peacock-data-public-datasets-idc-mint
/
docker
/bloom13b
/Megatron-DeepSpeed
/megatron
/data
/gpt_dataset.py
# Copyright (C) 2024 Habana Labs, Ltd. an Intel Company. | |
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. | |
"""GPT style dataset.""" | |
import hashlib | |
import os | |
import time | |
import numpy as np | |
import torch | |
from deepspeed.accelerator import get_accelerator | |
from megatron import print_rank_0, is_rank_0, get_args | |
from megatron.core import mpu | |
from megatron.data.blendable_dataset import BlendableDataset | |
from megatron.data.dataset_utils import get_datasets_weights_and_num_samples | |
from megatron.data.dataset_utils import get_train_valid_test_split_ | |
from megatron.data.indexed_dataset import make_dataset as make_indexed_dataset | |
def build_train_valid_test_datasets(data_prefix, data_impl, splits_string, | |
train_valid_test_num_samples, | |
seq_length, seed, skip_warmup, | |
train_data_prefix=None, | |
valid_data_prefix=None, | |
test_data_prefix=None, | |
return_doc_ids=False, *, | |
data_cache_path=None, | |
use_seq_len_plus_one_tokens=True): | |
"""Build train, valid, and test datasets.""" | |
if data_prefix: | |
print_rank_0("Single data path provided for train, valid & test") | |
# Single dataset. | |
if len(data_prefix) == 1: | |
return _build_train_valid_test_datasets(data_prefix[0], | |
data_impl, splits_string, | |
train_valid_test_num_samples, | |
seq_length, seed, skip_warmup, | |
data_cache_path=data_cache_path, | |
use_seq_len_plus_one_tokens=use_seq_len_plus_one_tokens) | |
# Blending dataset. | |
# Parse the values. | |
output = get_datasets_weights_and_num_samples(data_prefix, | |
train_valid_test_num_samples) | |
prefixes, weights, datasets_train_valid_test_num_samples = output | |
train_num_samples, valid_num_samples, test_num_samples = map( | |
sum, | |
zip(*datasets_train_valid_test_num_samples) | |
) | |
# Build individual datasets. | |
train_datasets = [] | |
valid_datasets = [] | |
test_datasets = [] | |
for i in range(len(prefixes)): | |
train_ds, valid_ds, test_ds = _build_train_valid_test_datasets( | |
prefixes[i], data_impl, splits_string, | |
datasets_train_valid_test_num_samples[i], | |
seq_length, seed, skip_warmup, | |
return_doc_ids, | |
data_cache_path=data_cache_path, | |
use_seq_len_plus_one_tokens=use_seq_len_plus_one_tokens) | |
if train_ds: | |
train_datasets.append(train_ds) | |
if valid_ds: | |
valid_datasets.append(valid_ds) | |
if test_ds: | |
test_datasets.append(test_ds) | |
# Blend. | |
blending_train_dataset = None | |
if train_datasets: | |
blending_train_dataset = BlendableDataset(train_datasets, weights, train_num_samples, | |
data_cache_path=data_cache_path) | |
blending_valid_dataset = None | |
if valid_datasets: | |
blending_valid_dataset = BlendableDataset(valid_datasets, weights, valid_num_samples, | |
data_cache_path=data_cache_path) | |
blending_test_dataset = None | |
if test_datasets: | |
blending_test_dataset = BlendableDataset(test_datasets, weights, test_num_samples, | |
data_cache_path=data_cache_path) | |
return (blending_train_dataset, blending_valid_dataset, | |
blending_test_dataset) | |
else: | |
print_rank_0("Separate data paths provided for train, valid & test. Split string will be ignored.") | |
train_dataset, valid_dataset, test_dataset = None, None, None | |
# Single dataset. | |
if train_data_prefix is not None: | |
train_dataset = build_dataset("train", train_data_prefix, data_impl, | |
splits_string, | |
train_valid_test_num_samples[0], | |
seq_length, seed, skip_warmup, | |
data_cache_path=data_cache_path, | |
use_seq_len_plus_one_tokens=use_seq_len_plus_one_tokens) | |
if valid_data_prefix is not None: | |
valid_dataset = build_dataset("valid", valid_data_prefix, data_impl, | |
splits_string, | |
train_valid_test_num_samples[1], | |
seq_length, seed, False, | |
data_cache_path=data_cache_path, | |
use_seq_len_plus_one_tokens=use_seq_len_plus_one_tokens) | |
if test_data_prefix is not None: | |
test_dataset = build_dataset("test", test_data_prefix, data_impl, | |
splits_string, | |
train_valid_test_num_samples[2], | |
seq_length, seed, False, | |
data_cache_path=data_cache_path, | |
use_seq_len_plus_one_tokens=use_seq_len_plus_one_tokens) | |
return (train_dataset, valid_dataset, test_dataset) | |
def _build_train_valid_test_datasets(data_prefix, data_impl, splits_string, | |
train_valid_test_num_samples, | |
seq_length, seed, skip_warmup, | |
return_doc_ids=False, *, | |
data_cache_path=None, | |
use_seq_len_plus_one_tokens): | |
"""Build train, valid, and test datasets.""" | |
# Indexed dataset. | |
indexed_dataset = get_indexed_dataset_(data_prefix, | |
data_impl, | |
skip_warmup) | |
total_num_of_documents = indexed_dataset.sizes.shape[0] | |
splits = get_train_valid_test_split_(splits_string, total_num_of_documents) | |
# Print stats about the splits. | |
print_rank_0(' > dataset split:') | |
def print_split_stats(name, index): | |
print_rank_0(' {}:'.format(name)) | |
print_rank_0(' document indices in [{}, {}) total of {} ' | |
'documents'.format(splits[index], splits[index + 1], | |
splits[index + 1] - splits[index])) | |
print_split_stats('train', 0) | |
print_split_stats('validation', 1) | |
print_split_stats('test', 2) | |
def build_dataset(index, name): | |
dataset = None | |
if splits[index + 1] > splits[index]: | |
documents = np.arange(start=splits[index], stop=splits[index + 1], | |
step=1, dtype=np.int32) | |
dataset = GPTDataset(name, data_prefix, documents, indexed_dataset, | |
splits_string, | |
train_valid_test_num_samples[index], | |
seq_length, seed, | |
return_doc_ids, | |
data_cache_path=data_cache_path, | |
use_seq_len_plus_one_tokens=use_seq_len_plus_one_tokens) | |
return dataset | |
train_dataset = build_dataset(0, 'train') | |
valid_dataset = build_dataset(1, 'valid') | |
test_dataset = build_dataset(2, 'test') | |
return (train_dataset, valid_dataset, test_dataset) | |
def build_dataset(dataset_name, data_prefix, data_impl, | |
splits_string, num_samples, | |
seq_length, seed, skip_warmup, | |
*, | |
data_cache_path=None, | |
use_seq_len_plus_one_tokens=True): | |
dataset = None | |
if len(data_prefix) == 1: | |
dataset = _build_dataset(dataset_name, data_prefix[0], data_impl, | |
splits_string, num_samples, seq_length, | |
seed, skip_warmup, | |
data_cache_path=data_cache_path, | |
use_seq_len_plus_one_tokens=use_seq_len_plus_one_tokens) | |
else: | |
# Blending dataset. | |
# Parse the values. | |
output = get_datasets_weights_and_num_samples(data_prefix, num_samples) | |
prefixes, weights, dataset_num_samples = output | |
num_samples = sum(dataset_num_samples) | |
# Build individual datasets. | |
datasets = [] | |
for i in range(len(prefixes)): | |
ds = _build_dataset(dataset_name, prefixes[i], data_impl, | |
splits_string, dataset_num_samples[i], | |
seq_length, seed, skip_warmup, | |
data_cache_path=data_cache_path, | |
use_seq_len_plus_one_tokens=use_seq_len_plus_one_tokens) | |
if ds: | |
datasets.append(ds) | |
if datasets: | |
dataset = BlendableDataset(datasets, weights, num_samples, | |
data_cache_path=data_cache_path) | |
return dataset | |
def _build_dataset(dataset_name, data_prefix, data_impl, splits_string, | |
num_samples, seq_length, seed, skip_warmup, | |
*, | |
data_cache_path=None, | |
use_seq_len_plus_one_tokens=True): | |
""" | |
Build dataset. This method is called when individual | |
train, valid, test datasets are provided | |
""" | |
# Indexed dataset. | |
indexed_dataset = get_indexed_dataset_(data_prefix, | |
data_impl, | |
skip_warmup) | |
total_num_of_documents = indexed_dataset.sizes.shape[0] | |
print_rank_0(' {}:'.format(dataset_name)) | |
print_rank_0(' document indices in [0, {}) total of {} ' | |
'documents'.format(total_num_of_documents, total_num_of_documents)) | |
documents = np.arange(start=0, stop=total_num_of_documents, | |
step=1, dtype=np.int32) | |
dataset = GPTDataset(dataset_name, data_prefix, documents, indexed_dataset, | |
splits_string, num_samples, seq_length, seed, | |
data_cache_path=data_cache_path, use_seq_len_plus_one_tokens=use_seq_len_plus_one_tokens) | |
return dataset | |
def get_indexed_dataset_(data_prefix, data_impl, skip_warmup): | |
"""Build indexed dataset.""" | |
print_rank_0(' > building dataset index ...') | |
start_time = time.time() | |
indexed_dataset = make_indexed_dataset(data_prefix, | |
data_impl, | |
skip_warmup) | |
print_rank_0(' > finished creating indexed dataset in {:4f} ' | |
'seconds'.format(time.time() - start_time)) | |
print_rank_0(' number of documents: {}'.format( | |
indexed_dataset.sizes.shape[0])) | |
return indexed_dataset | |
class GPTDataset(torch.utils.data.Dataset): | |
def __init__(self, name, data_prefix, documents, indexed_dataset, | |
splits_string, num_samples, seq_length, seed, | |
return_doc_ids=False, *, | |
data_cache_path=None, | |
use_seq_len_plus_one_tokens): | |
self.name = name | |
self.indexed_dataset = indexed_dataset | |
self.return_doc_ids = return_doc_ids | |
self.seq_length = seq_length | |
self.add_extra_token = 0 | |
if use_seq_len_plus_one_tokens: | |
self.add_extra_token = 1 | |
# Checks | |
assert np.min(documents) >= 0 | |
assert np.max(documents) < indexed_dataset.sizes.shape[0] | |
# Build index mappings. | |
self.doc_idx, self.sample_idx, self.shuffle_idx, self.desc, self.desc_hash = \ | |
_build_index_mappings(self.name, data_prefix, | |
documents, self.indexed_dataset.sizes, | |
splits_string, num_samples, seq_length, seed, | |
data_cache_path=data_cache_path, add_extra_token=self.add_extra_token) | |
def __len__(self): | |
# -1 is due to data structure used to retieve the index: | |
# sample i --> [sample_idx[i], sample_idx[i+1]) | |
return self.sample_idx.shape[0] - 1 | |
def __getitem__(self, idx): | |
args = get_args() | |
dummy_sample = idx < 0 | |
idx = np.abs(idx) | |
orig_idx = idx | |
# Get the shuffled index. | |
idx = self.shuffle_idx[idx] | |
# Start and end documents and offsets. | |
doc_index_f = self.sample_idx[idx][0] | |
doc_index_l = self.sample_idx[idx + 1][0] | |
offset_f = self.sample_idx[idx][1] | |
offset_l = self.sample_idx[idx + 1][1] | |
# If we are within the same document, just extract the chunk. | |
doc_ids = [] | |
if doc_index_f == doc_index_l: | |
doc_ids.append(self.doc_idx[doc_index_f]) | |
sample = self.indexed_dataset.get(self.doc_idx[doc_index_f], | |
offset=offset_f, | |
length=offset_l - offset_f + self.add_extra_token) | |
else: | |
# Otherwise, get the rest of the initial document. | |
doc_ids.append(self.doc_idx[doc_index_f]) | |
sample_list = [self.indexed_dataset.get(self.doc_idx[doc_index_f], | |
offset=offset_f)] | |
# Loop over all in between documents and add the entire document. | |
for i in range(doc_index_f + 1, doc_index_l): | |
doc_ids.append(self.doc_idx[i]) | |
sample_list.append(self.indexed_dataset.get(self.doc_idx[i])) | |
# And finally add the relevant portion of last document. | |
doc_ids.append(self.doc_idx[doc_index_l]) | |
sample_list.append(self.indexed_dataset.get( | |
self.doc_idx[doc_index_l], | |
length=offset_l + self.add_extra_token)) | |
sample = np.concatenate(sample_list) | |
text_name = 'text' | |
if args.use_dataset_only: | |
text_name = 'input_ids' | |
sample_dict = {text_name: np.array(sample, dtype=np.int64)} | |
if args.return_data_index: | |
sample_dict.update({'index': np.array([orig_idx], dtype=np.int64)}) | |
if self.return_doc_ids: # for retro preprocessing | |
sample_dict.update({'doc_ids': np.array(doc_ids, dtype=np.int64)}) | |
if args.use_dataset_only: | |
sample_dict.update({'labels': np.array(sample, dtype=np.int64)}) | |
if len(sample) != (self.seq_length + self.add_extra_token): | |
sample = np.array(sample, dtype=np.int64) | |
sample = np.pad(sample, (0, self.seq_length + self.add_extra_token - len(sample)), mode='constant', constant_values=-1) | |
if args.return_data_index: | |
return {'text': np.array(sample, dtype=np.int64), | |
'index': np.array([orig_idx], dtype=np.int64)} | |
elif self.return_doc_ids: # for retro preprocessing | |
return {'text': np.array(sample, dtype=np.int64), | |
'doc_ids': np.array(doc_ids, dtype=np.int64)} | |
else: | |
return {'text': np.array(sample, dtype=np.int64), | |
'dummy_sample': np.array(int(dummy_sample), dtype=np.int64)} | |
return sample_dict | |
def _build_index_mappings(name, data_prefix, documents, sizes, | |
splits_string, num_samples, seq_length, seed, | |
*, | |
data_cache_path, add_extra_token): | |
"""Build doc-idx, sample-idx, and shuffle-idx. | |
doc-idx: is an array (ordered) of documents to be used in training. | |
sample-idx: is the start document index and document offset for each | |
training sample. | |
shuffle-idx: maps the sample index into a random index into sample-idx. | |
""" | |
args = get_args() | |
# Number of tokens in each epoch and number of required epochs. | |
tokens_per_epoch = _num_tokens(documents, sizes) | |
num_epochs = _num_epochs(tokens_per_epoch, seq_length, num_samples, add_extra_token) | |
if num_samples < 0: | |
print_num_samples = tokens_per_epoch // seq_length | |
else: | |
print_num_samples = num_samples | |
if args.train_data_exact_num_epochs is not None and name == 'train': | |
num_epochs = args.train_data_exact_num_epochs | |
# rng state | |
np_rng = np.random.RandomState(seed=seed) | |
# Filename of the index mappings. | |
desc = "GPT Dataset\n\n" | |
desc += f"Data prefix {data_prefix}\n" | |
desc += f"Dataset name {name}\n" | |
desc += f"Number of samples {print_num_samples}\n" | |
desc += f"Number of epochs {num_epochs}\n" | |
desc += f"Sequence length {seq_length}\n" | |
desc += f"Random seed {seed}\n" | |
desc += f"Split {splits_string}\n" | |
desc_hash = hashlib.md5(desc.encode('utf-8')).hexdigest() | |
desc_filename = desc_hash + ".dsc" | |
doc_idx_filename = desc_hash + '_doc_idx.npy' | |
sample_idx_filename = desc_hash + '_sample_idx.npy' | |
shuffle_idx_filename = desc_hash + '_shuffle_idx.npy' | |
if name == 'train': | |
# force to use certain index files | |
if args.train_desc_path is not None: | |
desc_filename = args.train_desc_path | |
if args.train_doc_idx_path is not None: | |
doc_idx_filename = args.train_doc_idx_path | |
if args.train_sample_idx_path is not None: | |
sample_idx_filename = args.train_sample_idx_path | |
if args.train_shuffle_idx_path is not None: | |
shuffle_idx_filename = args.train_shuffle_idx_path | |
# Look for cache in main data dir first to avoid unnecessary | |
# duplication, then look in data-cache-path if specified, | |
# If nothing is found, use the last path looked in | |
build_indices = True | |
prefixes = [os.path.join(os.path.dirname(data_prefix), 'index-cache')] | |
if data_cache_path is not None: | |
prefixes.append(data_cache_path) | |
for prefix in prefixes: | |
idx_path = { | |
'desc': os.path.join(prefix, desc_filename), | |
'doc': os.path.join(prefix, doc_idx_filename), | |
'sample': os.path.join(prefix, sample_idx_filename), | |
'shuffle': os.path.join(prefix, shuffle_idx_filename) | |
} | |
for f in idx_path.values(): | |
if not os.path.isfile(f): | |
break | |
else: | |
# Found our files! | |
build_indices = False | |
break | |
data_cache_dir = os.path.dirname(idx_path['desc']) | |
data_cache_success = True | |
# Build the indexed mapping if not exist. | |
if build_indices and is_rank_0(): | |
print_rank_0(' > WARNING: could not find index map files, building ' | |
'the indices on rank 0 ...') | |
# For the last epoch, decide whether include the entire epoch | |
# in the global shuffle or not. | |
# If we need only one epoch, then separating last epoch does | |
# not mean anything. | |
if num_epochs == 1: | |
separate_last_epoch = False | |
print(' > only one epoch required, setting ' | |
'separate_last_epoch to False', flush=True) | |
else: | |
# Get the number of samples for the last epoch | |
assert num_samples >= 0, 'number of samples should be non-negative' | |
num_samples_from_epochs_minus_one = ( | |
(num_epochs - 1) * tokens_per_epoch - add_extra_token) // seq_length | |
last_epoch_num_samples = num_samples - \ | |
num_samples_from_epochs_minus_one | |
assert last_epoch_num_samples >= 0, \ | |
'last epoch number of samples should be non-negative.' | |
num_samples_per_epoch = (tokens_per_epoch - add_extra_token) // seq_length | |
assert last_epoch_num_samples <= (num_samples_per_epoch + 1), \ | |
'last epoch number of samples exceeded max value.' | |
# If we have less than 80% of the samples for the last epoch, | |
# seperate out the epoch and treat it differently. | |
# Note: the 80% number is just based on common sense and can | |
# be adjusted if needed. | |
separate_last_epoch = (last_epoch_num_samples < | |
int(0.80 * num_samples_per_epoch)) | |
if separate_last_epoch: | |
string = ' > last epoch number of samples ({}) is smaller '\ | |
'than 80% of number of samples per epoch ({}), '\ | |
'setting separate_last_epoch to True' | |
else: | |
string = ' > last epoch number of samples ({}) is larger '\ | |
'than 80% of number of samples per epoch ({}), '\ | |
'setting separate_last_epoch to False' | |
print(string.format(last_epoch_num_samples, | |
num_samples_per_epoch), flush=True) | |
try: | |
os.makedirs(data_cache_dir, exist_ok=True) | |
# description | |
with open(idx_path['desc'], 'wt') as fd: | |
fd.write(desc) | |
# doc-idx. | |
start_time = time.time() | |
doc_idx = _build_doc_idx(documents, num_epochs, np_rng, | |
separate_last_epoch) | |
np.save(idx_path['doc'], doc_idx, allow_pickle=True) | |
print_rank_0(' > elasped time to build and save doc-idx mapping ' | |
'(seconds): {:4f}'.format(time.time() - start_time)) | |
# sample-idx. | |
start_time = time.time() | |
# Use C++ implementation for speed. | |
# First compile and then import. | |
from megatron.data import helpers | |
assert doc_idx.dtype == np.int32 | |
assert sizes.dtype == np.int32 | |
sample_idx = helpers.build_sample_idx(sizes, doc_idx, seq_length, | |
num_epochs, tokens_per_epoch, | |
num_samples < 0, add_extra_token) | |
np.save(idx_path['sample'], sample_idx, allow_pickle=True) | |
print_rank_0(' > elasped time to build and save sample-idx mapping ' | |
'(seconds): {:4f}'.format(time.time() - start_time)) | |
# shuffle-idx. | |
start_time = time.time() | |
# -1 is due to data structure used to retieve the index: | |
# sample i --> [sample_idx[i], sample_idx[i+1]) | |
if separate_last_epoch: | |
num_samples_ = num_samples_from_epochs_minus_one | |
else: | |
num_samples_ = sample_idx.shape[0] - 1 | |
shuffle_idx = _build_shuffle_idx(num_samples_, | |
sample_idx.shape[0] - 1, np_rng) | |
np.save(idx_path['shuffle'], shuffle_idx, allow_pickle=True) | |
print_rank_0(' > elasped time to build and save shuffle-idx mapping' | |
' (seconds): {:4f}'.format(time.time() - start_time)) | |
except OSError: | |
print(f'There was an error trying to create the data cache directory ({data_cache_dir})') | |
print('or a file in it. This defaults to a directory "index-cache" within the directory') | |
print('the data files are in and can be set with the --data-cache-path argument. Please') | |
print('ensure you have write access to this directory or specify one that you do have') | |
print('write access to.') | |
data_cache_success = False | |
counts = get_accelerator().LongTensor([data_cache_success]) | |
torch.distributed.all_reduce(counts, group=mpu.get_data_parallel_group()) | |
torch.distributed.all_reduce(counts, group=mpu.get_pipeline_model_parallel_group()) | |
if counts[0].item() != ( | |
torch.distributed.get_world_size() // | |
torch.distributed.get_world_size(group=mpu.get_tensor_model_parallel_group()) // | |
torch.distributed.get_world_size(group=mpu.get_sequence_parallel_group())): | |
print_rank_0("Data index creation unsuccessful, exiting.") | |
exit() | |
# Load mappings. | |
start_time = time.time() | |
print_rank_0(f" > loading doc-idx mapping from {idx_path['doc']}") | |
doc_idx = np.load(idx_path['doc'], allow_pickle=True, mmap_mode='r') | |
print_rank_0(f" > loading sample-idx mapping from {idx_path['sample']}") | |
sample_idx = np.load(idx_path['sample'], allow_pickle=True, mmap_mode='r') | |
print_rank_0(f" > loading shuffle-idx mapping from {idx_path['shuffle']}") | |
shuffle_idx = np.load(idx_path['shuffle'], allow_pickle=True, mmap_mode='r') | |
print_rank_0(' loaded indexed file in {:3.3f} seconds'.format( | |
time.time() - start_time)) | |
print_rank_0(' total number of samples: {}'.format( | |
sample_idx.shape[0])) | |
print_rank_0(' total number of epochs: {}'.format(num_epochs)) | |
return doc_idx, sample_idx, shuffle_idx, desc, desc_hash | |
def _num_tokens(documents, sizes): | |
"""Total number of tokens in the dataset.""" | |
return np.sum(sizes[documents]) | |
def _num_epochs(tokens_per_epoch, seq_length, num_samples, add_extra_token): | |
"""Based on number of samples and sequence lenght, calculate how many | |
epochs will be needed.""" | |
num_epochs = 0 | |
total_tokens = 0 | |
while True: | |
num_epochs += 1 | |
total_tokens += tokens_per_epoch | |
# -1 is because we need to retrieve seq_length + 1 token each time | |
# but the last token will overlap with the first token of the next | |
# sample except for the last sample. | |
if ((total_tokens - add_extra_token) // seq_length) >= num_samples: | |
return num_epochs | |
def _build_doc_idx(documents, num_epochs, np_rng, separate_last_epoch): | |
"""Build an array with length = number-of-epochs * number-of-dcuments. | |
Each index is mapped to a corresponding document.""" | |
if not separate_last_epoch or num_epochs == 1: | |
doc_idx = np.mgrid[0:num_epochs, 0:len(documents)][1] | |
doc_idx[:] = documents | |
doc_idx = doc_idx.reshape(-1) | |
doc_idx = doc_idx.astype(np.int32) | |
np_rng.shuffle(doc_idx) | |
return doc_idx | |
doc_idx_first = _build_doc_idx(documents, num_epochs-1, np_rng, False) | |
doc_idx_last = _build_doc_idx(documents, 1, np_rng, False) | |
return np.concatenate((doc_idx_first, doc_idx_last)) | |
def _build_sample_idx(sizes, doc_idx, seq_length, | |
num_epochs, tokens_per_epoch, | |
keep_last_sequence, add_extra_token): | |
"""Sample index mapping is a 2D array with sizes | |
[number-of-samples + 1, 2] where [..., 0] contains | |
the index into `doc_idx` and [..., 1] is the | |
starting offset in that document.""" | |
# Total number of samples. For -1 see comments in `_num_epochs`. | |
if keep_last_sequence: | |
import math | |
num_samples = math.ceil((num_epochs * tokens_per_epoch - add_extra_token) / seq_length) | |
else: | |
num_samples = (num_epochs * tokens_per_epoch - add_extra_token) // seq_length | |
sample_idx = np.zeros([num_samples + 1, 2], dtype=np.int32) | |
# Index into sample_idx. | |
sample_index = 0 | |
# Index into doc_idx. | |
doc_idx_index = 0 | |
# Begining offset for each document. | |
doc_offset = 0 | |
# Start with first document and no offset. | |
sample_idx[sample_index][0] = doc_idx_index | |
sample_idx[sample_index][1] = doc_offset | |
sample_index += 1 | |
while sample_index <= num_samples: | |
# Start with a fresh sequence. | |
remaining_seq_length = seq_length + add_extra_token | |
while remaining_seq_length != 0: | |
# Get the document length. | |
doc_id = doc_idx[doc_idx_index] | |
doc_length = sizes[doc_id] - doc_offset | |
# And add it to the current sequence. | |
remaining_seq_length -= doc_length | |
# If we have more than a full sequence, adjust offset and set | |
# remaining length to zero so we return from the while loop. | |
# Note that -1 here is for the same reason we have -1 in | |
# `_num_epochs` calculations. | |
if remaining_seq_length <= 0: | |
doc_offset += (remaining_seq_length + doc_length - add_extra_token) | |
remaining_seq_length = 0 | |
else: | |
# Otherwise, start from the begining of the next document. | |
if doc_idx_index == (len(doc_idx) - 1): | |
assert sample_index == num_samples, F"sample_index={sample_index} and num_samples={num_samples} should be the same" | |
doc_offset = sizes[doc_idx[doc_idx_index]] - add_extra_token | |
break | |
doc_idx_index += 1 | |
doc_offset = 0 | |
# Record the sequence. | |
sample_idx[sample_index][0] = doc_idx_index | |
sample_idx[sample_index][1] = doc_offset | |
sample_index += 1 | |
return sample_idx | |
def _build_shuffle_idx(num_samples, total_size, np_rng): | |
"""Build the range [0, size) and shuffle.""" | |
print(' > building shuffle index with split [0, {}) and [{}, {}) ' | |
'...'.format(num_samples, num_samples, total_size), flush=True) | |
dtype_ = np.uint32 | |
if total_size >= (np.iinfo(np.uint32).max - 1): | |
dtype_ = np.int64 | |
shuffle_idx_first = np.arange(start=0, stop=num_samples, | |
step=1, dtype=dtype_) | |
np_rng.shuffle(shuffle_idx_first) | |
if num_samples == total_size: | |
return shuffle_idx_first | |
shuffle_idx_last = np.arange(start=num_samples, stop=total_size, | |
step=1, dtype=dtype_) | |
np_rng.shuffle(shuffle_idx_last) | |
return np.concatenate((shuffle_idx_first, shuffle_idx_last)) | |