peacock-data-public-datasets-idc-mint
/
docker
/bloom13b
/Megatron-DeepSpeed
/tasks
/orqa
/unsupervised
/tokenizers.py
#!/usr/bin/env python3 | |
# Copyright (c) Facebook, Inc. and its affiliates. | |
# All rights reserved. | |
# | |
# The following code has been taken from | |
# https://github.com/facebookresearch/DPR, which is CC-BY-NC 4.0 | |
# licensed as of now. More details on the license can be found | |
# at https://github.com/facebookresearch/DPR/blob/master/LICENSE | |
""" | |
Most of the tokenizers code here is copied from DrQA codebase to avoid adding extra dependency | |
""" | |
import copy | |
import logging | |
import regex | |
import spacy | |
logger = logging.getLogger(__name__) | |
class Tokens(object): | |
"""A class to represent a list of tokenized text.""" | |
TEXT = 0 | |
TEXT_WS = 1 | |
SPAN = 2 | |
POS = 3 | |
LEMMA = 4 | |
NER = 5 | |
def __init__(self, data, annotators, opts=None): | |
self.data = data | |
self.annotators = annotators | |
self.opts = opts or {} | |
def __len__(self): | |
"""The number of tokens.""" | |
return len(self.data) | |
def slice(self, i=None, j=None): | |
"""Return a view of the list of tokens from [i, j).""" | |
new_tokens = copy.copy(self) | |
new_tokens.data = self.data[i: j] | |
return new_tokens | |
def untokenize(self): | |
"""Returns the original text (with whitespace reinserted).""" | |
return ''.join([t[self.TEXT_WS] for t in self.data]).strip() | |
def words(self, uncased=False): | |
"""Returns a list of the text of each token | |
Args: | |
uncased: lower cases text | |
""" | |
if uncased: | |
return [t[self.TEXT].lower() for t in self.data] | |
else: | |
return [t[self.TEXT] for t in self.data] | |
def offsets(self): | |
"""Returns a list of [start, end) character offsets of each token.""" | |
return [t[self.SPAN] for t in self.data] | |
def pos(self): | |
"""Returns a list of part-of-speech tags of each token. | |
Returns None if this annotation was not included. | |
""" | |
if 'pos' not in self.annotators: | |
return None | |
return [t[self.POS] for t in self.data] | |
def lemmas(self): | |
"""Returns a list of the lemmatized text of each token. | |
Returns None if this annotation was not included. | |
""" | |
if 'lemma' not in self.annotators: | |
return None | |
return [t[self.LEMMA] for t in self.data] | |
def entities(self): | |
"""Returns a list of named-entity-recognition tags of each token. | |
Returns None if this annotation was not included. | |
""" | |
if 'ner' not in self.annotators: | |
return None | |
return [t[self.NER] for t in self.data] | |
def ngrams(self, n=1, uncased=False, filter_fn=None, as_strings=True): | |
"""Returns a list of all ngrams from length 1 to n. | |
Args: | |
n: upper limit of ngram length | |
uncased: lower cases text | |
filter_fn: user function that takes in an ngram list and returns | |
True or False to keep or not keep the ngram | |
as_string: return the ngram as a string vs list | |
""" | |
def _skip(gram): | |
if not filter_fn: | |
return False | |
return filter_fn(gram) | |
words = self.words(uncased) | |
ngrams = [(s, e + 1) | |
for s in range(len(words)) | |
for e in range(s, min(s + n, len(words))) | |
if not _skip(words[s:e + 1])] | |
# Concatenate into strings | |
if as_strings: | |
ngrams = ['{}'.format(' '.join(words[s:e])) for (s, e) in ngrams] | |
return ngrams | |
def entity_groups(self): | |
"""Group consecutive entity tokens with the same NER tag.""" | |
entities = self.entities() | |
if not entities: | |
return None | |
non_ent = self.opts.get('non_ent', 'O') | |
groups = [] | |
idx = 0 | |
while idx < len(entities): | |
ner_tag = entities[idx] | |
# Check for entity tag | |
if ner_tag != non_ent: | |
# Chomp the sequence | |
start = idx | |
while (idx < len(entities) and entities[idx] == ner_tag): | |
idx += 1 | |
groups.append((self.slice(start, idx).untokenize(), ner_tag)) | |
else: | |
idx += 1 | |
return groups | |
class Tokenizer(object): | |
"""Base tokenizer class. | |
Tokenizers implement tokenize, which should return a Tokens class. | |
""" | |
def tokenize(self, text): | |
raise NotImplementedError | |
def shutdown(self): | |
pass | |
def __del__(self): | |
self.shutdown() | |
class SimpleTokenizer(Tokenizer): | |
ALPHA_NUM = r'[\p{L}\p{N}\p{M}]+' | |
NON_WS = r'[^\p{Z}\p{C}]' | |
def __init__(self, **kwargs): | |
""" | |
Args: | |
annotators: None or empty set (only tokenizes). | |
""" | |
self._regexp = regex.compile( | |
'(%s)|(%s)' % (self.ALPHA_NUM, self.NON_WS), | |
flags=regex.IGNORECASE + regex.UNICODE + regex.MULTILINE | |
) | |
if len(kwargs.get('annotators', {})) > 0: | |
logger.warning('%s only tokenizes! Skipping annotators: %s' % | |
(type(self).__name__, kwargs.get('annotators'))) | |
self.annotators = set() | |
def tokenize(self, text): | |
data = [] | |
matches = [m for m in self._regexp.finditer(text)] | |
for i in range(len(matches)): | |
# Get text | |
token = matches[i].group() | |
# Get whitespace | |
span = matches[i].span() | |
start_ws = span[0] | |
if i + 1 < len(matches): | |
end_ws = matches[i + 1].span()[0] | |
else: | |
end_ws = span[1] | |
# Format data | |
data.append(( | |
token, | |
text[start_ws: end_ws], | |
span, | |
)) | |
return Tokens(data, self.annotators) | |
class SpacyTokenizer(Tokenizer): | |
def __init__(self, **kwargs): | |
""" | |
Args: | |
annotators: set that can include pos, lemma, and ner. | |
model: spaCy model to use (either path, or keyword like 'en'). | |
""" | |
model = kwargs.get('model', 'en') | |
self.annotators = copy.deepcopy(kwargs.get('annotators', set())) | |
nlp_kwargs = {'parser': False} | |
if not any([p in self.annotators for p in ['lemma', 'pos', 'ner']]): | |
nlp_kwargs['tagger'] = False | |
if 'ner' not in self.annotators: | |
nlp_kwargs['entity'] = False | |
self.nlp = spacy.load(model, **nlp_kwargs) | |
def tokenize(self, text): | |
# We don't treat new lines as tokens. | |
clean_text = text.replace('\n', ' ') | |
tokens = self.nlp.tokenizer(clean_text) | |
if any([p in self.annotators for p in ['lemma', 'pos', 'ner']]): | |
self.nlp.tagger(tokens) | |
if 'ner' in self.annotators: | |
self.nlp.entity(tokens) | |
data = [] | |
for i in range(len(tokens)): | |
# Get whitespace | |
start_ws = tokens[i].idx | |
if i + 1 < len(tokens): | |
end_ws = tokens[i + 1].idx | |
else: | |
end_ws = tokens[i].idx + len(tokens[i].text) | |
data.append(( | |
tokens[i].text, | |
text[start_ws: end_ws], | |
(tokens[i].idx, tokens[i].idx + len(tokens[i].text)), | |
tokens[i].tag_, | |
tokens[i].lemma_, | |
tokens[i].ent_type_, | |
)) | |
# Set special option for non-entity tag: '' vs 'O' in spaCy | |
return Tokens(data, self.annotators, opts={'non_ent': ''}) | |