peacock-data-public-datasets-idc-mint
/
docker
/bloom13b
/Megatron-DeepSpeed
/tests
/models
/test_gpt_embedding.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. | |
import pytest | |
import torch | |
from megatron.core.transformer.transformer_config import TransformerConfig | |
from megatron.core.models.gpt.gpt_embedding import GPTEmbedding | |
def gpt_embedding(transformer_config): | |
embedding = GPTEmbedding(config=transformer_config, vocab_size=100, max_sequence_length=4) | |
return embedding | |
class TestGPTEmbedding: | |
def test_constructor(self, gpt_embedding: GPTEmbedding): | |
assert isinstance(gpt_embedding, GPTEmbedding) | |
num_weights = sum([p.numel() for p in gpt_embedding.parameters()]) | |
assert num_weights == 1248 | |
def test_zero_parameters(self, gpt_embedding: GPTEmbedding): | |
sum_weights = sum([p.sum() for p in gpt_embedding.parameters()]) | |
assert sum_weights != 0 | |
gpt_embedding.zero_parameters() | |
sum_weights = sum([p.sum() for p in gpt_embedding.parameters()]) | |
assert sum_weights == 0 | |
def test_cpu_forward(self, gpt_embedding: GPTEmbedding): | |
input_ids = torch.tensor([0, 1, 2, 3], dtype=torch.int64).repeat((2, 1)) | |
position_ids = torch.tensor([0, 1, 2, 3], dtype=torch.int64).repeat((2, 1)) | |
embeddings = gpt_embedding(input_ids, position_ids) | |
assert embeddings.device.type == 'cpu' | |
assert embeddings.shape[0] == gpt_embedding.max_sequence_length | |
assert embeddings.shape[1] == input_ids.shape[0] | |
assert embeddings.shape[2] == gpt_embedding.config.hidden_size | |
def test_gpu_forward(self, gpt_embedding: GPTEmbedding): | |
gpt_embedding.cuda() | |
input_ids = torch.tensor([0, 1, 2, 3], dtype=torch.int64).repeat((2, 1)).cuda() | |
position_ids = torch.tensor([0, 1, 2, 3], dtype=torch.int64).repeat((2, 1)).cuda() | |
embeddings = gpt_embedding(input_ids, position_ids) | |
assert embeddings.device.type == 'cuda' | |
assert embeddings.shape[0] == gpt_embedding.max_sequence_length | |
assert embeddings.shape[1] == input_ids.shape[0] | |
assert embeddings.shape[2] == gpt_embedding.config.hidden_size | |