peacock-data-public-datasets-idc-mint
/
docker
/bloom13b
/Megatron-DeepSpeed
/megatron
/data
/data_samplers.py
# Copyright (C) 2024 Habana Labs, Ltd. an Intel Company. | |
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. | |
"""Dataloaders.""" | |
from itertools import chain | |
import random | |
import torch | |
import numpy as np | |
from torch.utils.data import Dataset | |
from megatron import get_args, get_num_microbatches_by_mode | |
from megatron.core import mpu | |
def build_pretraining_data_loader(dataset, consumed_samples, is_train, use_all_samples=False): | |
"""Buld dataloader given an input dataset.""" | |
if dataset is None: | |
return None | |
args = get_args() | |
assert not use_all_samples or args.dataloader_type == 'single', \ | |
'consuming whole dataset supported only for "single" dataloader type' | |
if is_train: | |
micro_batch_size=args.micro_batch_size | |
else: | |
micro_batch_size=args.eval_micro_batch_size | |
# Megatron sampler | |
if args.dataloader_type == 'single': | |
batch_sampler = MegatronPretrainingSampler( | |
total_samples=len(dataset), | |
consumed_samples=consumed_samples, | |
micro_batch_size=micro_batch_size, | |
data_parallel_rank=mpu.get_data_parallel_rank(), | |
data_parallel_size=mpu.get_data_parallel_world_size(), | |
is_train=is_train, | |
drop_last=not use_all_samples, | |
pad_negative_indices=use_all_samples) | |
elif args.dataloader_type == 'cyclic': | |
batch_sampler = MegatronPretrainingRandomSampler( | |
dataset, | |
total_samples=len(dataset), | |
consumed_samples=consumed_samples, | |
micro_batch_size=micro_batch_size, | |
data_parallel_rank=mpu.get_data_parallel_rank(), | |
data_parallel_size=mpu.get_data_parallel_world_size(), | |
data_sharding=args.data_sharding) | |
else: | |
raise Exception('{} dataloader type is not supported.'.format( | |
args.dataloader_type)) | |
# Torch dataloader. | |
return torch.utils.data.DataLoader(dataset, | |
batch_sampler=batch_sampler, | |
num_workers=args.num_workers, | |
pin_memory=True) | |
class MegatronPretrainingSampler: | |
def __init__(self, total_samples, consumed_samples, micro_batch_size, | |
data_parallel_rank, data_parallel_size, is_train, drop_last=True, | |
pad_negative_indices=False): | |
# Keep a copy of input params for later use. | |
self.total_samples = total_samples | |
self.consumed_samples = consumed_samples | |
self.micro_batch_size = micro_batch_size | |
self.data_parallel_rank = data_parallel_rank | |
self.micro_batch_times_data_parallel_size = \ | |
self.micro_batch_size * data_parallel_size | |
self.drop_last = drop_last | |
self.global_batch_size = (self.micro_batch_times_data_parallel_size | |
* get_num_microbatches_by_mode(is_train)) | |
self.pad_negative_indices = pad_negative_indices | |
self.is_train = is_train | |
# Sanity checks. | |
assert self.total_samples > 0, \ | |
'no sample to consume: {}'.format(self.total_samples) | |
assert self.consumed_samples < self.total_samples, \ | |
'no samples left to consume: {}, {}'.format(self.consumed_samples, | |
self.total_samples) | |
assert self.micro_batch_size > 0 | |
assert data_parallel_size > 0 | |
assert self.data_parallel_rank < data_parallel_size, \ | |
'data_parallel_rank should be smaller than data size: {}, ' \ | |
'{}'.format(self.data_parallel_rank, data_parallel_size) | |
def __len__(self): | |
return self.total_samples | |
def get_start_end_idx(self): | |
start_idx = self.data_parallel_rank * self.micro_batch_size | |
end_idx = start_idx + self.micro_batch_size | |
return start_idx, end_idx | |
def __iter__(self): | |
batch = [] | |
# Last batch will be dropped if drop_last is not set False | |
indices = range(self.consumed_samples, self.total_samples) | |
if (not self.drop_last) and self.pad_negative_indices: | |
# TODO: this approach (padding to global_batch_size) is not optimal | |
# since many batches could by empty (only padding) on all devices. | |
# This should be fixed by creating a microbatches calculator | |
# than can be instructed (e.g. with `update_num_microbatches`) to | |
# use less num_microbatches in last valid iteration. | |
# The code here will not change except from replacing | |
# `self.global_batch_size` with | |
# `self.micro_batch_times_data_parallel_size` Done for Eval. | |
remainder = self.global_batch_size if self.is_train else self.micro_batch_times_data_parallel_size | |
pad_samples_num = -len(indices) % remainder | |
pad_indices = range(-1, -pad_samples_num - 1, -1) | |
indices = chain(indices, pad_indices) | |
for idx in indices: | |
batch.append(idx) | |
if len(batch) == self.micro_batch_times_data_parallel_size: | |
start_idx, end_idx = self.get_start_end_idx() | |
yield batch[start_idx:end_idx] | |
batch = [] | |
# Check the last partial batch and see drop_last is set | |
if len(batch) > 0 and not self.drop_last: | |
assert not self.pad_negative_indices, \ | |
'with pad_negative_indices all batches should be complete' | |
start_idx, end_idx = self.get_start_end_idx() | |
yield batch[start_idx:end_idx] | |
class RandomSeedDataset(Dataset): | |
def __init__(self, dataset): | |
args = get_args() | |
self.base_seed = args.seed | |
self.curr_seed = args.seed | |
self.dataset = dataset | |
def __len__(self): | |
return len(self.dataset) | |
def set_epoch(self, epoch): | |
self.curr_seed = self.base_seed + epoch | |
def __getitem__(self, idx): | |
seed = idx + self.curr_seed | |
torch.manual_seed(seed) | |
random.seed(seed) | |
np.random.seed(seed) | |
return self.dataset[idx] | |
class MegatronPretrainingRandomSampler: | |
def __init__(self, dataset, total_samples, consumed_samples, micro_batch_size, | |
data_parallel_rank, data_parallel_size, data_sharding): | |
# Keep a copy of input params for later use. | |
self.dataset = dataset | |
self.total_samples = total_samples | |
self.consumed_samples = consumed_samples | |
self.micro_batch_size = micro_batch_size | |
self.data_parallel_rank = data_parallel_rank | |
self.data_parallel_size = data_parallel_size | |
self.data_sharding = data_sharding | |
self.micro_batch_times_data_parallel_size = \ | |
self.micro_batch_size * data_parallel_size | |
self.last_batch_size = \ | |
self.total_samples % self.micro_batch_times_data_parallel_size | |
# Sanity checks. | |
assert self.total_samples > 0, \ | |
'no sample to consume: {}'.format(self.total_samples) | |
assert self.micro_batch_size > 0 | |
assert data_parallel_size > 0 | |
assert self.data_parallel_rank < data_parallel_size, \ | |
'data_parallel_rank should be smaller than data size: {}, ' \ | |
'{}'.format(self.data_parallel_rank, data_parallel_size) | |
def __len__(self): | |
return self.total_samples | |
def __iter__(self): | |
active_total_samples = self.total_samples - self.last_batch_size | |
self.epoch = self.consumed_samples // active_total_samples | |
current_epoch_samples = self.consumed_samples % active_total_samples | |
assert current_epoch_samples % self.micro_batch_times_data_parallel_size == 0 | |
if isinstance(self.dataset, RandomSeedDataset): | |
self.dataset.set_epoch(self.epoch) | |
# data sharding and random sampling | |
if self.data_sharding: | |
bucket_size = (self.total_samples // self.micro_batch_times_data_parallel_size) \ | |
* self.micro_batch_size | |
bucket_offset = current_epoch_samples // self.data_parallel_size | |
start_idx = self.data_parallel_rank * bucket_size | |
g = torch.Generator() | |
g.manual_seed(self.epoch) | |
random_idx = torch.randperm(bucket_size, generator=g).tolist() | |
idx_range = [start_idx + x for x in random_idx[bucket_offset:]] | |
else: | |
full_bucket_size = (self.total_samples // self.micro_batch_size) \ | |
* self.micro_batch_size | |
full_bucket_offset = current_epoch_samples | |
g = torch.Generator() | |
g.manual_seed(self.epoch) | |
idx_range_total = \ | |
torch.randperm(full_bucket_size, generator=g).tolist() | |
idx_range_active = idx_range_total[full_bucket_offset:] | |
idx_range = idx_range_active[self.data_parallel_rank::self.data_parallel_size] | |
batch = [] | |
# Last batch if not complete will be dropped. | |
for idx in idx_range: | |
batch.append(idx) | |
if len(batch) == self.micro_batch_size: | |
self.consumed_samples += self.micro_batch_times_data_parallel_size | |
yield batch | |
batch = [] | |