peacock-data-public-datasets-idc-mint
/
docker
/bloom13b
/Megatron-DeepSpeed
/megatron
/model
/language_model.py
# Copyright (C) 2024 Habana Labs, Ltd. an Intel Company. | |
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. | |
"""Transformer based language model.""" | |
import torch | |
import torch.nn.functional as F | |
from megatron import get_args | |
from megatron.core import mpu, tensor_parallel | |
from megatron.core.enums import ModelType | |
from .enums import AttnMaskType, LayerType | |
from .module import MegatronModule | |
from .rotary_pos_embedding import apply_rotary_pos_emb, RotaryEmbedding | |
from .transformer import ParallelTransformer | |
from .utils import get_linear_layer | |
from .utils import init_method_normal, scaled_init_method_normal, gather_and_init | |
def parallel_lm_logits(input_, word_embeddings_weight, parallel_output, | |
bias=None): | |
"""LM logits using word embedding weights.""" | |
args = get_args() | |
# Parallel logits. | |
if args.async_tensor_model_parallel_allreduce or\ | |
args.sequence_parallel: | |
input_parallel = input_ | |
model_parallel = mpu.get_tensor_model_parallel_world_size() > 1 | |
async_grad_allreduce = args.async_tensor_model_parallel_allreduce and \ | |
model_parallel and not args.sequence_parallel | |
else: | |
input_parallel = tensor_parallel.copy_to_tensor_model_parallel_region(input_) | |
async_grad_allreduce = False | |
# Matrix multiply. | |
logits_parallel = tensor_parallel.linear_with_grad_accumulation_and_async_allreduce( | |
input=input_parallel, | |
weight=word_embeddings_weight, | |
bias=bias, | |
gradient_accumulation_fusion=args.gradient_accumulation_fusion, | |
async_grad_allreduce=async_grad_allreduce, | |
sequence_parallel=args.sequence_parallel) | |
# Gather if needed. | |
if parallel_output: | |
return logits_parallel | |
return tensor_parallel.gather_from_tensor_model_parallel_region(logits_parallel) | |
def get_language_model(config, num_tokentypes, add_pooler, | |
encoder_attn_mask_type, | |
add_encoder=True, | |
add_decoder=False, | |
decoder_attn_mask_type=AttnMaskType.causal, | |
pre_process=True, post_process=True, num_experts=[1]): | |
"""Build language model and return along with the key to save.""" | |
args = get_args() | |
if config.init_method is None: | |
config.init_method = init_method_normal(config.init_method_std) | |
if config.output_layer_init_method is None: | |
config.output_layer_init_method = scaled_init_method_normal(config.init_method_std, | |
config.num_layers) | |
# Language model. | |
language_model = TransformerLanguageModel( | |
config, | |
encoder_attn_mask_type, | |
num_tokentypes=num_tokentypes, | |
add_encoder=add_encoder, | |
add_decoder=add_decoder, | |
decoder_attn_mask_type=decoder_attn_mask_type, | |
add_pooler=add_pooler, | |
pre_process=pre_process, | |
post_process=post_process, | |
num_experts=num_experts) | |
# key used for checkpoints. | |
language_model_key = 'language_model' | |
return language_model, language_model_key | |
class Pooler(MegatronModule): | |
"""Pooler layer. | |
Pool hidden states of a specific token (for example start of the | |
sequence) and add a linear transformation followed by a tanh. | |
Arguments: | |
hidden_size: hidden size | |
init_method: weight initialization method for the linear layer. | |
bias is set to zero. | |
""" | |
def __init__(self, hidden_size, init_method): | |
super(Pooler, self).__init__() | |
args = get_args() | |
self.dense = get_linear_layer(hidden_size, hidden_size, init_method, gather_params_on_init=args.zero_stage == 3) | |
self.sequence_parallel = args.sequence_parallel | |
def forward(self, hidden_states, sequence_index=0): | |
# hidden_states: [s, b, h] | |
# sequence_index: index of the token to pool. | |
# gather data along sequence dimensions | |
# same pooler is run on all tensor parallel nodes | |
if self.sequence_parallel: | |
hidden_states = tensor_parallel.gather_from_sequence_parallel_region( | |
hidden_states, | |
tensor_parallel_output_grad=False) | |
pooled = hidden_states[sequence_index, :, :] | |
pooled = self.dense(pooled) | |
pooled = torch.tanh(pooled) | |
return pooled | |
class Embedding(MegatronModule): | |
"""Language model embeddings. | |
Arguments: | |
hidden_size: hidden size | |
vocab_size: vocabulary size | |
max_sequence_length: maximum size of sequence. This | |
is used for positional embedding | |
embedding_dropout_prob: dropout probability for embeddings | |
init_method: weight initialization method | |
num_tokentypes: size of the token-type embeddings. 0 value | |
will ignore this embedding | |
embedding_weights_in_fp32: casts word embedding weights to | |
fp32 before sampling. Required to | |
maintain reproducibility when | |
training in bf16. | |
""" | |
def __init__(self, | |
hidden_size, | |
vocab_size, | |
max_sequence_length, | |
embedding_dropout_prob, | |
config, | |
add_position_embedding=True, | |
num_tokentypes=0, | |
embedding_weights_in_fp32=False): | |
super(Embedding, self).__init__() | |
self.hidden_size = hidden_size | |
self.init_method = config.init_method | |
self.num_tokentypes = num_tokentypes | |
args = get_args() | |
# Word embeddings (parallel). | |
self.embedding_weights_in_fp32 = embedding_weights_in_fp32 | |
self.params_dtype = args.params_dtype | |
self.word_embeddings = tensor_parallel.VocabParallelEmbedding( | |
vocab_size, self.hidden_size, config=config, init_method=config.init_method) | |
self._word_embeddings_key = 'word_embeddings' | |
# Position embedding (serial). | |
self.add_position_embedding = add_position_embedding | |
if self.add_position_embedding: | |
self._position_embeddings_key = 'position_embeddings' | |
if args.sequence_parallel: | |
self.position_embeddings = tensor_parallel.layers.SequenceParallelPositionEmbedding( | |
max_sequence_length, self.hidden_size) | |
# Initialize the position embeddings. | |
self.init_method(self.position_embeddings.local_embeddings.weight) | |
else: | |
self.position_embeddings = torch.nn.Embedding( | |
max_sequence_length, self.hidden_size) | |
# Initialize the position embeddings. | |
if args.perform_initialization: | |
if args.zero_stage == 3: | |
gather_and_init(self.position_embeddings.weight, self.init_method) | |
else: | |
self.init_method(self.position_embeddings.weight) | |
# Token type embedding. | |
# Add this as an optional field that can be added through | |
# method call so we can load a pretrain model without | |
# token types and add them as needed. | |
self._tokentype_embeddings_key = 'tokentype_embeddings' | |
if self.num_tokentypes > 0: | |
self.tokentype_embeddings = torch.nn.Embedding(self.num_tokentypes, | |
self.hidden_size) | |
# Initialize the token-type embeddings. | |
if args.perform_initialization: | |
if args.zero_stage == 3: | |
gather_and_init(self.tokentype_embeddings.weight, self.init_method) | |
else: | |
self.init_method(self.tokentype_embeddings.weight) | |
else: | |
self.tokentype_embeddings = None | |
self.fp32_residual_connection = args.fp32_residual_connection | |
self.sequence_parallel = args.sequence_parallel | |
# Embeddings dropout | |
self.embedding_dropout = torch.nn.Dropout(embedding_dropout_prob) | |
def zero_parameters(self): | |
"""Zero out all parameters in embedding.""" | |
self.word_embeddings.weight.data.fill_(0) | |
self.word_embeddings.weight.shared = True | |
if self.add_position_embedding: | |
self.position_embeddings.weight.data.fill_(0) | |
self.position_embeddings.weight.shared = True | |
if self.num_tokentypes > 0: | |
self.tokentype_embeddings.weight.data.fill_(0) | |
self.tokentype_embeddings.weight.shared = True | |
def add_tokentype_embeddings(self, num_tokentypes): | |
"""Add token-type embedding. This function is provided so we can add | |
token-type embeddings in case the pretrained model does not have it. | |
This allows us to load the model normally and then add this embedding. | |
""" | |
if self.tokentype_embeddings is not None: | |
raise Exception('tokentype embeddings is already initialized') | |
if torch.distributed.get_rank() == 0: | |
print('adding embedding for {} tokentypes'.format(num_tokentypes), | |
flush=True) | |
self.num_tokentypes = num_tokentypes | |
self.tokentype_embeddings = torch.nn.Embedding(num_tokentypes, | |
self.hidden_size) | |
# Initialize the token-type embeddings. | |
args = get_args() | |
self.init_method(self.tokentype_embeddings.weight) | |
def forward(self, input_ids, position_ids, tokentype_ids=None): | |
# Embeddings. | |
if self.embedding_weights_in_fp32: | |
self.word_embeddings = self.word_embeddings.to(torch.float32) | |
words_embeddings = self.word_embeddings(input_ids) | |
if self.embedding_weights_in_fp32: | |
words_embeddings = words_embeddings.to(self.params_dtype) | |
self.word_embeddings = self.word_embeddings.to(self.params_dtype) | |
if self.add_position_embedding: | |
position_embeddings = self.position_embeddings(position_ids) | |
embeddings = words_embeddings + position_embeddings | |
else: | |
embeddings = words_embeddings | |
if tokentype_ids is not None: | |
assert self.tokentype_embeddings is not None | |
embeddings = embeddings + self.tokentype_embeddings(tokentype_ids) | |
else: | |
assert self.tokentype_embeddings is None | |
# Data format change to avoid explicit tranposes : [b s h] --> [s b h]. | |
embeddings = embeddings.transpose(0, 1).contiguous() | |
# If the input flag for fp32 residual connection is set, convert for float. | |
if self.fp32_residual_connection: | |
embeddings = embeddings.float() | |
# Dropout. | |
if self.sequence_parallel: | |
# already partition sequence, do not need scatter_to_sequence_parallel_region ? | |
embeddings = tensor_parallel.scatter_to_sequence_parallel_region(embeddings) | |
with tensor_parallel.get_cuda_rng_tracker().fork(): | |
embeddings = self.embedding_dropout(embeddings) | |
else: | |
embeddings = self.embedding_dropout(embeddings) | |
return embeddings | |
def state_dict_for_save_checkpoint(self, prefix='', keep_vars=False): | |
"""For easy load.""" | |
state_dict_ = {} | |
state_dict_[self._word_embeddings_key] \ | |
= self.word_embeddings.state_dict(prefix=prefix, | |
keep_vars=keep_vars) | |
if self.add_position_embedding: | |
state_dict_[self._position_embeddings_key] \ | |
= self.position_embeddings.state_dict(prefix=prefix, | |
keep_vars=keep_vars) | |
if self.num_tokentypes > 0: | |
state_dict_[self._tokentype_embeddings_key] \ | |
= self.tokentype_embeddings.state_dict(prefix=prefix, | |
keep_vars=keep_vars) | |
return state_dict_ | |
def load_state_dict(self, state_dict, strict=True): | |
"""Customized load.""" | |
# Word embedding. | |
if self._word_embeddings_key in state_dict: | |
state_dict_ = state_dict[self._word_embeddings_key] | |
else: | |
# for backward compatibility. | |
state_dict_ = {} | |
for key in state_dict.keys(): | |
if 'word_embeddings' in key: | |
state_dict_[key.split('word_embeddings.')[1]] \ | |
= state_dict[key] | |
self.word_embeddings.load_state_dict(state_dict_, strict=strict) | |
# Position embedding. | |
if self.add_position_embedding: | |
if self._position_embeddings_key in state_dict: | |
state_dict_ = state_dict[self._position_embeddings_key] | |
else: | |
# for backward compatibility. | |
state_dict_ = {} | |
for key in state_dict.keys(): | |
if 'position_embeddings' in key: | |
state_dict_[key.split('position_embeddings.')[1]] \ | |
= state_dict[key] | |
self.position_embeddings.load_state_dict(state_dict_, strict=strict) | |
# Tokentype embedding. | |
if self.num_tokentypes > 0: | |
state_dict_ = {} | |
if self._tokentype_embeddings_key in state_dict: | |
state_dict_ = state_dict[self._tokentype_embeddings_key] | |
else: | |
# for backward compatibility. | |
for key in state_dict.keys(): | |
if 'tokentype_embeddings' in key: | |
state_dict_[key.split('tokentype_embeddings.')[1]] \ | |
= state_dict[key] | |
if len(state_dict_.keys()) > 0: | |
self.tokentype_embeddings.load_state_dict(state_dict_, | |
strict=strict) | |
else: | |
print('***WARNING*** expected tokentype embeddings in the ' | |
'checkpoint but could not find it', flush=True) | |
class EmbeddingPipe(Embedding): | |
def forward(self, inputs, **kwargs): | |
if not hasattr(self, '_args'): | |
self._args = get_args() | |
input_ids = inputs[0] | |
position_ids = inputs[1] | |
if hasattr(self._args, 'attn_mask'): | |
attention_mask = None | |
else: | |
attention_mask = inputs[2] | |
if len(inputs) == 4: | |
tokentype_ids = inputs[3] | |
else: | |
tokentype_ids = None | |
embeddings = super().forward(input_ids, position_ids, tokentype_ids=tokentype_ids) | |
# If cmd args has attn_mask, we don't forward it as an activation. | |
if hasattr(self._args, 'attn_mask'): | |
return embeddings | |
else: | |
assert False | |
return embeddings, attention_mask | |
def word_embeddings_weight(self): | |
"""Easy accessory for the DeepSpeed pipeline engine to tie embeddings across stages.""" | |
return self.word_embeddings.weight | |
class TransformerLanguageModel(MegatronModule): | |
"""Transformer language model. | |
Arguments: | |
transformer_hparams: transformer hyperparameters | |
vocab_size: vocabulary size | |
max_sequence_length: maximum size of sequence. This | |
is used for positional embedding | |
embedding_dropout_prob: dropout probability for embeddings | |
num_tokentypes: size of the token-type embeddings. 0 value | |
will ignore this embedding | |
""" | |
def __init__(self, | |
config, | |
encoder_attn_mask_type, | |
num_tokentypes=0, | |
add_encoder=True, | |
add_decoder=False, | |
decoder_attn_mask_type=AttnMaskType.causal, | |
add_pooler=False, | |
pre_process=True, | |
post_process=True, | |
num_experts=[1]): | |
args = get_args() | |
# TODO: passing share_embeddings_and_output_weights=False will not work correctly for T5 and embeddings will not be synced. Fix later for T5. | |
if args.untie_embeddings_and_output_weights: assert not add_decoder | |
super(TransformerLanguageModel, self).__init__(share_embeddings_and_output_weights=not args.untie_embeddings_and_output_weights) | |
self.pre_process = pre_process | |
self.post_process = post_process | |
self.hidden_size = config.hidden_size | |
self.num_tokentypes = num_tokentypes | |
self.init_method = config.init_method | |
self.add_encoder = add_encoder | |
self.encoder_attn_mask_type = encoder_attn_mask_type | |
self.add_decoder = add_decoder | |
self.decoder_attn_mask_type = decoder_attn_mask_type | |
self.add_pooler = add_pooler | |
self.encoder_hidden_state = None | |
self.add_retriever = args.retro_add_retriever | |
self.untie_embeddings_and_output_weights = args.untie_embeddings_and_output_weights | |
self.num_experts = num_experts | |
# Embeddings. | |
if self.pre_process: | |
self.embedding = Embedding(self.hidden_size, | |
args.padded_vocab_size, | |
args.max_position_embeddings, | |
args.hidden_dropout, | |
config, | |
args.add_position_embedding, | |
self.num_tokentypes, | |
args.embedding_weights_in_fp32) | |
self._embedding_key = 'embedding' | |
# Rotary positional embeddings | |
self.use_rotary_position_embeddings = \ | |
args.use_rotary_position_embeddings | |
if args.use_rotary_position_embeddings: | |
self.seq_length = args.seq_length | |
rotary_dim = args.hidden_size // args.num_attention_heads \ | |
if args.kv_channels is None else args.kv_channels | |
if args.rotary_percent < 1.0: | |
rotary_dim = int(rotary_dim * args.rotary_percent) | |
# partial rotary embeddings, which is better than full rotary | |
# Wang and Komatsuzaki et al | |
# https://github.com/kingoflolz/mesh-transformer-jax/ | |
self.rotary_pos_emb = RotaryEmbedding(rotary_dim) | |
# Encoder (usually set to True, False if part of an encoder-decoder | |
# architecture and in encoder-only stage). | |
if self.add_encoder: | |
self.encoder = ParallelTransformer( | |
config, | |
model_type=args.model_type if not args.retro_add_retriever \ | |
else ModelType.retro_decoder, | |
self_attn_mask_type=self.encoder_attn_mask_type, | |
pre_process=self.pre_process, | |
post_process=self.post_process, | |
num_experts=self.num_experts | |
) | |
self._encoder_key = 'encoder' | |
else: | |
self.encoder = None | |
# Decoder (usually set to False, True if part of an encoder-decoder | |
# architecture and in decoder-only stage). | |
if self.add_decoder: | |
self.decoder = ParallelTransformer( | |
config, | |
model_type=args.model_type, | |
layer_type=LayerType.decoder, | |
self_attn_mask_type=self.decoder_attn_mask_type, | |
pre_process=self.pre_process, | |
post_process=self.post_process, | |
num_experts=self.num_experts) | |
self._decoder_key = 'decoder' | |
else: | |
self.decoder = None | |
if self.post_process: | |
# Pooler. | |
if self.add_pooler: | |
self.pooler = Pooler(self.hidden_size, self.init_method) | |
self._pooler_key = 'pooler' | |
if self.untie_embeddings_and_output_weights: | |
self.output_layer = tensor_parallel.ColumnParallelLinear( | |
args.hidden_size, | |
args.padded_vocab_size, | |
config=config, | |
init_method=self.init_method, | |
bias=False) # Setting bias to False always to keep it consistent with embedding tying that also does not have a bias. | |
self._output_layer_key = 'output_layer' | |
def set_input_tensor(self, input_tensor): | |
""" See megatron.model.transformer.set_input_tensor()""" | |
# This is usually handled in schedules.py but some inference code still | |
# gives us non-lists or None | |
if not isinstance(input_tensor, list): | |
input_tensor = [input_tensor] | |
if self.add_encoder and self.add_decoder: | |
assert len(input_tensor) == 1, \ | |
'input_tensor should only be length 1 for stage with both encoder and decoder' | |
self.encoder.set_input_tensor(input_tensor[0]) | |
elif self.add_encoder: | |
assert len(input_tensor) == 1, \ | |
'input_tensor should only be length 1 for stage with only encoder' | |
self.encoder.set_input_tensor(input_tensor[0]) | |
elif self.add_decoder: | |
if len(input_tensor) == 2: | |
self.decoder.set_input_tensor(input_tensor[0]) | |
self.encoder_hidden_state = input_tensor[1] | |
elif len(input_tensor) == 1: | |
self.decoder.set_input_tensor(None) | |
self.encoder_hidden_state = input_tensor[0] | |
else: | |
raise Exception('input_tensor must have either length 1 or 2') | |
else: | |
raise Exception('Stage must have at least either encoder or decoder') | |
def forward(self, enc_input_ids, enc_position_ids, enc_attn_mask, | |
dec_input_ids=None, dec_position_ids=None, dec_attn_mask=None, | |
retriever_input_ids=None, | |
retriever_position_ids=None, | |
retriever_attn_mask=None, | |
enc_dec_attn_mask=None, tokentype_ids=None, | |
inference_params=None, | |
pooling_sequence_index=0, | |
enc_hidden_states=None, output_enc_hidden=False): | |
args = get_args() | |
# Encoder embedding. | |
if self.pre_process: | |
encoder_input = self.embedding(enc_input_ids, enc_position_ids, | |
tokentype_ids=tokentype_ids) | |
else: | |
encoder_input = None | |
# Retriever embedding. | |
if self.add_retriever and self.pre_process: | |
retriever_input = self.embedding(retriever_input_ids, | |
retriever_position_ids, | |
tokentype_ids=tokentype_ids) | |
else: | |
retriever_input = None | |
# Rotary positional embeddings | |
rotary_pos_emb = None | |
if self.use_rotary_position_embeddings: | |
if inference_params is not None: | |
rotary_pos_emb = \ | |
self.rotary_pos_emb(inference_params.max_sequence_len) | |
else: | |
if args.curriculum_learning_legacy or args.data_efficiency_curriculum_learning: | |
rotary_pos_emb = self.rotary_pos_emb(args.curriculum_seqlen) | |
else: | |
rotary_pos_emb = self.rotary_pos_emb(self.seq_length) | |
# Run encoder. | |
if enc_hidden_states is None: | |
if self.encoder is not None: | |
encoder_output, *encoder_moe_losses = self.encoder( | |
encoder_input, | |
enc_attn_mask, | |
retriever_input=retriever_input, | |
retriever_attn_mask=retriever_attn_mask, | |
inference_params=inference_params, | |
rotary_pos_emb=rotary_pos_emb) | |
else: | |
encoder_output = self.encoder_hidden_state | |
else: | |
encoder_output, encoder_moe_losses = enc_hidden_states.to(encoder_input.dtype), [] | |
if self.post_process: | |
if self.add_pooler: | |
pooled_output = self.pooler(encoder_output, | |
pooling_sequence_index) | |
# output_enc_hidden refers to when we just need the encoder's | |
# output. For example, it is helpful to compute | |
# similarity between two sequences by average pooling | |
if not self.add_decoder or output_enc_hidden: | |
if self.add_pooler and self.post_process: | |
return encoder_output, pooled_output, encoder_moe_losses | |
else: | |
return encoder_output, encoder_moe_losses | |
# Decoder embedding. | |
if self.pre_process: | |
decoder_input = self.embedding(dec_input_ids, | |
dec_position_ids) | |
else: | |
decoder_input = None | |
# Run decoder. | |
decoder_output, *decoder_moe_losses = self.decoder( | |
decoder_input, | |
dec_attn_mask, | |
encoder_output=encoder_output, | |
enc_dec_attn_mask=enc_dec_attn_mask, | |
inference_params=inference_params, | |
rotary_pos_emb=rotary_pos_emb) | |
if self.add_pooler and self.post_process: | |
return decoder_output, encoder_output, pooled_output, decoder_moe_losses, encoder_moe_losses | |
else: | |
return decoder_output, encoder_output, decoder_moe_losses, encoder_moe_losses | |
def state_dict_for_save_checkpoint(self, prefix='', keep_vars=False): | |
"""For easy load.""" | |
args = get_args() | |
state_dict_ = {} | |
moe_state_dict = {} | |
if self.pre_process: | |
state_dict_[self._embedding_key] \ | |
= self.embedding.state_dict_for_save_checkpoint(prefix=prefix, | |
keep_vars=keep_vars) | |
if self.add_encoder: | |
encoder_state_dict = self.encoder.state_dict_for_save_checkpoint( | |
prefix=prefix, keep_vars=keep_vars) | |
if args.random_ltd: | |
# When using random-LTD, it is required to call remove_random_ltd_state_dict | |
# during model checkpoint saving to transfer the random-LTD-wrapped | |
# layers back to original layers. This will help to remove the dependency | |
# to random-LTD inside the checkpoint, so that during evaluation or | |
# finetuning of the checkpoint there is no need to depend on random-LTD | |
# again. | |
from deepspeed.runtime.data_pipeline.data_routing.helper import remove_random_ltd_state_dict | |
encoder_state_dict = remove_random_ltd_state_dict(encoder_state_dict) | |
# MoE states need to be handled separately by DeepSpeed engine, thus | |
# moving them to the top level dictionary | |
# If components other than encoder may contain MoE states, need to add | |
# the same logic | |
for key in list(encoder_state_dict.keys()): | |
if 'expert' in key and 'moe.gate.wg.weight' not in key: | |
moe_state_dict[self._encoder_key+key] = encoder_state_dict.pop(key) | |
state_dict_[self._encoder_key] = encoder_state_dict | |
if self.post_process: | |
if self.add_pooler: | |
state_dict_[self._pooler_key] \ | |
= self.pooler.state_dict_for_save_checkpoint(prefix=prefix, | |
keep_vars=keep_vars) | |
if self.untie_embeddings_and_output_weights: | |
state_dict_[self._output_layer_key] \ | |
= self.output_layer.state_dict(prefix=prefix, keep_vars=keep_vars) | |
if self.add_decoder: | |
state_dict_[self._decoder_key] \ | |
= self.decoder.state_dict_for_save_checkpoint(prefix=prefix, | |
keep_vars=keep_vars) | |
state_dict_["moe_state_dict"] = moe_state_dict | |
return state_dict_ | |
def load_state_dict(self, state_dict, strict=True): | |
"""Customized load.""" | |
# Embedding. | |
if self.pre_process: | |
if self._embedding_key in state_dict: | |
state_dict_ = state_dict[self._embedding_key] | |
else: | |
# for backward compatibility. | |
state_dict_ = {} | |
for key in state_dict.keys(): | |
if '_embeddings' in key: | |
state_dict_[key] = state_dict[key] | |
self.embedding.load_state_dict(state_dict_, strict=strict) | |
# Encoder. | |
if self.add_encoder: | |
if self._encoder_key in state_dict: | |
state_dict_ = state_dict[self._encoder_key] | |
# For backward compatibility. | |
elif 'transformer' in state_dict: | |
state_dict_ = state_dict['transformer'] | |
else: | |
# For backward compatibility. | |
state_dict_ = {} | |
for key in state_dict.keys(): | |
if 'transformer.' in key: | |
state_dict_[key.split('transformer.')[1]] = state_dict[key] | |
# For backward compatibility. | |
# Somehow this backward compatibility could be wrong: sometimes | |
# '.attention.' is the actual key used so should not be replaced. Thus | |
# added another logic to only replace if the key does not match | |
state_dict_self_attention = {} | |
encoder_state_dict_keys = list(self.encoder.state_dict().keys()) | |
for key in state_dict_.keys(): | |
if '.attention.' in key and key not in encoder_state_dict_keys: | |
state_dict_self_attention[key.replace(".attention.", | |
".self_attention.")] = state_dict_[key] | |
else: | |
state_dict_self_attention[key] = state_dict_[key] | |
state_dict_ = state_dict_self_attention | |
# Gather encoder MoE states | |
if "moe_state_dict" in state_dict: | |
for key in list(state_dict["moe_state_dict"].keys()): | |
if self._encoder_key in key: | |
key_list = key.split('.') | |
while key_list[0] != 'encoder': | |
key_list.pop(0) | |
key_list.pop(0) | |
actual_key = '.'.join(key_list) | |
state_dict_[actual_key] = state_dict["moe_state_dict"].pop(key) | |
if len(state_dict["moe_state_dict"]) == 0: | |
del state_dict["moe_state_dict"] | |
self.encoder.load_state_dict(state_dict_, strict=strict) | |
# Pooler. | |
if self.post_process: | |
if self.add_pooler: | |
assert 'pooler' in state_dict, \ | |
'could not find data for pooler in the checkpoint' | |
self.pooler.load_state_dict(state_dict[self._pooler_key], | |
strict=strict) | |
if self.untie_embeddings_and_output_weights: | |
assert 'output_layer' in state_dict, \ | |
'could not find data for output_layer in the checkpoint' | |
self.output_layer.load_state_dict(state_dict[self._output_layer_key], | |
strict=strict) | |
# Decoder. | |
if self.add_decoder: | |
assert 'decoder' in state_dict, \ | |
'could not find data for pooler in the checkpoint' | |
self.decoder.load_state_dict(state_dict[self._decoder_key], | |
strict=strict) | |