applied-ai-018's picture
Add files using upload-large-folder tool
14a7d24 verified
import os
import time
import tensorflow as tf
from copy import deepcopy
from collections import defaultdict
from tensorboard.plugins.hparams import api as hp
from tensorflow.python.eager import context
from tensorflow.keras import backend as K
from tensorflow.python.ops import summary_ops_v2
from tensorflow.python.summary import summary as tf_summary
from tensorflow.python.training.summary_io import SummaryWriterCache
from tensorflow.compat.v1.keras.callbacks import TensorBoard, Callback
from tensorflow.python.training.session_run_hook import SessionRunHook, SessionRunArgs
def _remove_prefix(s, prefix):
if s.startswith(prefix):
s = s[len(prefix):]
return s
def _parse_precision(hparams: dict):
# Check if 'hparams' contain data type.
if 'dtype' in hparams or 'data_type' in hparams:
param_name = 'dtype' if 'dtype' in hparams else 'data_type'
return hparams[param_name]
# Check if bf16 conversion flags are set.
flag = os.environ.get('TF_BF16_CONVERSION', '0')
flag = flag.lower()
try:
value = int(flag)
except:
value = -1
if flag == 'false' or value == 0:
return 'fp32'
elif flag == 'true' or value == 1:
return 'bf16'
return flag
def _set_precision_if_missing(hparams: dict):
if 'precision' not in hparams:
hparams['precision'] = _parse_precision(hparams)
return hparams
def _copy_and_clean_hparams(hparams: dict):
hparams_ = dict()
for name, value in hparams.items():
if isinstance(value, (str, bool, int, float)):
hparams_[name] = value
continue
try:
hparams_[name] = str(value)
except:
tf.compat.v1.logging.info(
f'Conversion of parameter "{name}" to string failed. '
'Parameter will not be saved.')
return hparams_
def write_hparams_v1(writer, hparams: dict):
hparams = _copy_and_clean_hparams(hparams)
hparams = _set_precision_if_missing(hparams)
with tf.compat.v1.Graph().as_default():
if isinstance(writer, str):
writer = SummaryWriterCache.get(writer)
summary = hp.hparams_pb(hparams).SerializeToString()
writer.add_summary(summary)
def write_hparams_v2(writer, hparams: dict):
hparams = _copy_and_clean_hparams(hparams)
hparams = _set_precision_if_missing(hparams)
with writer.as_default():
hp.hparams(hparams)
class ExamplesPerSecondEstimatorHook(tf.compat.v1.train.StepCounterHook):
"""Calculate and report global_step/sec and examples/sec during runtime."""
# Copy-pasted from tensorflow_estimator/python/estimator/tpu/tpu_estimator.py
def __init__(self,
batch_size=None,
every_n_steps=1,
every_n_secs=None,
output_dir=None,
summary_writer=None,
extra_metrics=None,
log_global_step=False,
verbose=False,
tags_to_print=None):
super().__init__(
every_n_steps=every_n_steps,
every_n_secs=every_n_secs,
output_dir=output_dir,
summary_writer=summary_writer)
self._metrics = extra_metrics or {}
self._verbose = verbose
self._tags_to_print = tags_to_print
if log_global_step:
# Because estimator will log global_step/sec by default
# when log_step_count_steps is not None saving it here
# would duplicate events in TensorBoard.
# Use log_global_step=True when RunConfig.log_step_count_step=None
self._metrics['global_step/sec'] = 1
if batch_size is not None:
self._metrics['examples/sec'] = batch_size
def _add_summary(self, tag, value, step):
Summary = tf.compat.v1.Summary
global_step_summary = Summary(value=[
Summary.Value(tag=tag, simple_value=value)
])
self._summary_writer.add_summary(global_step_summary, step)
if (self._verbose or
(self._tags_to_print is not None and tag in self._tags_to_print)):
tf.compat.v1.logging.info(f'{tag}: {value}')
def _log_and_record(self, elapsed_steps, elapsed_time, global_step):
global_step_per_sec = elapsed_steps / elapsed_time
if self._summary_writer is not None:
for name, factor in self._metrics.items():
value = factor * global_step_per_sec
self._add_summary(name, value, global_step)
def after_create_session(self, session, coord):
self._timer.reset()
class ExamplesPerSecondKerasHookV1(Callback):
def __init__(self,
every_n_steps=1,
every_n_secs=None,
output_dir=None,
summary_writer=None,
batch_size=None):
self.writer = summary_writer or SummaryWriterCache.get(output_dir)
self._timer = tf.compat.v1.train.SecondOrStepTimer(
every_n_secs, every_n_steps)
self._global_step = 0
self._total_examples = 0
self._should_trigger = True
self._batch_size = batch_size
def on_train_begin(self, logs=None):
self._timer.reset()
def on_train_batch_begin(self, batch, logs=None):
# batch is index within current epoch, if we want to dump data through all epochs then we need to use global_step
self._should_trigger = self._timer.should_trigger_for_step(self._global_step)
def on_predict_batch_end(self, batch, logs=None):
self._global_step += 1
def on_train_batch_end(self, batch, logs=None):
step = self._global_step
self._total_examples += logs.get('size', 0)
if self._should_trigger:
elapsed_time, elapsed_steps = self._timer.update_last_triggered_step(
step)
if elapsed_time is not None:
total_examples = self._total_examples
if self._batch_size is not None:
total_examples = self._batch_size * elapsed_steps
self._log_and_record(
elapsed_steps, elapsed_time, step, total_examples)
self._total_examples = 0
self._global_step += 1
def _log_and_record(self, elapsed_steps, elapsed_time,
global_step, total_examples=None):
Summary = tf.compat.v1.Summary
global_step_per_sec = elapsed_steps / elapsed_time
if self.writer is not None:
global_step_summary = Summary(value=[
Summary.Value(
tag='global_step/sec', simple_value=global_step_per_sec)
])
self.writer.add_summary(global_step_summary, global_step)
if total_examples is not None:
examples_per_sec = total_examples / elapsed_time
example_summary = Summary(value=[
Summary.Value(tag='examples/sec',
simple_value=examples_per_sec)
])
self.writer.add_summary(example_summary, global_step)
class ExamplesPerSecondKerasHookV2(ExamplesPerSecondKerasHookV1):
def __init__(self,
every_n_steps=1,
every_n_secs=None,
output_dir=None,
summary_writer=None,
batch_size=None):
writer = summary_writer or summary_ops_v2.create_file_writer_v2(output_dir)
super().__init__(every_n_steps, every_n_secs, output_dir, writer, batch_size)
def _log_and_record(self, elapsed_steps, elapsed_time,
global_step, total_examples=None):
global_step_per_sec = elapsed_steps / elapsed_time
if self.writer is not None:
with self.writer.as_default(), summary_ops_v2.always_record_summaries():
summary_ops_v2.scalar('global_step/sec', global_step_per_sec,
step=global_step)
if total_examples is not None:
examples_per_sec = total_examples / elapsed_time
summary_ops_v2.scalar('examples/sec', examples_per_sec,
step=global_step)
ExamplesPerSecondKerasHook = ExamplesPerSecondKerasHookV1
class TBSummary(object):
"""
Creates a proxy for FileWriter for TensorBoard.
:param log_dir: - path where experiment is running (usually the same as
model_dir in Estimator)
"""
def __init__(self, log_dir: str):
super().__init__()
self._log_dir = log_dir
def __enter__(self):
return self
def __exit__(self, exc_type, exc_val, exc_tb):
pass
def add_scalar(self, tag, value, global_step=None):
with tf.compat.v1.Graph().as_default():
writer = SummaryWriterCache.get(self._log_dir)
summary = tf.compat.v1.Summary(
value=[tf.compat.v1.Summary.Value(tag=tag, simple_value=value)])
event = tf.compat.v1.Event(summary=summary)
event.wall_time = time.time()
event.step = global_step
writer.add_event(event)
class TensorBoardWithHParamsV1(TensorBoard):
"""
Adds TensorBoard visualization to training process.
Writes training tfevent file into default log directory, but
stores evaluation in log_dir/eval subdirectory.
"""
def __init__(self, hparams, *args, **kwargs):
super().__init__(*args, **kwargs)
self.hparams = hparams
self._train_summary = None
self._eval_summary = None
def _switch_writer(self, mode):
self.writer = self._train_summary if mode == 'train' else self._eval_summary
def _init_writer(self, model):
"""Sets file writer."""
if context.executing_eagerly():
raise NotImplementedError('hook does not support eager execution')
self._train_summary = SummaryWriterCache.get(self.log_dir)
self._eval_summary = SummaryWriterCache.get(
os.path.join(self.log_dir, 'eval'))
self._switch_writer('train')
write_hparams_v1(self.writer, self.hparams)
def _write_custom_summaries(self, step, logs=None):
"""
This methods works on the assumption that metrics containing `val`
in name are related to validation (that's the default in Keras).
"""
logs = logs or {}
train_logs = {}
eval_logs = {}
for name, value in logs.items():
if 'val' in name:
if name.startswith('batch_val_'):
name = 'batch_' + _remove_prefix(name, 'batch_val_')
elif name.startswith('epoch_val_'):
name = _remove_prefix(name, 'epoch_val_')
eval_logs[name] = value
else:
if name.startswith('batch_'):
name = _remove_prefix(name, 'batch_')
train_logs[name] = value
self._switch_writer('eval')
super()._write_custom_summaries(step, eval_logs)
self._switch_writer('train')
super()._write_custom_summaries(step, train_logs)
class TensorBoardWithHParamsV2(TensorBoard):
"""
Adds TensorBoard visualization to training process.
Writes training tfevent file into default log directory, but
stores evaluation in log_dir/eval subdirectory.
"""
def __init__(self, hparams, *args, **kwargs):
super().__init__(*args, **kwargs)
self.hparams = hparams
def set_model(self, model):
"""Sets Keras model and writes graph if specified."""
self.model = model
self._log_write_dir = self._get_log_write_dir()
self._train_dir = self._log_write_dir
self._train_step = self.model._train_counter # pylint: disable=protected-access
self._val_dir = os.path.join(self._log_write_dir, 'eval')
self._val_step = self.model._test_counter # pylint: disable=protected-access
self._writers = {} # Resets writers.
self._should_write_train_graph = False
if self.write_graph:
self._write_keras_model_summary()
self._should_write_train_graph = True
if self.embeddings_freq:
self._configure_embeddings()
write_hparams_v2(self._train_writer, self.hparams)
def _log_epoch_metrics(self, epoch, logs):
"""Writes epoch metrics out as scalar summaries.
Arguments:
epoch: Int. The global step to use for TensorBoard.
logs: Dict. Keys are scalar summary names, values are scalars.
"""
if not logs:
return
train_logs = {k: v for k,
v in logs.items() if not k.startswith('val_')}
val_logs = {k: v for k, v in logs.items() if k.startswith('val_')}
train_logs = self._collect_learning_rate(train_logs)
with summary_ops_v2.always_record_summaries():
if train_logs:
with self._train_writer.as_default():
for name, value in train_logs.items():
summary_ops_v2.scalar(name, value, step=epoch)
if val_logs:
with self._val_writer.as_default():
for name, value in val_logs.items():
name = name[4:] # Remove 'val_' prefix.
summary_ops_v2.scalar(name, value, step=epoch)
class TensorBoardHook(SessionRunHook):
def __init__(self,
output_dir="",
profile_steps=""
):
self.output_dir = output_dir
profile_steps_error_message = (
'profile_steps must be a comma separated pair of positive integers, '
'specifying the first and last steps to be profiled.'
)
try:
profile_steps = [int(i) for i in profile_steps.split(',')]
except ValueError:
raise ValueError(profile_steps_error_message)
if len(profile_steps) != 2:
raise ValueError(profile_steps_error_message)
self.start_step, self.stop_step = profile_steps
if self.start_step < 0 or self.start_step > self.stop_step:
raise ValueError(profile_steps_error_message)
self._step = 0
def before_run(self, run_context):
self._step += 1
if self._step == self.start_step:
tf.profiler.experimental.start(self.output_dir)
elif self._step == self.stop_step + 1:
tf.profiler.experimental.stop()
return SessionRunArgs({})
class TimeToTrainKerasHook(Callback):
def __init__(self, output_dir=None, summary_writer=None):
self.writer = summary_writer or summary_ops_v2.create_file_writer_v2(output_dir)
self.counters = defaultdict(int)
def _add_event(self, tag, step):
if self.writer is not None:
with self.writer.as_default(), summary_ops_v2.always_record_summaries():
summary_ops_v2.scalar(tag, 0, step=step)
def on_epoch_begin(self, epoch, logs=None):
self._add_event("ttt/train/epoch/begin", epoch)
def on_epoch_end(self, epoch, logs=None):
self._add_event("ttt/train/epoch/end", epoch)
def on_train_begin(self, logs=None):
self._add_event("ttt/train/begin", self.counters["train"])
def on_train_end(self, logs=None):
self._add_event("ttt/train/end", self.counters["train"])
self.counters["train"] += 1
def on_test_begin(self, logs=None):
self._add_event("ttt/eval/begin", self.counters["eval"])
def on_test_end(self, logs=None):
self._add_event("ttt/eval/end", self.counters["eval"])
self.counters["eval"] += 1
def on_predict_begin(self, logs=None):
self._add_event("ttt/predict/begin", self.counters["predict"])
def on_predict_end(self, logs=None):
self._add_event("ttt/predict/end", self.counters["predict"])
self.counters["predict"] += 1
class TimeToTrainEstimatorHook(tf.estimator.SessionRunHook):
def __init__(self, train_or_eval, output_dir):
assert train_or_eval in ("eval", "train")
self._summary_writer = None
self._output_dir = output_dir
self._tag = train_or_eval
self._counter = 0
def _add_event(self, tag, value):
summary = tf.compat.v1.Summary(
value=[
tf.compat.v1.Summary.Value(
tag=tag,
simple_value=0)
]
)
event = tf.compat.v1.Event(summary=summary)
event.wall_time = time.time()
event.step = self._counter
self._summary_writer.add_event(event)
def begin(self):
if self._summary_writer is None and self._output_dir:
self._summary_writer = SummaryWriterCache.get(self._output_dir)
self._add_event(f"ttt/{self._tag}/begin", self._counter)
def after_create_session(self, session, coord):
pass
def before_run(self, run_context):
pass
def after_run(self, run_context, run_values):
pass
def end(self, session):
self._add_event(f"ttt/{self._tag}/end", self._counter)
self._counter += 1