peacock-data-public-datasets-idc-mint
/
docker
/bloom13b
/Megatron-DeepSpeed
/tests
/transformer
/test_parallel_attention.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. | |
import pytest | |
import torch | |
from megatron.core.transformer.parallel_attention import ParallelAttention | |
def parallel_attention(transformer_config): | |
return ParallelAttention(transformer_config) | |
def checkpointed_parallel_attention(transformer_config): | |
transformer_config.recompute_granularity = 'selective' | |
return ParallelAttention(transformer_config) | |
class TestParallelAttention: | |
def test_constructor(self, parallel_attention): | |
assert isinstance(parallel_attention, ParallelAttention) | |
assert parallel_attention.layer_number == 1 | |
num_weights = sum([p.numel() for p in parallel_attention.parameters()]) | |
assert num_weights == 624 | |
def test_cpu_forward(self, parallel_attention): | |
# we can't currently do this because the global memory buffer is on GPU | |
pass | |
def test_gpu_forward(self, parallel_attention): | |
config = parallel_attention.config | |
sequence_length = 32 | |
micro_batch_size = 2 | |
parallel_attention.cuda() | |
# [sequence length, batch size, hidden size] | |
hidden_states = torch.ones((sequence_length, micro_batch_size, parallel_attention.config.hidden_size)) | |
hidden_states = hidden_states.cuda() | |
attention_mask = torch.ones((1, 1, sequence_length, sequence_length), dtype=bool).cuda() | |
output, bias = parallel_attention(hidden_states, attention_mask) | |
assert config.recompute_granularity is None | |
assert output.shape[0] == sequence_length | |
assert output.shape[1] == micro_batch_size | |
assert output.shape[2] == config.hidden_size | |
assert bias.shape[0] == config.hidden_size | |
def test_checkpointed_gpu_forward(self, checkpointed_parallel_attention): | |
config = checkpointed_parallel_attention.config | |
sequence_length = 32 | |
micro_batch_size = 2 | |
checkpointed_parallel_attention.cuda() | |
# [sequence length, batch size, hidden size] | |
hidden_states = torch.ones( | |
(sequence_length, micro_batch_size, checkpointed_parallel_attention.config.hidden_size) | |
) | |
hidden_states = hidden_states.cuda() | |
attention_mask = torch.ones((1, 1, sequence_length, sequence_length), dtype=bool).cuda() | |
output, bias = checkpointed_parallel_attention(hidden_states, attention_mask) | |
assert config.recompute_granularity == 'selective' | |
assert output.shape[0] == sequence_length | |
assert output.shape[1] == micro_batch_size | |
assert output.shape[2] == config.hidden_size | |
assert bias.shape[0] == config.hidden_size | |