peacock-data-public-datasets-idc-mint
/
docker
/bloom13b
/Model-References
/MLPERF3.1
/Training
/benchmarks
/gpt3
/megatron
/checkpointing.py
# coding=utf-8 | |
# Copyright (c) 2023 Habana Labs, Ltd. an Intel Company. | |
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Input/output checkpointing.""" | |
import os | |
import random | |
import sys | |
import numpy as np | |
import torch | |
from megatron import (get_args, | |
is_rank_0, | |
mpu, | |
print_rank_0, | |
update_num_microbatches, | |
utils, | |
get_tokenizer) | |
from tools.convert_checkpoint import verify_checkpoint | |
from megatron.enums import PositionEmbeddingType | |
_CHECKPOINT_VERSION = None | |
def set_checkpoint_version(value): | |
global _CHECKPOINT_VERSION | |
if _CHECKPOINT_VERSION is not None: | |
assert _CHECKPOINT_VERSION == value, \ | |
"checkpoint versions do not match" | |
_CHECKPOINT_VERSION = value | |
def get_checkpoint_version(): | |
global _CHECKPOINT_VERSION | |
return _CHECKPOINT_VERSION | |
def check_checkpoint_args(checkpoint_args): | |
"""Ensure fixed arguments for a model are the same for the input | |
arguments and the one retrieved from checkpoint.""" | |
args = get_args() | |
def _compare(arg_name, old_arg_name=None): | |
if old_arg_name is not None: | |
checkpoint_value = getattr(checkpoint_args, old_arg_name) | |
else: | |
checkpoint_value = getattr(checkpoint_args, arg_name) | |
args_value = getattr(args, arg_name) | |
error_message = '{} value from checkpoint ({}) is not equal to the ' \ | |
'input argument value ({}).'.format( | |
arg_name, checkpoint_value, args_value) | |
assert checkpoint_value == args_value, error_message | |
if not args.mos and not args.kd: | |
_compare('num_layers') | |
_compare('hidden_size') | |
_compare('num_attention_heads') | |
_compare('position_embedding_type') | |
# with alibi we can change `max_position_embeddings` | |
if args.position_embedding_type != PositionEmbeddingType.alibi: | |
_compare('max_position_embeddings') | |
if args.vocab_file: | |
_compare('make_vocab_size_divisible_by') | |
_compare('padded_vocab_size') | |
_compare('tokenizer_type') | |
if get_checkpoint_version() < 3.0: | |
_compare('tensor_model_parallel_size', | |
old_arg_name='model_parallel_size') | |
if get_checkpoint_version() >= 3.0: | |
_compare('tensor_model_parallel_size') | |
_compare('pipeline_model_parallel_size') | |
def ensure_directory_exists(filename): | |
"""Build filename's path if it does not already exists.""" | |
dirname = os.path.dirname(filename) | |
if not os.path.exists(dirname): | |
os.makedirs(dirname) | |
def get_checkpoint_name(checkpoints_path, iteration, | |
release=False): | |
"""A unified checkpoint name.""" | |
if release: | |
directory = 'release' | |
else: | |
directory = 'iter_{:07d}'.format(iteration) | |
# Use both the tensor and pipeline MP rank. | |
if mpu.get_pipeline_model_parallel_world_size() == 1: | |
return os.path.join(checkpoints_path, directory, | |
'mp_rank_{:02d}'.format( | |
mpu.get_tensor_model_parallel_rank()), | |
'model_optim_rng.pt') | |
return os.path.join(checkpoints_path, directory, | |
'mp_rank_{:02d}_{:03d}'.format( | |
mpu.get_tensor_model_parallel_rank(), | |
mpu.get_pipeline_model_parallel_rank()), | |
'model_optim_rng.pt') | |
def get_checkpoint_tracker_filename(checkpoints_path): | |
"""Tracker file rescords the latest chckpoint during | |
training to restart from.""" | |
return os.path.join(checkpoints_path, 'latest_checkpointed_iteration.txt') | |
def save_checkpoint(iteration, model, optimizer, lr_scheduler): | |
"""Save a model checkpoint.""" | |
args = get_args() | |
# Only rank zero of the data parallel writes to the disk. | |
if not args.deepspeed: | |
model = utils.unwrap_model(model) | |
print_rank_0('saving checkpoint at iteration {:7d} to {}'.format( | |
iteration, args.save)) | |
if not torch.distributed.is_initialized() or mpu.get_data_parallel_rank() == 0 \ | |
or args.deepspeed: | |
# Arguments, iteration, and model. | |
state_dict = {} | |
state_dict['args'] = args | |
state_dict['checkpoint_version'] = 3.0 | |
state_dict['iteration'] = iteration | |
state_dict['tokens'] = args.consumed_train_tokens | |
state_dict['checkpoint_info'] = _checkpoint_info() | |
# DeepSpeed saves the model/optimizer/scheduler | |
if not args.deepspeed: | |
if len(model) == 1: | |
state_dict['model'] = model[0].state_dict_for_save_checkpoint() | |
else: | |
for i in range(len(model)): | |
mpu.set_virtual_pipeline_model_parallel_rank(i) | |
state_dict['model%d' % i] = model[i].state_dict_for_save_checkpoint() | |
# Optimizer stuff. | |
if not args.no_save_optim: | |
if optimizer is not None: | |
state_dict['optimizer'] = optimizer.state_dict() | |
if lr_scheduler is not None: | |
state_dict['lr_scheduler'] = lr_scheduler.state_dict() | |
# RNG states. | |
if not args.no_save_rng: | |
state_dict['random_rng_state'] = random.getstate() | |
state_dict['np_rng_state'] = np.random.get_state() | |
state_dict['torch_rng_state'] = torch.get_rng_state() | |
if get_args().device.type == "cuda": | |
state_dict['cuda_rng_state'] = torch.cuda.get_rng_state() | |
elif get_args().device.type == "hpu": | |
import habana_frameworks.torch.hpu.random as rand_hpu | |
state_dict['cuda_rng_state'] = rand_hpu.get_rng_state() | |
state_dict['rng_tracker_states'] \ | |
= mpu.get_cuda_rng_tracker().get_states() | |
# Save. | |
checkpoint_name = get_checkpoint_name(args.save, iteration) | |
if not args.deepspeed: | |
ensure_directory_exists(checkpoint_name) | |
torch.save(state_dict, checkpoint_name) | |
if args.deepspeed: | |
#megatron model uses state_dict_for_save_checkpointing instead of the standard state_dict | |
#state_dict is used by deepspeed for module saving so it needs to point to the right function | |
if args.no_pipeline_parallel: | |
original_state_dict = model[0].module.state_dict | |
model[0].module.state_dict = model[0].module.state_dict_for_save_checkpoint | |
# Saving is a collective communication | |
checkpoint_name = get_checkpoint_name(args.save, iteration) | |
# Trim off the filename and mp_rank_* directory. | |
for _ in range(3): | |
checkpoint_name = os.path.dirname(checkpoint_name) | |
model[0].save_checkpoint(checkpoint_name, client_state=state_dict) | |
if args.no_pipeline_parallel: | |
model[0].module.state_dict = original_state_dict | |
# Wait so everyone is done (necessary) | |
if torch.distributed.is_initialized(): | |
torch.distributed.barrier() | |
print_rank_0(' successfully saved checkpoint at iteration {:7d} to {}'.format( | |
iteration, args.save)) | |
# And update the latest iteration | |
if is_rank_0(): | |
if args.verify_checkpoint: | |
ckpt_folder = os.path.join(args.save, f"global_step{iteration}") | |
prev_iter = iteration - args.save_interval | |
ckpt_ok = verify_checkpoint(ckpt_folder,args.verify_checkpoint_model_type,sequence_parallel=args.sequence_parallel) | |
if not ckpt_ok: | |
# Fix latest file to previous valid ckpt | |
with open(os.path.join(args.save, 'latest'), 'w') as fd: | |
fd.write(f"global_step{prev_iter}") | |
raise RuntimeError(f"verify_checkpoint failed!!! {ckpt_folder}") | |
else: | |
print_rank_0(f"successfully passed ckpt validation: {ckpt_folder}") | |
tracker_filename = get_checkpoint_tracker_filename(args.save) | |
with open(tracker_filename, 'w') as f: | |
f.write(str(iteration)) | |
# Wait so everyone is done (not necessary) | |
if torch.distributed.is_initialized(): | |
torch.distributed.barrier() | |
def _transpose_first_dim(t, num_splits, num_splits_first, model): | |
input_shape = t.size() | |
# We use a self_attention module but the values extracted aren't | |
# specific to self attention so should work for cross attention as well | |
while hasattr(model, 'module'): | |
model = model.module | |
attention_module = model.language_model.encoder.layers[0].self_attention | |
hidden_size_per_attention_head = attention_module.hidden_size_per_attention_head | |
num_attention_heads_per_partition = attention_module.num_attention_heads_per_partition | |
if num_splits_first: | |
"""[num_splits * np * hn, h] | |
-->(view) [num_splits, np, hn, h] | |
-->(tranpose) [np, num_splits, hn, h] | |
-->(view) [np * num_splits * hn, h] """ | |
intermediate_shape = \ | |
(num_splits, num_attention_heads_per_partition, | |
hidden_size_per_attention_head) + input_shape[1:] | |
t = t.view(*intermediate_shape) | |
t = t.transpose(0, 1).contiguous() | |
else: | |
"""[np * hn * num_splits, h] | |
-->(view) [np, hn, num_splits, h] | |
-->(tranpose) [np, num_splits, hn, h] | |
-->(view) [np * num_splits * hn, h] """ | |
intermediate_shape = \ | |
(num_attention_heads_per_partition, | |
hidden_size_per_attention_head, num_splits) +\ | |
input_shape[1:] | |
t = t.view(*intermediate_shape) | |
t = t.transpose(1, 2).contiguous() | |
t = t.view(*input_shape) | |
return t | |
def fix_query_key_value_ordering(model, checkpoint_version): | |
"""Fix up query/key/value matrix ordering if checkpoint | |
version is smaller than 2.0 | |
""" | |
if checkpoint_version < 2.0: | |
if isinstance(model, list): | |
assert len(model)==1 | |
model = model[0] | |
for name, param in model.named_parameters(): | |
if name.endswith(('.query_key_value.weight', '.query_key_value.bias')): | |
if checkpoint_version == 0: | |
fixed_param = _transpose_first_dim(param.data, 3, True, model) | |
elif checkpoint_version == 1.0: | |
fixed_param = _transpose_first_dim(param.data, 3, False, model) | |
else: | |
print_rank_0(f"Invalid checkpoint version {checkpoint_version}.") | |
sys.exit() | |
param.data.copy_(fixed_param) | |
if name.endswith(('.key_value.weight', '.key_value.bias')): | |
if checkpoint_version == 0: | |
fixed_param = _transpose_first_dim(param.data, 2, True, model) | |
elif checkpoint_version == 1.0: | |
fixed_param = _transpose_first_dim(param.data, 2, False, model) | |
else: | |
print_rank_0(f"Invalid checkpoint version {checkpoint_version}.") | |
sys.exit() | |
param.data.copy_(fixed_param) | |
print_rank_0(" succesfully fixed query-key-values ordering for" | |
" checkpoint version {}".format(checkpoint_version)) | |
def load_checkpoint(model, optimizer, lr_scheduler, load_arg='load', strict=True, load_only_weights=False): | |
"""Load a model checkpoint and return the iteration. | |
strict (bool): whether to strictly enforce that the keys in | |
:attr:`state_dict` of the checkpoint match the names of | |
parameters and buffers in model. | |
""" | |
args = get_args() | |
load_dir = getattr(args, load_arg) | |
if args.deepspeed: | |
loaded_dir, state_dict = model[0].load_checkpoint(load_dir,load_module_strict=strict) | |
if loaded_dir is None: | |
print_rank_0('WARNING: could not find the metadata file {} '.format( | |
load_dir)) | |
print_rank_0(' will not load any checkpoints and will start from ' | |
'random') | |
return 0 | |
release = False | |
else: | |
model = utils.unwrap_model(model) | |
# Read the tracker file and set the iteration. | |
tracker_filename = get_checkpoint_tracker_filename(load_dir) | |
# If no tracker file, return iretation zero. | |
if not os.path.isfile(tracker_filename): | |
print_rank_0('WARNING: could not find the metadata file {} '.format( | |
tracker_filename)) | |
print_rank_0(' will not load any checkpoints and will start from ' | |
'random') | |
return 0 | |
# Otherwise, read the tracker file and either set the iteration or | |
# mark it as a release checkpoint. | |
iteration = 0 | |
release = False | |
with open(tracker_filename, 'r') as f: | |
metastring = f.read().strip() | |
try: | |
iteration = int(metastring) | |
except ValueError: | |
release = metastring == 'release' | |
if not release: | |
print_rank_0('ERROR: Invalid metadata file {}. Exiting'.format( | |
tracker_filename)) | |
sys.exit() | |
if not args.mos and not args.kd: | |
assert iteration > 0 or release, 'error parsing metadata file {}'.format( | |
tracker_filename) | |
# Checkpoint. | |
checkpoint_name = get_checkpoint_name(load_dir, iteration, release) | |
print_rank_0(f' loading checkpoint from {args.load} at iteration {iteration}') | |
# Load the checkpoint. | |
try: | |
state_dict = torch.load(checkpoint_name, map_location='cpu') | |
except ModuleNotFoundError: | |
from megatron.fp16_deprecated import loss_scaler | |
# For backward compatibility. | |
print_rank_0(' > deserializing using the old code structure ...') | |
sys.modules['fp16.loss_scaler'] = sys.modules[ | |
'megatron.fp16_deprecated.loss_scaler'] | |
sys.modules['megatron.fp16.loss_scaler'] = sys.modules[ | |
'megatron.fp16_deprecated.loss_scaler'] | |
state_dict = torch.load(checkpoint_name, map_location='cpu') | |
sys.modules.pop('fp16.loss_scaler', None) | |
sys.modules.pop('megatron.fp16.loss_scaler', None) | |
except BaseException as e: | |
print_rank_0('could not load the checkpoint') | |
print_rank_0(e) | |
sys.exit() | |
# set checkpoint version | |
set_checkpoint_version(state_dict.get('checkpoint_version', 0)) | |
# Set iteration. | |
if args.finetune or release or args.reset_iteration or load_only_weights: | |
iteration = 0 | |
# Make DeepSpeed engine aware of this reset of iteration | |
model[0].global_steps = 0 | |
else: | |
try: | |
iteration = state_dict['iteration'] | |
if 'tokens' in state_dict: | |
args.consumed_train_tokens = state_dict['tokens'] | |
except KeyError: | |
try: # Backward compatible with older checkpoints | |
iteration = state_dict['total_iters'] | |
except KeyError: | |
print_rank_0('A metadata file exists but unable to load ' | |
'iteration from checkpoint {}, exiting'.format( | |
checkpoint_name)) | |
sys.exit() | |
# Check arguments. | |
reset_train_valid_samples = args.reset_iteration | |
if not load_only_weights and not reset_train_valid_samples: | |
assert args.consumed_train_samples == 0 | |
assert args.consumed_valid_samples == 0 | |
if 'args' in state_dict: | |
checkpoint_args = state_dict['args'] | |
if not args.universal_checkpoint: | |
check_checkpoint_args(checkpoint_args) | |
args.consumed_train_samples = getattr(checkpoint_args, | |
'consumed_train_samples', 0) | |
update_num_microbatches(consumed_samples=args.consumed_train_samples) | |
args.consumed_valid_samples = getattr(checkpoint_args, | |
'consumed_valid_samples', 0) | |
else: | |
print_rank_0('could not find arguments in the checkpoint ...') | |
# Model. | |
if not args.deepspeed: | |
if len(model) == 1: | |
model[0].load_state_dict(state_dict['model'], strict=strict) | |
else: | |
for i in range(len(model)): | |
mpu.set_virtual_pipeline_model_parallel_rank(i) | |
model[i].load_state_dict(state_dict['model%d' % i], strict=strict) | |
# Fix up query/key/value matrix ordering if needed | |
checkpoint_version = get_checkpoint_version() | |
print_rank_0(f' checkpoint version {checkpoint_version}') | |
fix_query_key_value_ordering(model, checkpoint_version) | |
# Optimizer. | |
if not args.deepspeed: | |
if not release and not args.finetune and not args.no_load_optim: | |
try: | |
if optimizer is not None: | |
optimizer.load_state_dict(state_dict['optimizer']) | |
if lr_scheduler is not None and not args.no_load_lr_state: | |
lr_scheduler.load_state_dict(state_dict['lr_scheduler']) | |
except KeyError: | |
print_rank_0('Unable to load optimizer from checkpoint {}. ' | |
'Specify --no-load-optim or --finetune to prevent ' | |
'attempting to load the optimizer state, ' | |
'exiting ...'.format(checkpoint_name)) | |
sys.exit() | |
# rng states. | |
if not release and not args.finetune and not args.no_load_rng: | |
try: | |
random.setstate(state_dict['random_rng_state']) | |
np.random.set_state(state_dict['np_rng_state']) | |
torch.set_rng_state(state_dict['torch_rng_state']) | |
if get_args().device.type == "cuda": | |
torch.cuda.set_rng_state(state_dict['cuda_rng_state']) | |
elif get_args().device.type == "hpu": | |
import habana_frameworks.torch as htcore | |
htcore.hpu.random.set_rng_state(state_dict['cuda_rng_state']) | |
# Check for empty states array | |
if not state_dict['rng_tracker_states']: | |
raise KeyError | |
mpu.get_cuda_rng_tracker().set_states( | |
state_dict['rng_tracker_states']) | |
except KeyError: | |
print_rank_0('Unable to load rng state from checkpoint {}. ' | |
'Specify --no-load-rng or --finetune to prevent ' | |
'attempting to load the rng state, ' | |
'exiting ...'.format(checkpoint_name)) | |
sys.exit() | |
# Some utilities want to load a checkpoint without distributed being initialized | |
if torch.distributed.is_initialized(): | |
torch.distributed.barrier() | |
print_rank_0(f' successfully loaded checkpoint from {args.load} ' | |
f'at iteration {iteration}') | |
return iteration | |
def load_biencoder_checkpoint(model, only_query_model=False, | |
only_context_model=False, custom_load_path=None): | |
""" | |
selectively load retrieval models for indexing/retrieving | |
from saved checkpoints | |
""" | |
args = get_args() | |
model = utils.unwrap_model(model) | |
load_path = custom_load_path if custom_load_path is not None else args.load | |
tracker_filename = get_checkpoint_tracker_filename(load_path) | |
with open(tracker_filename, 'r') as f: | |
iteration = int(f.read().strip()) | |
checkpoint_name = get_checkpoint_name(load_path, iteration, False) | |
if mpu.get_data_parallel_rank() == 0: | |
print('global rank {} is loading checkpoint {}'.format( | |
torch.distributed.get_rank(), checkpoint_name)) | |
state_dict = torch.load(checkpoint_name, map_location='cpu') | |
ret_state_dict = state_dict['model'] | |
if only_query_model: | |
ret_state_dict.pop('context_model') | |
if only_context_model: | |
ret_state_dict.pop('query_model') | |
assert len(model) == 1 | |
model[0].load_state_dict(ret_state_dict) | |
torch.distributed.barrier() | |
if mpu.get_data_parallel_rank() == 0: | |
print(' successfully loaded {}'.format(checkpoint_name)) | |
return model | |
def _checkpoint_info(): | |
args = get_args() | |
tokenizer = get_tokenizer() | |
return { | |
"padded_vocab_size": args.padded_vocab_size, | |
"original_vocab_size": tokenizer.vocab_size, | |
} | |