applied-ai-018's picture
Add files using upload-large-folder tool
f0e5081 verified
# Copyright (C) 2024 Habana Labs, Ltd. an Intel Company.
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
"""GPT-2 model."""
import torch
from megatron import get_args
from megatron.core import mpu, tensor_parallel, sequence_parallel
from .module import MegatronModule, fp32_to_float16, float16_to_fp32
from .enums import AttnMaskType
from .language_model import parallel_lm_logits
from .language_model import get_language_model
from .utils import init_method_normal
from .utils import scaled_init_method_normal
from megatron.model import LayerNorm
from .language_model import EmbeddingPipe
from .rmsnorm import RMSNorm
from .transformer import ParallelTransformerLayerPipe, LMHeadPipe
from deepspeed.pipe import PipelineModule, LayerSpec, TiedLayerSpec
try:
from apex.normalization import MixedFusedRMSNorm
except ImportError:
MixedFusedRMSNorm = RMSNorm
try:
from deepspeed.checkpoint import (
VOCABULARY_PARAMETER_PATTERNS,
PIPELINE_REPLICATED_PARAMETER_PATTERNS,
TP_REPLICATED_PARAMETER_PATTERNS,
PARAMETER_WITH_ROW_PARALLELISM_PATTERNS,
PARAMETER_WITH_2_SUB_PARAMS_CAT_DIM_0,
)
DS_UNIVERSAL_CHECKPOINT_INFO = True
except ImportError:
DS_UNIVERSAL_CHECKPOINT_INFO = False
def post_language_model_processing(lm_output, labels, logit_weights,
parallel_output,
fp16_lm_cross_entropy):
# Output. Format [s b h]
output = parallel_lm_logits(
lm_output,
logit_weights,
parallel_output)
if labels is None:
# [s b h] => [b s h]
return output.transpose(0,1).contiguous()
else:
# [b s] => [s b]
labels = labels.transpose(0,1).contiguous()
cross_entropy = sequence_parallel.vocab_sequence_parallel_cross_entropy if mpu.get_sequence_parallel_world_size() > 1 \
else tensor_parallel.vocab_parallel_cross_entropy
if fp16_lm_cross_entropy:
assert output.dtype == torch.half
loss = cross_entropy(output, labels)
else:
loss = cross_entropy(output.float(), labels)
# [s b] => [b, s]
loss = loss.transpose(0,1).contiguous()
return loss
class GPTModel(MegatronModule):
"""GPT-2 Language model."""
def __init__(self,
config,
num_tokentypes=0,
parallel_output=True,
pre_process=True,
post_process=True,
return_moe_loss=True):
args = get_args()
super().__init__(config=config, share_embeddings_and_output_weights=not args.untie_embeddings_and_output_weights)
self.parallel_output = parallel_output
self.pre_process = pre_process
self.post_process = post_process
self.fp16_lm_cross_entropy = args.fp16_lm_cross_entropy
self.return_moe_loss = return_moe_loss
self.untie_embeddings_and_output_weights = args.untie_embeddings_and_output_weights
self.language_model, self._language_model_key = get_language_model(
config=config,
num_tokentypes=num_tokentypes,
add_pooler=False,
encoder_attn_mask_type=AttnMaskType.causal,
pre_process=self.pre_process,
post_process=self.post_process,
num_experts=args.num_experts)
if not args.untie_embeddings_and_output_weights:
self.initialize_word_embeddings()
def set_input_tensor(self, input_tensor):
"""See megatron.model.transformer.set_input_tensor()"""
self.language_model.set_input_tensor(input_tensor)
def forward(self, input_ids, position_ids, attention_mask,
retriever_input_ids=None,
retriever_position_ids=None,
retriever_attn_mask=None,
labels=None, tokentype_ids=None, inference_params=None,
curriculum_seqlen=None):
args = get_args()
if curriculum_seqlen is not None:
args.curriculum_seqlen = curriculum_seqlen
if curriculum_seqlen < input_ids.size()[1]:
# seqlen-based curriculum learning
# input_ids, position_ids, labels have size [batch size, seqlen]
input_ids = input_ids[:, :curriculum_seqlen].contiguous()
position_ids = position_ids[:, :curriculum_seqlen].contiguous()
if labels is not None:
labels = labels[:, :curriculum_seqlen].contiguous()
# attention_mask has size [1, 1, seqlen, seqlen]
attention_mask = attention_mask[:, :, :curriculum_seqlen, :curriculum_seqlen].contiguous()
else:
if args.curriculum_learning_legacy:
# If got a None input, need to reset curriculum_seqlen on user side
args.curriculum_seqlen = args.seq_length
lm_output, moe_losses = self.language_model(
input_ids,
position_ids,
attention_mask,
retriever_input_ids=retriever_input_ids,
retriever_position_ids=retriever_position_ids,
retriever_attn_mask=retriever_attn_mask,
inference_params=inference_params)
if self.post_process:
lm_output = post_language_model_processing(
lm_output, labels,
self.language_model.output_layer.weight if self.untie_embeddings_and_output_weights else self.shared_embedding_or_output_weight(),
self.parallel_output,
self.fp16_lm_cross_entropy)
return lm_output, moe_losses if self.return_moe_loss else lm_output
def state_dict_for_save_checkpoint(self, prefix='', keep_vars=False):
state_dict_ = {}
language_model_state_dict = self.language_model.state_dict_for_save_checkpoint(
prefix=prefix, keep_vars=keep_vars)
# MoE states need to be handled separately by DeepSpeed engine, thus
# moving them to the top level dictionary
if "moe_state_dict" in language_model_state_dict:
for key in list(language_model_state_dict["moe_state_dict"].keys()):
state_dict_[key] = language_model_state_dict["moe_state_dict"].pop(key)
del language_model_state_dict["moe_state_dict"]
state_dict_[self._language_model_key] = language_model_state_dict
# Save word_embeddings.
if self.post_process and not self.pre_process and not self.untie_embeddings_and_output_weights:
state_dict_[self._word_embeddings_for_head_key] \
= self.word_embeddings.state_dict(prefix=prefix,
keep_vars=keep_vars)
return state_dict_
def load_state_dict(self, state_dict, strict=True):
"""Customized load."""
# Load word_embeddings.
if self.post_process and not self.pre_process and not self.untie_embeddings_and_output_weights:
self.word_embeddings.load_state_dict(
state_dict[self._word_embeddings_for_head_key], strict=strict)
# Gather MoE states and move under language model
moe_state_dict = {}
for key in list(state_dict.keys()):
if 'expert' in key and 'moe.gate.wg.weight' not in key:
moe_state_dict[key] = state_dict.pop(key)
if self._language_model_key in state_dict:
state_dict = state_dict[self._language_model_key]
if len(moe_state_dict) > 0:
state_dict["moe_state_dict"] = moe_state_dict
self.language_model.load_state_dict(state_dict, strict=strict)
def universal_checkpoint_info(self):
info = dict()
if DS_UNIVERSAL_CHECKPOINT_INFO:
# Vocabulary parameters (embeddings) that require special handling due to padding.
info[VOCABULARY_PARAMETER_PATTERNS] = [
r"tied_modules.embed.word_embeddings.weight"
]
# Parameter slices that should be averaged not concatenated.
info[TP_REPLICATED_PARAMETER_PATTERNS] = [
r"tied_modules.embed.position_embeddings.weight",
r"\d+.input_layernorm.weight",
r"\d+.input_layernorm.bias",
r"\d+.post_attention_layernorm.weight",
r"\d+.post_attention_layernorm.bias",
r"\d+.self_attention.dense.bias",
r"\d+.mlp.dense_4h_to_h.bias",
r"\d+.weight",
r"\d+.bias",
]
# Parameter that are sliced on the row dimension
info[PARAMETER_WITH_ROW_PARALLELISM_PATTERNS] = [
r"\d+.mlp.dense_4h_to_h.weight",
r"\d+.self_attention.dense.weight",
]
return info
def CrossEntropy(output, labels):
labels, loss_mask = labels[0], labels[1]
args = get_args()
# [b s] => [s b]
labels = labels.transpose(0, 1).contiguous()
losses = tensor_parallel.vocab_parallel_cross_entropy(output.contiguous().float(), labels)
# [s b] => [b, s]
losses = losses.transpose(0, 1).contiguous()
loss_mask = loss_mask.view(-1)
loss = torch.sum(losses.view(-1) * loss_mask) / loss_mask.sum()
return loss
class GPTModelPipe(PipelineModule,MegatronModule):
"""GPT-2 Language model."""
def __init__(self,
config,
num_tokentypes=0,
parallel_output=True):
args = get_args()
self.parallel_output = parallel_output
if config.init_method is None:
config.init_method = init_method_normal(config.init_method_std)
if config.output_layer_init_method is None:
config.output_layer_init_method = scaled_init_method_normal(config.init_method_std,
config.num_layers)
self.specs = []
def _to_float16(inputs):
if args.fp16:
return fp32_to_float16(inputs, lambda v: v.half())
elif args.bf16:
return fp32_to_float16(inputs, lambda v: v.bfloat16())
else:
return inputs
self.specs.append(_to_float16)
# Embedding layer
if args.untie_embeddings_and_output_weights:
self.specs.append(LayerSpec(EmbeddingPipe,
args.hidden_size,
args.padded_vocab_size,
args.max_position_embeddings,
args.hidden_dropout,
config,
add_position_embedding=args.add_position_embedding,
num_tokentypes=num_tokentypes,
embedding_weights_in_fp32=args.embedding_weights_in_fp32,))
else:
self.specs.append(TiedLayerSpec('embed',
EmbeddingPipe,
args.hidden_size,
args.padded_vocab_size,
args.max_position_embeddings,
args.hidden_dropout,
config,
add_position_embedding=args.add_position_embedding,
num_tokentypes=num_tokentypes,
embedding_weights_in_fp32=args.embedding_weights_in_fp32,
tied_weight_attr='word_embeddings_weight'))
for layer_idx in range(args.num_layers):
self.specs.append(
LayerSpec(ParallelTransformerLayerPipe,
config,
layer_number=layer_idx,
self_attn_mask_type=AttnMaskType.causal))
# Final layernorm after transformer layers
if args.normalization == 'layernorm':
self.specs.append(LayerSpec(LayerNorm,
args.hidden_size,
eps=args.layernorm_epsilon,
sequence_parallel=args.sequence_parallel))
else:
self.specs.append(LayerSpec(MixedFusedRMSNorm, args.hidden_size,
args.layernorm_epsilon,
sequence_parallel=args.sequence_parallel))
def _logits_helper(embedding, lm_output):
"""A wrapper to massage inputs/outputs from pipeline. """
return parallel_lm_logits(
lm_output,
embedding.word_embeddings_weight,
self.parallel_output)
if args.untie_embeddings_and_output_weights:
self.specs.append(
LayerSpec(LMHeadPipe, args.hidden_size, args.padded_vocab_size, config)
)
else:
self.specs.append(
TiedLayerSpec('embed',
EmbeddingPipe,
args.hidden_size,
args.padded_vocab_size,
args.max_position_embeddings,
args.hidden_dropout,
config,
add_position_embedding=(args.add_position_embedding and (not args.fix_position_emb_redundant_alloc)),
num_tokentypes=num_tokentypes,
embedding_weights_in_fp32=args.embedding_weights_in_fp32,
forward_fn=_logits_helper,
tied_weight_attr='word_embeddings_weight')
)
# Convert to fp32 if needed
if args.fp16 or args.bf16:
self.specs.append(float16_to_fp32)
# for selective, use --recompute-activations or --recompute-granularity='selective'
# for full, use --recompute-granularity='full' --recompute-method='uniform' or
# --checkpoint-activations
if args.checkpoint_activations:
interval = args.checkpoint_num_layers
elif args.recompute_granularity == "full" and args.recompute_method == 'uniform':
# deepspeed's pipeline doesn't support the block recompute method
interval = args.recompute_num_layers
else:
interval = 0
from deepspeed.runtime.pipe.topology import PipeModelDataParallelTopology
topo = PipeModelDataParallelTopology(num_pp=mpu.get_pipeline_model_parallel_world_size(),
num_mp=mpu.get_tensor_model_parallel_world_size(),
num_dp=mpu.get_data_parallel_world_size())
super().__init__(layers=self.specs,
loss_fn=CrossEntropy,
topology=topo,
activation_checkpoint_interval=interval,
partition_method='type:transformer')
@staticmethod
def _get_vocab_param_patterns():
args = get_args()
if args.untie_embeddings_and_output_weights:
patterns = [
r"\d+.word_embeddings.weight",
r"\d+.lm_head.weight"
]
else:
patterns = [
r"tied_modules.embed.word_embeddings.weight"
]
return patterns
def _get_pp_replicated_param_patterns(self):
args = get_args()
if args.untie_embeddings_and_output_weights:
return []
patterns = self._get_vocab_param_patterns()
if args.add_position_embedding:
patterns.append(r"tied_modules.embed.position_embeddings.weight")
return patterns
@staticmethod
def _get_tp_replicated_param_patterns():
args = get_args()
patterns = [
r"\d+.input_layernorm.weight",
r"\d+.post_attention_layernorm.weight",
r"\d+.weight",
]
if args.add_position_embedding:
patterns.append(r"tied_modules.embed.position_embeddings.weight")
if args.add_bias_linear:
patterns.extend([
r"\d+.self_attention.dense.bias",
r"\d+.mlp.dense_4h_to_h.bias",
])
if args.normalization == 'layernorm':
patterns.extend([
r"\d+.input_layernorm.bias",
r"\d+.post_attention_layernorm.bias",
r"\d+.bias",
])
return patterns
@staticmethod
def _get_row_parallel_param_patterns():
return [
r"\d+.mlp.dense_4h_to_h.weight",
r"\d+.self_attention.dense.weight",
]
@staticmethod
def _get_swiglu_col_parallel_param_patterns():
args = get_args()
if not args.swiglu:
return []
patterns = [
r"\d+.mlp.dense_h_to_4h.weight",
]
if args.add_bias_linear:
patterns.append(r"\d+.mlp.dense_h_to_4h.bias")
return patterns
def universal_checkpoint_info(self):
info = dict()
if DS_UNIVERSAL_CHECKPOINT_INFO:
# Vocabulary parameters (embeddings) that require special handling due to padding.
info[VOCABULARY_PARAMETER_PATTERNS] = self._get_vocab_param_patterns()
# Replicated (shared) parameters on the pipeline dimension
info[PIPELINE_REPLICATED_PARAMETER_PATTERNS] = self._get_pp_replicated_param_patterns()
# Parameter slices that should be averaged not concatenated.
info[TP_REPLICATED_PARAMETER_PATTERNS] = self._get_tp_replicated_param_patterns()
# Parameter that are sliced on the row dimension
info[PARAMETER_WITH_ROW_PARALLELISM_PATTERNS] = self._get_row_parallel_param_patterns()
# SWIGLU parameters are first sliced on dim=0 to tp slices
# Then, each tp slice is chunked into 2 to create the linear layers L1, L2 used for silu(L1(x)) * L2(x))
info[PARAMETER_WITH_2_SUB_PARAMS_CAT_DIM_0] = self._get_swiglu_col_parallel_param_patterns()
return info