applied-ai-018 commited on
Commit
b7f68e3
·
verified ·
1 Parent(s): fbc0f3c

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. llmeval-env/lib/python3.10/site-packages/transformers/models/beit/__init__.py +112 -0
  2. llmeval-env/lib/python3.10/site-packages/transformers/models/beit/__pycache__/__init__.cpython-310.pyc +0 -0
  3. llmeval-env/lib/python3.10/site-packages/transformers/models/beit/__pycache__/configuration_beit.cpython-310.pyc +0 -0
  4. llmeval-env/lib/python3.10/site-packages/transformers/models/beit/__pycache__/convert_beit_unilm_to_pytorch.cpython-310.pyc +0 -0
  5. llmeval-env/lib/python3.10/site-packages/transformers/models/beit/__pycache__/feature_extraction_beit.cpython-310.pyc +0 -0
  6. llmeval-env/lib/python3.10/site-packages/transformers/models/beit/__pycache__/image_processing_beit.cpython-310.pyc +0 -0
  7. llmeval-env/lib/python3.10/site-packages/transformers/models/beit/__pycache__/modeling_beit.cpython-310.pyc +0 -0
  8. llmeval-env/lib/python3.10/site-packages/transformers/models/beit/__pycache__/modeling_flax_beit.cpython-310.pyc +0 -0
  9. llmeval-env/lib/python3.10/site-packages/transformers/models/beit/configuration_beit.py +231 -0
  10. llmeval-env/lib/python3.10/site-packages/transformers/models/beit/convert_beit_unilm_to_pytorch.py +374 -0
  11. llmeval-env/lib/python3.10/site-packages/transformers/models/beit/feature_extraction_beit.py +33 -0
  12. llmeval-env/lib/python3.10/site-packages/transformers/models/beit/image_processing_beit.py +531 -0
  13. llmeval-env/lib/python3.10/site-packages/transformers/models/beit/modeling_beit.py +1425 -0
  14. llmeval-env/lib/python3.10/site-packages/transformers/models/beit/modeling_flax_beit.py +948 -0
  15. llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/__pycache__/tokenization_clvp.cpython-310.pyc +0 -0
  16. llmeval-env/lib/python3.10/site-packages/transformers/models/deit/__init__.py +113 -0
  17. llmeval-env/lib/python3.10/site-packages/transformers/models/deit/__pycache__/__init__.cpython-310.pyc +0 -0
  18. llmeval-env/lib/python3.10/site-packages/transformers/models/deit/__pycache__/configuration_deit.cpython-310.pyc +0 -0
  19. llmeval-env/lib/python3.10/site-packages/transformers/models/deit/__pycache__/convert_deit_timm_to_pytorch.cpython-310.pyc +0 -0
  20. llmeval-env/lib/python3.10/site-packages/transformers/models/deit/__pycache__/feature_extraction_deit.cpython-310.pyc +0 -0
  21. llmeval-env/lib/python3.10/site-packages/transformers/models/deit/__pycache__/image_processing_deit.cpython-310.pyc +0 -0
  22. llmeval-env/lib/python3.10/site-packages/transformers/models/deit/__pycache__/modeling_deit.cpython-310.pyc +0 -0
  23. llmeval-env/lib/python3.10/site-packages/transformers/models/deit/__pycache__/modeling_tf_deit.cpython-310.pyc +0 -0
  24. llmeval-env/lib/python3.10/site-packages/transformers/models/deit/configuration_deit.py +142 -0
  25. llmeval-env/lib/python3.10/site-packages/transformers/models/deit/convert_deit_timm_to_pytorch.py +219 -0
  26. llmeval-env/lib/python3.10/site-packages/transformers/models/deit/feature_extraction_deit.py +33 -0
  27. llmeval-env/lib/python3.10/site-packages/transformers/models/deit/image_processing_deit.py +320 -0
  28. llmeval-env/lib/python3.10/site-packages/transformers/models/deit/modeling_deit.py +891 -0
  29. llmeval-env/lib/python3.10/site-packages/transformers/models/deit/modeling_tf_deit.py +1178 -0
  30. llmeval-env/lib/python3.10/site-packages/transformers/models/dinov2/__pycache__/__init__.cpython-310.pyc +0 -0
  31. llmeval-env/lib/python3.10/site-packages/transformers/models/dinov2/__pycache__/configuration_dinov2.cpython-310.pyc +0 -0
  32. llmeval-env/lib/python3.10/site-packages/transformers/models/dinov2/__pycache__/convert_dinov2_to_hf.cpython-310.pyc +0 -0
  33. llmeval-env/lib/python3.10/site-packages/transformers/models/dinov2/__pycache__/modeling_dinov2.cpython-310.pyc +0 -0
  34. llmeval-env/lib/python3.10/site-packages/transformers/models/dinov2/configuration_dinov2.py +175 -0
  35. llmeval-env/lib/python3.10/site-packages/transformers/models/dinov2/modeling_dinov2.py +856 -0
  36. llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_bigcode/__init__.py +65 -0
  37. llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_bigcode/__pycache__/__init__.cpython-310.pyc +0 -0
  38. llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_bigcode/__pycache__/configuration_gpt_bigcode.cpython-310.pyc +0 -0
  39. llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_bigcode/__pycache__/modeling_gpt_bigcode.cpython-310.pyc +0 -0
  40. llmeval-env/lib/python3.10/site-packages/transformers/models/nllb_moe/__init__.py +68 -0
  41. llmeval-env/lib/python3.10/site-packages/transformers/models/nllb_moe/configuration_nllb_moe.py +218 -0
  42. llmeval-env/lib/python3.10/site-packages/transformers/models/nllb_moe/convert_nllb_moe_sharded_original_checkpoint_to_pytorch.py +160 -0
  43. llmeval-env/lib/python3.10/site-packages/transformers/models/nllb_moe/modeling_nllb_moe.py +1792 -0
  44. llmeval-env/lib/python3.10/site-packages/transformers/models/prophetnet/__init__.py +65 -0
  45. llmeval-env/lib/python3.10/site-packages/transformers/models/prophetnet/__pycache__/__init__.cpython-310.pyc +0 -0
  46. llmeval-env/lib/python3.10/site-packages/transformers/models/prophetnet/__pycache__/configuration_prophetnet.cpython-310.pyc +0 -0
  47. llmeval-env/lib/python3.10/site-packages/transformers/models/prophetnet/__pycache__/convert_prophetnet_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc +0 -0
  48. llmeval-env/lib/python3.10/site-packages/transformers/models/prophetnet/__pycache__/modeling_prophetnet.cpython-310.pyc +0 -0
  49. llmeval-env/lib/python3.10/site-packages/transformers/models/prophetnet/__pycache__/tokenization_prophetnet.cpython-310.pyc +0 -0
  50. llmeval-env/lib/python3.10/site-packages/transformers/models/prophetnet/configuration_prophetnet.py +180 -0
llmeval-env/lib/python3.10/site-packages/transformers/models/beit/__init__.py ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2021 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from typing import TYPE_CHECKING
16
+
17
+ from ...utils import (
18
+ OptionalDependencyNotAvailable,
19
+ _LazyModule,
20
+ is_flax_available,
21
+ is_torch_available,
22
+ is_vision_available,
23
+ )
24
+
25
+
26
+ _import_structure = {"configuration_beit": ["BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BeitConfig", "BeitOnnxConfig"]}
27
+
28
+ try:
29
+ if not is_vision_available():
30
+ raise OptionalDependencyNotAvailable()
31
+ except OptionalDependencyNotAvailable:
32
+ pass
33
+ else:
34
+ _import_structure["feature_extraction_beit"] = ["BeitFeatureExtractor"]
35
+ _import_structure["image_processing_beit"] = ["BeitImageProcessor"]
36
+
37
+ try:
38
+ if not is_torch_available():
39
+ raise OptionalDependencyNotAvailable()
40
+ except OptionalDependencyNotAvailable:
41
+ pass
42
+ else:
43
+ _import_structure["modeling_beit"] = [
44
+ "BEIT_PRETRAINED_MODEL_ARCHIVE_LIST",
45
+ "BeitForImageClassification",
46
+ "BeitForMaskedImageModeling",
47
+ "BeitForSemanticSegmentation",
48
+ "BeitModel",
49
+ "BeitPreTrainedModel",
50
+ "BeitBackbone",
51
+ ]
52
+
53
+
54
+ try:
55
+ if not is_flax_available():
56
+ raise OptionalDependencyNotAvailable()
57
+ except OptionalDependencyNotAvailable:
58
+ pass
59
+ else:
60
+ _import_structure["modeling_flax_beit"] = [
61
+ "FlaxBeitForImageClassification",
62
+ "FlaxBeitForMaskedImageModeling",
63
+ "FlaxBeitModel",
64
+ "FlaxBeitPreTrainedModel",
65
+ ]
66
+
67
+ if TYPE_CHECKING:
68
+ from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig
69
+
70
+ try:
71
+ if not is_vision_available():
72
+ raise OptionalDependencyNotAvailable()
73
+ except OptionalDependencyNotAvailable:
74
+ pass
75
+ else:
76
+ from .feature_extraction_beit import BeitFeatureExtractor
77
+ from .image_processing_beit import BeitImageProcessor
78
+
79
+ try:
80
+ if not is_torch_available():
81
+ raise OptionalDependencyNotAvailable()
82
+ except OptionalDependencyNotAvailable:
83
+ pass
84
+ else:
85
+ from .modeling_beit import (
86
+ BEIT_PRETRAINED_MODEL_ARCHIVE_LIST,
87
+ BeitBackbone,
88
+ BeitForImageClassification,
89
+ BeitForMaskedImageModeling,
90
+ BeitForSemanticSegmentation,
91
+ BeitModel,
92
+ BeitPreTrainedModel,
93
+ )
94
+
95
+ try:
96
+ if not is_flax_available():
97
+ raise OptionalDependencyNotAvailable()
98
+ except OptionalDependencyNotAvailable:
99
+ pass
100
+ else:
101
+ from .modeling_flax_beit import (
102
+ FlaxBeitForImageClassification,
103
+ FlaxBeitForMaskedImageModeling,
104
+ FlaxBeitModel,
105
+ FlaxBeitPreTrainedModel,
106
+ )
107
+
108
+
109
+ else:
110
+ import sys
111
+
112
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
llmeval-env/lib/python3.10/site-packages/transformers/models/beit/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.68 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/beit/__pycache__/configuration_beit.cpython-310.pyc ADDED
Binary file (10.1 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/beit/__pycache__/convert_beit_unilm_to_pytorch.cpython-310.pyc ADDED
Binary file (10.9 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/beit/__pycache__/feature_extraction_beit.cpython-310.pyc ADDED
Binary file (1 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/beit/__pycache__/image_processing_beit.cpython-310.pyc ADDED
Binary file (18.7 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/beit/__pycache__/modeling_beit.cpython-310.pyc ADDED
Binary file (44.7 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/beit/__pycache__/modeling_flax_beit.cpython-310.pyc ADDED
Binary file (28.3 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/beit/configuration_beit.py ADDED
@@ -0,0 +1,231 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright Microsoft Research and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ BEiT model configuration"""
16
+ from collections import OrderedDict
17
+ from typing import Mapping
18
+
19
+ from packaging import version
20
+
21
+ from ...configuration_utils import PretrainedConfig
22
+ from ...onnx import OnnxConfig
23
+ from ...utils import logging
24
+ from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
25
+
26
+
27
+ logger = logging.get_logger(__name__)
28
+
29
+
30
+ from ..deprecated._archive_maps import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
31
+
32
+
33
+ class BeitConfig(BackboneConfigMixin, PretrainedConfig):
34
+ r"""
35
+ This is the configuration class to store the configuration of a [`BeitModel`]. It is used to instantiate an BEiT
36
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
37
+ defaults will yield a similar configuration to that of the BEiT
38
+ [microsoft/beit-base-patch16-224-pt22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k) architecture.
39
+
40
+ Args:
41
+ vocab_size (`int`, *optional*, defaults to 8192):
42
+ Vocabulary size of the BEiT model. Defines the number of different image tokens that can be used during
43
+ pre-training.
44
+ hidden_size (`int`, *optional*, defaults to 768):
45
+ Dimensionality of the encoder layers and the pooler layer.
46
+ num_hidden_layers (`int`, *optional*, defaults to 12):
47
+ Number of hidden layers in the Transformer encoder.
48
+ num_attention_heads (`int`, *optional*, defaults to 12):
49
+ Number of attention heads for each attention layer in the Transformer encoder.
50
+ intermediate_size (`int`, *optional*, defaults to 3072):
51
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
52
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
53
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
54
+ `"relu"`, `"selu"` and `"gelu_new"` are supported.
55
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
56
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
57
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
58
+ The dropout ratio for the attention probabilities.
59
+ initializer_range (`float`, *optional*, defaults to 0.02):
60
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
61
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
62
+ The epsilon used by the layer normalization layers.
63
+ image_size (`int`, *optional*, defaults to 224):
64
+ The size (resolution) of each image.
65
+ patch_size (`int`, *optional*, defaults to 16):
66
+ The size (resolution) of each patch.
67
+ num_channels (`int`, *optional*, defaults to 3):
68
+ The number of input channels.
69
+ use_mask_token (`bool`, *optional*, defaults to `False`):
70
+ Whether to use a mask token for masked image modeling.
71
+ use_absolute_position_embeddings (`bool`, *optional*, defaults to `False`):
72
+ Whether to use BERT-style absolute position embeddings.
73
+ use_relative_position_bias (`bool`, *optional*, defaults to `False`):
74
+ Whether to use T5-style relative position embeddings in the self-attention layers.
75
+ use_shared_relative_position_bias (`bool`, *optional*, defaults to `False`):
76
+ Whether to use the same relative position embeddings across all self-attention layers of the Transformer.
77
+ layer_scale_init_value (`float`, *optional*, defaults to 0.1):
78
+ Scale to use in the self-attention layers. 0.1 for base, 1e-5 for large. Set 0 to disable layer scale.
79
+ drop_path_rate (`float`, *optional*, defaults to 0.1):
80
+ Stochastic depth rate per sample (when applied in the main path of residual layers).
81
+ use_mean_pooling (`bool`, *optional*, defaults to `True`):
82
+ Whether to mean pool the final hidden states of the patches instead of using the final hidden state of the
83
+ CLS token, before applying the classification head.
84
+ pool_scales (`Tuple[int]`, *optional*, defaults to `[1, 2, 3, 6]`):
85
+ Pooling scales used in Pooling Pyramid Module applied on the last feature map.
86
+ use_auxiliary_head (`bool`, *optional*, defaults to `True`):
87
+ Whether to use an auxiliary head during training.
88
+ auxiliary_loss_weight (`float`, *optional*, defaults to 0.4):
89
+ Weight of the cross-entropy loss of the auxiliary head.
90
+ auxiliary_channels (`int`, *optional*, defaults to 256):
91
+ Number of channels to use in the auxiliary head.
92
+ auxiliary_num_convs (`int`, *optional*, defaults to 1):
93
+ Number of convolutional layers to use in the auxiliary head.
94
+ auxiliary_concat_input (`bool`, *optional*, defaults to `False`):
95
+ Whether to concatenate the output of the auxiliary head with the input before the classification layer.
96
+ semantic_loss_ignore_index (`int`, *optional*, defaults to 255):
97
+ The index that is ignored by the loss function of the semantic segmentation model.
98
+ out_features (`List[str]`, *optional*):
99
+ If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc.
100
+ (depending on how many stages the model has). If unset and `out_indices` is set, will default to the
101
+ corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the
102
+ same order as defined in the `stage_names` attribute.
103
+ out_indices (`List[int]`, *optional*):
104
+ If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how
105
+ many stages the model has). If unset and `out_features` is set, will default to the corresponding stages.
106
+ If unset and `out_features` is unset, will default to the last stage. Must be in the
107
+ same order as defined in the `stage_names` attribute.
108
+ add_fpn (`bool`, *optional*, defaults to `False`):
109
+ Whether to add a FPN as part of the backbone. Only relevant for [`BeitBackbone`].
110
+ reshape_hidden_states (`bool`, *optional*, defaults to `True`):
111
+ Whether to reshape the feature maps to 4D tensors of shape `(batch_size, hidden_size, height, width)` in
112
+ case the model is used as backbone. If `False`, the feature maps will be 3D tensors of shape `(batch_size,
113
+ seq_len, hidden_size)`. Only relevant for [`BeitBackbone`].
114
+
115
+ Example:
116
+
117
+ ```python
118
+ >>> from transformers import BeitConfig, BeitModel
119
+
120
+ >>> # Initializing a BEiT beit-base-patch16-224-pt22k style configuration
121
+ >>> configuration = BeitConfig()
122
+
123
+ >>> # Initializing a model (with random weights) from the beit-base-patch16-224-pt22k style configuration
124
+ >>> model = BeitModel(configuration)
125
+
126
+ >>> # Accessing the model configuration
127
+ >>> configuration = model.config
128
+ ```"""
129
+
130
+ model_type = "beit"
131
+
132
+ def __init__(
133
+ self,
134
+ vocab_size=8192,
135
+ hidden_size=768,
136
+ num_hidden_layers=12,
137
+ num_attention_heads=12,
138
+ intermediate_size=3072,
139
+ hidden_act="gelu",
140
+ hidden_dropout_prob=0.0,
141
+ attention_probs_dropout_prob=0.0,
142
+ initializer_range=0.02,
143
+ layer_norm_eps=1e-12,
144
+ image_size=224,
145
+ patch_size=16,
146
+ num_channels=3,
147
+ use_mask_token=False,
148
+ use_absolute_position_embeddings=False,
149
+ use_relative_position_bias=False,
150
+ use_shared_relative_position_bias=False,
151
+ layer_scale_init_value=0.1,
152
+ drop_path_rate=0.1,
153
+ use_mean_pooling=True,
154
+ pool_scales=[1, 2, 3, 6],
155
+ use_auxiliary_head=True,
156
+ auxiliary_loss_weight=0.4,
157
+ auxiliary_channels=256,
158
+ auxiliary_num_convs=1,
159
+ auxiliary_concat_input=False,
160
+ semantic_loss_ignore_index=255,
161
+ out_features=None,
162
+ out_indices=None,
163
+ add_fpn=False,
164
+ reshape_hidden_states=True,
165
+ **kwargs,
166
+ ):
167
+ super().__init__(**kwargs)
168
+
169
+ self.vocab_size = vocab_size
170
+ self.hidden_size = hidden_size
171
+ self.num_hidden_layers = num_hidden_layers
172
+ self.num_attention_heads = num_attention_heads
173
+ self.intermediate_size = intermediate_size
174
+ self.hidden_act = hidden_act
175
+ self.hidden_dropout_prob = hidden_dropout_prob
176
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
177
+ self.initializer_range = initializer_range
178
+ self.layer_norm_eps = layer_norm_eps
179
+
180
+ self.image_size = image_size
181
+ self.patch_size = patch_size
182
+ self.num_channels = num_channels
183
+ self.use_mask_token = use_mask_token
184
+ self.use_absolute_position_embeddings = use_absolute_position_embeddings
185
+ self.use_relative_position_bias = use_relative_position_bias
186
+ self.use_shared_relative_position_bias = use_shared_relative_position_bias
187
+ self.layer_scale_init_value = layer_scale_init_value
188
+ self.drop_path_rate = drop_path_rate
189
+ self.use_mean_pooling = use_mean_pooling
190
+ # decode head attributes (semantic segmentation)
191
+ self.pool_scales = pool_scales
192
+ # auxiliary head attributes (semantic segmentation)
193
+ self.use_auxiliary_head = use_auxiliary_head
194
+ self.auxiliary_loss_weight = auxiliary_loss_weight
195
+ self.auxiliary_channels = auxiliary_channels
196
+ self.auxiliary_num_convs = auxiliary_num_convs
197
+ self.auxiliary_concat_input = auxiliary_concat_input
198
+ self.semantic_loss_ignore_index = semantic_loss_ignore_index
199
+
200
+ # handle backwards compatibility
201
+ if "segmentation_indices" in kwargs:
202
+ logger.warning(
203
+ "The `segmentation_indices` argument is deprecated and will be removed in a future version, use `out_indices` instead.",
204
+ FutureWarning,
205
+ )
206
+ out_indices = kwargs.pop("segmentation_indices")
207
+
208
+ # backbone attributes
209
+ self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, self.num_hidden_layers + 1)]
210
+ self._out_features, self._out_indices = get_aligned_output_features_output_indices(
211
+ out_features=out_features, out_indices=out_indices, stage_names=self.stage_names
212
+ )
213
+ self.add_fpn = add_fpn
214
+ self.reshape_hidden_states = reshape_hidden_states
215
+
216
+
217
+ # Copied from transformers.models.vit.configuration_vit.ViTOnnxConfig
218
+ class BeitOnnxConfig(OnnxConfig):
219
+ torch_onnx_minimum_version = version.parse("1.11")
220
+
221
+ @property
222
+ def inputs(self) -> Mapping[str, Mapping[int, str]]:
223
+ return OrderedDict(
224
+ [
225
+ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
226
+ ]
227
+ )
228
+
229
+ @property
230
+ def atol_for_validation(self) -> float:
231
+ return 1e-4
llmeval-env/lib/python3.10/site-packages/transformers/models/beit/convert_beit_unilm_to_pytorch.py ADDED
@@ -0,0 +1,374 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2021 The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Convert BEiT checkpoints from the unilm repository."""
16
+
17
+
18
+ import argparse
19
+ import json
20
+ from pathlib import Path
21
+
22
+ import requests
23
+ import torch
24
+ from datasets import load_dataset
25
+ from huggingface_hub import hf_hub_download
26
+ from PIL import Image
27
+
28
+ from transformers import (
29
+ BeitConfig,
30
+ BeitForImageClassification,
31
+ BeitForMaskedImageModeling,
32
+ BeitForSemanticSegmentation,
33
+ BeitImageProcessor,
34
+ )
35
+ from transformers.image_utils import PILImageResampling
36
+ from transformers.utils import logging
37
+
38
+
39
+ logging.set_verbosity_info()
40
+ logger = logging.get_logger(__name__)
41
+
42
+
43
+ # here we list all keys to be renamed (original name on the left, our name on the right)
44
+ def create_rename_keys(config, has_lm_head=False, is_semantic=False):
45
+ prefix = "backbone." if is_semantic else ""
46
+
47
+ rename_keys = []
48
+ for i in range(config.num_hidden_layers):
49
+ # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
50
+ rename_keys.append((f"{prefix}blocks.{i}.norm1.weight", f"beit.encoder.layer.{i}.layernorm_before.weight"))
51
+ rename_keys.append((f"{prefix}blocks.{i}.norm1.bias", f"beit.encoder.layer.{i}.layernorm_before.bias"))
52
+ rename_keys.append(
53
+ (f"{prefix}blocks.{i}.attn.proj.weight", f"beit.encoder.layer.{i}.attention.output.dense.weight")
54
+ )
55
+ rename_keys.append(
56
+ (f"{prefix}blocks.{i}.attn.proj.bias", f"beit.encoder.layer.{i}.attention.output.dense.bias")
57
+ )
58
+ rename_keys.append((f"{prefix}blocks.{i}.norm2.weight", f"beit.encoder.layer.{i}.layernorm_after.weight"))
59
+ rename_keys.append((f"{prefix}blocks.{i}.norm2.bias", f"beit.encoder.layer.{i}.layernorm_after.bias"))
60
+ rename_keys.append((f"{prefix}blocks.{i}.mlp.fc1.weight", f"beit.encoder.layer.{i}.intermediate.dense.weight"))
61
+ rename_keys.append((f"{prefix}blocks.{i}.mlp.fc1.bias", f"beit.encoder.layer.{i}.intermediate.dense.bias"))
62
+ rename_keys.append((f"{prefix}blocks.{i}.mlp.fc2.weight", f"beit.encoder.layer.{i}.output.dense.weight"))
63
+ rename_keys.append((f"{prefix}blocks.{i}.mlp.fc2.bias", f"beit.encoder.layer.{i}.output.dense.bias"))
64
+
65
+ # projection layer + position embeddings
66
+ rename_keys.extend(
67
+ [
68
+ (f"{prefix}cls_token", "beit.embeddings.cls_token"),
69
+ (f"{prefix}patch_embed.proj.weight", "beit.embeddings.patch_embeddings.projection.weight"),
70
+ (f"{prefix}patch_embed.proj.bias", "beit.embeddings.patch_embeddings.projection.bias"),
71
+ ]
72
+ )
73
+
74
+ if has_lm_head:
75
+ # mask token + shared relative position bias + layernorm
76
+ rename_keys.extend(
77
+ [
78
+ ("mask_token", "beit.embeddings.mask_token"),
79
+ (
80
+ "rel_pos_bias.relative_position_bias_table",
81
+ "beit.encoder.relative_position_bias.relative_position_bias_table",
82
+ ),
83
+ (
84
+ "rel_pos_bias.relative_position_index",
85
+ "beit.encoder.relative_position_bias.relative_position_index",
86
+ ),
87
+ ("norm.weight", "layernorm.weight"),
88
+ ("norm.bias", "layernorm.bias"),
89
+ ]
90
+ )
91
+ elif is_semantic:
92
+ # semantic segmentation classification heads
93
+ rename_keys.extend(
94
+ [
95
+ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"),
96
+ ("decode_head.conv_seg.bias", "decode_head.classifier.bias"),
97
+ ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"),
98
+ ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"),
99
+ ]
100
+ )
101
+ else:
102
+ # layernorm + classification head
103
+ rename_keys.extend(
104
+ [
105
+ ("fc_norm.weight", "beit.pooler.layernorm.weight"),
106
+ ("fc_norm.bias", "beit.pooler.layernorm.bias"),
107
+ ("head.weight", "classifier.weight"),
108
+ ("head.bias", "classifier.bias"),
109
+ ]
110
+ )
111
+
112
+ return rename_keys
113
+
114
+
115
+ # we split up the matrix of each encoder layer into queries, keys and values
116
+ def read_in_q_k_v(state_dict, config, has_lm_head=False, is_semantic=False):
117
+ for i in range(config.num_hidden_layers):
118
+ prefix = "backbone." if is_semantic else ""
119
+ # queries, keys and values
120
+ in_proj_weight = state_dict.pop(f"{prefix}blocks.{i}.attn.qkv.weight")
121
+ q_bias = state_dict.pop(f"{prefix}blocks.{i}.attn.q_bias")
122
+ v_bias = state_dict.pop(f"{prefix}blocks.{i}.attn.v_bias")
123
+
124
+ state_dict[f"beit.encoder.layer.{i}.attention.attention.query.weight"] = in_proj_weight[
125
+ : config.hidden_size, :
126
+ ]
127
+ state_dict[f"beit.encoder.layer.{i}.attention.attention.query.bias"] = q_bias
128
+ state_dict[f"beit.encoder.layer.{i}.attention.attention.key.weight"] = in_proj_weight[
129
+ config.hidden_size : config.hidden_size * 2, :
130
+ ]
131
+ state_dict[f"beit.encoder.layer.{i}.attention.attention.value.weight"] = in_proj_weight[
132
+ -config.hidden_size :, :
133
+ ]
134
+ state_dict[f"beit.encoder.layer.{i}.attention.attention.value.bias"] = v_bias
135
+
136
+ # gamma_1 and gamma_2
137
+ # we call them lambda because otherwise they are renamed when using .from_pretrained
138
+ gamma_1 = state_dict.pop(f"{prefix}blocks.{i}.gamma_1")
139
+ gamma_2 = state_dict.pop(f"{prefix}blocks.{i}.gamma_2")
140
+
141
+ state_dict[f"beit.encoder.layer.{i}.lambda_1"] = gamma_1
142
+ state_dict[f"beit.encoder.layer.{i}.lambda_2"] = gamma_2
143
+
144
+ # relative_position bias table + index
145
+ if not has_lm_head:
146
+ # each layer has its own relative position bias
147
+ table = state_dict.pop(f"{prefix}blocks.{i}.attn.relative_position_bias_table")
148
+ index = state_dict.pop(f"{prefix}blocks.{i}.attn.relative_position_index")
149
+
150
+ state_dict[
151
+ f"beit.encoder.layer.{i}.attention.attention.relative_position_bias.relative_position_bias_table"
152
+ ] = table
153
+ state_dict[
154
+ f"beit.encoder.layer.{i}.attention.attention.relative_position_bias.relative_position_index"
155
+ ] = index
156
+
157
+
158
+ def rename_key(dct, old, new):
159
+ val = dct.pop(old)
160
+ dct[new] = val
161
+
162
+
163
+ # We will verify our results on an image of cute cats
164
+ def prepare_img():
165
+ url = "http://images.cocodataset.org/val2017/000000039769.jpg"
166
+ im = Image.open(requests.get(url, stream=True).raw)
167
+ return im
168
+
169
+
170
+ @torch.no_grad()
171
+ def convert_beit_checkpoint(checkpoint_url, pytorch_dump_folder_path):
172
+ """
173
+ Copy/paste/tweak model's weights to our BEiT structure.
174
+ """
175
+
176
+ # define default BEiT configuration
177
+ config = BeitConfig()
178
+ has_lm_head = False
179
+ is_semantic = False
180
+ repo_id = "huggingface/label-files"
181
+ # set config parameters based on URL
182
+ if checkpoint_url[-9:-4] == "pt22k":
183
+ # masked image modeling
184
+ config.use_shared_relative_position_bias = True
185
+ config.use_mask_token = True
186
+ has_lm_head = True
187
+ elif checkpoint_url[-9:-4] == "ft22k":
188
+ # intermediate fine-tuning on ImageNet-22k
189
+ config.use_relative_position_bias = True
190
+ config.num_labels = 21841
191
+ filename = "imagenet-22k-id2label.json"
192
+ id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
193
+ id2label = {int(k): v for k, v in id2label.items()}
194
+ # this dataset contains 21843 labels but the model only has 21841
195
+ # we delete the classes as mentioned in https://github.com/google-research/big_transfer/issues/18
196
+ del id2label[9205]
197
+ del id2label[15027]
198
+ config.id2label = id2label
199
+ config.label2id = {v: k for k, v in id2label.items()}
200
+ elif checkpoint_url[-8:-4] == "to1k":
201
+ # fine-tuning on ImageNet-1k
202
+ config.use_relative_position_bias = True
203
+ config.num_labels = 1000
204
+ filename = "imagenet-1k-id2label.json"
205
+ id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
206
+ id2label = {int(k): v for k, v in id2label.items()}
207
+ config.id2label = id2label
208
+ config.label2id = {v: k for k, v in id2label.items()}
209
+ if "384" in checkpoint_url:
210
+ config.image_size = 384
211
+ if "512" in checkpoint_url:
212
+ config.image_size = 512
213
+ elif "ade20k" in checkpoint_url:
214
+ # fine-tuning
215
+ config.use_relative_position_bias = True
216
+ config.num_labels = 150
217
+ filename = "ade20k-id2label.json"
218
+ id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
219
+ id2label = {int(k): v for k, v in id2label.items()}
220
+ config.id2label = id2label
221
+ config.label2id = {v: k for k, v in id2label.items()}
222
+ config.image_size = 640
223
+ is_semantic = True
224
+ else:
225
+ raise ValueError("Checkpoint not supported, URL should either end with 'pt22k', 'ft22k', 'to1k' or 'ade20k'")
226
+
227
+ # size of the architecture
228
+ if "base" in checkpoint_url:
229
+ pass
230
+ elif "large" in checkpoint_url:
231
+ config.hidden_size = 1024
232
+ config.intermediate_size = 4096
233
+ config.num_hidden_layers = 24
234
+ config.num_attention_heads = 16
235
+ if "ade20k" in checkpoint_url:
236
+ config.image_size = 640
237
+ config.out_indices = [7, 11, 15, 23]
238
+ else:
239
+ raise ValueError("Should either find 'base' or 'large' in checkpoint URL")
240
+
241
+ # load state_dict of original model, remove and rename some keys
242
+ state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu", check_hash=True)
243
+ state_dict = state_dict["model"] if "ade20k" not in checkpoint_url else state_dict["state_dict"]
244
+
245
+ rename_keys = create_rename_keys(config, has_lm_head=has_lm_head, is_semantic=is_semantic)
246
+ for src, dest in rename_keys:
247
+ rename_key(state_dict, src, dest)
248
+ read_in_q_k_v(state_dict, config, has_lm_head=has_lm_head, is_semantic=is_semantic)
249
+ if is_semantic:
250
+ # add prefix to decoder keys
251
+ for key, val in state_dict.copy().items():
252
+ val = state_dict.pop(key)
253
+ if key.startswith("backbone.fpn"):
254
+ key = key.replace("backbone.fpn", "fpn")
255
+ state_dict[key] = val
256
+
257
+ # load HuggingFace model
258
+ if checkpoint_url[-9:-4] == "pt22k":
259
+ model = BeitForMaskedImageModeling(config)
260
+ elif "ade20k" in checkpoint_url:
261
+ model = BeitForSemanticSegmentation(config)
262
+ else:
263
+ model = BeitForImageClassification(config)
264
+ model.eval()
265
+ model.load_state_dict(state_dict)
266
+
267
+ # Check outputs on an image
268
+ if is_semantic:
269
+ image_processor = BeitImageProcessor(size=config.image_size, do_center_crop=False)
270
+ ds = load_dataset("hf-internal-testing/fixtures_ade20k", split="test")
271
+ image = Image.open(ds[0]["file"])
272
+ else:
273
+ image_processor = BeitImageProcessor(
274
+ size=config.image_size, resample=PILImageResampling.BILINEAR, do_center_crop=False
275
+ )
276
+ image = prepare_img()
277
+
278
+ encoding = image_processor(images=image, return_tensors="pt")
279
+ pixel_values = encoding["pixel_values"]
280
+
281
+ outputs = model(pixel_values)
282
+ logits = outputs.logits
283
+
284
+ # verify logits
285
+ expected_shape = torch.Size([1, 1000])
286
+ if checkpoint_url[:-4].endswith("beit_base_patch16_224_pt22k"):
287
+ expected_shape = torch.Size([1, 196, 8192])
288
+ elif checkpoint_url[:-4].endswith("beit_large_patch16_224_pt22k"):
289
+ expected_shape = torch.Size([1, 196, 8192])
290
+ elif checkpoint_url[:-4].endswith("beit_base_patch16_224_pt22k_ft22k"):
291
+ expected_shape = torch.Size([1, 21841])
292
+ expected_logits = torch.tensor([2.2288, 2.4671, 0.7395])
293
+ expected_class_idx = 2397
294
+ elif checkpoint_url[:-4].endswith("beit_large_patch16_224_pt22k_ft22k"):
295
+ expected_shape = torch.Size([1, 21841])
296
+ expected_logits = torch.tensor([1.6881, -0.2787, 0.5901])
297
+ expected_class_idx = 2396
298
+ elif checkpoint_url[:-4].endswith("beit_base_patch16_224_pt22k_ft1k"):
299
+ expected_logits = torch.tensor([0.1241, 0.0798, -0.6569])
300
+ expected_class_idx = 285
301
+ elif checkpoint_url[:-4].endswith("beit_base_patch16_224_pt22k_ft22kto1k"):
302
+ expected_logits = torch.tensor([-1.2385, -1.0987, -1.0108])
303
+ expected_class_idx = 281
304
+ elif checkpoint_url[:-4].endswith("beit_base_patch16_384_pt22k_ft22kto1k"):
305
+ expected_logits = torch.tensor([-1.5303, -0.9484, -0.3147])
306
+ expected_class_idx = 761
307
+ elif checkpoint_url[:-4].endswith("beit_large_patch16_224_pt22k_ft1k"):
308
+ expected_logits = torch.tensor([0.4610, -0.0928, 0.2086])
309
+ expected_class_idx = 761
310
+ elif checkpoint_url[:-4].endswith("beit_large_patch16_224_pt22k_ft22kto1k"):
311
+ expected_logits = torch.tensor([-0.4804, 0.6257, -0.1837])
312
+ expected_class_idx = 761
313
+ elif checkpoint_url[:-4].endswith("beit_large_patch16_384_pt22k_ft22kto1k"):
314
+ expected_logits = torch.tensor([[-0.5122, 0.5117, -0.2113]])
315
+ expected_class_idx = 761
316
+ elif checkpoint_url[:-4].endswith("beit_large_patch16_512_pt22k_ft22kto1k"):
317
+ expected_logits = torch.tensor([-0.3062, 0.7261, 0.4852])
318
+ expected_class_idx = 761
319
+ elif checkpoint_url[:-4].endswith("beit_base_patch16_640_pt22k_ft22ktoade20k"):
320
+ expected_shape = (1, 150, 160, 160)
321
+ expected_logits = torch.tensor(
322
+ [
323
+ [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]],
324
+ [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]],
325
+ [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]],
326
+ ]
327
+ )
328
+ elif checkpoint_url[:-4].endswith("beit_large_patch16_640_pt22k_ft22ktoade20k"):
329
+ expected_shape = (1, 150, 160, 160)
330
+ expected_logits = torch.tensor(
331
+ [
332
+ [[-4.3305, -2.3049, -3.0161], [-2.9591, -1.5305, -2.2251], [-3.4198, -1.8004, -2.9062]],
333
+ [[-5.8922, -3.7435, -4.3978], [-4.2063, -2.7872, -3.4755], [-4.2791, -3.1874, -4.1681]],
334
+ [[0.9895, 4.3467, 4.7663], [4.2476, 5.6830, 6.1518], [4.5550, 6.2495, 6.5154]],
335
+ ]
336
+ )
337
+ else:
338
+ raise ValueError("Can't verify logits as model is not supported")
339
+
340
+ if logits.shape != expected_shape:
341
+ raise ValueError(f"Shape of logits not as expected. {logits.shape=}, {expected_shape=}")
342
+ if not has_lm_head:
343
+ if is_semantic:
344
+ if not torch.allclose(logits[0, :3, :3, :3], expected_logits, atol=1e-3):
345
+ raise ValueError("First elements of logits not as expected")
346
+ else:
347
+ print("Predicted class idx:", logits.argmax(-1).item())
348
+
349
+ if not torch.allclose(logits[0, :3], expected_logits, atol=1e-3):
350
+ raise ValueError("First elements of logits not as expected")
351
+ if logits.argmax(-1).item() != expected_class_idx:
352
+ raise ValueError("Predicted class index not as expected")
353
+
354
+ Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
355
+ print(f"Saving model to {pytorch_dump_folder_path}")
356
+ model.save_pretrained(pytorch_dump_folder_path)
357
+ print(f"Saving image processor to {pytorch_dump_folder_path}")
358
+ image_processor.save_pretrained(pytorch_dump_folder_path)
359
+
360
+
361
+ if __name__ == "__main__":
362
+ parser = argparse.ArgumentParser()
363
+
364
+ parser.add_argument(
365
+ "--checkpoint_url",
366
+ default="https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_base_patch16_224_pt22k_ft22kto1k.pth",
367
+ type=str,
368
+ help="URL to the original PyTorch checkpoint (.pth file).",
369
+ )
370
+ parser.add_argument(
371
+ "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
372
+ )
373
+ args = parser.parse_args()
374
+ convert_beit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
llmeval-env/lib/python3.10/site-packages/transformers/models/beit/feature_extraction_beit.py ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2021 The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Feature extractor class for BEiT."""
16
+
17
+ import warnings
18
+
19
+ from ...utils import logging
20
+ from .image_processing_beit import BeitImageProcessor
21
+
22
+
23
+ logger = logging.get_logger(__name__)
24
+
25
+
26
+ class BeitFeatureExtractor(BeitImageProcessor):
27
+ def __init__(self, *args, **kwargs) -> None:
28
+ warnings.warn(
29
+ "The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"
30
+ " use BeitImageProcessor instead.",
31
+ FutureWarning,
32
+ )
33
+ super().__init__(*args, **kwargs)
llmeval-env/lib/python3.10/site-packages/transformers/models/beit/image_processing_beit.py ADDED
@@ -0,0 +1,531 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Image processor class for Beit."""
16
+
17
+ import warnings
18
+ from typing import Any, Dict, List, Optional, Tuple, Union
19
+
20
+ import numpy as np
21
+
22
+ from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
23
+ from ...image_transforms import resize, to_channel_dimension_format
24
+ from ...image_utils import (
25
+ IMAGENET_STANDARD_MEAN,
26
+ IMAGENET_STANDARD_STD,
27
+ ChannelDimension,
28
+ ImageInput,
29
+ PILImageResampling,
30
+ infer_channel_dimension_format,
31
+ is_scaled_image,
32
+ make_list_of_images,
33
+ to_numpy_array,
34
+ valid_images,
35
+ validate_kwargs,
36
+ validate_preprocess_arguments,
37
+ )
38
+ from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging
39
+
40
+
41
+ if is_vision_available():
42
+ import PIL
43
+
44
+ if is_torch_available():
45
+ import torch
46
+
47
+
48
+ logger = logging.get_logger(__name__)
49
+
50
+
51
+ class BeitImageProcessor(BaseImageProcessor):
52
+ r"""
53
+ Constructs a BEiT image processor.
54
+
55
+ Args:
56
+ do_resize (`bool`, *optional*, defaults to `True`):
57
+ Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the
58
+ `do_resize` parameter in the `preprocess` method.
59
+ size (`Dict[str, int]` *optional*, defaults to `{"height": 256, "width": 256}`):
60
+ Size of the output image after resizing. Can be overridden by the `size` parameter in the `preprocess`
61
+ method.
62
+ resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
63
+ Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the
64
+ `preprocess` method.
65
+ do_center_crop (`bool`, *optional*, defaults to `True`):
66
+ Whether to center crop the image. If the input size is smaller than `crop_size` along any edge, the image
67
+ is padded with 0's and then center cropped. Can be overridden by the `do_center_crop` parameter in the
68
+ `preprocess` method.
69
+ crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`):
70
+ Desired output size when applying center-cropping. Only has an effect if `do_center_crop` is set to `True`.
71
+ Can be overridden by the `crop_size` parameter in the `preprocess` method.
72
+ rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
73
+ Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
74
+ `preprocess` method.
75
+ do_rescale (`bool`, *optional*, defaults to `True`):
76
+ Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
77
+ parameter in the `preprocess` method.
78
+ do_normalize (`bool`, *optional*, defaults to `True`):
79
+ Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
80
+ method.
81
+ image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
82
+ The mean to use if normalizing the image. This is a float or list of floats of length of the number of
83
+ channels of the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
84
+ image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
85
+ The standard deviation to use if normalizing the image. This is a float or list of floats of length of the
86
+ number of channels of the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
87
+ do_reduce_labels (`bool`, *optional*, defaults to `False`):
88
+ Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is
89
+ used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The
90
+ background label will be replaced by 255. Can be overridden by the `do_reduce_labels` parameter in the
91
+ `preprocess` method.
92
+ """
93
+
94
+ model_input_names = ["pixel_values"]
95
+
96
+ def __init__(
97
+ self,
98
+ do_resize: bool = True,
99
+ size: Dict[str, int] = None,
100
+ resample: PILImageResampling = PILImageResampling.BICUBIC,
101
+ do_center_crop: bool = True,
102
+ crop_size: Dict[str, int] = None,
103
+ rescale_factor: Union[int, float] = 1 / 255,
104
+ do_rescale: bool = True,
105
+ do_normalize: bool = True,
106
+ image_mean: Optional[Union[float, List[float]]] = None,
107
+ image_std: Optional[Union[float, List[float]]] = None,
108
+ do_reduce_labels: bool = False,
109
+ **kwargs,
110
+ ) -> None:
111
+ if "reduce_labels" in kwargs:
112
+ warnings.warn(
113
+ "The `reduce_labels` parameter is deprecated and will be removed in a future version. Please use"
114
+ " `do_reduce_labels` instead.",
115
+ FutureWarning,
116
+ )
117
+ do_reduce_labels = kwargs.pop("reduce_labels")
118
+ super().__init__(**kwargs)
119
+ size = size if size is not None else {"height": 256, "width": 256}
120
+ size = get_size_dict(size)
121
+ crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
122
+ crop_size = get_size_dict(crop_size, param_name="crop_size")
123
+ self.do_resize = do_resize
124
+ self.size = size
125
+ self.resample = resample
126
+ self.do_center_crop = do_center_crop
127
+ self.crop_size = crop_size
128
+ self.do_rescale = do_rescale
129
+ self.rescale_factor = rescale_factor
130
+ self.do_normalize = do_normalize
131
+ self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
132
+ self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
133
+ self.do_reduce_labels = do_reduce_labels
134
+ self._valid_processor_keys = [
135
+ "images",
136
+ "segmentation_maps",
137
+ "do_resize",
138
+ "size",
139
+ "resample",
140
+ "do_center_crop",
141
+ "crop_size",
142
+ "do_rescale",
143
+ "rescale_factor",
144
+ "do_normalize",
145
+ "image_mean",
146
+ "image_std",
147
+ "do_reduce_labels",
148
+ "return_tensors",
149
+ "data_format",
150
+ "input_data_format",
151
+ ]
152
+
153
+ @classmethod
154
+ def from_dict(cls, image_processor_dict: Dict[str, Any], **kwargs):
155
+ """
156
+ Overrides the `from_dict` method from the base class to make sure `reduce_labels` is updated if image processor
157
+ is created using from_dict and kwargs e.g. `BeitImageProcessor.from_pretrained(checkpoint, reduce_labels=True)`
158
+ """
159
+ image_processor_dict = image_processor_dict.copy()
160
+ if "reduce_labels" in kwargs:
161
+ image_processor_dict["reduce_labels"] = kwargs.pop("reduce_labels")
162
+ return super().from_dict(image_processor_dict, **kwargs)
163
+
164
+ def resize(
165
+ self,
166
+ image: np.ndarray,
167
+ size: Dict[str, int],
168
+ resample: PILImageResampling = PILImageResampling.BICUBIC,
169
+ data_format: Optional[Union[str, ChannelDimension]] = None,
170
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
171
+ **kwargs,
172
+ ) -> np.ndarray:
173
+ """
174
+ Resize an image to (size["height"], size["width"]).
175
+
176
+ Args:
177
+ image (`np.ndarray`):
178
+ Image to resize.
179
+ size (`Dict[str, int]`):
180
+ Size of the output image.
181
+ resample (`PILImageResampling`, *optional*, defaults to `PIL.Image.BICUBIC`):
182
+ Resampling filter to use when resiizing the image.
183
+ data_format (`str` or `ChannelDimension`, *optional*):
184
+ The channel dimension format of the image. If not provided, it will be the same as the input image.
185
+ input_data_format (`str` or `ChannelDimension`, *optional*):
186
+ The channel dimension format of the input image. If not provided, it will be inferred.
187
+ """
188
+ size = get_size_dict(size, default_to_square=True, param_name="size")
189
+ if "height" not in size or "width" not in size:
190
+ raise ValueError(f"The `size` argument must contain `height` and `width` keys. Got {size.keys()}")
191
+ return resize(
192
+ image,
193
+ size=(size["height"], size["width"]),
194
+ resample=resample,
195
+ data_format=data_format,
196
+ input_data_format=input_data_format,
197
+ **kwargs,
198
+ )
199
+
200
+ def reduce_label(self, label: ImageInput) -> np.ndarray:
201
+ label = to_numpy_array(label)
202
+ # Avoid using underflow conversion
203
+ label[label == 0] = 255
204
+ label = label - 1
205
+ label[label == 254] = 255
206
+ return label
207
+
208
+ def _preprocess(
209
+ self,
210
+ image: ImageInput,
211
+ do_reduce_labels: bool = None,
212
+ do_resize: bool = None,
213
+ size: Dict[str, int] = None,
214
+ resample: PILImageResampling = None,
215
+ do_center_crop: bool = None,
216
+ crop_size: Dict[str, int] = None,
217
+ do_rescale: bool = None,
218
+ rescale_factor: float = None,
219
+ do_normalize: bool = None,
220
+ image_mean: Optional[Union[float, List[float]]] = None,
221
+ image_std: Optional[Union[float, List[float]]] = None,
222
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
223
+ ):
224
+ if do_reduce_labels:
225
+ image = self.reduce_label(image)
226
+
227
+ if do_resize:
228
+ image = self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
229
+
230
+ if do_center_crop:
231
+ image = self.center_crop(image=image, size=crop_size, input_data_format=input_data_format)
232
+
233
+ if do_rescale:
234
+ image = self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
235
+
236
+ if do_normalize:
237
+ image = self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
238
+
239
+ return image
240
+
241
+ def _preprocess_image(
242
+ self,
243
+ image: ImageInput,
244
+ do_resize: bool = None,
245
+ size: Dict[str, int] = None,
246
+ resample: PILImageResampling = None,
247
+ do_center_crop: bool = None,
248
+ crop_size: Dict[str, int] = None,
249
+ do_rescale: bool = None,
250
+ rescale_factor: float = None,
251
+ do_normalize: bool = None,
252
+ image_mean: Optional[Union[float, List[float]]] = None,
253
+ image_std: Optional[Union[float, List[float]]] = None,
254
+ data_format: Optional[Union[str, ChannelDimension]] = None,
255
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
256
+ ) -> np.ndarray:
257
+ """Preprocesses a single image."""
258
+ # All transformations expect numpy arrays.
259
+ image = to_numpy_array(image)
260
+ if is_scaled_image(image) and do_rescale:
261
+ logger.warning_once(
262
+ "It looks like you are trying to rescale already rescaled images. If the input"
263
+ " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
264
+ )
265
+ if input_data_format is None:
266
+ input_data_format = infer_channel_dimension_format(image)
267
+ image = self._preprocess(
268
+ image,
269
+ do_reduce_labels=False,
270
+ do_resize=do_resize,
271
+ size=size,
272
+ resample=resample,
273
+ do_center_crop=do_center_crop,
274
+ crop_size=crop_size,
275
+ do_rescale=do_rescale,
276
+ rescale_factor=rescale_factor,
277
+ do_normalize=do_normalize,
278
+ image_mean=image_mean,
279
+ image_std=image_std,
280
+ input_data_format=input_data_format,
281
+ )
282
+ if data_format is not None:
283
+ image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
284
+ return image
285
+
286
+ def _preprocess_segmentation_map(
287
+ self,
288
+ segmentation_map: ImageInput,
289
+ do_resize: bool = None,
290
+ size: Dict[str, int] = None,
291
+ resample: PILImageResampling = None,
292
+ do_center_crop: bool = None,
293
+ crop_size: Dict[str, int] = None,
294
+ do_reduce_labels: bool = None,
295
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
296
+ ):
297
+ """Preprocesses a single segmentation map."""
298
+ # All transformations expect numpy arrays.
299
+ segmentation_map = to_numpy_array(segmentation_map)
300
+ # Add an axis to the segmentation maps for transformations.
301
+ if segmentation_map.ndim == 2:
302
+ segmentation_map = segmentation_map[None, ...]
303
+ added_dimension = True
304
+ input_data_format = ChannelDimension.FIRST
305
+ else:
306
+ added_dimension = False
307
+ if input_data_format is None:
308
+ input_data_format = infer_channel_dimension_format(segmentation_map, num_channels=1)
309
+ segmentation_map = self._preprocess(
310
+ image=segmentation_map,
311
+ do_reduce_labels=do_reduce_labels,
312
+ do_resize=do_resize,
313
+ resample=resample,
314
+ size=size,
315
+ do_center_crop=do_center_crop,
316
+ crop_size=crop_size,
317
+ do_normalize=False,
318
+ do_rescale=False,
319
+ input_data_format=ChannelDimension.FIRST,
320
+ )
321
+ # Remove extra axis if added
322
+ if added_dimension:
323
+ segmentation_map = np.squeeze(segmentation_map, axis=0)
324
+ segmentation_map = segmentation_map.astype(np.int64)
325
+ return segmentation_map
326
+
327
+ def __call__(self, images, segmentation_maps=None, **kwargs):
328
+ # Overrides the `__call__` method of the `Preprocessor` class such that the images and segmentation maps can both
329
+ # be passed in as positional arguments.
330
+ return super().__call__(images, segmentation_maps=segmentation_maps, **kwargs)
331
+
332
+ def preprocess(
333
+ self,
334
+ images: ImageInput,
335
+ segmentation_maps: Optional[ImageInput] = None,
336
+ do_resize: bool = None,
337
+ size: Dict[str, int] = None,
338
+ resample: PILImageResampling = None,
339
+ do_center_crop: bool = None,
340
+ crop_size: Dict[str, int] = None,
341
+ do_rescale: bool = None,
342
+ rescale_factor: float = None,
343
+ do_normalize: bool = None,
344
+ image_mean: Optional[Union[float, List[float]]] = None,
345
+ image_std: Optional[Union[float, List[float]]] = None,
346
+ do_reduce_labels: Optional[bool] = None,
347
+ return_tensors: Optional[Union[str, TensorType]] = None,
348
+ data_format: ChannelDimension = ChannelDimension.FIRST,
349
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
350
+ **kwargs,
351
+ ) -> PIL.Image.Image:
352
+ """
353
+ Preprocess an image or batch of images.
354
+
355
+ Args:
356
+ images (`ImageInput`):
357
+ Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
358
+ passing in images with pixel values between 0 and 1, set `do_rescale=False`.
359
+ segmentation_maps (`ImageInput`, *optional*)
360
+ Segmentation maps to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
361
+ passing in images with pixel values between 0 and 1, set `do_rescale=False`.
362
+ do_resize (`bool`, *optional*, defaults to `self.do_resize`):
363
+ Whether to resize the image.
364
+ size (`Dict[str, int]`, *optional*, defaults to `self.size`):
365
+ Size of the image after resizing.
366
+ resample (`int`, *optional*, defaults to `self.resample`):
367
+ Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only
368
+ has an effect if `do_resize` is set to `True`.
369
+ do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
370
+ Whether to center crop the image.
371
+ crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
372
+ Size of the image after center crop. If one edge the image is smaller than `crop_size`, it will be
373
+ padded with zeros and then cropped
374
+ do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
375
+ Whether to rescale the image values between [0 - 1].
376
+ rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
377
+ Rescale factor to rescale the image by if `do_rescale` is set to `True`.
378
+ do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
379
+ Whether to normalize the image.
380
+ image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
381
+ Image mean.
382
+ image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
383
+ Image standard deviation.
384
+ do_reduce_labels (`bool`, *optional*, defaults to `self.do_reduce_labels`):
385
+ Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0
386
+ is used for background, and background itself is not included in all classes of a dataset (e.g.
387
+ ADE20k). The background label will be replaced by 255.
388
+ return_tensors (`str` or `TensorType`, *optional*):
389
+ The type of tensors to return. Can be one of:
390
+ - Unset: Return a list of `np.ndarray`.
391
+ - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
392
+ - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
393
+ - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
394
+ - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
395
+ data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
396
+ The channel dimension format for the output image. Can be one of:
397
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
398
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
399
+ - Unset: Use the channel dimension format of the input image.
400
+ input_data_format (`ChannelDimension` or `str`, *optional*):
401
+ The channel dimension format for the input image. If unset, the channel dimension format is inferred
402
+ from the input image. Can be one of:
403
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
404
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
405
+ - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
406
+ """
407
+ do_resize = do_resize if do_resize is not None else self.do_resize
408
+ size = size if size is not None else self.size
409
+ size = get_size_dict(size, default_to_square=True, param_name="size")
410
+ resample = resample if resample is not None else self.resample
411
+ do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
412
+ crop_size = crop_size if crop_size is not None else self.crop_size
413
+ crop_size = get_size_dict(crop_size, default_to_square=True, param_name="crop_size")
414
+ do_rescale = do_rescale if do_rescale is not None else self.do_rescale
415
+ rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
416
+ do_normalize = do_normalize if do_normalize is not None else self.do_normalize
417
+ image_mean = image_mean if image_mean is not None else self.image_mean
418
+ image_std = image_std if image_std is not None else self.image_std
419
+ do_reduce_labels = do_reduce_labels if do_reduce_labels is not None else self.do_reduce_labels
420
+
421
+ validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
422
+
423
+ images = make_list_of_images(images)
424
+
425
+ if segmentation_maps is not None:
426
+ segmentation_maps = make_list_of_images(segmentation_maps, expected_ndims=2)
427
+
428
+ if segmentation_maps is not None and not valid_images(segmentation_maps):
429
+ raise ValueError(
430
+ "Invalid segmentation_maps type. Must be of type PIL.Image.Image, numpy.ndarray, "
431
+ "torch.Tensor, tf.Tensor or jax.ndarray."
432
+ )
433
+ if not valid_images(images):
434
+ raise ValueError(
435
+ "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
436
+ "torch.Tensor, tf.Tensor or jax.ndarray."
437
+ )
438
+
439
+ validate_preprocess_arguments(
440
+ do_rescale=do_rescale,
441
+ rescale_factor=rescale_factor,
442
+ do_normalize=do_normalize,
443
+ image_mean=image_mean,
444
+ image_std=image_std,
445
+ do_center_crop=do_center_crop,
446
+ crop_size=crop_size,
447
+ do_resize=do_resize,
448
+ size=size,
449
+ resample=resample,
450
+ )
451
+
452
+ images = [
453
+ self._preprocess_image(
454
+ image=img,
455
+ do_resize=do_resize,
456
+ do_center_crop=do_center_crop,
457
+ do_rescale=do_rescale,
458
+ do_normalize=do_normalize,
459
+ resample=resample,
460
+ size=size,
461
+ rescale_factor=rescale_factor,
462
+ crop_size=crop_size,
463
+ image_mean=image_mean,
464
+ image_std=image_std,
465
+ data_format=data_format,
466
+ input_data_format=input_data_format,
467
+ )
468
+ for img in images
469
+ ]
470
+
471
+ data = {"pixel_values": images}
472
+
473
+ if segmentation_maps is not None:
474
+ segmentation_maps = [
475
+ self._preprocess_segmentation_map(
476
+ segmentation_map=segmentation_map,
477
+ do_reduce_labels=do_reduce_labels,
478
+ do_resize=do_resize,
479
+ resample=resample,
480
+ size=size,
481
+ do_center_crop=do_center_crop,
482
+ crop_size=crop_size,
483
+ )
484
+ for segmentation_map in segmentation_maps
485
+ ]
486
+ data["labels"] = segmentation_maps
487
+
488
+ return BatchFeature(data=data, tensor_type=return_tensors)
489
+
490
+ def post_process_semantic_segmentation(self, outputs, target_sizes: List[Tuple] = None):
491
+ """
492
+ Converts the output of [`BeitForSemanticSegmentation`] into semantic segmentation maps. Only supports PyTorch.
493
+
494
+ Args:
495
+ outputs ([`BeitForSemanticSegmentation`]):
496
+ Raw outputs of the model.
497
+ target_sizes (`List[Tuple]` of length `batch_size`, *optional*):
498
+ List of tuples corresponding to the requested final size (height, width) of each prediction. If unset,
499
+ predictions will not be resized.
500
+
501
+ Returns:
502
+ semantic_segmentation: `List[torch.Tensor]` of length `batch_size`, where each item is a semantic
503
+ segmentation map of shape (height, width) corresponding to the target_sizes entry (if `target_sizes` is
504
+ specified). Each entry of each `torch.Tensor` correspond to a semantic class id.
505
+ """
506
+ # TODO: add support for other frameworks
507
+ logits = outputs.logits
508
+
509
+ # Resize logits and compute semantic segmentation maps
510
+ if target_sizes is not None:
511
+ if len(logits) != len(target_sizes):
512
+ raise ValueError(
513
+ "Make sure that you pass in as many target sizes as the batch dimension of the logits"
514
+ )
515
+
516
+ if is_torch_tensor(target_sizes):
517
+ target_sizes = target_sizes.numpy()
518
+
519
+ semantic_segmentation = []
520
+
521
+ for idx in range(len(logits)):
522
+ resized_logits = torch.nn.functional.interpolate(
523
+ logits[idx].unsqueeze(dim=0), size=target_sizes[idx], mode="bilinear", align_corners=False
524
+ )
525
+ semantic_map = resized_logits[0].argmax(dim=0)
526
+ semantic_segmentation.append(semantic_map)
527
+ else:
528
+ semantic_segmentation = logits.argmax(dim=1)
529
+ semantic_segmentation = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])]
530
+
531
+ return semantic_segmentation
llmeval-env/lib/python3.10/site-packages/transformers/models/beit/modeling_beit.py ADDED
@@ -0,0 +1,1425 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2021 Microsoft Research and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ PyTorch BEiT model."""
16
+
17
+
18
+ import collections.abc
19
+ import math
20
+ from dataclasses import dataclass
21
+ from typing import List, Optional, Tuple, Union
22
+
23
+ import torch
24
+ import torch.utils.checkpoint
25
+ from torch import Tensor, nn
26
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
27
+
28
+ from ...activations import ACT2FN
29
+ from ...modeling_outputs import (
30
+ BackboneOutput,
31
+ BaseModelOutput,
32
+ BaseModelOutputWithPooling,
33
+ ImageClassifierOutput,
34
+ MaskedLMOutput,
35
+ SemanticSegmenterOutput,
36
+ )
37
+ from ...modeling_utils import PreTrainedModel
38
+ from ...pytorch_utils import find_pruneable_heads_and_indices, meshgrid, prune_linear_layer
39
+ from ...utils import (
40
+ add_code_sample_docstrings,
41
+ add_start_docstrings,
42
+ add_start_docstrings_to_model_forward,
43
+ logging,
44
+ replace_return_docstrings,
45
+ )
46
+ from ...utils.backbone_utils import BackboneMixin
47
+ from .configuration_beit import BeitConfig
48
+
49
+
50
+ logger = logging.get_logger(__name__)
51
+
52
+ # General docstring
53
+ _CONFIG_FOR_DOC = "BeitConfig"
54
+
55
+ # Base docstring
56
+ _CHECKPOINT_FOR_DOC = "microsoft/beit-base-patch16-224-pt22k"
57
+ _EXPECTED_OUTPUT_SHAPE = [1, 197, 768]
58
+
59
+ # Image classification docstring
60
+ _IMAGE_CLASS_CHECKPOINT = "microsoft/beit-base-patch16-224"
61
+ _IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
62
+
63
+
64
+ from ..deprecated._archive_maps import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
65
+
66
+
67
+ @dataclass
68
+ class BeitModelOutputWithPooling(BaseModelOutputWithPooling):
69
+ """
70
+ Class for outputs of [`BeitModel`].
71
+
72
+ Args:
73
+ last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
74
+ Sequence of hidden-states at the output of the last layer of the model.
75
+ pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`):
76
+ Average of the last layer hidden states of the patch tokens (excluding the *[CLS]* token) if
77
+ *config.use_mean_pooling* is set to True. If set to False, then the final hidden state of the *[CLS]* token
78
+ will be returned.
79
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
80
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
81
+ shape `(batch_size, sequence_length, hidden_size)`.
82
+
83
+ Hidden-states of the model at the output of each layer plus the initial embedding outputs.
84
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
85
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
86
+ sequence_length)`.
87
+
88
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
89
+ heads.
90
+ """
91
+
92
+
93
+ def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
94
+ """
95
+ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
96
+
97
+ Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
98
+ however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
99
+ See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
100
+ layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
101
+ argument.
102
+ """
103
+ if drop_prob == 0.0 or not training:
104
+ return input
105
+ keep_prob = 1 - drop_prob
106
+ shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
107
+ random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
108
+ random_tensor.floor_() # binarize
109
+ output = input.div(keep_prob) * random_tensor
110
+ return output
111
+
112
+
113
+ class BeitDropPath(nn.Module):
114
+ """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
115
+
116
+ def __init__(self, drop_prob: Optional[float] = None) -> None:
117
+ super().__init__()
118
+ self.drop_prob = drop_prob
119
+
120
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
121
+ return drop_path(hidden_states, self.drop_prob, self.training)
122
+
123
+ def extra_repr(self) -> str:
124
+ return "p={}".format(self.drop_prob)
125
+
126
+
127
+ # Based on timm implementation, which can be found here:
128
+ # https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
129
+ class BeitEmbeddings(nn.Module):
130
+ """
131
+ Construct the CLS token, position and patch embeddings. Optionally, also the mask token.
132
+
133
+ """
134
+
135
+ def __init__(self, config: BeitConfig) -> None:
136
+ super().__init__()
137
+
138
+ self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
139
+ if config.use_mask_token:
140
+ self.mask_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
141
+ else:
142
+ self.mask_token = None
143
+ self.patch_embeddings = BeitPatchEmbeddings(config)
144
+ num_patches = self.patch_embeddings.num_patches
145
+ if config.use_absolute_position_embeddings:
146
+ self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.hidden_size))
147
+ else:
148
+ self.position_embeddings = None
149
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
150
+
151
+ def forward(self, pixel_values: torch.Tensor, bool_masked_pos: Optional[torch.BoolTensor] = None) -> torch.Tensor:
152
+ embeddings, (patch_height, patch_width) = self.patch_embeddings(
153
+ pixel_values, self.position_embeddings[:, 1:, :] if self.position_embeddings is not None else None
154
+ )
155
+ batch_size, seq_len, _ = embeddings.size()
156
+
157
+ if bool_masked_pos is not None:
158
+ mask_tokens = self.mask_token.expand(batch_size, seq_len, -1)
159
+ # replace the masked visual tokens by mask_tokens
160
+ w = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens)
161
+ embeddings = embeddings * (1 - w) + mask_tokens * w
162
+
163
+ cls_tokens = self.cls_token.expand(batch_size, -1, -1)
164
+ if self.position_embeddings is not None:
165
+ cls_tokens = cls_tokens + self.position_embeddings[:, :1, :]
166
+
167
+ embeddings = torch.cat((cls_tokens, embeddings), dim=1)
168
+
169
+ embeddings = self.dropout(embeddings)
170
+
171
+ return embeddings, (patch_height, patch_width)
172
+
173
+
174
+ class BeitPatchEmbeddings(nn.Module):
175
+ """
176
+ This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
177
+ `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
178
+ Transformer.
179
+ """
180
+
181
+ def __init__(self, config):
182
+ super().__init__()
183
+ image_size, patch_size = config.image_size, config.patch_size
184
+ num_channels, hidden_size = config.num_channels, config.hidden_size
185
+
186
+ image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
187
+ patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
188
+ num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
189
+ patch_shape = (image_size[0] // patch_size[0], image_size[1] // patch_size[1])
190
+ self.image_size = image_size
191
+ self.patch_size = patch_size
192
+ self.num_channels = num_channels
193
+ self.num_patches = num_patches
194
+ self.patch_shape = patch_shape
195
+
196
+ self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size)
197
+
198
+ def forward(self, pixel_values: torch.Tensor, position_embedding: Optional[torch.Tensor] = None) -> torch.Tensor:
199
+ batch_size, num_channels, height, width = pixel_values.shape
200
+ if num_channels != self.num_channels:
201
+ raise ValueError(
202
+ "Make sure that the channel dimension of the pixel values match with the one set in the configuration."
203
+ )
204
+
205
+ embeddings = self.projection(pixel_values)
206
+ patch_height, patch_width = embeddings.shape[2], embeddings.shape[3]
207
+
208
+ if position_embedding is not None:
209
+ # interpolate the position embedding to the corresponding size
210
+ position_embedding = position_embedding.view(1, self.patch_shape[0], self.patch_shape[1], -1).permute(
211
+ 0, 3, 1, 2
212
+ )
213
+ position_embedding = nn.functional.interpolate(
214
+ position_embedding, size=(patch_height, patch_width), mode="bicubic"
215
+ )
216
+ embeddings = embeddings + position_embedding
217
+
218
+ embeddings = embeddings.flatten(2).transpose(1, 2)
219
+
220
+ return embeddings, (patch_height, patch_width)
221
+
222
+
223
+ class BeitSelfAttention(nn.Module):
224
+ def __init__(self, config: BeitConfig, window_size: Optional[tuple] = None) -> None:
225
+ super().__init__()
226
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
227
+ raise ValueError(
228
+ f"The hidden size {config.hidden_size,} is not a multiple of the number of attention "
229
+ f"heads {config.num_attention_heads}."
230
+ )
231
+
232
+ self.num_attention_heads = config.num_attention_heads
233
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
234
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
235
+
236
+ self.query = nn.Linear(config.hidden_size, self.all_head_size)
237
+ self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=False)
238
+ self.value = nn.Linear(config.hidden_size, self.all_head_size)
239
+
240
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
241
+
242
+ if window_size:
243
+ self.relative_position_bias = BeitRelativePositionBias(config, window_size=window_size)
244
+ else:
245
+ self.relative_position_bias = None
246
+
247
+ def transpose_for_scores(self, x):
248
+ new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
249
+ x = x.view(*new_x_shape)
250
+ return x.permute(0, 2, 1, 3)
251
+
252
+ def forward(
253
+ self,
254
+ hidden_states: torch.Tensor,
255
+ head_mask: Optional[torch.Tensor] = None,
256
+ output_attentions: bool = False,
257
+ relative_position_bias: Optional["BeitRelativePositionBias"] = None,
258
+ ) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]:
259
+ mixed_query_layer = self.query(hidden_states)
260
+
261
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
262
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
263
+ query_layer = self.transpose_for_scores(mixed_query_layer)
264
+
265
+ # Take the dot product between "query" and "key" to get the raw attention scores.
266
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
267
+
268
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
269
+
270
+ # Add relative position bias if present.
271
+ if self.relative_position_bias is not None:
272
+ attention_scores = attention_scores + self.relative_position_bias().unsqueeze(0)
273
+
274
+ # Add shared relative position bias if provided.
275
+ if relative_position_bias is not None:
276
+ attention_scores = attention_scores + relative_position_bias
277
+
278
+ # Normalize the attention scores to probabilities.
279
+ attention_probs = nn.functional.softmax(attention_scores, dim=-1)
280
+
281
+ # This is actually dropping out entire tokens to attend to, which might
282
+ # seem a bit unusual, but is taken from the original Transformer paper.
283
+ attention_probs = self.dropout(attention_probs)
284
+
285
+ # Mask heads if we want to
286
+ if head_mask is not None:
287
+ attention_probs = attention_probs * head_mask
288
+
289
+ context_layer = torch.matmul(attention_probs, value_layer)
290
+
291
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
292
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
293
+ context_layer = context_layer.view(*new_context_layer_shape)
294
+
295
+ outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
296
+
297
+ return outputs
298
+
299
+
300
+ class BeitSelfOutput(nn.Module):
301
+ """
302
+ The residual connection is defined in BeitLayer instead of here (as is the case with other models), due to the
303
+ layernorm applied before each block.
304
+ """
305
+
306
+ def __init__(self, config: BeitConfig) -> None:
307
+ super().__init__()
308
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
309
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
310
+
311
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor, gamma=None) -> torch.Tensor:
312
+ hidden_states = self.dense(hidden_states)
313
+ hidden_states = self.dropout(hidden_states)
314
+
315
+ return hidden_states
316
+
317
+
318
+ class BeitAttention(nn.Module):
319
+ def __init__(self, config: BeitConfig, window_size: Optional[tuple] = None) -> None:
320
+ super().__init__()
321
+ self.attention = BeitSelfAttention(config, window_size=window_size)
322
+ self.output = BeitSelfOutput(config)
323
+ self.pruned_heads = set()
324
+
325
+ def prune_heads(self, heads):
326
+ if len(heads) == 0:
327
+ return
328
+ heads, index = find_pruneable_heads_and_indices(
329
+ heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
330
+ )
331
+
332
+ # Prune linear layers
333
+ self.attention.query = prune_linear_layer(self.attention.query, index)
334
+ self.attention.key = prune_linear_layer(self.attention.key, index)
335
+ self.attention.value = prune_linear_layer(self.attention.value, index)
336
+ self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
337
+
338
+ # Update hyper params and store pruned heads
339
+ self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
340
+ self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
341
+ self.pruned_heads = self.pruned_heads.union(heads)
342
+
343
+ def forward(
344
+ self,
345
+ hidden_states: torch.Tensor,
346
+ head_mask: Optional[torch.Tensor] = None,
347
+ output_attentions: bool = False,
348
+ relative_position_bias: Optional["BeitRelativePositionBias"] = None,
349
+ ) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]:
350
+ self_outputs = self.attention(hidden_states, head_mask, output_attentions, relative_position_bias)
351
+
352
+ attention_output = self.output(self_outputs[0], hidden_states)
353
+
354
+ outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
355
+ return outputs
356
+
357
+
358
+ class BeitIntermediate(nn.Module):
359
+ def __init__(self, config: BeitConfig) -> None:
360
+ super().__init__()
361
+ self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
362
+ if isinstance(config.hidden_act, str):
363
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
364
+ else:
365
+ self.intermediate_act_fn = config.hidden_act
366
+
367
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
368
+ hidden_states = self.dense(hidden_states)
369
+ hidden_states = self.intermediate_act_fn(hidden_states)
370
+
371
+ return hidden_states
372
+
373
+
374
+ class BeitOutput(nn.Module):
375
+ def __init__(self, config: BeitConfig) -> None:
376
+ super().__init__()
377
+ self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
378
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
379
+
380
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
381
+ hidden_states = self.dense(hidden_states)
382
+ hidden_states = self.dropout(hidden_states)
383
+
384
+ return hidden_states
385
+
386
+
387
+ class BeitLayer(nn.Module):
388
+ """This corresponds to the Block class in the timm implementation."""
389
+
390
+ def __init__(self, config: BeitConfig, window_size: Optional[tuple] = None, drop_path_rate: float = 0.0) -> None:
391
+ super().__init__()
392
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
393
+ self.seq_len_dim = 1
394
+ self.attention = BeitAttention(config, window_size=window_size)
395
+ self.intermediate = BeitIntermediate(config)
396
+ self.output = BeitOutput(config)
397
+ self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
398
+ self.drop_path = BeitDropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()
399
+ self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
400
+
401
+ init_values = config.layer_scale_init_value
402
+ if init_values > 0:
403
+ self.lambda_1 = nn.Parameter(init_values * torch.ones((config.hidden_size)), requires_grad=True)
404
+ self.lambda_2 = nn.Parameter(init_values * torch.ones((config.hidden_size)), requires_grad=True)
405
+ else:
406
+ self.lambda_1, self.lambda_2 = None, None
407
+
408
+ def forward(
409
+ self,
410
+ hidden_states: torch.Tensor,
411
+ head_mask: Optional[torch.Tensor] = None,
412
+ output_attentions: bool = False,
413
+ relative_position_bias: Optional["BeitRelativePositionBias"] = None,
414
+ ) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]:
415
+ self_attention_outputs = self.attention(
416
+ self.layernorm_before(hidden_states), # in BEiT, layernorm is applied before self-attention
417
+ head_mask,
418
+ output_attentions=output_attentions,
419
+ relative_position_bias=relative_position_bias,
420
+ )
421
+ attention_output = self_attention_outputs[0]
422
+ outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
423
+
424
+ # apply lambda_1 if present
425
+ if self.lambda_1 is not None:
426
+ attention_output = self.lambda_1 * attention_output
427
+
428
+ # first residual connection
429
+ hidden_states = self.drop_path(attention_output) + hidden_states
430
+
431
+ # in BEiT, layernorm is also applied after self-attention
432
+ layer_output = self.layernorm_after(hidden_states)
433
+
434
+ layer_output = self.intermediate(layer_output)
435
+ layer_output = self.output(layer_output)
436
+
437
+ if self.lambda_2 is not None:
438
+ layer_output = self.lambda_2 * layer_output
439
+
440
+ # second residual connection
441
+ layer_output = self.drop_path(layer_output) + hidden_states
442
+
443
+ outputs = (layer_output,) + outputs
444
+
445
+ return outputs
446
+
447
+
448
+ class BeitRelativePositionBias(nn.Module):
449
+ def __init__(self, config: BeitConfig, window_size: tuple) -> None:
450
+ super().__init__()
451
+ self.window_size = window_size
452
+ self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
453
+ self.relative_position_bias_table = nn.Parameter(
454
+ torch.zeros(self.num_relative_distance, config.num_attention_heads)
455
+ ) # 2*Wh-1 * 2*Ww-1, nH
456
+ # cls to token & token 2 cls & cls to cls
457
+
458
+ # get pair-wise relative position index for each token inside the window
459
+ coords_h = torch.arange(window_size[0])
460
+ coords_w = torch.arange(window_size[1])
461
+ coords = torch.stack(meshgrid([coords_h, coords_w], indexing="ij")) # 2, Wh, Ww
462
+ coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
463
+ relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
464
+ relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
465
+ relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
466
+ relative_coords[:, :, 1] += window_size[1] - 1
467
+ relative_coords[:, :, 0] *= 2 * window_size[1] - 1
468
+ relative_position_index = torch.zeros(
469
+ size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype
470
+ )
471
+ relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
472
+ relative_position_index[0, 0:] = self.num_relative_distance - 3
473
+ relative_position_index[0:, 0] = self.num_relative_distance - 2
474
+ relative_position_index[0, 0] = self.num_relative_distance - 1
475
+
476
+ self.register_buffer("relative_position_index", relative_position_index, persistent=False)
477
+
478
+ def forward(self) -> torch.Tensor:
479
+ relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
480
+ self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1
481
+ ) # Wh*Ww,Wh*Ww,nH
482
+
483
+ return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
484
+
485
+
486
+ class BeitEncoder(nn.Module):
487
+ def __init__(self, config: BeitConfig, window_size: Optional[tuple] = None) -> None:
488
+ super().__init__()
489
+ self.config = config
490
+ if config.use_shared_relative_position_bias:
491
+ self.relative_position_bias = BeitRelativePositionBias(config, window_size=window_size)
492
+ else:
493
+ self.relative_position_bias = None
494
+
495
+ # stochastic depth decay rule
496
+ dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
497
+ self.layer = nn.ModuleList(
498
+ [
499
+ BeitLayer(
500
+ config,
501
+ window_size=window_size if config.use_relative_position_bias else None,
502
+ drop_path_rate=dpr[i],
503
+ )
504
+ for i in range(config.num_hidden_layers)
505
+ ]
506
+ )
507
+ self.gradient_checkpointing = False
508
+
509
+ def forward(
510
+ self,
511
+ hidden_states: torch.Tensor,
512
+ head_mask: Optional[torch.Tensor] = None,
513
+ output_attentions: bool = False,
514
+ output_hidden_states: bool = False,
515
+ return_dict: bool = True,
516
+ ) -> Union[tuple, BaseModelOutput]:
517
+ all_hidden_states = () if output_hidden_states else None
518
+ all_self_attentions = () if output_attentions else None
519
+
520
+ for i, layer_module in enumerate(self.layer):
521
+ if output_hidden_states:
522
+ all_hidden_states = all_hidden_states + (hidden_states,)
523
+
524
+ layer_head_mask = head_mask[i] if head_mask is not None else None
525
+
526
+ if self.gradient_checkpointing and self.training:
527
+ layer_outputs = self._gradient_checkpointing_func(
528
+ layer_module.__call__,
529
+ hidden_states,
530
+ layer_head_mask,
531
+ output_attentions,
532
+ )
533
+ else:
534
+ relative_position_bias = (
535
+ self.relative_position_bias() if self.relative_position_bias is not None else None
536
+ )
537
+ layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions, relative_position_bias)
538
+
539
+ hidden_states = layer_outputs[0]
540
+
541
+ if output_attentions:
542
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
543
+
544
+ if output_hidden_states:
545
+ all_hidden_states = all_hidden_states + (hidden_states,)
546
+
547
+ if not return_dict:
548
+ return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
549
+ return BaseModelOutput(
550
+ last_hidden_state=hidden_states,
551
+ hidden_states=all_hidden_states,
552
+ attentions=all_self_attentions,
553
+ )
554
+
555
+
556
+ class BeitPreTrainedModel(PreTrainedModel):
557
+ """
558
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
559
+ models.
560
+ """
561
+
562
+ config_class = BeitConfig
563
+ base_model_prefix = "beit"
564
+ main_input_name = "pixel_values"
565
+ supports_gradient_checkpointing = True
566
+
567
+ def _init_weights(self, module):
568
+ """Initialize the weights"""
569
+ if isinstance(module, (nn.Linear, nn.Conv2d, nn.ConvTranspose2d)):
570
+ # Slightly different from the TF version which uses truncated_normal for initialization
571
+ # cf https://github.com/pytorch/pytorch/pull/5617
572
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
573
+ if module.bias is not None:
574
+ module.bias.data.zero_()
575
+ elif isinstance(module, nn.Embedding):
576
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
577
+ if module.padding_idx is not None:
578
+ module.weight.data[module.padding_idx].zero_()
579
+ elif isinstance(module, nn.LayerNorm):
580
+ module.bias.data.zero_()
581
+ module.weight.data.fill_(1.0)
582
+
583
+
584
+ BEIT_START_DOCSTRING = r"""
585
+ This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
586
+ as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
587
+ behavior.
588
+
589
+ Parameters:
590
+ config ([`BeitConfig`]): Model configuration class with all the parameters of the model.
591
+ Initializing with a config file does not load the weights associated with the model, only the
592
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
593
+ """
594
+
595
+ BEIT_INPUTS_DOCSTRING = r"""
596
+ Args:
597
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
598
+ Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
599
+ [`BeitImageProcessor.__call__`] for details.
600
+
601
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
602
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
603
+
604
+ - 1 indicates the head is **not masked**,
605
+ - 0 indicates the head is **masked**.
606
+
607
+ output_attentions (`bool`, *optional*):
608
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
609
+ tensors for more detail.
610
+ output_hidden_states (`bool`, *optional*):
611
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
612
+ more detail.
613
+ return_dict (`bool`, *optional*):
614
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
615
+ """
616
+
617
+
618
+ @add_start_docstrings(
619
+ "The bare Beit Model transformer outputting raw hidden-states without any specific head on top.",
620
+ BEIT_START_DOCSTRING,
621
+ )
622
+ class BeitModel(BeitPreTrainedModel):
623
+ def __init__(self, config: BeitConfig, add_pooling_layer: bool = True) -> None:
624
+ super().__init__(config)
625
+ self.config = config
626
+
627
+ self.embeddings = BeitEmbeddings(config)
628
+ self.encoder = BeitEncoder(config, window_size=self.embeddings.patch_embeddings.patch_shape)
629
+
630
+ self.layernorm = (
631
+ nn.Identity() if config.use_mean_pooling else nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
632
+ )
633
+ self.pooler = BeitPooler(config) if add_pooling_layer else None
634
+
635
+ # Initialize weights and apply final processing
636
+ self.post_init()
637
+
638
+ def get_input_embeddings(self):
639
+ return self.embeddings.patch_embeddings
640
+
641
+ def _prune_heads(self, heads_to_prune):
642
+ """
643
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
644
+ class PreTrainedModel
645
+ """
646
+ for layer, heads in heads_to_prune.items():
647
+ self.encoder.layer[layer].attention.prune_heads(heads)
648
+
649
+ @add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING)
650
+ @add_code_sample_docstrings(
651
+ checkpoint=_CHECKPOINT_FOR_DOC,
652
+ output_type=BeitModelOutputWithPooling,
653
+ config_class=_CONFIG_FOR_DOC,
654
+ modality="vision",
655
+ expected_output=_EXPECTED_OUTPUT_SHAPE,
656
+ )
657
+ def forward(
658
+ self,
659
+ pixel_values: Optional[torch.Tensor] = None,
660
+ bool_masked_pos: Optional[torch.BoolTensor] = None,
661
+ head_mask: Optional[torch.Tensor] = None,
662
+ output_attentions: Optional[bool] = None,
663
+ output_hidden_states: Optional[bool] = None,
664
+ return_dict: Optional[bool] = None,
665
+ ) -> Union[tuple, BeitModelOutputWithPooling]:
666
+ r"""
667
+ bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`, *optional*):
668
+ Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
669
+ """
670
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
671
+ output_hidden_states = (
672
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
673
+ )
674
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
675
+
676
+ if pixel_values is None:
677
+ raise ValueError("You have to specify pixel_values")
678
+
679
+ # Prepare head mask if needed
680
+ # 1.0 in head_mask indicate we keep the head
681
+ # attention_probs has shape bsz x n_heads x N x N
682
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
683
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
684
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
685
+
686
+ embedding_output, (patch_height, patch_width) = self.embeddings(pixel_values, bool_masked_pos)
687
+
688
+ encoder_outputs = self.encoder(
689
+ embedding_output,
690
+ head_mask=head_mask,
691
+ output_attentions=output_attentions,
692
+ output_hidden_states=output_hidden_states,
693
+ return_dict=return_dict,
694
+ )
695
+ sequence_output = encoder_outputs[0]
696
+ sequence_output = self.layernorm(sequence_output)
697
+ pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
698
+
699
+ if not return_dict:
700
+ head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,)
701
+ return head_outputs + encoder_outputs[1:]
702
+
703
+ return BeitModelOutputWithPooling(
704
+ last_hidden_state=sequence_output,
705
+ pooler_output=pooled_output,
706
+ hidden_states=encoder_outputs.hidden_states,
707
+ attentions=encoder_outputs.attentions,
708
+ )
709
+
710
+
711
+ class BeitPooler(nn.Module):
712
+ def __init__(self, config: BeitConfig) -> None:
713
+ super().__init__()
714
+ self.layernorm = (
715
+ nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) if config.use_mean_pooling else None
716
+ )
717
+
718
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
719
+ if self.layernorm is not None:
720
+ # Mean pool the final hidden states of the patch tokens
721
+ patch_tokens = hidden_states[:, 1:, :]
722
+ pooled_output = self.layernorm(patch_tokens.mean(1))
723
+ else:
724
+ # Pool by simply taking the final hidden state of the [CLS] token
725
+ pooled_output = hidden_states[:, 0]
726
+
727
+ return pooled_output
728
+
729
+
730
+ @add_start_docstrings(
731
+ """Beit Model transformer with a 'language' modeling head on top. BEiT does masked image modeling by predicting
732
+ visual tokens of a Vector-Quantize Variational Autoencoder (VQ-VAE), whereas other vision models like ViT and DeiT
733
+ predict RGB pixel values. As a result, this class is incompatible with [`AutoModelForMaskedImageModeling`], so you
734
+ will need to use [`BeitForMaskedImageModeling`] directly if you wish to do masked image modeling with BEiT.""",
735
+ BEIT_START_DOCSTRING,
736
+ )
737
+ class BeitForMaskedImageModeling(BeitPreTrainedModel):
738
+ def __init__(self, config: BeitConfig) -> None:
739
+ super().__init__(config)
740
+
741
+ self.num_labels = config.num_labels
742
+ self.beit = BeitModel(config, add_pooling_layer=False)
743
+
744
+ # Classifier head
745
+ self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
746
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size)
747
+
748
+ # Initialize weights and apply final processing
749
+ self.post_init()
750
+
751
+ @add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING)
752
+ @replace_return_docstrings(output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC)
753
+ def forward(
754
+ self,
755
+ pixel_values: Optional[torch.Tensor] = None,
756
+ bool_masked_pos: Optional[torch.BoolTensor] = None,
757
+ head_mask: Optional[torch.Tensor] = None,
758
+ labels: Optional[torch.Tensor] = None,
759
+ output_attentions: Optional[bool] = None,
760
+ output_hidden_states: Optional[bool] = None,
761
+ return_dict: Optional[bool] = None,
762
+ ) -> Union[tuple, MaskedLMOutput]:
763
+ r"""
764
+ bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`):
765
+ Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
766
+
767
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
768
+ Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
769
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
770
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
771
+
772
+ Returns:
773
+
774
+ Examples:
775
+
776
+ ```python
777
+ >>> from transformers import AutoImageProcessor, BeitForMaskedImageModeling
778
+ >>> import torch
779
+ >>> from PIL import Image
780
+ >>> import requests
781
+
782
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
783
+ >>> image = Image.open(requests.get(url, stream=True).raw)
784
+
785
+ >>> image_processor = AutoImageProcessor.from_pretrained("microsoft/beit-base-patch16-224-pt22k")
786
+ >>> model = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k")
787
+
788
+ >>> num_patches = (model.config.image_size // model.config.patch_size) ** 2
789
+ >>> pixel_values = image_processor(images=image, return_tensors="pt").pixel_values
790
+ >>> # create random boolean mask of shape (batch_size, num_patches)
791
+ >>> bool_masked_pos = torch.randint(low=0, high=2, size=(1, num_patches)).bool()
792
+
793
+ >>> outputs = model(pixel_values, bool_masked_pos=bool_masked_pos)
794
+ >>> loss, logits = outputs.loss, outputs.logits
795
+ >>> list(logits.shape)
796
+ [1, 196, 8192]
797
+ ```"""
798
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
799
+
800
+ outputs = self.beit(
801
+ pixel_values,
802
+ bool_masked_pos=bool_masked_pos,
803
+ head_mask=head_mask,
804
+ output_attentions=output_attentions,
805
+ output_hidden_states=output_hidden_states,
806
+ return_dict=return_dict,
807
+ )
808
+
809
+ sequence_output = outputs[0]
810
+ sequence_output = self.layernorm(sequence_output)
811
+ prediction_scores = self.lm_head(sequence_output[:, 1:])
812
+
813
+ masked_lm_loss = None
814
+ if labels is not None:
815
+ loss_fct = CrossEntropyLoss() # -100 index = padding token
816
+ masked_lm_loss = loss_fct(prediction_scores[bool_masked_pos], labels)
817
+
818
+ if not return_dict:
819
+ output = (prediction_scores,) + outputs[1:]
820
+ return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
821
+
822
+ return MaskedLMOutput(
823
+ loss=masked_lm_loss,
824
+ logits=prediction_scores,
825
+ hidden_states=outputs.hidden_states,
826
+ attentions=outputs.attentions,
827
+ )
828
+
829
+
830
+ @add_start_docstrings(
831
+ """
832
+ Beit Model transformer with an image classification head on top (a linear layer on top of the average of the final
833
+ hidden states of the patch tokens) e.g. for ImageNet.
834
+ """,
835
+ BEIT_START_DOCSTRING,
836
+ )
837
+ class BeitForImageClassification(BeitPreTrainedModel):
838
+ def __init__(self, config: BeitConfig) -> None:
839
+ super().__init__(config)
840
+
841
+ self.num_labels = config.num_labels
842
+ self.beit = BeitModel(config, add_pooling_layer=True)
843
+
844
+ # Classifier head
845
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity()
846
+
847
+ # Initialize weights and apply final processing
848
+ self.post_init()
849
+
850
+ @add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING)
851
+ @add_code_sample_docstrings(
852
+ checkpoint=_IMAGE_CLASS_CHECKPOINT,
853
+ output_type=ImageClassifierOutput,
854
+ config_class=_CONFIG_FOR_DOC,
855
+ expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
856
+ )
857
+ def forward(
858
+ self,
859
+ pixel_values: Optional[torch.Tensor] = None,
860
+ head_mask: Optional[torch.Tensor] = None,
861
+ labels: Optional[torch.Tensor] = None,
862
+ output_attentions: Optional[bool] = None,
863
+ output_hidden_states: Optional[bool] = None,
864
+ return_dict: Optional[bool] = None,
865
+ ) -> Union[tuple, ImageClassifierOutput]:
866
+ r"""
867
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
868
+ Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
869
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
870
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
871
+ """
872
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
873
+ outputs = self.beit(
874
+ pixel_values,
875
+ head_mask=head_mask,
876
+ output_attentions=output_attentions,
877
+ output_hidden_states=output_hidden_states,
878
+ return_dict=return_dict,
879
+ )
880
+
881
+ pooled_output = outputs.pooler_output if return_dict else outputs[1]
882
+
883
+ logits = self.classifier(pooled_output)
884
+
885
+ loss = None
886
+ if labels is not None:
887
+ if self.config.problem_type is None:
888
+ if self.num_labels == 1:
889
+ self.config.problem_type = "regression"
890
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
891
+ self.config.problem_type = "single_label_classification"
892
+ else:
893
+ self.config.problem_type = "multi_label_classification"
894
+
895
+ if self.config.problem_type == "regression":
896
+ loss_fct = MSELoss()
897
+ if self.num_labels == 1:
898
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
899
+ else:
900
+ loss = loss_fct(logits, labels)
901
+ elif self.config.problem_type == "single_label_classification":
902
+ loss_fct = CrossEntropyLoss()
903
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
904
+ elif self.config.problem_type == "multi_label_classification":
905
+ loss_fct = BCEWithLogitsLoss()
906
+ loss = loss_fct(logits, labels)
907
+ if not return_dict:
908
+ output = (logits,) + outputs[2:]
909
+ return ((loss,) + output) if loss is not None else output
910
+
911
+ return ImageClassifierOutput(
912
+ loss=loss,
913
+ logits=logits,
914
+ hidden_states=outputs.hidden_states,
915
+ attentions=outputs.attentions,
916
+ )
917
+
918
+
919
+ class BeitConvModule(nn.Module):
920
+ """
921
+ A convolutional block that bundles conv/norm/activation layers. This block simplifies the usage of convolution
922
+ layers, which are commonly used with a norm layer (e.g., BatchNorm) and activation layer (e.g., ReLU).
923
+
924
+ Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation.
925
+ """
926
+
927
+ def __init__(
928
+ self,
929
+ in_channels: int,
930
+ out_channels: int,
931
+ kernel_size: Union[int, Tuple[int, int]],
932
+ padding: Union[int, Tuple[int, int], str] = 0,
933
+ bias: bool = False,
934
+ dilation: Union[int, Tuple[int, int]] = 1,
935
+ ) -> None:
936
+ super().__init__()
937
+ self.conv = nn.Conv2d(
938
+ in_channels=in_channels,
939
+ out_channels=out_channels,
940
+ kernel_size=kernel_size,
941
+ padding=padding,
942
+ bias=bias,
943
+ dilation=dilation,
944
+ )
945
+ self.bn = nn.BatchNorm2d(out_channels)
946
+ self.activation = nn.ReLU()
947
+
948
+ def forward(self, input: torch.Tensor) -> torch.Tensor:
949
+ output = self.conv(input)
950
+ output = self.bn(output)
951
+ output = self.activation(output)
952
+
953
+ return output
954
+
955
+
956
+ class BeitPyramidPoolingBlock(nn.Module):
957
+ def __init__(self, pool_scale: int, in_channels: int, channels: int) -> None:
958
+ super().__init__()
959
+ self.layers = [
960
+ nn.AdaptiveAvgPool2d(pool_scale),
961
+ BeitConvModule(in_channels, channels, kernel_size=1),
962
+ ]
963
+ for i, layer in enumerate(self.layers):
964
+ self.add_module(str(i), layer)
965
+
966
+ def forward(self, input: torch.Tensor) -> torch.Tensor:
967
+ hidden_state = input
968
+ for layer in self.layers:
969
+ hidden_state = layer(hidden_state)
970
+ return hidden_state
971
+
972
+
973
+ class BeitPyramidPoolingModule(nn.Module):
974
+ """
975
+ Pyramid Pooling Module (PPM) used in PSPNet.
976
+
977
+ Args:
978
+ pool_scales (tuple[int]): Pooling scales used in Pooling Pyramid
979
+ Module.
980
+ in_channels (int): Input channels.
981
+ channels (int): Channels after modules, before conv_seg.
982
+ align_corners (bool): align_corners argument of F.interpolate.
983
+
984
+ Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation.
985
+ """
986
+
987
+ def __init__(self, pool_scales: Tuple[int, ...], in_channels: int, channels: int, align_corners: bool) -> None:
988
+ super().__init__()
989
+ self.pool_scales = pool_scales
990
+ self.align_corners = align_corners
991
+ self.in_channels = in_channels
992
+ self.channels = channels
993
+ self.blocks = []
994
+ for i, pool_scale in enumerate(pool_scales):
995
+ block = BeitPyramidPoolingBlock(pool_scale=pool_scale, in_channels=in_channels, channels=channels)
996
+ self.blocks.append(block)
997
+ self.add_module(str(i), block)
998
+
999
+ def forward(self, x: torch.Tensor) -> List[torch.Tensor]:
1000
+ ppm_outs = []
1001
+ for ppm in self.blocks:
1002
+ ppm_out = ppm(x)
1003
+ upsampled_ppm_out = nn.functional.interpolate(
1004
+ ppm_out, size=x.size()[2:], mode="bilinear", align_corners=self.align_corners
1005
+ )
1006
+ ppm_outs.append(upsampled_ppm_out)
1007
+ return ppm_outs
1008
+
1009
+
1010
+ class BeitUperHead(nn.Module):
1011
+ """
1012
+ Unified Perceptual Parsing for Scene Understanding. This head is the implementation of
1013
+ [UPerNet](https://arxiv.org/abs/1807.10221).
1014
+
1015
+ Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation.
1016
+ """
1017
+
1018
+ def __init__(self, config: BeitConfig) -> None:
1019
+ super().__init__()
1020
+
1021
+ self.pool_scales = config.pool_scales # e.g. (1, 2, 3, 6)
1022
+ self.in_channels = [config.hidden_size] * 4 # e.g. [768, 768, 768, 768]
1023
+ self.channels = config.hidden_size
1024
+ self.align_corners = False
1025
+ self.classifier = nn.Conv2d(self.channels, config.num_labels, kernel_size=1)
1026
+
1027
+ # PSP Module
1028
+ self.psp_modules = BeitPyramidPoolingModule(
1029
+ self.pool_scales,
1030
+ self.in_channels[-1],
1031
+ self.channels,
1032
+ align_corners=self.align_corners,
1033
+ )
1034
+ self.bottleneck = BeitConvModule(
1035
+ self.in_channels[-1] + len(self.pool_scales) * self.channels,
1036
+ self.channels,
1037
+ kernel_size=3,
1038
+ padding=1,
1039
+ )
1040
+ # FPN Module
1041
+ self.lateral_convs = nn.ModuleList()
1042
+ self.fpn_convs = nn.ModuleList()
1043
+ for in_channels in self.in_channels[:-1]: # skip the top layer
1044
+ l_conv = BeitConvModule(in_channels, self.channels, kernel_size=1)
1045
+ fpn_conv = BeitConvModule(self.channels, self.channels, kernel_size=3, padding=1)
1046
+ self.lateral_convs.append(l_conv)
1047
+ self.fpn_convs.append(fpn_conv)
1048
+
1049
+ self.fpn_bottleneck = BeitConvModule(
1050
+ len(self.in_channels) * self.channels,
1051
+ self.channels,
1052
+ kernel_size=3,
1053
+ padding=1,
1054
+ )
1055
+
1056
+ def psp_forward(self, inputs):
1057
+ x = inputs[-1]
1058
+ psp_outs = [x]
1059
+ psp_outs.extend(self.psp_modules(x))
1060
+ psp_outs = torch.cat(psp_outs, dim=1)
1061
+ output = self.bottleneck(psp_outs)
1062
+
1063
+ return output
1064
+
1065
+ def forward(self, encoder_hidden_states: torch.Tensor) -> torch.Tensor:
1066
+ # build laterals
1067
+ laterals = [lateral_conv(encoder_hidden_states[i]) for i, lateral_conv in enumerate(self.lateral_convs)]
1068
+
1069
+ laterals.append(self.psp_forward(encoder_hidden_states))
1070
+
1071
+ # build top-down path
1072
+ used_backbone_levels = len(laterals)
1073
+ for i in range(used_backbone_levels - 1, 0, -1):
1074
+ prev_shape = laterals[i - 1].shape[2:]
1075
+ laterals[i - 1] = laterals[i - 1] + nn.functional.interpolate(
1076
+ laterals[i], size=prev_shape, mode="bilinear", align_corners=self.align_corners
1077
+ )
1078
+
1079
+ # build outputs
1080
+ fpn_outs = [self.fpn_convs[i](laterals[i]) for i in range(used_backbone_levels - 1)]
1081
+ # append psp feature
1082
+ fpn_outs.append(laterals[-1])
1083
+
1084
+ for i in range(used_backbone_levels - 1, 0, -1):
1085
+ fpn_outs[i] = nn.functional.interpolate(
1086
+ fpn_outs[i], size=fpn_outs[0].shape[2:], mode="bilinear", align_corners=self.align_corners
1087
+ )
1088
+ fpn_outs = torch.cat(fpn_outs, dim=1)
1089
+ output = self.fpn_bottleneck(fpn_outs)
1090
+ output = self.classifier(output)
1091
+
1092
+ return output
1093
+
1094
+
1095
+ class BeitFCNHead(nn.Module):
1096
+ """
1097
+ Fully Convolution Networks for Semantic Segmentation. This head is implemented of
1098
+ [FCNNet](https://arxiv.org/abs/1411.4038>).
1099
+
1100
+ Args:
1101
+ config (BeitConfig): Configuration.
1102
+ in_channels
1103
+ kernel_size (int): The kernel size for convs in the head. Default: 3.
1104
+ dilation (int): The dilation rate for convs in the head. Default: 1.
1105
+
1106
+
1107
+ Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation.
1108
+ """
1109
+
1110
+ def __init__(
1111
+ self, config: BeitConfig, in_index: int = 2, kernel_size: int = 3, dilation: Union[int, Tuple[int, int]] = 1
1112
+ ) -> None:
1113
+ super().__init__()
1114
+ self.in_channels = config.hidden_size
1115
+ self.channels = config.auxiliary_channels
1116
+ self.num_convs = config.auxiliary_num_convs
1117
+ self.concat_input = config.auxiliary_concat_input
1118
+ self.in_index = in_index
1119
+
1120
+ conv_padding = (kernel_size // 2) * dilation
1121
+ convs = []
1122
+ convs.append(
1123
+ BeitConvModule(
1124
+ self.in_channels, self.channels, kernel_size=kernel_size, padding=conv_padding, dilation=dilation
1125
+ )
1126
+ )
1127
+ for i in range(self.num_convs - 1):
1128
+ convs.append(
1129
+ BeitConvModule(
1130
+ self.channels, self.channels, kernel_size=kernel_size, padding=conv_padding, dilation=dilation
1131
+ )
1132
+ )
1133
+ if self.num_convs == 0:
1134
+ self.convs = nn.Identity()
1135
+ else:
1136
+ self.convs = nn.Sequential(*convs)
1137
+ if self.concat_input:
1138
+ self.conv_cat = BeitConvModule(
1139
+ self.in_channels + self.channels, self.channels, kernel_size=kernel_size, padding=kernel_size // 2
1140
+ )
1141
+
1142
+ self.classifier = nn.Conv2d(self.channels, config.num_labels, kernel_size=1)
1143
+
1144
+ def forward(self, encoder_hidden_states: torch.Tensor) -> torch.Tensor:
1145
+ # just take the relevant feature maps
1146
+ hidden_states = encoder_hidden_states[self.in_index]
1147
+ output = self.convs(hidden_states)
1148
+ if self.concat_input:
1149
+ output = self.conv_cat(torch.cat([hidden_states, output], dim=1))
1150
+ output = self.classifier(output)
1151
+ return output
1152
+
1153
+
1154
+ @add_start_docstrings(
1155
+ """
1156
+ Beit Model transformer with a semantic segmentation head on top e.g. for ADE20k, CityScapes.
1157
+ """,
1158
+ BEIT_START_DOCSTRING,
1159
+ )
1160
+ class BeitForSemanticSegmentation(BeitPreTrainedModel):
1161
+ def __init__(self, config: BeitConfig) -> None:
1162
+ super().__init__(config)
1163
+
1164
+ self.num_labels = config.num_labels
1165
+ self.beit = BeitModel(config, add_pooling_layer=False)
1166
+
1167
+ # FPNs
1168
+ if len(self.config.out_indices) != 4:
1169
+ raise ValueError(
1170
+ "BeitForSemanticSegmentation requires config.out_indices to be a list of 4 integers, "
1171
+ "specifying which features to use from the backbone. One can use [3, 5, 7, 11] in case of "
1172
+ "a base-sized architecture."
1173
+ )
1174
+ self.fpn1 = nn.Sequential(
1175
+ nn.ConvTranspose2d(config.hidden_size, config.hidden_size, kernel_size=2, stride=2),
1176
+ nn.BatchNorm2d(config.hidden_size),
1177
+ nn.GELU(),
1178
+ nn.ConvTranspose2d(config.hidden_size, config.hidden_size, kernel_size=2, stride=2),
1179
+ )
1180
+ self.fpn2 = nn.Sequential(
1181
+ nn.ConvTranspose2d(config.hidden_size, config.hidden_size, kernel_size=2, stride=2),
1182
+ )
1183
+ self.fpn3 = nn.Identity()
1184
+ self.fpn4 = nn.MaxPool2d(kernel_size=2, stride=2)
1185
+
1186
+ # Semantic segmentation head(s)
1187
+ self.decode_head = BeitUperHead(config)
1188
+ self.auxiliary_head = BeitFCNHead(config) if config.use_auxiliary_head else None
1189
+
1190
+ # Initialize weights and apply final processing
1191
+ self.post_init()
1192
+
1193
+ def compute_loss(self, logits, auxiliary_logits, labels):
1194
+ # upsample logits to the images' original size
1195
+ upsampled_logits = nn.functional.interpolate(
1196
+ logits, size=labels.shape[-2:], mode="bilinear", align_corners=False
1197
+ )
1198
+ if auxiliary_logits is not None:
1199
+ upsampled_auxiliary_logits = nn.functional.interpolate(
1200
+ auxiliary_logits, size=labels.shape[-2:], mode="bilinear", align_corners=False
1201
+ )
1202
+ # compute weighted loss
1203
+ loss_fct = CrossEntropyLoss(ignore_index=self.config.semantic_loss_ignore_index)
1204
+ main_loss = loss_fct(upsampled_logits, labels)
1205
+ loss = main_loss
1206
+ if auxiliary_logits is not None:
1207
+ auxiliary_loss = loss_fct(upsampled_auxiliary_logits, labels)
1208
+ loss += self.config.auxiliary_loss_weight * auxiliary_loss
1209
+
1210
+ return loss
1211
+
1212
+ @add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING)
1213
+ @replace_return_docstrings(output_type=SemanticSegmenterOutput, config_class=_CONFIG_FOR_DOC)
1214
+ def forward(
1215
+ self,
1216
+ pixel_values: Optional[torch.Tensor] = None,
1217
+ head_mask: Optional[torch.Tensor] = None,
1218
+ labels: Optional[torch.Tensor] = None,
1219
+ output_attentions: Optional[bool] = None,
1220
+ output_hidden_states: Optional[bool] = None,
1221
+ return_dict: Optional[bool] = None,
1222
+ ) -> Union[tuple, SemanticSegmenterOutput]:
1223
+ r"""
1224
+ labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*):
1225
+ Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ...,
1226
+ config.num_labels - 1]`. If `config.num_labels > 1`, a classification loss is computed (Cross-Entropy).
1227
+
1228
+ Returns:
1229
+
1230
+ Examples:
1231
+
1232
+ ```python
1233
+ >>> from transformers import AutoImageProcessor, BeitForSemanticSegmentation
1234
+ >>> from PIL import Image
1235
+ >>> import requests
1236
+
1237
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
1238
+ >>> image = Image.open(requests.get(url, stream=True).raw)
1239
+
1240
+ >>> image_processor = AutoImageProcessor.from_pretrained("microsoft/beit-base-finetuned-ade-640-640")
1241
+ >>> model = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640")
1242
+
1243
+ >>> inputs = image_processor(images=image, return_tensors="pt")
1244
+ >>> outputs = model(**inputs)
1245
+ >>> # logits are of shape (batch_size, num_labels, height, width)
1246
+ >>> logits = outputs.logits
1247
+ ```"""
1248
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1249
+ output_hidden_states = (
1250
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1251
+ )
1252
+
1253
+ outputs = self.beit(
1254
+ pixel_values,
1255
+ head_mask=head_mask,
1256
+ output_attentions=output_attentions,
1257
+ output_hidden_states=True, # we need the intermediate hidden states
1258
+ return_dict=return_dict,
1259
+ )
1260
+
1261
+ encoder_hidden_states = outputs.hidden_states if return_dict else outputs[1]
1262
+
1263
+ # only keep certain features, and reshape
1264
+ # note that we do +1 as the encoder_hidden_states also includes the initial embeddings
1265
+ features = [feature for idx, feature in enumerate(encoder_hidden_states) if idx + 1 in self.config.out_indices]
1266
+ batch_size = pixel_values.shape[0]
1267
+ patch_resolution = self.config.image_size // self.config.patch_size
1268
+ features = [
1269
+ x[:, 1:, :].permute(0, 2, 1).reshape(batch_size, -1, patch_resolution, patch_resolution) for x in features
1270
+ ]
1271
+
1272
+ # apply FPNs
1273
+ ops = [self.fpn1, self.fpn2, self.fpn3, self.fpn4]
1274
+ for i in range(len(features)):
1275
+ features[i] = ops[i](features[i])
1276
+
1277
+ logits = self.decode_head(features)
1278
+
1279
+ auxiliary_logits = None
1280
+ if self.auxiliary_head is not None:
1281
+ auxiliary_logits = self.auxiliary_head(features)
1282
+
1283
+ loss = None
1284
+ if labels is not None:
1285
+ if self.config.num_labels == 1:
1286
+ raise ValueError("The number of labels should be greater than one")
1287
+ else:
1288
+ loss = self.compute_loss(logits, auxiliary_logits, labels)
1289
+
1290
+ if not return_dict:
1291
+ if output_hidden_states:
1292
+ output = (logits,) + outputs[1:]
1293
+ else:
1294
+ output = (logits,) + outputs[2:]
1295
+ return ((loss,) + output) if loss is not None else output
1296
+
1297
+ return SemanticSegmenterOutput(
1298
+ loss=loss,
1299
+ logits=logits,
1300
+ hidden_states=outputs.hidden_states if output_hidden_states else None,
1301
+ attentions=outputs.attentions,
1302
+ )
1303
+
1304
+
1305
+ @add_start_docstrings(
1306
+ """
1307
+ BEiT backbone, to be used with frameworks like DETR and MaskFormer.
1308
+ """,
1309
+ BEIT_START_DOCSTRING,
1310
+ )
1311
+ class BeitBackbone(BeitPreTrainedModel, BackboneMixin):
1312
+ def __init__(self, config):
1313
+ super().__init__(config)
1314
+ super()._init_backbone(config)
1315
+
1316
+ self.num_features = [config.hidden_size for _ in range(config.num_hidden_layers + 1)]
1317
+ self.embeddings = BeitEmbeddings(config)
1318
+ self.encoder = BeitEncoder(config, window_size=self.embeddings.patch_embeddings.patch_shape)
1319
+
1320
+ if config.add_fpn:
1321
+ if len(self.config.out_indices) != 4:
1322
+ raise ValueError(
1323
+ "BeitBackbone requires config.out_indices to be a list of 4 integers, "
1324
+ "specifying which features to use from the backbone. One can use [3, 5, 7, 11] in case of "
1325
+ "a base-sized architecture."
1326
+ )
1327
+ hidden_size = config.hidden_size
1328
+ self.fpn1 = nn.Sequential(
1329
+ nn.ConvTranspose2d(hidden_size, hidden_size, kernel_size=2, stride=2),
1330
+ nn.BatchNorm2d(hidden_size, eps=config.batch_norm_eps),
1331
+ nn.GELU(),
1332
+ nn.ConvTranspose2d(hidden_size, hidden_size, kernel_size=2, stride=2),
1333
+ )
1334
+
1335
+ self.fpn2 = nn.Sequential(nn.ConvTranspose2d(hidden_size, hidden_size, kernel_size=2, stride=2))
1336
+ self.fpn3 = nn.Identity()
1337
+ self.fpn4 = nn.MaxPool2d(kernel_size=2, stride=2)
1338
+
1339
+ # initialize weights and apply final processing
1340
+ self.post_init()
1341
+
1342
+ def get_input_embeddings(self):
1343
+ return self.embeddings.patch_embeddings
1344
+
1345
+ @add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING)
1346
+ @replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC)
1347
+ def forward(
1348
+ self,
1349
+ pixel_values: Tensor,
1350
+ output_hidden_states: Optional[bool] = None,
1351
+ output_attentions: Optional[bool] = None,
1352
+ return_dict: Optional[bool] = None,
1353
+ ) -> BackboneOutput:
1354
+ """
1355
+ Returns:
1356
+
1357
+ Examples:
1358
+
1359
+ ```python
1360
+ >>> from transformers import AutoImageProcessor, AutoBackbone
1361
+ >>> import torch
1362
+ >>> from PIL import Image
1363
+ >>> import requests
1364
+
1365
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
1366
+ >>> image = Image.open(requests.get(url, stream=True).raw)
1367
+
1368
+ >>> processor = AutoImageProcessor.from_pretrained("microsoft/beit-base-patch16-224")
1369
+ >>> model = AutoBackbone.from_pretrained(
1370
+ ... "microsoft/beit-base-patch16-224", out_features=["stage1", "stage2", "stage3", "stage4"]
1371
+ ... )
1372
+
1373
+ >>> inputs = processor(image, return_tensors="pt")
1374
+
1375
+ >>> outputs = model(**inputs)
1376
+ >>> feature_maps = outputs.feature_maps
1377
+ >>> list(feature_maps[-1].shape)
1378
+ [1, 768, 14, 14]
1379
+ ```"""
1380
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1381
+ output_hidden_states = (
1382
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1383
+ )
1384
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1385
+
1386
+ batch_size = pixel_values.shape[0]
1387
+ embedding_output, (patch_height, patch_width) = self.embeddings(pixel_values)
1388
+
1389
+ outputs = self.encoder(
1390
+ embedding_output, output_hidden_states=True, output_attentions=output_attentions, return_dict=return_dict
1391
+ )
1392
+
1393
+ hidden_states = outputs.hidden_states if return_dict else outputs[1]
1394
+
1395
+ feature_maps = ()
1396
+ for stage, hidden_state in zip(self.stage_names, hidden_states):
1397
+ if stage in self.out_features:
1398
+ if self.config.reshape_hidden_states:
1399
+ hidden_state = hidden_state[:, 1:, :]
1400
+ hidden_state = hidden_state.permute(0, 2, 1)
1401
+ hidden_state = hidden_state.reshape(batch_size, -1, patch_height, patch_width)
1402
+
1403
+ feature_maps += (hidden_state,)
1404
+
1405
+ if self.config.add_fpn:
1406
+ feature_maps = [
1407
+ self.fpn1(feature_maps[0]),
1408
+ self.fpn2(feature_maps[1]),
1409
+ self.fpn3(feature_maps[2]),
1410
+ self.fpn4(feature_maps[3]),
1411
+ ]
1412
+ feature_maps = tuple(feature_maps)
1413
+
1414
+ if not return_dict:
1415
+ if output_hidden_states:
1416
+ output = (feature_maps,) + outputs[1:]
1417
+ else:
1418
+ output = (feature_maps,) + outputs[2:]
1419
+ return output
1420
+
1421
+ return BackboneOutput(
1422
+ feature_maps=feature_maps,
1423
+ hidden_states=outputs.hidden_states if output_hidden_states else None,
1424
+ attentions=outputs.attentions,
1425
+ )
llmeval-env/lib/python3.10/site-packages/transformers/models/beit/modeling_flax_beit.py ADDED
@@ -0,0 +1,948 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2021 Microsoft Research and the HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+
17
+ from typing import Callable, List, Optional, Tuple
18
+
19
+ import flax
20
+ import flax.linen as nn
21
+ import jax
22
+ import jax.numpy as jnp
23
+ import numpy as np
24
+ from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
25
+ from flax.linen.attention import dot_product_attention_weights
26
+ from flax.traverse_util import flatten_dict, unflatten_dict
27
+
28
+ from ...modeling_flax_outputs import (
29
+ FlaxBaseModelOutput,
30
+ FlaxBaseModelOutputWithPooling,
31
+ FlaxMaskedLMOutput,
32
+ FlaxSequenceClassifierOutput,
33
+ )
34
+ from ...modeling_flax_utils import (
35
+ ACT2FN,
36
+ FlaxPreTrainedModel,
37
+ append_replace_return_docstrings,
38
+ overwrite_call_docstring,
39
+ )
40
+ from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward
41
+ from .configuration_beit import BeitConfig
42
+
43
+
44
+ @flax.struct.dataclass
45
+ class FlaxBeitModelOutputWithPooling(FlaxBaseModelOutputWithPooling):
46
+ """
47
+ Class for outputs of [`FlaxBeitModel`].
48
+
49
+ Args:
50
+ last_hidden_state (`jnp.ndarray` of shape `(batch_size, sequence_length, hidden_size)`):
51
+ Sequence of hidden-states at the output of the last layer of the model.
52
+ pooler_output (`jnp.ndarray` of shape `(batch_size, hidden_size)`):
53
+ Average of the last layer hidden states of the patch tokens (excluding the *[CLS]* token) if
54
+ *config.use_mean_pooling* is set to True. If set to False, then the final hidden state of the *[CLS]* token
55
+ will be returned.
56
+ hidden_states (`tuple(jnp.ndarray)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
57
+ Tuple of `jnp.ndarray` (one for the output of the embeddings + one for the output of each layer) of shape
58
+ `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus
59
+ the initial embedding outputs.
60
+ attentions (`tuple(jnp.ndarray)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
61
+ Tuple of `jnp.ndarray` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
62
+ sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
63
+ the self-attention heads.
64
+ """
65
+
66
+
67
+ BEIT_START_DOCSTRING = r"""
68
+
69
+ This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
70
+ library implements for all its model (such as downloading, saving and converting weights from PyTorch models)
71
+
72
+ This model is also a
73
+ [flax.linen.Module](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html) subclass. Use it as
74
+ a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and
75
+ behavior.
76
+
77
+ Finally, this model supports inherent JAX features such as:
78
+
79
+ - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
80
+ - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
81
+ - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
82
+ - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
83
+
84
+ Parameters:
85
+ config ([`BeitConfig`]): Model configuration class with all the parameters of the model.
86
+ Initializing with a config file does not load the weights associated with the model, only the
87
+ configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
88
+ dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
89
+ The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
90
+ `jax.numpy.bfloat16` (on TPUs).
91
+
92
+ This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
93
+ specified all the computation will be performed with the given `dtype`.
94
+
95
+ **Note that this only specifies the dtype of the computation and does not influence the dtype of model
96
+ parameters.**
97
+
98
+ If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
99
+ [`~FlaxPreTrainedModel.to_bf16`].
100
+ """
101
+
102
+ BEIT_INPUTS_DOCSTRING = r"""
103
+ Args:
104
+ pixel_values (`numpy.ndarray` of shape `(batch_size, num_channels, height, width)`):
105
+ Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
106
+ [`AutoImageProcessor.__call__`] for details.
107
+
108
+ output_attentions (`bool`, *optional*):
109
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
110
+ tensors for more detail.
111
+ output_hidden_states (`bool`, *optional*):
112
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
113
+ more detail.
114
+ return_dict (`bool`, *optional*):
115
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
116
+ """
117
+
118
+
119
+ def relative_position_index_init(window_size: Tuple[int, int]) -> jnp.ndarray:
120
+ """
121
+ get pair-wise relative position index for each token inside the window
122
+ """
123
+ num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
124
+
125
+ coords_h = np.arange(window_size[0])
126
+ coords_w = np.arange(window_size[1])
127
+ coords = np.stack(np.meshgrid(coords_h, coords_w, indexing="ij")) # 2, Wh, Ww
128
+ coords_flatten = np.reshape(coords, (2, -1))
129
+ relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
130
+ relative_coords = np.transpose(relative_coords, (1, 2, 0)) # Wh*Ww, Wh*Ww, 2
131
+ relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
132
+ relative_coords[:, :, 1] += window_size[1] - 1
133
+ relative_coords[:, :, 0] *= 2 * window_size[1] - 1
134
+
135
+ relative_position_index = np.zeros(shape=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype)
136
+ relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
137
+ relative_position_index[0, 0:] = num_relative_distance - 3
138
+ relative_position_index[0:, 0] = num_relative_distance - 2
139
+ relative_position_index[0, 0] = num_relative_distance - 1
140
+ return jnp.array(relative_position_index)
141
+
142
+
143
+ def ones_with_scale(key, shape, scale, dtype=jnp.float32):
144
+ return jnp.ones(shape, dtype) * scale
145
+
146
+
147
+ class FlaxBeitDropPath(nn.Module):
148
+ """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
149
+
150
+ rate: float
151
+
152
+ @nn.module.compact
153
+ def __call__(self, inputs, deterministic: Optional[bool] = True):
154
+ if self.rate == 0.0:
155
+ return inputs
156
+ keep_prob = 1.0 - self.rate
157
+ if deterministic:
158
+ return inputs
159
+ else:
160
+ shape = (inputs.shape[0],) + (1,) * (inputs.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
161
+ rng = self.make_rng("droppath")
162
+ random_tensor = keep_prob + jax.random.uniform(rng, shape=shape, dtype=inputs.dtype)
163
+ binary_tensor = jnp.floor(random_tensor)
164
+ output = inputs / keep_prob * binary_tensor
165
+ return output
166
+
167
+
168
+ class FlaxBeitPatchEmbeddings(nn.Module):
169
+ config: BeitConfig
170
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
171
+
172
+ def setup(self):
173
+ self.num_channels = self.config.num_channels
174
+ image_size = self.config.image_size
175
+ patch_size = self.config.patch_size
176
+ num_patches = (image_size // patch_size) * (image_size // patch_size)
177
+ patch_shape = (image_size // patch_size, image_size // patch_size)
178
+ self.num_patches = num_patches
179
+ self.patch_shape = patch_shape
180
+ self.projection = nn.Conv(
181
+ self.config.hidden_size,
182
+ kernel_size=(patch_size, patch_size),
183
+ strides=(patch_size, patch_size),
184
+ padding="VALID",
185
+ dtype=self.dtype,
186
+ kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
187
+ )
188
+
189
+ def __call__(self, pixel_values):
190
+ num_channels = pixel_values.shape[-1]
191
+ if num_channels != self.num_channels:
192
+ raise ValueError(
193
+ "Make sure that the channel dimension of the pixel values match with the one set in the configuration."
194
+ )
195
+ embeddings = self.projection(pixel_values)
196
+ batch_size, _, _, channels = embeddings.shape
197
+ return jnp.reshape(embeddings, (batch_size, -1, channels))
198
+
199
+
200
+ class FlaxBeitEmbeddings(nn.Module):
201
+ """Construct the CLS token, position and patch embeddings."""
202
+
203
+ config: BeitConfig
204
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
205
+
206
+ def setup(self):
207
+ self.cls_token = self.param("cls_token", nn.initializers.zeros, (1, 1, self.config.hidden_size))
208
+ if self.config.use_mask_token:
209
+ self.mask_token = self.param("mask_token", nn.initializers.zeros, (1, 1, self.config.hidden_size))
210
+ self.patch_embeddings = FlaxBeitPatchEmbeddings(self.config, dtype=self.dtype)
211
+ num_patches = self.patch_embeddings.num_patches
212
+ if self.config.use_absolute_position_embeddings:
213
+ self.position_embeddings = self.param(
214
+ "position_embeddings", nn.initializers.zeros, (1, num_patches + 1, self.config.hidden_size)
215
+ )
216
+ self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
217
+
218
+ def __call__(self, pixel_values, bool_masked_pos=None, deterministic=True):
219
+ embeddings = self.patch_embeddings(pixel_values)
220
+ batch_size, seq_len, _ = embeddings.shape
221
+
222
+ cls_tokens = jnp.broadcast_to(self.cls_token, (batch_size, 1, self.config.hidden_size))
223
+ cls_tokens = cls_tokens.astype(embeddings.dtype)
224
+
225
+ if bool_masked_pos is not None:
226
+ mask_tokens = jnp.broadcast_to(self.mask_token, (batch_size, seq_len, self.config.hidden_size))
227
+ mask_tokens = mask_tokens.astype(embeddings.dtype)
228
+ # replace the masked visual tokens by mask_tokens
229
+ w = jnp.expand_dims(bool_masked_pos, axis=-1)
230
+ embeddings = embeddings * (1 - w) + mask_tokens * w
231
+
232
+ embeddings = jnp.concatenate((cls_tokens, embeddings), axis=1)
233
+
234
+ if self.config.use_absolute_position_embeddings:
235
+ embeddings = embeddings + self.position_embeddings.astype(embeddings.dtype)
236
+
237
+ embeddings = self.dropout(embeddings, deterministic=deterministic)
238
+ return embeddings
239
+
240
+
241
+ class FlaxBeitRelativePositionBias(nn.Module):
242
+ config: BeitConfig
243
+ window_size: Tuple[int, int]
244
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
245
+
246
+ def setup(self):
247
+ num_relative_distance = (2 * self.window_size[0] - 1) * (2 * self.window_size[1] - 1) + 3
248
+ self.relative_position_bias_table = self.param(
249
+ "relative_position_bias_table",
250
+ nn.initializers.zeros,
251
+ (num_relative_distance, self.config.num_attention_heads),
252
+ ) # 2*Wh-1 * 2*Ww-1, nH
253
+ # cls to token & token 2 cls & cls to cls
254
+
255
+ self.relative_position_index = relative_position_index_init(self.window_size)
256
+
257
+ def __call__(self):
258
+ index = self.relative_position_index.reshape(-1)
259
+ shape = (self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1)
260
+ relative_position_bias = self.relative_position_bias_table[index].reshape(shape) # Wh*Ww,Wh*Ww,nH
261
+ return jnp.transpose(relative_position_bias, (2, 0, 1))
262
+
263
+
264
+ class FlaxBeitSelfAttention(nn.Module):
265
+ config: BeitConfig
266
+ window_size: Tuple[int, int]
267
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
268
+
269
+ def setup(self):
270
+ if self.config.hidden_size % self.config.num_attention_heads != 0 and not hasattr(
271
+ self.config, "embedding_size"
272
+ ):
273
+ raise ValueError(
274
+ f"The hidden size {self.config.hidden_size,} is not a multiple of the number of attention "
275
+ f"heads {self.config.num_attention_heads}."
276
+ )
277
+
278
+ self.query = nn.Dense(
279
+ self.config.hidden_size,
280
+ dtype=self.dtype,
281
+ kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
282
+ )
283
+ self.key = nn.Dense(
284
+ self.config.hidden_size,
285
+ dtype=self.dtype,
286
+ kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
287
+ use_bias=False,
288
+ )
289
+ self.value = nn.Dense(
290
+ self.config.hidden_size,
291
+ dtype=self.dtype,
292
+ kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
293
+ )
294
+
295
+ self.relative_position_bias = (
296
+ FlaxBeitRelativePositionBias(self.config, window_size=self.window_size, dtype=self.dtype)
297
+ if self.window_size
298
+ else None
299
+ )
300
+
301
+ def __call__(
302
+ self, hidden_states, relative_position_bias=None, deterministic: bool = True, output_attentions: bool = False
303
+ ):
304
+ head_dim = self.config.hidden_size // self.config.num_attention_heads
305
+
306
+ query_states = self.query(hidden_states).reshape(
307
+ hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim)
308
+ )
309
+ value_states = self.value(hidden_states).reshape(
310
+ hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim)
311
+ )
312
+ key_states = self.key(hidden_states).reshape(
313
+ hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim)
314
+ )
315
+
316
+ dropout_rng = None
317
+ if not deterministic and self.config.attention_probs_dropout_prob > 0.0:
318
+ dropout_rng = self.make_rng("dropout")
319
+
320
+ attention_bias = jnp.array(0.0, dtype=self.dtype)
321
+ # Add relative position bias if present.
322
+ if self.relative_position_bias is not None:
323
+ attention_bias = jnp.expand_dims(self.relative_position_bias(), 0)
324
+ attention_bias = attention_bias.astype(query_states.dtype)
325
+
326
+ # Add shared relative position bias if provided.
327
+ if relative_position_bias is not None:
328
+ attention_bias = attention_bias + relative_position_bias.astype(attention_bias.dtype)
329
+
330
+ attn_weights = dot_product_attention_weights(
331
+ query_states,
332
+ key_states,
333
+ bias=attention_bias,
334
+ dropout_rng=dropout_rng,
335
+ dropout_rate=self.config.attention_probs_dropout_prob,
336
+ broadcast_dropout=True,
337
+ deterministic=deterministic,
338
+ dtype=self.dtype,
339
+ precision=None,
340
+ )
341
+
342
+ attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
343
+ attn_output = attn_output.reshape(attn_output.shape[:2] + (-1,))
344
+
345
+ outputs = (attn_output, attn_weights) if output_attentions else (attn_output,)
346
+ return outputs
347
+
348
+
349
+ class FlaxBeitSelfOutput(nn.Module):
350
+ config: BeitConfig
351
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
352
+
353
+ def setup(self):
354
+ self.dense = nn.Dense(
355
+ self.config.hidden_size,
356
+ kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
357
+ dtype=self.dtype,
358
+ )
359
+ self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
360
+
361
+ def __call__(self, hidden_states, deterministic: bool = True):
362
+ hidden_states = self.dense(hidden_states)
363
+ hidden_states = self.dropout(hidden_states, deterministic=deterministic)
364
+ return hidden_states
365
+
366
+
367
+ class FlaxBeitAttention(nn.Module):
368
+ config: BeitConfig
369
+ window_size: Tuple[int, int]
370
+ dtype: jnp.dtype = jnp.float32
371
+
372
+ def setup(self):
373
+ self.attention = FlaxBeitSelfAttention(self.config, self.window_size, dtype=self.dtype)
374
+ self.output = FlaxBeitSelfOutput(self.config, dtype=self.dtype)
375
+
376
+ def __call__(
377
+ self, hidden_states, relative_position_bias=None, deterministic=True, output_attentions: bool = False
378
+ ):
379
+ attn_outputs = self.attention(
380
+ hidden_states, relative_position_bias, deterministic=deterministic, output_attentions=output_attentions
381
+ )
382
+ attn_output = attn_outputs[0]
383
+ attn_output = self.output(attn_output, deterministic=deterministic)
384
+
385
+ outputs = (attn_output,)
386
+
387
+ if output_attentions:
388
+ outputs += (attn_outputs[1],)
389
+
390
+ return outputs
391
+
392
+
393
+ class FlaxBeitIntermediate(nn.Module):
394
+ config: BeitConfig
395
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
396
+
397
+ def setup(self):
398
+ self.dense = nn.Dense(
399
+ self.config.intermediate_size,
400
+ kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
401
+ dtype=self.dtype,
402
+ )
403
+ self.activation = ACT2FN[self.config.hidden_act]
404
+
405
+ def __call__(self, hidden_states):
406
+ hidden_states = self.dense(hidden_states)
407
+ hidden_states = self.activation(hidden_states)
408
+
409
+ return hidden_states
410
+
411
+
412
+ class FlaxBeitOutput(nn.Module):
413
+ config: BeitConfig
414
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
415
+
416
+ def setup(self):
417
+ self.dense = nn.Dense(
418
+ self.config.hidden_size,
419
+ kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
420
+ dtype=self.dtype,
421
+ )
422
+ self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
423
+
424
+ def __call__(self, hidden_states, deterministic: bool = True):
425
+ hidden_states = self.dense(hidden_states)
426
+ hidden_states = self.dropout(hidden_states, deterministic=deterministic)
427
+
428
+ return hidden_states
429
+
430
+
431
+ class FlaxBeitLayer(nn.Module):
432
+ config: BeitConfig
433
+ window_size: Tuple[int, int]
434
+ drop_path_rate: float
435
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
436
+
437
+ def setup(self):
438
+ self.attention = FlaxBeitAttention(self.config, self.window_size, dtype=self.dtype)
439
+ self.intermediate = FlaxBeitIntermediate(self.config, dtype=self.dtype)
440
+ self.output = FlaxBeitOutput(self.config, dtype=self.dtype)
441
+ self.layernorm_before = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
442
+ self.drop_path = FlaxBeitDropPath(rate=self.drop_path_rate)
443
+ self.layernorm_after = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
444
+
445
+ self.init_values = self.config.layer_scale_init_value
446
+ if self.init_values > 0:
447
+ self.lambda_1 = self.param("lambda_1", ones_with_scale, (self.config.hidden_size), self.init_values)
448
+ self.lambda_2 = self.param("lambda_2", ones_with_scale, (self.config.hidden_size), self.init_values)
449
+ else:
450
+ self.lambda_1 = None
451
+ self.lambda_2 = None
452
+
453
+ def __call__(
454
+ self, hidden_states, relative_position_bias=None, deterministic: bool = True, output_attentions: bool = False
455
+ ):
456
+ self_attention_outputs = self.attention(
457
+ self.layernorm_before(hidden_states), # in BEiT, layernorm is applied before self-attention
458
+ relative_position_bias,
459
+ deterministic=deterministic,
460
+ output_attentions=output_attentions,
461
+ )
462
+ attention_output = self_attention_outputs[0]
463
+
464
+ # apply lambda_1 if present
465
+ if self.lambda_1 is not None:
466
+ attention_output = self.lambda_1.astype(attention_output.dtype) * attention_output
467
+
468
+ # first residual connection
469
+ hidden_states = self.drop_path(attention_output, deterministic=deterministic) + hidden_states
470
+
471
+ # in BEiT, layernorm is also applied after self-attention
472
+ layer_output = self.layernorm_after(hidden_states)
473
+
474
+ layer_output = self.intermediate(layer_output)
475
+ layer_output = self.output(layer_output, deterministic=deterministic)
476
+
477
+ # apply lambda_2 if present
478
+ if self.lambda_2 is not None:
479
+ layer_output = self.lambda_2.astype(layer_output.dtype) * layer_output
480
+
481
+ # second residual connection
482
+ layer_output = self.drop_path(layer_output, deterministic=deterministic) + hidden_states
483
+
484
+ outputs = (layer_output,)
485
+
486
+ if output_attentions:
487
+ outputs += (self_attention_outputs[1],)
488
+
489
+ return outputs
490
+
491
+
492
+ class FlaxBeitLayerCollection(nn.Module):
493
+ config: BeitConfig
494
+ window_size: Tuple[int, int]
495
+ drop_path_rates: List[float]
496
+ relative_position_bias: Callable[[], jnp.ndarray]
497
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
498
+
499
+ def setup(self):
500
+ self.layers = [
501
+ FlaxBeitLayer(
502
+ self.config,
503
+ window_size=self.window_size if self.config.use_relative_position_bias else None,
504
+ drop_path_rate=self.drop_path_rates[i],
505
+ name=str(i),
506
+ dtype=self.dtype,
507
+ )
508
+ for i in range(self.config.num_hidden_layers)
509
+ ]
510
+
511
+ def __call__(
512
+ self,
513
+ hidden_states,
514
+ deterministic: bool = True,
515
+ output_attentions: bool = False,
516
+ output_hidden_states: bool = False,
517
+ return_dict: bool = True,
518
+ ):
519
+ all_attentions = () if output_attentions else None
520
+ all_hidden_states = () if output_hidden_states else None
521
+
522
+ for i, layer in enumerate(self.layers):
523
+ if output_hidden_states:
524
+ all_hidden_states += (hidden_states,)
525
+ relative_position_bias = self.relative_position_bias() if self.relative_position_bias is not None else None
526
+ layer_outputs = layer(
527
+ hidden_states, relative_position_bias, deterministic=deterministic, output_attentions=output_attentions
528
+ )
529
+
530
+ hidden_states = layer_outputs[0]
531
+
532
+ if output_attentions:
533
+ all_attentions += (layer_outputs[1],)
534
+
535
+ if output_hidden_states:
536
+ all_hidden_states += (hidden_states,)
537
+
538
+ outputs = (hidden_states,)
539
+ if not return_dict:
540
+ return tuple(v for v in outputs if v is not None)
541
+
542
+ return FlaxBaseModelOutput(
543
+ last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
544
+ )
545
+
546
+
547
+ class FlaxBeitEncoder(nn.Module):
548
+ config: BeitConfig
549
+ window_size: Tuple[int, int]
550
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
551
+
552
+ def setup(self):
553
+ if self.config.use_shared_relative_position_bias:
554
+ self.relative_position_bias = FlaxBeitRelativePositionBias(
555
+ config=self.config, window_size=self.window_size, dtype=self.dtype
556
+ )
557
+
558
+ # stochastic depth decay rule
559
+ drop_path_rates = list(np.linspace(0, self.config.drop_path_rate, self.config.num_hidden_layers))
560
+ self.layer = FlaxBeitLayerCollection(
561
+ self.config,
562
+ window_size=self.window_size,
563
+ drop_path_rates=drop_path_rates,
564
+ relative_position_bias=self.relative_position_bias
565
+ if self.config.use_shared_relative_position_bias
566
+ else None,
567
+ dtype=self.dtype,
568
+ )
569
+
570
+ def __call__(
571
+ self,
572
+ hidden_states,
573
+ deterministic: bool = True,
574
+ output_attentions: bool = False,
575
+ output_hidden_states: bool = False,
576
+ return_dict: bool = True,
577
+ ):
578
+ return self.layer(
579
+ hidden_states,
580
+ deterministic=deterministic,
581
+ output_attentions=output_attentions,
582
+ output_hidden_states=output_hidden_states,
583
+ return_dict=return_dict,
584
+ )
585
+
586
+
587
+ class FlaxBeitPreTrainedModel(FlaxPreTrainedModel):
588
+ """
589
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
590
+ models.
591
+ """
592
+
593
+ config_class = BeitConfig
594
+ base_model_prefix = "beit"
595
+ main_input_name = "pixel_values"
596
+ module_class: nn.Module = None
597
+
598
+ def __init__(
599
+ self,
600
+ config: BeitConfig,
601
+ input_shape=None,
602
+ seed: int = 0,
603
+ dtype: jnp.dtype = jnp.float32,
604
+ _do_init: bool = True,
605
+ **kwargs,
606
+ ):
607
+ module = self.module_class(config=config, dtype=dtype, **kwargs)
608
+ if input_shape is None:
609
+ input_shape = (1, config.image_size, config.image_size, config.num_channels)
610
+ super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
611
+
612
+ def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
613
+ # init input tensors
614
+ pixel_values = jnp.zeros(input_shape, dtype=self.dtype)
615
+
616
+ params_rng, dropout_rng = jax.random.split(rng)
617
+ dropout_rng, droppath_rng = jax.random.split(dropout_rng)
618
+ rngs = {"params": params_rng, "dropout": dropout_rng, "droppath": droppath_rng}
619
+
620
+ random_params = self.module.init(rngs, pixel_values, return_dict=False)["params"]
621
+
622
+ if params is not None:
623
+ random_params = flatten_dict(unfreeze(random_params))
624
+ params = flatten_dict(unfreeze(params))
625
+ for missing_key in self._missing_keys:
626
+ params[missing_key] = random_params[missing_key]
627
+ self._missing_keys = set()
628
+ return freeze(unflatten_dict(params))
629
+ else:
630
+ return random_params
631
+
632
+ @add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
633
+ def __call__(
634
+ self,
635
+ pixel_values,
636
+ bool_masked_pos=None,
637
+ params: dict = None,
638
+ dropout_rng: jax.random.PRNGKey = None,
639
+ train: bool = False,
640
+ output_attentions: Optional[bool] = None,
641
+ output_hidden_states: Optional[bool] = None,
642
+ return_dict: Optional[bool] = None,
643
+ ):
644
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
645
+ output_hidden_states = (
646
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
647
+ )
648
+ return_dict = return_dict if return_dict is not None else self.config.return_dict
649
+
650
+ pixel_values = jnp.transpose(pixel_values, (0, 2, 3, 1))
651
+ # Handle any PRNG if needed
652
+ rngs = {}
653
+ if dropout_rng is not None:
654
+ dropout_rng, droppath_rng = jax.random.split(dropout_rng)
655
+ rngs["dropout"] = dropout_rng
656
+ rngs["droppath"] = droppath_rng
657
+
658
+ return self.module.apply(
659
+ {"params": params or self.params},
660
+ jnp.array(pixel_values, dtype=jnp.float32),
661
+ bool_masked_pos,
662
+ not train,
663
+ output_attentions,
664
+ output_hidden_states,
665
+ return_dict,
666
+ rngs=rngs,
667
+ )
668
+
669
+
670
+ class FlaxBeitPooler(nn.Module):
671
+ config: BeitConfig
672
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
673
+
674
+ def setup(self):
675
+ if self.config.use_mean_pooling:
676
+ self.layernorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
677
+
678
+ def __call__(self, hidden_states):
679
+ if self.config.use_mean_pooling:
680
+ # Mean pool the final hidden states of the patch tokens
681
+ patch_tokens = hidden_states[:, 1:, :]
682
+ pooled_output = self.layernorm(jnp.mean(patch_tokens, axis=1))
683
+ else:
684
+ # Pool by simply taking the final hidden state of the [CLS] token
685
+ pooled_output = hidden_states[:, 0]
686
+
687
+ return pooled_output
688
+
689
+
690
+ class FlaxBeitModule(nn.Module):
691
+ config: BeitConfig
692
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
693
+ add_pooling_layer: bool = True
694
+
695
+ def setup(self):
696
+ self.embeddings = FlaxBeitEmbeddings(self.config, dtype=self.dtype)
697
+ self.encoder = FlaxBeitEncoder(
698
+ self.config, window_size=self.embeddings.patch_embeddings.patch_shape, dtype=self.dtype
699
+ )
700
+ if not self.config.use_mean_pooling:
701
+ self.layernorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
702
+ self.pooler = FlaxBeitPooler(self.config, dtype=self.dtype) if self.add_pooling_layer else None
703
+
704
+ def __call__(
705
+ self,
706
+ pixel_values,
707
+ bool_masked_pos=None,
708
+ deterministic: bool = True,
709
+ output_attentions: bool = False,
710
+ output_hidden_states: bool = False,
711
+ return_dict: bool = True,
712
+ ):
713
+ hidden_states = self.embeddings(pixel_values, bool_masked_pos, deterministic=deterministic)
714
+
715
+ outputs = self.encoder(
716
+ hidden_states,
717
+ deterministic=deterministic,
718
+ output_attentions=output_attentions,
719
+ output_hidden_states=output_hidden_states,
720
+ return_dict=return_dict,
721
+ )
722
+ hidden_states = outputs[0]
723
+ if not self.config.use_mean_pooling:
724
+ hidden_states = self.layernorm(hidden_states)
725
+ pooled = self.pooler(hidden_states) if self.add_pooling_layer else None
726
+
727
+ if not return_dict:
728
+ # if pooled is None, don't return it
729
+ if pooled is None:
730
+ return (hidden_states,) + outputs[1:]
731
+ return (hidden_states, pooled) + outputs[1:]
732
+
733
+ return FlaxBeitModelOutputWithPooling(
734
+ last_hidden_state=hidden_states,
735
+ pooler_output=pooled,
736
+ hidden_states=outputs.hidden_states,
737
+ attentions=outputs.attentions,
738
+ )
739
+
740
+
741
+ @add_start_docstrings(
742
+ "The bare Beit Model transformer outputting raw hidden-states without any specific head on top.",
743
+ BEIT_START_DOCSTRING,
744
+ )
745
+ class FlaxBeitModel(FlaxBeitPreTrainedModel):
746
+ module_class = FlaxBeitModule
747
+
748
+
749
+ FLAX_BEIT_MODEL_DOCSTRING = """
750
+ Returns:
751
+
752
+ Examples:
753
+
754
+ ```python
755
+ >>> from transformers import AutoImageProcessor, FlaxBeitModel
756
+ >>> from PIL import Image
757
+ >>> import requests
758
+
759
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
760
+ >>> image = Image.open(requests.get(url, stream=True).raw)
761
+
762
+ >>> image_processor = AutoImageProcessor.from_pretrained("microsoft/beit-base-patch16-224-pt22k-ft22k")
763
+ >>> model = FlaxBeitModel.from_pretrained("microsoft/beit-base-patch16-224-pt22k-ft22k")
764
+
765
+ >>> inputs = image_processor(images=image, return_tensors="np")
766
+ >>> outputs = model(**inputs)
767
+ >>> last_hidden_states = outputs.last_hidden_state
768
+ ```
769
+ """
770
+
771
+ overwrite_call_docstring(FlaxBeitModel, FLAX_BEIT_MODEL_DOCSTRING)
772
+ append_replace_return_docstrings(FlaxBeitModel, output_type=FlaxBeitModelOutputWithPooling, config_class=BeitConfig)
773
+
774
+
775
+ class FlaxBeitForMaskedImageModelingModule(nn.Module):
776
+ config: BeitConfig
777
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
778
+
779
+ def setup(self):
780
+ self.beit = FlaxBeitModule(self.config, add_pooling_layer=False, dtype=self.dtype)
781
+
782
+ # Classifier head
783
+ self.layernorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
784
+ self.lm_head = nn.Dense(
785
+ self.config.vocab_size,
786
+ kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
787
+ dtype=self.dtype,
788
+ )
789
+
790
+ def __call__(
791
+ self,
792
+ pixel_values=None,
793
+ bool_masked_pos=None,
794
+ deterministic: bool = True,
795
+ output_attentions=None,
796
+ output_hidden_states=None,
797
+ return_dict=None,
798
+ ):
799
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
800
+
801
+ outputs = self.beit(
802
+ pixel_values,
803
+ bool_masked_pos,
804
+ deterministic=deterministic,
805
+ output_attentions=output_attentions,
806
+ output_hidden_states=output_hidden_states,
807
+ return_dict=return_dict,
808
+ )
809
+
810
+ sequence_output = outputs[0]
811
+ sequence_output = self.layernorm(sequence_output)
812
+ prediction_scores = self.lm_head(sequence_output[:, 1:])
813
+
814
+ if not return_dict:
815
+ output = (prediction_scores,) + outputs[2:]
816
+ return output
817
+
818
+ return FlaxMaskedLMOutput(
819
+ logits=prediction_scores,
820
+ hidden_states=outputs.hidden_states,
821
+ attentions=outputs.attentions,
822
+ )
823
+
824
+
825
+ @add_start_docstrings(
826
+ "Beit Model transformer with a 'language' modeling head on top (to predict visual tokens).",
827
+ BEIT_START_DOCSTRING,
828
+ )
829
+ class FlaxBeitForMaskedImageModeling(FlaxBeitPreTrainedModel):
830
+ module_class = FlaxBeitForMaskedImageModelingModule
831
+
832
+
833
+ FLAX_BEIT_MLM_DOCSTRING = """
834
+ bool_masked_pos (`numpy.ndarray` of shape `(batch_size, num_patches)`):
835
+ Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
836
+
837
+ Returns:
838
+
839
+ Examples:
840
+
841
+ ```python
842
+ >>> from transformers import AutoImageProcessor, BeitForMaskedImageModeling
843
+ >>> from PIL import Image
844
+ >>> import requests
845
+
846
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
847
+ >>> image = Image.open(requests.get(url, stream=True).raw)
848
+
849
+ >>> image_processor = AutoImageProcessor.from_pretrained("microsoft/beit-base-patch16-224-pt22k")
850
+ >>> model = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k")
851
+
852
+ >>> inputs = image_processor(images=image, return_tensors="np")
853
+ >>> outputs = model(**inputs)
854
+ >>> logits = outputs.logits
855
+ ```
856
+ """
857
+
858
+ overwrite_call_docstring(FlaxBeitForMaskedImageModeling, FLAX_BEIT_MLM_DOCSTRING)
859
+ append_replace_return_docstrings(
860
+ FlaxBeitForMaskedImageModeling, output_type=FlaxMaskedLMOutput, config_class=BeitConfig
861
+ )
862
+
863
+
864
+ class FlaxBeitForImageClassificationModule(nn.Module):
865
+ config: BeitConfig
866
+ dtype: jnp.dtype = jnp.float32
867
+
868
+ def setup(self):
869
+ self.beit = FlaxBeitModule(config=self.config, dtype=self.dtype, add_pooling_layer=True)
870
+ self.classifier = nn.Dense(
871
+ self.config.num_labels,
872
+ kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
873
+ dtype=self.dtype,
874
+ )
875
+
876
+ def __call__(
877
+ self,
878
+ pixel_values=None,
879
+ bool_masked_pos=None,
880
+ deterministic: bool = True,
881
+ output_attentions=None,
882
+ output_hidden_states=None,
883
+ return_dict=None,
884
+ ):
885
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
886
+
887
+ outputs = self.beit(
888
+ pixel_values,
889
+ deterministic=deterministic,
890
+ output_attentions=output_attentions,
891
+ output_hidden_states=output_hidden_states,
892
+ return_dict=return_dict,
893
+ )
894
+
895
+ pooled_output = outputs[1]
896
+ logits = self.classifier(pooled_output)
897
+
898
+ if not return_dict:
899
+ output = (logits,) + outputs[2:]
900
+ return output
901
+
902
+ return FlaxSequenceClassifierOutput(
903
+ logits=logits,
904
+ hidden_states=outputs.hidden_states,
905
+ attentions=outputs.attentions,
906
+ )
907
+
908
+
909
+ @add_start_docstrings(
910
+ """
911
+ Beit Model transformer with an image classification head on top (a linear layer on top of the average of the final
912
+ hidden states of the patch tokens) e.g. for ImageNet.
913
+ """,
914
+ BEIT_START_DOCSTRING,
915
+ )
916
+ class FlaxBeitForImageClassification(FlaxBeitPreTrainedModel):
917
+ module_class = FlaxBeitForImageClassificationModule
918
+
919
+
920
+ FLAX_BEIT_CLASSIF_DOCSTRING = """
921
+ Returns:
922
+
923
+ Example:
924
+
925
+ ```python
926
+ >>> from transformers import AutoImageProcessor, FlaxBeitForImageClassification
927
+ >>> from PIL import Image
928
+ >>> import requests
929
+
930
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
931
+ >>> image = Image.open(requests.get(url, stream=True).raw)
932
+
933
+ >>> image_processor = AutoImageProcessor.from_pretrained("microsoft/beit-base-patch16-224")
934
+ >>> model = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224")
935
+
936
+ >>> inputs = image_processor(images=image, return_tensors="np")
937
+ >>> outputs = model(**inputs)
938
+ >>> logits = outputs.logits
939
+ >>> # model predicts one of the 1000 ImageNet classes
940
+ >>> predicted_class_idx = logits.argmax(-1).item()
941
+ >>> print("Predicted class:", model.config.id2label[predicted_class_idx])
942
+ ```
943
+ """
944
+
945
+ overwrite_call_docstring(FlaxBeitForImageClassification, FLAX_BEIT_CLASSIF_DOCSTRING)
946
+ append_replace_return_docstrings(
947
+ FlaxBeitForImageClassification, output_type=FlaxSequenceClassifierOutput, config_class=BeitConfig
948
+ )
llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/__pycache__/tokenization_clvp.cpython-310.pyc ADDED
Binary file (12.8 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/deit/__init__.py ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2021 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from typing import TYPE_CHECKING
15
+
16
+ from ...utils import (
17
+ OptionalDependencyNotAvailable,
18
+ _LazyModule,
19
+ is_tf_available,
20
+ is_torch_available,
21
+ is_vision_available,
22
+ )
23
+
24
+
25
+ _import_structure = {"configuration_deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig", "DeiTOnnxConfig"]}
26
+
27
+ try:
28
+ if not is_vision_available():
29
+ raise OptionalDependencyNotAvailable()
30
+ except OptionalDependencyNotAvailable:
31
+ pass
32
+ else:
33
+ _import_structure["feature_extraction_deit"] = ["DeiTFeatureExtractor"]
34
+ _import_structure["image_processing_deit"] = ["DeiTImageProcessor"]
35
+
36
+ try:
37
+ if not is_torch_available():
38
+ raise OptionalDependencyNotAvailable()
39
+ except OptionalDependencyNotAvailable:
40
+ pass
41
+ else:
42
+ _import_structure["modeling_deit"] = [
43
+ "DEIT_PRETRAINED_MODEL_ARCHIVE_LIST",
44
+ "DeiTForImageClassification",
45
+ "DeiTForImageClassificationWithTeacher",
46
+ "DeiTForMaskedImageModeling",
47
+ "DeiTModel",
48
+ "DeiTPreTrainedModel",
49
+ ]
50
+
51
+ try:
52
+ if not is_tf_available():
53
+ raise OptionalDependencyNotAvailable()
54
+ except OptionalDependencyNotAvailable:
55
+ pass
56
+ else:
57
+ _import_structure["modeling_tf_deit"] = [
58
+ "TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST",
59
+ "TFDeiTForImageClassification",
60
+ "TFDeiTForImageClassificationWithTeacher",
61
+ "TFDeiTForMaskedImageModeling",
62
+ "TFDeiTModel",
63
+ "TFDeiTPreTrainedModel",
64
+ ]
65
+
66
+
67
+ if TYPE_CHECKING:
68
+ from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig
69
+
70
+ try:
71
+ if not is_vision_available():
72
+ raise OptionalDependencyNotAvailable()
73
+ except OptionalDependencyNotAvailable:
74
+ pass
75
+ else:
76
+ from .feature_extraction_deit import DeiTFeatureExtractor
77
+ from .image_processing_deit import DeiTImageProcessor
78
+
79
+ try:
80
+ if not is_torch_available():
81
+ raise OptionalDependencyNotAvailable()
82
+ except OptionalDependencyNotAvailable:
83
+ pass
84
+ else:
85
+ from .modeling_deit import (
86
+ DEIT_PRETRAINED_MODEL_ARCHIVE_LIST,
87
+ DeiTForImageClassification,
88
+ DeiTForImageClassificationWithTeacher,
89
+ DeiTForMaskedImageModeling,
90
+ DeiTModel,
91
+ DeiTPreTrainedModel,
92
+ )
93
+
94
+ try:
95
+ if not is_tf_available():
96
+ raise OptionalDependencyNotAvailable()
97
+ except OptionalDependencyNotAvailable:
98
+ pass
99
+ else:
100
+ from .modeling_tf_deit import (
101
+ TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST,
102
+ TFDeiTForImageClassification,
103
+ TFDeiTForImageClassificationWithTeacher,
104
+ TFDeiTForMaskedImageModeling,
105
+ TFDeiTModel,
106
+ TFDeiTPreTrainedModel,
107
+ )
108
+
109
+
110
+ else:
111
+ import sys
112
+
113
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
llmeval-env/lib/python3.10/site-packages/transformers/models/deit/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.72 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/deit/__pycache__/configuration_deit.cpython-310.pyc ADDED
Binary file (5.42 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/deit/__pycache__/convert_deit_timm_to_pytorch.cpython-310.pyc ADDED
Binary file (6.19 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/deit/__pycache__/feature_extraction_deit.cpython-310.pyc ADDED
Binary file (1 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/deit/__pycache__/image_processing_deit.cpython-310.pyc ADDED
Binary file (13 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/deit/__pycache__/modeling_deit.cpython-310.pyc ADDED
Binary file (28.8 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/deit/__pycache__/modeling_tf_deit.cpython-310.pyc ADDED
Binary file (36.8 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/deit/configuration_deit.py ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2021 Facebook AI Research (FAIR) and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ DeiT model configuration"""
16
+
17
+ from collections import OrderedDict
18
+ from typing import Mapping
19
+
20
+ from packaging import version
21
+
22
+ from ...configuration_utils import PretrainedConfig
23
+ from ...onnx import OnnxConfig
24
+ from ...utils import logging
25
+
26
+
27
+ logger = logging.get_logger(__name__)
28
+
29
+
30
+ from ..deprecated._archive_maps import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
31
+
32
+
33
+ class DeiTConfig(PretrainedConfig):
34
+ r"""
35
+ This is the configuration class to store the configuration of a [`DeiTModel`]. It is used to instantiate an DeiT
36
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
37
+ defaults will yield a similar configuration to that of the DeiT
38
+ [facebook/deit-base-distilled-patch16-224](https://huggingface.co/facebook/deit-base-distilled-patch16-224)
39
+ architecture.
40
+
41
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
42
+ documentation from [`PretrainedConfig`] for more information.
43
+
44
+
45
+ Args:
46
+ hidden_size (`int`, *optional*, defaults to 768):
47
+ Dimensionality of the encoder layers and the pooler layer.
48
+ num_hidden_layers (`int`, *optional*, defaults to 12):
49
+ Number of hidden layers in the Transformer encoder.
50
+ num_attention_heads (`int`, *optional*, defaults to 12):
51
+ Number of attention heads for each attention layer in the Transformer encoder.
52
+ intermediate_size (`int`, *optional*, defaults to 3072):
53
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
54
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
55
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
56
+ `"relu"`, `"selu"` and `"gelu_new"` are supported.
57
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
58
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
59
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
60
+ The dropout ratio for the attention probabilities.
61
+ initializer_range (`float`, *optional*, defaults to 0.02):
62
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
63
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
64
+ The epsilon used by the layer normalization layers.
65
+ image_size (`int`, *optional*, defaults to 224):
66
+ The size (resolution) of each image.
67
+ patch_size (`int`, *optional*, defaults to 16):
68
+ The size (resolution) of each patch.
69
+ num_channels (`int`, *optional*, defaults to 3):
70
+ The number of input channels.
71
+ qkv_bias (`bool`, *optional*, defaults to `True`):
72
+ Whether to add a bias to the queries, keys and values.
73
+ encoder_stride (`int`, *optional*, defaults to 16):
74
+ Factor to increase the spatial resolution by in the decoder head for masked image modeling.
75
+
76
+ Example:
77
+
78
+ ```python
79
+ >>> from transformers import DeiTConfig, DeiTModel
80
+
81
+ >>> # Initializing a DeiT deit-base-distilled-patch16-224 style configuration
82
+ >>> configuration = DeiTConfig()
83
+
84
+ >>> # Initializing a model (with random weights) from the deit-base-distilled-patch16-224 style configuration
85
+ >>> model = DeiTModel(configuration)
86
+
87
+ >>> # Accessing the model configuration
88
+ >>> configuration = model.config
89
+ ```"""
90
+
91
+ model_type = "deit"
92
+
93
+ def __init__(
94
+ self,
95
+ hidden_size=768,
96
+ num_hidden_layers=12,
97
+ num_attention_heads=12,
98
+ intermediate_size=3072,
99
+ hidden_act="gelu",
100
+ hidden_dropout_prob=0.0,
101
+ attention_probs_dropout_prob=0.0,
102
+ initializer_range=0.02,
103
+ layer_norm_eps=1e-12,
104
+ image_size=224,
105
+ patch_size=16,
106
+ num_channels=3,
107
+ qkv_bias=True,
108
+ encoder_stride=16,
109
+ **kwargs,
110
+ ):
111
+ super().__init__(**kwargs)
112
+
113
+ self.hidden_size = hidden_size
114
+ self.num_hidden_layers = num_hidden_layers
115
+ self.num_attention_heads = num_attention_heads
116
+ self.intermediate_size = intermediate_size
117
+ self.hidden_act = hidden_act
118
+ self.hidden_dropout_prob = hidden_dropout_prob
119
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
120
+ self.initializer_range = initializer_range
121
+ self.layer_norm_eps = layer_norm_eps
122
+ self.image_size = image_size
123
+ self.patch_size = patch_size
124
+ self.num_channels = num_channels
125
+ self.qkv_bias = qkv_bias
126
+ self.encoder_stride = encoder_stride
127
+
128
+
129
+ class DeiTOnnxConfig(OnnxConfig):
130
+ torch_onnx_minimum_version = version.parse("1.11")
131
+
132
+ @property
133
+ def inputs(self) -> Mapping[str, Mapping[int, str]]:
134
+ return OrderedDict(
135
+ [
136
+ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
137
+ ]
138
+ )
139
+
140
+ @property
141
+ def atol_for_validation(self) -> float:
142
+ return 1e-4
llmeval-env/lib/python3.10/site-packages/transformers/models/deit/convert_deit_timm_to_pytorch.py ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2021 The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Convert DeiT distilled checkpoints from the timm library."""
16
+
17
+
18
+ import argparse
19
+ import json
20
+ from pathlib import Path
21
+
22
+ import requests
23
+ import timm
24
+ import torch
25
+ from huggingface_hub import hf_hub_download
26
+ from PIL import Image
27
+
28
+ from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor
29
+ from transformers.utils import logging
30
+
31
+
32
+ logging.set_verbosity_info()
33
+ logger = logging.get_logger(__name__)
34
+
35
+
36
+ # here we list all keys to be renamed (original name on the left, our name on the right)
37
+ def create_rename_keys(config, base_model=False):
38
+ rename_keys = []
39
+ for i in range(config.num_hidden_layers):
40
+ # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
41
+ rename_keys.append((f"blocks.{i}.norm1.weight", f"deit.encoder.layer.{i}.layernorm_before.weight"))
42
+ rename_keys.append((f"blocks.{i}.norm1.bias", f"deit.encoder.layer.{i}.layernorm_before.bias"))
43
+ rename_keys.append((f"blocks.{i}.attn.proj.weight", f"deit.encoder.layer.{i}.attention.output.dense.weight"))
44
+ rename_keys.append((f"blocks.{i}.attn.proj.bias", f"deit.encoder.layer.{i}.attention.output.dense.bias"))
45
+ rename_keys.append((f"blocks.{i}.norm2.weight", f"deit.encoder.layer.{i}.layernorm_after.weight"))
46
+ rename_keys.append((f"blocks.{i}.norm2.bias", f"deit.encoder.layer.{i}.layernorm_after.bias"))
47
+ rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"deit.encoder.layer.{i}.intermediate.dense.weight"))
48
+ rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"deit.encoder.layer.{i}.intermediate.dense.bias"))
49
+ rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"deit.encoder.layer.{i}.output.dense.weight"))
50
+ rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"deit.encoder.layer.{i}.output.dense.bias"))
51
+
52
+ # projection layer + position embeddings
53
+ rename_keys.extend(
54
+ [
55
+ ("cls_token", "deit.embeddings.cls_token"),
56
+ ("dist_token", "deit.embeddings.distillation_token"),
57
+ ("patch_embed.proj.weight", "deit.embeddings.patch_embeddings.projection.weight"),
58
+ ("patch_embed.proj.bias", "deit.embeddings.patch_embeddings.projection.bias"),
59
+ ("pos_embed", "deit.embeddings.position_embeddings"),
60
+ ]
61
+ )
62
+
63
+ if base_model:
64
+ # layernorm + pooler
65
+ rename_keys.extend(
66
+ [
67
+ ("norm.weight", "layernorm.weight"),
68
+ ("norm.bias", "layernorm.bias"),
69
+ ("pre_logits.fc.weight", "pooler.dense.weight"),
70
+ ("pre_logits.fc.bias", "pooler.dense.bias"),
71
+ ]
72
+ )
73
+
74
+ # if just the base model, we should remove "deit" from all keys that start with "deit"
75
+ rename_keys = [(pair[0], pair[1][4:]) if pair[1].startswith("deit") else pair for pair in rename_keys]
76
+ else:
77
+ # layernorm + classification heads
78
+ rename_keys.extend(
79
+ [
80
+ ("norm.weight", "deit.layernorm.weight"),
81
+ ("norm.bias", "deit.layernorm.bias"),
82
+ ("head.weight", "cls_classifier.weight"),
83
+ ("head.bias", "cls_classifier.bias"),
84
+ ("head_dist.weight", "distillation_classifier.weight"),
85
+ ("head_dist.bias", "distillation_classifier.bias"),
86
+ ]
87
+ )
88
+
89
+ return rename_keys
90
+
91
+
92
+ # we split up the matrix of each encoder layer into queries, keys and values
93
+ def read_in_q_k_v(state_dict, config, base_model=False):
94
+ for i in range(config.num_hidden_layers):
95
+ if base_model:
96
+ prefix = ""
97
+ else:
98
+ prefix = "deit."
99
+ # read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
100
+ in_proj_weight = state_dict.pop(f"blocks.{i}.attn.qkv.weight")
101
+ in_proj_bias = state_dict.pop(f"blocks.{i}.attn.qkv.bias")
102
+ # next, add query, keys and values (in that order) to the state dict
103
+ state_dict[f"{prefix}encoder.layer.{i}.attention.attention.query.weight"] = in_proj_weight[
104
+ : config.hidden_size, :
105
+ ]
106
+ state_dict[f"{prefix}encoder.layer.{i}.attention.attention.query.bias"] = in_proj_bias[: config.hidden_size]
107
+ state_dict[f"{prefix}encoder.layer.{i}.attention.attention.key.weight"] = in_proj_weight[
108
+ config.hidden_size : config.hidden_size * 2, :
109
+ ]
110
+ state_dict[f"{prefix}encoder.layer.{i}.attention.attention.key.bias"] = in_proj_bias[
111
+ config.hidden_size : config.hidden_size * 2
112
+ ]
113
+ state_dict[f"{prefix}encoder.layer.{i}.attention.attention.value.weight"] = in_proj_weight[
114
+ -config.hidden_size :, :
115
+ ]
116
+ state_dict[f"{prefix}encoder.layer.{i}.attention.attention.value.bias"] = in_proj_bias[-config.hidden_size :]
117
+
118
+
119
+ def rename_key(dct, old, new):
120
+ val = dct.pop(old)
121
+ dct[new] = val
122
+
123
+
124
+ # We will verify our results on an image of cute cats
125
+ def prepare_img():
126
+ url = "http://images.cocodataset.org/val2017/000000039769.jpg"
127
+ im = Image.open(requests.get(url, stream=True).raw)
128
+ return im
129
+
130
+
131
+ @torch.no_grad()
132
+ def convert_deit_checkpoint(deit_name, pytorch_dump_folder_path):
133
+ """
134
+ Copy/paste/tweak model's weights to our DeiT structure.
135
+ """
136
+
137
+ # define default DeiT configuration
138
+ config = DeiTConfig()
139
+ # all deit models have fine-tuned heads
140
+ base_model = False
141
+ # dataset (fine-tuned on ImageNet 2012), patch_size and image_size
142
+ config.num_labels = 1000
143
+ repo_id = "huggingface/label-files"
144
+ filename = "imagenet-1k-id2label.json"
145
+ id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
146
+ id2label = {int(k): v for k, v in id2label.items()}
147
+ config.id2label = id2label
148
+ config.label2id = {v: k for k, v in id2label.items()}
149
+ config.patch_size = int(deit_name[-6:-4])
150
+ config.image_size = int(deit_name[-3:])
151
+ # size of the architecture
152
+ if deit_name[9:].startswith("tiny"):
153
+ config.hidden_size = 192
154
+ config.intermediate_size = 768
155
+ config.num_hidden_layers = 12
156
+ config.num_attention_heads = 3
157
+ elif deit_name[9:].startswith("small"):
158
+ config.hidden_size = 384
159
+ config.intermediate_size = 1536
160
+ config.num_hidden_layers = 12
161
+ config.num_attention_heads = 6
162
+ if deit_name[9:].startswith("base"):
163
+ pass
164
+ elif deit_name[4:].startswith("large"):
165
+ config.hidden_size = 1024
166
+ config.intermediate_size = 4096
167
+ config.num_hidden_layers = 24
168
+ config.num_attention_heads = 16
169
+
170
+ # load original model from timm
171
+ timm_model = timm.create_model(deit_name, pretrained=True)
172
+ timm_model.eval()
173
+
174
+ # load state_dict of original model, remove and rename some keys
175
+ state_dict = timm_model.state_dict()
176
+ rename_keys = create_rename_keys(config, base_model)
177
+ for src, dest in rename_keys:
178
+ rename_key(state_dict, src, dest)
179
+ read_in_q_k_v(state_dict, config, base_model)
180
+
181
+ # load HuggingFace model
182
+ model = DeiTForImageClassificationWithTeacher(config).eval()
183
+ model.load_state_dict(state_dict)
184
+
185
+ # Check outputs on an image, prepared by DeiTImageProcessor
186
+ size = int(
187
+ (256 / 224) * config.image_size
188
+ ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103
189
+ image_processor = DeiTImageProcessor(size=size, crop_size=config.image_size)
190
+ encoding = image_processor(images=prepare_img(), return_tensors="pt")
191
+ pixel_values = encoding["pixel_values"]
192
+ outputs = model(pixel_values)
193
+
194
+ timm_logits = timm_model(pixel_values)
195
+ assert timm_logits.shape == outputs.logits.shape
196
+ assert torch.allclose(timm_logits, outputs.logits, atol=1e-3)
197
+
198
+ Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
199
+ print(f"Saving model {deit_name} to {pytorch_dump_folder_path}")
200
+ model.save_pretrained(pytorch_dump_folder_path)
201
+ print(f"Saving image processor to {pytorch_dump_folder_path}")
202
+ image_processor.save_pretrained(pytorch_dump_folder_path)
203
+
204
+
205
+ if __name__ == "__main__":
206
+ parser = argparse.ArgumentParser()
207
+ # Required parameters
208
+ parser.add_argument(
209
+ "--deit_name",
210
+ default="vit_deit_base_distilled_patch16_224",
211
+ type=str,
212
+ help="Name of the DeiT timm model you'd like to convert.",
213
+ )
214
+ parser.add_argument(
215
+ "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
216
+ )
217
+
218
+ args = parser.parse_args()
219
+ convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
llmeval-env/lib/python3.10/site-packages/transformers/models/deit/feature_extraction_deit.py ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2021 The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Feature extractor class for DeiT."""
16
+
17
+ import warnings
18
+
19
+ from ...utils import logging
20
+ from .image_processing_deit import DeiTImageProcessor
21
+
22
+
23
+ logger = logging.get_logger(__name__)
24
+
25
+
26
+ class DeiTFeatureExtractor(DeiTImageProcessor):
27
+ def __init__(self, *args, **kwargs) -> None:
28
+ warnings.warn(
29
+ "The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"
30
+ " use DeiTImageProcessor instead.",
31
+ FutureWarning,
32
+ )
33
+ super().__init__(*args, **kwargs)
llmeval-env/lib/python3.10/site-packages/transformers/models/deit/image_processing_deit.py ADDED
@@ -0,0 +1,320 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Image processor class for DeiT."""
16
+
17
+ from typing import Dict, List, Optional, Union
18
+
19
+ import numpy as np
20
+
21
+ from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
22
+ from ...image_transforms import resize, to_channel_dimension_format
23
+ from ...image_utils import (
24
+ IMAGENET_STANDARD_MEAN,
25
+ IMAGENET_STANDARD_STD,
26
+ ChannelDimension,
27
+ ImageInput,
28
+ PILImageResampling,
29
+ infer_channel_dimension_format,
30
+ is_scaled_image,
31
+ make_list_of_images,
32
+ to_numpy_array,
33
+ valid_images,
34
+ validate_kwargs,
35
+ validate_preprocess_arguments,
36
+ )
37
+ from ...utils import TensorType, is_vision_available, logging
38
+
39
+
40
+ if is_vision_available():
41
+ import PIL
42
+
43
+
44
+ logger = logging.get_logger(__name__)
45
+
46
+
47
+ class DeiTImageProcessor(BaseImageProcessor):
48
+ r"""
49
+ Constructs a DeiT image processor.
50
+
51
+ Args:
52
+ do_resize (`bool`, *optional*, defaults to `True`):
53
+ Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
54
+ `do_resize` in `preprocess`.
55
+ size (`Dict[str, int]` *optional*, defaults to `{"height": 256, "width": 256}`):
56
+ Size of the image after `resize`. Can be overridden by `size` in `preprocess`.
57
+ resample (`PILImageResampling` filter, *optional*, defaults to `Resampling.BICUBIC`):
58
+ Resampling filter to use if resizing the image. Can be overridden by `resample` in `preprocess`.
59
+ do_center_crop (`bool`, *optional*, defaults to `True`):
60
+ Whether to center crop the image. If the input size is smaller than `crop_size` along any edge, the image
61
+ is padded with 0's and then center cropped. Can be overridden by `do_center_crop` in `preprocess`.
62
+ crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`):
63
+ Desired output size when applying center-cropping. Can be overridden by `crop_size` in `preprocess`.
64
+ rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
65
+ Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
66
+ `preprocess` method.
67
+ do_rescale (`bool`, *optional*, defaults to `True`):
68
+ Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
69
+ parameter in the `preprocess` method.
70
+ do_normalize (`bool`, *optional*, defaults to `True`):
71
+ Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
72
+ method.
73
+ image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
74
+ Mean to use if normalizing the image. This is a float or list of floats the length of the number of
75
+ channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
76
+ image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
77
+ Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
78
+ number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
79
+ """
80
+
81
+ model_input_names = ["pixel_values"]
82
+
83
+ def __init__(
84
+ self,
85
+ do_resize: bool = True,
86
+ size: Dict[str, int] = None,
87
+ resample: PILImageResampling = PIL.Image.BICUBIC,
88
+ do_center_crop: bool = True,
89
+ crop_size: Dict[str, int] = None,
90
+ rescale_factor: Union[int, float] = 1 / 255,
91
+ do_rescale: bool = True,
92
+ do_normalize: bool = True,
93
+ image_mean: Optional[Union[float, List[float]]] = None,
94
+ image_std: Optional[Union[float, List[float]]] = None,
95
+ **kwargs,
96
+ ) -> None:
97
+ super().__init__(**kwargs)
98
+ size = size if size is not None else {"height": 256, "width": 256}
99
+ size = get_size_dict(size)
100
+ crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
101
+ crop_size = get_size_dict(crop_size, param_name="crop_size")
102
+
103
+ self.do_resize = do_resize
104
+ self.size = size
105
+ self.resample = resample
106
+ self.do_center_crop = do_center_crop
107
+ self.crop_size = crop_size
108
+ self.do_rescale = do_rescale
109
+ self.rescale_factor = rescale_factor
110
+ self.do_normalize = do_normalize
111
+ self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
112
+ self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
113
+ self._valid_processor_keys = [
114
+ "images",
115
+ "do_resize",
116
+ "size",
117
+ "resample",
118
+ "do_center_crop",
119
+ "crop_size",
120
+ "do_rescale",
121
+ "rescale_factor",
122
+ "do_normalize",
123
+ "image_mean",
124
+ "image_std",
125
+ "return_tensors",
126
+ "data_format",
127
+ "input_data_format",
128
+ ]
129
+
130
+ # Copied from transformers.models.vit.image_processing_vit.ViTImageProcessor.resize with PILImageResampling.BILINEAR->PILImageResampling.BICUBIC
131
+ def resize(
132
+ self,
133
+ image: np.ndarray,
134
+ size: Dict[str, int],
135
+ resample: PILImageResampling = PILImageResampling.BICUBIC,
136
+ data_format: Optional[Union[str, ChannelDimension]] = None,
137
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
138
+ **kwargs,
139
+ ) -> np.ndarray:
140
+ """
141
+ Resize an image to `(size["height"], size["width"])`.
142
+
143
+ Args:
144
+ image (`np.ndarray`):
145
+ Image to resize.
146
+ size (`Dict[str, int]`):
147
+ Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image.
148
+ resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
149
+ `PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BICUBIC`.
150
+ data_format (`ChannelDimension` or `str`, *optional*):
151
+ The channel dimension format for the output image. If unset, the channel dimension format of the input
152
+ image is used. Can be one of:
153
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
154
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
155
+ - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
156
+ input_data_format (`ChannelDimension` or `str`, *optional*):
157
+ The channel dimension format for the input image. If unset, the channel dimension format is inferred
158
+ from the input image. Can be one of:
159
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
160
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
161
+ - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
162
+
163
+ Returns:
164
+ `np.ndarray`: The resized image.
165
+ """
166
+ size = get_size_dict(size)
167
+ if "height" not in size or "width" not in size:
168
+ raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}")
169
+ output_size = (size["height"], size["width"])
170
+ return resize(
171
+ image,
172
+ size=output_size,
173
+ resample=resample,
174
+ data_format=data_format,
175
+ input_data_format=input_data_format,
176
+ **kwargs,
177
+ )
178
+
179
+ def preprocess(
180
+ self,
181
+ images: ImageInput,
182
+ do_resize: bool = None,
183
+ size: Dict[str, int] = None,
184
+ resample=None,
185
+ do_center_crop: bool = None,
186
+ crop_size: Dict[str, int] = None,
187
+ do_rescale: bool = None,
188
+ rescale_factor: float = None,
189
+ do_normalize: bool = None,
190
+ image_mean: Optional[Union[float, List[float]]] = None,
191
+ image_std: Optional[Union[float, List[float]]] = None,
192
+ return_tensors: Optional[Union[str, TensorType]] = None,
193
+ data_format: ChannelDimension = ChannelDimension.FIRST,
194
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
195
+ **kwargs,
196
+ ) -> PIL.Image.Image:
197
+ """
198
+ Preprocess an image or batch of images.
199
+
200
+ Args:
201
+ images (`ImageInput`):
202
+ Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
203
+ passing in images with pixel values between 0 and 1, set `do_rescale=False`.
204
+ do_resize (`bool`, *optional*, defaults to `self.do_resize`):
205
+ Whether to resize the image.
206
+ size (`Dict[str, int]`, *optional*, defaults to `self.size`):
207
+ Size of the image after `resize`.
208
+ resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
209
+ PILImageResampling filter to use if resizing the image Only has an effect if `do_resize` is set to
210
+ `True`.
211
+ do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
212
+ Whether to center crop the image.
213
+ crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
214
+ Size of the image after center crop. If one edge the image is smaller than `crop_size`, it will be
215
+ padded with zeros and then cropped
216
+ do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
217
+ Whether to rescale the image values between [0 - 1].
218
+ rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
219
+ Rescale factor to rescale the image by if `do_rescale` is set to `True`.
220
+ do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
221
+ Whether to normalize the image.
222
+ image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
223
+ Image mean.
224
+ image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
225
+ Image standard deviation.
226
+ return_tensors (`str` or `TensorType`, *optional*):
227
+ The type of tensors to return. Can be one of:
228
+ - `None`: Return a list of `np.ndarray`.
229
+ - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
230
+ - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
231
+ - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
232
+ - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
233
+ data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
234
+ The channel dimension format for the output image. Can be one of:
235
+ - `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
236
+ - `ChannelDimension.LAST`: image in (height, width, num_channels) format.
237
+ input_data_format (`ChannelDimension` or `str`, *optional*):
238
+ The channel dimension format for the input image. If unset, the channel dimension format is inferred
239
+ from the input image. Can be one of:
240
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
241
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
242
+ - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
243
+ """
244
+ do_resize = do_resize if do_resize is not None else self.do_resize
245
+ resample = resample if resample is not None else self.resample
246
+ do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
247
+ do_rescale = do_rescale if do_rescale is not None else self.do_rescale
248
+ rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
249
+ do_normalize = do_normalize if do_normalize is not None else self.do_normalize
250
+ image_mean = image_mean if image_mean is not None else self.image_mean
251
+ image_std = image_std if image_std is not None else self.image_std
252
+
253
+ size = size if size is not None else self.size
254
+ size = get_size_dict(size)
255
+ crop_size = crop_size if crop_size is not None else self.crop_size
256
+ crop_size = get_size_dict(crop_size, param_name="crop_size")
257
+
258
+ images = make_list_of_images(images)
259
+
260
+ validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
261
+
262
+ if not valid_images(images):
263
+ raise ValueError(
264
+ "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
265
+ "torch.Tensor, tf.Tensor or jax.ndarray."
266
+ )
267
+ validate_preprocess_arguments(
268
+ do_rescale=do_rescale,
269
+ rescale_factor=rescale_factor,
270
+ do_normalize=do_normalize,
271
+ image_mean=image_mean,
272
+ image_std=image_std,
273
+ do_center_crop=do_center_crop,
274
+ crop_size=crop_size,
275
+ do_resize=do_resize,
276
+ size=size,
277
+ resample=resample,
278
+ )
279
+ # All transformations expect numpy arrays.
280
+ images = [to_numpy_array(image) for image in images]
281
+
282
+ if is_scaled_image(images[0]) and do_rescale:
283
+ logger.warning_once(
284
+ "It looks like you are trying to rescale already rescaled images. If the input"
285
+ " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
286
+ )
287
+
288
+ if input_data_format is None:
289
+ # We assume that all images have the same channel dimension format.
290
+ input_data_format = infer_channel_dimension_format(images[0])
291
+
292
+ if do_resize:
293
+ images = [
294
+ self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
295
+ for image in images
296
+ ]
297
+
298
+ if do_center_crop:
299
+ images = [
300
+ self.center_crop(image=image, size=crop_size, input_data_format=input_data_format) for image in images
301
+ ]
302
+
303
+ if do_rescale:
304
+ images = [
305
+ self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
306
+ for image in images
307
+ ]
308
+
309
+ if do_normalize:
310
+ images = [
311
+ self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
312
+ for image in images
313
+ ]
314
+
315
+ images = [
316
+ to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
317
+ ]
318
+
319
+ data = {"pixel_values": images}
320
+ return BatchFeature(data=data, tensor_type=return_tensors)
llmeval-env/lib/python3.10/site-packages/transformers/models/deit/modeling_deit.py ADDED
@@ -0,0 +1,891 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2021 Facebook AI Research (FAIR), Ross Wightman, The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ PyTorch DeiT model."""
16
+
17
+
18
+ import collections.abc
19
+ import math
20
+ from dataclasses import dataclass
21
+ from typing import Optional, Set, Tuple, Union
22
+
23
+ import torch
24
+ import torch.utils.checkpoint
25
+ from torch import nn
26
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
27
+
28
+ from ...activations import ACT2FN
29
+ from ...modeling_outputs import (
30
+ BaseModelOutput,
31
+ BaseModelOutputWithPooling,
32
+ ImageClassifierOutput,
33
+ MaskedImageModelingOutput,
34
+ )
35
+ from ...modeling_utils import PreTrainedModel
36
+ from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
37
+ from ...utils import (
38
+ ModelOutput,
39
+ add_code_sample_docstrings,
40
+ add_start_docstrings,
41
+ add_start_docstrings_to_model_forward,
42
+ logging,
43
+ replace_return_docstrings,
44
+ )
45
+ from .configuration_deit import DeiTConfig
46
+
47
+
48
+ logger = logging.get_logger(__name__)
49
+
50
+ # General docstring
51
+ _CONFIG_FOR_DOC = "DeiTConfig"
52
+
53
+ # Base docstring
54
+ _CHECKPOINT_FOR_DOC = "facebook/deit-base-distilled-patch16-224"
55
+ _EXPECTED_OUTPUT_SHAPE = [1, 198, 768]
56
+
57
+ # Image classification docstring
58
+ _IMAGE_CLASS_CHECKPOINT = "facebook/deit-base-distilled-patch16-224"
59
+ _IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
60
+
61
+
62
+ from ..deprecated._archive_maps import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
63
+
64
+
65
+ class DeiTEmbeddings(nn.Module):
66
+ """
67
+ Construct the CLS token, distillation token, position and patch embeddings. Optionally, also the mask token.
68
+ """
69
+
70
+ def __init__(self, config: DeiTConfig, use_mask_token: bool = False) -> None:
71
+ super().__init__()
72
+
73
+ self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
74
+ self.distillation_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
75
+ self.mask_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) if use_mask_token else None
76
+ self.patch_embeddings = DeiTPatchEmbeddings(config)
77
+ num_patches = self.patch_embeddings.num_patches
78
+ self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 2, config.hidden_size))
79
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
80
+
81
+ def forward(self, pixel_values: torch.Tensor, bool_masked_pos: Optional[torch.BoolTensor] = None) -> torch.Tensor:
82
+ embeddings = self.patch_embeddings(pixel_values)
83
+ batch_size, seq_length, _ = embeddings.size()
84
+
85
+ if bool_masked_pos is not None:
86
+ mask_tokens = self.mask_token.expand(batch_size, seq_length, -1)
87
+ # replace the masked visual tokens by mask_tokens
88
+ mask = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens)
89
+ embeddings = embeddings * (1.0 - mask) + mask_tokens * mask
90
+
91
+ cls_tokens = self.cls_token.expand(batch_size, -1, -1)
92
+ distillation_tokens = self.distillation_token.expand(batch_size, -1, -1)
93
+ embeddings = torch.cat((cls_tokens, distillation_tokens, embeddings), dim=1)
94
+ embeddings = embeddings + self.position_embeddings
95
+ embeddings = self.dropout(embeddings)
96
+ return embeddings
97
+
98
+
99
+ class DeiTPatchEmbeddings(nn.Module):
100
+ """
101
+ This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
102
+ `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
103
+ Transformer.
104
+ """
105
+
106
+ def __init__(self, config):
107
+ super().__init__()
108
+ image_size, patch_size = config.image_size, config.patch_size
109
+ num_channels, hidden_size = config.num_channels, config.hidden_size
110
+
111
+ image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
112
+ patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
113
+ num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
114
+ self.image_size = image_size
115
+ self.patch_size = patch_size
116
+ self.num_channels = num_channels
117
+ self.num_patches = num_patches
118
+
119
+ self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size)
120
+
121
+ def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
122
+ batch_size, num_channels, height, width = pixel_values.shape
123
+ if num_channels != self.num_channels:
124
+ raise ValueError(
125
+ "Make sure that the channel dimension of the pixel values match with the one set in the configuration."
126
+ )
127
+ if height != self.image_size[0] or width != self.image_size[1]:
128
+ raise ValueError(
129
+ f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})."
130
+ )
131
+ x = self.projection(pixel_values).flatten(2).transpose(1, 2)
132
+ return x
133
+
134
+
135
+ # Copied from transformers.models.vit.modeling_vit.ViTSelfAttention with ViT->DeiT
136
+ class DeiTSelfAttention(nn.Module):
137
+ def __init__(self, config: DeiTConfig) -> None:
138
+ super().__init__()
139
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
140
+ raise ValueError(
141
+ f"The hidden size {config.hidden_size,} is not a multiple of the number of attention "
142
+ f"heads {config.num_attention_heads}."
143
+ )
144
+
145
+ self.num_attention_heads = config.num_attention_heads
146
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
147
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
148
+
149
+ self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
150
+ self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
151
+ self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
152
+
153
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
154
+
155
+ def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
156
+ new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
157
+ x = x.view(new_x_shape)
158
+ return x.permute(0, 2, 1, 3)
159
+
160
+ def forward(
161
+ self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False
162
+ ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
163
+ mixed_query_layer = self.query(hidden_states)
164
+
165
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
166
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
167
+ query_layer = self.transpose_for_scores(mixed_query_layer)
168
+
169
+ # Take the dot product between "query" and "key" to get the raw attention scores.
170
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
171
+
172
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
173
+
174
+ # Normalize the attention scores to probabilities.
175
+ attention_probs = nn.functional.softmax(attention_scores, dim=-1)
176
+
177
+ # This is actually dropping out entire tokens to attend to, which might
178
+ # seem a bit unusual, but is taken from the original Transformer paper.
179
+ attention_probs = self.dropout(attention_probs)
180
+
181
+ # Mask heads if we want to
182
+ if head_mask is not None:
183
+ attention_probs = attention_probs * head_mask
184
+
185
+ context_layer = torch.matmul(attention_probs, value_layer)
186
+
187
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
188
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
189
+ context_layer = context_layer.view(new_context_layer_shape)
190
+
191
+ outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
192
+
193
+ return outputs
194
+
195
+
196
+ # Copied from transformers.models.vit.modeling_vit.ViTSelfOutput with ViT->DeiT
197
+ class DeiTSelfOutput(nn.Module):
198
+ """
199
+ The residual connection is defined in DeiTLayer instead of here (as is the case with other models), due to the
200
+ layernorm applied before each block.
201
+ """
202
+
203
+ def __init__(self, config: DeiTConfig) -> None:
204
+ super().__init__()
205
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
206
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
207
+
208
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
209
+ hidden_states = self.dense(hidden_states)
210
+ hidden_states = self.dropout(hidden_states)
211
+
212
+ return hidden_states
213
+
214
+
215
+ # Copied from transformers.models.vit.modeling_vit.ViTAttention with ViT->DeiT
216
+ class DeiTAttention(nn.Module):
217
+ def __init__(self, config: DeiTConfig) -> None:
218
+ super().__init__()
219
+ self.attention = DeiTSelfAttention(config)
220
+ self.output = DeiTSelfOutput(config)
221
+ self.pruned_heads = set()
222
+
223
+ def prune_heads(self, heads: Set[int]) -> None:
224
+ if len(heads) == 0:
225
+ return
226
+ heads, index = find_pruneable_heads_and_indices(
227
+ heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
228
+ )
229
+
230
+ # Prune linear layers
231
+ self.attention.query = prune_linear_layer(self.attention.query, index)
232
+ self.attention.key = prune_linear_layer(self.attention.key, index)
233
+ self.attention.value = prune_linear_layer(self.attention.value, index)
234
+ self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
235
+
236
+ # Update hyper params and store pruned heads
237
+ self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
238
+ self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
239
+ self.pruned_heads = self.pruned_heads.union(heads)
240
+
241
+ def forward(
242
+ self,
243
+ hidden_states: torch.Tensor,
244
+ head_mask: Optional[torch.Tensor] = None,
245
+ output_attentions: bool = False,
246
+ ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
247
+ self_outputs = self.attention(hidden_states, head_mask, output_attentions)
248
+
249
+ attention_output = self.output(self_outputs[0], hidden_states)
250
+
251
+ outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
252
+ return outputs
253
+
254
+
255
+ # Copied from transformers.models.vit.modeling_vit.ViTIntermediate with ViT->DeiT
256
+ class DeiTIntermediate(nn.Module):
257
+ def __init__(self, config: DeiTConfig) -> None:
258
+ super().__init__()
259
+ self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
260
+ if isinstance(config.hidden_act, str):
261
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
262
+ else:
263
+ self.intermediate_act_fn = config.hidden_act
264
+
265
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
266
+ hidden_states = self.dense(hidden_states)
267
+ hidden_states = self.intermediate_act_fn(hidden_states)
268
+
269
+ return hidden_states
270
+
271
+
272
+ # Copied from transformers.models.vit.modeling_vit.ViTOutput with ViT->DeiT
273
+ class DeiTOutput(nn.Module):
274
+ def __init__(self, config: DeiTConfig) -> None:
275
+ super().__init__()
276
+ self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
277
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
278
+
279
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
280
+ hidden_states = self.dense(hidden_states)
281
+ hidden_states = self.dropout(hidden_states)
282
+
283
+ hidden_states = hidden_states + input_tensor
284
+
285
+ return hidden_states
286
+
287
+
288
+ # Copied from transformers.models.vit.modeling_vit.ViTLayer with ViT->DeiT
289
+ class DeiTLayer(nn.Module):
290
+ """This corresponds to the Block class in the timm implementation."""
291
+
292
+ def __init__(self, config: DeiTConfig) -> None:
293
+ super().__init__()
294
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
295
+ self.seq_len_dim = 1
296
+ self.attention = DeiTAttention(config)
297
+ self.intermediate = DeiTIntermediate(config)
298
+ self.output = DeiTOutput(config)
299
+ self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
300
+ self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
301
+
302
+ def forward(
303
+ self,
304
+ hidden_states: torch.Tensor,
305
+ head_mask: Optional[torch.Tensor] = None,
306
+ output_attentions: bool = False,
307
+ ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
308
+ self_attention_outputs = self.attention(
309
+ self.layernorm_before(hidden_states), # in DeiT, layernorm is applied before self-attention
310
+ head_mask,
311
+ output_attentions=output_attentions,
312
+ )
313
+ attention_output = self_attention_outputs[0]
314
+ outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
315
+
316
+ # first residual connection
317
+ hidden_states = attention_output + hidden_states
318
+
319
+ # in DeiT, layernorm is also applied after self-attention
320
+ layer_output = self.layernorm_after(hidden_states)
321
+ layer_output = self.intermediate(layer_output)
322
+
323
+ # second residual connection is done here
324
+ layer_output = self.output(layer_output, hidden_states)
325
+
326
+ outputs = (layer_output,) + outputs
327
+
328
+ return outputs
329
+
330
+
331
+ # Copied from transformers.models.vit.modeling_vit.ViTEncoder with ViT->DeiT
332
+ class DeiTEncoder(nn.Module):
333
+ def __init__(self, config: DeiTConfig) -> None:
334
+ super().__init__()
335
+ self.config = config
336
+ self.layer = nn.ModuleList([DeiTLayer(config) for _ in range(config.num_hidden_layers)])
337
+ self.gradient_checkpointing = False
338
+
339
+ def forward(
340
+ self,
341
+ hidden_states: torch.Tensor,
342
+ head_mask: Optional[torch.Tensor] = None,
343
+ output_attentions: bool = False,
344
+ output_hidden_states: bool = False,
345
+ return_dict: bool = True,
346
+ ) -> Union[tuple, BaseModelOutput]:
347
+ all_hidden_states = () if output_hidden_states else None
348
+ all_self_attentions = () if output_attentions else None
349
+
350
+ for i, layer_module in enumerate(self.layer):
351
+ if output_hidden_states:
352
+ all_hidden_states = all_hidden_states + (hidden_states,)
353
+
354
+ layer_head_mask = head_mask[i] if head_mask is not None else None
355
+
356
+ if self.gradient_checkpointing and self.training:
357
+ layer_outputs = self._gradient_checkpointing_func(
358
+ layer_module.__call__,
359
+ hidden_states,
360
+ layer_head_mask,
361
+ output_attentions,
362
+ )
363
+ else:
364
+ layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions)
365
+
366
+ hidden_states = layer_outputs[0]
367
+
368
+ if output_attentions:
369
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
370
+
371
+ if output_hidden_states:
372
+ all_hidden_states = all_hidden_states + (hidden_states,)
373
+
374
+ if not return_dict:
375
+ return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
376
+ return BaseModelOutput(
377
+ last_hidden_state=hidden_states,
378
+ hidden_states=all_hidden_states,
379
+ attentions=all_self_attentions,
380
+ )
381
+
382
+
383
+ class DeiTPreTrainedModel(PreTrainedModel):
384
+ """
385
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
386
+ models.
387
+ """
388
+
389
+ config_class = DeiTConfig
390
+ base_model_prefix = "deit"
391
+ main_input_name = "pixel_values"
392
+ supports_gradient_checkpointing = True
393
+ _no_split_modules = ["DeiTLayer"]
394
+
395
+ def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None:
396
+ """Initialize the weights"""
397
+ if isinstance(module, (nn.Linear, nn.Conv2d)):
398
+ # Upcast the input in `fp32` and cast it back to desired `dtype` to avoid
399
+ # `trunc_normal_cpu` not implemented in `half` issues
400
+ module.weight.data = nn.init.trunc_normal_(
401
+ module.weight.data.to(torch.float32), mean=0.0, std=self.config.initializer_range
402
+ ).to(module.weight.dtype)
403
+ if module.bias is not None:
404
+ module.bias.data.zero_()
405
+ elif isinstance(module, nn.LayerNorm):
406
+ module.bias.data.zero_()
407
+ module.weight.data.fill_(1.0)
408
+
409
+
410
+ DEIT_START_DOCSTRING = r"""
411
+ This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
412
+ as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
413
+ behavior.
414
+
415
+ Parameters:
416
+ config ([`DeiTConfig`]): Model configuration class with all the parameters of the model.
417
+ Initializing with a config file does not load the weights associated with the model, only the
418
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
419
+ """
420
+
421
+ DEIT_INPUTS_DOCSTRING = r"""
422
+ Args:
423
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
424
+ Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
425
+ [`DeiTImageProcessor.__call__`] for details.
426
+
427
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
428
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
429
+
430
+ - 1 indicates the head is **not masked**,
431
+ - 0 indicates the head is **masked**.
432
+
433
+ output_attentions (`bool`, *optional*):
434
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
435
+ tensors for more detail.
436
+ output_hidden_states (`bool`, *optional*):
437
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
438
+ more detail.
439
+ return_dict (`bool`, *optional*):
440
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
441
+ """
442
+
443
+
444
+ @add_start_docstrings(
445
+ "The bare DeiT Model transformer outputting raw hidden-states without any specific head on top.",
446
+ DEIT_START_DOCSTRING,
447
+ )
448
+ class DeiTModel(DeiTPreTrainedModel):
449
+ def __init__(self, config: DeiTConfig, add_pooling_layer: bool = True, use_mask_token: bool = False) -> None:
450
+ super().__init__(config)
451
+ self.config = config
452
+
453
+ self.embeddings = DeiTEmbeddings(config, use_mask_token=use_mask_token)
454
+ self.encoder = DeiTEncoder(config)
455
+
456
+ self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
457
+ self.pooler = DeiTPooler(config) if add_pooling_layer else None
458
+
459
+ # Initialize weights and apply final processing
460
+ self.post_init()
461
+
462
+ def get_input_embeddings(self) -> DeiTPatchEmbeddings:
463
+ return self.embeddings.patch_embeddings
464
+
465
+ def _prune_heads(self, heads_to_prune):
466
+ """
467
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
468
+ class PreTrainedModel
469
+ """
470
+ for layer, heads in heads_to_prune.items():
471
+ self.encoder.layer[layer].attention.prune_heads(heads)
472
+
473
+ @add_start_docstrings_to_model_forward(DEIT_INPUTS_DOCSTRING)
474
+ @add_code_sample_docstrings(
475
+ checkpoint=_CHECKPOINT_FOR_DOC,
476
+ output_type=BaseModelOutputWithPooling,
477
+ config_class=_CONFIG_FOR_DOC,
478
+ modality="vision",
479
+ expected_output=_EXPECTED_OUTPUT_SHAPE,
480
+ )
481
+ def forward(
482
+ self,
483
+ pixel_values: Optional[torch.Tensor] = None,
484
+ bool_masked_pos: Optional[torch.BoolTensor] = None,
485
+ head_mask: Optional[torch.Tensor] = None,
486
+ output_attentions: Optional[bool] = None,
487
+ output_hidden_states: Optional[bool] = None,
488
+ return_dict: Optional[bool] = None,
489
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
490
+ r"""
491
+ bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`, *optional*):
492
+ Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
493
+ """
494
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
495
+ output_hidden_states = (
496
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
497
+ )
498
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
499
+
500
+ if pixel_values is None:
501
+ raise ValueError("You have to specify pixel_values")
502
+
503
+ # Prepare head mask if needed
504
+ # 1.0 in head_mask indicate we keep the head
505
+ # attention_probs has shape bsz x n_heads x N x N
506
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
507
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
508
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
509
+
510
+ # TODO: maybe have a cleaner way to cast the input (from `ImageProcessor` side?)
511
+ expected_dtype = self.embeddings.patch_embeddings.projection.weight.dtype
512
+ if pixel_values.dtype != expected_dtype:
513
+ pixel_values = pixel_values.to(expected_dtype)
514
+
515
+ embedding_output = self.embeddings(pixel_values, bool_masked_pos=bool_masked_pos)
516
+
517
+ encoder_outputs = self.encoder(
518
+ embedding_output,
519
+ head_mask=head_mask,
520
+ output_attentions=output_attentions,
521
+ output_hidden_states=output_hidden_states,
522
+ return_dict=return_dict,
523
+ )
524
+ sequence_output = encoder_outputs[0]
525
+ sequence_output = self.layernorm(sequence_output)
526
+ pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
527
+
528
+ if not return_dict:
529
+ head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,)
530
+ return head_outputs + encoder_outputs[1:]
531
+
532
+ return BaseModelOutputWithPooling(
533
+ last_hidden_state=sequence_output,
534
+ pooler_output=pooled_output,
535
+ hidden_states=encoder_outputs.hidden_states,
536
+ attentions=encoder_outputs.attentions,
537
+ )
538
+
539
+
540
+ # Copied from transformers.models.vit.modeling_vit.ViTPooler with ViT->DeiT
541
+ class DeiTPooler(nn.Module):
542
+ def __init__(self, config: DeiTConfig):
543
+ super().__init__()
544
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
545
+ self.activation = nn.Tanh()
546
+
547
+ def forward(self, hidden_states):
548
+ # We "pool" the model by simply taking the hidden state corresponding
549
+ # to the first token.
550
+ first_token_tensor = hidden_states[:, 0]
551
+ pooled_output = self.dense(first_token_tensor)
552
+ pooled_output = self.activation(pooled_output)
553
+ return pooled_output
554
+
555
+
556
+ @add_start_docstrings(
557
+ """DeiT Model with a decoder on top for masked image modeling, as proposed in [SimMIM](https://arxiv.org/abs/2111.09886).
558
+
559
+ <Tip>
560
+
561
+ Note that we provide a script to pre-train this model on custom data in our [examples
562
+ directory](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-pretraining).
563
+
564
+ </Tip>
565
+ """,
566
+ DEIT_START_DOCSTRING,
567
+ )
568
+ class DeiTForMaskedImageModeling(DeiTPreTrainedModel):
569
+ def __init__(self, config: DeiTConfig) -> None:
570
+ super().__init__(config)
571
+
572
+ self.deit = DeiTModel(config, add_pooling_layer=False, use_mask_token=True)
573
+
574
+ self.decoder = nn.Sequential(
575
+ nn.Conv2d(
576
+ in_channels=config.hidden_size,
577
+ out_channels=config.encoder_stride**2 * config.num_channels,
578
+ kernel_size=1,
579
+ ),
580
+ nn.PixelShuffle(config.encoder_stride),
581
+ )
582
+
583
+ # Initialize weights and apply final processing
584
+ self.post_init()
585
+
586
+ @add_start_docstrings_to_model_forward(DEIT_INPUTS_DOCSTRING)
587
+ @replace_return_docstrings(output_type=MaskedImageModelingOutput, config_class=_CONFIG_FOR_DOC)
588
+ def forward(
589
+ self,
590
+ pixel_values: Optional[torch.Tensor] = None,
591
+ bool_masked_pos: Optional[torch.BoolTensor] = None,
592
+ head_mask: Optional[torch.Tensor] = None,
593
+ output_attentions: Optional[bool] = None,
594
+ output_hidden_states: Optional[bool] = None,
595
+ return_dict: Optional[bool] = None,
596
+ ) -> Union[tuple, MaskedImageModelingOutput]:
597
+ r"""
598
+ bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`):
599
+ Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
600
+
601
+ Returns:
602
+
603
+ Examples:
604
+ ```python
605
+ >>> from transformers import AutoImageProcessor, DeiTForMaskedImageModeling
606
+ >>> import torch
607
+ >>> from PIL import Image
608
+ >>> import requests
609
+
610
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
611
+ >>> image = Image.open(requests.get(url, stream=True).raw)
612
+
613
+ >>> image_processor = AutoImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224")
614
+ >>> model = DeiTForMaskedImageModeling.from_pretrained("facebook/deit-base-distilled-patch16-224")
615
+
616
+ >>> num_patches = (model.config.image_size // model.config.patch_size) ** 2
617
+ >>> pixel_values = image_processor(images=image, return_tensors="pt").pixel_values
618
+ >>> # create random boolean mask of shape (batch_size, num_patches)
619
+ >>> bool_masked_pos = torch.randint(low=0, high=2, size=(1, num_patches)).bool()
620
+
621
+ >>> outputs = model(pixel_values, bool_masked_pos=bool_masked_pos)
622
+ >>> loss, reconstructed_pixel_values = outputs.loss, outputs.reconstruction
623
+ >>> list(reconstructed_pixel_values.shape)
624
+ [1, 3, 224, 224]
625
+ ```"""
626
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
627
+
628
+ outputs = self.deit(
629
+ pixel_values,
630
+ bool_masked_pos=bool_masked_pos,
631
+ head_mask=head_mask,
632
+ output_attentions=output_attentions,
633
+ output_hidden_states=output_hidden_states,
634
+ return_dict=return_dict,
635
+ )
636
+
637
+ sequence_output = outputs[0]
638
+
639
+ # Reshape to (batch_size, num_channels, height, width)
640
+ sequence_output = sequence_output[:, 1:-1]
641
+ batch_size, sequence_length, num_channels = sequence_output.shape
642
+ height = width = int(sequence_length**0.5)
643
+ sequence_output = sequence_output.permute(0, 2, 1).reshape(batch_size, num_channels, height, width)
644
+
645
+ # Reconstruct pixel values
646
+ reconstructed_pixel_values = self.decoder(sequence_output)
647
+
648
+ masked_im_loss = None
649
+ if bool_masked_pos is not None:
650
+ size = self.config.image_size // self.config.patch_size
651
+ bool_masked_pos = bool_masked_pos.reshape(-1, size, size)
652
+ mask = (
653
+ bool_masked_pos.repeat_interleave(self.config.patch_size, 1)
654
+ .repeat_interleave(self.config.patch_size, 2)
655
+ .unsqueeze(1)
656
+ .contiguous()
657
+ )
658
+ reconstruction_loss = nn.functional.l1_loss(pixel_values, reconstructed_pixel_values, reduction="none")
659
+ masked_im_loss = (reconstruction_loss * mask).sum() / (mask.sum() + 1e-5) / self.config.num_channels
660
+
661
+ if not return_dict:
662
+ output = (reconstructed_pixel_values,) + outputs[1:]
663
+ return ((masked_im_loss,) + output) if masked_im_loss is not None else output
664
+
665
+ return MaskedImageModelingOutput(
666
+ loss=masked_im_loss,
667
+ reconstruction=reconstructed_pixel_values,
668
+ hidden_states=outputs.hidden_states,
669
+ attentions=outputs.attentions,
670
+ )
671
+
672
+
673
+ @add_start_docstrings(
674
+ """
675
+ DeiT Model transformer with an image classification head on top (a linear layer on top of the final hidden state of
676
+ the [CLS] token) e.g. for ImageNet.
677
+ """,
678
+ DEIT_START_DOCSTRING,
679
+ )
680
+ class DeiTForImageClassification(DeiTPreTrainedModel):
681
+ def __init__(self, config: DeiTConfig) -> None:
682
+ super().__init__(config)
683
+
684
+ self.num_labels = config.num_labels
685
+ self.deit = DeiTModel(config, add_pooling_layer=False)
686
+
687
+ # Classifier head
688
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity()
689
+
690
+ # Initialize weights and apply final processing
691
+ self.post_init()
692
+
693
+ @add_start_docstrings_to_model_forward(DEIT_INPUTS_DOCSTRING)
694
+ @replace_return_docstrings(output_type=ImageClassifierOutput, config_class=_CONFIG_FOR_DOC)
695
+ def forward(
696
+ self,
697
+ pixel_values: Optional[torch.Tensor] = None,
698
+ head_mask: Optional[torch.Tensor] = None,
699
+ labels: Optional[torch.Tensor] = None,
700
+ output_attentions: Optional[bool] = None,
701
+ output_hidden_states: Optional[bool] = None,
702
+ return_dict: Optional[bool] = None,
703
+ ) -> Union[tuple, ImageClassifierOutput]:
704
+ r"""
705
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
706
+ Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
707
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
708
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
709
+
710
+ Returns:
711
+
712
+ Examples:
713
+
714
+ ```python
715
+ >>> from transformers import AutoImageProcessor, DeiTForImageClassification
716
+ >>> import torch
717
+ >>> from PIL import Image
718
+ >>> import requests
719
+
720
+ >>> torch.manual_seed(3) # doctest: +IGNORE_RESULT
721
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
722
+ >>> image = Image.open(requests.get(url, stream=True).raw)
723
+
724
+ >>> # note: we are loading a DeiTForImageClassificationWithTeacher from the hub here,
725
+ >>> # so the head will be randomly initialized, hence the predictions will be random
726
+ >>> image_processor = AutoImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224")
727
+ >>> model = DeiTForImageClassification.from_pretrained("facebook/deit-base-distilled-patch16-224")
728
+
729
+ >>> inputs = image_processor(images=image, return_tensors="pt")
730
+ >>> outputs = model(**inputs)
731
+ >>> logits = outputs.logits
732
+ >>> # model predicts one of the 1000 ImageNet classes
733
+ >>> predicted_class_idx = logits.argmax(-1).item()
734
+ >>> print("Predicted class:", model.config.id2label[predicted_class_idx])
735
+ Predicted class: Polaroid camera, Polaroid Land camera
736
+ ```"""
737
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
738
+
739
+ outputs = self.deit(
740
+ pixel_values,
741
+ head_mask=head_mask,
742
+ output_attentions=output_attentions,
743
+ output_hidden_states=output_hidden_states,
744
+ return_dict=return_dict,
745
+ )
746
+
747
+ sequence_output = outputs[0]
748
+
749
+ logits = self.classifier(sequence_output[:, 0, :])
750
+ # we don't use the distillation token
751
+
752
+ loss = None
753
+ if labels is not None:
754
+ labels = labels.to(logits.device)
755
+ if self.config.problem_type is None:
756
+ if self.num_labels == 1:
757
+ self.config.problem_type = "regression"
758
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
759
+ self.config.problem_type = "single_label_classification"
760
+ else:
761
+ self.config.problem_type = "multi_label_classification"
762
+
763
+ if self.config.problem_type == "regression":
764
+ loss_fct = MSELoss()
765
+ if self.num_labels == 1:
766
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
767
+ else:
768
+ loss = loss_fct(logits, labels)
769
+ elif self.config.problem_type == "single_label_classification":
770
+ loss_fct = CrossEntropyLoss()
771
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
772
+ elif self.config.problem_type == "multi_label_classification":
773
+ loss_fct = BCEWithLogitsLoss()
774
+ loss = loss_fct(logits, labels)
775
+ if not return_dict:
776
+ output = (logits,) + outputs[1:]
777
+ return ((loss,) + output) if loss is not None else output
778
+
779
+ return ImageClassifierOutput(
780
+ loss=loss,
781
+ logits=logits,
782
+ hidden_states=outputs.hidden_states,
783
+ attentions=outputs.attentions,
784
+ )
785
+
786
+
787
+ @dataclass
788
+ class DeiTForImageClassificationWithTeacherOutput(ModelOutput):
789
+ """
790
+ Output type of [`DeiTForImageClassificationWithTeacher`].
791
+
792
+ Args:
793
+ logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
794
+ Prediction scores as the average of the cls_logits and distillation logits.
795
+ cls_logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
796
+ Prediction scores of the classification head (i.e. the linear layer on top of the final hidden state of the
797
+ class token).
798
+ distillation_logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
799
+ Prediction scores of the distillation head (i.e. the linear layer on top of the final hidden state of the
800
+ distillation token).
801
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
802
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
803
+ shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
804
+ plus the initial embedding outputs.
805
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
806
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
807
+ sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
808
+ the self-attention heads.
809
+ """
810
+
811
+ logits: torch.FloatTensor = None
812
+ cls_logits: torch.FloatTensor = None
813
+ distillation_logits: torch.FloatTensor = None
814
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
815
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
816
+
817
+
818
+ @add_start_docstrings(
819
+ """
820
+ DeiT Model transformer with image classification heads on top (a linear layer on top of the final hidden state of
821
+ the [CLS] token and a linear layer on top of the final hidden state of the distillation token) e.g. for ImageNet.
822
+
823
+ .. warning::
824
+
825
+ This model supports inference-only. Fine-tuning with distillation (i.e. with a teacher) is not yet
826
+ supported.
827
+ """,
828
+ DEIT_START_DOCSTRING,
829
+ )
830
+ class DeiTForImageClassificationWithTeacher(DeiTPreTrainedModel):
831
+ def __init__(self, config: DeiTConfig) -> None:
832
+ super().__init__(config)
833
+
834
+ self.num_labels = config.num_labels
835
+ self.deit = DeiTModel(config, add_pooling_layer=False)
836
+
837
+ # Classifier heads
838
+ self.cls_classifier = (
839
+ nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity()
840
+ )
841
+ self.distillation_classifier = (
842
+ nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity()
843
+ )
844
+
845
+ # Initialize weights and apply final processing
846
+ self.post_init()
847
+
848
+ @add_start_docstrings_to_model_forward(DEIT_INPUTS_DOCSTRING)
849
+ @add_code_sample_docstrings(
850
+ checkpoint=_IMAGE_CLASS_CHECKPOINT,
851
+ output_type=DeiTForImageClassificationWithTeacherOutput,
852
+ config_class=_CONFIG_FOR_DOC,
853
+ expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
854
+ )
855
+ def forward(
856
+ self,
857
+ pixel_values: Optional[torch.Tensor] = None,
858
+ head_mask: Optional[torch.Tensor] = None,
859
+ output_attentions: Optional[bool] = None,
860
+ output_hidden_states: Optional[bool] = None,
861
+ return_dict: Optional[bool] = None,
862
+ ) -> Union[tuple, DeiTForImageClassificationWithTeacherOutput]:
863
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
864
+
865
+ outputs = self.deit(
866
+ pixel_values,
867
+ head_mask=head_mask,
868
+ output_attentions=output_attentions,
869
+ output_hidden_states=output_hidden_states,
870
+ return_dict=return_dict,
871
+ )
872
+
873
+ sequence_output = outputs[0]
874
+
875
+ cls_logits = self.cls_classifier(sequence_output[:, 0, :])
876
+ distillation_logits = self.distillation_classifier(sequence_output[:, 1, :])
877
+
878
+ # during inference, return the average of both classifier predictions
879
+ logits = (cls_logits + distillation_logits) / 2
880
+
881
+ if not return_dict:
882
+ output = (logits, cls_logits, distillation_logits) + outputs[1:]
883
+ return output
884
+
885
+ return DeiTForImageClassificationWithTeacherOutput(
886
+ logits=logits,
887
+ cls_logits=cls_logits,
888
+ distillation_logits=distillation_logits,
889
+ hidden_states=outputs.hidden_states,
890
+ attentions=outputs.attentions,
891
+ )
llmeval-env/lib/python3.10/site-packages/transformers/models/deit/modeling_tf_deit.py ADDED
@@ -0,0 +1,1178 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 Facebook AI Research (FAIR) and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ TensorFlow DeiT model."""
16
+
17
+
18
+ from __future__ import annotations
19
+
20
+ import collections.abc
21
+ import math
22
+ from dataclasses import dataclass
23
+ from typing import Optional, Tuple, Union
24
+
25
+ import tensorflow as tf
26
+
27
+ from ...activations_tf import get_tf_activation
28
+ from ...modeling_tf_outputs import (
29
+ TFBaseModelOutput,
30
+ TFBaseModelOutputWithPooling,
31
+ TFImageClassifierOutput,
32
+ TFMaskedImageModelingOutput,
33
+ )
34
+ from ...modeling_tf_utils import (
35
+ TFPreTrainedModel,
36
+ TFSequenceClassificationLoss,
37
+ get_initializer,
38
+ keras,
39
+ keras_serializable,
40
+ unpack_inputs,
41
+ )
42
+ from ...tf_utils import shape_list, stable_softmax
43
+ from ...utils import (
44
+ ModelOutput,
45
+ add_code_sample_docstrings,
46
+ add_start_docstrings,
47
+ add_start_docstrings_to_model_forward,
48
+ logging,
49
+ replace_return_docstrings,
50
+ )
51
+ from .configuration_deit import DeiTConfig
52
+
53
+
54
+ logger = logging.get_logger(__name__)
55
+
56
+ # General docstring
57
+ _CONFIG_FOR_DOC = "DeiTConfig"
58
+
59
+ # Base docstring
60
+ _CHECKPOINT_FOR_DOC = "facebook/deit-base-distilled-patch16-224"
61
+ _EXPECTED_OUTPUT_SHAPE = [1, 198, 768]
62
+
63
+ # Image classification docstring
64
+ _IMAGE_CLASS_CHECKPOINT = "facebook/deit-base-distilled-patch16-224"
65
+ _IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
66
+
67
+
68
+ from ..deprecated._archive_maps import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
69
+
70
+
71
+ @dataclass
72
+ class TFDeiTForImageClassificationWithTeacherOutput(ModelOutput):
73
+ """
74
+ Output type of [`DeiTForImageClassificationWithTeacher`].
75
+
76
+ Args:
77
+ logits (`tf.Tensor` of shape `(batch_size, config.num_labels)`):
78
+ Prediction scores as the average of the cls_logits and distillation logits.
79
+ cls_logits (`tf.Tensor` of shape `(batch_size, config.num_labels)`):
80
+ Prediction scores of the classification head (i.e. the linear layer on top of the final hidden state of the
81
+ class token).
82
+ distillation_logits (`tf.Tensor` of shape `(batch_size, config.num_labels)`):
83
+ Prediction scores of the distillation head (i.e. the linear layer on top of the final hidden state of the
84
+ distillation token).
85
+ hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
86
+ Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
87
+ `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus
88
+ the initial embedding outputs.
89
+ attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
90
+ Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
91
+ sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
92
+ the self-attention heads.
93
+ """
94
+
95
+ logits: tf.Tensor = None
96
+ cls_logits: tf.Tensor = None
97
+ distillation_logits: tf.Tensor = None
98
+ hidden_states: Tuple[tf.Tensor] | None = None
99
+ attentions: Tuple[tf.Tensor] | None = None
100
+
101
+
102
+ class TFDeiTEmbeddings(keras.layers.Layer):
103
+ """
104
+ Construct the CLS token, distillation token, position and patch embeddings. Optionally, also the mask token.
105
+ """
106
+
107
+ def __init__(self, config: DeiTConfig, use_mask_token: bool = False, **kwargs) -> None:
108
+ super().__init__(**kwargs)
109
+ self.config = config
110
+ self.use_mask_token = use_mask_token
111
+ self.patch_embeddings = TFDeiTPatchEmbeddings(config=config, name="patch_embeddings")
112
+ self.dropout = keras.layers.Dropout(config.hidden_dropout_prob, name="dropout")
113
+
114
+ def build(self, input_shape=None):
115
+ self.cls_token = self.add_weight(
116
+ shape=(1, 1, self.config.hidden_size),
117
+ initializer=keras.initializers.zeros(),
118
+ trainable=True,
119
+ name="cls_token",
120
+ )
121
+ self.distillation_token = self.add_weight(
122
+ shape=(1, 1, self.config.hidden_size),
123
+ initializer=keras.initializers.zeros(),
124
+ trainable=True,
125
+ name="distillation_token",
126
+ )
127
+ self.mask_token = None
128
+ if self.use_mask_token:
129
+ self.mask_token = self.add_weight(
130
+ shape=(1, 1, self.config.hidden_size),
131
+ initializer=keras.initializers.zeros(),
132
+ trainable=True,
133
+ name="mask_token",
134
+ )
135
+ num_patches = self.patch_embeddings.num_patches
136
+ self.position_embeddings = self.add_weight(
137
+ shape=(1, num_patches + 2, self.config.hidden_size),
138
+ initializer=keras.initializers.zeros(),
139
+ trainable=True,
140
+ name="position_embeddings",
141
+ )
142
+
143
+ if self.built:
144
+ return
145
+ self.built = True
146
+ if getattr(self, "patch_embeddings", None) is not None:
147
+ with tf.name_scope(self.patch_embeddings.name):
148
+ self.patch_embeddings.build(None)
149
+ if getattr(self, "dropout", None) is not None:
150
+ with tf.name_scope(self.dropout.name):
151
+ self.dropout.build(None)
152
+
153
+ def call(
154
+ self, pixel_values: tf.Tensor, bool_masked_pos: tf.Tensor | None = None, training: bool = False
155
+ ) -> tf.Tensor:
156
+ embeddings = self.patch_embeddings(pixel_values)
157
+ batch_size, seq_length, _ = shape_list(embeddings)
158
+
159
+ if bool_masked_pos is not None:
160
+ mask_tokens = tf.tile(self.mask_token, [batch_size, seq_length, 1])
161
+ # replace the masked visual tokens by mask_tokens
162
+ mask = tf.expand_dims(bool_masked_pos, axis=-1)
163
+ mask = tf.cast(mask, dtype=mask_tokens.dtype)
164
+ embeddings = embeddings * (1.0 - mask) + mask_tokens * mask
165
+
166
+ cls_tokens = tf.repeat(self.cls_token, repeats=batch_size, axis=0)
167
+ distillation_tokens = tf.repeat(self.distillation_token, repeats=batch_size, axis=0)
168
+ embeddings = tf.concat((cls_tokens, distillation_tokens, embeddings), axis=1)
169
+ embeddings = embeddings + self.position_embeddings
170
+ embeddings = self.dropout(embeddings, training=training)
171
+ return embeddings
172
+
173
+
174
+ class TFDeiTPatchEmbeddings(keras.layers.Layer):
175
+ """
176
+ This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
177
+ `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
178
+ Transformer.
179
+ """
180
+
181
+ def __init__(self, config: DeiTConfig, **kwargs) -> None:
182
+ super().__init__(**kwargs)
183
+ image_size, patch_size = config.image_size, config.patch_size
184
+ num_channels, hidden_size = config.num_channels, config.hidden_size
185
+
186
+ image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
187
+ patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
188
+ num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
189
+ self.image_size = image_size
190
+ self.patch_size = patch_size
191
+ self.num_channels = num_channels
192
+ self.num_patches = num_patches
193
+
194
+ self.projection = keras.layers.Conv2D(
195
+ hidden_size, kernel_size=patch_size, strides=patch_size, name="projection"
196
+ )
197
+
198
+ def call(self, pixel_values: tf.Tensor) -> tf.Tensor:
199
+ batch_size, height, width, num_channels = shape_list(pixel_values)
200
+ if tf.executing_eagerly() and num_channels != self.num_channels:
201
+ raise ValueError(
202
+ "Make sure that the channel dimension of the pixel values match with the one set in the configuration."
203
+ )
204
+ if tf.executing_eagerly() and (height != self.image_size[0] or width != self.image_size[1]):
205
+ raise ValueError(
206
+ f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})."
207
+ )
208
+ x = self.projection(pixel_values)
209
+ batch_size, height, width, num_channels = shape_list(x)
210
+ x = tf.reshape(x, (batch_size, height * width, num_channels))
211
+ return x
212
+
213
+ def build(self, input_shape=None):
214
+ if self.built:
215
+ return
216
+ self.built = True
217
+ if getattr(self, "projection", None) is not None:
218
+ with tf.name_scope(self.projection.name):
219
+ self.projection.build([None, None, None, self.num_channels])
220
+
221
+
222
+ # Copied from transformers.models.vit.modeling_tf_vit.TFViTSelfAttention with ViT->DeiT
223
+ class TFDeiTSelfAttention(keras.layers.Layer):
224
+ def __init__(self, config: DeiTConfig, **kwargs):
225
+ super().__init__(**kwargs)
226
+
227
+ if config.hidden_size % config.num_attention_heads != 0:
228
+ raise ValueError(
229
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number "
230
+ f"of attention heads ({config.num_attention_heads})"
231
+ )
232
+
233
+ self.num_attention_heads = config.num_attention_heads
234
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
235
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
236
+ self.sqrt_att_head_size = math.sqrt(self.attention_head_size)
237
+
238
+ self.query = keras.layers.Dense(
239
+ units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query"
240
+ )
241
+ self.key = keras.layers.Dense(
242
+ units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key"
243
+ )
244
+ self.value = keras.layers.Dense(
245
+ units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value"
246
+ )
247
+ self.dropout = keras.layers.Dropout(rate=config.attention_probs_dropout_prob)
248
+ self.config = config
249
+
250
+ def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor:
251
+ # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size]
252
+ tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size))
253
+
254
+ # Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size]
255
+ return tf.transpose(tensor, perm=[0, 2, 1, 3])
256
+
257
+ def call(
258
+ self,
259
+ hidden_states: tf.Tensor,
260
+ head_mask: tf.Tensor,
261
+ output_attentions: bool,
262
+ training: bool = False,
263
+ ) -> Tuple[tf.Tensor]:
264
+ batch_size = shape_list(hidden_states)[0]
265
+ mixed_query_layer = self.query(inputs=hidden_states)
266
+ mixed_key_layer = self.key(inputs=hidden_states)
267
+ mixed_value_layer = self.value(inputs=hidden_states)
268
+ query_layer = self.transpose_for_scores(mixed_query_layer, batch_size)
269
+ key_layer = self.transpose_for_scores(mixed_key_layer, batch_size)
270
+ value_layer = self.transpose_for_scores(mixed_value_layer, batch_size)
271
+
272
+ # Take the dot product between "query" and "key" to get the raw attention scores.
273
+ # (batch size, num_heads, seq_len_q, seq_len_k)
274
+ attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)
275
+ dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype)
276
+ attention_scores = tf.divide(attention_scores, dk)
277
+
278
+ # Normalize the attention scores to probabilities.
279
+ attention_probs = stable_softmax(logits=attention_scores, axis=-1)
280
+
281
+ # This is actually dropping out entire tokens to attend to, which might
282
+ # seem a bit unusual, but is taken from the original Transformer paper.
283
+ attention_probs = self.dropout(inputs=attention_probs, training=training)
284
+
285
+ # Mask heads if we want to
286
+ if head_mask is not None:
287
+ attention_probs = tf.multiply(attention_probs, head_mask)
288
+
289
+ attention_output = tf.matmul(attention_probs, value_layer)
290
+ attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3])
291
+
292
+ # (batch_size, seq_len_q, all_head_size)
293
+ attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.all_head_size))
294
+ outputs = (attention_output, attention_probs) if output_attentions else (attention_output,)
295
+
296
+ return outputs
297
+
298
+ def build(self, input_shape=None):
299
+ if self.built:
300
+ return
301
+ self.built = True
302
+ if getattr(self, "query", None) is not None:
303
+ with tf.name_scope(self.query.name):
304
+ self.query.build([None, None, self.config.hidden_size])
305
+ if getattr(self, "key", None) is not None:
306
+ with tf.name_scope(self.key.name):
307
+ self.key.build([None, None, self.config.hidden_size])
308
+ if getattr(self, "value", None) is not None:
309
+ with tf.name_scope(self.value.name):
310
+ self.value.build([None, None, self.config.hidden_size])
311
+
312
+
313
+ # Copied from transformers.models.vit.modeling_tf_vit.TFViTSelfOutput with ViT->DeiT
314
+ class TFDeiTSelfOutput(keras.layers.Layer):
315
+ """
316
+ The residual connection is defined in TFDeiTLayer instead of here (as is the case with other models), due to the
317
+ layernorm applied before each block.
318
+ """
319
+
320
+ def __init__(self, config: DeiTConfig, **kwargs):
321
+ super().__init__(**kwargs)
322
+
323
+ self.dense = keras.layers.Dense(
324
+ units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
325
+ )
326
+ self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
327
+ self.config = config
328
+
329
+ def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
330
+ hidden_states = self.dense(inputs=hidden_states)
331
+ hidden_states = self.dropout(inputs=hidden_states, training=training)
332
+
333
+ return hidden_states
334
+
335
+ def build(self, input_shape=None):
336
+ if self.built:
337
+ return
338
+ self.built = True
339
+ if getattr(self, "dense", None) is not None:
340
+ with tf.name_scope(self.dense.name):
341
+ self.dense.build([None, None, self.config.hidden_size])
342
+
343
+
344
+ # Copied from transformers.models.vit.modeling_tf_vit.TFViTAttention with ViT->DeiT
345
+ class TFDeiTAttention(keras.layers.Layer):
346
+ def __init__(self, config: DeiTConfig, **kwargs):
347
+ super().__init__(**kwargs)
348
+
349
+ self.self_attention = TFDeiTSelfAttention(config, name="attention")
350
+ self.dense_output = TFDeiTSelfOutput(config, name="output")
351
+
352
+ def prune_heads(self, heads):
353
+ raise NotImplementedError
354
+
355
+ def call(
356
+ self,
357
+ input_tensor: tf.Tensor,
358
+ head_mask: tf.Tensor,
359
+ output_attentions: bool,
360
+ training: bool = False,
361
+ ) -> Tuple[tf.Tensor]:
362
+ self_outputs = self.self_attention(
363
+ hidden_states=input_tensor, head_mask=head_mask, output_attentions=output_attentions, training=training
364
+ )
365
+ attention_output = self.dense_output(
366
+ hidden_states=self_outputs[0], input_tensor=input_tensor, training=training
367
+ )
368
+ outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
369
+
370
+ return outputs
371
+
372
+ def build(self, input_shape=None):
373
+ if self.built:
374
+ return
375
+ self.built = True
376
+ if getattr(self, "self_attention", None) is not None:
377
+ with tf.name_scope(self.self_attention.name):
378
+ self.self_attention.build(None)
379
+ if getattr(self, "dense_output", None) is not None:
380
+ with tf.name_scope(self.dense_output.name):
381
+ self.dense_output.build(None)
382
+
383
+
384
+ # Copied from transformers.models.vit.modeling_tf_vit.TFViTIntermediate with ViT->DeiT
385
+ class TFDeiTIntermediate(keras.layers.Layer):
386
+ def __init__(self, config: DeiTConfig, **kwargs):
387
+ super().__init__(**kwargs)
388
+
389
+ self.dense = keras.layers.Dense(
390
+ units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
391
+ )
392
+
393
+ if isinstance(config.hidden_act, str):
394
+ self.intermediate_act_fn = get_tf_activation(config.hidden_act)
395
+ else:
396
+ self.intermediate_act_fn = config.hidden_act
397
+ self.config = config
398
+
399
+ def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
400
+ hidden_states = self.dense(inputs=hidden_states)
401
+ hidden_states = self.intermediate_act_fn(hidden_states)
402
+
403
+ return hidden_states
404
+
405
+ def build(self, input_shape=None):
406
+ if self.built:
407
+ return
408
+ self.built = True
409
+ if getattr(self, "dense", None) is not None:
410
+ with tf.name_scope(self.dense.name):
411
+ self.dense.build([None, None, self.config.hidden_size])
412
+
413
+
414
+ # Copied from transformers.models.vit.modeling_tf_vit.TFViTOutput with ViT->DeiT
415
+ class TFDeiTOutput(keras.layers.Layer):
416
+ def __init__(self, config: DeiTConfig, **kwargs):
417
+ super().__init__(**kwargs)
418
+
419
+ self.dense = keras.layers.Dense(
420
+ units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
421
+ )
422
+ self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
423
+ self.config = config
424
+
425
+ def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
426
+ hidden_states = self.dense(inputs=hidden_states)
427
+ hidden_states = self.dropout(inputs=hidden_states, training=training)
428
+ hidden_states = hidden_states + input_tensor
429
+
430
+ return hidden_states
431
+
432
+ def build(self, input_shape=None):
433
+ if self.built:
434
+ return
435
+ self.built = True
436
+ if getattr(self, "dense", None) is not None:
437
+ with tf.name_scope(self.dense.name):
438
+ self.dense.build([None, None, self.config.intermediate_size])
439
+
440
+
441
+ class TFDeiTLayer(keras.layers.Layer):
442
+ """This corresponds to the Block class in the timm implementation."""
443
+
444
+ def __init__(self, config: DeiTConfig, **kwargs):
445
+ super().__init__(**kwargs)
446
+
447
+ self.attention = TFDeiTAttention(config, name="attention")
448
+ self.intermediate = TFDeiTIntermediate(config, name="intermediate")
449
+ self.deit_output = TFDeiTOutput(config, name="output")
450
+
451
+ self.layernorm_before = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm_before")
452
+ self.layernorm_after = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm_after")
453
+ self.config = config
454
+
455
+ def call(
456
+ self,
457
+ hidden_states: tf.Tensor,
458
+ head_mask: tf.Tensor,
459
+ output_attentions: bool,
460
+ training: bool = False,
461
+ ) -> Tuple[tf.Tensor]:
462
+ attention_outputs = self.attention(
463
+ # in DeiT, layernorm is applied before self-attention
464
+ input_tensor=self.layernorm_before(inputs=hidden_states, training=training),
465
+ head_mask=head_mask,
466
+ output_attentions=output_attentions,
467
+ training=training,
468
+ )
469
+ attention_output = attention_outputs[0]
470
+
471
+ # first residual connection
472
+ hidden_states = attention_output + hidden_states
473
+
474
+ # in DeiT, layernorm is also applied after self-attention
475
+ layer_output = self.layernorm_after(inputs=hidden_states, training=training)
476
+
477
+ intermediate_output = self.intermediate(hidden_states=layer_output, training=training)
478
+
479
+ # second residual connection is done here
480
+ layer_output = self.deit_output(
481
+ hidden_states=intermediate_output, input_tensor=hidden_states, training=training
482
+ )
483
+ outputs = (layer_output,) + attention_outputs[1:] # add attentions if we output them
484
+
485
+ return outputs
486
+
487
+ def build(self, input_shape=None):
488
+ if self.built:
489
+ return
490
+ self.built = True
491
+ if getattr(self, "attention", None) is not None:
492
+ with tf.name_scope(self.attention.name):
493
+ self.attention.build(None)
494
+ if getattr(self, "intermediate", None) is not None:
495
+ with tf.name_scope(self.intermediate.name):
496
+ self.intermediate.build(None)
497
+ if getattr(self, "deit_output", None) is not None:
498
+ with tf.name_scope(self.deit_output.name):
499
+ self.deit_output.build(None)
500
+ if getattr(self, "layernorm_before", None) is not None:
501
+ with tf.name_scope(self.layernorm_before.name):
502
+ self.layernorm_before.build([None, None, self.config.hidden_size])
503
+ if getattr(self, "layernorm_after", None) is not None:
504
+ with tf.name_scope(self.layernorm_after.name):
505
+ self.layernorm_after.build([None, None, self.config.hidden_size])
506
+
507
+
508
+ # Copied from transformers.models.vit.modeling_tf_vit.TFViTEncoder with ViT->DeiT
509
+ class TFDeiTEncoder(keras.layers.Layer):
510
+ def __init__(self, config: DeiTConfig, **kwargs):
511
+ super().__init__(**kwargs)
512
+
513
+ self.layer = [TFDeiTLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)]
514
+
515
+ def call(
516
+ self,
517
+ hidden_states: tf.Tensor,
518
+ head_mask: tf.Tensor,
519
+ output_attentions: bool,
520
+ output_hidden_states: bool,
521
+ return_dict: bool,
522
+ training: bool = False,
523
+ ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
524
+ all_hidden_states = () if output_hidden_states else None
525
+ all_attentions = () if output_attentions else None
526
+
527
+ for i, layer_module in enumerate(self.layer):
528
+ if output_hidden_states:
529
+ all_hidden_states = all_hidden_states + (hidden_states,)
530
+
531
+ layer_outputs = layer_module(
532
+ hidden_states=hidden_states,
533
+ head_mask=head_mask[i],
534
+ output_attentions=output_attentions,
535
+ training=training,
536
+ )
537
+ hidden_states = layer_outputs[0]
538
+
539
+ if output_attentions:
540
+ all_attentions = all_attentions + (layer_outputs[1],)
541
+
542
+ # Add last layer
543
+ if output_hidden_states:
544
+ all_hidden_states = all_hidden_states + (hidden_states,)
545
+
546
+ if not return_dict:
547
+ return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
548
+
549
+ return TFBaseModelOutput(
550
+ last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
551
+ )
552
+
553
+ def build(self, input_shape=None):
554
+ if self.built:
555
+ return
556
+ self.built = True
557
+ if getattr(self, "layer", None) is not None:
558
+ for layer in self.layer:
559
+ with tf.name_scope(layer.name):
560
+ layer.build(None)
561
+
562
+
563
+ @keras_serializable
564
+ class TFDeiTMainLayer(keras.layers.Layer):
565
+ config_class = DeiTConfig
566
+
567
+ def __init__(
568
+ self, config: DeiTConfig, add_pooling_layer: bool = True, use_mask_token: bool = False, **kwargs
569
+ ) -> None:
570
+ super().__init__(**kwargs)
571
+ self.config = config
572
+
573
+ self.embeddings = TFDeiTEmbeddings(config, use_mask_token=use_mask_token, name="embeddings")
574
+ self.encoder = TFDeiTEncoder(config, name="encoder")
575
+
576
+ self.layernorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm")
577
+ self.pooler = TFDeiTPooler(config, name="pooler") if add_pooling_layer else None
578
+
579
+ def get_input_embeddings(self) -> TFDeiTPatchEmbeddings:
580
+ return self.embeddings.patch_embeddings
581
+
582
+ def _prune_heads(self, heads_to_prune):
583
+ """
584
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
585
+ class PreTrainedModel
586
+ """
587
+ raise NotImplementedError
588
+
589
+ def get_head_mask(self, head_mask):
590
+ if head_mask is not None:
591
+ raise NotImplementedError
592
+ else:
593
+ head_mask = [None] * self.config.num_hidden_layers
594
+
595
+ return head_mask
596
+
597
+ @unpack_inputs
598
+ def call(
599
+ self,
600
+ pixel_values: tf.Tensor | None = None,
601
+ bool_masked_pos: tf.Tensor | None = None,
602
+ head_mask: tf.Tensor | None = None,
603
+ output_attentions: Optional[bool] = None,
604
+ output_hidden_states: Optional[bool] = None,
605
+ return_dict: Optional[bool] = None,
606
+ training: bool = False,
607
+ ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor, ...]]:
608
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
609
+ output_hidden_states = (
610
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
611
+ )
612
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
613
+
614
+ if pixel_values is None:
615
+ raise ValueError("You have to specify pixel_values")
616
+
617
+ # TF 2.0 image layers can't use NCHW format when running on CPU.
618
+ # (batch_size, num_channels, height, width) -> (batch_size, height, width, num_channels)
619
+ pixel_values = tf.transpose(pixel_values, (0, 2, 3, 1))
620
+
621
+ # Prepare head mask if needed
622
+ # 1.0 in head_mask indicate we keep the head
623
+ # attention_probs has shape bsz x n_heads x N x N
624
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
625
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
626
+ head_mask = self.get_head_mask(head_mask)
627
+
628
+ embedding_output = self.embeddings(pixel_values, bool_masked_pos=bool_masked_pos, training=training)
629
+
630
+ encoder_outputs = self.encoder(
631
+ embedding_output,
632
+ head_mask=head_mask,
633
+ output_attentions=output_attentions,
634
+ output_hidden_states=output_hidden_states,
635
+ return_dict=return_dict,
636
+ training=training,
637
+ )
638
+ sequence_output = encoder_outputs[0]
639
+ sequence_output = self.layernorm(sequence_output, training=training)
640
+ pooled_output = self.pooler(sequence_output, training=training) if self.pooler is not None else None
641
+
642
+ if not return_dict:
643
+ head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,)
644
+ return head_outputs + encoder_outputs[1:]
645
+
646
+ return TFBaseModelOutputWithPooling(
647
+ last_hidden_state=sequence_output,
648
+ pooler_output=pooled_output,
649
+ hidden_states=encoder_outputs.hidden_states,
650
+ attentions=encoder_outputs.attentions,
651
+ )
652
+
653
+ def build(self, input_shape=None):
654
+ if self.built:
655
+ return
656
+ self.built = True
657
+ if getattr(self, "embeddings", None) is not None:
658
+ with tf.name_scope(self.embeddings.name):
659
+ self.embeddings.build(None)
660
+ if getattr(self, "encoder", None) is not None:
661
+ with tf.name_scope(self.encoder.name):
662
+ self.encoder.build(None)
663
+ if getattr(self, "layernorm", None) is not None:
664
+ with tf.name_scope(self.layernorm.name):
665
+ self.layernorm.build([None, None, self.config.hidden_size])
666
+ if getattr(self, "pooler", None) is not None:
667
+ with tf.name_scope(self.pooler.name):
668
+ self.pooler.build(None)
669
+
670
+
671
+ # Copied from transformers.models.vit.modeling_tf_vit.TFViTPreTrainedModel with ViT->DeiT all-casing
672
+ class TFDeiTPreTrainedModel(TFPreTrainedModel):
673
+ """
674
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
675
+ models.
676
+ """
677
+
678
+ config_class = DeiTConfig
679
+ base_model_prefix = "deit"
680
+ main_input_name = "pixel_values"
681
+
682
+
683
+ DEIT_START_DOCSTRING = r"""
684
+ This model is a TensorFlow
685
+ [keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer). Use it as a regular
686
+ TensorFlow Module and refer to the TensorFlow documentation for all matter related to general usage and behavior.
687
+
688
+ Parameters:
689
+ config ([`DeiTConfig`]): Model configuration class with all the parameters of the model.
690
+ Initializing with a config file does not load the weights associated with the model, only the
691
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
692
+ """
693
+
694
+ DEIT_INPUTS_DOCSTRING = r"""
695
+ Args:
696
+ pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):
697
+ Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
698
+ [`DeiTImageProcessor.__call__`] for details.
699
+
700
+ head_mask (`tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
701
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
702
+
703
+ - 1 indicates the head is **not masked**,
704
+ - 0 indicates the head is **masked**.
705
+
706
+ output_attentions (`bool`, *optional*):
707
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
708
+ tensors for more detail.
709
+ output_hidden_states (`bool`, *optional*):
710
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
711
+ more detail.
712
+ return_dict (`bool`, *optional*):
713
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
714
+ """
715
+
716
+
717
+ @add_start_docstrings(
718
+ "The bare DeiT Model transformer outputting raw hidden-states without any specific head on top.",
719
+ DEIT_START_DOCSTRING,
720
+ )
721
+ class TFDeiTModel(TFDeiTPreTrainedModel):
722
+ def __init__(
723
+ self, config: DeiTConfig, add_pooling_layer: bool = True, use_mask_token: bool = False, **kwargs
724
+ ) -> None:
725
+ super().__init__(config, **kwargs)
726
+
727
+ self.deit = TFDeiTMainLayer(
728
+ config, add_pooling_layer=add_pooling_layer, use_mask_token=use_mask_token, name="deit"
729
+ )
730
+
731
+ @unpack_inputs
732
+ @add_start_docstrings_to_model_forward(DEIT_INPUTS_DOCSTRING)
733
+ @add_code_sample_docstrings(
734
+ checkpoint=_CHECKPOINT_FOR_DOC,
735
+ output_type=TFBaseModelOutputWithPooling,
736
+ config_class=_CONFIG_FOR_DOC,
737
+ modality="vision",
738
+ expected_output=_EXPECTED_OUTPUT_SHAPE,
739
+ )
740
+ def call(
741
+ self,
742
+ pixel_values: tf.Tensor | None = None,
743
+ bool_masked_pos: tf.Tensor | None = None,
744
+ head_mask: tf.Tensor | None = None,
745
+ output_attentions: Optional[bool] = None,
746
+ output_hidden_states: Optional[bool] = None,
747
+ return_dict: Optional[bool] = None,
748
+ training: bool = False,
749
+ ) -> Union[Tuple, TFBaseModelOutputWithPooling]:
750
+ outputs = self.deit(
751
+ pixel_values=pixel_values,
752
+ bool_masked_pos=bool_masked_pos,
753
+ head_mask=head_mask,
754
+ output_attentions=output_attentions,
755
+ output_hidden_states=output_hidden_states,
756
+ return_dict=return_dict,
757
+ training=training,
758
+ )
759
+ return outputs
760
+
761
+ def build(self, input_shape=None):
762
+ if self.built:
763
+ return
764
+ self.built = True
765
+ if getattr(self, "deit", None) is not None:
766
+ with tf.name_scope(self.deit.name):
767
+ self.deit.build(None)
768
+
769
+
770
+ # Copied from transformers.models.vit.modeling_tf_vit.TFViTPooler with ViT->DeiT
771
+ class TFDeiTPooler(keras.layers.Layer):
772
+ def __init__(self, config: DeiTConfig, **kwargs):
773
+ super().__init__(**kwargs)
774
+
775
+ self.dense = keras.layers.Dense(
776
+ units=config.hidden_size,
777
+ kernel_initializer=get_initializer(config.initializer_range),
778
+ activation="tanh",
779
+ name="dense",
780
+ )
781
+ self.config = config
782
+
783
+ def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
784
+ # We "pool" the model by simply taking the hidden state corresponding
785
+ # to the first token.
786
+ first_token_tensor = hidden_states[:, 0]
787
+ pooled_output = self.dense(inputs=first_token_tensor)
788
+
789
+ return pooled_output
790
+
791
+ def build(self, input_shape=None):
792
+ if self.built:
793
+ return
794
+ self.built = True
795
+ if getattr(self, "dense", None) is not None:
796
+ with tf.name_scope(self.dense.name):
797
+ self.dense.build([None, None, self.config.hidden_size])
798
+
799
+
800
+ class TFDeitPixelShuffle(keras.layers.Layer):
801
+ """TF layer implementation of torch.nn.PixelShuffle"""
802
+
803
+ def __init__(self, upscale_factor: int, **kwargs) -> None:
804
+ super().__init__(**kwargs)
805
+ if not isinstance(upscale_factor, int) or upscale_factor < 2:
806
+ raise ValueError(f"upscale_factor must be an integer value >= 2 got {upscale_factor}")
807
+ self.upscale_factor = upscale_factor
808
+
809
+ def call(self, x: tf.Tensor) -> tf.Tensor:
810
+ hidden_states = x
811
+ batch_size, _, _, num_input_channels = shape_list(hidden_states)
812
+ block_size_squared = self.upscale_factor**2
813
+ output_depth = int(num_input_channels / block_size_squared)
814
+ # When the number of output channels >= 2, PyTorch's PixelShuffle and
815
+ # TF's depth_to_space differ in their output as the order of channels selected for combining
816
+ # is a permutation of the other c.f.
817
+ # https://stackoverflow.com/questions/68272502/tf-depth-to-space-not-same-as-torchs-pixelshuffle-when-output-channels-1
818
+ permutation = tf.constant(
819
+ [[i + j * block_size_squared for i in range(block_size_squared) for j in range(output_depth)]]
820
+ )
821
+ hidden_states = tf.gather(params=hidden_states, indices=tf.tile(permutation, [batch_size, 1]), batch_dims=-1)
822
+ hidden_states = tf.nn.depth_to_space(hidden_states, block_size=self.upscale_factor, data_format="NHWC")
823
+ return hidden_states
824
+
825
+
826
+ class TFDeitDecoder(keras.layers.Layer):
827
+ def __init__(self, config: DeiTConfig, **kwargs) -> None:
828
+ super().__init__(**kwargs)
829
+ self.conv2d = keras.layers.Conv2D(
830
+ filters=config.encoder_stride**2 * config.num_channels, kernel_size=1, name="0"
831
+ )
832
+ self.pixel_shuffle = TFDeitPixelShuffle(config.encoder_stride, name="1")
833
+ self.config = config
834
+
835
+ def call(self, inputs: tf.Tensor, training: bool = False) -> tf.Tensor:
836
+ hidden_states = inputs
837
+ hidden_states = self.conv2d(hidden_states)
838
+ hidden_states = self.pixel_shuffle(hidden_states)
839
+ return hidden_states
840
+
841
+ def build(self, input_shape=None):
842
+ if self.built:
843
+ return
844
+ self.built = True
845
+ if getattr(self, "conv2d", None) is not None:
846
+ with tf.name_scope(self.conv2d.name):
847
+ self.conv2d.build([None, None, None, self.config.hidden_size])
848
+ if getattr(self, "pixel_shuffle", None) is not None:
849
+ with tf.name_scope(self.pixel_shuffle.name):
850
+ self.pixel_shuffle.build(None)
851
+
852
+
853
+ @add_start_docstrings(
854
+ "DeiT Model with a decoder on top for masked image modeling, as proposed in"
855
+ " [SimMIM](https://arxiv.org/abs/2111.09886).",
856
+ DEIT_START_DOCSTRING,
857
+ )
858
+ class TFDeiTForMaskedImageModeling(TFDeiTPreTrainedModel):
859
+ def __init__(self, config: DeiTConfig) -> None:
860
+ super().__init__(config)
861
+
862
+ self.deit = TFDeiTMainLayer(config, add_pooling_layer=False, use_mask_token=True, name="deit")
863
+ self.decoder = TFDeitDecoder(config, name="decoder")
864
+
865
+ @unpack_inputs
866
+ @add_start_docstrings_to_model_forward(DEIT_INPUTS_DOCSTRING)
867
+ @replace_return_docstrings(output_type=TFMaskedImageModelingOutput, config_class=_CONFIG_FOR_DOC)
868
+ def call(
869
+ self,
870
+ pixel_values: tf.Tensor | None = None,
871
+ bool_masked_pos: tf.Tensor | None = None,
872
+ head_mask: tf.Tensor | None = None,
873
+ output_attentions: Optional[bool] = None,
874
+ output_hidden_states: Optional[bool] = None,
875
+ return_dict: Optional[bool] = None,
876
+ training: bool = False,
877
+ ) -> Union[tuple, TFMaskedImageModelingOutput]:
878
+ r"""
879
+ bool_masked_pos (`tf.Tensor` of type bool and shape `(batch_size, num_patches)`):
880
+ Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
881
+
882
+ Returns:
883
+
884
+ Examples:
885
+ ```python
886
+ >>> from transformers import AutoImageProcessor, TFDeiTForMaskedImageModeling
887
+ >>> import tensorflow as tf
888
+ >>> from PIL import Image
889
+ >>> import requests
890
+
891
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
892
+ >>> image = Image.open(requests.get(url, stream=True).raw)
893
+
894
+ >>> image_processor = AutoImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224")
895
+ >>> model = TFDeiTForMaskedImageModeling.from_pretrained("facebook/deit-base-distilled-patch16-224")
896
+
897
+ >>> num_patches = (model.config.image_size // model.config.patch_size) ** 2
898
+ >>> pixel_values = image_processor(images=image, return_tensors="tf").pixel_values
899
+ >>> # create random boolean mask of shape (batch_size, num_patches)
900
+ >>> bool_masked_pos = tf.cast(tf.random.uniform((1, num_patches), minval=0, maxval=2, dtype=tf.int32), tf.bool)
901
+
902
+ >>> outputs = model(pixel_values, bool_masked_pos=bool_masked_pos)
903
+ >>> loss, reconstructed_pixel_values = outputs.loss, outputs.reconstruction
904
+ >>> list(reconstructed_pixel_values.shape)
905
+ [1, 3, 224, 224]
906
+ ```"""
907
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
908
+
909
+ outputs = self.deit(
910
+ pixel_values,
911
+ bool_masked_pos=bool_masked_pos,
912
+ head_mask=head_mask,
913
+ output_attentions=output_attentions,
914
+ output_hidden_states=output_hidden_states,
915
+ return_dict=return_dict,
916
+ training=training,
917
+ )
918
+
919
+ sequence_output = outputs[0]
920
+
921
+ # Reshape to (batch_size, num_channels, height, width)
922
+ sequence_output = sequence_output[:, 1:-1]
923
+ batch_size, sequence_length, num_channels = shape_list(sequence_output)
924
+ height = width = int(sequence_length**0.5)
925
+ sequence_output = tf.reshape(sequence_output, (batch_size, height, width, num_channels))
926
+
927
+ # Reconstruct pixel values
928
+ reconstructed_pixel_values = self.decoder(sequence_output, training=training)
929
+ # TF 2.0 image layers can't use NCHW format when running on CPU, so intermediate layers use NHWC,
930
+ # including the decoder. We transpose to compute the loss against the pixel values
931
+ # (batch_size, height, width, num_channels) -> (batch_size, num_channels, height, width)
932
+ reconstructed_pixel_values = tf.transpose(reconstructed_pixel_values, (0, 3, 1, 2))
933
+
934
+ masked_im_loss = None
935
+ if bool_masked_pos is not None:
936
+ size = self.config.image_size // self.config.patch_size
937
+ bool_masked_pos = tf.reshape(bool_masked_pos, (-1, size, size))
938
+ mask = tf.repeat(bool_masked_pos, self.config.patch_size, 1)
939
+ mask = tf.repeat(mask, self.config.patch_size, 2)
940
+ mask = tf.expand_dims(mask, 1)
941
+ mask = tf.cast(mask, tf.float32)
942
+
943
+ reconstruction_loss = keras.losses.mean_absolute_error(
944
+ # Swap axes as metric calculation reduces over the final dimension
945
+ tf.transpose(pixel_values, (1, 2, 3, 0)),
946
+ tf.transpose(reconstructed_pixel_values, (1, 2, 3, 0)),
947
+ )
948
+ reconstruction_loss = tf.expand_dims(reconstruction_loss, 0)
949
+ total_loss = tf.reduce_sum(reconstruction_loss * mask)
950
+ num_masked_pixels = (tf.reduce_sum(mask) + 1e-5) * self.config.num_channels
951
+ masked_im_loss = total_loss / num_masked_pixels
952
+ masked_im_loss = tf.reshape(masked_im_loss, (1,))
953
+
954
+ if not return_dict:
955
+ output = (reconstructed_pixel_values,) + outputs[1:]
956
+ return ((masked_im_loss,) + output) if masked_im_loss is not None else output
957
+
958
+ return TFMaskedImageModelingOutput(
959
+ loss=masked_im_loss,
960
+ reconstruction=reconstructed_pixel_values,
961
+ hidden_states=outputs.hidden_states,
962
+ attentions=outputs.attentions,
963
+ )
964
+
965
+ def build(self, input_shape=None):
966
+ if self.built:
967
+ return
968
+ self.built = True
969
+ if getattr(self, "deit", None) is not None:
970
+ with tf.name_scope(self.deit.name):
971
+ self.deit.build(None)
972
+ if getattr(self, "decoder", None) is not None:
973
+ with tf.name_scope(self.decoder.name):
974
+ self.decoder.build(None)
975
+
976
+
977
+ @add_start_docstrings(
978
+ """
979
+ DeiT Model transformer with an image classification head on top (a linear layer on top of the final hidden state of
980
+ the [CLS] token) e.g. for ImageNet.
981
+ """,
982
+ DEIT_START_DOCSTRING,
983
+ )
984
+ class TFDeiTForImageClassification(TFDeiTPreTrainedModel, TFSequenceClassificationLoss):
985
+ def __init__(self, config: DeiTConfig):
986
+ super().__init__(config)
987
+
988
+ self.num_labels = config.num_labels
989
+ self.deit = TFDeiTMainLayer(config, add_pooling_layer=False, name="deit")
990
+
991
+ # Classifier head
992
+ self.classifier = (
993
+ keras.layers.Dense(config.num_labels, name="classifier")
994
+ if config.num_labels > 0
995
+ else keras.layers.Activation("linear", name="classifier")
996
+ )
997
+ self.config = config
998
+
999
+ @unpack_inputs
1000
+ @add_start_docstrings_to_model_forward(DEIT_INPUTS_DOCSTRING)
1001
+ @replace_return_docstrings(output_type=TFImageClassifierOutput, config_class=_CONFIG_FOR_DOC)
1002
+ def call(
1003
+ self,
1004
+ pixel_values: tf.Tensor | None = None,
1005
+ head_mask: tf.Tensor | None = None,
1006
+ labels: tf.Tensor | None = None,
1007
+ output_attentions: Optional[bool] = None,
1008
+ output_hidden_states: Optional[bool] = None,
1009
+ return_dict: Optional[bool] = None,
1010
+ training: bool = False,
1011
+ ) -> Union[tf.Tensor, TFImageClassifierOutput]:
1012
+ r"""
1013
+ labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
1014
+ Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
1015
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1016
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1017
+
1018
+ Returns:
1019
+
1020
+ Examples:
1021
+
1022
+ ```python
1023
+ >>> from transformers import AutoImageProcessor, TFDeiTForImageClassification
1024
+ >>> import tensorflow as tf
1025
+ >>> from PIL import Image
1026
+ >>> import requests
1027
+
1028
+ >>> keras.utils.set_random_seed(3) # doctest: +IGNORE_RESULT
1029
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
1030
+ >>> image = Image.open(requests.get(url, stream=True).raw)
1031
+
1032
+ >>> # note: we are loading a TFDeiTForImageClassificationWithTeacher from the hub here,
1033
+ >>> # so the head will be randomly initialized, hence the predictions will be random
1034
+ >>> image_processor = AutoImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224")
1035
+ >>> model = TFDeiTForImageClassification.from_pretrained("facebook/deit-base-distilled-patch16-224")
1036
+
1037
+ >>> inputs = image_processor(images=image, return_tensors="tf")
1038
+ >>> outputs = model(**inputs)
1039
+ >>> logits = outputs.logits
1040
+ >>> # model predicts one of the 1000 ImageNet classes
1041
+ >>> predicted_class_idx = tf.math.argmax(logits, axis=-1)[0]
1042
+ >>> print("Predicted class:", model.config.id2label[int(predicted_class_idx)])
1043
+ Predicted class: little blue heron, Egretta caerulea
1044
+ ```"""
1045
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1046
+
1047
+ outputs = self.deit(
1048
+ pixel_values,
1049
+ head_mask=head_mask,
1050
+ output_attentions=output_attentions,
1051
+ output_hidden_states=output_hidden_states,
1052
+ return_dict=return_dict,
1053
+ training=training,
1054
+ )
1055
+
1056
+ sequence_output = outputs[0]
1057
+
1058
+ logits = self.classifier(sequence_output[:, 0, :])
1059
+ # we don't use the distillation token
1060
+
1061
+ loss = None if labels is None else self.hf_compute_loss(labels, logits)
1062
+
1063
+ if not return_dict:
1064
+ output = (logits,) + outputs[1:]
1065
+ return ((loss,) + output) if loss is not None else output
1066
+
1067
+ return TFImageClassifierOutput(
1068
+ loss=loss,
1069
+ logits=logits,
1070
+ hidden_states=outputs.hidden_states,
1071
+ attentions=outputs.attentions,
1072
+ )
1073
+
1074
+ def build(self, input_shape=None):
1075
+ if self.built:
1076
+ return
1077
+ self.built = True
1078
+ if getattr(self, "deit", None) is not None:
1079
+ with tf.name_scope(self.deit.name):
1080
+ self.deit.build(None)
1081
+ if getattr(self, "classifier", None) is not None:
1082
+ with tf.name_scope(self.classifier.name):
1083
+ self.classifier.build([None, None, self.config.hidden_size])
1084
+
1085
+
1086
+ @add_start_docstrings(
1087
+ """
1088
+ DeiT Model transformer with image classification heads on top (a linear layer on top of the final hidden state of
1089
+ the [CLS] token and a linear layer on top of the final hidden state of the distillation token) e.g. for ImageNet.
1090
+
1091
+ .. warning::
1092
+
1093
+ This model supports inference-only. Fine-tuning with distillation (i.e. with a teacher) is not yet
1094
+ supported.
1095
+ """,
1096
+ DEIT_START_DOCSTRING,
1097
+ )
1098
+ class TFDeiTForImageClassificationWithTeacher(TFDeiTPreTrainedModel):
1099
+ def __init__(self, config: DeiTConfig) -> None:
1100
+ super().__init__(config)
1101
+
1102
+ self.num_labels = config.num_labels
1103
+ self.deit = TFDeiTMainLayer(config, add_pooling_layer=False, name="deit")
1104
+
1105
+ # Classifier heads
1106
+ self.cls_classifier = (
1107
+ keras.layers.Dense(config.num_labels, name="cls_classifier")
1108
+ if config.num_labels > 0
1109
+ else keras.layers.Activation("linear", name="cls_classifier")
1110
+ )
1111
+ self.distillation_classifier = (
1112
+ keras.layers.Dense(config.num_labels, name="distillation_classifier")
1113
+ if config.num_labels > 0
1114
+ else keras.layers.Activation("linear", name="distillation_classifier")
1115
+ )
1116
+ self.config = config
1117
+
1118
+ @unpack_inputs
1119
+ @add_start_docstrings_to_model_forward(DEIT_INPUTS_DOCSTRING)
1120
+ @add_code_sample_docstrings(
1121
+ checkpoint=_IMAGE_CLASS_CHECKPOINT,
1122
+ output_type=TFDeiTForImageClassificationWithTeacherOutput,
1123
+ config_class=_CONFIG_FOR_DOC,
1124
+ expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
1125
+ )
1126
+ def call(
1127
+ self,
1128
+ pixel_values: tf.Tensor | None = None,
1129
+ head_mask: tf.Tensor | None = None,
1130
+ output_attentions: Optional[bool] = None,
1131
+ output_hidden_states: Optional[bool] = None,
1132
+ return_dict: Optional[bool] = None,
1133
+ training: bool = False,
1134
+ ) -> Union[tuple, TFDeiTForImageClassificationWithTeacherOutput]:
1135
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1136
+
1137
+ outputs = self.deit(
1138
+ pixel_values,
1139
+ head_mask=head_mask,
1140
+ output_attentions=output_attentions,
1141
+ output_hidden_states=output_hidden_states,
1142
+ return_dict=return_dict,
1143
+ training=training,
1144
+ )
1145
+
1146
+ sequence_output = outputs[0]
1147
+
1148
+ cls_logits = self.cls_classifier(sequence_output[:, 0, :])
1149
+ distillation_logits = self.distillation_classifier(sequence_output[:, 1, :])
1150
+
1151
+ # during inference, return the average of both classifier predictions
1152
+ logits = (cls_logits + distillation_logits) / 2
1153
+
1154
+ if not return_dict:
1155
+ output = (logits, cls_logits, distillation_logits) + outputs[1:]
1156
+ return output
1157
+
1158
+ return TFDeiTForImageClassificationWithTeacherOutput(
1159
+ logits=logits,
1160
+ cls_logits=cls_logits,
1161
+ distillation_logits=distillation_logits,
1162
+ hidden_states=outputs.hidden_states,
1163
+ attentions=outputs.attentions,
1164
+ )
1165
+
1166
+ def build(self, input_shape=None):
1167
+ if self.built:
1168
+ return
1169
+ self.built = True
1170
+ if getattr(self, "deit", None) is not None:
1171
+ with tf.name_scope(self.deit.name):
1172
+ self.deit.build(None)
1173
+ if getattr(self, "cls_classifier", None) is not None:
1174
+ with tf.name_scope(self.cls_classifier.name):
1175
+ self.cls_classifier.build([None, None, self.config.hidden_size])
1176
+ if getattr(self, "distillation_classifier", None) is not None:
1177
+ with tf.name_scope(self.distillation_classifier.name):
1178
+ self.distillation_classifier.build([None, None, self.config.hidden_size])
llmeval-env/lib/python3.10/site-packages/transformers/models/dinov2/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (995 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/dinov2/__pycache__/configuration_dinov2.cpython-310.pyc ADDED
Binary file (7.66 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/dinov2/__pycache__/convert_dinov2_to_hf.cpython-310.pyc ADDED
Binary file (7.97 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/dinov2/__pycache__/modeling_dinov2.cpython-310.pyc ADDED
Binary file (27.5 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/dinov2/configuration_dinov2.py ADDED
@@ -0,0 +1,175 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ DINOv2 model configuration"""
16
+
17
+ from collections import OrderedDict
18
+ from typing import Mapping
19
+
20
+ from packaging import version
21
+
22
+ from ...configuration_utils import PretrainedConfig
23
+ from ...onnx import OnnxConfig
24
+ from ...utils import logging
25
+ from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
26
+
27
+
28
+ logger = logging.get_logger(__name__)
29
+
30
+
31
+ from ..deprecated._archive_maps import DINOV2_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
32
+
33
+
34
+ class Dinov2Config(BackboneConfigMixin, PretrainedConfig):
35
+ r"""
36
+ This is the configuration class to store the configuration of a [`Dinov2Model`]. It is used to instantiate an
37
+ Dinov2 model according to the specified arguments, defining the model architecture. Instantiating a configuration
38
+ with the defaults will yield a similar configuration to that of the Dinov2
39
+ [google/dinov2-base-patch16-224](https://huggingface.co/google/dinov2-base-patch16-224) architecture.
40
+
41
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
42
+ documentation from [`PretrainedConfig`] for more information.
43
+
44
+ Args:
45
+ hidden_size (`int`, *optional*, defaults to 768):
46
+ Dimensionality of the encoder layers and the pooler layer.
47
+ num_hidden_layers (`int`, *optional*, defaults to 12):
48
+ Number of hidden layers in the Transformer encoder.
49
+ num_attention_heads (`int`, *optional*, defaults to 12):
50
+ Number of attention heads for each attention layer in the Transformer encoder.
51
+ mlp_ratio (`int`, *optional*, defaults to 4):
52
+ Ratio of the hidden size of the MLPs relative to the `hidden_size`.
53
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
54
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
55
+ `"relu"`, `"selu"` and `"gelu_new"` are supported.
56
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
57
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
58
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
59
+ The dropout ratio for the attention probabilities.
60
+ initializer_range (`float`, *optional*, defaults to 0.02):
61
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
62
+ layer_norm_eps (`float`, *optional*, defaults to 1e-06):
63
+ The epsilon used by the layer normalization layers.
64
+ image_size (`int`, *optional*, defaults to 224):
65
+ The size (resolution) of each image.
66
+ patch_size (`int`, *optional*, defaults to 16):
67
+ The size (resolution) of each patch.
68
+ num_channels (`int`, *optional*, defaults to 3):
69
+ The number of input channels.
70
+ qkv_bias (`bool`, *optional*, defaults to `True`):
71
+ Whether to add a bias to the queries, keys and values.
72
+ layerscale_value (`float`, *optional*, defaults to 1.0):
73
+ Initial value to use for layer scale.
74
+ drop_path_rate (`float`, *optional*, defaults to 0.0):
75
+ Stochastic depth rate per sample (when applied in the main path of residual layers).
76
+ use_swiglu_ffn (`bool`, *optional*, defaults to `False`):
77
+ Whether to use the SwiGLU feedforward neural network.
78
+ out_features (`List[str]`, *optional*):
79
+ If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc.
80
+ (depending on how many stages the model has). If unset and `out_indices` is set, will default to the
81
+ corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the
82
+ same order as defined in the `stage_names` attribute.
83
+ out_indices (`List[int]`, *optional*):
84
+ If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how
85
+ many stages the model has). If unset and `out_features` is set, will default to the corresponding stages.
86
+ If unset and `out_features` is unset, will default to the last stage. Must be in the
87
+ same order as defined in the `stage_names` attribute.
88
+ apply_layernorm (`bool`, *optional*, defaults to `True`):
89
+ Whether to apply layer normalization to the feature maps in case the model is used as backbone.
90
+ reshape_hidden_states (`bool`, *optional*, defaults to `True`):
91
+ Whether to reshape the feature maps to 4D tensors of shape `(batch_size, hidden_size, height, width)` in
92
+ case the model is used as backbone. If `False`, the feature maps will be 3D tensors of shape `(batch_size,
93
+ seq_len, hidden_size)`.
94
+
95
+ Example:
96
+
97
+ ```python
98
+ >>> from transformers import Dinov2Config, Dinov2Model
99
+
100
+ >>> # Initializing a Dinov2 dinov2-base-patch16-224 style configuration
101
+ >>> configuration = Dinov2Config()
102
+
103
+ >>> # Initializing a model (with random weights) from the dinov2-base-patch16-224 style configuration
104
+ >>> model = Dinov2Model(configuration)
105
+
106
+ >>> # Accessing the model configuration
107
+ >>> configuration = model.config
108
+ ```"""
109
+
110
+ model_type = "dinov2"
111
+
112
+ def __init__(
113
+ self,
114
+ hidden_size=768,
115
+ num_hidden_layers=12,
116
+ num_attention_heads=12,
117
+ mlp_ratio=4,
118
+ hidden_act="gelu",
119
+ hidden_dropout_prob=0.0,
120
+ attention_probs_dropout_prob=0.0,
121
+ initializer_range=0.02,
122
+ layer_norm_eps=1e-6,
123
+ image_size=224,
124
+ patch_size=16,
125
+ num_channels=3,
126
+ qkv_bias=True,
127
+ layerscale_value=1.0,
128
+ drop_path_rate=0.0,
129
+ use_swiglu_ffn=False,
130
+ out_features=None,
131
+ out_indices=None,
132
+ apply_layernorm=True,
133
+ reshape_hidden_states=True,
134
+ **kwargs,
135
+ ):
136
+ super().__init__(**kwargs)
137
+
138
+ self.hidden_size = hidden_size
139
+ self.num_hidden_layers = num_hidden_layers
140
+ self.num_attention_heads = num_attention_heads
141
+ self.mlp_ratio = mlp_ratio
142
+ self.hidden_act = hidden_act
143
+ self.hidden_dropout_prob = hidden_dropout_prob
144
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
145
+ self.initializer_range = initializer_range
146
+ self.layer_norm_eps = layer_norm_eps
147
+ self.image_size = image_size
148
+ self.patch_size = patch_size
149
+ self.num_channels = num_channels
150
+ self.qkv_bias = qkv_bias
151
+ self.layerscale_value = layerscale_value
152
+ self.drop_path_rate = drop_path_rate
153
+ self.use_swiglu_ffn = use_swiglu_ffn
154
+ self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, num_hidden_layers + 1)]
155
+ self._out_features, self._out_indices = get_aligned_output_features_output_indices(
156
+ out_features=out_features, out_indices=out_indices, stage_names=self.stage_names
157
+ )
158
+ self.apply_layernorm = apply_layernorm
159
+ self.reshape_hidden_states = reshape_hidden_states
160
+
161
+
162
+ class Dinov2OnnxConfig(OnnxConfig):
163
+ torch_onnx_minimum_version = version.parse("1.11")
164
+
165
+ @property
166
+ def inputs(self) -> Mapping[str, Mapping[int, str]]:
167
+ return OrderedDict(
168
+ [
169
+ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
170
+ ]
171
+ )
172
+
173
+ @property
174
+ def atol_for_validation(self) -> float:
175
+ return 1e-4
llmeval-env/lib/python3.10/site-packages/transformers/models/dinov2/modeling_dinov2.py ADDED
@@ -0,0 +1,856 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 Meta AI and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ PyTorch DINOv2 model."""
16
+
17
+
18
+ import collections.abc
19
+ import math
20
+ from typing import Dict, List, Optional, Set, Tuple, Union
21
+
22
+ import torch
23
+ import torch.utils.checkpoint
24
+ from torch import nn
25
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
26
+
27
+ from ...activations import ACT2FN
28
+ from ...modeling_outputs import (
29
+ BackboneOutput,
30
+ BaseModelOutput,
31
+ BaseModelOutputWithPooling,
32
+ ImageClassifierOutput,
33
+ )
34
+ from ...modeling_utils import PreTrainedModel
35
+ from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
36
+ from ...utils import (
37
+ add_code_sample_docstrings,
38
+ add_start_docstrings,
39
+ add_start_docstrings_to_model_forward,
40
+ logging,
41
+ replace_return_docstrings,
42
+ )
43
+ from ...utils.backbone_utils import BackboneMixin
44
+ from .configuration_dinov2 import Dinov2Config
45
+
46
+
47
+ logger = logging.get_logger(__name__)
48
+
49
+ # General docstring
50
+ _CONFIG_FOR_DOC = "Dinov2Config"
51
+
52
+ # Base docstring
53
+ _CHECKPOINT_FOR_DOC = "facebook/dinov2-base"
54
+ _EXPECTED_OUTPUT_SHAPE = [1, 257, 768]
55
+
56
+ # Image classification docstring
57
+ _IMAGE_CLASS_CHECKPOINT = "facebook/dinov2-small-imagenet1k-1-layer"
58
+ _IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
59
+
60
+
61
+ from ..deprecated._archive_maps import DINOV2_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
62
+
63
+
64
+ class Dinov2Embeddings(nn.Module):
65
+ """
66
+ Construct the CLS token, mask token, position and patch embeddings.
67
+ """
68
+
69
+ def __init__(self, config: Dinov2Config) -> None:
70
+ super().__init__()
71
+
72
+ self.cls_token = nn.Parameter(torch.randn(1, 1, config.hidden_size))
73
+ self.mask_token = nn.Parameter(torch.zeros(1, config.hidden_size))
74
+ self.patch_embeddings = Dinov2PatchEmbeddings(config)
75
+ num_patches = self.patch_embeddings.num_patches
76
+ self.position_embeddings = nn.Parameter(torch.randn(1, num_patches + 1, config.hidden_size))
77
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
78
+ self.config = config
79
+
80
+ def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
81
+ """
82
+ This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher
83
+ resolution images.
84
+
85
+ Source:
86
+ https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174
87
+ """
88
+
89
+ num_patches = embeddings.shape[1] - 1
90
+ num_positions = self.position_embeddings.shape[1] - 1
91
+ if num_patches == num_positions and height == width:
92
+ return self.position_embeddings
93
+ class_pos_embed = self.position_embeddings[:, 0]
94
+ patch_pos_embed = self.position_embeddings[:, 1:]
95
+ dim = embeddings.shape[-1]
96
+ height = height // self.config.patch_size
97
+ width = width // self.config.patch_size
98
+ # we add a small number to avoid floating point error in the interpolation
99
+ # see discussion at https://github.com/facebookresearch/dino/issues/8
100
+ height, width = height + 0.1, width + 0.1
101
+ patch_pos_embed = patch_pos_embed.reshape(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim)
102
+ patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
103
+ target_dtype = patch_pos_embed.dtype
104
+ patch_pos_embed = nn.functional.interpolate(
105
+ patch_pos_embed.to(dtype=torch.float32),
106
+ scale_factor=(float(height / math.sqrt(num_positions)), float(width / math.sqrt(num_positions))),
107
+ mode="bicubic",
108
+ align_corners=False,
109
+ ).to(dtype=target_dtype)
110
+ if int(height) != patch_pos_embed.shape[-2] or int(width) != patch_pos_embed.shape[-1]:
111
+ raise ValueError("Width or height does not match with the interpolated position embeddings")
112
+ patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
113
+ return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1)
114
+
115
+ def forward(self, pixel_values: torch.Tensor, bool_masked_pos: Optional[torch.Tensor] = None) -> torch.Tensor:
116
+ batch_size, _, height, width = pixel_values.shape
117
+ target_dtype = self.patch_embeddings.projection.weight.dtype
118
+ embeddings = self.patch_embeddings(pixel_values.to(dtype=target_dtype))
119
+
120
+ if bool_masked_pos is not None:
121
+ embeddings = torch.where(
122
+ bool_masked_pos.unsqueeze(-1), self.mask_token.to(embeddings.dtype).unsqueeze(0), embeddings
123
+ )
124
+
125
+ # add the [CLS] token to the embedded patch tokens
126
+ cls_tokens = self.cls_token.expand(batch_size, -1, -1)
127
+ embeddings = torch.cat((cls_tokens, embeddings), dim=1)
128
+
129
+ # add positional encoding to each token
130
+ embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
131
+
132
+ embeddings = self.dropout(embeddings)
133
+
134
+ return embeddings
135
+
136
+
137
+ class Dinov2PatchEmbeddings(nn.Module):
138
+ """
139
+ This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
140
+ `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
141
+ Transformer.
142
+ """
143
+
144
+ def __init__(self, config):
145
+ super().__init__()
146
+ image_size, patch_size = config.image_size, config.patch_size
147
+ num_channels, hidden_size = config.num_channels, config.hidden_size
148
+
149
+ image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
150
+ patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
151
+ num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
152
+ self.image_size = image_size
153
+ self.patch_size = patch_size
154
+ self.num_channels = num_channels
155
+ self.num_patches = num_patches
156
+
157
+ self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size)
158
+
159
+ def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
160
+ num_channels = pixel_values.shape[1]
161
+ if num_channels != self.num_channels:
162
+ raise ValueError(
163
+ "Make sure that the channel dimension of the pixel values match with the one set in the configuration."
164
+ f" Expected {self.num_channels} but got {num_channels}."
165
+ )
166
+ embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2)
167
+ return embeddings
168
+
169
+
170
+ # Copied from transformers.models.vit.modeling_vit.ViTSelfAttention with ViT->Dinov2
171
+ class Dinov2SelfAttention(nn.Module):
172
+ def __init__(self, config: Dinov2Config) -> None:
173
+ super().__init__()
174
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
175
+ raise ValueError(
176
+ f"The hidden size {config.hidden_size,} is not a multiple of the number of attention "
177
+ f"heads {config.num_attention_heads}."
178
+ )
179
+
180
+ self.num_attention_heads = config.num_attention_heads
181
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
182
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
183
+
184
+ self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
185
+ self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
186
+ self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
187
+
188
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
189
+
190
+ def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
191
+ new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
192
+ x = x.view(new_x_shape)
193
+ return x.permute(0, 2, 1, 3)
194
+
195
+ def forward(
196
+ self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False
197
+ ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
198
+ mixed_query_layer = self.query(hidden_states)
199
+
200
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
201
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
202
+ query_layer = self.transpose_for_scores(mixed_query_layer)
203
+
204
+ # Take the dot product between "query" and "key" to get the raw attention scores.
205
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
206
+
207
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
208
+
209
+ # Normalize the attention scores to probabilities.
210
+ attention_probs = nn.functional.softmax(attention_scores, dim=-1)
211
+
212
+ # This is actually dropping out entire tokens to attend to, which might
213
+ # seem a bit unusual, but is taken from the original Transformer paper.
214
+ attention_probs = self.dropout(attention_probs)
215
+
216
+ # Mask heads if we want to
217
+ if head_mask is not None:
218
+ attention_probs = attention_probs * head_mask
219
+
220
+ context_layer = torch.matmul(attention_probs, value_layer)
221
+
222
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
223
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
224
+ context_layer = context_layer.view(new_context_layer_shape)
225
+
226
+ outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
227
+
228
+ return outputs
229
+
230
+
231
+ # Copied from transformers.models.vit.modeling_vit.ViTSelfOutput with ViT->Dinov2
232
+ class Dinov2SelfOutput(nn.Module):
233
+ """
234
+ The residual connection is defined in Dinov2Layer instead of here (as is the case with other models), due to the
235
+ layernorm applied before each block.
236
+ """
237
+
238
+ def __init__(self, config: Dinov2Config) -> None:
239
+ super().__init__()
240
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
241
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
242
+
243
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
244
+ hidden_states = self.dense(hidden_states)
245
+ hidden_states = self.dropout(hidden_states)
246
+
247
+ return hidden_states
248
+
249
+
250
+ # Copied from transformers.models.vit.modeling_vit.ViTAttention with ViT->Dinov2
251
+ class Dinov2Attention(nn.Module):
252
+ def __init__(self, config: Dinov2Config) -> None:
253
+ super().__init__()
254
+ self.attention = Dinov2SelfAttention(config)
255
+ self.output = Dinov2SelfOutput(config)
256
+ self.pruned_heads = set()
257
+
258
+ def prune_heads(self, heads: Set[int]) -> None:
259
+ if len(heads) == 0:
260
+ return
261
+ heads, index = find_pruneable_heads_and_indices(
262
+ heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
263
+ )
264
+
265
+ # Prune linear layers
266
+ self.attention.query = prune_linear_layer(self.attention.query, index)
267
+ self.attention.key = prune_linear_layer(self.attention.key, index)
268
+ self.attention.value = prune_linear_layer(self.attention.value, index)
269
+ self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
270
+
271
+ # Update hyper params and store pruned heads
272
+ self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
273
+ self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
274
+ self.pruned_heads = self.pruned_heads.union(heads)
275
+
276
+ def forward(
277
+ self,
278
+ hidden_states: torch.Tensor,
279
+ head_mask: Optional[torch.Tensor] = None,
280
+ output_attentions: bool = False,
281
+ ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
282
+ self_outputs = self.attention(hidden_states, head_mask, output_attentions)
283
+
284
+ attention_output = self.output(self_outputs[0], hidden_states)
285
+
286
+ outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
287
+ return outputs
288
+
289
+
290
+ class Dinov2LayerScale(nn.Module):
291
+ def __init__(self, config) -> None:
292
+ super().__init__()
293
+ self.lambda1 = nn.Parameter(config.layerscale_value * torch.ones(config.hidden_size))
294
+
295
+ def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
296
+ return hidden_state * self.lambda1
297
+
298
+
299
+ # Copied from transformers.models.beit.modeling_beit.drop_path
300
+ def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
301
+ """
302
+ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
303
+
304
+ Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
305
+ however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
306
+ See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
307
+ layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
308
+ argument.
309
+ """
310
+ if drop_prob == 0.0 or not training:
311
+ return input
312
+ keep_prob = 1 - drop_prob
313
+ shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
314
+ random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
315
+ random_tensor.floor_() # binarize
316
+ output = input.div(keep_prob) * random_tensor
317
+ return output
318
+
319
+
320
+ # Copied from transformers.models.beit.modeling_beit.BeitDropPath
321
+ class Dinov2DropPath(nn.Module):
322
+ """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
323
+
324
+ def __init__(self, drop_prob: Optional[float] = None) -> None:
325
+ super().__init__()
326
+ self.drop_prob = drop_prob
327
+
328
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
329
+ return drop_path(hidden_states, self.drop_prob, self.training)
330
+
331
+ def extra_repr(self) -> str:
332
+ return "p={}".format(self.drop_prob)
333
+
334
+
335
+ class Dinov2MLP(nn.Module):
336
+ def __init__(self, config) -> None:
337
+ super().__init__()
338
+ in_features = out_features = config.hidden_size
339
+ hidden_features = int(config.hidden_size * config.mlp_ratio)
340
+ self.fc1 = nn.Linear(in_features, hidden_features, bias=True)
341
+ if isinstance(config.hidden_act, str):
342
+ self.activation = ACT2FN[config.hidden_act]
343
+ else:
344
+ self.activation = config.hidden_act
345
+ self.fc2 = nn.Linear(hidden_features, out_features, bias=True)
346
+
347
+ def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
348
+ hidden_state = self.fc1(hidden_state)
349
+ hidden_state = self.activation(hidden_state)
350
+ hidden_state = self.fc2(hidden_state)
351
+ return hidden_state
352
+
353
+
354
+ class Dinov2SwiGLUFFN(nn.Module):
355
+ def __init__(self, config) -> None:
356
+ super().__init__()
357
+ in_features = out_features = config.hidden_size
358
+ hidden_features = int(config.hidden_size * config.mlp_ratio)
359
+ hidden_features = (int(hidden_features * 2 / 3) + 7) // 8 * 8
360
+
361
+ self.weights_in = nn.Linear(in_features, 2 * hidden_features, bias=True)
362
+ self.weights_out = nn.Linear(hidden_features, out_features, bias=True)
363
+
364
+ def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
365
+ hidden_state = self.weights_in(hidden_state)
366
+ x1, x2 = hidden_state.chunk(2, dim=-1)
367
+ hidden = nn.functional.silu(x1) * x2
368
+ return self.weights_out(hidden)
369
+
370
+
371
+ class Dinov2Layer(nn.Module):
372
+ """This corresponds to the Block class in the original implementation."""
373
+
374
+ def __init__(self, config: Dinov2Config) -> None:
375
+ super().__init__()
376
+
377
+ self.norm1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
378
+ self.attention = Dinov2Attention(config)
379
+ self.layer_scale1 = Dinov2LayerScale(config)
380
+ self.drop_path = Dinov2DropPath(config.drop_path_rate) if config.drop_path_rate > 0.0 else nn.Identity()
381
+
382
+ self.norm2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
383
+
384
+ if config.use_swiglu_ffn:
385
+ self.mlp = Dinov2SwiGLUFFN(config)
386
+ else:
387
+ self.mlp = Dinov2MLP(config)
388
+ self.layer_scale2 = Dinov2LayerScale(config)
389
+
390
+ def forward(
391
+ self,
392
+ hidden_states: torch.Tensor,
393
+ head_mask: Optional[torch.Tensor] = None,
394
+ output_attentions: bool = False,
395
+ ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
396
+ self_attention_outputs = self.attention(
397
+ self.norm1(hidden_states), # in Dinov2, layernorm is applied before self-attention
398
+ head_mask,
399
+ output_attentions=output_attentions,
400
+ )
401
+ attention_output = self_attention_outputs[0]
402
+
403
+ attention_output = self.layer_scale1(attention_output)
404
+ outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
405
+
406
+ # first residual connection
407
+ hidden_states = self.drop_path(attention_output) + hidden_states
408
+
409
+ # in Dinov2, layernorm is also applied after self-attention
410
+ layer_output = self.norm2(hidden_states)
411
+ layer_output = self.mlp(layer_output)
412
+ layer_output = self.layer_scale2(layer_output)
413
+
414
+ # second residual connection
415
+ layer_output = self.drop_path(layer_output) + hidden_states
416
+
417
+ outputs = (layer_output,) + outputs
418
+
419
+ return outputs
420
+
421
+
422
+ # Copied from transformers.models.vit.modeling_vit.ViTEncoder with ViT->Dinov2
423
+ class Dinov2Encoder(nn.Module):
424
+ def __init__(self, config: Dinov2Config) -> None:
425
+ super().__init__()
426
+ self.config = config
427
+ self.layer = nn.ModuleList([Dinov2Layer(config) for _ in range(config.num_hidden_layers)])
428
+ self.gradient_checkpointing = False
429
+
430
+ def forward(
431
+ self,
432
+ hidden_states: torch.Tensor,
433
+ head_mask: Optional[torch.Tensor] = None,
434
+ output_attentions: bool = False,
435
+ output_hidden_states: bool = False,
436
+ return_dict: bool = True,
437
+ ) -> Union[tuple, BaseModelOutput]:
438
+ all_hidden_states = () if output_hidden_states else None
439
+ all_self_attentions = () if output_attentions else None
440
+
441
+ for i, layer_module in enumerate(self.layer):
442
+ if output_hidden_states:
443
+ all_hidden_states = all_hidden_states + (hidden_states,)
444
+
445
+ layer_head_mask = head_mask[i] if head_mask is not None else None
446
+
447
+ if self.gradient_checkpointing and self.training:
448
+ layer_outputs = self._gradient_checkpointing_func(
449
+ layer_module.__call__,
450
+ hidden_states,
451
+ layer_head_mask,
452
+ output_attentions,
453
+ )
454
+ else:
455
+ layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions)
456
+
457
+ hidden_states = layer_outputs[0]
458
+
459
+ if output_attentions:
460
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
461
+
462
+ if output_hidden_states:
463
+ all_hidden_states = all_hidden_states + (hidden_states,)
464
+
465
+ if not return_dict:
466
+ return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
467
+ return BaseModelOutput(
468
+ last_hidden_state=hidden_states,
469
+ hidden_states=all_hidden_states,
470
+ attentions=all_self_attentions,
471
+ )
472
+
473
+
474
+ class Dinov2PreTrainedModel(PreTrainedModel):
475
+ """
476
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
477
+ models.
478
+ """
479
+
480
+ config_class = Dinov2Config
481
+ base_model_prefix = "dinov2"
482
+ main_input_name = "pixel_values"
483
+ supports_gradient_checkpointing = True
484
+
485
+ def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None:
486
+ """Initialize the weights"""
487
+ if isinstance(module, (nn.Linear, nn.Conv2d)):
488
+ # Upcast the input in `fp32` and cast it back to desired `dtype` to avoid
489
+ # `trunc_normal_cpu` not implemented in `half` issues
490
+ module.weight.data = nn.init.trunc_normal_(
491
+ module.weight.data.to(torch.float32), mean=0.0, std=self.config.initializer_range
492
+ ).to(module.weight.dtype)
493
+ if module.bias is not None:
494
+ module.bias.data.zero_()
495
+ elif isinstance(module, nn.LayerNorm):
496
+ module.bias.data.zero_()
497
+ module.weight.data.fill_(1.0)
498
+ elif isinstance(module, Dinov2Embeddings):
499
+ module.position_embeddings.data = nn.init.trunc_normal_(
500
+ module.position_embeddings.data.to(torch.float32),
501
+ mean=0.0,
502
+ std=self.config.initializer_range,
503
+ ).to(module.position_embeddings.dtype)
504
+
505
+ module.cls_token.data = nn.init.trunc_normal_(
506
+ module.cls_token.data.to(torch.float32),
507
+ mean=0.0,
508
+ std=self.config.initializer_range,
509
+ ).to(module.cls_token.dtype)
510
+
511
+
512
+ DINOV2_START_DOCSTRING = r"""
513
+ This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
514
+ as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
515
+ behavior.
516
+
517
+ Parameters:
518
+ config ([`Dinov2Config`]): Model configuration class with all the parameters of the model.
519
+ Initializing with a config file does not load the weights associated with the model, only the
520
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
521
+ """
522
+
523
+ DINOV2_BASE_INPUTS_DOCSTRING = r"""
524
+ Args:
525
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
526
+ Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
527
+ [`BitImageProcessor.preprocess`] for details.
528
+
529
+ bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, sequence_length)`):
530
+ Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). Only relevant for
531
+ pre-training.
532
+
533
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
534
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
535
+
536
+ - 1 indicates the head is **not masked**,
537
+ - 0 indicates the head is **masked**.
538
+
539
+ output_attentions (`bool`, *optional*):
540
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
541
+ tensors for more detail.
542
+ output_hidden_states (`bool`, *optional*):
543
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
544
+ more detail.
545
+ return_dict (`bool`, *optional*):
546
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
547
+ """
548
+
549
+ DINOV2_INPUTS_DOCSTRING = r"""
550
+ Args:
551
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
552
+ Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
553
+ [`BitImageProcessor.preprocess`] for details.
554
+
555
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
556
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
557
+
558
+ - 1 indicates the head is **not masked**,
559
+ - 0 indicates the head is **masked**.
560
+
561
+ output_attentions (`bool`, *optional*):
562
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
563
+ tensors for more detail.
564
+ output_hidden_states (`bool`, *optional*):
565
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
566
+ more detail.
567
+ return_dict (`bool`, *optional*):
568
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
569
+ """
570
+
571
+
572
+ @add_start_docstrings(
573
+ "The bare DINOv2 Model transformer outputting raw hidden-states without any specific head on top.",
574
+ DINOV2_START_DOCSTRING,
575
+ )
576
+ class Dinov2Model(Dinov2PreTrainedModel):
577
+ def __init__(self, config: Dinov2Config):
578
+ super().__init__(config)
579
+ self.config = config
580
+
581
+ self.embeddings = Dinov2Embeddings(config)
582
+ self.encoder = Dinov2Encoder(config)
583
+
584
+ self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
585
+
586
+ # Initialize weights and apply final processing
587
+ self.post_init()
588
+
589
+ def get_input_embeddings(self) -> Dinov2PatchEmbeddings:
590
+ return self.embeddings.patch_embeddings
591
+
592
+ def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None:
593
+ """
594
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
595
+ class PreTrainedModel
596
+ """
597
+ for layer, heads in heads_to_prune.items():
598
+ self.encoder.layer[layer].attention.prune_heads(heads)
599
+
600
+ @add_start_docstrings_to_model_forward(DINOV2_BASE_INPUTS_DOCSTRING)
601
+ @add_code_sample_docstrings(
602
+ checkpoint=_CHECKPOINT_FOR_DOC,
603
+ output_type=BaseModelOutputWithPooling,
604
+ config_class=_CONFIG_FOR_DOC,
605
+ modality="vision",
606
+ expected_output=_EXPECTED_OUTPUT_SHAPE,
607
+ )
608
+ def forward(
609
+ self,
610
+ pixel_values: Optional[torch.Tensor] = None,
611
+ bool_masked_pos: Optional[torch.Tensor] = None,
612
+ head_mask: Optional[torch.Tensor] = None,
613
+ output_attentions: Optional[bool] = None,
614
+ output_hidden_states: Optional[bool] = None,
615
+ return_dict: Optional[bool] = None,
616
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
617
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
618
+ output_hidden_states = (
619
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
620
+ )
621
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
622
+
623
+ if pixel_values is None:
624
+ raise ValueError("You have to specify pixel_values")
625
+
626
+ # Prepare head mask if needed
627
+ # 1.0 in head_mask indicate we keep the head
628
+ # attention_probs has shape bsz x n_heads x N x N
629
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
630
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
631
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
632
+
633
+ embedding_output = self.embeddings(pixel_values, bool_masked_pos=bool_masked_pos)
634
+
635
+ encoder_outputs = self.encoder(
636
+ embedding_output,
637
+ head_mask=head_mask,
638
+ output_attentions=output_attentions,
639
+ output_hidden_states=output_hidden_states,
640
+ return_dict=return_dict,
641
+ )
642
+ sequence_output = encoder_outputs[0]
643
+ sequence_output = self.layernorm(sequence_output)
644
+ pooled_output = sequence_output[:, 0, :]
645
+
646
+ if not return_dict:
647
+ head_outputs = (sequence_output, pooled_output)
648
+ return head_outputs + encoder_outputs[1:]
649
+
650
+ return BaseModelOutputWithPooling(
651
+ last_hidden_state=sequence_output,
652
+ pooler_output=pooled_output,
653
+ hidden_states=encoder_outputs.hidden_states,
654
+ attentions=encoder_outputs.attentions,
655
+ )
656
+
657
+
658
+ @add_start_docstrings(
659
+ """
660
+ Dinov2 Model transformer with an image classification head on top (a linear layer on top of the final hidden state
661
+ of the [CLS] token) e.g. for ImageNet.
662
+ """,
663
+ DINOV2_START_DOCSTRING,
664
+ )
665
+ class Dinov2ForImageClassification(Dinov2PreTrainedModel):
666
+ def __init__(self, config: Dinov2Config) -> None:
667
+ super().__init__(config)
668
+
669
+ self.num_labels = config.num_labels
670
+ self.dinov2 = Dinov2Model(config)
671
+
672
+ # Classifier head
673
+ self.classifier = (
674
+ nn.Linear(config.hidden_size * 2, config.num_labels) if config.num_labels > 0 else nn.Identity()
675
+ )
676
+
677
+ # Initialize weights and apply final processing
678
+ self.post_init()
679
+
680
+ @add_start_docstrings_to_model_forward(DINOV2_INPUTS_DOCSTRING)
681
+ @add_code_sample_docstrings(
682
+ checkpoint=_IMAGE_CLASS_CHECKPOINT,
683
+ output_type=ImageClassifierOutput,
684
+ config_class=_CONFIG_FOR_DOC,
685
+ expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
686
+ )
687
+ def forward(
688
+ self,
689
+ pixel_values: Optional[torch.Tensor] = None,
690
+ head_mask: Optional[torch.Tensor] = None,
691
+ labels: Optional[torch.Tensor] = None,
692
+ output_attentions: Optional[bool] = None,
693
+ output_hidden_states: Optional[bool] = None,
694
+ return_dict: Optional[bool] = None,
695
+ ) -> Union[tuple, ImageClassifierOutput]:
696
+ r"""
697
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
698
+ Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
699
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
700
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
701
+ """
702
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
703
+
704
+ outputs = self.dinov2(
705
+ pixel_values,
706
+ head_mask=head_mask,
707
+ output_attentions=output_attentions,
708
+ output_hidden_states=output_hidden_states,
709
+ return_dict=return_dict,
710
+ )
711
+
712
+ sequence_output = outputs[0] # batch_size, sequence_length, hidden_size
713
+
714
+ cls_token = sequence_output[:, 0]
715
+ patch_tokens = sequence_output[:, 1:]
716
+
717
+ linear_input = torch.cat([cls_token, patch_tokens.mean(dim=1)], dim=1)
718
+
719
+ logits = self.classifier(linear_input)
720
+
721
+ loss = None
722
+ if labels is not None:
723
+ # move labels to correct device to enable model parallelism
724
+ labels = labels.to(logits.device)
725
+ if self.config.problem_type is None:
726
+ if self.num_labels == 1:
727
+ self.config.problem_type = "regression"
728
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
729
+ self.config.problem_type = "single_label_classification"
730
+ else:
731
+ self.config.problem_type = "multi_label_classification"
732
+
733
+ if self.config.problem_type == "regression":
734
+ loss_fct = MSELoss()
735
+ if self.num_labels == 1:
736
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
737
+ else:
738
+ loss = loss_fct(logits, labels)
739
+ elif self.config.problem_type == "single_label_classification":
740
+ loss_fct = CrossEntropyLoss()
741
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
742
+ elif self.config.problem_type == "multi_label_classification":
743
+ loss_fct = BCEWithLogitsLoss()
744
+ loss = loss_fct(logits, labels)
745
+
746
+ if not return_dict:
747
+ output = (logits,) + outputs[2:]
748
+ return ((loss,) + output) if loss is not None else output
749
+
750
+ return ImageClassifierOutput(
751
+ loss=loss,
752
+ logits=logits,
753
+ hidden_states=outputs.hidden_states,
754
+ attentions=outputs.attentions,
755
+ )
756
+
757
+
758
+ @add_start_docstrings(
759
+ """
760
+ Dinov2 backbone, to be used with frameworks like DETR and MaskFormer.
761
+ """,
762
+ DINOV2_START_DOCSTRING,
763
+ )
764
+ class Dinov2Backbone(Dinov2PreTrainedModel, BackboneMixin):
765
+ def __init__(self, config):
766
+ super().__init__(config)
767
+ super()._init_backbone(config)
768
+
769
+ self.num_features = [config.hidden_size for _ in range(config.num_hidden_layers + 1)]
770
+ self.embeddings = Dinov2Embeddings(config)
771
+ self.encoder = Dinov2Encoder(config)
772
+
773
+ self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
774
+
775
+ # Initialize weights and apply final processing
776
+ self.post_init()
777
+
778
+ def get_input_embeddings(self) -> Dinov2PatchEmbeddings:
779
+ return self.embeddings.patch_embeddings
780
+
781
+ @add_start_docstrings_to_model_forward(DINOV2_INPUTS_DOCSTRING)
782
+ @replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC)
783
+ def forward(
784
+ self,
785
+ pixel_values: torch.Tensor,
786
+ output_hidden_states: Optional[bool] = None,
787
+ output_attentions: Optional[bool] = None,
788
+ return_dict: Optional[bool] = None,
789
+ ) -> BackboneOutput:
790
+ """
791
+ Returns:
792
+
793
+ Examples:
794
+
795
+ ```python
796
+ >>> from transformers import AutoImageProcessor, AutoBackbone
797
+ >>> import torch
798
+ >>> from PIL import Image
799
+ >>> import requests
800
+
801
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
802
+ >>> image = Image.open(requests.get(url, stream=True).raw)
803
+
804
+ >>> processor = AutoImageProcessor.from_pretrained("facebook/dinov2-base")
805
+ >>> model = AutoBackbone.from_pretrained(
806
+ ... "facebook/dinov2-base", out_features=["stage2", "stage5", "stage8", "stage11"]
807
+ ... )
808
+
809
+ >>> inputs = processor(image, return_tensors="pt")
810
+
811
+ >>> outputs = model(**inputs)
812
+ >>> feature_maps = outputs.feature_maps
813
+ >>> list(feature_maps[-1].shape)
814
+ [1, 768, 16, 16]
815
+ ```"""
816
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
817
+ output_hidden_states = (
818
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
819
+ )
820
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
821
+
822
+ embedding_output = self.embeddings(pixel_values)
823
+
824
+ outputs = self.encoder(
825
+ embedding_output, output_hidden_states=True, output_attentions=output_attentions, return_dict=return_dict
826
+ )
827
+
828
+ hidden_states = outputs.hidden_states if return_dict else outputs[1]
829
+
830
+ feature_maps = ()
831
+ for stage, hidden_state in zip(self.stage_names, hidden_states):
832
+ if stage in self.out_features:
833
+ if self.config.apply_layernorm:
834
+ hidden_state = self.layernorm(hidden_state)
835
+ if self.config.reshape_hidden_states:
836
+ hidden_state = hidden_state[:, 1:]
837
+ # this was actually a bug in the original implementation that we copied here,
838
+ # cause normally the order is height, width
839
+ batch_size, _, height, width = pixel_values.shape
840
+ patch_size = self.config.patch_size
841
+ hidden_state = hidden_state.reshape(batch_size, height // patch_size, width // patch_size, -1)
842
+ hidden_state = hidden_state.permute(0, 3, 1, 2).contiguous()
843
+ feature_maps += (hidden_state,)
844
+
845
+ if not return_dict:
846
+ if output_hidden_states:
847
+ output = (feature_maps,) + outputs[1:]
848
+ else:
849
+ output = (feature_maps,) + outputs[2:]
850
+ return output
851
+
852
+ return BackboneOutput(
853
+ feature_maps=feature_maps,
854
+ hidden_states=outputs.hidden_states if output_hidden_states else None,
855
+ attentions=outputs.attentions if output_attentions else None,
856
+ )
llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_bigcode/__init__.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from typing import TYPE_CHECKING
16
+
17
+ from ...utils import (
18
+ OptionalDependencyNotAvailable,
19
+ _LazyModule,
20
+ is_torch_available,
21
+ )
22
+
23
+
24
+ _import_structure = {
25
+ "configuration_gpt_bigcode": ["GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTBigCodeConfig"],
26
+ }
27
+
28
+ try:
29
+ if not is_torch_available():
30
+ raise OptionalDependencyNotAvailable()
31
+ except OptionalDependencyNotAvailable:
32
+ pass
33
+ else:
34
+ _import_structure["modeling_gpt_bigcode"] = [
35
+ "GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST",
36
+ "GPTBigCodeForSequenceClassification",
37
+ "GPTBigCodeForTokenClassification",
38
+ "GPTBigCodeForCausalLM",
39
+ "GPTBigCodeModel",
40
+ "GPTBigCodePreTrainedModel",
41
+ ]
42
+
43
+ if TYPE_CHECKING:
44
+ from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig
45
+
46
+ try:
47
+ if not is_torch_available():
48
+ raise OptionalDependencyNotAvailable()
49
+ except OptionalDependencyNotAvailable:
50
+ pass
51
+ else:
52
+ from .modeling_gpt_bigcode import (
53
+ GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST,
54
+ GPTBigCodeForCausalLM,
55
+ GPTBigCodeForSequenceClassification,
56
+ GPTBigCodeForTokenClassification,
57
+ GPTBigCodeModel,
58
+ GPTBigCodePreTrainedModel,
59
+ )
60
+
61
+
62
+ else:
63
+ import sys
64
+
65
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_bigcode/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.08 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_bigcode/__pycache__/configuration_gpt_bigcode.cpython-310.pyc ADDED
Binary file (5.53 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_bigcode/__pycache__/modeling_gpt_bigcode.cpython-310.pyc ADDED
Binary file (38.1 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/nllb_moe/__init__.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from typing import TYPE_CHECKING
16
+
17
+ from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
18
+
19
+
20
+ _import_structure = {
21
+ "configuration_nllb_moe": [
22
+ "NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP",
23
+ "NllbMoeConfig",
24
+ ]
25
+ }
26
+
27
+ try:
28
+ if not is_torch_available():
29
+ raise OptionalDependencyNotAvailable()
30
+ except OptionalDependencyNotAvailable:
31
+ pass
32
+ else:
33
+ _import_structure["modeling_nllb_moe"] = [
34
+ "NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST",
35
+ "NllbMoeForConditionalGeneration",
36
+ "NllbMoeModel",
37
+ "NllbMoePreTrainedModel",
38
+ "NllbMoeTop2Router",
39
+ "NllbMoeSparseMLP",
40
+ ]
41
+
42
+
43
+ if TYPE_CHECKING:
44
+ from .configuration_nllb_moe import (
45
+ NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP,
46
+ NllbMoeConfig,
47
+ )
48
+
49
+ try:
50
+ if not is_torch_available():
51
+ raise OptionalDependencyNotAvailable()
52
+ except OptionalDependencyNotAvailable:
53
+ pass
54
+ else:
55
+ from .modeling_nllb_moe import (
56
+ NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST,
57
+ NllbMoeForConditionalGeneration,
58
+ NllbMoeModel,
59
+ NllbMoePreTrainedModel,
60
+ NllbMoeSparseMLP,
61
+ NllbMoeTop2Router,
62
+ )
63
+
64
+
65
+ else:
66
+ import sys
67
+
68
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
llmeval-env/lib/python3.10/site-packages/transformers/models/nllb_moe/configuration_nllb_moe.py ADDED
@@ -0,0 +1,218 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023, HuggingFace Inc.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ NLLB-MoE model configuration"""
16
+ from ...configuration_utils import PretrainedConfig
17
+ from ...utils import logging
18
+
19
+
20
+ logger = logging.get_logger(__name__)
21
+
22
+
23
+ from ..deprecated._archive_maps import NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
24
+
25
+
26
+ class NllbMoeConfig(PretrainedConfig):
27
+ r"""
28
+ This is the configuration class to store the configuration of a [`NllbMoeModel`]. It is used to instantiate an
29
+ NLLB-MoE model according to the specified arguments, defining the model architecture. Instantiating a configuration
30
+ with the defaults will yield a similar configuration to that of the NLLB-MoE
31
+ [facebook/nllb-moe-54b](https://huggingface.co/facebook/nllb-moe-54b) architecture.
32
+
33
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
34
+ documentation from [`PretrainedConfig`] for more information.
35
+
36
+
37
+ Args:
38
+ vocab_size (`int`, *optional*, defaults to 50265):
39
+ Vocabulary size of the NllbMoe model. Defines the number of different tokens that can be represented by the
40
+ `inputs_ids` passed when calling [`NllbMoeModel`] or
41
+ d_model (`int`, *optional*, defaults to 1024):
42
+ Dimensionality of the layers and the pooler layer.
43
+ encoder_layers (`int`, *optional*, defaults to 12):
44
+ Number of encoder layers.
45
+ decoder_layers (`int`, *optional*, defaults to 12):
46
+ Number of decoder layers.
47
+ encoder_attention_heads (`int`, *optional*, defaults to 16):
48
+ Number of attention heads for each attention layer in the Transformer encoder.
49
+ decoder_attention_heads (`int`, *optional*, defaults to 16):
50
+ Number of attention heads for each attention layer in the Transformer decoder.
51
+ decoder_ffn_dim (`int`, *optional*, defaults to 4096):
52
+ Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
53
+ encoder_ffn_dim (`int`, *optional*, defaults to 4096):
54
+ Dimensionality of the "intermediate" (often named feed-forward) layer in encoder.
55
+ activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
56
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
57
+ `"relu"`, `"silu"` and `"gelu_new"` are supported.
58
+ dropout (`float`, *optional*, defaults to 0.1):
59
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
60
+ attention_dropout (`float`, *optional*, defaults to 0.0):
61
+ The dropout ratio for the attention probabilities.
62
+ activation_dropout (`float`, *optional*, defaults to 0.0):
63
+ The dropout ratio for activations inside the fully connected layer.
64
+ classifier_dropout (`float`, *optional*, defaults to 0.0):
65
+ The dropout ratio for classifier.
66
+ max_position_embeddings (`int`, *optional*, defaults to 1024):
67
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
68
+ just in case (e.g., 512 or 1024 or 2048).
69
+ init_std (`float`, *optional*, defaults to 0.02):
70
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
71
+ encoder_layerdrop (`float`, *optional*, defaults to 0.0):
72
+ The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
73
+ for more details.
74
+ decoder_layerdrop (`float`, *optional*, defaults to 0.0):
75
+ The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
76
+ for more details.
77
+ second_expert_policy ( `str`, *optional*, default to `"all"`):
78
+ The policy used for the sampling the probability of being sampled to a second expert for each token.
79
+ normalize_router_prob_before_dropping (`bool`, *optional*, defaults to `True`):
80
+ Whether or not to normalize the router probabilities before applying a mask based on the experts capacity
81
+ (capacity dropping).
82
+ batch_prioritized_routing (`bool`, *optional*, defaults to `True`):
83
+ Whether or not to orders the tokens by their router probabilities before capacity dropping. This means that
84
+ the tokens that have the highest probabilities will be routed before other tokens that might be further in
85
+ the sequence.
86
+ moe_eval_capacity_token_fraction (`float`, *optional*, defaults to 1.0):
87
+ Fraction of tokens as capacity during validation, if set to negative, uses the same as training. Should be
88
+ in range: (0.0, 1.0].
89
+ num_experts (`int`, *optional*, defaults to 128):
90
+ Number of experts for each NllbMoeSparseMlp layer.
91
+ expert_capacity (`int`, *optional*, defaults to 64):
92
+ Number of tokens that can be stored in each expert.
93
+ encoder_sparse_step (`int`, *optional*, defaults to 4):
94
+ Frequency of the sparse layers in the encoder. 4 means that one out of 4 layers will be sparse.
95
+ decoder_sparse_step (`int`, *optional*, defaults to 4):
96
+ Frequency of the sparse layers in the decoder. 4 means that one out of 4 layers will be sparse.
97
+ router_dtype (`str`, *optional*, default to `"float32"`):
98
+ The `dtype` used for the routers. It is preferable to keep the `dtype` to `"float32"` as specified in the
99
+ *selective precision* discussion in [the paper](https://arxiv.org/abs/2101.03961).
100
+ router_ignore_padding_tokens (`bool`, *optional*, defaults to `False`):
101
+ Whether to ignore padding tokens when routing. if `False`, the padding tokens are not routed to any
102
+ experts.
103
+ router_bias (`bool`, *optional*, defaults to `False`):
104
+ Whether or not the classifier of the router should have a bias.
105
+ moe_token_dropout (`float`, *optional*, defualt ot 0.2):
106
+ Masking rate for MoE expert output masking (EOM), which is implemented via a Dropout2d on the expert
107
+ outputs.
108
+ output_router_logits (`bool`, *optional*, defaults to `False`):
109
+ Whether or not to return the router logits. Only set to `True` to get the auxiliary loss when training.
110
+ use_cache (`bool`, *optional*, defaults to `True`):
111
+ Whether or not the model should return the last key/values attentions (not used by all models).
112
+
113
+ Example:
114
+
115
+ ```python
116
+ >>> from transformers import NllbMoeModel, NllbMoeConfig
117
+
118
+ >>> # Initializing a NllbMoe facebook/nllb-moe-54b style configuration
119
+ >>> configuration = NllbMoeConfig()
120
+
121
+ >>> # Initializing a model from the facebook/nllb-moe-54b style configuration
122
+ >>> model = NllbMoeModel(configuration)
123
+
124
+ >>> # Accessing the model configuration
125
+ >>> configuration = model.config
126
+ ```"""
127
+
128
+ model_type = "nllb-moe"
129
+ keys_to_ignore_at_inference = ["past_key_values"]
130
+ attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
131
+
132
+ def __init__(
133
+ self,
134
+ vocab_size=128112,
135
+ max_position_embeddings=1024,
136
+ encoder_layers=12,
137
+ encoder_ffn_dim=4096,
138
+ encoder_attention_heads=16,
139
+ decoder_layers=12,
140
+ decoder_ffn_dim=4096,
141
+ decoder_attention_heads=16,
142
+ encoder_layerdrop=0.05,
143
+ decoder_layerdrop=0.05,
144
+ use_cache=True,
145
+ is_encoder_decoder=True,
146
+ activation_function="relu",
147
+ d_model=1024,
148
+ dropout=0.1,
149
+ attention_dropout=0.1,
150
+ activation_dropout=0.0,
151
+ init_std=0.02,
152
+ decoder_start_token_id=2,
153
+ scale_embedding=True,
154
+ router_bias=False,
155
+ router_dtype="float32",
156
+ router_ignore_padding_tokens=False,
157
+ num_experts=128,
158
+ expert_capacity=64,
159
+ encoder_sparse_step=4,
160
+ decoder_sparse_step=4,
161
+ router_z_loss_coef=0.001,
162
+ router_aux_loss_coef=0.001,
163
+ second_expert_policy="all",
164
+ normalize_router_prob_before_dropping=False,
165
+ batch_prioritized_routing=False,
166
+ moe_eval_capacity_token_fraction=1.0,
167
+ moe_token_dropout=0.2,
168
+ pad_token_id=1,
169
+ bos_token_id=0,
170
+ eos_token_id=2,
171
+ output_router_logits=False,
172
+ **kwargs,
173
+ ):
174
+ self.vocab_size = vocab_size
175
+ self.max_position_embeddings = max_position_embeddings
176
+ self.d_model = d_model
177
+ self.encoder_ffn_dim = encoder_ffn_dim
178
+ self.encoder_layers = encoder_layers
179
+ self.encoder_attention_heads = encoder_attention_heads
180
+ self.decoder_ffn_dim = decoder_ffn_dim
181
+ self.decoder_layers = decoder_layers
182
+ self.decoder_attention_heads = decoder_attention_heads
183
+ self.dropout = dropout
184
+ self.attention_dropout = attention_dropout
185
+ self.activation_dropout = activation_dropout
186
+ self.activation_function = activation_function
187
+ self.init_std = init_std
188
+ self.encoder_layerdrop = encoder_layerdrop
189
+ self.decoder_layerdrop = decoder_layerdrop
190
+ self.use_cache = use_cache
191
+ self.num_hidden_layers = encoder_layers
192
+ self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
193
+ self.router_z_loss_coef = router_z_loss_coef
194
+ self.router_aux_loss_coef = router_aux_loss_coef
195
+ self.decoder_sparse_step = decoder_sparse_step
196
+ self.encoder_sparse_step = encoder_sparse_step
197
+ self.num_experts = num_experts
198
+ self.expert_capacity = expert_capacity
199
+ self.router_bias = router_bias
200
+ if router_dtype not in ["float32", "float16", "bfloat16"]:
201
+ raise ValueError(f"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}")
202
+ self.router_dtype = router_dtype
203
+
204
+ self.router_ignore_padding_tokens = router_ignore_padding_tokens
205
+ self.batch_prioritized_routing = batch_prioritized_routing
206
+ self.second_expert_policy = second_expert_policy
207
+ self.normalize_router_prob_before_dropping = normalize_router_prob_before_dropping
208
+ self.moe_eval_capacity_token_fraction = moe_eval_capacity_token_fraction
209
+ self.moe_token_dropout = moe_token_dropout
210
+ self.output_router_logits = output_router_logits
211
+ super().__init__(
212
+ pad_token_id=pad_token_id,
213
+ bos_token_id=bos_token_id,
214
+ eos_token_id=eos_token_id,
215
+ is_encoder_decoder=is_encoder_decoder,
216
+ decoder_start_token_id=decoder_start_token_id,
217
+ **kwargs,
218
+ )
llmeval-env/lib/python3.10/site-packages/transformers/models/nllb_moe/convert_nllb_moe_sharded_original_checkpoint_to_pytorch.py ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import argparse
15
+ import json
16
+ import os
17
+
18
+ import torch
19
+ from torch import nn
20
+
21
+ from transformers import NllbMoeConfig, NllbMoeModel
22
+ from transformers.modeling_utils import dtype_byte_size
23
+ from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
24
+
25
+
26
+ def remove_ignore_keys_(state_dict):
27
+ ignore_keys = [
28
+ "encoder.version",
29
+ "decoder.version",
30
+ "model.encoder.version",
31
+ "model.decoder.version",
32
+ "decoder.output_projection.weight",
33
+ "_float_tensor",
34
+ "encoder.embed_positions._float_tensor",
35
+ "decoder.embed_positions._float_tensor",
36
+ ]
37
+ for k in ignore_keys:
38
+ state_dict.pop(k, None)
39
+
40
+
41
+ def make_linear_from_emb(emb):
42
+ vocab_size, emb_size = emb.weight.shape
43
+ lin_layer = nn.Linear(vocab_size, emb_size, bias=False)
44
+ lin_layer.weight.data = emb.weight.data
45
+ return lin_layer
46
+
47
+
48
+ def rename_fairseq_keys(state_dict, expert_idx=None):
49
+ new_dict = {}
50
+ for old_key in state_dict.keys():
51
+ key = old_key
52
+ if "moe_layer.experts." in key:
53
+ if expert_idx is not None:
54
+ key = key.replace("moe_layer.experts.0", f"ffn.experts.expert_{expert_idx}")
55
+ else:
56
+ key = key.replace("moe_layer.experts.", "ffn.experts.expert_")
57
+ if "gate" in key:
58
+ key = key.replace(".moe_layer.gate.wg", ".ffn.router.classifier")
59
+ if "fc2" and "experts" not in key:
60
+ key = key.replace(".fc2.", ".ffn.fc2.")
61
+ if "fc1" and "experts" not in key:
62
+ key = key.replace(".fc1.", ".ffn.fc1.")
63
+ if ".encoder_attn." in key:
64
+ key = key.replace(".encoder_attn.", ".cross_attention.")
65
+ if "encoder_attn_layer_norm" in key:
66
+ key = key.replace("encoder_attn_layer_norm", "cross_attention_layer_norm")
67
+ if "final_layer_norm" in key:
68
+ key = key.replace("final_layer_norm", "ff_layer_norm")
69
+ new_dict[key] = state_dict[old_key]
70
+ return new_dict
71
+
72
+
73
+ def shard_on_the_fly(switch_checkpoint_path, dump_path, num_experts, dtype, weights_name: str = WEIGHTS_NAME):
74
+ sharded_state_dicts = []
75
+ total_size = 0
76
+ os.makedirs(dump_path, exist_ok=True)
77
+
78
+ for expert in range(num_experts):
79
+ expert_path = switch_checkpoint_path + f"-rank-{expert}.pt"
80
+ if os.path.isfile(expert_path):
81
+ expert_state = torch.load(expert_path)["model"]
82
+ remove_ignore_keys_(expert_state)
83
+ expert_state = rename_fairseq_keys(expert_state, expert)
84
+ save_path = os.path.join(
85
+ dump_path, weights_name.replace(".bin", f"-{len(sharded_state_dicts)+1:05d}-of-???.bin")
86
+ )
87
+ torch.save(expert_state, save_path)
88
+ sharded_state_dicts.append(expert_state.keys())
89
+ total_size += sum([value.numel() for key, value in expert_state.items()]) * dtype_byte_size(
90
+ expert_state[list(expert_state)[0]].dtype
91
+ )
92
+
93
+ # Add the last block
94
+ save_path = os.path.join(dump_path, weights_name.replace(".bin", f"-{len(sharded_state_dicts)+1:05d}-of-???.bin"))
95
+ shared_weights = torch.load(switch_checkpoint_path + "-shared.pt")["model"]
96
+ remove_ignore_keys_(shared_weights)
97
+ shared_weights = rename_fairseq_keys(shared_weights, None)
98
+ shared_weights["shared.weight"] = shared_weights["decoder.embed_tokens.weight"]
99
+ sharded_state_dicts.append(shared_weights.keys())
100
+
101
+ # If we only have the shared weights (dummy model/experts saved on the same file)
102
+ if len(sharded_state_dicts) == 1:
103
+ save_path = os.path.join(dump_path, weights_name)
104
+ torch.save(shared_weights, save_path)
105
+ return {weights_name: sharded_state_dicts[0]}, None
106
+ else:
107
+ torch.save(shared_weights, save_path)
108
+ # Otherwise, let's build the index
109
+ weight_map = {}
110
+ for idx, shard in enumerate(sharded_state_dicts):
111
+ shard_file = weights_name.replace(".bin", f"-{idx+1:05d}-of-{len(sharded_state_dicts):05d}.bin")
112
+ temp_filename = os.path.join(dump_path, weights_name.replace(".bin", f"-{idx+1:05d}-of-???.bin"))
113
+ os.rename(temp_filename, os.path.join(dump_path, shard_file))
114
+ for key in shard:
115
+ weight_map[key] = shard_file
116
+
117
+ # Add the metadata
118
+ metadata = {"total_size": total_size}
119
+ index = {"metadata": metadata, "weight_map": weight_map}
120
+
121
+ with open(os.path.join(dump_path, WEIGHTS_INDEX_NAME), "w", encoding="utf-8") as f:
122
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
123
+ f.write(content)
124
+
125
+ return metadata, index
126
+
127
+
128
+ if __name__ == "__main__":
129
+ parser = argparse.ArgumentParser()
130
+ # Required parameters
131
+ parser.add_argument(
132
+ "--nllb_moe_checkpoint_path",
133
+ default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000",
134
+ type=str,
135
+ required=False,
136
+ help="Path to a directory containing a folder per layer. Follows the original Google format.",
137
+ )
138
+ parser.add_argument("--dtype", default="float32", type=str, required=False, help="dtype of the saved model")
139
+ parser.add_argument(
140
+ "--pytorch_dump_folder_path",
141
+ default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b",
142
+ type=str,
143
+ required=False,
144
+ help="Path to the output pytorch model.",
145
+ )
146
+ args = parser.parse_args()
147
+ metadata, index = shard_on_the_fly(
148
+ args.nllb_moe_checkpoint_path,
149
+ args.pytorch_dump_folder_path,
150
+ 128,
151
+ args.dtype,
152
+ )
153
+
154
+ config = NllbMoeConfig.from_pretrained(
155
+ "facebook/nllb-200-3.3B", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128
156
+ )
157
+ config.save_pretrained(args.pytorch_dump_folder_path)
158
+ model = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path)
159
+ print("Done")
160
+ model.save_pretrained(args.pytorch_dump_folder_path)
llmeval-env/lib/python3.10/site-packages/transformers/models/nllb_moe/modeling_nllb_moe.py ADDED
@@ -0,0 +1,1792 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 NllbMoe Authors and HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ PyTorch NLLB-MoE model."""
16
+
17
+
18
+ import math
19
+ from typing import List, Optional, Tuple, Union
20
+
21
+ import torch
22
+ import torch.nn as nn
23
+ from torch.nn import CrossEntropyLoss
24
+
25
+ from ...activations import ACT2FN
26
+ from ...integrations.deepspeed import is_deepspeed_zero3_enabled
27
+ from ...modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_causal_attention_mask
28
+ from ...modeling_outputs import (
29
+ MoEModelOutput,
30
+ MoEModelOutputWithPastAndCrossAttentions,
31
+ Seq2SeqMoEModelOutput,
32
+ Seq2SeqMoEOutput,
33
+ )
34
+ from ...modeling_utils import PreTrainedModel
35
+ from ...utils import (
36
+ add_end_docstrings,
37
+ add_start_docstrings,
38
+ add_start_docstrings_to_model_forward,
39
+ logging,
40
+ replace_return_docstrings,
41
+ )
42
+ from .configuration_nllb_moe import NllbMoeConfig
43
+
44
+
45
+ logger = logging.get_logger(__name__)
46
+
47
+ _CONFIG_FOR_DOC = "NllbMoeConfig"
48
+ _CHECKPOINT_FOR_DOC = "hf-internal-testing/dummy-nllb-moe-2-experts"
49
+ _REAL_CHECKPOINT_FOR_DOC = "facebook/nllb-moe-54b"
50
+
51
+
52
+ ####################################################
53
+ # This dict contains ids and associated url
54
+ # for the pretrained weights provided with the models
55
+ ####################################################
56
+
57
+ from ..deprecated._archive_maps import NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
58
+
59
+
60
+ # Copied from transformers.models.bart.modeling_bart.shift_tokens_right
61
+ def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
62
+ """
63
+ Shift input ids one token to the right.
64
+ """
65
+ shifted_input_ids = input_ids.new_zeros(input_ids.shape)
66
+ shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
67
+ shifted_input_ids[:, 0] = decoder_start_token_id
68
+
69
+ if pad_token_id is None:
70
+ raise ValueError("self.model.config.pad_token_id has to be defined.")
71
+ # replace possible -100 values in labels by `pad_token_id`
72
+ shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
73
+
74
+ return shifted_input_ids
75
+
76
+
77
+ # Copied from transformers.models.roberta.modeling_roberta.create_position_ids_from_input_ids
78
+ def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
79
+ """
80
+ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
81
+ are ignored. This is modified from fairseq's `utils.make_positions`.
82
+
83
+ Args:
84
+ x: torch.Tensor x:
85
+
86
+ Returns: torch.Tensor
87
+ """
88
+ # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
89
+ mask = input_ids.ne(padding_idx).int()
90
+ incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask
91
+ return incremental_indices.long() + padding_idx
92
+
93
+
94
+ def load_balancing_loss_func(router_probs: torch.Tensor, expert_indices: torch.Tensor) -> float:
95
+ r"""
96
+ Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
97
+
98
+ See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
99
+ function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
100
+ experts is too unbalanced.
101
+
102
+ Args:
103
+ router_probs (`torch.Tensor`):
104
+ Probability assigned to each expert per token. Shape: [batch_size, seqeunce_length, num_experts].
105
+ expert_indices (`torch.Tensor`):
106
+ Indices tensor of shape [batch_size, seqeunce_length] identifying the selected expert for a given token.
107
+
108
+ Returns:
109
+ The auxiliary loss.
110
+ """
111
+ if router_probs is None:
112
+ return 0
113
+
114
+ num_experts = router_probs.shape[-1]
115
+
116
+ # cast the expert indices to int64, otherwise one-hot encoding will fail
117
+ if expert_indices.dtype != torch.int64:
118
+ expert_indices = expert_indices.to(torch.int64)
119
+
120
+ if len(expert_indices.shape) == 2:
121
+ expert_indices = expert_indices.unsqueeze(2)
122
+
123
+ expert_mask = torch.nn.functional.one_hot(expert_indices, num_experts)
124
+
125
+ # For a given token, determine if it was routed to a given expert.
126
+ expert_mask = torch.max(expert_mask, axis=-2).values
127
+
128
+ # cast to float32 otherwise mean will fail
129
+ expert_mask = expert_mask.to(torch.float32)
130
+ tokens_per_group_and_expert = torch.mean(expert_mask, axis=-2)
131
+
132
+ router_prob_per_group_and_expert = torch.mean(router_probs, axis=-2)
133
+ return torch.mean(tokens_per_group_and_expert * router_prob_per_group_and_expert) * (num_experts**2)
134
+
135
+
136
+ # Copied from transformers.models.m2m_100.modeling_m2m_100.M2M100SinusoidalPositionalEmbedding
137
+ class NllbMoeSinusoidalPositionalEmbedding(nn.Module):
138
+ """This module produces sinusoidal positional embeddings of any length."""
139
+
140
+ def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None):
141
+ super().__init__()
142
+ self.offset = 2
143
+ self.embedding_dim = embedding_dim
144
+ self.padding_idx = padding_idx
145
+ self.make_weights(num_positions + self.offset, embedding_dim, padding_idx)
146
+
147
+ def make_weights(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None):
148
+ emb_weights = self.get_embedding(num_embeddings, embedding_dim, padding_idx)
149
+ if hasattr(self, "weights"):
150
+ # in forward put the weights on the correct dtype and device of the param
151
+ emb_weights = emb_weights.to(dtype=self.weights.dtype, device=self.weights.device)
152
+
153
+ self.register_buffer("weights", emb_weights, persistent=False)
154
+
155
+ @staticmethod
156
+ def get_embedding(num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None):
157
+ """
158
+ Build sinusoidal embeddings.
159
+
160
+ This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of
161
+ "Attention Is All You Need".
162
+ """
163
+ half_dim = embedding_dim // 2
164
+ emb = math.log(10000) / (half_dim - 1)
165
+ emb = torch.exp(torch.arange(half_dim, dtype=torch.int64).float() * -emb)
166
+ emb = torch.arange(num_embeddings, dtype=torch.int64).float().unsqueeze(1) * emb.unsqueeze(0)
167
+ emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1)
168
+ if embedding_dim % 2 == 1:
169
+ # zero pad
170
+ emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1)
171
+ if padding_idx is not None:
172
+ emb[padding_idx, :] = 0
173
+
174
+ return emb.to(torch.get_default_dtype())
175
+
176
+ @torch.no_grad()
177
+ def forward(
178
+ self, input_ids: torch.Tensor = None, inputs_embeds: torch.Tensor = None, past_key_values_length: int = 0
179
+ ):
180
+ if input_ids is not None:
181
+ bsz, seq_len = input_ids.size()
182
+ # Create the position ids from the input token ids. Any padded tokens remain padded.
183
+ position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length).to(
184
+ input_ids.device
185
+ )
186
+ else:
187
+ bsz, seq_len = inputs_embeds.size()[:-1]
188
+ position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds, past_key_values_length)
189
+
190
+ # expand embeddings if needed
191
+ max_pos = self.padding_idx + 1 + seq_len + past_key_values_length
192
+ if max_pos > self.weights.size(0):
193
+ self.make_weights(max_pos + self.offset, self.embedding_dim, self.padding_idx)
194
+
195
+ return self.weights.index_select(0, position_ids.view(-1)).view(bsz, seq_len, self.weights.shape[-1]).detach()
196
+
197
+ def create_position_ids_from_inputs_embeds(self, inputs_embeds, past_key_values_length):
198
+ """
199
+ We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
200
+
201
+ Args:
202
+ inputs_embeds: torch.Tensor
203
+
204
+ Returns: torch.Tensor
205
+ """
206
+ input_shape = inputs_embeds.size()[:-1]
207
+ sequence_length = input_shape[1]
208
+
209
+ position_ids = torch.arange(
210
+ self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
211
+ )
212
+ return position_ids.unsqueeze(0).expand(input_shape).contiguous() + past_key_values_length
213
+
214
+
215
+ class NllbMoeTop2Router(nn.Module):
216
+ """
217
+ Router using tokens choose top-2 experts assignment.
218
+
219
+ This router uses the same mechanism as in NLLB-MoE from the fairseq repository. Items are sorted by router_probs
220
+ and then routed to their choice of expert until the expert's expert_capacity is reached. **There is no guarantee
221
+ that each token is processed by an expert**, or that each expert receives at least one token.
222
+
223
+ The router combining weights are also returned to make sure that the states that are not updated will be masked.
224
+
225
+ """
226
+
227
+ def __init__(self, config: NllbMoeConfig):
228
+ super().__init__()
229
+ self.num_experts = config.num_experts
230
+ self.expert_capacity = config.expert_capacity
231
+ self.classifier = nn.Linear(config.hidden_size, self.num_experts, bias=config.router_bias)
232
+ self.router_ignore_padding_tokens = config.router_ignore_padding_tokens
233
+ self.dtype = getattr(torch, config.router_dtype)
234
+
235
+ self.second_expert_policy = config.second_expert_policy
236
+ self.normalize_router_prob_before_dropping = config.normalize_router_prob_before_dropping
237
+ self.batch_prioritized_routing = config.batch_prioritized_routing
238
+ self.moe_eval_capacity_token_fraction = config.moe_eval_capacity_token_fraction
239
+
240
+ def _cast_classifier(self):
241
+ r"""
242
+ `bitsandbytes` `Linear8bitLt` layers does not support manual casting Therefore we need to check if they are an
243
+ instance of the `Linear8bitLt` class by checking special attributes.
244
+ """
245
+ if not (hasattr(self.classifier, "SCB") or hasattr(self.classifier, "CB")):
246
+ self.classifier = self.classifier.to(self.dtype)
247
+
248
+ def normalize_router_probabilities(self, router_probs, top_1_mask, top_2_mask):
249
+ top_1_max_probs = (router_probs * top_1_mask).sum(dim=1)
250
+ top_2_max_probs = (router_probs * top_2_mask).sum(dim=1)
251
+ denom_s = torch.clamp(top_1_max_probs + top_2_max_probs, min=torch.finfo(router_probs.dtype).eps)
252
+ top_1_max_probs = top_1_max_probs / denom_s
253
+ top_2_max_probs = top_2_max_probs / denom_s
254
+ return top_1_max_probs, top_2_max_probs
255
+
256
+ def route_tokens(
257
+ self,
258
+ router_logits: torch.Tensor,
259
+ input_dtype: torch.dtype = torch.float32,
260
+ padding_mask: Optional[torch.LongTensor] = None,
261
+ ) -> Tuple:
262
+ """
263
+ Computes the `dispatch_mask` and the `dispatch_weights` for each experts. The masks are adapted to the expert
264
+ capacity.
265
+ """
266
+ nb_tokens = router_logits.shape[0]
267
+ # Apply Softmax and cast back to the original `dtype`
268
+ router_probs = nn.functional.softmax(router_logits, dim=-1, dtype=self.dtype).to(input_dtype)
269
+ top_1_expert_index = torch.argmax(router_probs, dim=-1)
270
+ top_1_mask = torch.nn.functional.one_hot(top_1_expert_index, num_classes=self.num_experts)
271
+
272
+ if self.second_expert_policy == "sampling":
273
+ gumbel = torch.distributions.gumbel.Gumbel(0, 1).rsample
274
+ router_logits += gumbel(router_logits.shape).to(router_logits.device)
275
+
276
+ # replace top_1_expert_index with min values
277
+ logits_except_top_1 = router_logits.masked_fill(top_1_mask.bool(), float("-inf"))
278
+ top_2_expert_index = torch.argmax(logits_except_top_1, dim=-1)
279
+ top_2_mask = torch.nn.functional.one_hot(top_2_expert_index, num_classes=self.num_experts)
280
+
281
+ if self.normalize_router_prob_before_dropping:
282
+ top_1_max_probs, top_2_max_probs = self.normalize_router_probabilities(
283
+ router_probs, top_1_mask, top_2_mask
284
+ )
285
+
286
+ if self.second_expert_policy == "random":
287
+ top_2_max_probs = (router_probs * top_2_mask).sum(dim=1)
288
+ sampled = (2 * top_2_max_probs) > torch.rand_like(top_2_max_probs.float())
289
+ top_2_mask = top_2_mask * sampled.repeat(self.num_experts, 1).transpose(1, 0)
290
+
291
+ if padding_mask is not None and not self.router_ignore_padding_tokens:
292
+ if len(padding_mask.shape) == 4:
293
+ # only get the last causal mask
294
+ padding_mask = padding_mask[:, :, -1, :].reshape(-1)[-nb_tokens:]
295
+ non_padding = ~padding_mask.bool()
296
+ top_1_mask = top_1_mask * non_padding.unsqueeze(-1).to(top_1_mask.dtype)
297
+ top_2_mask = top_2_mask * non_padding.unsqueeze(-1).to(top_1_mask.dtype)
298
+
299
+ if self.batch_prioritized_routing:
300
+ # sort tokens based on their routing probability
301
+ # to make sure important tokens are routed, first
302
+ importance_scores = -1 * router_probs.max(dim=1)[0]
303
+ sorted_top_1_mask = top_1_mask[importance_scores.argsort(dim=0)]
304
+ sorted_cumsum1 = (torch.cumsum(sorted_top_1_mask, dim=0) - 1) * sorted_top_1_mask
305
+ locations1 = sorted_cumsum1[importance_scores.argsort(dim=0).argsort(dim=0)]
306
+
307
+ sorted_top_2_mask = top_2_mask[importance_scores.argsort(dim=0)]
308
+ sorted_cumsum2 = (torch.cumsum(sorted_top_2_mask, dim=0) - 1) * sorted_top_2_mask
309
+ locations2 = sorted_cumsum2[importance_scores.argsort(dim=0).argsort(dim=0)]
310
+ # Update 2nd's location by accounting for locations of 1st
311
+ locations2 += torch.sum(top_1_mask, dim=0, keepdim=True)
312
+
313
+ else:
314
+ locations1 = torch.cumsum(top_1_mask, dim=0) - 1
315
+ locations2 = torch.cumsum(top_2_mask, dim=0) - 1
316
+ # Update 2nd's location by accounting for locations of 1st
317
+ locations2 += torch.sum(top_1_mask, dim=0, keepdim=True)
318
+
319
+ if not self.training and self.moe_eval_capacity_token_fraction > 0:
320
+ self.expert_capacity = math.ceil(self.moe_eval_capacity_token_fraction * nb_tokens)
321
+ else:
322
+ capacity = 2 * math.ceil(nb_tokens / self.num_experts)
323
+ self.expert_capacity = capacity if self.expert_capacity is None else self.expert_capacity
324
+
325
+ # Remove locations outside capacity from ( cumsum < capacity = False will not be routed)
326
+ top_1_mask = top_1_mask * torch.lt(locations1, self.expert_capacity)
327
+ top_2_mask = top_2_mask * torch.lt(locations2, self.expert_capacity)
328
+
329
+ if not self.normalize_router_prob_before_dropping:
330
+ top_1_max_probs, top_2_max_probs = self.normalize_router_probabilities(
331
+ router_probs, top_1_mask, top_2_mask
332
+ )
333
+
334
+ # Calculate combine_weights and dispatch_mask
335
+ gates1 = top_1_max_probs[:, None] * top_1_mask
336
+ gates2 = top_2_max_probs[:, None] * top_2_mask
337
+ router_probs = gates1 + gates2
338
+
339
+ return top_1_mask, router_probs
340
+
341
+ def forward(self, hidden_states: torch.Tensor, padding_mask: Optional[torch.LongTensor] = None) -> Tuple:
342
+ r"""
343
+ The hidden states are reshaped to simplify the computation of the router probabilities (combining weights for
344
+ each experts.)
345
+
346
+ Args:
347
+ hidden_states (`torch.Tensor`):
348
+ (batch_size, sequence_length, hidden_dim) from which router probabilities are computed.
349
+ Returns:
350
+ top_1_mask (`torch.Tensor` of shape (batch_size, sequence_length)):
351
+ Index tensor of shape [batch_size, sequence_length] corresponding to the expert selected for each token
352
+ using the top1 probabilities of the router.
353
+ router_probabilities (`torch.Tensor` of shape (batch_size, sequence_length, nump_experts)):
354
+ Tensor of shape (batch_size, sequence_length, num_experts) corresponding to the probabilities for each
355
+ token and expert. Used for routing tokens to experts.
356
+ router_logits (`torch.Tensor` of shape (batch_size, sequence_length))):
357
+ Logits tensor of shape (batch_size, sequence_length, num_experts) corresponding to raw router logits.
358
+ This is used later for computing router z-loss.
359
+ """
360
+ self.input_dtype = hidden_states.dtype
361
+ batch_size, sequence_length, hidden_dim = hidden_states.shape
362
+ hidden_states = hidden_states.reshape((batch_size * sequence_length), hidden_dim)
363
+ hidden_states = hidden_states.to(self.dtype)
364
+ self._cast_classifier()
365
+ router_logits = self.classifier(hidden_states)
366
+ top_1_mask, router_probs = self.route_tokens(router_logits, self.input_dtype, padding_mask)
367
+ return top_1_mask, router_probs
368
+
369
+
370
+ class NllbMoeDenseActDense(nn.Module):
371
+ def __init__(self, config: NllbMoeConfig, ffn_dim: int):
372
+ super().__init__()
373
+ self.fc1 = nn.Linear(config.d_model, ffn_dim)
374
+ self.fc2 = nn.Linear(ffn_dim, config.d_model)
375
+ self.dropout = nn.Dropout(config.activation_dropout)
376
+ self.act = ACT2FN[config.activation_function]
377
+
378
+ def forward(self, hidden_states):
379
+ hidden_states = self.fc1(hidden_states)
380
+ hidden_states = self.act(hidden_states)
381
+ hidden_states = self.dropout(hidden_states)
382
+ if (
383
+ isinstance(self.fc2.weight, torch.Tensor)
384
+ and hidden_states.dtype != self.fc2.weight.dtype
385
+ and (self.fc2.weight.dtype != torch.int8 and self.fc2.weight.dtype != torch.uint8)
386
+ ):
387
+ hidden_states = hidden_states.to(self.fc2.weight.dtype)
388
+ hidden_states = self.fc2(hidden_states)
389
+ return hidden_states
390
+
391
+
392
+ class NllbMoeSparseMLP(nn.Module):
393
+ r"""
394
+ Implementation of the NLLB-MoE sparse MLP module.
395
+ """
396
+
397
+ def __init__(self, config: NllbMoeConfig, ffn_dim: int, expert_class: nn.Module = NllbMoeDenseActDense):
398
+ super().__init__()
399
+ self.router = NllbMoeTop2Router(config)
400
+ self.moe_token_dropout = config.moe_token_dropout
401
+ self.token_dropout = nn.Dropout(self.moe_token_dropout)
402
+ self.num_experts = config.num_experts
403
+
404
+ self.experts = nn.ModuleDict()
405
+ for idx in range(self.num_experts):
406
+ self.experts[f"expert_{idx}"] = expert_class(config, ffn_dim)
407
+
408
+ def forward(self, hidden_states: torch.Tensor, padding_mask: Optional[torch.Tensor] = False):
409
+ r"""
410
+ The goal of this forward pass is to have the same number of operation as the equivalent `NllbMoeDenseActDense`
411
+ (mlp) layer. This means that all of the hidden states should be processed at most twice ( since we are using a
412
+ top_2 gating mecanism). This means that we keep the complexity to O(batch_size x sequence_length x hidden_dim)
413
+ instead of O(num_experts x batch_size x sequence_length x hidden_dim).
414
+
415
+ 1- Get the `router_probs` from the `router`. The shape of the `router_mask` is `(batch_size X sequence_length,
416
+ num_expert)` and corresponds to the boolean version of the `router_probs`. The inputs are masked using the
417
+ `router_mask`.
418
+
419
+ 2- Dispatch the hidden_states to its associated experts. The router probabilities are used to weight the
420
+ contribution of each experts when updating the masked hidden states.
421
+
422
+ Args:
423
+ hidden_states (`torch.Tensor` of shape `(batch_size, sequence_length, hidden_dim)`):
424
+ The hidden states
425
+ padding_mask (`torch.Tensor`, *optional*, defaults to `False`):
426
+ Attention mask. Can be in the causal form or not.
427
+
428
+ Returns:
429
+ hidden_states (`torch.Tensor` of shape `(batch_size, sequence_length, hidden_dim)`):
430
+ Updated hidden states
431
+ router_logits (`torch.Tensor` of shape `(batch_size, sequence_length, num_experts)`):
432
+ Needed for computing the loss
433
+
434
+ """
435
+ batch_size, sequence_length, hidden_dim = hidden_states.shape
436
+
437
+ top_1_mask, router_probs = self.router(hidden_states, padding_mask)
438
+ router_mask = router_probs.bool()
439
+ hidden_states = hidden_states.reshape((batch_size * sequence_length), hidden_dim)
440
+ masked_hidden_states = torch.einsum("bm,be->ebm", hidden_states, router_mask)
441
+ for idx, expert in enumerate(self.experts.values()):
442
+ token_indices = router_mask[:, idx]
443
+ combining_weights = router_probs[token_indices, idx]
444
+ expert_output = expert(masked_hidden_states[idx, token_indices])
445
+ if self.moe_token_dropout > 0:
446
+ if self.training:
447
+ expert_output = self.token_dropout(expert_output)
448
+ else:
449
+ expert_output *= 1 - self.moe_token_dropout
450
+ masked_hidden_states[idx, token_indices] = torch.einsum("b,be->be", combining_weights, expert_output)
451
+ hidden_states = masked_hidden_states.sum(dim=0).reshape(batch_size, sequence_length, hidden_dim)
452
+
453
+ top_1_expert_index = torch.argmax(top_1_mask, dim=-1)
454
+ return hidden_states, (router_probs, top_1_expert_index)
455
+
456
+
457
+ # Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->NllbMoe,key_value_states->encoder_hidden_states
458
+ class NllbMoeAttention(nn.Module):
459
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
460
+
461
+ def __init__(
462
+ self,
463
+ embed_dim: int,
464
+ num_heads: int,
465
+ dropout: float = 0.0,
466
+ is_decoder: bool = False,
467
+ bias: bool = True,
468
+ is_causal: bool = False,
469
+ config: Optional[NllbMoeConfig] = None,
470
+ ):
471
+ super().__init__()
472
+ self.embed_dim = embed_dim
473
+ self.num_heads = num_heads
474
+ self.dropout = dropout
475
+ self.head_dim = embed_dim // num_heads
476
+ self.config = config
477
+
478
+ if (self.head_dim * num_heads) != self.embed_dim:
479
+ raise ValueError(
480
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
481
+ f" and `num_heads`: {num_heads})."
482
+ )
483
+ self.scaling = self.head_dim**-0.5
484
+ self.is_decoder = is_decoder
485
+ self.is_causal = is_causal
486
+
487
+ self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
488
+ self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
489
+ self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
490
+ self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
491
+
492
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
493
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
494
+
495
+ def forward(
496
+ self,
497
+ hidden_states: torch.Tensor,
498
+ encoder_hidden_states: Optional[torch.Tensor] = None,
499
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
500
+ attention_mask: Optional[torch.Tensor] = None,
501
+ layer_head_mask: Optional[torch.Tensor] = None,
502
+ output_attentions: bool = False,
503
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
504
+ """Input shape: Batch x Time x Channel"""
505
+
506
+ # if encoder_hidden_states are provided this layer is used as a cross-attention layer
507
+ # for the decoder
508
+ is_cross_attention = encoder_hidden_states is not None
509
+
510
+ bsz, tgt_len, _ = hidden_states.size()
511
+
512
+ # get query proj
513
+ query_states = self.q_proj(hidden_states) * self.scaling
514
+ # get key, value proj
515
+ # `past_key_value[0].shape[2] == encoder_hidden_states.shape[1]`
516
+ # is checking that the `sequence_length` of the `past_key_value` is the same as
517
+ # the provided `encoder_hidden_states` to support prefix tuning
518
+ if (
519
+ is_cross_attention
520
+ and past_key_value is not None
521
+ and past_key_value[0].shape[2] == encoder_hidden_states.shape[1]
522
+ ):
523
+ # reuse k,v, cross_attentions
524
+ key_states = past_key_value[0]
525
+ value_states = past_key_value[1]
526
+ elif is_cross_attention:
527
+ # cross_attentions
528
+ key_states = self._shape(self.k_proj(encoder_hidden_states), -1, bsz)
529
+ value_states = self._shape(self.v_proj(encoder_hidden_states), -1, bsz)
530
+ elif past_key_value is not None:
531
+ # reuse k, v, self_attention
532
+ key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
533
+ value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
534
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
535
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
536
+ else:
537
+ # self_attention
538
+ key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
539
+ value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
540
+
541
+ if self.is_decoder:
542
+ # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
543
+ # Further calls to cross_attention layer can then reuse all cross-attention
544
+ # key/value_states (first "if" case)
545
+ # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
546
+ # all previous decoder key/value_states. Further calls to uni-directional self-attention
547
+ # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
548
+ # if encoder bi-directional self-attention `past_key_value` is always `None`
549
+ past_key_value = (key_states, value_states)
550
+
551
+ proj_shape = (bsz * self.num_heads, -1, self.head_dim)
552
+ query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
553
+ key_states = key_states.reshape(*proj_shape)
554
+ value_states = value_states.reshape(*proj_shape)
555
+
556
+ src_len = key_states.size(1)
557
+ attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
558
+
559
+ if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
560
+ raise ValueError(
561
+ f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
562
+ f" {attn_weights.size()}"
563
+ )
564
+
565
+ if attention_mask is not None:
566
+ if attention_mask.size() != (bsz, 1, tgt_len, src_len):
567
+ raise ValueError(
568
+ f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
569
+ )
570
+ attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
571
+ attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
572
+
573
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
574
+
575
+ if layer_head_mask is not None:
576
+ if layer_head_mask.size() != (self.num_heads,):
577
+ raise ValueError(
578
+ f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
579
+ f" {layer_head_mask.size()}"
580
+ )
581
+ attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
582
+ attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
583
+
584
+ if output_attentions:
585
+ # this operation is a bit awkward, but it's required to
586
+ # make sure that attn_weights keeps its gradient.
587
+ # In order to do so, attn_weights have to be reshaped
588
+ # twice and have to be reused in the following
589
+ attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
590
+ attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
591
+ else:
592
+ attn_weights_reshaped = None
593
+
594
+ attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
595
+
596
+ attn_output = torch.bmm(attn_probs, value_states)
597
+
598
+ if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
599
+ raise ValueError(
600
+ f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
601
+ f" {attn_output.size()}"
602
+ )
603
+
604
+ attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
605
+ attn_output = attn_output.transpose(1, 2)
606
+
607
+ # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
608
+ # partitioned across GPUs when using tensor-parallelism.
609
+ attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
610
+
611
+ attn_output = self.out_proj(attn_output)
612
+
613
+ return attn_output, attn_weights_reshaped, past_key_value
614
+
615
+
616
+ class NllbMoeEncoderLayer(nn.Module):
617
+ def __init__(self, config: NllbMoeConfig, is_sparse: bool = False):
618
+ super().__init__()
619
+ self.embed_dim = config.d_model
620
+ self.is_sparse = is_sparse
621
+ self.self_attn = NllbMoeAttention(
622
+ embed_dim=self.embed_dim,
623
+ num_heads=config.encoder_attention_heads,
624
+ dropout=config.attention_dropout,
625
+ )
626
+ self.attn_dropout = nn.Dropout(config.dropout)
627
+ self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
628
+ if not self.is_sparse:
629
+ self.ffn = NllbMoeDenseActDense(config, ffn_dim=config.encoder_ffn_dim)
630
+ else:
631
+ self.ffn = NllbMoeSparseMLP(config, ffn_dim=config.encoder_ffn_dim)
632
+ self.ff_layer_norm = nn.LayerNorm(config.d_model)
633
+ self.ff_dropout = nn.Dropout(config.activation_dropout)
634
+
635
+ def forward(
636
+ self,
637
+ hidden_states: torch.Tensor,
638
+ attention_mask: torch.Tensor,
639
+ layer_head_mask: torch.Tensor,
640
+ output_attentions: bool = False,
641
+ output_router_logits: bool = False,
642
+ ) -> torch.Tensor:
643
+ """
644
+ Args:
645
+ hidden_states (`torch.FloatTensor`):
646
+ input to the layer of shape `(batch, seq_len, embed_dim)`
647
+ attention_mask (`torch.FloatTensor`):
648
+ attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very
649
+ large negative values.
650
+ layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
651
+ `(encoder_attention_heads,)`.
652
+ output_attentions (`bool`, *optional*):
653
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
654
+ returned tensors for more detail.
655
+ """
656
+ residual = hidden_states
657
+ hidden_states = self.self_attn_layer_norm(hidden_states)
658
+ hidden_states, attn_weights, _ = self.self_attn(
659
+ hidden_states=hidden_states,
660
+ attention_mask=attention_mask,
661
+ layer_head_mask=layer_head_mask,
662
+ output_attentions=output_attentions,
663
+ )
664
+ hidden_states = self.attn_dropout(hidden_states)
665
+ hidden_states = residual + hidden_states
666
+
667
+ residual = hidden_states
668
+
669
+ hidden_states = self.ff_layer_norm(hidden_states)
670
+ if self.is_sparse:
671
+ hidden_states, router_states = self.ffn(hidden_states, attention_mask)
672
+ else:
673
+ # router_states set to None to track which layers have None gradients.
674
+ hidden_states, router_states = self.ffn(hidden_states), None
675
+
676
+ hidden_states = self.ff_dropout(hidden_states)
677
+
678
+ hidden_states = residual + hidden_states
679
+
680
+ if hidden_states.dtype == torch.float16 and (
681
+ torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
682
+ ):
683
+ clamp_value = torch.finfo(hidden_states.dtype).max - 1000
684
+ hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
685
+
686
+ outputs = (hidden_states,)
687
+
688
+ if output_attentions:
689
+ outputs += (attn_weights,)
690
+
691
+ if output_router_logits:
692
+ outputs += (router_states,)
693
+
694
+ return outputs
695
+
696
+
697
+ class NllbMoeDecoderLayer(nn.Module):
698
+ def __init__(self, config: NllbMoeConfig, is_sparse: bool = False):
699
+ super().__init__()
700
+ self.embed_dim = config.d_model
701
+ self.is_sparse = is_sparse
702
+ self.self_attn = NllbMoeAttention(
703
+ embed_dim=self.embed_dim,
704
+ num_heads=config.decoder_attention_heads,
705
+ dropout=config.attention_dropout,
706
+ is_decoder=True,
707
+ )
708
+ self.dropout = config.dropout
709
+ self.activation_fn = ACT2FN[config.activation_function]
710
+ self.attn_dropout = nn.Dropout(config.dropout)
711
+
712
+ self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
713
+ self.cross_attention = NllbMoeAttention(
714
+ self.embed_dim, config.decoder_attention_heads, config.attention_dropout, is_decoder=True
715
+ )
716
+ self.cross_attention_layer_norm = nn.LayerNorm(self.embed_dim)
717
+ if not self.is_sparse:
718
+ self.ffn = NllbMoeDenseActDense(config, ffn_dim=config.decoder_ffn_dim)
719
+ else:
720
+ self.ffn = NllbMoeSparseMLP(config, ffn_dim=config.decoder_ffn_dim)
721
+ self.ff_layer_norm = nn.LayerNorm(config.d_model)
722
+ self.ff_dropout = nn.Dropout(config.activation_dropout)
723
+
724
+ def forward(
725
+ self,
726
+ hidden_states: torch.Tensor,
727
+ attention_mask: Optional[torch.Tensor] = None,
728
+ encoder_hidden_states: Optional[torch.Tensor] = None,
729
+ encoder_attention_mask: Optional[torch.Tensor] = None,
730
+ layer_head_mask: Optional[torch.Tensor] = None,
731
+ cross_attn_layer_head_mask: Optional[torch.Tensor] = None,
732
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
733
+ output_attentions: Optional[bool] = False,
734
+ output_router_logits: Optional[bool] = False,
735
+ use_cache: Optional[bool] = True,
736
+ ) -> torch.Tensor:
737
+ """
738
+ Args:
739
+ hidden_states (`torch.FloatTensor`):
740
+ input to the layer of shape `(batch, seq_len, embed_dim)`
741
+ attention_mask (`torch.FloatTensor`):
742
+ attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very
743
+ large negative values.
744
+ encoder_hidden_states (`torch.FloatTensor`):
745
+ cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
746
+ encoder_attention_mask (`torch.FloatTensor`):
747
+ encoder attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by
748
+ very large negative values.
749
+ layer_head_mask (`torch.FloatTensor`):
750
+ mask for attention heads in a given layer of size `(encoder_attention_heads,)`.
751
+ cross_attn_layer_head_mask (`torch.FloatTensor`):
752
+ mask for cross-attention heads in a given layer of size `(decoder_attention_heads,)`.
753
+ past_key_value (`Tuple(torch.FloatTensor)`):
754
+ cached past key and value projection states
755
+ output_attentions (`bool`, *optional*):
756
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
757
+ returned tensors for more detail.
758
+ """
759
+ residual = hidden_states
760
+ hidden_states = self.self_attn_layer_norm(hidden_states)
761
+
762
+ # Self Attention
763
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
764
+ self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
765
+ # add present self-attn cache to positions 1,2 of present_key_value tuple
766
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
767
+ hidden_states=hidden_states,
768
+ past_key_value=self_attn_past_key_value,
769
+ attention_mask=attention_mask,
770
+ layer_head_mask=layer_head_mask,
771
+ output_attentions=output_attentions,
772
+ )
773
+ hidden_states = self.attn_dropout(hidden_states)
774
+ hidden_states = residual + hidden_states
775
+
776
+ # Cross-Attention Block
777
+ cross_attn_present_key_value = None
778
+ cross_attn_weights = None
779
+ if encoder_hidden_states is not None:
780
+ residual = hidden_states
781
+ hidden_states = self.cross_attention_layer_norm(hidden_states)
782
+
783
+ # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
784
+ cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
785
+ hidden_states, cross_attn_weights, cross_attn_present_key_value = self.cross_attention(
786
+ hidden_states=hidden_states,
787
+ encoder_hidden_states=encoder_hidden_states,
788
+ past_key_value=cross_attn_past_key_value,
789
+ attention_mask=encoder_attention_mask,
790
+ layer_head_mask=cross_attn_layer_head_mask,
791
+ output_attentions=output_attentions,
792
+ )
793
+ hidden_states = self.attn_dropout(hidden_states)
794
+ hidden_states = residual + hidden_states
795
+
796
+ # add cross-attn to positions 3,4 of present_key_value tuple
797
+ present_key_value += cross_attn_present_key_value
798
+
799
+ # Fully Connected
800
+ residual = hidden_states
801
+
802
+ hidden_states = self.ff_layer_norm(hidden_states)
803
+ if self.is_sparse:
804
+ hidden_states, router_states = self.ffn(hidden_states, attention_mask)
805
+ else:
806
+ hidden_states, router_states = self.ffn(hidden_states), None
807
+
808
+ hidden_states = self.ff_dropout(hidden_states)
809
+
810
+ hidden_states = residual + hidden_states
811
+
812
+ # clamp inf values to enable fp16 training
813
+ if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any():
814
+ clamp_value = torch.finfo(hidden_states.dtype).max - 1000
815
+ hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
816
+
817
+ outputs = (hidden_states, present_key_value)
818
+
819
+ if output_attentions:
820
+ outputs += (self_attn_weights, cross_attn_weights)
821
+
822
+ if output_router_logits:
823
+ outputs += (router_states,)
824
+
825
+ return outputs
826
+
827
+
828
+ class NllbMoePreTrainedModel(PreTrainedModel):
829
+ config_class = NllbMoeConfig
830
+ base_model_prefix = "model"
831
+ supports_gradient_checkpointing = True
832
+ _no_split_modules = ["NllbMoeEncoderLayer", "NllbMoeDecoderLayer"]
833
+
834
+ def _init_weights(self, module):
835
+ """Initialize the weights"""
836
+ std = self.config.init_std
837
+ if isinstance(module, nn.Linear):
838
+ module.weight.data.normal_(mean=0.0, std=std)
839
+ if module.bias is not None:
840
+ module.bias.data.zero_()
841
+ elif isinstance(module, nn.Embedding):
842
+ module.weight.data.normal_(mean=0.0, std=std)
843
+ if module.padding_idx is not None:
844
+ module.weight.data[module.padding_idx].zero_()
845
+
846
+
847
+ NLLB_MOE_START_DOCSTRING = r"""
848
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
849
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
850
+ etc.)
851
+
852
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
853
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
854
+ and behavior.
855
+
856
+ Parameters:
857
+ config ([`NllbMoeConfig`]):
858
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
859
+ load the weights associated with the model, only the configuration. Check out the
860
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
861
+ """
862
+
863
+ NLLB_MOE_GENERATION_EXAMPLE = r"""
864
+ Translation example:
865
+
866
+ ```python
867
+ >>> from transformers import AutoTokenizer, NllbMoeForConditionalGeneration
868
+
869
+ >>> model = NllbMoeForConditionalGeneration.from_pretrained("facebook/nllb-moe-54b")
870
+ >>> tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-moe-54b")
871
+
872
+ >>> text_to_translate = "Life is like a box of chocolates"
873
+ >>> model_inputs = tokenizer(text_to_translate, return_tensors="pt")
874
+
875
+ >>> # translate to French
876
+ >>> gen_tokens = model.generate(**model_inputs, forced_bos_token_id=tokenizer.get_lang_id("eng_Latn"))
877
+ >>> print(tokenizer.batch_decode(gen_tokens, skip_special_tokens=True))
878
+ ```
879
+ """
880
+
881
+ NLLB_MOE_INPUTS_DOCSTRING = r"""
882
+ Args:
883
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
884
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
885
+ it.
886
+
887
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
888
+ [`PreTrainedTokenizer.__call__`] for details.
889
+
890
+ [What are input IDs?](../glossary#input-ids)
891
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
892
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
893
+
894
+ - 1 for tokens that are **not masked**,
895
+ - 0 for tokens that are **masked**.
896
+
897
+ [What are attention masks?](../glossary#attention-mask)
898
+ decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
899
+ Indices of decoder input sequence tokens in the vocabulary.
900
+
901
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
902
+ [`PreTrainedTokenizer.__call__`] for details.
903
+
904
+ [What are decoder input IDs?](../glossary#decoder-input-ids)
905
+
906
+ NllbMoe uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If
907
+ `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
908
+ `past_key_values`).
909
+ decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
910
+ Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
911
+ be used by default.
912
+ head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
913
+ Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
914
+
915
+ - 1 indicates the head is **not masked**,
916
+ - 0 indicates the head is **masked**.
917
+
918
+ decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
919
+ Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
920
+
921
+ - 1 indicates the head is **not masked**,
922
+ - 0 indicates the head is **masked**.
923
+
924
+ cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
925
+ Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0,
926
+ 1]`:
927
+
928
+ - 1 indicates the head is **not masked**,
929
+ - 0 indicates the head is **masked**.
930
+ encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
931
+ Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
932
+ `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
933
+ hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
934
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
935
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
936
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
937
+ `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
938
+
939
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
940
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
941
+
942
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
943
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
944
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
945
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
946
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
947
+ This is useful if you want more control over how to convert `input_ids` indices into associated vectors
948
+ than the model's internal embedding lookup matrix.
949
+ decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
950
+ Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
951
+ representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
952
+ input (see `past_key_values`). This is useful if you want more control over how to convert
953
+ `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
954
+
955
+ If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
956
+ of `inputs_embeds`.
957
+ use_cache (`bool`, *optional*):
958
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
959
+ `past_key_values`).
960
+ output_attentions (`bool`, *optional*):
961
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
962
+ tensors for more detail.
963
+ output_hidden_states (`bool`, *optional*):
964
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
965
+ more detail.
966
+ output_router_logits (`bool`, *optional*):
967
+ Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
968
+ should not be returned during inference.
969
+ return_dict (`bool`, *optional*):
970
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
971
+ """
972
+
973
+
974
+ class NllbMoeEncoder(NllbMoePreTrainedModel):
975
+ """
976
+ Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
977
+ [`NllbMoeEncoderLayer`].
978
+
979
+ Args:
980
+ config:
981
+ NllbMoeConfig
982
+ embed_tokens (nn.Embedding):
983
+ output embedding
984
+ """
985
+
986
+ def __init__(self, config: NllbMoeConfig, embed_tokens: Optional[nn.Embedding] = None):
987
+ super().__init__(config)
988
+
989
+ self.dropout = config.dropout
990
+ self.layerdrop = config.encoder_layerdrop
991
+
992
+ embed_dim = config.d_model
993
+ self.padding_idx = config.pad_token_id
994
+ self.max_source_positions = config.max_position_embeddings
995
+ self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
996
+
997
+ self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx)
998
+
999
+ if embed_tokens is not None:
1000
+ self.embed_tokens.weight = embed_tokens.weight
1001
+
1002
+ self.embed_positions = NllbMoeSinusoidalPositionalEmbedding(
1003
+ config.max_position_embeddings,
1004
+ embed_dim,
1005
+ self.padding_idx,
1006
+ )
1007
+ sparse_step = config.encoder_sparse_step
1008
+ self.layers = nn.ModuleList()
1009
+ for i in range(config.encoder_layers):
1010
+ is_sparse = (i + 1) % sparse_step == 0 if sparse_step > 0 else False
1011
+ self.layers.append(NllbMoeEncoderLayer(config, is_sparse))
1012
+
1013
+ self.layer_norm = nn.LayerNorm(config.d_model)
1014
+
1015
+ self.gradient_checkpointing = False
1016
+ # Initialize weights and apply final processing
1017
+ self.post_init()
1018
+
1019
+ def forward(
1020
+ self,
1021
+ input_ids: Optional[torch.Tensor] = None,
1022
+ attention_mask: Optional[torch.Tensor] = None,
1023
+ head_mask: Optional[torch.Tensor] = None,
1024
+ inputs_embeds: Optional[torch.Tensor] = None,
1025
+ output_attentions: Optional[bool] = None,
1026
+ output_hidden_states: Optional[bool] = None,
1027
+ output_router_logits: Optional[bool] = None,
1028
+ return_dict: Optional[bool] = None,
1029
+ ):
1030
+ r"""
1031
+ Args:
1032
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
1033
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
1034
+ provide it.
1035
+
1036
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1037
+ [`PreTrainedTokenizer.__call__`] for details.
1038
+
1039
+ [What are input IDs?](../glossary#input-ids)
1040
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
1041
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
1042
+
1043
+ - 1 for tokens that are **not masked**,
1044
+ - 0 for tokens that are **masked**.
1045
+
1046
+ [What are attention masks?](../glossary#attention-mask)
1047
+ head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
1048
+ Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
1049
+
1050
+ - 1 indicates the head is **not masked**,
1051
+ - 0 indicates the head is **masked**.
1052
+
1053
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1054
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
1055
+ This is useful if you want more control over how to convert `input_ids` indices into associated vectors
1056
+ than the model's internal embedding lookup matrix.
1057
+ output_attentions (`bool`, *optional*):
1058
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
1059
+ returned tensors for more detail.
1060
+ output_hidden_states (`bool`, *optional*):
1061
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
1062
+ for more detail.
1063
+ output_router_logits (`bool`, *optional*):
1064
+ Whether or not to return the logits of all the routers. They are useful for computing the router loss,
1065
+ and should not be returned during inference.
1066
+ return_dict (`bool`, *optional*):
1067
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
1068
+ """
1069
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1070
+ output_hidden_states = (
1071
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1072
+ )
1073
+ return_dict = return_dict if return_dict is not None else self.config.return_dict
1074
+
1075
+ # retrieve input_ids and inputs_embeds
1076
+ if input_ids is not None and inputs_embeds is not None:
1077
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
1078
+ elif input_ids is not None:
1079
+ self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
1080
+ input_shape = input_ids.size()
1081
+ input_ids = input_ids.view(-1, input_shape[-1])
1082
+ elif inputs_embeds is not None:
1083
+ input_shape = inputs_embeds.size()[:-1]
1084
+ else:
1085
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
1086
+
1087
+ if inputs_embeds is None:
1088
+ inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
1089
+
1090
+ embed_pos = self.embed_positions(input_ids, inputs_embeds)
1091
+ embed_pos = embed_pos.to(inputs_embeds.device)
1092
+
1093
+ hidden_states = inputs_embeds + embed_pos
1094
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
1095
+
1096
+ # expand attention_mask
1097
+ if attention_mask is not None:
1098
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
1099
+ attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype)
1100
+
1101
+ encoder_states = () if output_hidden_states else None
1102
+ all_router_probs = () if output_router_logits else None
1103
+ all_attentions = () if output_attentions else None
1104
+
1105
+ # check if head_mask has a correct number of layers specified if desired
1106
+ if head_mask is not None:
1107
+ if head_mask.size()[0] != len(self.layers):
1108
+ raise ValueError(
1109
+ f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
1110
+ f" {head_mask.size()[0]}."
1111
+ )
1112
+
1113
+ for idx, encoder_layer in enumerate(self.layers):
1114
+ if output_hidden_states:
1115
+ encoder_states = encoder_states + (hidden_states,)
1116
+ # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
1117
+ dropout_probability = torch.rand([])
1118
+ if self.training and (dropout_probability < self.layerdrop): # skip the layer
1119
+ layer_outputs = (None, None, None)
1120
+ else:
1121
+ if self.gradient_checkpointing and self.training:
1122
+ layer_outputs = self._gradient_checkpointing_func(
1123
+ encoder_layer.__call__,
1124
+ hidden_states,
1125
+ attention_mask,
1126
+ (head_mask[idx] if head_mask is not None else None),
1127
+ output_attentions,
1128
+ )
1129
+ else:
1130
+ layer_outputs = encoder_layer(
1131
+ hidden_states,
1132
+ attention_mask,
1133
+ layer_head_mask=(head_mask[idx] if head_mask is not None else None),
1134
+ output_attentions=output_attentions,
1135
+ output_router_logits=output_router_logits,
1136
+ )
1137
+
1138
+ hidden_states = layer_outputs[0]
1139
+
1140
+ if output_attentions:
1141
+ all_attentions += (layer_outputs[1],)
1142
+
1143
+ if output_router_logits:
1144
+ all_router_probs += (layer_outputs[-1],)
1145
+
1146
+ last_hidden_state = self.layer_norm(hidden_states)
1147
+
1148
+ if output_hidden_states:
1149
+ encoder_states += (last_hidden_state,)
1150
+
1151
+ if not return_dict:
1152
+ return tuple(
1153
+ v for v in [last_hidden_state, encoder_states, all_attentions, all_router_probs] if v is not None
1154
+ )
1155
+
1156
+ return MoEModelOutput(
1157
+ last_hidden_state=last_hidden_state,
1158
+ hidden_states=encoder_states,
1159
+ attentions=all_attentions,
1160
+ router_probs=all_router_probs,
1161
+ )
1162
+
1163
+
1164
+ class NllbMoeDecoder(NllbMoePreTrainedModel):
1165
+ """
1166
+ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`NllbMoeDecoderLayer`]
1167
+
1168
+ Args:
1169
+ config:
1170
+ NllbMoeConfig
1171
+ embed_tokens (nn.Embedding):
1172
+ output embedding
1173
+ """
1174
+
1175
+ def __init__(self, config: NllbMoeConfig, embed_tokens: Optional[nn.Embedding] = None):
1176
+ super().__init__(config)
1177
+ self.dropout = config.dropout
1178
+ self.layerdrop = config.decoder_layerdrop
1179
+ self.padding_idx = config.pad_token_id
1180
+ self.max_target_positions = config.max_position_embeddings
1181
+ self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
1182
+
1183
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx)
1184
+
1185
+ if embed_tokens is not None:
1186
+ self.embed_tokens.weight = embed_tokens.weight
1187
+
1188
+ self.embed_positions = NllbMoeSinusoidalPositionalEmbedding(
1189
+ config.max_position_embeddings,
1190
+ config.d_model,
1191
+ self.padding_idx,
1192
+ )
1193
+
1194
+ sparse_step = config.decoder_sparse_step
1195
+ self.layers = nn.ModuleList()
1196
+ for i in range(config.decoder_layers):
1197
+ is_sparse = (i + 1) % sparse_step == 0 if sparse_step > 0 else False
1198
+ self.layers.append(NllbMoeDecoderLayer(config, is_sparse))
1199
+
1200
+ self.layer_norm = nn.LayerNorm(config.d_model)
1201
+
1202
+ self.gradient_checkpointing = False
1203
+ # Initialize weights and apply final processing
1204
+ self.post_init()
1205
+
1206
+ def forward(
1207
+ self,
1208
+ input_ids: Optional[torch.Tensor] = None,
1209
+ attention_mask: Optional[torch.Tensor] = None,
1210
+ encoder_hidden_states: Optional[torch.Tensor] = None,
1211
+ encoder_attention_mask: Optional[torch.Tensor] = None,
1212
+ head_mask: Optional[torch.Tensor] = None,
1213
+ cross_attn_head_mask: Optional[torch.Tensor] = None,
1214
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1215
+ inputs_embeds: Optional[torch.Tensor] = None,
1216
+ use_cache: Optional[bool] = None,
1217
+ output_attentions: Optional[bool] = None,
1218
+ output_hidden_states: Optional[bool] = None,
1219
+ output_router_logits: Optional[bool] = None,
1220
+ return_dict: Optional[bool] = None,
1221
+ ):
1222
+ r"""
1223
+ Args:
1224
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
1225
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
1226
+ provide it.
1227
+
1228
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1229
+ [`PreTrainedTokenizer.__call__`] for details.
1230
+
1231
+ [What are input IDs?](../glossary#input-ids)
1232
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
1233
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
1234
+
1235
+ - 1 for tokens that are **not masked**,
1236
+ - 0 for tokens that are **masked**.
1237
+
1238
+ [What are attention masks?](../glossary#attention-mask)
1239
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
1240
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
1241
+ of the decoder.
1242
+ encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
1243
+ Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
1244
+ selected in `[0, 1]`:
1245
+
1246
+ - 1 for tokens that are **not masked**,
1247
+ - 0 for tokens that are **masked**.
1248
+
1249
+ [What are attention masks?](../glossary#attention-mask)
1250
+ head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
1251
+ Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
1252
+
1253
+ - 1 indicates the head is **not masked**,
1254
+ - 0 indicates the head is **masked**.
1255
+
1256
+ cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
1257
+ Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing
1258
+ cross-attention on hidden heads. Mask values selected in `[0, 1]`:
1259
+
1260
+ - 1 indicates the head is **not masked**,
1261
+ - 0 indicates the head is **masked**.
1262
+
1263
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
1264
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
1265
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
1266
+ shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
1267
+
1268
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
1269
+ cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
1270
+
1271
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
1272
+ that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
1273
+ all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
1274
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1275
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
1276
+ This is useful if you want more control over how to convert `input_ids` indices into associated vectors
1277
+ than the model's internal embedding lookup matrix.
1278
+ output_attentions (`bool`, *optional*):
1279
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
1280
+ returned tensors for more detail.
1281
+ output_hidden_states (`bool`, *optional*):
1282
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
1283
+ for more detail.
1284
+ output_router_logits (`bool`, *optional*):
1285
+ Whether or not to return the logits of all the routers. They are useful for computing the router loss,
1286
+ and should not be returned during inference.
1287
+ return_dict (`bool`, *optional*):
1288
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
1289
+ """
1290
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1291
+ output_hidden_states = (
1292
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1293
+ )
1294
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1295
+ return_dict = return_dict if return_dict is not None else self.config.return_dict
1296
+
1297
+ # retrieve input_ids and inputs_embeds
1298
+ if input_ids is not None and inputs_embeds is not None:
1299
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
1300
+ elif input_ids is not None:
1301
+ input_shape = input_ids.size()
1302
+ input_ids = input_ids.view(-1, input_shape[-1])
1303
+ elif inputs_embeds is not None:
1304
+ input_shape = inputs_embeds.size()[:-1]
1305
+ else:
1306
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
1307
+
1308
+ # past_key_values_length
1309
+ past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
1310
+
1311
+ if inputs_embeds is None:
1312
+ inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
1313
+
1314
+ # create causal mask
1315
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
1316
+ combined_attention_mask = _prepare_4d_causal_attention_mask(
1317
+ attention_mask, input_shape, inputs_embeds, past_key_values_length
1318
+ )
1319
+
1320
+ # expand encoder attention mask
1321
+ if encoder_hidden_states is not None and encoder_attention_mask is not None:
1322
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
1323
+ encoder_attention_mask = _prepare_4d_attention_mask(
1324
+ encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
1325
+ )
1326
+
1327
+ # embed positions
1328
+ positions = self.embed_positions(input_ids, inputs_embeds, past_key_values_length)
1329
+ positions = positions.to(inputs_embeds.device)
1330
+
1331
+ hidden_states = inputs_embeds + positions
1332
+
1333
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
1334
+
1335
+ if self.gradient_checkpointing and self.training:
1336
+ if use_cache:
1337
+ logger.warning_once(
1338
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting" " `use_cache=False`..."
1339
+ )
1340
+ use_cache = False
1341
+
1342
+ # decoder layers
1343
+ all_hidden_states = () if output_hidden_states else None
1344
+ all_self_attns = () if output_attentions else None
1345
+ all_router_probs = () if output_router_logits else None
1346
+ all_cross_attentions = () if output_attentions else None
1347
+ present_key_value_states = () if use_cache else None
1348
+
1349
+ # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
1350
+ for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
1351
+ if attn_mask is not None:
1352
+ if attn_mask.size()[0] != len(self.layers):
1353
+ raise ValueError(
1354
+ f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
1355
+ f" {head_mask.size()[0]}."
1356
+ )
1357
+ deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled()
1358
+
1359
+ for idx, decoder_layer in enumerate(self.layers):
1360
+ if output_hidden_states:
1361
+ all_hidden_states += (hidden_states,)
1362
+
1363
+ # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
1364
+ dropout_probability = torch.rand([])
1365
+
1366
+ skip_the_layer = True if self.training and (dropout_probability < self.layerdrop) else False
1367
+ if not skip_the_layer or deepspeed_zero3_is_enabled:
1368
+ layer_head_mask = head_mask[idx] if head_mask is not None else None
1369
+ cross_attn_layer_head_mask = cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
1370
+
1371
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
1372
+
1373
+ # under deepspeed zero3 all gpus must run in sync
1374
+ if self.gradient_checkpointing and self.training:
1375
+ if use_cache:
1376
+ logger.warning_once(
1377
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
1378
+ )
1379
+ use_cache = False
1380
+ layer_outputs = self._gradient_checkpointing_func(
1381
+ decoder_layer.forward,
1382
+ hidden_states,
1383
+ combined_attention_mask,
1384
+ encoder_hidden_states,
1385
+ encoder_attention_mask,
1386
+ layer_head_mask,
1387
+ cross_attn_layer_head_mask,
1388
+ None, # past_key_value is always None with gradient checkpointing
1389
+ use_cache,
1390
+ output_attentions,
1391
+ )
1392
+ else:
1393
+ layer_outputs = decoder_layer(
1394
+ hidden_states,
1395
+ attention_mask=combined_attention_mask,
1396
+ encoder_hidden_states=encoder_hidden_states,
1397
+ encoder_attention_mask=encoder_attention_mask,
1398
+ layer_head_mask=layer_head_mask,
1399
+ cross_attn_layer_head_mask=cross_attn_layer_head_mask,
1400
+ past_key_value=past_key_value,
1401
+ use_cache=use_cache,
1402
+ output_attentions=output_attentions,
1403
+ output_router_logits=output_router_logits,
1404
+ )
1405
+
1406
+ hidden_states = layer_outputs[0]
1407
+
1408
+ if skip_the_layer:
1409
+ continue
1410
+
1411
+ if use_cache:
1412
+ present_key_value_states += (layer_outputs[1],)
1413
+
1414
+ if output_attentions:
1415
+ all_self_attns += (layer_outputs[2],)
1416
+ all_cross_attentions += (layer_outputs[3],)
1417
+
1418
+ if output_router_logits:
1419
+ all_router_probs += (layer_outputs[-1],)
1420
+
1421
+ hidden_states = self.layer_norm(hidden_states)
1422
+
1423
+ # Add last layer
1424
+ if output_hidden_states:
1425
+ all_hidden_states += (hidden_states,)
1426
+
1427
+ if not return_dict:
1428
+ return tuple(
1429
+ v
1430
+ for v in [
1431
+ hidden_states,
1432
+ present_key_value_states,
1433
+ all_hidden_states,
1434
+ all_self_attns,
1435
+ all_cross_attentions,
1436
+ all_router_probs,
1437
+ ]
1438
+ if v is not None
1439
+ )
1440
+ return MoEModelOutputWithPastAndCrossAttentions(
1441
+ last_hidden_state=hidden_states,
1442
+ past_key_values=present_key_value_states,
1443
+ hidden_states=all_hidden_states,
1444
+ attentions=all_self_attns,
1445
+ cross_attentions=all_cross_attentions,
1446
+ router_probs=all_router_probs,
1447
+ )
1448
+
1449
+
1450
+ @add_start_docstrings(
1451
+ "The bare NllbMoe Model outputting raw hidden-states without any specific head on top.",
1452
+ NLLB_MOE_START_DOCSTRING,
1453
+ )
1454
+ class NllbMoeModel(NllbMoePreTrainedModel):
1455
+ _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
1456
+
1457
+ def __init__(self, config: NllbMoeConfig):
1458
+ super().__init__(config)
1459
+
1460
+ padding_idx, vocab_size = config.pad_token_id, config.vocab_size
1461
+ self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx)
1462
+
1463
+ self.encoder = NllbMoeEncoder(config, self.shared)
1464
+ self.decoder = NllbMoeDecoder(config, self.shared)
1465
+
1466
+ # Initialize weights and apply final processing
1467
+ self.post_init()
1468
+
1469
+ def get_input_embeddings(self):
1470
+ return self.shared
1471
+
1472
+ def set_input_embeddings(self, value):
1473
+ self.shared = value
1474
+ self.encoder.embed_tokens = self.shared
1475
+ self.decoder.embed_tokens = self.shared
1476
+
1477
+ def _tie_weights(self):
1478
+ if self.config.tie_word_embeddings:
1479
+ self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared)
1480
+ self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared)
1481
+
1482
+ def get_encoder(self):
1483
+ return self.encoder
1484
+
1485
+ def get_decoder(self):
1486
+ return self.decoder
1487
+
1488
+ @add_start_docstrings_to_model_forward(NLLB_MOE_INPUTS_DOCSTRING)
1489
+ @add_start_docstrings_to_model_forward(NLLB_MOE_INPUTS_DOCSTRING)
1490
+ @replace_return_docstrings(output_type=Seq2SeqMoEModelOutput, config_class=_CONFIG_FOR_DOC)
1491
+ def forward(
1492
+ self,
1493
+ input_ids: Optional[torch.LongTensor] = None,
1494
+ attention_mask: Optional[torch.Tensor] = None,
1495
+ decoder_input_ids: Optional[torch.LongTensor] = None,
1496
+ decoder_attention_mask: Optional[torch.LongTensor] = None,
1497
+ head_mask: Optional[torch.Tensor] = None,
1498
+ decoder_head_mask: Optional[torch.Tensor] = None,
1499
+ cross_attn_head_mask: Optional[torch.Tensor] = None,
1500
+ encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
1501
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
1502
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1503
+ decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
1504
+ use_cache: Optional[bool] = None,
1505
+ output_attentions: Optional[bool] = None,
1506
+ output_hidden_states: Optional[bool] = None,
1507
+ output_router_logits: Optional[bool] = None,
1508
+ return_dict: Optional[bool] = None,
1509
+ ) -> Union[Tuple[torch.Tensor], Seq2SeqMoEModelOutput]:
1510
+ r"""
1511
+ Returns:
1512
+
1513
+ Example:
1514
+
1515
+ ```python
1516
+ >>> from transformers import AutoTokenizer, NllbMoeModel
1517
+
1518
+ >>> tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/random-nllb-moe-2-experts")
1519
+ >>> model = SwitchTransformersModel.from_pretrained("hf-internal-testing/random-nllb-moe-2-experts")
1520
+
1521
+ >>> input_ids = tokenizer(
1522
+ ... "Studies have been shown that owning a dog is good for you", return_tensors="pt"
1523
+ ... ).input_ids # Batch size 1
1524
+ >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1
1525
+
1526
+ >>> # preprocess: Prepend decoder_input_ids with start token which is pad token for NllbMoeModel
1527
+ >>> decoder_input_ids = model._shift_right(decoder_input_ids)
1528
+
1529
+ >>> # forward pass
1530
+ >>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
1531
+ >>> last_hidden_states = outputs.last_hidden_state
1532
+ ```"""
1533
+ return_dict = return_dict if return_dict is not None else self.config.return_dict
1534
+ if encoder_outputs is None:
1535
+ encoder_outputs = self.encoder(
1536
+ input_ids=input_ids,
1537
+ attention_mask=attention_mask,
1538
+ head_mask=head_mask,
1539
+ inputs_embeds=inputs_embeds,
1540
+ output_attentions=output_attentions,
1541
+ output_hidden_states=output_hidden_states,
1542
+ output_router_logits=output_router_logits,
1543
+ return_dict=return_dict,
1544
+ )
1545
+ # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
1546
+ elif return_dict and not isinstance(encoder_outputs, MoEModelOutput):
1547
+ encoder_outputs = MoEModelOutput(
1548
+ last_hidden_state=encoder_outputs[0],
1549
+ hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
1550
+ attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
1551
+ router_probs=encoder_outputs[3] if len(encoder_outputs) > 3 else None,
1552
+ )
1553
+
1554
+ # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
1555
+ decoder_outputs = self.decoder(
1556
+ input_ids=decoder_input_ids,
1557
+ attention_mask=decoder_attention_mask,
1558
+ encoder_hidden_states=encoder_outputs[0],
1559
+ encoder_attention_mask=attention_mask,
1560
+ head_mask=decoder_head_mask,
1561
+ cross_attn_head_mask=cross_attn_head_mask,
1562
+ past_key_values=past_key_values,
1563
+ inputs_embeds=decoder_inputs_embeds,
1564
+ use_cache=use_cache,
1565
+ output_attentions=output_attentions,
1566
+ output_hidden_states=output_hidden_states,
1567
+ output_router_logits=output_router_logits,
1568
+ return_dict=return_dict,
1569
+ )
1570
+
1571
+ if not return_dict:
1572
+ return decoder_outputs + encoder_outputs
1573
+
1574
+ return Seq2SeqMoEModelOutput(
1575
+ past_key_values=decoder_outputs.past_key_values,
1576
+ cross_attentions=decoder_outputs.cross_attentions,
1577
+ last_hidden_state=decoder_outputs.last_hidden_state,
1578
+ encoder_last_hidden_state=encoder_outputs.last_hidden_state,
1579
+ encoder_hidden_states=encoder_outputs.hidden_states,
1580
+ decoder_hidden_states=decoder_outputs.hidden_states,
1581
+ encoder_attentions=encoder_outputs.attentions,
1582
+ decoder_attentions=decoder_outputs.attentions,
1583
+ encoder_router_logits=encoder_outputs.router_probs,
1584
+ decoder_router_logits=decoder_outputs.router_probs,
1585
+ )
1586
+
1587
+
1588
+ @add_start_docstrings(
1589
+ "The NllbMoe Model with a language modeling head. Can be used for summarization.", NLLB_MOE_START_DOCSTRING
1590
+ )
1591
+ class NllbMoeForConditionalGeneration(NllbMoePreTrainedModel):
1592
+ base_model_prefix = "model"
1593
+ _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"]
1594
+
1595
+ def __init__(self, config: NllbMoeConfig):
1596
+ super().__init__(config)
1597
+ self.model = NllbMoeModel(config)
1598
+ self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
1599
+
1600
+ self.router_z_loss_coef = config.router_z_loss_coef
1601
+ self.router_aux_loss_coef = config.router_aux_loss_coef
1602
+ # Initialize weights and apply final processing
1603
+ self.post_init()
1604
+
1605
+ def get_encoder(self):
1606
+ return self.model.get_encoder()
1607
+
1608
+ def get_decoder(self):
1609
+ return self.model.get_decoder()
1610
+
1611
+ def get_output_embeddings(self):
1612
+ return self.lm_head
1613
+
1614
+ def set_output_embeddings(self, new_embeddings):
1615
+ self.lm_head = new_embeddings
1616
+
1617
+ @add_start_docstrings_to_model_forward(NLLB_MOE_INPUTS_DOCSTRING)
1618
+ @replace_return_docstrings(output_type=Seq2SeqMoEOutput, config_class=_CONFIG_FOR_DOC)
1619
+ @add_end_docstrings(NLLB_MOE_GENERATION_EXAMPLE)
1620
+ def forward(
1621
+ self,
1622
+ input_ids: Optional[torch.LongTensor] = None,
1623
+ attention_mask: Optional[torch.Tensor] = None,
1624
+ decoder_input_ids: Optional[torch.LongTensor] = None,
1625
+ decoder_attention_mask: Optional[torch.LongTensor] = None,
1626
+ head_mask: Optional[torch.Tensor] = None,
1627
+ decoder_head_mask: Optional[torch.Tensor] = None,
1628
+ cross_attn_head_mask: Optional[torch.Tensor] = None,
1629
+ encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
1630
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
1631
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1632
+ decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
1633
+ labels: Optional[torch.LongTensor] = None,
1634
+ use_cache: Optional[bool] = None,
1635
+ output_attentions: Optional[bool] = None,
1636
+ output_hidden_states: Optional[bool] = None,
1637
+ output_router_logits: Optional[bool] = None,
1638
+ return_dict: Optional[bool] = None,
1639
+ ) -> Union[Tuple[torch.Tensor], Seq2SeqMoEOutput]:
1640
+ r"""
1641
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1642
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1643
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1644
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1645
+
1646
+ Returns:
1647
+ """
1648
+ return_dict = return_dict if return_dict is not None else self.config.return_dict
1649
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1650
+ output_router_logits = (
1651
+ output_router_logits if output_router_logits is not None else self.config.output_router_logits
1652
+ )
1653
+ if labels is not None:
1654
+ if decoder_input_ids is None:
1655
+ decoder_input_ids = shift_tokens_right(
1656
+ labels, self.config.pad_token_id, self.config.decoder_start_token_id
1657
+ )
1658
+
1659
+ outputs = self.model(
1660
+ input_ids,
1661
+ attention_mask=attention_mask,
1662
+ decoder_input_ids=decoder_input_ids,
1663
+ encoder_outputs=encoder_outputs,
1664
+ decoder_attention_mask=decoder_attention_mask,
1665
+ head_mask=head_mask,
1666
+ decoder_head_mask=decoder_head_mask,
1667
+ cross_attn_head_mask=cross_attn_head_mask,
1668
+ past_key_values=past_key_values,
1669
+ inputs_embeds=inputs_embeds,
1670
+ decoder_inputs_embeds=decoder_inputs_embeds,
1671
+ use_cache=use_cache,
1672
+ output_attentions=output_attentions,
1673
+ output_hidden_states=output_hidden_states,
1674
+ output_router_logits=output_router_logits,
1675
+ return_dict=return_dict,
1676
+ )
1677
+ lm_logits = self.lm_head(outputs[0])
1678
+
1679
+ loss = None
1680
+ encoder_aux_loss = None
1681
+ decoder_aux_loss = None
1682
+
1683
+ if labels is not None:
1684
+ loss_fct = CrossEntropyLoss(ignore_index=-100)
1685
+ # todo check in the config if router loss enables
1686
+
1687
+ if output_router_logits:
1688
+ encoder_router_logits = outputs[-1]
1689
+ decoder_router_logits = outputs[3 if output_attentions else 4]
1690
+
1691
+ # Compute the router loss (z_loss + auxiliary loss) for each router in the encoder and decoder
1692
+ encoder_router_logits, encoder_expert_indexes = self._unpack_router_logits(encoder_router_logits)
1693
+ encoder_aux_loss = load_balancing_loss_func(encoder_router_logits, encoder_expert_indexes)
1694
+
1695
+ decoder_router_logits, decoder_expert_indexes = self._unpack_router_logits(decoder_router_logits)
1696
+ decoder_aux_loss = load_balancing_loss_func(decoder_router_logits, decoder_expert_indexes)
1697
+
1698
+ loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1))
1699
+
1700
+ if output_router_logits and labels is not None:
1701
+ aux_loss = self.router_aux_loss_coef * (encoder_aux_loss + decoder_aux_loss)
1702
+ loss = loss + aux_loss
1703
+
1704
+ output = (loss,) if loss is not None else ()
1705
+ if not return_dict:
1706
+ output += (lm_logits,)
1707
+ if output_router_logits: # only return the loss if they are not None
1708
+ output += (
1709
+ encoder_aux_loss,
1710
+ decoder_aux_loss,
1711
+ *outputs[1:],
1712
+ )
1713
+ else:
1714
+ output += outputs[1:]
1715
+
1716
+ return output
1717
+
1718
+ return Seq2SeqMoEOutput(
1719
+ loss=loss,
1720
+ logits=lm_logits,
1721
+ past_key_values=outputs.past_key_values,
1722
+ cross_attentions=outputs.cross_attentions,
1723
+ encoder_aux_loss=encoder_aux_loss,
1724
+ decoder_aux_loss=decoder_aux_loss,
1725
+ encoder_last_hidden_state=outputs.encoder_last_hidden_state,
1726
+ encoder_hidden_states=outputs.encoder_hidden_states,
1727
+ decoder_hidden_states=outputs.decoder_hidden_states,
1728
+ encoder_attentions=outputs.encoder_attentions,
1729
+ decoder_attentions=outputs.decoder_attentions,
1730
+ encoder_router_logits=outputs.encoder_router_logits,
1731
+ decoder_router_logits=outputs.decoder_router_logits,
1732
+ )
1733
+
1734
+ def _unpack_router_logits(self, router_outputs):
1735
+ total_router_logits = []
1736
+ total_expert_indexes = []
1737
+ for router_output in router_outputs:
1738
+ if router_output is not None:
1739
+ router_logits, expert_indexes = router_output
1740
+ total_router_logits.append(router_logits)
1741
+ total_expert_indexes.append(expert_indexes)
1742
+
1743
+ total_router_logits = torch.cat(total_router_logits, dim=1) if len(total_router_logits) > 0 else None
1744
+ total_expert_indexes = torch.stack(total_expert_indexes, dim=1) if len(total_expert_indexes) > 0 else None
1745
+ return total_router_logits, total_expert_indexes
1746
+
1747
+ # Copied from transfomers.models.switch_transformers.SwitchTransformersForConditionalGeneration.prepare_inputs_for_generation
1748
+ def prepare_inputs_for_generation(
1749
+ self,
1750
+ decoder_input_ids,
1751
+ past_key_values=None,
1752
+ attention_mask=None,
1753
+ head_mask=None,
1754
+ decoder_head_mask=None,
1755
+ cross_attn_head_mask=None,
1756
+ use_cache=None,
1757
+ encoder_outputs=None,
1758
+ **kwargs,
1759
+ ):
1760
+ # cut decoder_input_ids if past is used
1761
+ if past_key_values is not None:
1762
+ past_length = past_key_values[0][0].shape[2]
1763
+
1764
+ # Some generation methods already pass only the last input ID
1765
+ if decoder_input_ids.shape[1] > past_length:
1766
+ remove_prefix_length = past_length
1767
+ else:
1768
+ # Default to old behavior: keep only final ID
1769
+ remove_prefix_length = decoder_input_ids.shape[1] - 1
1770
+
1771
+ decoder_input_ids = decoder_input_ids[:, remove_prefix_length:]
1772
+
1773
+ return {
1774
+ "input_ids": None, # encoder_outputs is defined. input_ids not needed
1775
+ "encoder_outputs": encoder_outputs,
1776
+ "past_key_values": past_key_values,
1777
+ "decoder_input_ids": decoder_input_ids,
1778
+ "attention_mask": attention_mask,
1779
+ "head_mask": head_mask,
1780
+ "decoder_head_mask": decoder_head_mask,
1781
+ "cross_attn_head_mask": cross_attn_head_mask,
1782
+ "use_cache": use_cache, # change this to avoid caching (presumably for debugging)
1783
+ }
1784
+
1785
+ @staticmethod
1786
+ def _reorder_cache(past_key_values, beam_idx):
1787
+ reordered_past = ()
1788
+ for layer_past in past_key_values:
1789
+ reordered_past += (
1790
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1791
+ )
1792
+ return reordered_past
llmeval-env/lib/python3.10/site-packages/transformers/models/prophetnet/__init__.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2020 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from typing import TYPE_CHECKING
16
+
17
+ from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
18
+
19
+
20
+ _import_structure = {
21
+ "configuration_prophetnet": ["PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "ProphetNetConfig"],
22
+ "tokenization_prophetnet": ["ProphetNetTokenizer"],
23
+ }
24
+
25
+ try:
26
+ if not is_torch_available():
27
+ raise OptionalDependencyNotAvailable()
28
+ except OptionalDependencyNotAvailable:
29
+ pass
30
+ else:
31
+ _import_structure["modeling_prophetnet"] = [
32
+ "PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST",
33
+ "ProphetNetDecoder",
34
+ "ProphetNetEncoder",
35
+ "ProphetNetForCausalLM",
36
+ "ProphetNetForConditionalGeneration",
37
+ "ProphetNetModel",
38
+ "ProphetNetPreTrainedModel",
39
+ ]
40
+
41
+
42
+ if TYPE_CHECKING:
43
+ from .configuration_prophetnet import PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ProphetNetConfig
44
+ from .tokenization_prophetnet import ProphetNetTokenizer
45
+
46
+ try:
47
+ if not is_torch_available():
48
+ raise OptionalDependencyNotAvailable()
49
+ except OptionalDependencyNotAvailable:
50
+ pass
51
+ else:
52
+ from .modeling_prophetnet import (
53
+ PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST,
54
+ ProphetNetDecoder,
55
+ ProphetNetEncoder,
56
+ ProphetNetForCausalLM,
57
+ ProphetNetForConditionalGeneration,
58
+ ProphetNetModel,
59
+ ProphetNetPreTrainedModel,
60
+ )
61
+
62
+ else:
63
+ import sys
64
+
65
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
llmeval-env/lib/python3.10/site-packages/transformers/models/prophetnet/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.14 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/prophetnet/__pycache__/configuration_prophetnet.cpython-310.pyc ADDED
Binary file (7.86 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/prophetnet/__pycache__/convert_prophetnet_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc ADDED
Binary file (3.73 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/prophetnet/__pycache__/modeling_prophetnet.cpython-310.pyc ADDED
Binary file (78 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/prophetnet/__pycache__/tokenization_prophetnet.cpython-310.pyc ADDED
Binary file (17.1 kB). View file
 
llmeval-env/lib/python3.10/site-packages/transformers/models/prophetnet/configuration_prophetnet.py ADDED
@@ -0,0 +1,180 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 The Microsoft Authors and The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ ProphetNet model configuration"""
16
+
17
+ from typing import Callable, Optional, Union
18
+
19
+ from ...configuration_utils import PretrainedConfig
20
+ from ...utils import logging
21
+
22
+
23
+ logger = logging.get_logger(__name__)
24
+
25
+
26
+ from ..deprecated._archive_maps import PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
27
+
28
+
29
+ class ProphetNetConfig(PretrainedConfig):
30
+ r"""
31
+ This is the configuration class to store the configuration of a [`ProphetNetModel`]. It is used to instantiate a
32
+ ProphetNet model according to the specified arguments, defining the model architecture. Instantiating a
33
+ configuration with the defaults will yield a similar configuration to that of the ProphetNet
34
+ [microsoft/prophetnet-large-uncased](https://huggingface.co/microsoft/prophetnet-large-uncased) architecture.
35
+
36
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
37
+ documentation from [`PretrainedConfig`] for more information.
38
+
39
+ Args:
40
+ activation_dropout (`float`, *optional*, defaults to 0.1):
41
+ The dropout ratio for activations inside the fully connected layer.
42
+ activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
43
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
44
+ `"relu"`, `"silu"` and `"gelu_new"` are supported.
45
+ vocab_size (`int`, *optional*, defaults to 30522):
46
+ Vocabulary size of the ProphetNET model. Defines the number of different tokens that can be represented by
47
+ the `inputs_ids` passed when calling [`ProphetNetModel`].
48
+ hidden_size (`int`, *optional*, defaults to 1024):
49
+ Dimensionality of the layers and the pooler layer.
50
+ encoder_ffn_dim (`int`, *optional*, defaults to 4096):
51
+ Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
52
+ num_encoder_layers (`int`, *optional*, defaults to 12):
53
+ Number of encoder layers.
54
+ num_encoder_attention_heads (`int`, *optional*, defaults to 16):
55
+ Number of attention heads for each attention layer in the Transformer encoder.
56
+ decoder_ffn_dim (`int`, *optional*, defaults to 4096):
57
+ Dimensionality of the `intermediate` (often named feed-forward) layer in decoder.
58
+ num_decoder_layers (`int`, *optional*, defaults to 12):
59
+ Number of decoder layers.
60
+ num_decoder_attention_heads (`int`, *optional*, defaults to 16):
61
+ Number of attention heads for each attention layer in the Transformer decoder.
62
+ attention_dropout (`float`, *optional*, defaults to 0.1):
63
+ The dropout ratio for the attention probabilities.
64
+ dropout (`float`, *optional*, defaults to 0.1):
65
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
66
+ max_position_embeddings (`int`, *optional*, defaults to 512):
67
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
68
+ just in case (e.g., 512 or 1024 or 2048).
69
+ init_std (`float`, *optional*, defaults to 0.02):
70
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
71
+ add_cross_attention (`bool`, *optional*, defaults to `True`):
72
+ Whether cross-attention layers should be added to the model.
73
+ is_encoder_decoder (`bool`, *optional*, defaults to `True`):
74
+ Whether this is an encoder/decoder model.
75
+ pad_token_id (`int`, *optional*, defaults to 1)
76
+ Padding token id.
77
+ bos_token_id (`int`, *optional*, defaults to 0)
78
+ Beginning of stream token id.
79
+ eos_token_id (`int`, *optional*, defaults to 2)
80
+ End of stream token id.
81
+ ngram (`int`, *optional*, defaults to 2)
82
+ Number of future tokens to predict. Set to 1 to be same as traditional Language model to predict next first
83
+ token.
84
+ num_buckets (`int`, *optional*, defaults to 32)
85
+ The number of buckets to use for each attention layer. This is for relative position calculation. See the
86
+ [T5 paper](see https://arxiv.org/abs/1910.10683) for more details.
87
+ relative_max_distance (`int`, *optional*, defaults to 128)
88
+ Relative distances greater than this number will be put into the last same bucket. This is for relative
89
+ position calculation. See the [T5 paper](see https://arxiv.org/abs/1910.10683) for more details.
90
+ disable_ngram_loss (`bool`, *optional*, defaults to `False`):
91
+ Whether be trained predicting only the next first token.
92
+ eps (`float`, *optional*, defaults to 0.0):
93
+ Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label
94
+ smoothing is performed.
95
+ use_cache (`bool`, *optional*, defaults to `True`):
96
+ Whether or not the model should return the last key/values attentions (not used by all models).
97
+ """
98
+
99
+ model_type = "prophetnet"
100
+ keys_to_ignore_at_inference = ["past_key_values"]
101
+ attribute_map = {
102
+ "num_attention_heads": "num_encoder_attention_heads",
103
+ }
104
+
105
+ def __init__(
106
+ self,
107
+ activation_dropout: Optional[float] = 0.1,
108
+ activation_function: Optional[Union[str, Callable]] = "gelu",
109
+ vocab_size: Optional[int] = 30522,
110
+ hidden_size: Optional[int] = 1024,
111
+ encoder_ffn_dim: Optional[int] = 4096,
112
+ num_encoder_layers: Optional[int] = 12,
113
+ num_encoder_attention_heads: Optional[int] = 16,
114
+ decoder_ffn_dim: Optional[int] = 4096,
115
+ num_decoder_layers: Optional[int] = 12,
116
+ num_decoder_attention_heads: Optional[int] = 16,
117
+ attention_dropout: Optional[float] = 0.1,
118
+ dropout: Optional[float] = 0.1,
119
+ max_position_embeddings: Optional[int] = 512,
120
+ init_std: Optional[float] = 0.02,
121
+ is_encoder_decoder: Optional[bool] = True,
122
+ add_cross_attention: Optional[bool] = True,
123
+ decoder_start_token_id: Optional[int] = 0,
124
+ ngram: Optional[int] = 2,
125
+ num_buckets: Optional[int] = 32,
126
+ relative_max_distance: Optional[int] = 128,
127
+ disable_ngram_loss: Optional[bool] = False,
128
+ eps: Optional[float] = 0.0,
129
+ use_cache: Optional[bool] = True,
130
+ pad_token_id: Optional[int] = 0,
131
+ bos_token_id: Optional[int] = 1,
132
+ eos_token_id: Optional[int] = 2,
133
+ **kwargs,
134
+ ):
135
+ self.vocab_size = vocab_size
136
+ self.hidden_size = hidden_size
137
+ self.encoder_ffn_dim = encoder_ffn_dim
138
+ self.num_encoder_layers = num_encoder_layers
139
+ self.num_encoder_attention_heads = num_encoder_attention_heads
140
+ self.decoder_ffn_dim = decoder_ffn_dim
141
+ self.num_decoder_layers = num_decoder_layers
142
+ self.num_decoder_attention_heads = num_decoder_attention_heads
143
+ self.max_position_embeddings = max_position_embeddings
144
+ self.init_std = init_std # Normal(0, this parameter)
145
+ self.activation_function = activation_function
146
+
147
+ # parameters for prophetnet
148
+ self.ngram = ngram
149
+ self.num_buckets = num_buckets
150
+ self.relative_max_distance = relative_max_distance
151
+ self.disable_ngram_loss = disable_ngram_loss
152
+ self.eps = eps
153
+
154
+ # 3 Types of Dropout
155
+ self.attention_dropout = attention_dropout
156
+ self.activation_dropout = activation_dropout
157
+ self.dropout = dropout
158
+
159
+ self.use_cache = use_cache
160
+
161
+ super().__init__(
162
+ pad_token_id=pad_token_id,
163
+ bos_token_id=bos_token_id,
164
+ eos_token_id=eos_token_id,
165
+ is_encoder_decoder=is_encoder_decoder,
166
+ add_cross_attention=add_cross_attention,
167
+ decoder_start_token_id=decoder_start_token_id,
168
+ **kwargs,
169
+ )
170
+
171
+ @property
172
+ def num_hidden_layers(self) -> int:
173
+ return self.num_encoder_layers + self.num_decoder_layers
174
+
175
+ @num_hidden_layers.setter
176
+ def num_hidden_layers(self, value):
177
+ raise NotImplementedError(
178
+ "This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and"
179
+ " `num_decoder_layers`."
180
+ )