peacock-data-public-datasets-idc-mint
/
docker
/bloom13b
/Megatron-DeepSpeed
/tools
/convert_checkpoint
/deepspeed_to_megatron.py
#!/usr/bin/env python | |
import argparse | |
import os | |
import torch | |
from collections import OrderedDict | |
from .deepspeed_checkpoint import ARGS_KEY, DeepSpeedCheckpoint | |
MODEL_KEY = 'model' | |
ARGS_KEY = 'args' | |
LANGUGAGE_MODEL_KEY = 'language_model' | |
EMBEDDING_KEY = 'embedding' | |
ENCODER_KEY = 'encoder' | |
WORD_EMBEDDINGS_FOR_HEAD_KEY = 'word_embeddings_for_head' | |
WORD_EMBEDDINGS_KEY = 'word_embeddings' | |
FINAL_LAYER_NORM_KEY ='final_layernorm' | |
CHECKPOINT_VERSION_KEY = 'checkpoint_version' | |
CHECKPOINT_VERSION_VALUE = 3.0 | |
ITERATION_KEY = 'iteration' | |
def parse_arguments(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--input_folder', default=None, type=str, help='Input DeepSpeed Checkpoint folder') | |
parser.add_argument('--output_folder', default=None, type=str, help='Output Megatron checkpoint folder') | |
parser.add_argument('--target_tp', default=1, type=int, help='Target TP degree') | |
parser.add_argument('--target_pp', default=1, type=int, help='Target PP degree') | |
parser.add_argument('--for_release', action='store_true', help='Convert for release purpose, reset some (progress) counters.') | |
args = parser.parse_args() | |
print(f'args = {args}') | |
return args | |
def _convert_ds_transformer_state(sd_list): | |
new_sd = OrderedDict() | |
for i, sd in enumerate(sd_list): | |
for key, value in sd.items(): | |
new_key = f'layers.{i}.{key}' | |
new_sd[new_key] = value | |
return new_sd | |
def _create_checkpoint_paths(base_folder, iteration, tp_degree, pp_degree): | |
path_list = [] | |
iter_folder = f'iter_{iteration:07d}' | |
for i in range(0, tp_degree): | |
path_list.append([]) | |
for j in range(0, pp_degree): | |
rank_folder = f'mp_rank_{i:02d}' if pp_degree == 1 else f'mp_rank_{i:02d}_{j:03d}' | |
ckpt_path = os.path.join(rank_folder, 'model_optim_rng.pt') | |
path_list[i].append(os.path.join(base_folder, iter_folder, ckpt_path)) | |
return path_list | |
def _create_megatron_dict(): | |
language_model_dict = { | |
EMBEDDING_KEY: {}, | |
ENCODER_KEY: {} | |
} | |
megatron_dict = { | |
MODEL_KEY: {LANGUGAGE_MODEL_KEY: language_model_dict}, | |
CHECKPOINT_VERSION_KEY: CHECKPOINT_VERSION_VALUE | |
} | |
return megatron_dict | |
def _save_checkpoint(file_path, chkpt_sd): | |
dir, _ = os.path.split(file_path) | |
os.makedirs(dir, exist_ok=True) | |
torch.save(chkpt_sd, file_path) | |
def _renest_sd(sd): | |
new_sd = OrderedDict() | |
for key, value in sd.items(): | |
a, b = key.split('.') | |
new_sd[a] = {b: value} | |
return new_sd | |
def _create_rank_checkpoint(ds_checkpoint, tp_index, pp_index, for_release=False): | |
meg_encoder_sd = OrderedDict() | |
meg_embedding_sd = OrderedDict() | |
meg_embedding_for_head_sd = OrderedDict() | |
transformer_sd = ds_checkpoint.get_transformer_state(tp_index, pp_index) | |
meg_encoder_sd.update(_convert_ds_transformer_state(transformer_sd)) | |
if pp_index in [0, ds_checkpoint.pp_degree - 1]: | |
embedding_sd = ds_checkpoint.get_embedding_state(tp_index) | |
nested_embedding_sd = _renest_sd(embedding_sd) | |
if pp_index == 0: | |
meg_embedding_sd.update(nested_embedding_sd) | |
if pp_index == ds_checkpoint.pp_degree -1: | |
for key, value in embedding_sd.items(): | |
if key.startswith(WORD_EMBEDDINGS_KEY): | |
fields = key.split('.') | |
new_fields = fields[1:] | |
new_key = '.'.join(new_fields) | |
meg_embedding_for_head_sd[new_key] = value | |
final_norm_sd = ds_checkpoint.get_final_norm_state(tp_index) | |
new_final_norm_sd = {f'{FINAL_LAYER_NORM_KEY}.{key}': value for key, value in final_norm_sd.items()} | |
meg_encoder_sd.update(new_final_norm_sd) | |
checkpoint_sd = _create_megatron_dict() | |
iteration = ds_checkpoint.get_iteration() | |
checkpoint_sd[ITERATION_KEY] = iteration | |
if pp_index == 0: | |
checkpoint_sd[MODEL_KEY][LANGUGAGE_MODEL_KEY][EMBEDDING_KEY] = meg_embedding_sd | |
checkpoint_sd[MODEL_KEY][LANGUGAGE_MODEL_KEY][ENCODER_KEY] = meg_encoder_sd | |
if pp_index == ds_checkpoint.pp_degree -1: | |
checkpoint_sd[MODEL_KEY][WORD_EMBEDDINGS_FOR_HEAD_KEY] = meg_embedding_for_head_sd | |
checkpoint_sd[ARGS_KEY] = ds_checkpoint.get_args() | |
# Adjust specific fields | |
checkpoint_sd[ARGS_KEY].tensor_model_parallel_size = ds_checkpoint.tp_degree | |
checkpoint_sd[ARGS_KEY].pipeline_model_parallel_size = ds_checkpoint.pp_degree | |
if for_release: | |
checkpoint_sd[ARGS_KEY].consumed_train_samples = 0 | |
checkpoint_sd[ARGS_KEY].consumed_valid_samples = 0 | |
return checkpoint_sd | |
def _create_latest_file(base_folder, iteration): | |
file_path = os.path.join(base_folder, 'latest_checkpointed_iteration.txt') | |
os.makedirs(base_folder, exist_ok=True) | |
with open(file_path, 'w') as f: | |
f.write(str(iteration)) | |
def main(): | |
print(f'Convert DeepSpeed Checkpoint to Megatron Checkpoint') | |
args = parse_arguments() | |
print(f'Converting DeepSpeed checkpoint in {args.input_folder} to Megatron checkpoint in {args.output_folder}') | |
ds_checkpoint = DeepSpeedCheckpoint(args.input_folder, args.target_tp, args.target_pp) | |
iteration = ds_checkpoint.get_iteration() | |
_create_latest_file(args.output_folder, iteration) | |
checkpoint_paths = _create_checkpoint_paths(args.output_folder, iteration, ds_checkpoint.tp_degree, ds_checkpoint.pp_degree) | |
for i in range(0, ds_checkpoint.tp_degree): | |
for j in range(0, ds_checkpoint.pp_degree): | |
sd = _create_rank_checkpoint(ds_checkpoint, i, j, args.for_release) | |
_save_checkpoint(checkpoint_paths[i][j], sd) | |
if __name__ == "__main__": | |
main() | |