applied-ai-018's picture
Add files using upload-large-folder tool
d0afae8 verified
import os
from typing import Dict
import torch
ZERO_FILE_PREFIX = 'zero_pp_rank_'
LAYER_FILE_PREFIX = 'layer_'
MP_RANK_FILE_PREFIX = 'mp_rank_'
EMBEDDING_LAYER_INDEX = 0
FINAL_LAYER_NORM_INDEX = -1
ARGS_KEY = 'args'
ITERATION_KEY = 'iteration'
SEQUENTIAL_LAYERS = [
'input_layernorm.weight', 'input_layernorm.bias',
'self_attention.dense.bias',
'post_attention_layernorm.weight', 'post_attention_layernorm.bias',
'mlp.dense_4h_to_h.bias',
'position_embeddings.weight'
]
LAYER_CONCAT_DIM = {
'self_attention.dense.weight': 1,
'mlp.dense_4h_to_h.weight': 1
}
class DeepSpeedCheckpoint(object):
def __init__(self, dir, tp_degree=None, pp_degree=None, no_pp=False):
self.dir = dir
self.no_pp = no_pp
self.file_list = self._get_files(dir)
self.zero_files = self._get_files_with_prefix(self.file_list, ZERO_FILE_PREFIX)
self.layer_files = self._get_files_with_prefix(self.file_list, LAYER_FILE_PREFIX)
self.mp_rank_files = self._get_files_with_prefix(self.file_list, MP_RANK_FILE_PREFIX)
self.layer_keys = self._get_layer_keys()
self.layer_count = len(self.layer_keys)
if not self.no_pp:
self.original_tp_degree = len(self._get_files_with_prefix(self.layer_files, f'{LAYER_FILE_PREFIX}01'))
self.original_pp_degree = len(self.mp_rank_files) // self.original_tp_degree
else:
self.original_tp_degree = len(self.mp_rank_files)
self.original_pp_degree = 1
self.dp_degree = len(self.zero_files) // (self.original_pp_degree * self.original_tp_degree)
self.tp_degree = self.original_tp_degree if tp_degree is None else tp_degree
self.pp_degree = self.original_pp_degree if pp_degree is None else pp_degree
self.global_state = {}
self._sanity_check()
self.pp_to_transformer_map = self._build_pp_transformer_map()
self.transformer_file_map = self._build_transformer_file_map()
if not self.no_pp:
self.tp_to_embedding_map = self._build_tp_other_layer_map(EMBEDDING_LAYER_INDEX)
self.tp_to_final_norm_map = self._build_tp_other_layer_map(FINAL_LAYER_NORM_INDEX)
self._build_global_state()
def show_tp_embedding_map(self):
self._dump_mapping(self.tp_to_embedding_map, 'tp_to_embedding_layers')
def show_tp_final_norm_map(self):
self._dump_mapping(self.tp_to_final_norm_map, 'tp_to_final_norm_layers')
def show_pp_tranformer_map(self):
self._dump_mapping(self.pp_to_transformer_map, 'pp_to_tranformer_layers')
def show_transformer_file_map(self):
self._dump_mapping(self.transformer_file_map, 'rank_to_tranformer_files')
def _build_global_state(self):
sd = torch.load(self.mp_rank_files[0], map_location=torch.device('cpu'))
self.global_state[ITERATION_KEY] = sd.get(ITERATION_KEY, 0)
self.global_state[ARGS_KEY] = sd.get(ARGS_KEY, None)
def get_iteration(self):
if not ITERATION_KEY in self.global_state:
sd = torch.load(self.mp_rank_files[0], map_location=torch.device('cpu'))
self.global_state[ITERATION_KEY] = sd.get(ITERATION_KEY, 0)
return self.global_state[ITERATION_KEY]
def get_embedding_state(self, tp_index: int) -> Dict:
assert tp_index in self.tp_to_embedding_map.keys()
sd_list = [torch.load(fname, map_location=torch.device('cpu')) for fname in self.tp_to_embedding_map[tp_index]]
sd = self._merge_state_dicts(sd_list)
return sd
def get_args(self):
if not ARGS_KEY in self.global_state:
sd = torch.load(self.mp_rank_files[0], map_location=torch.device('cpu'))
self.global_state[ARGS_KEY] = sd.get(ARGS_KEY, None)
return self.global_state[ARGS_KEY]
def get_transformer_state(self, tp_index: int, pp_index: int) -> list:
assert tp_index < self.tp_degree
assert pp_index < self.pp_degree
t_list = []
for fname_list in self.transformer_file_map[(tp_index, pp_index)]:
sd_list = [torch.load(fname, map_location=torch.device('cpu')) for fname in fname_list]
sd = self._merge_state_dicts(sd_list)
t_list.append(sd)
return t_list
def get_final_norm_state(self, tp_index:int) -> Dict:
assert tp_index in self.tp_to_final_norm_map.keys()
sd = torch.load(self.tp_to_final_norm_map[tp_index][0], map_location=torch.device('cpu'))
return sd
def _build_tp_other_layer_map(self, layer_index:int):
assert layer_index < len(self.layer_files)
layer_files = self._get_files_with_prefix(self.layer_files, self.layer_keys[layer_index])
layer_file_partitions = self._partition_data(layer_files, self.tp_degree)
data_map = {i:flist for i, flist in enumerate(layer_file_partitions)}
return data_map
def _build_pp_transformer_map(self):
data_map = {}
transformer_layers = self.layer_keys[1:-1]
layers_per_pp = len(transformer_layers) // self.pp_degree
data_map = {i:transformer_layers[i*layers_per_pp:(i+1)*layers_per_pp] for i in range(0, self.pp_degree)}
return data_map
def _dump_mapping(self, data_map, map_tag = None):
if map_tag is not None:
print(f'Dump mapping: {map_tag}')
for k, v in data_map.items():
print(f'{k} = {v}')
def _build_transformer_file_map(self):
transformer_layer_keys = self.layer_keys[1:-1]
file_map = {}
layers_per_pp = len(transformer_layer_keys) // self.pp_degree
for key_index, layer_key in enumerate(transformer_layer_keys):
pp_index = key_index // layers_per_pp
layer_files = self._get_files_with_prefix(self.layer_files, layer_key)
layer_file_partitions = self._partition_data(layer_files, self.tp_degree)
for tp_index in range(self.tp_degree):
map_key = (tp_index, pp_index)
if not map_key in file_map.keys():
file_map[map_key] = []
file_map[map_key].append(layer_file_partitions[tp_index])
return file_map
def _sanity_check(self):
assert len(self.mp_rank_files) % self.tp_degree == 0
assert len(self.zero_files) % (self.pp_degree * self.tp_degree) == 0
if not self.no_pp:
assert len(self.layer_keys) > 2
assert (len(self.layer_keys) - 2) % self.pp_degree == 0
def _get_files_with_prefix(self, all_files, prefix):
file_list = []
for file_path in all_files:
_, fname = os.path.split(file_path)
if fname.startswith(prefix):
file_list.append(file_path)
return sorted(file_list)
def validate_files(self):
for file in self.file_list:
if not os.path.isfile(file):
print(f'Error: {file} is not existent')
def _get_files(self, dir):
file_list = []
for root, dirs, files in os.walk(dir):
for file in files:
file_list.append(os.path.join(root, file))
return file_list
def _get_layer_keys(self):
key_set = set()
key_len = len(LAYER_FILE_PREFIX) + 2
for file_path in self.layer_files:
_, fname = os.path.split(file_path)
key_set.add(fname[:key_len])
return sorted(list(key_set))
def _partition_data(self, data_list, num_partitions):
num_elems = len(data_list)
assert num_elems % num_partitions == 0
partition_size = num_elems // num_partitions
partitions_list = [data_list[i:i+partition_size] for i in range(0, num_elems, partition_size)]
return partitions_list
def _merge_state_dicts(self, sd_list):
merged_sd = {}
for key in sd_list[0].keys():
if not key in SEQUENTIAL_LAYERS:
cat_dim = LAYER_CONCAT_DIM.get(key, 0)
merged_sd[key] = torch.cat([sd[key] for sd in sd_list], dim=cat_dim)
else:
merged_sd[key] = sd_list[0][key]
return merged_sd