peacock-data-public-datasets-idc-mint
/
docker
/bloom13b
/Megatron-DeepSpeed
/examples_deepspeed
/azureml
/aml_submit.py
import os | |
import requests | |
import sys | |
# AzureML libraries | |
import azureml.core | |
from azureml.core import Dataset, Environment, Experiment, ScriptRunConfig, Workspace | |
from azureml.core.compute import ComputeTarget, AmlCompute | |
from azureml.core.compute_target import ComputeTargetException | |
from azureml.core.runconfig import PyTorchConfiguration | |
from azureml.core.environment import DockerBuildContext | |
# Check core SDK version number | |
print("SDK version:", azureml.core.VERSION) | |
# For setting up a workspace, refer to: https://github.com/Azure/azureml-examples/tree/main/python-sdk#set-up | |
ws = Workspace.from_config() | |
print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep='\n') | |
#------------------------------------------------------------------------------- | |
# Prepare Compute Cluster | |
#------------------------------------------------------------------------------- | |
cluster_name = "a100-80gb" | |
# Verify that the cluster doesn't exist already | |
try: | |
compute_target = ComputeTarget(workspace=ws, name=cluster_name) | |
print('Found existing compute target.') | |
except ComputeTargetException: | |
print('Creating a new compute target...') | |
compute_config = AmlCompute.provisioning_configuration(vm_size='Standard_ND96amsr_A100_v4', min_nodes=32, max_nodes=32) | |
# create the cluster | |
compute_target = ComputeTarget.create(ws, cluster_name, compute_config) | |
compute_target.wait_for_completion(show_output=True) | |
#------------------------------------------------------------------------------- | |
# Prepare Data | |
# Megatron-DeepSpeed takes in data_path, vocab_file, and merge_file. | |
# For AML, we are adding a parameter aml_data_download_path which specifies how to deliver the dataset to a compute target. | |
# In the submitted run, files in the datasets will be either mounted or downloaded to local path on the compute target. | |
# | |
# data_path for this example is path to the .bin and .idx file, excluding extension. | |
# e.g. for data/BookCorpusDataset_text_document.bin and data/BookCorpusDataset_text_document.idx, | |
# data_path = "data/BookCorpusDataset_text_document" | |
# | |
# Once the folder is downloaded to the compute target, it will use aml_data_download_path to locate the folder | |
# and data_path to locate .bin and .idx files | |
# | |
# vocab_file and merge_file would also be passed in a similar way. | |
#------------------------------------------------------------------------------- | |
datastore = ws.get_default_datastore() | |
blobstore_datadir = "bookcorpus_data" | |
data_path = f"BookCorpusDataset_text_document" | |
# Load data folder which contains bookcorpus .bin and .idx files | |
train_dataset = Dataset.File.from_files(path=[(datastore, blobstore_datadir)]) | |
aml_data_download_path = train_dataset.as_download(blobstore_datadir) | |
vocab_file_dataset = Dataset.File.from_files("https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-vocab.json") | |
merge_file_dataset = Dataset.File.from_files("https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-merges.txt") | |
vocab_file = vocab_file_dataset.as_download() | |
merge_file = merge_file_dataset.as_download() | |
#------------------------------------------------------------------------------- | |
# Setup training environment | |
#------------------------------------------------------------------------------- | |
megatron_ds_env = Environment.from_docker_build_context(name='megatron-ds-curated-acpt', docker_build_context=DockerBuildContext.from_local_directory(workspace = ws, path = '.', dockerfile_path='Dockerfile.dockerfile')) | |
megatron_ds_env.register(ws).build(ws).wait_for_completion() # Comment this out if environment already exists | |
#------------------------------------------------------------------------------- | |
# Training Settings and Arguments | |
#------------------------------------------------------------------------------- | |
node_count = 2 | |
total_processes_count = 16 | |
micro_batch_size = 1 | |
global_batch_size = micro_batch_size * total_processes_count | |
tensorboard_dir = '/tmp/outputs/tensorboard' | |
run_args = ['--tensor-model-parallel-size', 1, | |
'--pipeline-model-parallel-size', 1, | |
'--num-layers', 20, | |
'--hidden-size', 12288, | |
'--num-attention-heads', 96, | |
'--seq-length', 1024, | |
'--loss-scale', 15, | |
'--max-position-embeddings', 1024, | |
'--micro-batch-size', micro_batch_size, | |
'--global-batch-size', global_batch_size, | |
'--train-iters', 100, | |
'--lr', 6.0e-5, | |
'--min-lr', 6.0e-6, | |
'--lr-decay-style', 'cosine', | |
'--log-interval', 1, | |
'--eval-iters', 40, | |
'--eval-interval', 1000, | |
'--aml-data-download-path', aml_data_download_path, | |
'--data-path', data_path, | |
'--vocab-file', vocab_file, | |
'--merge-file', merge_file, | |
'--save-interval', 1000, | |
'--split', '98,2,0', | |
'--clip-grad', 1.0, | |
'--weight-decay', 0.1, | |
'--adam-beta1', 0.9, | |
'--adam-beta2', 0.95, | |
'--init-method-std', 0.006, | |
'--fp16', | |
'--data-impl', 'mmap', | |
'--checkpoint-activations', | |
'--tensorboard-dir', tensorboard_dir, | |
#'--cpu-optimizer', | |
'--deepspeed', | |
'--no-pipeline-parallel', | |
'--deepspeed_config', 'ds_config.json', | |
'--zero-stage', 3, | |
'--deepspeed-activation-checkpointing', | |
'--exit-interval', 5000, | |
] | |
#------------------------------------------------------------------------------- | |
# DeepSpeed ds_config.json | |
#------------------------------------------------------------------------------- | |
import json | |
ds_config = { | |
"train_batch_size" : global_batch_size, | |
"train_micro_batch_size_per_gpu": micro_batch_size, | |
"steps_per_print": 1, | |
"gradient_accumulation_steps": 1, | |
"zero_optimization": { | |
"stage": 3, | |
"stage3_max_live_parameters": 3e9, | |
"stage3_max_reuse_distance": 3e9, | |
"stage3_param_persistence_threshold": 1e5, | |
"stage3_prefetch_bucket_size": 5e7, | |
"contiguous_gradients": True, | |
"overlap_comm": True, | |
"reduce_bucket_size": 90000000, | |
"sub_group_size": 1e9, | |
"offload_optimizer": { | |
"device": "none", | |
"buffer_count": 4, | |
"pipeline_read": False, | |
"pipeline_write": False, | |
"pin_memory": True | |
} | |
}, | |
"gradient_clipping": 1.0, | |
"fp16": { | |
"enabled": True, | |
"initial_scale_power" : 15, | |
"loss_scale_window": 1000, | |
"hysteresis": 2, | |
"min_loss_scale": 1 | |
}, | |
"wall_clock_breakdown": True, | |
"zero_allow_untested_optimizer": False, | |
"aio": { | |
"block_size": 1048576, | |
"queue_depth": 16, | |
"single_submit": False, | |
"overlap_events": True, | |
"thread_count": 2 | |
} | |
} | |
# Place ds_config.json in the same folder as pretrain_gpt.py (script to run) | |
ds_config_path = '../../ds_config.json' | |
with open(ds_config_path, 'w') as fp: | |
json.dump(ds_config, fp, indent=4) | |
#------------------------------------------------------------------------------- | |
# Create ScriptRunConfig | |
#------------------------------------------------------------------------------- | |
distr_config = PyTorchConfiguration(process_count=total_processes_count, node_count=node_count) | |
megatron_ds_src = ScriptRunConfig(source_directory='../../', | |
script='pretrain_gpt.py', | |
arguments=run_args, | |
compute_target=compute_target, | |
environment=megatron_ds_env, | |
distributed_job_config=distr_config) | |
megatron_ds_src.run_config.environment_variables['NCCL_DEBUG'] = 'WARN' | |
megatron_ds_src.run_config.environment_variables['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID' | |
megatron_ds_src.run_config.environment_variables['NCCL_SOCKET_IFNAME'] = 'eth0' | |
megatron_ds_src.run_config.environment_variables['NCCL_IB_PCI_RELAXED_ORDERING']='1' | |
megatron_ds_src.run_config.environment_variables['UCX_TLS']='tcp' | |
megatron_ds_src.run_config.environment_variables['UCX_NET_DEVICES']='eth0' | |
#------------------------------------------------------------------------------- | |
# Submit experiment | |
#------------------------------------------------------------------------------- | |
experiment_name = 'megatron-ds' | |
experiment = Experiment(ws, name=experiment_name) | |
run = experiment.submit(megatron_ds_src, tags={'bs':micro_batch_size, 'gpus':total_processes_count}) | |