 32, 32)
222
+
223
+ if mobilevit_name == "deeplabv3_mobilevit_s":
224
+ expected_logits = torch.tensor(
225
+ [
226
+ [[6.2065, 6.1292, 6.2070], [6.1079, 6.1254, 6.1747], [6.0042, 6.1071, 6.1034]],
227
+ [[-6.9253, -6.8653, -7.0398], [-7.3218, -7.3983, -7.3670], [-7.1961, -7.2482, -7.1569]],
228
+ [[-4.4723, -4.4348, -4.3769], [-5.3629, -5.4632, -5.4598], [-5.1587, -5.3402, -5.5059]],
229
+ ]
230
+ )
231
+ elif mobilevit_name == "deeplabv3_mobilevit_xs":
232
+ expected_logits = torch.tensor(
233
+ [
234
+ [[5.4449, 5.5733, 5.6314], [5.1815, 5.3930, 5.5963], [5.1656, 5.4333, 5.4853]],
235
+ [[-9.4423, -9.7766, -9.6714], [-9.1581, -9.5720, -9.5519], [-9.1006, -9.6458, -9.5703]],
236
+ [[-7.7721, -7.3716, -7.1583], [-8.4599, -8.0624, -7.7944], [-8.4172, -7.8366, -7.5025]],
237
+ ]
238
+ )
239
+ elif mobilevit_name == "deeplabv3_mobilevit_xxs":
240
+ expected_logits = torch.tensor(
241
+ [
242
+ [[6.9811, 6.9743, 7.3123], [7.1777, 7.1931, 7.3938], [7.5633, 7.8050, 7.8901]],
243
+ [[-10.5536, -10.2332, -10.2924], [-10.2336, -9.8624, -9.5964], [-10.8840, -10.8158, -10.6659]],
244
+ [[-3.4938, -3.0631, -2.8620], [-3.4205, -2.8135, -2.6875], [-3.4179, -2.7945, -2.8750]],
245
+ ]
246
+ )
247
+ else:
248
+ raise ValueError(f"Unknown mobilevit_name: {mobilevit_name}")
249
+
250
+ assert torch.allclose(logits[0, :3, :3, :3], expected_logits, atol=1e-4)
251
+ else:
252
+ assert logits.shape == (1, 1000)
253
+
254
+ if mobilevit_name == "mobilevit_s":
255
+ expected_logits = torch.tensor([-0.9866, 0.2392, -1.1241])
256
+ elif mobilevit_name == "mobilevit_xs":
257
+ expected_logits = torch.tensor([-2.4761, -0.9399, -1.9587])
258
+ elif mobilevit_name == "mobilevit_xxs":
259
+ expected_logits = torch.tensor([-1.9364, -1.2327, -0.4653])
260
+ else:
261
+ raise ValueError(f"Unknown mobilevit_name: {mobilevit_name}")
262
+
263
+ assert torch.allclose(logits[0, :3], expected_logits, atol=1e-4)
264
+
265
+ Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
266
+ print(f"Saving model {mobilevit_name} to {pytorch_dump_folder_path}")
267
+ model.save_pretrained(pytorch_dump_folder_path)
268
+ print(f"Saving image processor to {pytorch_dump_folder_path}")
269
+ image_processor.save_pretrained(pytorch_dump_folder_path)
270
+
271
+ if push_to_hub:
272
+ model_mapping = {
273
+ "mobilevit_s": "mobilevit-small",
274
+ "mobilevit_xs": "mobilevit-x-small",
275
+ "mobilevit_xxs": "mobilevit-xx-small",
276
+ "deeplabv3_mobilevit_s": "deeplabv3-mobilevit-small",
277
+ "deeplabv3_mobilevit_xs": "deeplabv3-mobilevit-x-small",
278
+ "deeplabv3_mobilevit_xxs": "deeplabv3-mobilevit-xx-small",
279
+ }
280
+
281
+ print("Pushing to the hub...")
282
+ model_name = model_mapping[mobilevit_name]
283
+ image_processor.push_to_hub(model_name, organization="apple")
284
+ model.push_to_hub(model_name, organization="apple")
285
+
286
+
287
+ if __name__ == "__main__":
288
+ parser = argparse.ArgumentParser()
289
+ # Required parameters
290
+ parser.add_argument(
291
+ "--mobilevit_name",
292
+ default="mobilevit_s",
293
+ type=str,
294
+ help=(
295
+ "Name of the MobileViT model you'd like to convert. Should be one of 'mobilevit_s', 'mobilevit_xs',"
296
+ " 'mobilevit_xxs', 'deeplabv3_mobilevit_s', 'deeplabv3_mobilevit_xs', 'deeplabv3_mobilevit_xxs'."
297
+ ),
298
+ )
299
+ parser.add_argument(
300
+ "--checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)."
301
+ )
302
+ parser.add_argument(
303
+ "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory."
304
+ )
305
+ parser.add_argument(
306
+ "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
307
+ )
308
+
309
+ args = parser.parse_args()
310
+ convert_movilevit_checkpoint(
311
+ args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
312
+ )
llmeval-env/lib/python3.10/site-packages/transformers/models/mobilevit/feature_extraction_mobilevit.py ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Feature extractor class for MobileViT."""
16
+
17
+ import warnings
18
+
19
+ from ...utils import logging
20
+ from .image_processing_mobilevit import MobileViTImageProcessor
21
+
22
+
23
+ logger = logging.get_logger(__name__)
24
+
25
+
26
+ class MobileViTFeatureExtractor(MobileViTImageProcessor):
27
+ def __init__(self, *args, **kwargs) -> None:
28
+ warnings.warn(
29
+ "The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers."
30
+ " Please use MobileViTImageProcessor instead.",
31
+ FutureWarning,
32
+ )
33
+ super().__init__(*args, **kwargs)
llmeval-env/lib/python3.10/site-packages/transformers/models/mobilevit/image_processing_mobilevit.py ADDED
@@ -0,0 +1,493 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Image processor class for MobileViT."""
16
+
17
+ from typing import Dict, List, Optional, Tuple, Union
18
+
19
+ import numpy as np
20
+
21
+ from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
22
+ from ...image_transforms import flip_channel_order, get_resize_output_image_size, resize, to_channel_dimension_format
23
+ from ...image_utils import (
24
+ ChannelDimension,
25
+ ImageInput,
26
+ PILImageResampling,
27
+ infer_channel_dimension_format,
28
+ is_scaled_image,
29
+ make_list_of_images,
30
+ to_numpy_array,
31
+ valid_images,
32
+ validate_kwargs,
33
+ validate_preprocess_arguments,
34
+ )
35
+ from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging
36
+
37
+
38
+ if is_vision_available():
39
+ import PIL
40
+
41
+ if is_torch_available():
42
+ import torch
43
+
44
+
45
+ logger = logging.get_logger(__name__)
46
+
47
+
48
+ class MobileViTImageProcessor(BaseImageProcessor):
49
+ r"""
50
+ Constructs a MobileViT image processor.
51
+
52
+ Args:
53
+ do_resize (`bool`, *optional*, defaults to `True`):
54
+ Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the
55
+ `do_resize` parameter in the `preprocess` method.
56
+ size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`):
57
+ Controls the size of the output image after resizing. Can be overridden by the `size` parameter in the
58
+ `preprocess` method.
59
+ resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`):
60
+ Defines the resampling filter to use if resizing the image. Can be overridden by the `resample` parameter
61
+ in the `preprocess` method.
62
+ do_rescale (`bool`, *optional*, defaults to `True`):
63
+ Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
64
+ parameter in the `preprocess` method.
65
+ rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
66
+ Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
67
+ `preprocess` method.
68
+ do_center_crop (`bool`, *optional*, defaults to `True`):
69
+ Whether to crop the input at the center. If the input size is smaller than `crop_size` along any edge, the
70
+ image is padded with 0's and then center cropped. Can be overridden by the `do_center_crop` parameter in
71
+ the `preprocess` method.
72
+ crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 256, "width": 256}`):
73
+ Desired output size `(size["height"], size["width"])` when applying center-cropping. Can be overridden by
74
+ the `crop_size` parameter in the `preprocess` method.
75
+ do_flip_channel_order (`bool`, *optional*, defaults to `True`):
76
+ Whether to flip the color channels from RGB to BGR. Can be overridden by the `do_flip_channel_order`
77
+ parameter in the `preprocess` method.
78
+ """
79
+
80
+ model_input_names = ["pixel_values"]
81
+
82
+ def __init__(
83
+ self,
84
+ do_resize: bool = True,
85
+ size: Dict[str, int] = None,
86
+ resample: PILImageResampling = PILImageResampling.BILINEAR,
87
+ do_rescale: bool = True,
88
+ rescale_factor: Union[int, float] = 1 / 255,
89
+ do_center_crop: bool = True,
90
+ crop_size: Dict[str, int] = None,
91
+ do_flip_channel_order: bool = True,
92
+ **kwargs,
93
+ ) -> None:
94
+ super().__init__(**kwargs)
95
+ size = size if size is not None else {"shortest_edge": 224}
96
+ size = get_size_dict(size, default_to_square=False)
97
+ crop_size = crop_size if crop_size is not None else {"height": 256, "width": 256}
98
+ crop_size = get_size_dict(crop_size, param_name="crop_size")
99
+
100
+ self.do_resize = do_resize
101
+ self.size = size
102
+ self.resample = resample
103
+ self.do_rescale = do_rescale
104
+ self.rescale_factor = rescale_factor
105
+ self.do_center_crop = do_center_crop
106
+ self.crop_size = crop_size
107
+ self.do_flip_channel_order = do_flip_channel_order
108
+ self._valid_processor_keys = [
109
+ "images",
110
+ "segmentation_maps",
111
+ "do_resize",
112
+ "size",
113
+ "resample",
114
+ "do_rescale",
115
+ "rescale_factor",
116
+ "do_center_crop",
117
+ "crop_size",
118
+ "do_flip_channel_order",
119
+ "return_tensors",
120
+ "data_format",
121
+ "input_data_format",
122
+ ]
123
+
124
+ # Copied from transformers.models.mobilenet_v1.image_processing_mobilenet_v1.MobileNetV1ImageProcessor.resize with PILImageResampling.BICUBIC->PILImageResampling.BILINEAR
125
+ def resize(
126
+ self,
127
+ image: np.ndarray,
128
+ size: Dict[str, int],
129
+ resample: PILImageResampling = PILImageResampling.BILINEAR,
130
+ data_format: Optional[Union[str, ChannelDimension]] = None,
131
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
132
+ **kwargs,
133
+ ) -> np.ndarray:
134
+ """
135
+ Resize an image. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge
136
+ resized to keep the input aspect ratio.
137
+
138
+ Args:
139
+ image (`np.ndarray`):
140
+ Image to resize.
141
+ size (`Dict[str, int]`):
142
+ Size of the output image.
143
+ resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
144
+ Resampling filter to use when resiizing the image.
145
+ data_format (`str` or `ChannelDimension`, *optional*):
146
+ The channel dimension format of the image. If not provided, it will be the same as the input image.
147
+ input_data_format (`ChannelDimension` or `str`, *optional*):
148
+ The channel dimension format of the input image. If not provided, it will be inferred.
149
+ """
150
+ default_to_square = True
151
+ if "shortest_edge" in size:
152
+ size = size["shortest_edge"]
153
+ default_to_square = False
154
+ elif "height" in size and "width" in size:
155
+ size = (size["height"], size["width"])
156
+ else:
157
+ raise ValueError("Size must contain either 'shortest_edge' or 'height' and 'width'.")
158
+
159
+ output_size = get_resize_output_image_size(
160
+ image,
161
+ size=size,
162
+ default_to_square=default_to_square,
163
+ input_data_format=input_data_format,
164
+ )
165
+ return resize(
166
+ image,
167
+ size=output_size,
168
+ resample=resample,
169
+ data_format=data_format,
170
+ input_data_format=input_data_format,
171
+ **kwargs,
172
+ )
173
+
174
+ def flip_channel_order(
175
+ self,
176
+ image: np.ndarray,
177
+ data_format: Optional[Union[str, ChannelDimension]] = None,
178
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
179
+ ) -> np.ndarray:
180
+ """
181
+ Flip the color channels from RGB to BGR or vice versa.
182
+
183
+ Args:
184
+ image (`np.ndarray`):
185
+ The image, represented as a numpy array.
186
+ data_format (`ChannelDimension` or `str`, *optional*):
187
+ The channel dimension format of the image. If not provided, it will be the same as the input image.
188
+ input_data_format (`ChannelDimension` or `str`, *optional*):
189
+ The channel dimension format of the input image. If not provided, it will be inferred.
190
+ """
191
+ return flip_channel_order(image, data_format=data_format, input_data_format=input_data_format)
192
+
193
+ def __call__(self, images, segmentation_maps=None, **kwargs):
194
+ """
195
+ Preprocesses a batch of images and optionally segmentation maps.
196
+
197
+ Overrides the `__call__` method of the `Preprocessor` class so that both images and segmentation maps can be
198
+ passed in as positional arguments.
199
+ """
200
+ return super().__call__(images, segmentation_maps=segmentation_maps, **kwargs)
201
+
202
+ def _preprocess(
203
+ self,
204
+ image: ImageInput,
205
+ do_resize: bool,
206
+ do_rescale: bool,
207
+ do_center_crop: bool,
208
+ do_flip_channel_order: bool,
209
+ size: Optional[Dict[str, int]] = None,
210
+ resample: PILImageResampling = None,
211
+ rescale_factor: Optional[float] = None,
212
+ crop_size: Optional[Dict[str, int]] = None,
213
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
214
+ ):
215
+ if do_resize:
216
+ image = self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
217
+
218
+ if do_rescale:
219
+ image = self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
220
+
221
+ if do_center_crop:
222
+ image = self.center_crop(image=image, size=crop_size, input_data_format=input_data_format)
223
+
224
+ if do_flip_channel_order:
225
+ image = self.flip_channel_order(image, input_data_format=input_data_format)
226
+
227
+ return image
228
+
229
+ def _preprocess_image(
230
+ self,
231
+ image: ImageInput,
232
+ do_resize: bool = None,
233
+ size: Dict[str, int] = None,
234
+ resample: PILImageResampling = None,
235
+ do_rescale: bool = None,
236
+ rescale_factor: float = None,
237
+ do_center_crop: bool = None,
238
+ crop_size: Dict[str, int] = None,
239
+ do_flip_channel_order: bool = None,
240
+ data_format: Optional[Union[str, ChannelDimension]] = None,
241
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
242
+ ) -> np.ndarray:
243
+ """Preprocesses a single image."""
244
+ # All transformations expect numpy arrays.
245
+ image = to_numpy_array(image)
246
+ if is_scaled_image(image) and do_rescale:
247
+ logger.warning_once(
248
+ "It looks like you are trying to rescale already rescaled images. If the input"
249
+ " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
250
+ )
251
+ if input_data_format is None:
252
+ input_data_format = infer_channel_dimension_format(image)
253
+
254
+ image = self._preprocess(
255
+ image=image,
256
+ do_resize=do_resize,
257
+ size=size,
258
+ resample=resample,
259
+ do_rescale=do_rescale,
260
+ rescale_factor=rescale_factor,
261
+ do_center_crop=do_center_crop,
262
+ crop_size=crop_size,
263
+ do_flip_channel_order=do_flip_channel_order,
264
+ input_data_format=input_data_format,
265
+ )
266
+
267
+ image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
268
+
269
+ return image
270
+
271
+ def _preprocess_mask(
272
+ self,
273
+ segmentation_map: ImageInput,
274
+ do_resize: bool = None,
275
+ size: Dict[str, int] = None,
276
+ do_center_crop: bool = None,
277
+ crop_size: Dict[str, int] = None,
278
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
279
+ ) -> np.ndarray:
280
+ """Preprocesses a single mask."""
281
+ segmentation_map = to_numpy_array(segmentation_map)
282
+ # Add channel dimension if missing - needed for certain transformations
283
+ if segmentation_map.ndim == 2:
284
+ added_channel_dim = True
285
+ segmentation_map = segmentation_map[None, ...]
286
+ input_data_format = ChannelDimension.FIRST
287
+ else:
288
+ added_channel_dim = False
289
+ if input_data_format is None:
290
+ input_data_format = infer_channel_dimension_format(segmentation_map, num_channels=1)
291
+
292
+ segmentation_map = self._preprocess(
293
+ image=segmentation_map,
294
+ do_resize=do_resize,
295
+ size=size,
296
+ resample=PILImageResampling.NEAREST,
297
+ do_rescale=False,
298
+ do_center_crop=do_center_crop,
299
+ crop_size=crop_size,
300
+ do_flip_channel_order=False,
301
+ input_data_format=input_data_format,
302
+ )
303
+ # Remove extra channel dimension if added for processing
304
+ if added_channel_dim:
305
+ segmentation_map = segmentation_map.squeeze(0)
306
+ segmentation_map = segmentation_map.astype(np.int64)
307
+ return segmentation_map
308
+
309
+ def preprocess(
310
+ self,
311
+ images: ImageInput,
312
+ segmentation_maps: Optional[ImageInput] = None,
313
+ do_resize: bool = None,
314
+ size: Dict[str, int] = None,
315
+ resample: PILImageResampling = None,
316
+ do_rescale: bool = None,
317
+ rescale_factor: float = None,
318
+ do_center_crop: bool = None,
319
+ crop_size: Dict[str, int] = None,
320
+ do_flip_channel_order: bool = None,
321
+ return_tensors: Optional[Union[str, TensorType]] = None,
322
+ data_format: ChannelDimension = ChannelDimension.FIRST,
323
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
324
+ **kwargs,
325
+ ) -> PIL.Image.Image:
326
+ """
327
+ Preprocess an image or batch of images.
328
+
329
+ Args:
330
+ images (`ImageInput`):
331
+ Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
332
+ passing in images with pixel values between 0 and 1, set `do_rescale=False`.
333
+ segmentation_maps (`ImageInput`, *optional*):
334
+ Segmentation map to preprocess.
335
+ do_resize (`bool`, *optional*, defaults to `self.do_resize`):
336
+ Whether to resize the image.
337
+ size (`Dict[str, int]`, *optional*, defaults to `self.size`):
338
+ Size of the image after resizing.
339
+ resample (`int`, *optional*, defaults to `self.resample`):
340
+ Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only
341
+ has an effect if `do_resize` is set to `True`.
342
+ do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
343
+ Whether to rescale the image by rescale factor.
344
+ rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
345
+ Rescale factor to rescale the image by if `do_rescale` is set to `True`.
346
+ do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
347
+ Whether to center crop the image.
348
+ crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
349
+ Size of the center crop if `do_center_crop` is set to `True`.
350
+ do_flip_channel_order (`bool`, *optional*, defaults to `self.do_flip_channel_order`):
351
+ Whether to flip the channel order of the image.
352
+ return_tensors (`str` or `TensorType`, *optional*):
353
+ The type of tensors to return. Can be one of:
354
+ - Unset: Return a list of `np.ndarray`.
355
+ - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
356
+ - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
357
+ - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
358
+ - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
359
+ data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
360
+ The channel dimension format for the output image. Can be one of:
361
+ - `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
362
+ - `ChannelDimension.LAST`: image in (height, width, num_channels) format.
363
+ input_data_format (`ChannelDimension` or `str`, *optional*):
364
+ The channel dimension format for the input image. If unset, the channel dimension format is inferred
365
+ from the input image. Can be one of:
366
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
367
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
368
+ - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
369
+ """
370
+ do_resize = do_resize if do_resize is not None else self.do_resize
371
+ resample = resample if resample is not None else self.resample
372
+ do_rescale = do_rescale if do_rescale is not None else self.do_rescale
373
+ rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
374
+ do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
375
+ do_flip_channel_order = (
376
+ do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order
377
+ )
378
+
379
+ size = size if size is not None else self.size
380
+ size = get_size_dict(size, default_to_square=False)
381
+ crop_size = crop_size if crop_size is not None else self.crop_size
382
+ crop_size = get_size_dict(crop_size, param_name="crop_size")
383
+
384
+ images = make_list_of_images(images)
385
+
386
+ validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
387
+
388
+ if segmentation_maps is not None:
389
+ segmentation_maps = make_list_of_images(segmentation_maps, expected_ndims=2)
390
+
391
+ images = make_list_of_images(images)
392
+
393
+ if not valid_images(images):
394
+ raise ValueError(
395
+ "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
396
+ "torch.Tensor, tf.Tensor or jax.ndarray."
397
+ )
398
+
399
+ if segmentation_maps is not None and not valid_images(segmentation_maps):
400
+ raise ValueError(
401
+ "Invalid segmentation map type. Must be of type PIL.Image.Image, numpy.ndarray, "
402
+ "torch.Tensor, tf.Tensor or jax.ndarray."
403
+ )
404
+
405
+ validate_preprocess_arguments(
406
+ do_rescale=do_rescale,
407
+ rescale_factor=rescale_factor,
408
+ do_center_crop=do_center_crop,
409
+ crop_size=crop_size,
410
+ do_resize=do_resize,
411
+ size=size,
412
+ resample=resample,
413
+ )
414
+
415
+ images = [
416
+ self._preprocess_image(
417
+ image=img,
418
+ do_resize=do_resize,
419
+ size=size,
420
+ resample=resample,
421
+ do_rescale=do_rescale,
422
+ rescale_factor=rescale_factor,
423
+ do_center_crop=do_center_crop,
424
+ crop_size=crop_size,
425
+ do_flip_channel_order=do_flip_channel_order,
426
+ data_format=data_format,
427
+ input_data_format=input_data_format,
428
+ )
429
+ for img in images
430
+ ]
431
+
432
+ data = {"pixel_values": images}
433
+
434
+ if segmentation_maps is not None:
435
+ segmentation_maps = [
436
+ self._preprocess_mask(
437
+ segmentation_map=segmentation_map,
438
+ do_resize=do_resize,
439
+ size=size,
440
+ do_center_crop=do_center_crop,
441
+ crop_size=crop_size,
442
+ input_data_format=input_data_format,
443
+ )
444
+ for segmentation_map in segmentation_maps
445
+ ]
446
+
447
+ data["labels"] = segmentation_maps
448
+
449
+ return BatchFeature(data=data, tensor_type=return_tensors)
450
+
451
+ # Copied from transformers.models.beit.image_processing_beit.BeitImageProcessor.post_process_semantic_segmentation with Beit->MobileViT
452
+ def post_process_semantic_segmentation(self, outputs, target_sizes: List[Tuple] = None):
453
+ """
454
+ Converts the output of [`MobileViTForSemanticSegmentation`] into semantic segmentation maps. Only supports PyTorch.
455
+
456
+ Args:
457
+ outputs ([`MobileViTForSemanticSegmentation`]):
458
+ Raw outputs of the model.
459
+ target_sizes (`List[Tuple]` of length `batch_size`, *optional*):
460
+ List of tuples corresponding to the requested final size (height, width) of each prediction. If unset,
461
+ predictions will not be resized.
462
+
463
+ Returns:
464
+ semantic_segmentation: `List[torch.Tensor]` of length `batch_size`, where each item is a semantic
465
+ segmentation map of shape (height, width) corresponding to the target_sizes entry (if `target_sizes` is
466
+ specified). Each entry of each `torch.Tensor` correspond to a semantic class id.
467
+ """
468
+ # TODO: add support for other frameworks
469
+ logits = outputs.logits
470
+
471
+ # Resize logits and compute semantic segmentation maps
472
+ if target_sizes is not None:
473
+ if len(logits) != len(target_sizes):
474
+ raise ValueError(
475
+ "Make sure that you pass in as many target sizes as the batch dimension of the logits"
476
+ )
477
+
478
+ if is_torch_tensor(target_sizes):
479
+ target_sizes = target_sizes.numpy()
480
+
481
+ semantic_segmentation = []
482
+
483
+ for idx in range(len(logits)):
484
+ resized_logits = torch.nn.functional.interpolate(
485
+ logits[idx].unsqueeze(dim=0), size=target_sizes[idx], mode="bilinear", align_corners=False
486
+ )
487
+ semantic_map = resized_logits[0].argmax(dim=0)
488
+ semantic_segmentation.append(semantic_map)
489
+ else:
490
+ semantic_segmentation = logits.argmax(dim=1)
491
+ semantic_segmentation = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])]
492
+
493
+ return semantic_segmentation
llmeval-env/lib/python3.10/site-packages/transformers/models/mobilevit/modeling_mobilevit.py ADDED
@@ -0,0 +1,1066 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 Apple Inc. and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ #
16
+ # Original license: https://github.com/apple/ml-cvnets/blob/main/LICENSE
17
+ """ PyTorch MobileViT model."""
18
+
19
+
20
+ import math
21
+ from typing import Dict, Optional, Set, Tuple, Union
22
+
23
+ import torch
24
+ import torch.utils.checkpoint
25
+ from torch import nn
26
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
27
+
28
+ from ...activations import ACT2FN
29
+ from ...modeling_outputs import (
30
+ BaseModelOutputWithNoAttention,
31
+ BaseModelOutputWithPoolingAndNoAttention,
32
+ ImageClassifierOutputWithNoAttention,
33
+ SemanticSegmenterOutput,
34
+ )
35
+ from ...modeling_utils import PreTrainedModel
36
+ from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
37
+ from ...utils import (
38
+ add_code_sample_docstrings,
39
+ add_start_docstrings,
40
+ add_start_docstrings_to_model_forward,
41
+ logging,
42
+ replace_return_docstrings,
43
+ )
44
+ from .configuration_mobilevit import MobileViTConfig
45
+
46
+
47
+ logger = logging.get_logger(__name__)
48
+
49
+
50
+ # General docstring
51
+ _CONFIG_FOR_DOC = "MobileViTConfig"
52
+
53
+ # Base docstring
54
+ _CHECKPOINT_FOR_DOC = "apple/mobilevit-small"
55
+ _EXPECTED_OUTPUT_SHAPE = [1, 640, 8, 8]
56
+
57
+ # Image classification docstring
58
+ _IMAGE_CLASS_CHECKPOINT = "apple/mobilevit-small"
59
+ _IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
60
+
61
+
62
+ from ..deprecated._archive_maps import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
63
+
64
+
65
+ def make_divisible(value: int, divisor: int = 8, min_value: Optional[int] = None) -> int:
66
+ """
67
+ Ensure that all layers have a channel count that is divisible by `divisor`. This function is taken from the
68
+ original TensorFlow repo. It can be seen here:
69
+ https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
70
+ """
71
+ if min_value is None:
72
+ min_value = divisor
73
+ new_value = max(min_value, int(value + divisor / 2) // divisor * divisor)
74
+ # Make sure that round down does not go down by more than 10%.
75
+ if new_value < 0.9 * value:
76
+ new_value += divisor
77
+ return int(new_value)
78
+
79
+
80
+ class MobileViTConvLayer(nn.Module):
81
+ def __init__(
82
+ self,
83
+ config: MobileViTConfig,
84
+ in_channels: int,
85
+ out_channels: int,
86
+ kernel_size: int,
87
+ stride: int = 1,
88
+ groups: int = 1,
89
+ bias: bool = False,
90
+ dilation: int = 1,
91
+ use_normalization: bool = True,
92
+ use_activation: Union[bool, str] = True,
93
+ ) -> None:
94
+ super().__init__()
95
+ padding = int((kernel_size - 1) / 2) * dilation
96
+
97
+ if in_channels % groups != 0:
98
+ raise ValueError(f"Input channels ({in_channels}) are not divisible by {groups} groups.")
99
+ if out_channels % groups != 0:
100
+ raise ValueError(f"Output channels ({out_channels}) are not divisible by {groups} groups.")
101
+
102
+ self.convolution = nn.Conv2d(
103
+ in_channels=in_channels,
104
+ out_channels=out_channels,
105
+ kernel_size=kernel_size,
106
+ stride=stride,
107
+ padding=padding,
108
+ dilation=dilation,
109
+ groups=groups,
110
+ bias=bias,
111
+ padding_mode="zeros",
112
+ )
113
+
114
+ if use_normalization:
115
+ self.normalization = nn.BatchNorm2d(
116
+ num_features=out_channels,
117
+ eps=1e-5,
118
+ momentum=0.1,
119
+ affine=True,
120
+ track_running_stats=True,
121
+ )
122
+ else:
123
+ self.normalization = None
124
+
125
+ if use_activation:
126
+ if isinstance(use_activation, str):
127
+ self.activation = ACT2FN[use_activation]
128
+ elif isinstance(config.hidden_act, str):
129
+ self.activation = ACT2FN[config.hidden_act]
130
+ else:
131
+ self.activation = config.hidden_act
132
+ else:
133
+ self.activation = None
134
+
135
+ def forward(self, features: torch.Tensor) -> torch.Tensor:
136
+ features = self.convolution(features)
137
+ if self.normalization is not None:
138
+ features = self.normalization(features)
139
+ if self.activation is not None:
140
+ features = self.activation(features)
141
+ return features
142
+
143
+
144
+ class MobileViTInvertedResidual(nn.Module):
145
+ """
146
+ Inverted residual block (MobileNetv2): https://arxiv.org/abs/1801.04381
147
+ """
148
+
149
+ def __init__(
150
+ self, config: MobileViTConfig, in_channels: int, out_channels: int, stride: int, dilation: int = 1
151
+ ) -> None:
152
+ super().__init__()
153
+ expanded_channels = make_divisible(int(round(in_channels * config.expand_ratio)), 8)
154
+
155
+ if stride not in [1, 2]:
156
+ raise ValueError(f"Invalid stride {stride}.")
157
+
158
+ self.use_residual = (stride == 1) and (in_channels == out_channels)
159
+
160
+ self.expand_1x1 = MobileViTConvLayer(
161
+ config, in_channels=in_channels, out_channels=expanded_channels, kernel_size=1
162
+ )
163
+
164
+ self.conv_3x3 = MobileViTConvLayer(
165
+ config,
166
+ in_channels=expanded_channels,
167
+ out_channels=expanded_channels,
168
+ kernel_size=3,
169
+ stride=stride,
170
+ groups=expanded_channels,
171
+ dilation=dilation,
172
+ )
173
+
174
+ self.reduce_1x1 = MobileViTConvLayer(
175
+ config,
176
+ in_channels=expanded_channels,
177
+ out_channels=out_channels,
178
+ kernel_size=1,
179
+ use_activation=False,
180
+ )
181
+
182
+ def forward(self, features: torch.Tensor) -> torch.Tensor:
183
+ residual = features
184
+
185
+ features = self.expand_1x1(features)
186
+ features = self.conv_3x3(features)
187
+ features = self.reduce_1x1(features)
188
+
189
+ return residual + features if self.use_residual else features
190
+
191
+
192
+ class MobileViTMobileNetLayer(nn.Module):
193
+ def __init__(
194
+ self, config: MobileViTConfig, in_channels: int, out_channels: int, stride: int = 1, num_stages: int = 1
195
+ ) -> None:
196
+ super().__init__()
197
+
198
+ self.layer = nn.ModuleList()
199
+ for i in range(num_stages):
200
+ layer = MobileViTInvertedResidual(
201
+ config,
202
+ in_channels=in_channels,
203
+ out_channels=out_channels,
204
+ stride=stride if i == 0 else 1,
205
+ )
206
+ self.layer.append(layer)
207
+ in_channels = out_channels
208
+
209
+ def forward(self, features: torch.Tensor) -> torch.Tensor:
210
+ for layer_module in self.layer:
211
+ features = layer_module(features)
212
+ return features
213
+
214
+
215
+ class MobileViTSelfAttention(nn.Module):
216
+ def __init__(self, config: MobileViTConfig, hidden_size: int) -> None:
217
+ super().__init__()
218
+
219
+ if hidden_size % config.num_attention_heads != 0:
220
+ raise ValueError(
221
+ f"The hidden size {hidden_size,} is not a multiple of the number of attention "
222
+ f"heads {config.num_attention_heads}."
223
+ )
224
+
225
+ self.num_attention_heads = config.num_attention_heads
226
+ self.attention_head_size = int(hidden_size / config.num_attention_heads)
227
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
228
+
229
+ self.query = nn.Linear(hidden_size, self.all_head_size, bias=config.qkv_bias)
230
+ self.key = nn.Linear(hidden_size, self.all_head_size, bias=config.qkv_bias)
231
+ self.value = nn.Linear(hidden_size, self.all_head_size, bias=config.qkv_bias)
232
+
233
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
234
+
235
+ def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
236
+ new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
237
+ x = x.view(*new_x_shape)
238
+ return x.permute(0, 2, 1, 3)
239
+
240
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
241
+ mixed_query_layer = self.query(hidden_states)
242
+
243
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
244
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
245
+ query_layer = self.transpose_for_scores(mixed_query_layer)
246
+
247
+ # Take the dot product between "query" and "key" to get the raw attention scores.
248
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
249
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
250
+
251
+ # Normalize the attention scores to probabilities.
252
+ attention_probs = nn.functional.softmax(attention_scores, dim=-1)
253
+
254
+ # This is actually dropping out entire tokens to attend to, which might
255
+ # seem a bit unusual, but is taken from the original Transformer paper.
256
+ attention_probs = self.dropout(attention_probs)
257
+
258
+ context_layer = torch.matmul(attention_probs, value_layer)
259
+
260
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
261
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
262
+ context_layer = context_layer.view(*new_context_layer_shape)
263
+ return context_layer
264
+
265
+
266
+ class MobileViTSelfOutput(nn.Module):
267
+ def __init__(self, config: MobileViTConfig, hidden_size: int) -> None:
268
+ super().__init__()
269
+ self.dense = nn.Linear(hidden_size, hidden_size)
270
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
271
+
272
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
273
+ hidden_states = self.dense(hidden_states)
274
+ hidden_states = self.dropout(hidden_states)
275
+ return hidden_states
276
+
277
+
278
+ class MobileViTAttention(nn.Module):
279
+ def __init__(self, config: MobileViTConfig, hidden_size: int) -> None:
280
+ super().__init__()
281
+ self.attention = MobileViTSelfAttention(config, hidden_size)
282
+ self.output = MobileViTSelfOutput(config, hidden_size)
283
+ self.pruned_heads = set()
284
+
285
+ def prune_heads(self, heads: Set[int]) -> None:
286
+ if len(heads) == 0:
287
+ return
288
+ heads, index = find_pruneable_heads_and_indices(
289
+ heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
290
+ )
291
+
292
+ # Prune linear layers
293
+ self.attention.query = prune_linear_layer(self.attention.query, index)
294
+ self.attention.key = prune_linear_layer(self.attention.key, index)
295
+ self.attention.value = prune_linear_layer(self.attention.value, index)
296
+ self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
297
+
298
+ # Update hyper params and store pruned heads
299
+ self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
300
+ self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
301
+ self.pruned_heads = self.pruned_heads.union(heads)
302
+
303
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
304
+ self_outputs = self.attention(hidden_states)
305
+ attention_output = self.output(self_outputs)
306
+ return attention_output
307
+
308
+
309
+ class MobileViTIntermediate(nn.Module):
310
+ def __init__(self, config: MobileViTConfig, hidden_size: int, intermediate_size: int) -> None:
311
+ super().__init__()
312
+ self.dense = nn.Linear(hidden_size, intermediate_size)
313
+ if isinstance(config.hidden_act, str):
314
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
315
+ else:
316
+ self.intermediate_act_fn = config.hidden_act
317
+
318
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
319
+ hidden_states = self.dense(hidden_states)
320
+ hidden_states = self.intermediate_act_fn(hidden_states)
321
+ return hidden_states
322
+
323
+
324
+ class MobileViTOutput(nn.Module):
325
+ def __init__(self, config: MobileViTConfig, hidden_size: int, intermediate_size: int) -> None:
326
+ super().__init__()
327
+ self.dense = nn.Linear(intermediate_size, hidden_size)
328
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
329
+
330
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
331
+ hidden_states = self.dense(hidden_states)
332
+ hidden_states = self.dropout(hidden_states)
333
+ hidden_states = hidden_states + input_tensor
334
+ return hidden_states
335
+
336
+
337
+ class MobileViTTransformerLayer(nn.Module):
338
+ def __init__(self, config: MobileViTConfig, hidden_size: int, intermediate_size: int) -> None:
339
+ super().__init__()
340
+ self.attention = MobileViTAttention(config, hidden_size)
341
+ self.intermediate = MobileViTIntermediate(config, hidden_size, intermediate_size)
342
+ self.output = MobileViTOutput(config, hidden_size, intermediate_size)
343
+ self.layernorm_before = nn.LayerNorm(hidden_size, eps=config.layer_norm_eps)
344
+ self.layernorm_after = nn.LayerNorm(hidden_size, eps=config.layer_norm_eps)
345
+
346
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
347
+ attention_output = self.attention(self.layernorm_before(hidden_states))
348
+ hidden_states = attention_output + hidden_states
349
+
350
+ layer_output = self.layernorm_after(hidden_states)
351
+ layer_output = self.intermediate(layer_output)
352
+ layer_output = self.output(layer_output, hidden_states)
353
+ return layer_output
354
+
355
+
356
+ class MobileViTTransformer(nn.Module):
357
+ def __init__(self, config: MobileViTConfig, hidden_size: int, num_stages: int) -> None:
358
+ super().__init__()
359
+
360
+ self.layer = nn.ModuleList()
361
+ for _ in range(num_stages):
362
+ transformer_layer = MobileViTTransformerLayer(
363
+ config,
364
+ hidden_size=hidden_size,
365
+ intermediate_size=int(hidden_size * config.mlp_ratio),
366
+ )
367
+ self.layer.append(transformer_layer)
368
+
369
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
370
+ for layer_module in self.layer:
371
+ hidden_states = layer_module(hidden_states)
372
+ return hidden_states
373
+
374
+
375
+ class MobileViTLayer(nn.Module):
376
+ """
377
+ MobileViT block: https://arxiv.org/abs/2110.02178
378
+ """
379
+
380
+ def __init__(
381
+ self,
382
+ config: MobileViTConfig,
383
+ in_channels: int,
384
+ out_channels: int,
385
+ stride: int,
386
+ hidden_size: int,
387
+ num_stages: int,
388
+ dilation: int = 1,
389
+ ) -> None:
390
+ super().__init__()
391
+ self.patch_width = config.patch_size
392
+ self.patch_height = config.patch_size
393
+
394
+ if stride == 2:
395
+ self.downsampling_layer = MobileViTInvertedResidual(
396
+ config,
397
+ in_channels=in_channels,
398
+ out_channels=out_channels,
399
+ stride=stride if dilation == 1 else 1,
400
+ dilation=dilation // 2 if dilation > 1 else 1,
401
+ )
402
+ in_channels = out_channels
403
+ else:
404
+ self.downsampling_layer = None
405
+
406
+ self.conv_kxk = MobileViTConvLayer(
407
+ config,
408
+ in_channels=in_channels,
409
+ out_channels=in_channels,
410
+ kernel_size=config.conv_kernel_size,
411
+ )
412
+
413
+ self.conv_1x1 = MobileViTConvLayer(
414
+ config,
415
+ in_channels=in_channels,
416
+ out_channels=hidden_size,
417
+ kernel_size=1,
418
+ use_normalization=False,
419
+ use_activation=False,
420
+ )
421
+
422
+ self.transformer = MobileViTTransformer(
423
+ config,
424
+ hidden_size=hidden_size,
425
+ num_stages=num_stages,
426
+ )
427
+
428
+ self.layernorm = nn.LayerNorm(hidden_size, eps=config.layer_norm_eps)
429
+
430
+ self.conv_projection = MobileViTConvLayer(
431
+ config, in_channels=hidden_size, out_channels=in_channels, kernel_size=1
432
+ )
433
+
434
+ self.fusion = MobileViTConvLayer(
435
+ config, in_channels=2 * in_channels, out_channels=in_channels, kernel_size=config.conv_kernel_size
436
+ )
437
+
438
+ def unfolding(self, features: torch.Tensor) -> Tuple[torch.Tensor, Dict]:
439
+ patch_width, patch_height = self.patch_width, self.patch_height
440
+ patch_area = int(patch_width * patch_height)
441
+
442
+ batch_size, channels, orig_height, orig_width = features.shape
443
+
444
+ new_height = int(math.ceil(orig_height / patch_height) * patch_height)
445
+ new_width = int(math.ceil(orig_width / patch_width) * patch_width)
446
+
447
+ interpolate = False
448
+ if new_width != orig_width or new_height != orig_height:
449
+ # Note: Padding can be done, but then it needs to be handled in attention function.
450
+ features = nn.functional.interpolate(
451
+ features, size=(new_height, new_width), mode="bilinear", align_corners=False
452
+ )
453
+ interpolate = True
454
+
455
+ # number of patches along width and height
456
+ num_patch_width = new_width // patch_width
457
+ num_patch_height = new_height // patch_height
458
+ num_patches = num_patch_height * num_patch_width
459
+
460
+ # convert from shape (batch_size, channels, orig_height, orig_width)
461
+ # to the shape (batch_size * patch_area, num_patches, channels)
462
+ patches = features.reshape(
463
+ batch_size * channels * num_patch_height, patch_height, num_patch_width, patch_width
464
+ )
465
+ patches = patches.transpose(1, 2)
466
+ patches = patches.reshape(batch_size, channels, num_patches, patch_area)
467
+ patches = patches.transpose(1, 3)
468
+ patches = patches.reshape(batch_size * patch_area, num_patches, -1)
469
+
470
+ info_dict = {
471
+ "orig_size": (orig_height, orig_width),
472
+ "batch_size": batch_size,
473
+ "channels": channels,
474
+ "interpolate": interpolate,
475
+ "num_patches": num_patches,
476
+ "num_patches_width": num_patch_width,
477
+ "num_patches_height": num_patch_height,
478
+ }
479
+ return patches, info_dict
480
+
481
+ def folding(self, patches: torch.Tensor, info_dict: Dict) -> torch.Tensor:
482
+ patch_width, patch_height = self.patch_width, self.patch_height
483
+ patch_area = int(patch_width * patch_height)
484
+
485
+ batch_size = info_dict["batch_size"]
486
+ channels = info_dict["channels"]
487
+ num_patches = info_dict["num_patches"]
488
+ num_patch_height = info_dict["num_patches_height"]
489
+ num_patch_width = info_dict["num_patches_width"]
490
+
491
+ # convert from shape (batch_size * patch_area, num_patches, channels)
492
+ # back to shape (batch_size, channels, orig_height, orig_width)
493
+ features = patches.contiguous().view(batch_size, patch_area, num_patches, -1)
494
+ features = features.transpose(1, 3)
495
+ features = features.reshape(
496
+ batch_size * channels * num_patch_height, num_patch_width, patch_height, patch_width
497
+ )
498
+ features = features.transpose(1, 2)
499
+ features = features.reshape(
500
+ batch_size, channels, num_patch_height * patch_height, num_patch_width * patch_width
501
+ )
502
+
503
+ if info_dict["interpolate"]:
504
+ features = nn.functional.interpolate(
505
+ features, size=info_dict["orig_size"], mode="bilinear", align_corners=False
506
+ )
507
+
508
+ return features
509
+
510
+ def forward(self, features: torch.Tensor) -> torch.Tensor:
511
+ # reduce spatial dimensions if needed
512
+ if self.downsampling_layer:
513
+ features = self.downsampling_layer(features)
514
+
515
+ residual = features
516
+
517
+ # local representation
518
+ features = self.conv_kxk(features)
519
+ features = self.conv_1x1(features)
520
+
521
+ # convert feature map to patches
522
+ patches, info_dict = self.unfolding(features)
523
+
524
+ # learn global representations
525
+ patches = self.transformer(patches)
526
+ patches = self.layernorm(patches)
527
+
528
+ # convert patches back to feature maps
529
+ features = self.folding(patches, info_dict)
530
+
531
+ features = self.conv_projection(features)
532
+ features = self.fusion(torch.cat((residual, features), dim=1))
533
+ return features
534
+
535
+
536
+ class MobileViTEncoder(nn.Module):
537
+ def __init__(self, config: MobileViTConfig) -> None:
538
+ super().__init__()
539
+ self.config = config
540
+
541
+ self.layer = nn.ModuleList()
542
+ self.gradient_checkpointing = False
543
+
544
+ # segmentation architectures like DeepLab and PSPNet modify the strides
545
+ # of the classification backbones
546
+ dilate_layer_4 = dilate_layer_5 = False
547
+ if config.output_stride == 8:
548
+ dilate_layer_4 = True
549
+ dilate_layer_5 = True
550
+ elif config.output_stride == 16:
551
+ dilate_layer_5 = True
552
+
553
+ dilation = 1
554
+
555
+ layer_1 = MobileViTMobileNetLayer(
556
+ config,
557
+ in_channels=config.neck_hidden_sizes[0],
558
+ out_channels=config.neck_hidden_sizes[1],
559
+ stride=1,
560
+ num_stages=1,
561
+ )
562
+ self.layer.append(layer_1)
563
+
564
+ layer_2 = MobileViTMobileNetLayer(
565
+ config,
566
+ in_channels=config.neck_hidden_sizes[1],
567
+ out_channels=config.neck_hidden_sizes[2],
568
+ stride=2,
569
+ num_stages=3,
570
+ )
571
+ self.layer.append(layer_2)
572
+
573
+ layer_3 = MobileViTLayer(
574
+ config,
575
+ in_channels=config.neck_hidden_sizes[2],
576
+ out_channels=config.neck_hidden_sizes[3],
577
+ stride=2,
578
+ hidden_size=config.hidden_sizes[0],
579
+ num_stages=2,
580
+ )
581
+ self.layer.append(layer_3)
582
+
583
+ if dilate_layer_4:
584
+ dilation *= 2
585
+
586
+ layer_4 = MobileViTLayer(
587
+ config,
588
+ in_channels=config.neck_hidden_sizes[3],
589
+ out_channels=config.neck_hidden_sizes[4],
590
+ stride=2,
591
+ hidden_size=config.hidden_sizes[1],
592
+ num_stages=4,
593
+ dilation=dilation,
594
+ )
595
+ self.layer.append(layer_4)
596
+
597
+ if dilate_layer_5:
598
+ dilation *= 2
599
+
600
+ layer_5 = MobileViTLayer(
601
+ config,
602
+ in_channels=config.neck_hidden_sizes[4],
603
+ out_channels=config.neck_hidden_sizes[5],
604
+ stride=2,
605
+ hidden_size=config.hidden_sizes[2],
606
+ num_stages=3,
607
+ dilation=dilation,
608
+ )
609
+ self.layer.append(layer_5)
610
+
611
+ def forward(
612
+ self,
613
+ hidden_states: torch.Tensor,
614
+ output_hidden_states: bool = False,
615
+ return_dict: bool = True,
616
+ ) -> Union[tuple, BaseModelOutputWithNoAttention]:
617
+ all_hidden_states = () if output_hidden_states else None
618
+
619
+ for i, layer_module in enumerate(self.layer):
620
+ if self.gradient_checkpointing and self.training:
621
+ hidden_states = self._gradient_checkpointing_func(
622
+ layer_module.__call__,
623
+ hidden_states,
624
+ )
625
+ else:
626
+ hidden_states = layer_module(hidden_states)
627
+
628
+ if output_hidden_states:
629
+ all_hidden_states = all_hidden_states + (hidden_states,)
630
+
631
+ if not return_dict:
632
+ return tuple(v for v in [hidden_states, all_hidden_states] if v is not None)
633
+
634
+ return BaseModelOutputWithNoAttention(last_hidden_state=hidden_states, hidden_states=all_hidden_states)
635
+
636
+
637
+ class MobileViTPreTrainedModel(PreTrainedModel):
638
+ """
639
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
640
+ models.
641
+ """
642
+
643
+ config_class = MobileViTConfig
644
+ base_model_prefix = "mobilevit"
645
+ main_input_name = "pixel_values"
646
+ supports_gradient_checkpointing = True
647
+
648
+ def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None:
649
+ """Initialize the weights"""
650
+ if isinstance(module, (nn.Linear, nn.Conv2d)):
651
+ # Slightly different from the TF version which uses truncated_normal for initialization
652
+ # cf https://github.com/pytorch/pytorch/pull/5617
653
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
654
+ if module.bias is not None:
655
+ module.bias.data.zero_()
656
+ elif isinstance(module, nn.LayerNorm):
657
+ module.bias.data.zero_()
658
+ module.weight.data.fill_(1.0)
659
+
660
+
661
+ MOBILEVIT_START_DOCSTRING = r"""
662
+ This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
663
+ as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
664
+ behavior.
665
+
666
+ Parameters:
667
+ config ([`MobileViTConfig`]): Model configuration class with all the parameters of the model.
668
+ Initializing with a config file does not load the weights associated with the model, only the
669
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
670
+ """
671
+
672
+ MOBILEVIT_INPUTS_DOCSTRING = r"""
673
+ Args:
674
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
675
+ Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
676
+ [`MobileViTImageProcessor.__call__`] for details.
677
+ output_hidden_states (`bool`, *optional*):
678
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
679
+ more detail.
680
+ return_dict (`bool`, *optional*):
681
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
682
+ """
683
+
684
+
685
+ @add_start_docstrings(
686
+ "The bare MobileViT model outputting raw hidden-states without any specific head on top.",
687
+ MOBILEVIT_START_DOCSTRING,
688
+ )
689
+ class MobileViTModel(MobileViTPreTrainedModel):
690
+ def __init__(self, config: MobileViTConfig, expand_output: bool = True):
691
+ super().__init__(config)
692
+ self.config = config
693
+ self.expand_output = expand_output
694
+
695
+ self.conv_stem = MobileViTConvLayer(
696
+ config,
697
+ in_channels=config.num_channels,
698
+ out_channels=config.neck_hidden_sizes[0],
699
+ kernel_size=3,
700
+ stride=2,
701
+ )
702
+
703
+ self.encoder = MobileViTEncoder(config)
704
+
705
+ if self.expand_output:
706
+ self.conv_1x1_exp = MobileViTConvLayer(
707
+ config,
708
+ in_channels=config.neck_hidden_sizes[5],
709
+ out_channels=config.neck_hidden_sizes[6],
710
+ kernel_size=1,
711
+ )
712
+
713
+ # Initialize weights and apply final processing
714
+ self.post_init()
715
+
716
+ def _prune_heads(self, heads_to_prune):
717
+ """Prunes heads of the model.
718
+ heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel
719
+ """
720
+ for layer_index, heads in heads_to_prune.items():
721
+ mobilevit_layer = self.encoder.layer[layer_index]
722
+ if isinstance(mobilevit_layer, MobileViTLayer):
723
+ for transformer_layer in mobilevit_layer.transformer.layer:
724
+ transformer_layer.attention.prune_heads(heads)
725
+
726
+ @add_start_docstrings_to_model_forward(MOBILEVIT_INPUTS_DOCSTRING)
727
+ @add_code_sample_docstrings(
728
+ checkpoint=_CHECKPOINT_FOR_DOC,
729
+ output_type=BaseModelOutputWithPoolingAndNoAttention,
730
+ config_class=_CONFIG_FOR_DOC,
731
+ modality="vision",
732
+ expected_output=_EXPECTED_OUTPUT_SHAPE,
733
+ )
734
+ def forward(
735
+ self,
736
+ pixel_values: Optional[torch.Tensor] = None,
737
+ output_hidden_states: Optional[bool] = None,
738
+ return_dict: Optional[bool] = None,
739
+ ) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]:
740
+ output_hidden_states = (
741
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
742
+ )
743
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
744
+
745
+ if pixel_values is None:
746
+ raise ValueError("You have to specify pixel_values")
747
+
748
+ embedding_output = self.conv_stem(pixel_values)
749
+
750
+ encoder_outputs = self.encoder(
751
+ embedding_output,
752
+ output_hidden_states=output_hidden_states,
753
+ return_dict=return_dict,
754
+ )
755
+
756
+ if self.expand_output:
757
+ last_hidden_state = self.conv_1x1_exp(encoder_outputs[0])
758
+
759
+ # global average pooling: (batch_size, channels, height, width) -> (batch_size, channels)
760
+ pooled_output = torch.mean(last_hidden_state, dim=[-2, -1], keepdim=False)
761
+ else:
762
+ last_hidden_state = encoder_outputs[0]
763
+ pooled_output = None
764
+
765
+ if not return_dict:
766
+ output = (last_hidden_state, pooled_output) if pooled_output is not None else (last_hidden_state,)
767
+ return output + encoder_outputs[1:]
768
+
769
+ return BaseModelOutputWithPoolingAndNoAttention(
770
+ last_hidden_state=last_hidden_state,
771
+ pooler_output=pooled_output,
772
+ hidden_states=encoder_outputs.hidden_states,
773
+ )
774
+
775
+
776
+ @add_start_docstrings(
777
+ """
778
+ MobileViT model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
779
+ ImageNet.
780
+ """,
781
+ MOBILEVIT_START_DOCSTRING,
782
+ )
783
+ class MobileViTForImageClassification(MobileViTPreTrainedModel):
784
+ def __init__(self, config: MobileViTConfig) -> None:
785
+ super().__init__(config)
786
+
787
+ self.num_labels = config.num_labels
788
+ self.mobilevit = MobileViTModel(config)
789
+
790
+ # Classifier head
791
+ self.dropout = nn.Dropout(config.classifier_dropout_prob, inplace=True)
792
+ self.classifier = (
793
+ nn.Linear(config.neck_hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity()
794
+ )
795
+
796
+ # Initialize weights and apply final processing
797
+ self.post_init()
798
+
799
+ @add_start_docstrings_to_model_forward(MOBILEVIT_INPUTS_DOCSTRING)
800
+ @add_code_sample_docstrings(
801
+ checkpoint=_IMAGE_CLASS_CHECKPOINT,
802
+ output_type=ImageClassifierOutputWithNoAttention,
803
+ config_class=_CONFIG_FOR_DOC,
804
+ expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
805
+ )
806
+ def forward(
807
+ self,
808
+ pixel_values: Optional[torch.Tensor] = None,
809
+ output_hidden_states: Optional[bool] = None,
810
+ labels: Optional[torch.Tensor] = None,
811
+ return_dict: Optional[bool] = None,
812
+ ) -> Union[tuple, ImageClassifierOutputWithNoAttention]:
813
+ r"""
814
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
815
+ Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
816
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss). If
817
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
818
+ """
819
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
820
+
821
+ outputs = self.mobilevit(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict)
822
+
823
+ pooled_output = outputs.pooler_output if return_dict else outputs[1]
824
+
825
+ logits = self.classifier(self.dropout(pooled_output))
826
+
827
+ loss = None
828
+ if labels is not None:
829
+ if self.config.problem_type is None:
830
+ if self.num_labels == 1:
831
+ self.config.problem_type = "regression"
832
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
833
+ self.config.problem_type = "single_label_classification"
834
+ else:
835
+ self.config.problem_type = "multi_label_classification"
836
+
837
+ if self.config.problem_type == "regression":
838
+ loss_fct = MSELoss()
839
+ if self.num_labels == 1:
840
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
841
+ else:
842
+ loss = loss_fct(logits, labels)
843
+ elif self.config.problem_type == "single_label_classification":
844
+ loss_fct = CrossEntropyLoss()
845
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
846
+ elif self.config.problem_type == "multi_label_classification":
847
+ loss_fct = BCEWithLogitsLoss()
848
+ loss = loss_fct(logits, labels)
849
+
850
+ if not return_dict:
851
+ output = (logits,) + outputs[2:]
852
+ return ((loss,) + output) if loss is not None else output
853
+
854
+ return ImageClassifierOutputWithNoAttention(
855
+ loss=loss,
856
+ logits=logits,
857
+ hidden_states=outputs.hidden_states,
858
+ )
859
+
860
+
861
+ class MobileViTASPPPooling(nn.Module):
862
+ def __init__(self, config: MobileViTConfig, in_channels: int, out_channels: int) -> None:
863
+ super().__init__()
864
+
865
+ self.global_pool = nn.AdaptiveAvgPool2d(output_size=1)
866
+
867
+ self.conv_1x1 = MobileViTConvLayer(
868
+ config,
869
+ in_channels=in_channels,
870
+ out_channels=out_channels,
871
+ kernel_size=1,
872
+ stride=1,
873
+ use_normalization=True,
874
+ use_activation="relu",
875
+ )
876
+
877
+ def forward(self, features: torch.Tensor) -> torch.Tensor:
878
+ spatial_size = features.shape[-2:]
879
+ features = self.global_pool(features)
880
+ features = self.conv_1x1(features)
881
+ features = nn.functional.interpolate(features, size=spatial_size, mode="bilinear", align_corners=False)
882
+ return features
883
+
884
+
885
+ class MobileViTASPP(nn.Module):
886
+ """
887
+ ASPP module defined in DeepLab papers: https://arxiv.org/abs/1606.00915, https://arxiv.org/abs/1706.05587
888
+ """
889
+
890
+ def __init__(self, config: MobileViTConfig) -> None:
891
+ super().__init__()
892
+
893
+ in_channels = config.neck_hidden_sizes[-2]
894
+ out_channels = config.aspp_out_channels
895
+
896
+ if len(config.atrous_rates) != 3:
897
+ raise ValueError("Expected 3 values for atrous_rates")
898
+
899
+ self.convs = nn.ModuleList()
900
+
901
+ in_projection = MobileViTConvLayer(
902
+ config,
903
+ in_channels=in_channels,
904
+ out_channels=out_channels,
905
+ kernel_size=1,
906
+ use_activation="relu",
907
+ )
908
+ self.convs.append(in_projection)
909
+
910
+ self.convs.extend(
911
+ [
912
+ MobileViTConvLayer(
913
+ config,
914
+ in_channels=in_channels,
915
+ out_channels=out_channels,
916
+ kernel_size=3,
917
+ dilation=rate,
918
+ use_activation="relu",
919
+ )
920
+ for rate in config.atrous_rates
921
+ ]
922
+ )
923
+
924
+ pool_layer = MobileViTASPPPooling(config, in_channels, out_channels)
925
+ self.convs.append(pool_layer)
926
+
927
+ self.project = MobileViTConvLayer(
928
+ config, in_channels=5 * out_channels, out_channels=out_channels, kernel_size=1, use_activation="relu"
929
+ )
930
+
931
+ self.dropout = nn.Dropout(p=config.aspp_dropout_prob)
932
+
933
+ def forward(self, features: torch.Tensor) -> torch.Tensor:
934
+ pyramid = []
935
+ for conv in self.convs:
936
+ pyramid.append(conv(features))
937
+ pyramid = torch.cat(pyramid, dim=1)
938
+
939
+ pooled_features = self.project(pyramid)
940
+ pooled_features = self.dropout(pooled_features)
941
+ return pooled_features
942
+
943
+
944
+ class MobileViTDeepLabV3(nn.Module):
945
+ """
946
+ DeepLabv3 architecture: https://arxiv.org/abs/1706.05587
947
+ """
948
+
949
+ def __init__(self, config: MobileViTConfig) -> None:
950
+ super().__init__()
951
+ self.aspp = MobileViTASPP(config)
952
+
953
+ self.dropout = nn.Dropout2d(config.classifier_dropout_prob)
954
+
955
+ self.classifier = MobileViTConvLayer(
956
+ config,
957
+ in_channels=config.aspp_out_channels,
958
+ out_channels=config.num_labels,
959
+ kernel_size=1,
960
+ use_normalization=False,
961
+ use_activation=False,
962
+ bias=True,
963
+ )
964
+
965
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
966
+ features = self.aspp(hidden_states[-1])
967
+ features = self.dropout(features)
968
+ features = self.classifier(features)
969
+ return features
970
+
971
+
972
+ @add_start_docstrings(
973
+ """
974
+ MobileViT model with a semantic segmentation head on top, e.g. for Pascal VOC.
975
+ """,
976
+ MOBILEVIT_START_DOCSTRING,
977
+ )
978
+ class MobileViTForSemanticSegmentation(MobileViTPreTrainedModel):
979
+ def __init__(self, config: MobileViTConfig) -> None:
980
+ super().__init__(config)
981
+
982
+ self.num_labels = config.num_labels
983
+ self.mobilevit = MobileViTModel(config, expand_output=False)
984
+ self.segmentation_head = MobileViTDeepLabV3(config)
985
+
986
+ # Initialize weights and apply final processing
987
+ self.post_init()
988
+
989
+ @add_start_docstrings_to_model_forward(MOBILEVIT_INPUTS_DOCSTRING)
990
+ @replace_return_docstrings(output_type=SemanticSegmenterOutput, config_class=_CONFIG_FOR_DOC)
991
+ def forward(
992
+ self,
993
+ pixel_values: Optional[torch.Tensor] = None,
994
+ labels: Optional[torch.Tensor] = None,
995
+ output_hidden_states: Optional[bool] = None,
996
+ return_dict: Optional[bool] = None,
997
+ ) -> Union[tuple, SemanticSegmenterOutput]:
998
+ r"""
999
+ labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*):
1000
+ Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ...,
1001
+ config.num_labels - 1]`. If `config.num_labels > 1`, a classification loss is computed (Cross-Entropy).
1002
+
1003
+ Returns:
1004
+
1005
+ Examples:
1006
+
1007
+ ```python
1008
+ >>> import requests
1009
+ >>> import torch
1010
+ >>> from PIL import Image
1011
+ >>> from transformers import AutoImageProcessor, MobileViTForSemanticSegmentation
1012
+
1013
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
1014
+ >>> image = Image.open(requests.get(url, stream=True).raw)
1015
+
1016
+ >>> image_processor = AutoImageProcessor.from_pretrained("apple/deeplabv3-mobilevit-small")
1017
+ >>> model = MobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevit-small")
1018
+
1019
+ >>> inputs = image_processor(images=image, return_tensors="pt")
1020
+
1021
+ >>> with torch.no_grad():
1022
+ ... outputs = model(**inputs)
1023
+
1024
+ >>> # logits are of shape (batch_size, num_labels, height, width)
1025
+ >>> logits = outputs.logits
1026
+ ```"""
1027
+ output_hidden_states = (
1028
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1029
+ )
1030
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1031
+
1032
+ outputs = self.mobilevit(
1033
+ pixel_values,
1034
+ output_hidden_states=True, # we need the intermediate hidden states
1035
+ return_dict=return_dict,
1036
+ )
1037
+
1038
+ encoder_hidden_states = outputs.hidden_states if return_dict else outputs[1]
1039
+
1040
+ logits = self.segmentation_head(encoder_hidden_states)
1041
+
1042
+ loss = None
1043
+ if labels is not None:
1044
+ if self.config.num_labels == 1:
1045
+ raise ValueError("The number of labels should be greater than one")
1046
+ else:
1047
+ # upsample logits to the images' original size
1048
+ upsampled_logits = nn.functional.interpolate(
1049
+ logits, size=labels.shape[-2:], mode="bilinear", align_corners=False
1050
+ )
1051
+ loss_fct = CrossEntropyLoss(ignore_index=self.config.semantic_loss_ignore_index)
1052
+ loss = loss_fct(upsampled_logits, labels)
1053
+
1054
+ if not return_dict:
1055
+ if output_hidden_states:
1056
+ output = (logits,) + outputs[1:]
1057
+ else:
1058
+ output = (logits,) + outputs[2:]
1059
+ return ((loss,) + output) if loss is not None else output
1060
+
1061
+ return SemanticSegmenterOutput(
1062
+ loss=loss,
1063
+ logits=logits,
1064
+ hidden_states=outputs.hidden_states if output_hidden_states else None,
1065
+ attentions=None,
1066
+ )
llmeval-env/lib/python3.10/site-packages/transformers/models/mobilevit/modeling_tf_mobilevit.py ADDED
@@ -0,0 +1,1373 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 Apple Inc. and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ #
16
+ # Original license: https://github.com/apple/ml-cvnets/blob/main/LICENSE
17
+ """ TensorFlow 2.0 MobileViT model."""
18
+
19
+ from __future__ import annotations
20
+
21
+ from typing import Dict, Optional, Tuple, Union
22
+
23
+ import tensorflow as tf
24
+
25
+ from ...activations_tf import get_tf_activation
26
+ from ...file_utils import (
27
+ add_code_sample_docstrings,
28
+ add_start_docstrings,
29
+ add_start_docstrings_to_model_forward,
30
+ replace_return_docstrings,
31
+ )
32
+ from ...modeling_tf_outputs import (
33
+ TFBaseModelOutput,
34
+ TFBaseModelOutputWithPooling,
35
+ TFImageClassifierOutputWithNoAttention,
36
+ TFSemanticSegmenterOutputWithNoAttention,
37
+ )
38
+ from ...modeling_tf_utils import (
39
+ TFPreTrainedModel,
40
+ TFSequenceClassificationLoss,
41
+ keras,
42
+ keras_serializable,
43
+ unpack_inputs,
44
+ )
45
+ from ...tf_utils import shape_list, stable_softmax
46
+ from ...utils import logging
47
+ from .configuration_mobilevit import MobileViTConfig
48
+
49
+
50
+ logger = logging.get_logger(__name__)
51
+
52
+ # General docstring
53
+ _CONFIG_FOR_DOC = "MobileViTConfig"
54
+
55
+ # Base docstring
56
+ _CHECKPOINT_FOR_DOC = "apple/mobilevit-small"
57
+ _EXPECTED_OUTPUT_SHAPE = [1, 640, 8, 8]
58
+
59
+ # Image classification docstring
60
+ _IMAGE_CLASS_CHECKPOINT = "apple/mobilevit-small"
61
+ _IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
62
+
63
+
64
+ from ..deprecated._archive_maps import TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
65
+
66
+
67
+ def make_divisible(value: int, divisor: int = 8, min_value: Optional[int] = None) -> int:
68
+ """
69
+ Ensure that all layers have a channel count that is divisible by `divisor`. This function is taken from the
70
+ original TensorFlow repo. It can be seen here:
71
+ https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
72
+ """
73
+ if min_value is None:
74
+ min_value = divisor
75
+ new_value = max(min_value, int(value + divisor / 2) // divisor * divisor)
76
+ # Make sure that round down does not go down by more than 10%.
77
+ if new_value < 0.9 * value:
78
+ new_value += divisor
79
+ return int(new_value)
80
+
81
+
82
+ class TFMobileViTConvLayer(keras.layers.Layer):
83
+ def __init__(
84
+ self,
85
+ config: MobileViTConfig,
86
+ in_channels: int,
87
+ out_channels: int,
88
+ kernel_size: int,
89
+ stride: int = 1,
90
+ groups: int = 1,
91
+ bias: bool = False,
92
+ dilation: int = 1,
93
+ use_normalization: bool = True,
94
+ use_activation: Union[bool, str] = True,
95
+ **kwargs,
96
+ ) -> None:
97
+ super().__init__(**kwargs)
98
+ logger.warning(
99
+ f"\n{self.__class__.__name__} has backpropagation operations that are NOT supported on CPU. If you wish "
100
+ "to train/fine-tune this model, you need a GPU or a TPU"
101
+ )
102
+
103
+ padding = int((kernel_size - 1) / 2) * dilation
104
+ self.padding = keras.layers.ZeroPadding2D(padding)
105
+
106
+ if out_channels % groups != 0:
107
+ raise ValueError(f"Output channels ({out_channels}) are not divisible by {groups} groups.")
108
+
109
+ self.convolution = keras.layers.Conv2D(
110
+ filters=out_channels,
111
+ kernel_size=kernel_size,
112
+ strides=stride,
113
+ padding="VALID",
114
+ dilation_rate=dilation,
115
+ groups=groups,
116
+ use_bias=bias,
117
+ name="convolution",
118
+ )
119
+
120
+ if use_normalization:
121
+ self.normalization = keras.layers.BatchNormalization(epsilon=1e-5, momentum=0.1, name="normalization")
122
+ else:
123
+ self.normalization = None
124
+
125
+ if use_activation:
126
+ if isinstance(use_activation, str):
127
+ self.activation = get_tf_activation(use_activation)
128
+ elif isinstance(config.hidden_act, str):
129
+ self.activation = get_tf_activation(config.hidden_act)
130
+ else:
131
+ self.activation = config.hidden_act
132
+ else:
133
+ self.activation = None
134
+ self.in_channels = in_channels
135
+ self.out_channels = out_channels
136
+
137
+ def call(self, features: tf.Tensor, training: bool = False) -> tf.Tensor:
138
+ padded_features = self.padding(features)
139
+ features = self.convolution(padded_features)
140
+ if self.normalization is not None:
141
+ features = self.normalization(features, training=training)
142
+ if self.activation is not None:
143
+ features = self.activation(features)
144
+ return features
145
+
146
+ def build(self, input_shape=None):
147
+ if self.built:
148
+ return
149
+ self.built = True
150
+ if getattr(self, "convolution", None) is not None:
151
+ with tf.name_scope(self.convolution.name):
152
+ self.convolution.build([None, None, None, self.in_channels])
153
+ if getattr(self, "normalization", None) is not None:
154
+ if hasattr(self.normalization, "name"):
155
+ with tf.name_scope(self.normalization.name):
156
+ self.normalization.build([None, None, None, self.out_channels])
157
+
158
+
159
+ class TFMobileViTInvertedResidual(keras.layers.Layer):
160
+ """
161
+ Inverted residual block (MobileNetv2): https://arxiv.org/abs/1801.04381
162
+ """
163
+
164
+ def __init__(
165
+ self, config: MobileViTConfig, in_channels: int, out_channels: int, stride: int, dilation: int = 1, **kwargs
166
+ ) -> None:
167
+ super().__init__(**kwargs)
168
+ expanded_channels = make_divisible(int(round(in_channels * config.expand_ratio)), 8)
169
+
170
+ if stride not in [1, 2]:
171
+ raise ValueError(f"Invalid stride {stride}.")
172
+
173
+ self.use_residual = (stride == 1) and (in_channels == out_channels)
174
+
175
+ self.expand_1x1 = TFMobileViTConvLayer(
176
+ config, in_channels=in_channels, out_channels=expanded_channels, kernel_size=1, name="expand_1x1"
177
+ )
178
+
179
+ self.conv_3x3 = TFMobileViTConvLayer(
180
+ config,
181
+ in_channels=expanded_channels,
182
+ out_channels=expanded_channels,
183
+ kernel_size=3,
184
+ stride=stride,
185
+ groups=expanded_channels,
186
+ dilation=dilation,
187
+ name="conv_3x3",
188
+ )
189
+
190
+ self.reduce_1x1 = TFMobileViTConvLayer(
191
+ config,
192
+ in_channels=expanded_channels,
193
+ out_channels=out_channels,
194
+ kernel_size=1,
195
+ use_activation=False,
196
+ name="reduce_1x1",
197
+ )
198
+
199
+ def call(self, features: tf.Tensor, training: bool = False) -> tf.Tensor:
200
+ residual = features
201
+
202
+ features = self.expand_1x1(features, training=training)
203
+ features = self.conv_3x3(features, training=training)
204
+ features = self.reduce_1x1(features, training=training)
205
+
206
+ return residual + features if self.use_residual else features
207
+
208
+ def build(self, input_shape=None):
209
+ if self.built:
210
+ return
211
+ self.built = True
212
+ if getattr(self, "expand_1x1", None) is not None:
213
+ with tf.name_scope(self.expand_1x1.name):
214
+ self.expand_1x1.build(None)
215
+ if getattr(self, "conv_3x3", None) is not None:
216
+ with tf.name_scope(self.conv_3x3.name):
217
+ self.conv_3x3.build(None)
218
+ if getattr(self, "reduce_1x1", None) is not None:
219
+ with tf.name_scope(self.reduce_1x1.name):
220
+ self.reduce_1x1.build(None)
221
+
222
+
223
+ class TFMobileViTMobileNetLayer(keras.layers.Layer):
224
+ def __init__(
225
+ self,
226
+ config: MobileViTConfig,
227
+ in_channels: int,
228
+ out_channels: int,
229
+ stride: int = 1,
230
+ num_stages: int = 1,
231
+ **kwargs,
232
+ ) -> None:
233
+ super().__init__(**kwargs)
234
+
235
+ self.layers = []
236
+ for i in range(num_stages):
237
+ layer = TFMobileViTInvertedResidual(
238
+ config,
239
+ in_channels=in_channels,
240
+ out_channels=out_channels,
241
+ stride=stride if i == 0 else 1,
242
+ name=f"layer.{i}",
243
+ )
244
+ self.layers.append(layer)
245
+ in_channels = out_channels
246
+
247
+ def call(self, features: tf.Tensor, training: bool = False) -> tf.Tensor:
248
+ for layer_module in self.layers:
249
+ features = layer_module(features, training=training)
250
+ return features
251
+
252
+ def build(self, input_shape=None):
253
+ if self.built:
254
+ return
255
+ self.built = True
256
+ if getattr(self, "layers", None) is not None:
257
+ for layer_module in self.layers:
258
+ with tf.name_scope(layer_module.name):
259
+ layer_module.build(None)
260
+
261
+
262
+ class TFMobileViTSelfAttention(keras.layers.Layer):
263
+ def __init__(self, config: MobileViTConfig, hidden_size: int, **kwargs) -> None:
264
+ super().__init__(**kwargs)
265
+
266
+ if hidden_size % config.num_attention_heads != 0:
267
+ raise ValueError(
268
+ f"The hidden size {hidden_size,} is not a multiple of the number of attention "
269
+ f"heads {config.num_attention_heads}."
270
+ )
271
+
272
+ self.num_attention_heads = config.num_attention_heads
273
+ self.attention_head_size = int(hidden_size / config.num_attention_heads)
274
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
275
+ scale = tf.cast(self.attention_head_size, dtype=tf.float32)
276
+ self.scale = tf.math.sqrt(scale)
277
+
278
+ self.query = keras.layers.Dense(self.all_head_size, use_bias=config.qkv_bias, name="query")
279
+ self.key = keras.layers.Dense(self.all_head_size, use_bias=config.qkv_bias, name="key")
280
+ self.value = keras.layers.Dense(self.all_head_size, use_bias=config.qkv_bias, name="value")
281
+
282
+ self.dropout = keras.layers.Dropout(config.attention_probs_dropout_prob)
283
+ self.hidden_size = hidden_size
284
+
285
+ def transpose_for_scores(self, x: tf.Tensor) -> tf.Tensor:
286
+ batch_size = tf.shape(x)[0]
287
+ x = tf.reshape(x, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size))
288
+ return tf.transpose(x, perm=[0, 2, 1, 3])
289
+
290
+ def call(self, hidden_states: tf.Tensor, training: bool = False) -> tf.Tensor:
291
+ batch_size = tf.shape(hidden_states)[0]
292
+
293
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
294
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
295
+ query_layer = self.transpose_for_scores(self.query(hidden_states))
296
+
297
+ # Take the dot product between "query" and "key" to get the raw attention scores.
298
+ attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)
299
+ attention_scores = attention_scores / self.scale
300
+
301
+ # Normalize the attention scores to probabilities.
302
+ attention_probs = stable_softmax(attention_scores, axis=-1)
303
+
304
+ # This is actually dropping out entire tokens to attend to, which might
305
+ # seem a bit unusual, but is taken from the original Transformer paper.
306
+ attention_probs = self.dropout(attention_probs, training=training)
307
+
308
+ context_layer = tf.matmul(attention_probs, value_layer)
309
+
310
+ context_layer = tf.transpose(context_layer, perm=[0, 2, 1, 3])
311
+ context_layer = tf.reshape(context_layer, shape=(batch_size, -1, self.all_head_size))
312
+ return context_layer
313
+
314
+ def build(self, input_shape=None):
315
+ if self.built:
316
+ return
317
+ self.built = True
318
+ if getattr(self, "query", None) is not None:
319
+ with tf.name_scope(self.query.name):
320
+ self.query.build([None, None, self.hidden_size])
321
+ if getattr(self, "key", None) is not None:
322
+ with tf.name_scope(self.key.name):
323
+ self.key.build([None, None, self.hidden_size])
324
+ if getattr(self, "value", None) is not None:
325
+ with tf.name_scope(self.value.name):
326
+ self.value.build([None, None, self.hidden_size])
327
+
328
+
329
+ class TFMobileViTSelfOutput(keras.layers.Layer):
330
+ def __init__(self, config: MobileViTConfig, hidden_size: int, **kwargs) -> None:
331
+ super().__init__(**kwargs)
332
+ self.dense = keras.layers.Dense(hidden_size, name="dense")
333
+ self.dropout = keras.layers.Dropout(config.hidden_dropout_prob)
334
+ self.hidden_size = hidden_size
335
+
336
+ def call(self, hidden_states: tf.Tensor, training: bool = False) -> tf.Tensor:
337
+ hidden_states = self.dense(hidden_states)
338
+ hidden_states = self.dropout(hidden_states, training=training)
339
+ return hidden_states
340
+
341
+ def build(self, input_shape=None):
342
+ if self.built:
343
+ return
344
+ self.built = True
345
+ if getattr(self, "dense", None) is not None:
346
+ with tf.name_scope(self.dense.name):
347
+ self.dense.build([None, None, self.hidden_size])
348
+
349
+
350
+ class TFMobileViTAttention(keras.layers.Layer):
351
+ def __init__(self, config: MobileViTConfig, hidden_size: int, **kwargs) -> None:
352
+ super().__init__(**kwargs)
353
+ self.attention = TFMobileViTSelfAttention(config, hidden_size, name="attention")
354
+ self.dense_output = TFMobileViTSelfOutput(config, hidden_size, name="output")
355
+
356
+ def prune_heads(self, heads):
357
+ raise NotImplementedError
358
+
359
+ def call(self, hidden_states: tf.Tensor, training: bool = False) -> tf.Tensor:
360
+ self_outputs = self.attention(hidden_states, training=training)
361
+ attention_output = self.dense_output(self_outputs, training=training)
362
+ return attention_output
363
+
364
+ def build(self, input_shape=None):
365
+ if self.built:
366
+ return
367
+ self.built = True
368
+ if getattr(self, "attention", None) is not None:
369
+ with tf.name_scope(self.attention.name):
370
+ self.attention.build(None)
371
+ if getattr(self, "dense_output", None) is not None:
372
+ with tf.name_scope(self.dense_output.name):
373
+ self.dense_output.build(None)
374
+
375
+
376
+ class TFMobileViTIntermediate(keras.layers.Layer):
377
+ def __init__(self, config: MobileViTConfig, hidden_size: int, intermediate_size: int, **kwargs) -> None:
378
+ super().__init__(**kwargs)
379
+ self.dense = keras.layers.Dense(intermediate_size, name="dense")
380
+ if isinstance(config.hidden_act, str):
381
+ self.intermediate_act_fn = get_tf_activation(config.hidden_act)
382
+ else:
383
+ self.intermediate_act_fn = config.hidden_act
384
+ self.hidden_size = hidden_size
385
+
386
+ def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
387
+ hidden_states = self.dense(hidden_states)
388
+ hidden_states = self.intermediate_act_fn(hidden_states)
389
+ return hidden_states
390
+
391
+ def build(self, input_shape=None):
392
+ if self.built:
393
+ return
394
+ self.built = True
395
+ if getattr(self, "dense", None) is not None:
396
+ with tf.name_scope(self.dense.name):
397
+ self.dense.build([None, None, self.hidden_size])
398
+
399
+
400
+ class TFMobileViTOutput(keras.layers.Layer):
401
+ def __init__(self, config: MobileViTConfig, hidden_size: int, intermediate_size: int, **kwargs) -> None:
402
+ super().__init__(**kwargs)
403
+ self.dense = keras.layers.Dense(hidden_size, name="dense")
404
+ self.dropout = keras.layers.Dropout(config.hidden_dropout_prob)
405
+ self.intermediate_size = intermediate_size
406
+
407
+ def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
408
+ hidden_states = self.dense(hidden_states)
409
+ hidden_states = self.dropout(hidden_states, training=training)
410
+ hidden_states = hidden_states + input_tensor
411
+ return hidden_states
412
+
413
+ def build(self, input_shape=None):
414
+ if self.built:
415
+ return
416
+ self.built = True
417
+ if getattr(self, "dense", None) is not None:
418
+ with tf.name_scope(self.dense.name):
419
+ self.dense.build([None, None, self.intermediate_size])
420
+
421
+
422
+ class TFMobileViTTransformerLayer(keras.layers.Layer):
423
+ def __init__(self, config: MobileViTConfig, hidden_size: int, intermediate_size: int, **kwargs) -> None:
424
+ super().__init__(**kwargs)
425
+ self.attention = TFMobileViTAttention(config, hidden_size, name="attention")
426
+ self.intermediate = TFMobileViTIntermediate(config, hidden_size, intermediate_size, name="intermediate")
427
+ self.mobilevit_output = TFMobileViTOutput(config, hidden_size, intermediate_size, name="output")
428
+ self.layernorm_before = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm_before")
429
+ self.layernorm_after = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm_after")
430
+ self.hidden_size = hidden_size
431
+
432
+ def call(self, hidden_states: tf.Tensor, training: bool = False) -> tf.Tensor:
433
+ attention_output = self.attention(self.layernorm_before(hidden_states), training=training)
434
+ hidden_states = attention_output + hidden_states
435
+
436
+ layer_output = self.layernorm_after(hidden_states)
437
+ layer_output = self.intermediate(layer_output)
438
+ layer_output = self.mobilevit_output(layer_output, hidden_states, training=training)
439
+ return layer_output
440
+
441
+ def build(self, input_shape=None):
442
+ if self.built:
443
+ return
444
+ self.built = True
445
+ if getattr(self, "attention", None) is not None:
446
+ with tf.name_scope(self.attention.name):
447
+ self.attention.build(None)
448
+ if getattr(self, "intermediate", None) is not None:
449
+ with tf.name_scope(self.intermediate.name):
450
+ self.intermediate.build(None)
451
+ if getattr(self, "mobilevit_output", None) is not None:
452
+ with tf.name_scope(self.mobilevit_output.name):
453
+ self.mobilevit_output.build(None)
454
+ if getattr(self, "layernorm_before", None) is not None:
455
+ with tf.name_scope(self.layernorm_before.name):
456
+ self.layernorm_before.build([None, None, self.hidden_size])
457
+ if getattr(self, "layernorm_after", None) is not None:
458
+ with tf.name_scope(self.layernorm_after.name):
459
+ self.layernorm_after.build([None, None, self.hidden_size])
460
+
461
+
462
+ class TFMobileViTTransformer(keras.layers.Layer):
463
+ def __init__(self, config: MobileViTConfig, hidden_size: int, num_stages: int, **kwargs) -> None:
464
+ super().__init__(**kwargs)
465
+
466
+ self.layers = []
467
+ for i in range(num_stages):
468
+ transformer_layer = TFMobileViTTransformerLayer(
469
+ config,
470
+ hidden_size=hidden_size,
471
+ intermediate_size=int(hidden_size * config.mlp_ratio),
472
+ name=f"layer.{i}",
473
+ )
474
+ self.layers.append(transformer_layer)
475
+
476
+ def call(self, hidden_states: tf.Tensor, training: bool = False) -> tf.Tensor:
477
+ for layer_module in self.layers:
478
+ hidden_states = layer_module(hidden_states, training=training)
479
+ return hidden_states
480
+
481
+ def build(self, input_shape=None):
482
+ if self.built:
483
+ return
484
+ self.built = True
485
+ if getattr(self, "layers", None) is not None:
486
+ for layer_module in self.layers:
487
+ with tf.name_scope(layer_module.name):
488
+ layer_module.build(None)
489
+
490
+
491
+ class TFMobileViTLayer(keras.layers.Layer):
492
+ """
493
+ MobileViT block: https://arxiv.org/abs/2110.02178
494
+ """
495
+
496
+ def __init__(
497
+ self,
498
+ config: MobileViTConfig,
499
+ in_channels: int,
500
+ out_channels: int,
501
+ stride: int,
502
+ hidden_size: int,
503
+ num_stages: int,
504
+ dilation: int = 1,
505
+ **kwargs,
506
+ ) -> None:
507
+ super().__init__(**kwargs)
508
+ self.patch_width = config.patch_size
509
+ self.patch_height = config.patch_size
510
+
511
+ if stride == 2:
512
+ self.downsampling_layer = TFMobileViTInvertedResidual(
513
+ config,
514
+ in_channels=in_channels,
515
+ out_channels=out_channels,
516
+ stride=stride if dilation == 1 else 1,
517
+ dilation=dilation // 2 if dilation > 1 else 1,
518
+ name="downsampling_layer",
519
+ )
520
+ in_channels = out_channels
521
+ else:
522
+ self.downsampling_layer = None
523
+
524
+ self.conv_kxk = TFMobileViTConvLayer(
525
+ config,
526
+ in_channels=in_channels,
527
+ out_channels=in_channels,
528
+ kernel_size=config.conv_kernel_size,
529
+ name="conv_kxk",
530
+ )
531
+
532
+ self.conv_1x1 = TFMobileViTConvLayer(
533
+ config,
534
+ in_channels=in_channels,
535
+ out_channels=hidden_size,
536
+ kernel_size=1,
537
+ use_normalization=False,
538
+ use_activation=False,
539
+ name="conv_1x1",
540
+ )
541
+
542
+ self.transformer = TFMobileViTTransformer(
543
+ config, hidden_size=hidden_size, num_stages=num_stages, name="transformer"
544
+ )
545
+
546
+ self.layernorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm")
547
+
548
+ self.conv_projection = TFMobileViTConvLayer(
549
+ config, in_channels=hidden_size, out_channels=in_channels, kernel_size=1, name="conv_projection"
550
+ )
551
+
552
+ self.fusion = TFMobileViTConvLayer(
553
+ config,
554
+ in_channels=2 * in_channels,
555
+ out_channels=in_channels,
556
+ kernel_size=config.conv_kernel_size,
557
+ name="fusion",
558
+ )
559
+ self.hidden_size = hidden_size
560
+
561
+ def unfolding(self, features: tf.Tensor) -> Tuple[tf.Tensor, Dict]:
562
+ patch_width, patch_height = self.patch_width, self.patch_height
563
+ patch_area = tf.cast(patch_width * patch_height, "int32")
564
+
565
+ batch_size = tf.shape(features)[0]
566
+ orig_height = tf.shape(features)[1]
567
+ orig_width = tf.shape(features)[2]
568
+ channels = tf.shape(features)[3]
569
+
570
+ new_height = tf.cast(tf.math.ceil(orig_height / patch_height) * patch_height, "int32")
571
+ new_width = tf.cast(tf.math.ceil(orig_width / patch_width) * patch_width, "int32")
572
+
573
+ interpolate = new_width != orig_width or new_height != orig_height
574
+ if interpolate:
575
+ # Note: Padding can be done, but then it needs to be handled in attention function.
576
+ features = tf.image.resize(features, size=(new_height, new_width), method="bilinear")
577
+
578
+ # number of patches along width and height
579
+ num_patch_width = new_width // patch_width
580
+ num_patch_height = new_height // patch_height
581
+ num_patches = num_patch_height * num_patch_width
582
+
583
+ # convert from shape (batch_size, orig_height, orig_width, channels)
584
+ # to the shape (batch_size * patch_area, num_patches, channels)
585
+ features = tf.transpose(features, [0, 3, 1, 2])
586
+ patches = tf.reshape(
587
+ features, (batch_size * channels * num_patch_height, patch_height, num_patch_width, patch_width)
588
+ )
589
+ patches = tf.transpose(patches, [0, 2, 1, 3])
590
+ patches = tf.reshape(patches, (batch_size, channels, num_patches, patch_area))
591
+ patches = tf.transpose(patches, [0, 3, 2, 1])
592
+ patches = tf.reshape(patches, (batch_size * patch_area, num_patches, channels))
593
+
594
+ info_dict = {
595
+ "orig_size": (orig_height, orig_width),
596
+ "batch_size": batch_size,
597
+ "channels": channels,
598
+ "interpolate": interpolate,
599
+ "num_patches": num_patches,
600
+ "num_patches_width": num_patch_width,
601
+ "num_patches_height": num_patch_height,
602
+ }
603
+ return patches, info_dict
604
+
605
+ def folding(self, patches: tf.Tensor, info_dict: Dict) -> tf.Tensor:
606
+ patch_width, patch_height = self.patch_width, self.patch_height
607
+ patch_area = int(patch_width * patch_height)
608
+
609
+ batch_size = info_dict["batch_size"]
610
+ channels = info_dict["channels"]
611
+ num_patches = info_dict["num_patches"]
612
+ num_patch_height = info_dict["num_patches_height"]
613
+ num_patch_width = info_dict["num_patches_width"]
614
+
615
+ # convert from shape (batch_size * patch_area, num_patches, channels)
616
+ # back to shape (batch_size, channels, orig_height, orig_width)
617
+ features = tf.reshape(patches, (batch_size, patch_area, num_patches, -1))
618
+ features = tf.transpose(features, perm=(0, 3, 2, 1))
619
+ features = tf.reshape(
620
+ features, (batch_size * channels * num_patch_height, num_patch_width, patch_height, patch_width)
621
+ )
622
+ features = tf.transpose(features, perm=(0, 2, 1, 3))
623
+ features = tf.reshape(
624
+ features, (batch_size, channels, num_patch_height * patch_height, num_patch_width * patch_width)
625
+ )
626
+ features = tf.transpose(features, perm=(0, 2, 3, 1))
627
+
628
+ if info_dict["interpolate"]:
629
+ features = tf.image.resize(features, size=info_dict["orig_size"], method="bilinear")
630
+
631
+ return features
632
+
633
+ def call(self, features: tf.Tensor, training: bool = False) -> tf.Tensor:
634
+ # reduce spatial dimensions if needed
635
+ if self.downsampling_layer:
636
+ features = self.downsampling_layer(features, training=training)
637
+
638
+ residual = features
639
+
640
+ # local representation
641
+ features = self.conv_kxk(features, training=training)
642
+ features = self.conv_1x1(features, training=training)
643
+
644
+ # convert feature map to patches
645
+ patches, info_dict = self.unfolding(features)
646
+
647
+ # learn global representations
648
+ patches = self.transformer(patches, training=training)
649
+ patches = self.layernorm(patches)
650
+
651
+ # convert patches back to feature maps
652
+ features = self.folding(patches, info_dict)
653
+
654
+ features = self.conv_projection(features, training=training)
655
+ features = self.fusion(tf.concat([residual, features], axis=-1), training=training)
656
+ return features
657
+
658
+ def build(self, input_shape=None):
659
+ if self.built:
660
+ return
661
+ self.built = True
662
+ if getattr(self, "conv_kxk", None) is not None:
663
+ with tf.name_scope(self.conv_kxk.name):
664
+ self.conv_kxk.build(None)
665
+ if getattr(self, "conv_1x1", None) is not None:
666
+ with tf.name_scope(self.conv_1x1.name):
667
+ self.conv_1x1.build(None)
668
+ if getattr(self, "transformer", None) is not None:
669
+ with tf.name_scope(self.transformer.name):
670
+ self.transformer.build(None)
671
+ if getattr(self, "layernorm", None) is not None:
672
+ with tf.name_scope(self.layernorm.name):
673
+ self.layernorm.build([None, None, self.hidden_size])
674
+ if getattr(self, "conv_projection", None) is not None:
675
+ with tf.name_scope(self.conv_projection.name):
676
+ self.conv_projection.build(None)
677
+ if getattr(self, "fusion", None) is not None:
678
+ with tf.name_scope(self.fusion.name):
679
+ self.fusion.build(None)
680
+ if getattr(self, "downsampling_layer", None) is not None:
681
+ with tf.name_scope(self.downsampling_layer.name):
682
+ self.downsampling_layer.build(None)
683
+
684
+
685
+ class TFMobileViTEncoder(keras.layers.Layer):
686
+ def __init__(self, config: MobileViTConfig, **kwargs) -> None:
687
+ super().__init__(**kwargs)
688
+ self.config = config
689
+
690
+ self.layers = []
691
+
692
+ # segmentation architectures like DeepLab and PSPNet modify the strides
693
+ # of the classification backbones
694
+ dilate_layer_4 = dilate_layer_5 = False
695
+ if config.output_stride == 8:
696
+ dilate_layer_4 = True
697
+ dilate_layer_5 = True
698
+ elif config.output_stride == 16:
699
+ dilate_layer_5 = True
700
+
701
+ dilation = 1
702
+
703
+ layer_1 = TFMobileViTMobileNetLayer(
704
+ config,
705
+ in_channels=config.neck_hidden_sizes[0],
706
+ out_channels=config.neck_hidden_sizes[1],
707
+ stride=1,
708
+ num_stages=1,
709
+ name="layer.0",
710
+ )
711
+ self.layers.append(layer_1)
712
+
713
+ layer_2 = TFMobileViTMobileNetLayer(
714
+ config,
715
+ in_channels=config.neck_hidden_sizes[1],
716
+ out_channels=config.neck_hidden_sizes[2],
717
+ stride=2,
718
+ num_stages=3,
719
+ name="layer.1",
720
+ )
721
+ self.layers.append(layer_2)
722
+
723
+ layer_3 = TFMobileViTLayer(
724
+ config,
725
+ in_channels=config.neck_hidden_sizes[2],
726
+ out_channels=config.neck_hidden_sizes[3],
727
+ stride=2,
728
+ hidden_size=config.hidden_sizes[0],
729
+ num_stages=2,
730
+ name="layer.2",
731
+ )
732
+ self.layers.append(layer_3)
733
+
734
+ if dilate_layer_4:
735
+ dilation *= 2
736
+
737
+ layer_4 = TFMobileViTLayer(
738
+ config,
739
+ in_channels=config.neck_hidden_sizes[3],
740
+ out_channels=config.neck_hidden_sizes[4],
741
+ stride=2,
742
+ hidden_size=config.hidden_sizes[1],
743
+ num_stages=4,
744
+ dilation=dilation,
745
+ name="layer.3",
746
+ )
747
+ self.layers.append(layer_4)
748
+
749
+ if dilate_layer_5:
750
+ dilation *= 2
751
+
752
+ layer_5 = TFMobileViTLayer(
753
+ config,
754
+ in_channels=config.neck_hidden_sizes[4],
755
+ out_channels=config.neck_hidden_sizes[5],
756
+ stride=2,
757
+ hidden_size=config.hidden_sizes[2],
758
+ num_stages=3,
759
+ dilation=dilation,
760
+ name="layer.4",
761
+ )
762
+ self.layers.append(layer_5)
763
+
764
+ def call(
765
+ self,
766
+ hidden_states: tf.Tensor,
767
+ output_hidden_states: bool = False,
768
+ return_dict: bool = True,
769
+ training: bool = False,
770
+ ) -> Union[tuple, TFBaseModelOutput]:
771
+ all_hidden_states = () if output_hidden_states else None
772
+
773
+ for i, layer_module in enumerate(self.layers):
774
+ hidden_states = layer_module(hidden_states, training=training)
775
+
776
+ if output_hidden_states:
777
+ all_hidden_states = all_hidden_states + (hidden_states,)
778
+
779
+ if not return_dict:
780
+ return tuple(v for v in [hidden_states, all_hidden_states] if v is not None)
781
+
782
+ return TFBaseModelOutput(last_hidden_state=hidden_states, hidden_states=all_hidden_states)
783
+
784
+ def build(self, input_shape=None):
785
+ if self.built:
786
+ return
787
+ self.built = True
788
+ if getattr(self, "layers", None) is not None:
789
+ for layer_module in self.layers:
790
+ with tf.name_scope(layer_module.name):
791
+ layer_module.build(None)
792
+
793
+
794
+ @keras_serializable
795
+ class TFMobileViTMainLayer(keras.layers.Layer):
796
+ config_class = MobileViTConfig
797
+
798
+ def __init__(self, config: MobileViTConfig, expand_output: bool = True, **kwargs):
799
+ super().__init__(**kwargs)
800
+ self.config = config
801
+ self.expand_output = expand_output
802
+
803
+ self.conv_stem = TFMobileViTConvLayer(
804
+ config,
805
+ in_channels=config.num_channels,
806
+ out_channels=config.neck_hidden_sizes[0],
807
+ kernel_size=3,
808
+ stride=2,
809
+ name="conv_stem",
810
+ )
811
+
812
+ self.encoder = TFMobileViTEncoder(config, name="encoder")
813
+
814
+ if self.expand_output:
815
+ self.conv_1x1_exp = TFMobileViTConvLayer(
816
+ config,
817
+ in_channels=config.neck_hidden_sizes[5],
818
+ out_channels=config.neck_hidden_sizes[6],
819
+ kernel_size=1,
820
+ name="conv_1x1_exp",
821
+ )
822
+
823
+ self.pooler = keras.layers.GlobalAveragePooling2D(data_format="channels_first", name="pooler")
824
+
825
+ def _prune_heads(self, heads_to_prune):
826
+ """
827
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
828
+ class PreTrainedModel
829
+ """
830
+ raise NotImplementedError
831
+
832
+ @unpack_inputs
833
+ def call(
834
+ self,
835
+ pixel_values: tf.Tensor | None = None,
836
+ output_hidden_states: Optional[bool] = None,
837
+ return_dict: Optional[bool] = None,
838
+ training: bool = False,
839
+ ) -> Union[Tuple[tf.Tensor], TFBaseModelOutputWithPooling]:
840
+ output_hidden_states = (
841
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
842
+ )
843
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
844
+
845
+ # When running on CPU, `keras.layers.Conv2D` doesn't support `NCHW` format.
846
+ # So change the input format from `NCHW` to `NHWC`.
847
+ # shape = (batch_size, in_height, in_width, in_channels=num_channels)
848
+ pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1))
849
+
850
+ embedding_output = self.conv_stem(pixel_values, training=training)
851
+
852
+ encoder_outputs = self.encoder(
853
+ embedding_output, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training
854
+ )
855
+
856
+ if self.expand_output:
857
+ last_hidden_state = self.conv_1x1_exp(encoder_outputs[0])
858
+
859
+ # Change to NCHW output format to have uniformity in the modules
860
+ last_hidden_state = tf.transpose(last_hidden_state, perm=[0, 3, 1, 2])
861
+
862
+ # global average pooling: (batch_size, channels, height, width) -> (batch_size, channels)
863
+ pooled_output = self.pooler(last_hidden_state)
864
+ else:
865
+ last_hidden_state = encoder_outputs[0]
866
+ # Change to NCHW output format to have uniformity in the modules
867
+ last_hidden_state = tf.transpose(last_hidden_state, perm=[0, 3, 1, 2])
868
+ pooled_output = None
869
+
870
+ if not return_dict:
871
+ output = (last_hidden_state, pooled_output) if pooled_output is not None else (last_hidden_state,)
872
+
873
+ # Change to NCHW output format to have uniformity in the modules
874
+ if not self.expand_output:
875
+ remaining_encoder_outputs = encoder_outputs[1:]
876
+ remaining_encoder_outputs = tuple(
877
+ [tf.transpose(h, perm=(0, 3, 1, 2)) for h in remaining_encoder_outputs[0]]
878
+ )
879
+ remaining_encoder_outputs = (remaining_encoder_outputs,)
880
+ return output + remaining_encoder_outputs
881
+ else:
882
+ return output + encoder_outputs[1:]
883
+
884
+ # Change the other hidden state outputs to NCHW as well
885
+ if output_hidden_states:
886
+ hidden_states = tuple([tf.transpose(h, perm=(0, 3, 1, 2)) for h in encoder_outputs[1]])
887
+
888
+ return TFBaseModelOutputWithPooling(
889
+ last_hidden_state=last_hidden_state,
890
+ pooler_output=pooled_output,
891
+ hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states,
892
+ )
893
+
894
+ def build(self, input_shape=None):
895
+ if self.built:
896
+ return
897
+ self.built = True
898
+ if getattr(self, "conv_stem", None) is not None:
899
+ with tf.name_scope(self.conv_stem.name):
900
+ self.conv_stem.build(None)
901
+ if getattr(self, "encoder", None) is not None:
902
+ with tf.name_scope(self.encoder.name):
903
+ self.encoder.build(None)
904
+ if getattr(self, "pooler", None) is not None:
905
+ with tf.name_scope(self.pooler.name):
906
+ self.pooler.build([None, None, None, None])
907
+ if getattr(self, "conv_1x1_exp", None) is not None:
908
+ with tf.name_scope(self.conv_1x1_exp.name):
909
+ self.conv_1x1_exp.build(None)
910
+
911
+
912
+ class TFMobileViTPreTrainedModel(TFPreTrainedModel):
913
+ """
914
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
915
+ models.
916
+ """
917
+
918
+ config_class = MobileViTConfig
919
+ base_model_prefix = "mobilevit"
920
+ main_input_name = "pixel_values"
921
+
922
+
923
+ MOBILEVIT_START_DOCSTRING = r"""
924
+ This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
925
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
926
+ etc.)
927
+
928
+ This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
929
+ as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
930
+ behavior.
931
+
932
+ <Tip>
933
+
934
+ TensorFlow models and layers in `transformers` accept two formats as input:
935
+
936
+ - having all inputs as keyword arguments (like PyTorch models), or
937
+ - having all inputs as a list, tuple or dict in the first positional argument.
938
+
939
+ The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
940
+ and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
941
+ pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
942
+ format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
943
+ the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
944
+ positional argument:
945
+
946
+ - a single Tensor with `pixel_values` only and nothing else: `model(pixel_values)`
947
+ - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
948
+ `model([pixel_values, attention_mask])` or `model([pixel_values, attention_mask, token_type_ids])`
949
+ - a dictionary with one or several input Tensors associated to the input names given in the docstring:
950
+ `model({"pixel_values": pixel_values, "token_type_ids": token_type_ids})`
951
+
952
+ Note that when creating models and layers with
953
+ [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
954
+ about any of this, as you can just pass inputs like you would to any other Python function!
955
+
956
+ </Tip>
957
+
958
+ Parameters:
959
+ config ([`MobileViTConfig`]): Model configuration class with all the parameters of the model.
960
+ Initializing with a config file does not load the weights associated with the model, only the
961
+ configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
962
+ """
963
+
964
+ MOBILEVIT_INPUTS_DOCSTRING = r"""
965
+ Args:
966
+ pixel_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]`, `Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`):
967
+ Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
968
+ [`MobileViTImageProcessor.__call__`] for details.
969
+
970
+ output_hidden_states (`bool`, *optional*):
971
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
972
+ more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
973
+ used instead.
974
+ return_dict (`bool`, *optional*):
975
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
976
+ eager mode, in graph mode the value will always be set to True.
977
+ """
978
+
979
+
980
+ @add_start_docstrings(
981
+ "The bare MobileViT model outputting raw hidden-states without any specific head on top.",
982
+ MOBILEVIT_START_DOCSTRING,
983
+ )
984
+ class TFMobileViTModel(TFMobileViTPreTrainedModel):
985
+ def __init__(self, config: MobileViTConfig, expand_output: bool = True, *inputs, **kwargs):
986
+ super().__init__(config, *inputs, **kwargs)
987
+ self.config = config
988
+ self.expand_output = expand_output
989
+
990
+ self.mobilevit = TFMobileViTMainLayer(config, expand_output=expand_output, name="mobilevit")
991
+
992
+ @unpack_inputs
993
+ @add_start_docstrings_to_model_forward(MOBILEVIT_INPUTS_DOCSTRING)
994
+ @add_code_sample_docstrings(
995
+ checkpoint=_CHECKPOINT_FOR_DOC,
996
+ output_type=TFBaseModelOutputWithPooling,
997
+ config_class=_CONFIG_FOR_DOC,
998
+ modality="vision",
999
+ expected_output=_EXPECTED_OUTPUT_SHAPE,
1000
+ )
1001
+ def call(
1002
+ self,
1003
+ pixel_values: tf.Tensor | None = None,
1004
+ output_hidden_states: Optional[bool] = None,
1005
+ return_dict: Optional[bool] = None,
1006
+ training: bool = False,
1007
+ ) -> Union[Tuple[tf.Tensor], TFBaseModelOutputWithPooling]:
1008
+ output = self.mobilevit(pixel_values, output_hidden_states, return_dict, training=training)
1009
+ return output
1010
+
1011
+ def build(self, input_shape=None):
1012
+ if self.built:
1013
+ return
1014
+ self.built = True
1015
+ if getattr(self, "mobilevit", None) is not None:
1016
+ with tf.name_scope(self.mobilevit.name):
1017
+ self.mobilevit.build(None)
1018
+
1019
+
1020
+ @add_start_docstrings(
1021
+ """
1022
+ MobileViT model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
1023
+ ImageNet.
1024
+ """,
1025
+ MOBILEVIT_START_DOCSTRING,
1026
+ )
1027
+ class TFMobileViTForImageClassification(TFMobileViTPreTrainedModel, TFSequenceClassificationLoss):
1028
+ def __init__(self, config: MobileViTConfig, *inputs, **kwargs) -> None:
1029
+ super().__init__(config, *inputs, **kwargs)
1030
+
1031
+ self.num_labels = config.num_labels
1032
+ self.mobilevit = TFMobileViTMainLayer(config, name="mobilevit")
1033
+
1034
+ # Classifier head
1035
+ self.dropout = keras.layers.Dropout(config.classifier_dropout_prob)
1036
+ self.classifier = (
1037
+ keras.layers.Dense(config.num_labels, name="classifier") if config.num_labels > 0 else tf.identity
1038
+ )
1039
+ self.config = config
1040
+
1041
+ @unpack_inputs
1042
+ @add_start_docstrings_to_model_forward(MOBILEVIT_INPUTS_DOCSTRING)
1043
+ @add_code_sample_docstrings(
1044
+ checkpoint=_IMAGE_CLASS_CHECKPOINT,
1045
+ output_type=TFImageClassifierOutputWithNoAttention,
1046
+ config_class=_CONFIG_FOR_DOC,
1047
+ expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
1048
+ )
1049
+ def call(
1050
+ self,
1051
+ pixel_values: tf.Tensor | None = None,
1052
+ output_hidden_states: Optional[bool] = None,
1053
+ labels: tf.Tensor | None = None,
1054
+ return_dict: Optional[bool] = None,
1055
+ training: Optional[bool] = False,
1056
+ ) -> Union[tuple, TFImageClassifierOutputWithNoAttention]:
1057
+ r"""
1058
+ labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
1059
+ Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
1060
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss). If
1061
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1062
+ """
1063
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1064
+
1065
+ outputs = self.mobilevit(
1066
+ pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training
1067
+ )
1068
+
1069
+ pooled_output = outputs.pooler_output if return_dict else outputs[1]
1070
+
1071
+ logits = self.classifier(self.dropout(pooled_output, training=training))
1072
+ loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits)
1073
+
1074
+ if not return_dict:
1075
+ output = (logits,) + outputs[2:]
1076
+ return ((loss,) + output) if loss is not None else output
1077
+
1078
+ return TFImageClassifierOutputWithNoAttention(loss=loss, logits=logits, hidden_states=outputs.hidden_states)
1079
+
1080
+ def build(self, input_shape=None):
1081
+ if self.built:
1082
+ return
1083
+ self.built = True
1084
+ if getattr(self, "mobilevit", None) is not None:
1085
+ with tf.name_scope(self.mobilevit.name):
1086
+ self.mobilevit.build(None)
1087
+ if getattr(self, "classifier", None) is not None:
1088
+ if hasattr(self.classifier, "name"):
1089
+ with tf.name_scope(self.classifier.name):
1090
+ self.classifier.build([None, None, self.config.neck_hidden_sizes[-1]])
1091
+
1092
+
1093
+ class TFMobileViTASPPPooling(keras.layers.Layer):
1094
+ def __init__(self, config: MobileViTConfig, in_channels: int, out_channels: int, **kwargs) -> None:
1095
+ super().__init__(**kwargs)
1096
+
1097
+ self.global_pool = keras.layers.GlobalAveragePooling2D(keepdims=True, name="global_pool")
1098
+
1099
+ self.conv_1x1 = TFMobileViTConvLayer(
1100
+ config,
1101
+ in_channels=in_channels,
1102
+ out_channels=out_channels,
1103
+ kernel_size=1,
1104
+ stride=1,
1105
+ use_normalization=True,
1106
+ use_activation="relu",
1107
+ name="conv_1x1",
1108
+ )
1109
+
1110
+ def call(self, features: tf.Tensor, training: bool = False) -> tf.Tensor:
1111
+ spatial_size = shape_list(features)[1:-1]
1112
+ features = self.global_pool(features)
1113
+ features = self.conv_1x1(features, training=training)
1114
+ features = tf.image.resize(features, size=spatial_size, method="bilinear")
1115
+ return features
1116
+
1117
+ def build(self, input_shape=None):
1118
+ if self.built:
1119
+ return
1120
+ self.built = True
1121
+ if getattr(self, "global_pool", None) is not None:
1122
+ with tf.name_scope(self.global_pool.name):
1123
+ self.global_pool.build([None, None, None, None])
1124
+ if getattr(self, "conv_1x1", None) is not None:
1125
+ with tf.name_scope(self.conv_1x1.name):
1126
+ self.conv_1x1.build(None)
1127
+
1128
+
1129
+ class TFMobileViTASPP(keras.layers.Layer):
1130
+ """
1131
+ ASPP module defined in DeepLab papers: https://arxiv.org/abs/1606.00915, https://arxiv.org/abs/1706.05587
1132
+ """
1133
+
1134
+ def __init__(self, config: MobileViTConfig, **kwargs) -> None:
1135
+ super().__init__(**kwargs)
1136
+
1137
+ in_channels = config.neck_hidden_sizes[-2]
1138
+ out_channels = config.aspp_out_channels
1139
+
1140
+ if len(config.atrous_rates) != 3:
1141
+ raise ValueError("Expected 3 values for atrous_rates")
1142
+
1143
+ self.convs = []
1144
+
1145
+ in_projection = TFMobileViTConvLayer(
1146
+ config,
1147
+ in_channels=in_channels,
1148
+ out_channels=out_channels,
1149
+ kernel_size=1,
1150
+ use_activation="relu",
1151
+ name="convs.0",
1152
+ )
1153
+ self.convs.append(in_projection)
1154
+
1155
+ self.convs.extend(
1156
+ [
1157
+ TFMobileViTConvLayer(
1158
+ config,
1159
+ in_channels=in_channels,
1160
+ out_channels=out_channels,
1161
+ kernel_size=3,
1162
+ dilation=rate,
1163
+ use_activation="relu",
1164
+ name=f"convs.{i + 1}",
1165
+ )
1166
+ for i, rate in enumerate(config.atrous_rates)
1167
+ ]
1168
+ )
1169
+
1170
+ pool_layer = TFMobileViTASPPPooling(
1171
+ config, in_channels, out_channels, name=f"convs.{len(config.atrous_rates) + 1}"
1172
+ )
1173
+ self.convs.append(pool_layer)
1174
+
1175
+ self.project = TFMobileViTConvLayer(
1176
+ config,
1177
+ in_channels=5 * out_channels,
1178
+ out_channels=out_channels,
1179
+ kernel_size=1,
1180
+ use_activation="relu",
1181
+ name="project",
1182
+ )
1183
+
1184
+ self.dropout = keras.layers.Dropout(config.aspp_dropout_prob)
1185
+
1186
+ def call(self, features: tf.Tensor, training: bool = False) -> tf.Tensor:
1187
+ # since the hidden states were transposed to have `(batch_size, channels, height, width)`
1188
+ # layout we transpose them back to have `(batch_size, height, width, channels)` layout.
1189
+ features = tf.transpose(features, perm=[0, 2, 3, 1])
1190
+ pyramid = []
1191
+ for conv in self.convs:
1192
+ pyramid.append(conv(features, training=training))
1193
+ pyramid = tf.concat(pyramid, axis=-1)
1194
+
1195
+ pooled_features = self.project(pyramid, training=training)
1196
+ pooled_features = self.dropout(pooled_features, training=training)
1197
+ return pooled_features
1198
+
1199
+ def build(self, input_shape=None):
1200
+ if self.built:
1201
+ return
1202
+ self.built = True
1203
+ if getattr(self, "project", None) is not None:
1204
+ with tf.name_scope(self.project.name):
1205
+ self.project.build(None)
1206
+ if getattr(self, "convs", None) is not None:
1207
+ for conv in self.convs:
1208
+ with tf.name_scope(conv.name):
1209
+ conv.build(None)
1210
+
1211
+
1212
+ class TFMobileViTDeepLabV3(keras.layers.Layer):
1213
+ """
1214
+ DeepLabv3 architecture: https://arxiv.org/abs/1706.05587
1215
+ """
1216
+
1217
+ def __init__(self, config: MobileViTConfig, **kwargs) -> None:
1218
+ super().__init__(**kwargs)
1219
+ self.aspp = TFMobileViTASPP(config, name="aspp")
1220
+
1221
+ self.dropout = keras.layers.Dropout(config.classifier_dropout_prob)
1222
+
1223
+ self.classifier = TFMobileViTConvLayer(
1224
+ config,
1225
+ in_channels=config.aspp_out_channels,
1226
+ out_channels=config.num_labels,
1227
+ kernel_size=1,
1228
+ use_normalization=False,
1229
+ use_activation=False,
1230
+ bias=True,
1231
+ name="classifier",
1232
+ )
1233
+
1234
+ def call(self, hidden_states: tf.Tensor, training: bool = False) -> tf.Tensor:
1235
+ features = self.aspp(hidden_states[-1], training=training)
1236
+ features = self.dropout(features, training=training)
1237
+ features = self.classifier(features, training=training)
1238
+ return features
1239
+
1240
+ def build(self, input_shape=None):
1241
+ if self.built:
1242
+ return
1243
+ self.built = True
1244
+ if getattr(self, "aspp", None) is not None:
1245
+ with tf.name_scope(self.aspp.name):
1246
+ self.aspp.build(None)
1247
+ if getattr(self, "classifier", None) is not None:
1248
+ with tf.name_scope(self.classifier.name):
1249
+ self.classifier.build(None)
1250
+
1251
+
1252
+ @add_start_docstrings(
1253
+ """
1254
+ MobileViT model with a semantic segmentation head on top, e.g. for Pascal VOC.
1255
+ """,
1256
+ MOBILEVIT_START_DOCSTRING,
1257
+ )
1258
+ class TFMobileViTForSemanticSegmentation(TFMobileViTPreTrainedModel):
1259
+ def __init__(self, config: MobileViTConfig, **kwargs) -> None:
1260
+ super().__init__(config, **kwargs)
1261
+
1262
+ self.num_labels = config.num_labels
1263
+ self.mobilevit = TFMobileViTMainLayer(config, expand_output=False, name="mobilevit")
1264
+ self.segmentation_head = TFMobileViTDeepLabV3(config, name="segmentation_head")
1265
+
1266
+ def hf_compute_loss(self, logits, labels):
1267
+ # upsample logits to the images' original size
1268
+ # `labels` is of shape (batch_size, height, width)
1269
+ label_interp_shape = shape_list(labels)[1:]
1270
+
1271
+ upsampled_logits = tf.image.resize(logits, size=label_interp_shape, method="bilinear")
1272
+ # compute weighted loss
1273
+ loss_fct = keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction="none")
1274
+
1275
+ def masked_loss(real, pred):
1276
+ unmasked_loss = loss_fct(real, pred)
1277
+ mask = tf.cast(real != self.config.semantic_loss_ignore_index, dtype=unmasked_loss.dtype)
1278
+ masked_loss = unmasked_loss * mask
1279
+ # Reduction strategy in the similar spirit with
1280
+ # https://github.com/huggingface/transformers/blob/main/src/transformers/modeling_tf_utils.py#L210
1281
+ reduced_masked_loss = tf.reduce_sum(masked_loss) / tf.reduce_sum(mask)
1282
+ return tf.reshape(reduced_masked_loss, (1,))
1283
+
1284
+ return masked_loss(labels, upsampled_logits)
1285
+
1286
+ @unpack_inputs
1287
+ @add_start_docstrings_to_model_forward(MOBILEVIT_INPUTS_DOCSTRING)
1288
+ @replace_return_docstrings(output_type=TFSemanticSegmenterOutputWithNoAttention, config_class=_CONFIG_FOR_DOC)
1289
+ def call(
1290
+ self,
1291
+ pixel_values: tf.Tensor | None = None,
1292
+ labels: tf.Tensor | None = None,
1293
+ output_hidden_states: Optional[bool] = None,
1294
+ return_dict: Optional[bool] = None,
1295
+ training: bool = False,
1296
+ ) -> Union[tuple, TFSemanticSegmenterOutputWithNoAttention]:
1297
+ r"""
1298
+ labels (`tf.Tensor` of shape `(batch_size, height, width)`, *optional*):
1299
+ Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ...,
1300
+ config.num_labels - 1]`. If `config.num_labels > 1`, a classification loss is computed (Cross-Entropy).
1301
+
1302
+ Returns:
1303
+
1304
+ Examples:
1305
+
1306
+ ```python
1307
+ >>> from transformers import AutoImageProcessor, TFMobileViTForSemanticSegmentation
1308
+ >>> from PIL import Image
1309
+ >>> import requests
1310
+
1311
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
1312
+ >>> image = Image.open(requests.get(url, stream=True).raw)
1313
+
1314
+ >>> image_processor = AutoImageProcessor.from_pretrained("apple/deeplabv3-mobilevit-small")
1315
+ >>> model = TFMobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevit-small")
1316
+
1317
+ >>> inputs = image_processor(images=image, return_tensors="tf")
1318
+
1319
+ >>> outputs = model(**inputs)
1320
+
1321
+ >>> # logits are of shape (batch_size, num_labels, height, width)
1322
+ >>> logits = outputs.logits
1323
+ ```"""
1324
+ output_hidden_states = (
1325
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1326
+ )
1327
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1328
+
1329
+ outputs = self.mobilevit(
1330
+ pixel_values,
1331
+ output_hidden_states=True, # we need the intermediate hidden states
1332
+ return_dict=return_dict,
1333
+ training=training,
1334
+ )
1335
+
1336
+ encoder_hidden_states = outputs.hidden_states if return_dict else outputs[1]
1337
+
1338
+ logits = self.segmentation_head(encoder_hidden_states, training=training)
1339
+
1340
+ loss = None
1341
+ if labels is not None:
1342
+ if not self.config.num_labels > 1:
1343
+ raise ValueError("The number of labels should be greater than one")
1344
+ else:
1345
+ loss = self.hf_compute_loss(logits=logits, labels=labels)
1346
+
1347
+ # make logits of shape (batch_size, num_labels, height, width) to
1348
+ # keep them consistent across APIs
1349
+ logits = tf.transpose(logits, perm=[0, 3, 1, 2])
1350
+
1351
+ if not return_dict:
1352
+ if output_hidden_states:
1353
+ output = (logits,) + outputs[1:]
1354
+ else:
1355
+ output = (logits,) + outputs[2:]
1356
+ return ((loss,) + output) if loss is not None else output
1357
+
1358
+ return TFSemanticSegmenterOutputWithNoAttention(
1359
+ loss=loss,
1360
+ logits=logits,
1361
+ hidden_states=outputs.hidden_states if output_hidden_states else None,
1362
+ )
1363
+
1364
+ def build(self, input_shape=None):
1365
+ if self.built:
1366
+ return
1367
+ self.built = True
1368
+ if getattr(self, "mobilevit", None) is not None:
1369
+ with tf.name_scope(self.mobilevit.name):
1370
+ self.mobilevit.build(None)
1371
+ if getattr(self, "segmentation_head", None) is not None:
1372
+ with tf.name_scope(self.segmentation_head.name):
1373
+ self.segmentation_head.build(None)
llmeval-env/lib/python3.10/site-packages/transformers/models/seggpt/__init__.py ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from typing import TYPE_CHECKING
15
+
16
+ from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
17
+
18
+
19
+ _import_structure = {
20
+ "configuration_seggpt": ["SEGGPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "SegGptConfig", "SegGptOnnxConfig"]
21
+ }
22
+
23
+ try:
24
+ if not is_torch_available():
25
+ raise OptionalDependencyNotAvailable()
26
+ except OptionalDependencyNotAvailable:
27
+ pass
28
+ else:
29
+ _import_structure["modeling_seggpt"] = [
30
+ "SEGGPT_PRETRAINED_MODEL_ARCHIVE_LIST",
31
+ "SegGptModel",
32
+ "SegGptPreTrainedModel",
33
+ "SegGptForImageSegmentation",
34
+ ]
35
+
36
+ try:
37
+ if not is_vision_available():
38
+ raise OptionalDependencyNotAvailable()
39
+ except OptionalDependencyNotAvailable:
40
+ pass
41
+ else:
42
+ _import_structure["image_processing_seggpt"] = ["SegGptImageProcessor"]
43
+
44
+ if TYPE_CHECKING:
45
+ from .configuration_seggpt import SEGGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, SegGptConfig, SegGptOnnxConfig
46
+
47
+ try:
48
+ if not is_torch_available():
49
+ raise OptionalDependencyNotAvailable()
50
+ except OptionalDependencyNotAvailable:
51
+ pass
52
+ else:
53
+ from .modeling_seggpt import (
54
+ SEGGPT_PRETRAINED_MODEL_ARCHIVE_LIST,
55
+ SegGptForImageSegmentation,
56
+ SegGptModel,
57
+ SegGptPreTrainedModel,
58
+ )
59
+
60
+ try:
61
+ if not is_vision_available():
62
+ raise OptionalDependencyNotAvailable()
63
+ except OptionalDependencyNotAvailable:
64
+ pass
65
+ else:
66
+ from .image_processing_seggpt import SegGptImageProcessor
67
+
68
+ else:
69
+ import sys
70
+
71
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
llmeval-env/lib/python3.10/site-packages/transformers/models/seggpt/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.18 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/seggpt/__pycache__/configuration_seggpt.cpython-310.pyc ADDED
Binary file (5.61 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/seggpt/__pycache__/convert_seggpt_to_hf.cpython-310.pyc ADDED
Binary file (7.12 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/seggpt/__pycache__/image_processing_seggpt.cpython-310.pyc ADDED
Binary file (25 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/seggpt/__pycache__/modeling_seggpt.cpython-310.pyc ADDED
Binary file (34.8 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/seggpt/configuration_seggpt.py ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ SegGpt model configuration"""
16
+
17
+
18
+ from ...configuration_utils import PretrainedConfig
19
+ from ...utils import logging
20
+
21
+
22
+ logger = logging.get_logger(__name__)
23
+
24
+
25
+ from ..deprecated._archive_maps import SEGGPT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
26
+
27
+
28
+ class SegGptConfig(PretrainedConfig):
29
+ r"""
30
+ This is the configuration class to store the configuration of a [`SegGptModel`]. It is used to instantiate a SegGPT
31
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
32
+ defaults will yield a similar configuration to that of the SegGPT
33
+ [BAAI/seggpt-vit-large](https://huggingface.co/BAAI/seggpt-vit-large) architecture.
34
+
35
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
36
+ documentation from [`PretrainedConfig`] for more information.
37
+
38
+ Args:
39
+ hidden_size (`int`, *optional*, defaults to 1024):
40
+ Dimensionality of the encoder layers and the pooler layer.
41
+ num_hidden_layers (`int`, *optional*, defaults to 24):
42
+ Number of hidden layers in the Transformer encoder.
43
+ num_attention_heads (`int`, *optional*, defaults to 16):
44
+ Number of attention heads for each attention layer in the Transformer encoder.
45
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
46
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
47
+ `"relu"`, `"selu"` and `"gelu_new"` are supported.
48
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
49
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
50
+ initializer_range (`float`, *optional*, defaults to 0.02):
51
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
52
+ layer_norm_eps (`float`, *optional*, defaults to 1e-06):
53
+ The epsilon used by the layer normalization layers.
54
+ image_size (`List[int]`, *optional*, defaults to `[896, 448]`):
55
+ The size (resolution) of each image.
56
+ patch_size (`int`, *optional*, defaults to 16):
57
+ The size (resolution) of each patch.
58
+ num_channels (`int`, *optional*, defaults to 3):
59
+ The number of input channels.
60
+ qkv_bias (`bool`, *optional*, defaults to `True`):
61
+ Whether to add a bias to the queries, keys and values.
62
+ mlp_dim (`int`, *optional*):
63
+ The dimensionality of the MLP layer in the Transformer encoder. If unset, defaults to
64
+ `hidden_size` * 4.
65
+ drop_path_rate (`float`, *optional*, defaults to 0.1):
66
+ The drop path rate for the dropout layers.
67
+ pretrain_image_size (`int`, *optional*, defaults to 224):
68
+ The pretrained size of the absolute position embeddings.
69
+ decoder_hidden_size (`int`, *optional*, defaults to 64):
70
+ Hidden size for decoder.
71
+ use_relative_position_embeddings (`bool`, *optional*, defaults to `True`):
72
+ Whether to use relative position embeddings in the attention layers.
73
+ merge_index (`int`, *optional*, defaults to 2):
74
+ The index of the encoder layer to merge the embeddings.
75
+ intermediate_hidden_state_indices (`List[int]`, *optional*, defaults to `[5, 11, 17, 23]`):
76
+ The indices of the encoder layers which we store as features for the decoder.
77
+ beta (`float`, *optional*, defaults to 0.01):
78
+ Regularization factor for SegGptLoss (smooth-l1 loss).
79
+
80
+ Example:
81
+
82
+ ```python
83
+ >>> from transformers import SegGptConfig, SegGptModel
84
+
85
+ >>> # Initializing a SegGPT seggpt-vit-large style configuration
86
+ >>> configuration = SegGptConfig()
87
+
88
+ >>> # Initializing a model (with random weights) from the seggpt-vit-large style configuration
89
+ >>> model = SegGptModel(configuration)
90
+
91
+ >>> # Accessing the model configuration
92
+ >>> configuration = model.config
93
+ ```"""
94
+
95
+ model_type = "seggpt"
96
+
97
+ def __init__(
98
+ self,
99
+ hidden_size=1024,
100
+ num_hidden_layers=24,
101
+ num_attention_heads=16,
102
+ hidden_act="gelu",
103
+ hidden_dropout_prob=0.0,
104
+ initializer_range=0.02,
105
+ layer_norm_eps=1e-6,
106
+ image_size=[896, 448],
107
+ patch_size=16,
108
+ num_channels=3,
109
+ qkv_bias=True,
110
+ mlp_dim=None,
111
+ drop_path_rate=0.1,
112
+ pretrain_image_size=224,
113
+ decoder_hidden_size=64,
114
+ use_relative_position_embeddings=True,
115
+ merge_index=2,
116
+ intermediate_hidden_state_indices=[5, 11, 17, 23],
117
+ beta=0.01,
118
+ **kwargs,
119
+ ):
120
+ super().__init__(**kwargs)
121
+
122
+ if merge_index > min(intermediate_hidden_state_indices):
123
+ raise ValueError(
124
+ f"Merge index must be less than the minimum encoder output index, but got {merge_index=} and {intermediate_hidden_state_indices=}"
125
+ )
126
+ self.hidden_size = hidden_size
127
+ self.num_hidden_layers = num_hidden_layers
128
+ self.num_attention_heads = num_attention_heads
129
+ self.hidden_act = hidden_act
130
+ self.hidden_dropout_prob = hidden_dropout_prob
131
+ self.initializer_range = initializer_range
132
+ self.layer_norm_eps = layer_norm_eps
133
+ self.image_size = image_size
134
+ self.patch_size = patch_size
135
+ self.num_channels = num_channels
136
+ self.qkv_bias = qkv_bias
137
+ self.drop_path_rate = drop_path_rate
138
+ self.pretrain_image_size = pretrain_image_size
139
+ self.decoder_hidden_size = decoder_hidden_size
140
+ self.use_relative_position_embeddings = use_relative_position_embeddings
141
+ self.merge_index = merge_index
142
+ self.intermediate_hidden_state_indices = intermediate_hidden_state_indices
143
+ self.beta = beta
144
+ self.mlp_dim = int(hidden_size * 4) if mlp_dim is None else mlp_dim
llmeval-env/lib/python3.10/site-packages/transformers/models/seggpt/convert_seggpt_to_hf.py ADDED
@@ -0,0 +1,222 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Convert SegGPT checkpoints from the original repository.
16
+
17
+ URL: https://github.com/baaivision/Painter/tree/main/SegGPT
18
+ """
19
+
20
+
21
+ import argparse
22
+
23
+ import requests
24
+ import torch
25
+ from PIL import Image
26
+
27
+ from transformers import SegGptConfig, SegGptForImageSegmentation, SegGptImageProcessor
28
+ from transformers.utils import logging
29
+
30
+
31
+ logging.set_verbosity_info()
32
+ logger = logging.get_logger(__name__)
33
+
34
+
35
+ # here we list all keys to be renamed (original name on the left, our name on the right)
36
+ def create_rename_keys(config):
37
+ rename_keys = []
38
+
39
+ # fmt: off
40
+
41
+ # rename embedding and its parameters
42
+ rename_keys.append(("patch_embed.proj.weight", "model.embeddings.patch_embeddings.projection.weight"))
43
+ rename_keys.append(("patch_embed.proj.bias", "model.embeddings.patch_embeddings.projection.bias"))
44
+ rename_keys.append(("mask_token", "model.embeddings.mask_token"))
45
+ rename_keys.append(("segment_token_x", "model.embeddings.segment_token_input"))
46
+ rename_keys.append(("segment_token_y", "model.embeddings.segment_token_prompt"))
47
+ rename_keys.append(("type_token_cls", "model.embeddings.type_token_semantic"))
48
+ rename_keys.append(("type_token_ins", "model.embeddings.type_token_instance"))
49
+ rename_keys.append(("pos_embed", "model.embeddings.position_embeddings"))
50
+
51
+ # rename decoder and other
52
+ rename_keys.append(("norm.weight", "model.encoder.layernorm.weight"))
53
+ rename_keys.append(("norm.bias", "model.encoder.layernorm.bias"))
54
+ rename_keys.append(("decoder_embed.weight", "decoder.decoder_embed.weight"))
55
+ rename_keys.append(("decoder_embed.bias", "decoder.decoder_embed.bias"))
56
+ rename_keys.append(("decoder_pred.0.weight", "decoder.decoder_pred.conv.weight"))
57
+ rename_keys.append(("decoder_pred.0.bias", "decoder.decoder_pred.conv.bias"))
58
+ rename_keys.append(("decoder_pred.1.weight", "decoder.decoder_pred.layernorm.weight"))
59
+ rename_keys.append(("decoder_pred.1.bias", "decoder.decoder_pred.layernorm.bias"))
60
+ rename_keys.append(("decoder_pred.3.weight", "decoder.decoder_pred.head.weight"))
61
+ rename_keys.append(("decoder_pred.3.bias", "decoder.decoder_pred.head.bias"))
62
+
63
+ # rename blocks
64
+ for i in range(config.num_hidden_layers):
65
+ rename_keys.append((f"blocks.{i}.attn.qkv.weight", f"model.encoder.layers.{i}.attention.qkv.weight"))
66
+ rename_keys.append((f"blocks.{i}.attn.qkv.bias", f"model.encoder.layers.{i}.attention.qkv.bias"))
67
+ rename_keys.append((f"blocks.{i}.attn.proj.weight", f"model.encoder.layers.{i}.attention.proj.weight"))
68
+ rename_keys.append((f"blocks.{i}.attn.proj.bias", f"model.encoder.layers.{i}.attention.proj.bias"))
69
+ rename_keys.append((f"blocks.{i}.attn.rel_pos_h", f"model.encoder.layers.{i}.attention.rel_pos_h"))
70
+ rename_keys.append((f"blocks.{i}.attn.rel_pos_w", f"model.encoder.layers.{i}.attention.rel_pos_w"))
71
+
72
+ rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"model.encoder.layers.{i}.mlp.lin1.weight"))
73
+ rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"model.encoder.layers.{i}.mlp.lin1.bias"))
74
+ rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"model.encoder.layers.{i}.mlp.lin2.weight"))
75
+ rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"model.encoder.layers.{i}.mlp.lin2.bias"))
76
+
77
+ rename_keys.append((f"blocks.{i}.norm1.weight", f"model.encoder.layers.{i}.layernorm_before.weight"))
78
+ rename_keys.append((f"blocks.{i}.norm1.bias", f"model.encoder.layers.{i}.layernorm_before.bias"))
79
+ rename_keys.append((f"blocks.{i}.norm2.weight", f"model.encoder.layers.{i}.layernorm_after.weight"))
80
+ rename_keys.append((f"blocks.{i}.norm2.bias", f"model.encoder.layers.{i}.layernorm_after.bias"))
81
+
82
+ # fmt: on
83
+
84
+ return rename_keys
85
+
86
+
87
+ def rename_key(dct, old, new):
88
+ val = dct.pop(old)
89
+ dct[new] = val
90
+
91
+
92
+ # We will verify our results on spongebob images
93
+ def prepare_input():
94
+ image_input_url = (
95
+ "https://raw.githubusercontent.com/baaivision/Painter/main/SegGPT/SegGPT_inference/examples/hmbb_2.jpg"
96
+ )
97
+ image_prompt_url = (
98
+ "https://raw.githubusercontent.com/baaivision/Painter/main/SegGPT/SegGPT_inference/examples/hmbb_1.jpg"
99
+ )
100
+ mask_prompt_url = (
101
+ "https://raw.githubusercontent.com/baaivision/Painter/main/SegGPT/SegGPT_inference/examples/hmbb_1_target.png"
102
+ )
103
+
104
+ image_input = Image.open(requests.get(image_input_url, stream=True).raw)
105
+ image_prompt = Image.open(requests.get(image_prompt_url, stream=True).raw)
106
+ mask_prompt = Image.open(requests.get(mask_prompt_url, stream=True).raw)
107
+
108
+ return image_input, image_prompt, mask_prompt
109
+
110
+
111
+ @torch.no_grad()
112
+ def convert_seggpt_checkpoint(args):
113
+ model_name = args.model_name
114
+ pytorch_dump_folder_path = args.pytorch_dump_folder_path
115
+ verify_logits = args.verify_logits
116
+ push_to_hub = args.push_to_hub
117
+
118
+ # Define default GroundingDINO configuation
119
+ config = SegGptConfig()
120
+
121
+ # Load original checkpoint
122
+ checkpoint_url = "https://huggingface.co/BAAI/SegGpt/blob/main/seggpt_vit_large.pth"
123
+ original_state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu")["model"]
124
+
125
+ # # Rename keys
126
+ new_state_dict = original_state_dict.copy()
127
+ rename_keys = create_rename_keys(config)
128
+
129
+ for src, dest in rename_keys:
130
+ rename_key(new_state_dict, src, dest)
131
+
132
+ # Load HF model
133
+ model = SegGptForImageSegmentation(config)
134
+ model.eval()
135
+ missing_keys, unexpected_keys = model.load_state_dict(new_state_dict, strict=False)
136
+ print("Missing keys:", missing_keys)
137
+ print("Unexpected keys:", unexpected_keys)
138
+
139
+ input_img, prompt_img, prompt_mask = prepare_input()
140
+ image_processor = SegGptImageProcessor()
141
+ inputs = image_processor(images=input_img, prompt_images=prompt_img, prompt_masks=prompt_mask, return_tensors="pt")
142
+
143
+ expected_prompt_pixel_values = torch.tensor(
144
+ [
145
+ [[-0.6965, -0.6965, -0.6965], [-0.6965, -0.6965, -0.6965], [-0.6965, -0.6965, -0.6965]],
146
+ [[1.6583, 1.6583, 1.6583], [1.6583, 1.6583, 1.6583], [1.6583, 1.6583, 1.6583]],
147
+ [[2.3088, 2.3088, 2.3088], [2.3088, 2.3088, 2.3088], [2.3088, 2.3088, 2.3088]],
148
+ ]
149
+ )
150
+
151
+ expected_pixel_values = torch.tensor(
152
+ [
153
+ [[1.6324, 1.6153, 1.5810], [1.6153, 1.5982, 1.5810], [1.5810, 1.5639, 1.5639]],
154
+ [[1.2731, 1.2556, 1.2206], [1.2556, 1.2381, 1.2031], [1.2206, 1.2031, 1.1681]],
155
+ [[1.6465, 1.6465, 1.6465], [1.6465, 1.6465, 1.6465], [1.6291, 1.6291, 1.6291]],
156
+ ]
157
+ )
158
+
159
+ expected_prompt_masks = torch.tensor(
160
+ [
161
+ [[-2.1179, -2.1179, -2.1179], [-2.1179, -2.1179, -2.1179], [-2.1179, -2.1179, -2.1179]],
162
+ [[-2.0357, -2.0357, -2.0357], [-2.0357, -2.0357, -2.0357], [-2.0357, -2.0357, -2.0357]],
163
+ [[-1.8044, -1.8044, -1.8044], [-1.8044, -1.8044, -1.8044], [-1.8044, -1.8044, -1.8044]],
164
+ ]
165
+ )
166
+
167
+ assert torch.allclose(inputs.pixel_values[0, :, :3, :3], expected_pixel_values, atol=1e-4)
168
+ assert torch.allclose(inputs.prompt_pixel_values[0, :, :3, :3], expected_prompt_pixel_values, atol=1e-4)
169
+ assert torch.allclose(inputs.prompt_masks[0, :, :3, :3], expected_prompt_masks, atol=1e-4)
170
+
171
+ torch.manual_seed(2)
172
+ outputs = model(**inputs)
173
+ print(outputs)
174
+
175
+ if verify_logits:
176
+ expected_output = torch.tensor(
177
+ [
178
+ [[-2.1208, -2.1190, -2.1198], [-2.1237, -2.1228, -2.1227], [-2.1232, -2.1226, -2.1228]],
179
+ [[-2.0405, -2.0396, -2.0403], [-2.0434, -2.0434, -2.0433], [-2.0428, -2.0432, -2.0434]],
180
+ [[-1.8102, -1.8088, -1.8099], [-1.8131, -1.8126, -1.8129], [-1.8130, -1.8128, -1.8131]],
181
+ ]
182
+ )
183
+ assert torch.allclose(outputs.pred_masks[0, :, :3, :3], expected_output, atol=1e-4)
184
+ print("Looks good!")
185
+ else:
186
+ print("Converted without verifying logits")
187
+
188
+ if pytorch_dump_folder_path is not None:
189
+ print(f"Saving model and processor for {model_name} to {pytorch_dump_folder_path}")
190
+ model.save_pretrained(pytorch_dump_folder_path)
191
+ image_processor.save_pretrained(pytorch_dump_folder_path)
192
+
193
+ if push_to_hub:
194
+ print(f"Pushing model and processor for {model_name} to hub")
195
+ model.push_to_hub(f"EduardoPacheco/{model_name}")
196
+ image_processor.push_to_hub(f"EduardoPacheco/{model_name}")
197
+
198
+
199
+ if __name__ == "__main__":
200
+ parser = argparse.ArgumentParser()
201
+ # Required parameters
202
+ parser.add_argument(
203
+ "--model_name",
204
+ default="seggpt-vit-large",
205
+ type=str,
206
+ choices=["seggpt-vit-large"],
207
+ help="Name of the SegGpt model you'd like to convert.",
208
+ )
209
+ parser.add_argument(
210
+ "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
211
+ )
212
+ parser.add_argument(
213
+ "--verify_logits",
214
+ action="store_false",
215
+ help="Whether or not to verify the logits against the original implementation.",
216
+ )
217
+ parser.add_argument(
218
+ "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
219
+ )
220
+
221
+ args = parser.parse_args()
222
+ convert_seggpt_checkpoint(args)
llmeval-env/lib/python3.10/site-packages/transformers/models/seggpt/image_processing_seggpt.py ADDED
@@ -0,0 +1,626 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Image processor class for SegGPT."""
16
+
17
+ from typing import Dict, List, Optional, Tuple, Union
18
+
19
+ import numpy as np
20
+
21
+ from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
22
+ from ...image_transforms import resize, to_channel_dimension_format
23
+ from ...image_utils import (
24
+ IMAGENET_DEFAULT_MEAN,
25
+ IMAGENET_DEFAULT_STD,
26
+ ChannelDimension,
27
+ ImageInput,
28
+ PILImageResampling,
29
+ get_channel_dimension_axis,
30
+ infer_channel_dimension_format,
31
+ is_scaled_image,
32
+ make_list_of_images,
33
+ to_numpy_array,
34
+ valid_images,
35
+ )
36
+ from ...utils import TensorType, is_torch_available, logging, requires_backends
37
+
38
+
39
+ if is_torch_available():
40
+ import torch
41
+
42
+
43
+ logger = logging.get_logger(__name__)
44
+
45
+
46
+ # See https://arxiv.org/pdf/2212.02499.pdf at 3.1 Redefining Output Spaces as "Images" - Semantic Segmentation from PAINTER paper
47
+ # Taken from https://github.com/Abdullah-Meda/Painter/blob/main/Painter/data/coco_semseg/gen_color_coco_panoptic_segm.py#L31
48
+ def build_palette(num_labels: int) -> List[Tuple[int, int]]:
49
+ base = int(num_labels ** (1 / 3)) + 1
50
+ margin = 256 // base
51
+
52
+ # we assume that class_idx 0 is the background which is mapped to black
53
+ color_list = [(0, 0, 0)]
54
+ for location in range(num_labels):
55
+ num_seq_r = location // base**2
56
+ num_seq_g = (location % base**2) // base
57
+ num_seq_b = location % base
58
+
59
+ R = 255 - num_seq_r * margin
60
+ G = 255 - num_seq_g * margin
61
+ B = 255 - num_seq_b * margin
62
+
63
+ color_list.append((R, G, B))
64
+
65
+ return color_list
66
+
67
+
68
+ def get_num_channels(image: np.ndarray, input_data_format: ChannelDimension) -> int:
69
+ if image.ndim == 2:
70
+ return 0
71
+
72
+ channel_idx = get_channel_dimension_axis(image, input_data_format)
73
+ return image.shape[channel_idx]
74
+
75
+
76
+ def mask_to_rgb(
77
+ mask: np.ndarray,
78
+ palette: Optional[List[Tuple[int, int]]] = None,
79
+ input_data_format: Optional[ChannelDimension] = None,
80
+ data_format: Optional[ChannelDimension] = None,
81
+ ) -> np.ndarray:
82
+ if input_data_format is None and mask.ndim > 2:
83
+ input_data_format = infer_channel_dimension_format(mask)
84
+
85
+ data_format = data_format if data_format is not None else input_data_format
86
+
87
+ num_channels = get_num_channels(mask, input_data_format)
88
+
89
+ if num_channels == 3:
90
+ return to_channel_dimension_format(mask, data_format, input_data_format) if data_format is not None else mask
91
+
92
+ if palette is not None:
93
+ height, width = mask.shape
94
+
95
+ rgb_mask = np.zeros((3, height, width), dtype=np.uint8)
96
+
97
+ classes_in_mask = np.unique(mask)
98
+
99
+ for class_idx in classes_in_mask:
100
+ rgb_value = palette[class_idx]
101
+ class_mask = (mask == class_idx).astype(np.uint8)
102
+ class_mask = np.expand_dims(class_mask, axis=-1)
103
+ class_rgb_mask = class_mask * np.array(rgb_value)
104
+ class_rgb_mask = np.moveaxis(class_rgb_mask, -1, 0)
105
+ rgb_mask += class_rgb_mask.astype(np.uint8)
106
+
107
+ rgb_mask = np.clip(rgb_mask, 0, 255).astype(np.uint8)
108
+
109
+ else:
110
+ rgb_mask = np.repeat(mask[None, ...], 3, axis=0)
111
+
112
+ return (
113
+ to_channel_dimension_format(rgb_mask, data_format, input_data_format) if data_format is not None else rgb_mask
114
+ )
115
+
116
+
117
+ class SegGptImageProcessor(BaseImageProcessor):
118
+ r"""
119
+ Constructs a SegGpt image processor.
120
+
121
+ Args:
122
+ do_resize (`bool`, *optional*, defaults to `True`):
123
+ Whether to resize the image's (height, width) dimensions to the specified `(size["height"],
124
+ size["width"])`. Can be overridden by the `do_resize` parameter in the `preprocess` method.
125
+ size (`dict`, *optional*, defaults to `{"height": 448, "width": 448}`):
126
+ Size of the output image after resizing. Can be overridden by the `size` parameter in the `preprocess`
127
+ method.
128
+ resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
129
+ Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the
130
+ `preprocess` method.
131
+ do_rescale (`bool`, *optional*, defaults to `True`):
132
+ Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
133
+ parameter in the `preprocess` method.
134
+ rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
135
+ Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
136
+ `preprocess` method.
137
+ do_normalize (`bool`, *optional*, defaults to `True`):
138
+ Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
139
+ method.
140
+ image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_MEAN`):
141
+ Mean to use if normalizing the image. This is a float or list of floats the length of the number of
142
+ channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
143
+ image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_STD`):
144
+ Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
145
+ number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
146
+ """
147
+
148
+ model_input_names = ["pixel_values"]
149
+
150
+ def __init__(
151
+ self,
152
+ do_resize: bool = True,
153
+ size: Optional[Dict[str, int]] = None,
154
+ resample: PILImageResampling = PILImageResampling.BICUBIC,
155
+ do_rescale: bool = True,
156
+ rescale_factor: Union[int, float] = 1 / 255,
157
+ do_normalize: bool = True,
158
+ image_mean: Optional[Union[float, List[float]]] = None,
159
+ image_std: Optional[Union[float, List[float]]] = None,
160
+ **kwargs,
161
+ ) -> None:
162
+ super().__init__(**kwargs)
163
+ size = size if size is not None else {"height": 448, "width": 448}
164
+ size = get_size_dict(size)
165
+ self.do_resize = do_resize
166
+ self.do_rescale = do_rescale
167
+ self.do_normalize = do_normalize
168
+ self.size = size
169
+ self.resample = resample
170
+ self.rescale_factor = rescale_factor
171
+ self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
172
+ self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
173
+
174
+ def get_palette(self, num_labels: int) -> List[Tuple[int, int]]:
175
+ """Build a palette to map the prompt mask from a single channel to a 3 channel RGB.
176
+
177
+ Args:
178
+ num_labels (`int`):
179
+ Number of classes in the segmentation task (excluding the background).
180
+
181
+ Returns:
182
+ `List[Tuple[int, int]]`: Palette to map the prompt mask from a single channel to a 3 channel RGB.
183
+ """
184
+ return build_palette(num_labels)
185
+
186
+ def mask_to_rgb(
187
+ self,
188
+ image: np.ndarray,
189
+ palette: Optional[List[Tuple[int, int]]] = None,
190
+ data_format: Optional[Union[str, ChannelDimension]] = None,
191
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
192
+ ) -> np.ndarray:
193
+ """Convert a mask to RGB format.
194
+
195
+ Args:
196
+ image (`np.ndarray`):
197
+ Mask to convert to RGB format. If the mask is already in RGB format, it will be passed through.
198
+ palette (`List[Tuple[int, int]]`, *optional*, defaults to `None`):
199
+ Palette to use to convert the mask to RGB format. If unset, the mask is duplicated across the channel
200
+ dimension.
201
+ data_format (`ChannelDimension` or `str`, *optional*):
202
+ The channel dimension format for the output image. If unset, the channel dimension format of the input
203
+ image is used. Can be one of:
204
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
205
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
206
+ input_data_format (`ChannelDimension` or `str`, *optional*):
207
+ The channel dimension format for the input image. If unset, the channel dimension format is inferred
208
+ from the input image. Can be one of:
209
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
210
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
211
+
212
+ Returns:
213
+ `np.ndarray`: The mask in RGB format.
214
+ """
215
+ return mask_to_rgb(
216
+ image,
217
+ palette=palette,
218
+ data_format=data_format,
219
+ input_data_format=input_data_format,
220
+ )
221
+
222
+ # Copied from transformers.models.vit.image_processing_vit.ViTImageProcessor.resize with PILImageResampling.BILINEAR->PILImageResampling.BICUBIC
223
+ def resize(
224
+ self,
225
+ image: np.ndarray,
226
+ size: Dict[str, int],
227
+ resample: PILImageResampling = PILImageResampling.BICUBIC,
228
+ data_format: Optional[Union[str, ChannelDimension]] = None,
229
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
230
+ **kwargs,
231
+ ) -> np.ndarray:
232
+ """
233
+ Resize an image to `(size["height"], size["width"])`.
234
+
235
+ Args:
236
+ image (`np.ndarray`):
237
+ Image to resize.
238
+ size (`Dict[str, int]`):
239
+ Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image.
240
+ resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
241
+ `PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BICUBIC`.
242
+ data_format (`ChannelDimension` or `str`, *optional*):
243
+ The channel dimension format for the output image. If unset, the channel dimension format of the input
244
+ image is used. Can be one of:
245
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
246
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
247
+ - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
248
+ input_data_format (`ChannelDimension` or `str`, *optional*):
249
+ The channel dimension format for the input image. If unset, the channel dimension format is inferred
250
+ from the input image. Can be one of:
251
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
252
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
253
+ - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
254
+
255
+ Returns:
256
+ `np.ndarray`: The resized image.
257
+ """
258
+ size = get_size_dict(size)
259
+ if "height" not in size or "width" not in size:
260
+ raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}")
261
+ output_size = (size["height"], size["width"])
262
+ return resize(
263
+ image,
264
+ size=output_size,
265
+ resample=resample,
266
+ data_format=data_format,
267
+ input_data_format=input_data_format,
268
+ **kwargs,
269
+ )
270
+
271
+ def _preprocess_step(
272
+ self,
273
+ images: ImageInput,
274
+ is_mask: bool = False,
275
+ do_resize: Optional[bool] = None,
276
+ size: Dict[str, int] = None,
277
+ resample: PILImageResampling = None,
278
+ do_rescale: Optional[bool] = None,
279
+ rescale_factor: Optional[float] = None,
280
+ do_normalize: Optional[bool] = None,
281
+ image_mean: Optional[Union[float, List[float]]] = None,
282
+ image_std: Optional[Union[float, List[float]]] = None,
283
+ data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST,
284
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
285
+ num_labels: Optional[int] = None,
286
+ **kwargs,
287
+ ):
288
+ """
289
+ Preprocess an image or batch of images.
290
+
291
+ Args:
292
+ images (`ImageInput`):
293
+ Image to _preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
294
+ passing in images with pixel values between 0 and 1, set `do_rescale=False`.
295
+ is_mask (`bool`, *optional*, defaults to `False`):
296
+ Whether the image is a mask. If True, the image is converted to RGB using the palette if
297
+ `self.num_labels` is specified otherwise RGB is achieved by duplicating the channel.
298
+ do_resize (`bool`, *optional*, defaults to `self.do_resize`):
299
+ Whether to resize the image.
300
+ size (`Dict[str, int]`, *optional*, defaults to `self.size`):
301
+ Dictionary in the format `{"height": h, "width": w}` specifying the size of the output image after
302
+ resizing.
303
+ resample (`PILImageResampling` filter, *optional*, defaults to `self.resample`):
304
+ `PILImageResampling` filter to use if resizing the image e.g. `PILImageResampling.BICUBIC`. Only has
305
+ an effect if `do_resize` is set to `True`.
306
+ do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
307
+ Whether to rescale the image values between [0 - 1].
308
+ rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
309
+ Rescale factor to rescale the image by if `do_rescale` is set to `True`.
310
+ do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
311
+ Whether to normalize the image.
312
+ image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
313
+ Image mean to use if `do_normalize` is set to `True`.
314
+ image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
315
+ Image standard deviation to use if `do_normalize` is set to `True`.
316
+ return_tensors (`str` or `TensorType`, *optional*):
317
+ The type of tensors to return. Can be one of:
318
+ - Unset: Return a list of `np.ndarray`.
319
+ - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
320
+ - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
321
+ - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
322
+ - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
323
+ data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
324
+ The channel dimension format for the output image. Can be one of:
325
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
326
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
327
+ - Unset: Use the channel dimension format of the input image.
328
+ input_data_format (`ChannelDimension` or `str`, *optional*):
329
+ The channel dimension format for the input image. If unset, the channel dimension format is inferred
330
+ from the input image. Can be one of:
331
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
332
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
333
+ - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
334
+ num_labels: (`int`, *optional*):
335
+ Number of classes in the segmentation task (excluding the background). If specified, a palette will be
336
+ built, assuming that class_idx 0 is the background, to map the prompt mask from a single class_idx
337
+ channel to a 3 channel RGB. Not specifying this will result in the prompt mask either being passed
338
+ through as is if it is already in RGB format or being duplicated across the channel dimension.
339
+ """
340
+ do_resize = do_resize if do_resize is not None else self.do_resize
341
+ do_rescale = do_rescale if do_rescale is not None else self.do_rescale
342
+ do_normalize = do_normalize if do_normalize is not None else self.do_normalize
343
+ resample = resample if resample is not None else self.resample
344
+ rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
345
+ image_mean = image_mean if image_mean is not None else self.image_mean
346
+ image_std = image_std if image_std is not None else self.image_std
347
+
348
+ size = size if size is not None else self.size
349
+ size_dict = get_size_dict(size)
350
+
351
+ images = make_list_of_images(images)
352
+
353
+ if not valid_images(images):
354
+ raise ValueError(
355
+ "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
356
+ "torch.Tensor, tf.Tensor or jax.ndarray."
357
+ )
358
+
359
+ if do_resize and size is None:
360
+ raise ValueError("Size must be specified if do_resize is True.")
361
+
362
+ if do_rescale and rescale_factor is None:
363
+ raise ValueError("Rescale factor must be specified if do_rescale is True.")
364
+
365
+ if do_normalize and (image_mean is None or image_std is None):
366
+ raise ValueError("Image mean and std must be specified if do_normalize is True.")
367
+
368
+ # All transformations expect numpy arrays.
369
+ images = [to_numpy_array(image) for image in images]
370
+
371
+ if is_scaled_image(images[0]) and do_rescale:
372
+ logger.warning_once(
373
+ "It looks like you are trying to rescale already rescaled images. If the input"
374
+ " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
375
+ )
376
+
377
+ if input_data_format is None and not is_mask:
378
+ # We assume that all images have the same channel dimension format.
379
+ input_data_format = infer_channel_dimension_format(images[0])
380
+
381
+ if is_mask:
382
+ palette = self.get_palette(num_labels) if num_labels is not None else None
383
+ # Since this is the input for the next transformations its format should be the same as the input_data_format
384
+ images = [
385
+ self.mask_to_rgb(image=image, palette=palette, data_format=ChannelDimension.FIRST) for image in images
386
+ ]
387
+ input_data_format = ChannelDimension.FIRST
388
+
389
+ if do_resize:
390
+ images = [
391
+ self.resize(image=image, size=size_dict, resample=resample, input_data_format=input_data_format)
392
+ for image in images
393
+ ]
394
+
395
+ if do_rescale:
396
+ images = [
397
+ self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
398
+ for image in images
399
+ ]
400
+
401
+ if do_normalize:
402
+ images = [
403
+ self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
404
+ for image in images
405
+ ]
406
+
407
+ images = [
408
+ to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
409
+ ]
410
+
411
+ return images
412
+
413
+ def preprocess(
414
+ self,
415
+ images: Optional[ImageInput] = None,
416
+ prompt_images: Optional[ImageInput] = None,
417
+ prompt_masks: Optional[ImageInput] = None,
418
+ do_resize: Optional[bool] = None,
419
+ size: Dict[str, int] = None,
420
+ resample: PILImageResampling = None,
421
+ do_rescale: Optional[bool] = None,
422
+ rescale_factor: Optional[float] = None,
423
+ do_normalize: Optional[bool] = None,
424
+ image_mean: Optional[Union[float, List[float]]] = None,
425
+ image_std: Optional[Union[float, List[float]]] = None,
426
+ num_labels: Optional[int] = None,
427
+ return_tensors: Optional[Union[str, TensorType]] = None,
428
+ data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST,
429
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
430
+ **kwargs,
431
+ ):
432
+ """
433
+ Preprocess an image or batch of images.
434
+
435
+ Args:
436
+ images (`ImageInput`):
437
+ Image to _preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
438
+ passing in images with pixel values between 0 and 1, set `do_rescale=False`.
439
+ prompt_images (`ImageInput`):
440
+ Prompt image to _preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
441
+ passing in images with pixel values between 0 and 1, set `do_rescale=False`.
442
+ prompt_masks (`ImageInput`):
443
+ Prompt mask from prompt image to _preprocess. Expects a single or batch of masks. If the mask masks are
444
+ a single channel then it will be converted to RGB using the palette if `self.num_labels` is specified
445
+ or by just repeating the channel if not. If the mask is already in RGB format, it will be passed through.
446
+ do_resize (`bool`, *optional*, defaults to `self.do_resize`):
447
+ Whether to resize the image.
448
+ size (`Dict[str, int]`, *optional*, defaults to `self.size`):
449
+ Dictionary in the format `{"height": h, "width": w}` specifying the size of the output image after
450
+ resizing.
451
+ resample (`PILImageResampling` filter, *optional*, defaults to `self.resample`):
452
+ `PILImageResampling` filter to use if resizing the image e.g. `PILImageResampling.BICUBIC`. Only has
453
+ an effect if `do_resize` is set to `True`. Doesn't apply to prompt mask as it is resized using nearest.
454
+ do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
455
+ Whether to rescale the image values between [0 - 1].
456
+ rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
457
+ Rescale factor to rescale the image by if `do_rescale` is set to `True`.
458
+ do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
459
+ Whether to normalize the image.
460
+ image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
461
+ Image mean to use if `do_normalize` is set to `True`.
462
+ image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
463
+ Image standard deviation to use if `do_normalize` is set to `True`.
464
+ return_tensors (`str` or `TensorType`, *optional*):
465
+ The type of tensors to return. Can be one of:
466
+ - Unset: Return a list of `np.ndarray`.
467
+ - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
468
+ - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
469
+ - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
470
+ - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
471
+ data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
472
+ The channel dimension format for the output image. Can be one of:
473
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
474
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
475
+ - Unset: Use the channel dimension format of the input image.
476
+ input_data_format (`ChannelDimension` or `str`, *optional*):
477
+ The channel dimension format for the input image. If unset, the channel dimension format is inferred
478
+ from the input image. Can be one of:
479
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
480
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
481
+ - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
482
+ num_labels: (`int`, *optional*):
483
+ Number of classes in the segmentation task (excluding the background). If specified, a palette will be
484
+ built, assuming that class_idx 0 is the background, to map the prompt mask from a single class_idx
485
+ channel to a 3 channel RGB. Not specifying this will result in the prompt mask either being passed
486
+ through as is if it is already in RGB format or being duplicated across the channel dimension.
487
+ """
488
+ if all(v is None for v in [images, prompt_images, prompt_masks]):
489
+ raise ValueError("At least one of images, prompt_images, prompt_masks must be specified.")
490
+
491
+ data = {}
492
+
493
+ if images is not None:
494
+ images = self._preprocess_step(
495
+ images,
496
+ is_mask=False,
497
+ do_resize=do_resize,
498
+ size=size,
499
+ resample=resample,
500
+ do_rescale=do_rescale,
501
+ rescale_factor=rescale_factor,
502
+ do_normalize=do_normalize,
503
+ image_mean=image_mean,
504
+ image_std=image_std,
505
+ data_format=data_format,
506
+ input_data_format=input_data_format,
507
+ **kwargs,
508
+ )
509
+
510
+ data["pixel_values"] = images
511
+
512
+ if prompt_images is not None:
513
+ prompt_images = self._preprocess_step(
514
+ prompt_images,
515
+ is_mask=False,
516
+ do_resize=do_resize,
517
+ size=size,
518
+ resample=resample,
519
+ do_rescale=do_rescale,
520
+ rescale_factor=rescale_factor,
521
+ do_normalize=do_normalize,
522
+ image_mean=image_mean,
523
+ image_std=image_std,
524
+ data_format=data_format,
525
+ input_data_format=input_data_format,
526
+ **kwargs,
527
+ )
528
+
529
+ data["prompt_pixel_values"] = prompt_images
530
+
531
+ if prompt_masks is not None:
532
+ prompt_masks = self._preprocess_step(
533
+ prompt_masks,
534
+ is_mask=True,
535
+ do_resize=do_resize,
536
+ size=size,
537
+ resample=PILImageResampling.NEAREST,
538
+ do_rescale=do_rescale,
539
+ rescale_factor=rescale_factor,
540
+ do_normalize=do_normalize,
541
+ image_mean=image_mean,
542
+ image_std=image_std,
543
+ data_format=data_format,
544
+ input_data_format=input_data_format,
545
+ num_labels=num_labels,
546
+ **kwargs,
547
+ )
548
+
549
+ data["prompt_masks"] = prompt_masks
550
+
551
+ return BatchFeature(data=data, tensor_type=return_tensors)
552
+
553
+ def post_process_semantic_segmentation(
554
+ self, outputs, target_sizes: Optional[List[Tuple[int, int]]] = None, num_labels: Optional[int] = None
555
+ ):
556
+ """
557
+ Converts the output of [`SegGptImageSegmentationOutput`] into segmentation maps. Only supports
558
+ PyTorch.
559
+
560
+ Args:
561
+ outputs ([`SegGptImageSegmentationOutput`]):
562
+ Raw outputs of the model.
563
+ target_sizes (`List[Tuple[int, int]]`, *optional*):
564
+ List of length (batch_size), where each list item (`Tuple[int, int]`) corresponds to the requested
565
+ final size (height, width) of each prediction. If left to None, predictions will not be resized.
566
+ num_labels (`int`, *optional*):
567
+ Number of classes in the segmentation task (excluding the background). If specified, a palette will be
568
+ built, assuming that class_idx 0 is the background, to map prediction masks from RGB values to class
569
+ indices. This value should be the same used when preprocessing inputs.
570
+ Returns:
571
+ semantic_segmentation: `List[torch.Tensor]` of length `batch_size`, where each item is a semantic
572
+ segmentation map of shape (height, width) corresponding to the target_sizes entry (if `target_sizes` is
573
+ specified). Each entry of each `torch.Tensor` correspond to a semantic class id.
574
+ """
575
+ requires_backends(self, ["torch"])
576
+ # batch_size x num_channels x 2*height x width
577
+ masks = outputs.pred_masks
578
+
579
+ # Predicted mask and prompt are concatenated in the height dimension
580
+ # batch_size x num_channels x height x width
581
+ masks = masks[:, :, masks.shape[2] // 2 :, :]
582
+
583
+ # To unnormalize we need to permute to channel last
584
+ # batch_size x height x width x num_channels
585
+ std = torch.tensor(self.image_std).to(masks.device)
586
+ mean = torch.tensor(self.image_mean).to(masks.device)
587
+
588
+ masks = masks.permute(0, 2, 3, 1) * std + mean
589
+
590
+ # batch_size x num_channels x height x width
591
+ masks = masks.permute(0, 3, 1, 2)
592
+
593
+ # Clip to match with palette if specified
594
+ masks = torch.clip(masks * 255, 0, 255)
595
+
596
+ semantic_segmentation = []
597
+ palette_tensor = None
598
+ palette = self.get_palette(num_labels) if num_labels is not None else None
599
+ if palette is not None:
600
+ palette_tensor = torch.tensor(palette).float().to(masks.device)
601
+ _, num_channels, _, _ = masks.shape
602
+ palette_tensor = palette_tensor.view(1, 1, num_labels + 1, num_channels)
603
+
604
+ for idx, mask in enumerate(masks):
605
+ if target_sizes is not None:
606
+ mask = torch.nn.functional.interpolate(
607
+ mask.unsqueeze(0),
608
+ size=target_sizes[idx],
609
+ mode="nearest",
610
+ )[0]
611
+
612
+ if num_labels is not None:
613
+ channels, height, width = mask.shape
614
+ dist = mask.permute(1, 2, 0).view(height, width, 1, channels)
615
+ dist = dist - palette_tensor
616
+ dist = torch.pow(dist, 2)
617
+ dist = torch.sum(dist, dim=-1)
618
+ pred = dist.argmin(dim=-1)
619
+
620
+ else:
621
+ # If no palette is specified SegGpt will try to paint using the mask class idx as RGB
622
+ pred = mask.mean(dim=0).int()
623
+
624
+ semantic_segmentation.append(pred)
625
+
626
+ return semantic_segmentation