peacock-data-public-datasets-idc-mint
/
docker
/bloom13b
/Model-References
/TensorFlow
/nlp
/bert
/run_pretraining.py
# coding=utf-8 | |
# Copyright (c) 2019 NVIDIA CORPORATION. All rights reserved. | |
# Copyright 2018 The Google AI Language Team Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
############################################################################### | |
# Copyright (C) 2020-2022 Habana Labs, Ltd. an Intel Company | |
# | |
# Changes: | |
# - Added default values for environment variables: | |
# - TF_DISABLE_MKL | |
# - TF_BF16_CONVERSION | |
# - TF_PRELIMINARY_CLUSTER_SIZE | |
# - TF_DISABLE_SCOPED_ALLOCATOR | |
# - FORCE_WEIGHT_SYNC | |
# - Added support for packed dataset | |
# - Added support for HPU profiling (command-line flag - `profile`). | |
# - Added line tf.get_logger().propagate = False | |
# - Added functionality for reading value for the flag --avg_seq_per_sample | |
# from packed dataset metadata file created with pack_pretraining_data_tfrec.py script. | |
# - Added option to save full pretrained model by using --export_dir flag | |
# - Added keep_checkpoint_max flag | |
############################################################################### | |
"""Run masked LM/next sentence masked_lm pre-training for BERT.""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import numpy as np | |
import os | |
import random | |
import sys | |
import time | |
import TensorFlow.nlp.bert.modeling as modeling | |
import TensorFlow.nlp.bert.optimization as optimization | |
import tensorflow as tf | |
import glob | |
import json | |
from TensorFlow.nlp.bert.utils.utils import LogEvalRunHook | |
import TensorFlow.nlp.bert.utils.dllogger_class as dllogger_class | |
from dllogger import Verbosity | |
from tensorflow.core.protobuf import rewriter_config_pb2 | |
from TensorFlow.common.tb_utils import ExamplesPerSecondEstimatorHook, write_hparams_v1, TensorBoardHook | |
from habana_frameworks.tensorflow.multinode_helpers import comm_local_rank | |
from TensorFlow.common.debug import dump_callback | |
from TensorFlow.nlp.bert.data_preprocessing.pack_pretraining_data_tfrec import get_metadata_file_path | |
try: | |
import horovod.tensorflow as hvd | |
except ImportError: | |
hvd = None | |
def horovod_enabled(): | |
return hvd is not None and hvd.is_initialized() | |
tf.get_logger().propagate = False | |
curr_path = os.path.abspath(os.path.dirname(__file__)) | |
sys.path.append(os.path.join(curr_path, '..', '..')) | |
from habana_frameworks.tensorflow import load_habana_module | |
flags = tf.compat.v1.flags | |
FLAGS = flags.FLAGS | |
from tensorflow.python.framework.tensor import Tensor | |
from typing import Union | |
def init_flags(): | |
## Required parameters | |
flags.DEFINE_string( | |
"bert_config_file", None, | |
"The config json file corresponding to the pre-trained BERT model. " | |
"This specifies the model architecture.") | |
flags.DEFINE_string( | |
"input_files_dir", None, | |
"Directory with input files, comma separated or single directory.") | |
flags.DEFINE_string( | |
"eval_files_dir", None, | |
"Directory with eval files, comma separated or single directory. ") | |
flags.DEFINE_string( | |
"output_dir", None, | |
"The output directory where the model checkpoints will be written.") | |
## Other parameters | |
flags.DEFINE_string( | |
"dllog_path", "/results/bert_dllog.json", | |
"filename where dllogger writes to") | |
flags.DEFINE_string( | |
"init_checkpoint", None, | |
"Initial checkpoint (usually from a pre-trained BERT model).") | |
flags.DEFINE_string( | |
"export_dir", None, | |
"Directory to save full trained model") | |
flags.DEFINE_string( | |
"optimizer_type", "lamb", | |
"Optimizer used for training - LAMB or ADAM") | |
flags.DEFINE_integer( | |
"max_seq_length", 512, | |
"The maximum total input sequence length after WordPiece tokenization. " | |
"Sequences longer than this will be truncated, and sequences shorter " | |
"than this will be padded. Must match data generation.") | |
flags.DEFINE_integer( | |
"max_predictions_per_seq", 80, | |
"Maximum number of masked LM predictions per sequence. " | |
"Must match data generation.") | |
flags.DEFINE_bool("do_train", False, "Whether to run training.") | |
flags.DEFINE_bool("do_eval", False, "Whether to run eval on the dev set.") | |
flags.DEFINE_integer("train_batch_size", 32, "Total batch size for training.") | |
flags.DEFINE_integer("eval_batch_size", 8, "Total batch size for eval.") | |
flags.DEFINE_float("learning_rate", 5e-5, "The initial learning rate for Adam.") | |
flags.DEFINE_integer("num_train_steps", 100000, "Number of training steps.") | |
flags.DEFINE_integer("num_warmup_steps", 10000, "Number of warmup steps.") | |
flags.DEFINE_integer("save_checkpoints_steps", 1000, | |
"How often to save the model checkpoint.") | |
flags.DEFINE_integer("save_summary_steps", 1, | |
"How often to save the summary data.") | |
flags.DEFINE_integer("display_loss_steps", 10, | |
"How often to print loss") | |
flags.DEFINE_integer("iterations_per_loop", 1000, | |
"How many steps to make in each estimator call.") | |
flags.DEFINE_integer("max_eval_steps", 100, "Maximum number of eval steps.") | |
flags.DEFINE_integer("num_accumulation_steps", 1, | |
"Number of accumulation steps before gradient update." | |
"Global batch size = num_accumulation_steps * train_batch_size") | |
flags.DEFINE_bool("allreduce_post_accumulation", False, "Whether to all reduce after accumulation of N steps or after each step") | |
flags.DEFINE_bool( | |
"verbose_logging", False, | |
"If true, all of the trainable parameters are printed") | |
flags.DEFINE_bool("horovod", False, "Whether to use Horovod for multi-gpu runs") | |
flags.DEFINE_bool("report_loss", True, "Whether to report total loss during training.") | |
flags.DEFINE_bool("manual_fp16", False, "Whether to use fp32 or fp16 arithmetic on GPU. " | |
"Manual casting is done instead of using AMP") | |
flags.DEFINE_bool("amp", True, "Whether to enable AMP ops. When false, uses TF32 on A100 and FP32 on V100 GPUS.") | |
flags.DEFINE_bool("use_xla", True, "Whether to enable XLA JIT compilation.") | |
flags.DEFINE_integer("init_loss_scale", 2**32, "Initial value of loss scale if mixed precision training") | |
flags.DEFINE_bool("deterministic_run", False, "If set run will be deterministic (set random seed, read dataset in single thread, disable dropout)") | |
flags.DEFINE_string("bf16_config_path", None, "Defines config for tensor converson to bf16 data type") | |
flags.DEFINE_bool('enable_scoped_allocator', False, "Enable scoped allocator optimization") | |
flags.DEFINE_bool("resume", False, "Whether to resume training from init_checkpoint. " | |
"If enabled, global vars would be set from init_checkpoint.") | |
flags.DEFINE_string("profile", "", "Profile Steps range X-Y (e.g. --profile 7,10)") | |
flags.DEFINE_integer("keep_checkpoint_max", 2, "The maximum number of recent checkpoint files to keep.") | |
def set_random_seed(seed): | |
tf.compat.v1.set_random_seed(seed) | |
tf.random.set_seed(seed) | |
random.seed(seed) | |
np.random.seed(seed) | |
# report samples/sec, total loss and learning rate during training | |
class _LogSessionRunHook(tf.estimator.SessionRunHook): | |
def __init__(self, global_batch_size, num_accumulation_steps, dllogging, display_every=10, | |
save_ckpt_steps=1000, report_loss=True, hvd_rank=-1): | |
self.global_batch_size = global_batch_size | |
self.display_every = display_every | |
self.save_ckpt_steps = save_ckpt_steps | |
self.hvd_rank = hvd_rank | |
self.num_accumulation_steps = num_accumulation_steps | |
self.dllogging = dllogging | |
self.report_loss = report_loss | |
self.skip_iters = 6 | |
def after_create_session(self, session, coord): | |
self.elapsed_secs = 0.0 #elapsed seconds between every print | |
self.count = 0 # number of global steps between every print | |
self.all_count = 0 #number of steps (including accumulation) between every print | |
self.loss = 0.0 # accumulation of loss in each step between every print | |
self.total_time = 0.0 # total time taken to train (excluding warmup + ckpt saving steps) | |
self.step_time = 0.0 # time taken per step | |
self.init_global_step = session.run(tf.compat.v1.train.get_global_step()) # training starts at init_global_step | |
self.skipped = 0 | |
def before_run(self, run_context): | |
if horovod_enabled() and hvd.rank() != 0: | |
return | |
self.t0 = time.time() | |
if self.num_accumulation_steps <= 1: | |
if FLAGS.manual_fp16 or FLAGS.amp: | |
return tf.estimator.SessionRunArgs( | |
fetches=['step_update:0', 'total_loss:0', | |
'learning_rate:0', 'nsp_loss:0', | |
'mlm_loss:0', 'loss_scale:0']) | |
else: | |
return tf.estimator.SessionRunArgs( | |
fetches=['step_update:0', 'total_loss:0', | |
'learning_rate:0', 'nsp_loss:0', | |
'mlm_loss:0']) | |
else: | |
if FLAGS.manual_fp16 or FLAGS.amp: | |
return tf.estimator.SessionRunArgs( | |
fetches=['step_update:0', 'update_step:0', 'total_loss:0', | |
'learning_rate:0', 'nsp_loss:0', | |
'mlm_loss:0', 'loss_scale:0']) | |
else: | |
return tf.estimator.SessionRunArgs( | |
fetches=['step_update:0', 'update_step:0', 'total_loss:0', | |
'learning_rate:0', 'nsp_loss:0', | |
'mlm_loss:0']) | |
def after_run(self, run_context, run_values): | |
if horovod_enabled() and hvd.rank() != 0: | |
return | |
run_time = time.time() - self.t0 | |
if self.num_accumulation_steps <=1: | |
if FLAGS.manual_fp16 or FLAGS.amp: | |
self.global_step, total_loss, lr, nsp_loss, mlm_loss, loss_scaler = run_values.results | |
else: | |
self.global_step, total_loss, lr, nsp_loss, mlm_loss = run_values. \ | |
results | |
update_step = True | |
else: | |
if FLAGS.manual_fp16 or FLAGS.amp: | |
self.global_step, update_step, total_loss, lr, nsp_loss, mlm_loss, loss_scaler = run_values.results | |
else: | |
self.global_step, update_step, total_loss, lr, nsp_loss, mlm_loss = run_values.\ | |
results | |
self.elapsed_secs += run_time | |
self.step_time += run_time | |
print_step = self.global_step + 1 # One-based index for printing. | |
self.loss += total_loss | |
self.all_count += 1 | |
if update_step: | |
self.count += 1 | |
# Removing first six steps after every checkpoint save from timing | |
if (self.global_step - self.init_global_step) % self.save_ckpt_steps < self.skip_iters: | |
print("Skipping time record for ", self.global_step, " due to checkpoint-saving/warmup overhead") | |
self.skipped += 1 | |
else: | |
self.total_time += self.step_time | |
self.step_time = 0.0 #Reset Step Time | |
if (print_step == 1 or print_step % self.display_every == 0): | |
dt = self.elapsed_secs / self.count | |
sent_per_sec = self.global_batch_size / dt | |
avg_loss_step = self.loss / self.all_count | |
if self.hvd_rank >= 0 and FLAGS.report_loss: | |
if FLAGS.manual_fp16 or FLAGS.amp: | |
self.dllogging.logger.log(step=(print_step), | |
data={"Rank": int(self.hvd_rank), "throughput_train": float(sent_per_sec), | |
"mlm_loss":float(mlm_loss), "nsp_loss":float(nsp_loss), | |
"total_loss":float(total_loss), "avg_loss_step":float(avg_loss_step), | |
"learning_rate": str(lr), "loss_scaler":int(loss_scaler)}, | |
verbosity=Verbosity.DEFAULT) | |
else: | |
self.dllogging.logger.log(step=int(print_step), | |
data={"Rank": int(self.hvd_rank), "throughput_train": float(sent_per_sec), | |
"mlm_loss":float(mlm_loss), "nsp_loss":float(nsp_loss), | |
"total_loss":float(total_loss), "avg_loss_step":float(avg_loss_step), | |
"learning_rate": str(lr)}, | |
verbosity=Verbosity.DEFAULT) | |
else: | |
if FLAGS.manual_fp16 or FLAGS.amp: | |
self.dllogging.logger.log(step=int(print_step), | |
data={"throughput_train": float(sent_per_sec), | |
"mlm_loss":float(mlm_loss), "nsp_loss":float(nsp_loss), | |
"total_loss":float(total_loss), "avg_loss_step":float(avg_loss_step), | |
"learning_rate": str(lr), "loss_scaler":int(loss_scaler)}, | |
verbosity=Verbosity.DEFAULT) | |
else: | |
self.dllogging.logger.log(step=int(print_step), | |
data={"throughput_train": float(sent_per_sec), | |
"mlm_loss":float(mlm_loss), "nsp_loss":float(nsp_loss), | |
"total_loss":float(total_loss), "avg_loss_step":float(avg_loss_step), | |
"learning_rate": str(lr)}, | |
verbosity=Verbosity.DEFAULT) | |
self.elapsed_secs = 0.0 | |
self.count = 0 | |
self.loss = 0.0 | |
self.all_count = 0 | |
def model_fn_builder(bert_config, init_checkpoint, learning_rate, | |
num_train_steps, num_warmup_steps, | |
use_one_hot_embeddings, enable_packed_data_mode): | |
"""Returns `model_fn` closure for TPUEstimator.""" | |
def model_fn(features, labels, mode, params): # pylint: disable=unused-argument | |
"""The `model_fn` for TPUEstimator.""" | |
tf.compat.v1.logging.info("*** Features ***") | |
for name in sorted(features.keys()): | |
tf.compat.v1.logging.info(" name = %s, shape = %s" % (name, features[name].shape)) | |
input_ids = features["input_ids"] | |
input_mask = features["input_mask"] | |
segment_ids = features["segment_ids"] | |
masked_lm_positions = features["masked_lm_positions"] | |
masked_lm_ids = features["masked_lm_ids"] | |
masked_lm_weights = features["masked_lm_weights"] | |
next_sentence_labels = features["next_sentence_labels"] | |
is_training = (mode == tf.estimator.ModeKeys.TRAIN) | |
positions = None | |
next_sentence_positions = None | |
next_sentence_weights = None | |
if enable_packed_data_mode and is_training: # only training should work in packed mode | |
positions = features["positions"] | |
next_sentence_positions = features["next_sentence_positions"] | |
next_sentence_weights = features["next_sentence_weights"] | |
model = modeling.BertModel( | |
config=bert_config, | |
is_training=is_training, | |
input_ids=input_ids, | |
input_mask=input_mask, | |
token_type_ids=segment_ids, | |
use_one_hot_embeddings=use_one_hot_embeddings, | |
compute_type=tf.float16 if FLAGS.manual_fp16 else tf.float32, | |
enable_packed_data_mode=enable_packed_data_mode, | |
positions=positions, | |
next_sentence_positions=next_sentence_positions) | |
(masked_lm_loss, | |
masked_lm_example_loss, masked_lm_log_probs) = get_masked_lm_output( | |
bert_config, model.get_sequence_output(), model.get_embedding_table(), | |
masked_lm_positions, masked_lm_ids, | |
masked_lm_weights, | |
enable_packed_data_mode=enable_packed_data_mode, | |
is_training=is_training) | |
(next_sentence_loss, next_sentence_example_loss, | |
next_sentence_log_probs) = get_next_sentence_output( | |
bert_config, model.get_pooled_output(), next_sentence_labels, | |
enable_packed_data_mode=enable_packed_data_mode, | |
is_training=is_training, | |
weights=next_sentence_weights) | |
masked_lm_loss = tf.identity(masked_lm_loss, name="mlm_loss") | |
next_sentence_loss = tf.identity(next_sentence_loss, name="nsp_loss") | |
total_loss = masked_lm_loss + next_sentence_loss | |
total_loss = tf.identity(total_loss, name='total_loss') | |
tvars = tf.compat.v1.trainable_variables() | |
if FLAGS.resume: | |
tvars += tf.compat.v1.global_variables() | |
initialized_variable_names = {} | |
if init_checkpoint: | |
(assignment_map, initialized_variable_names | |
) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint) | |
tf.compat.v1.train.init_from_checkpoint(init_checkpoint, assignment_map) | |
if FLAGS.verbose_logging: | |
tf.compat.v1.logging.info("**** Trainable Variables ****") | |
for var in tvars: | |
init_string = "" | |
if var.name in initialized_variable_names: | |
init_string = ", *INIT_FROM_CKPT*" | |
tf.compat.v1.logging.info(" %d :: name = %s, shape = %s%s", hvd.rank() if horovod_enabled() else 0, var.name, var.shape, | |
init_string) | |
output_spec = None | |
if mode == tf.estimator.ModeKeys.TRAIN: | |
train_op = optimization.create_optimizer( | |
total_loss, learning_rate, num_train_steps, num_warmup_steps, | |
FLAGS.manual_fp16, FLAGS.amp, FLAGS.num_accumulation_steps, FLAGS.optimizer_type, FLAGS.allreduce_post_accumulation, FLAGS.init_loss_scale) | |
output_spec = tf.estimator.EstimatorSpec( | |
mode=mode, | |
loss=total_loss, | |
train_op=train_op) | |
elif mode == tf.estimator.ModeKeys.EVAL: | |
def metric_fn(masked_lm_example_loss, masked_lm_log_probs, masked_lm_ids, | |
masked_lm_weights, next_sentence_example_loss, | |
next_sentence_log_probs, next_sentence_labels): | |
"""Computes the loss and accuracy of the model.""" | |
masked_lm_log_probs = tf.reshape(masked_lm_log_probs, | |
[-1, masked_lm_log_probs.shape[-1]]) | |
masked_lm_predictions = tf.argmax( | |
input=masked_lm_log_probs, axis=-1, output_type=tf.int32) | |
masked_lm_example_loss = tf.reshape(masked_lm_example_loss, [-1]) | |
masked_lm_ids = tf.reshape(masked_lm_ids, [-1]) | |
masked_lm_weights = tf.reshape(masked_lm_weights, [-1]) | |
masked_lm_accuracy = tf.compat.v1.metrics.accuracy( | |
labels=masked_lm_ids, | |
predictions=masked_lm_predictions, | |
weights=masked_lm_weights) | |
masked_lm_mean_loss = tf.compat.v1.metrics.mean( | |
values=masked_lm_example_loss, weights=masked_lm_weights) | |
next_sentence_log_probs = tf.reshape( | |
next_sentence_log_probs, [-1, next_sentence_log_probs.shape[-1]]) | |
next_sentence_predictions = tf.argmax( | |
input=next_sentence_log_probs, axis=-1, output_type=tf.int32) | |
next_sentence_labels = tf.reshape(next_sentence_labels, [-1]) | |
next_sentence_accuracy = tf.compat.v1.metrics.accuracy( | |
labels=next_sentence_labels, predictions=next_sentence_predictions) | |
next_sentence_mean_loss = tf.compat.v1.metrics.mean( | |
values=next_sentence_example_loss) | |
return { | |
"masked_lm_accuracy": masked_lm_accuracy, | |
"masked_lm_loss": masked_lm_mean_loss, | |
"next_sentence_accuracy": next_sentence_accuracy, | |
"next_sentence_loss": next_sentence_mean_loss, | |
} | |
eval_metric_ops = metric_fn( | |
masked_lm_example_loss, masked_lm_log_probs, masked_lm_ids, | |
masked_lm_weights, next_sentence_example_loss, | |
next_sentence_log_probs, next_sentence_labels | |
) | |
output_spec = tf.estimator.EstimatorSpec( | |
mode=mode, | |
loss=total_loss, | |
eval_metric_ops=eval_metric_ops) | |
else: | |
raise ValueError("Only TRAIN and EVAL modes are supported: %s" % (mode)) | |
return output_spec | |
return model_fn | |
def get_masked_lm_output(bert_config, input_tensor, output_weights, positions, | |
label_ids, label_weights, | |
enable_packed_data_mode: bool = False, | |
is_training: bool = False): | |
"""Get loss and log probs for the masked LM.""" | |
input_tensor = modeling.gather_indexes(input_tensor, positions) | |
with tf.compat.v1.variable_scope("cls/predictions"): | |
# We apply one more non-linear transformation before the output layer. | |
# This matrix is not used after pre-training. | |
with tf.compat.v1.variable_scope("transform"): | |
input_tensor = tf.compat.v1.layers.dense( | |
input_tensor, | |
units=bert_config.hidden_size, | |
activation=modeling.get_activation(bert_config.hidden_act), | |
kernel_initializer=modeling.create_initializer( | |
bert_config.initializer_range)) | |
input_tensor = modeling.layer_norm(input_tensor) | |
# The output weights are the same as the input embeddings, but there is | |
# an output-only bias for each token. | |
output_bias = tf.compat.v1.get_variable( | |
"output_bias", | |
shape=[bert_config.vocab_size], | |
initializer=tf.compat.v1.zeros_initializer()) | |
logits = tf.matmul(tf.cast(input_tensor, tf.float32), output_weights, transpose_b=True) | |
logits = tf.nn.bias_add(logits, output_bias) | |
log_probs = tf.nn.log_softmax(logits - tf.reduce_max(logits, keepdims=True, axis=-1), axis=-1) | |
label_ids = tf.reshape(label_ids, [-1]) | |
label_weights = tf.reshape(label_weights, [-1]) | |
one_hot_labels = tf.one_hot( | |
label_ids, depth=bert_config.vocab_size, dtype=tf.float32) | |
# The `positions` tensor might be zero-padded (if the sequence is too | |
# short to have the maximum number of predictions). The `label_weights` | |
# tensor has a value of 1.0 for every real prediction and 0.0 for the | |
# padding predictions. | |
per_example_loss = -tf.reduce_sum(input_tensor=log_probs * one_hot_labels, axis=[-1]) | |
if enable_packed_data_mode and is_training: # only training should work in packed mode | |
label_weights = tf.cast(label_weights > 0, dtype=tf.float32) | |
numerator = tf.reduce_sum(input_tensor=label_weights * per_example_loss) | |
denominator = tf.reduce_sum(input_tensor=label_weights) + 1e-5 | |
loss = numerator / denominator | |
return (loss, per_example_loss, log_probs) | |
def get_next_sentence_output(bert_config, input_tensor, labels, | |
enable_packed_data_mode: bool = False, | |
is_training: bool = False, | |
weights: Union[Tensor, type(None)] = None): | |
"""Get loss and log probs for the next sentence prediction.""" | |
# Simple binary classification. Note that 0 is "next sentence" and 1 is | |
# "random sentence". This weight matrix is not used after pre-training. | |
with tf.compat.v1.variable_scope("cls/seq_relationship"): | |
output_weights = tf.compat.v1.get_variable( | |
"output_weights", | |
shape=[2, bert_config.hidden_size], | |
initializer=modeling.create_initializer(bert_config.initializer_range)) | |
output_bias = tf.compat.v1.get_variable( | |
"output_bias", shape=[2], initializer=tf.compat.v1.zeros_initializer()) | |
logits = tf.matmul(tf.cast(input_tensor, tf.float32), output_weights, transpose_b=True) | |
logits = tf.nn.bias_add(logits, output_bias) | |
log_probs = tf.nn.log_softmax(logits - tf.reduce_max(logits, keepdims=True, axis=-1), axis=-1) | |
labels = tf.reshape(labels, [-1]) | |
one_hot_labels = tf.one_hot(labels, depth=2, dtype=tf.float32) | |
per_example_loss = -tf.reduce_sum(input_tensor=one_hot_labels * log_probs, axis=-1) | |
if enable_packed_data_mode and is_training: # only training should work in packed mode | |
weights = tf.reshape(weights, [-1]) | |
numerator = tf.reduce_sum(input_tensor=weights * per_example_loss) | |
denominator = tf.reduce_sum(input_tensor=weights) + 1e-5 | |
loss = numerator / denominator | |
else: | |
loss = tf.reduce_mean(input_tensor=per_example_loss) | |
return (loss, per_example_loss, log_probs) | |
def input_fn_builder(input_files, | |
batch_size, | |
max_seq_length, | |
max_predictions_per_seq, | |
is_training, | |
enable_packed_data_mode, | |
num_cpu_threads=4): | |
"""Creates an `input_fn` closure to be passed to Estimator.""" | |
def input_fn(): | |
"""The actual input function.""" | |
if enable_packed_data_mode and is_training: # only training should work in packed mode | |
name_to_features = { | |
"input_ids": | |
tf.io.FixedLenFeature([max_seq_length], tf.int64), | |
"input_mask": | |
tf.io.FixedLenFeature([max_seq_length], tf.int64), | |
"segment_ids": | |
tf.io.FixedLenFeature([max_seq_length], tf.int64), | |
"positions": | |
tf.io.FixedLenFeature([max_seq_length], tf.int64), | |
"masked_lm_positions": | |
tf.io.FixedLenFeature([max_predictions_per_seq + 3], tf.int64), | |
"masked_lm_ids": | |
tf.io.FixedLenFeature([max_predictions_per_seq + 3], tf.int64), | |
"masked_lm_weights": | |
tf.io.FixedLenFeature([max_predictions_per_seq + 3], tf.float32), | |
"next_sentence_positions": | |
tf.io.FixedLenFeature([3], tf.int64), | |
"next_sentence_labels": | |
tf.io.FixedLenFeature([3], tf.int64), | |
"next_sentence_weights": | |
tf.io.FixedLenFeature([3], tf.float32), | |
} | |
else: | |
name_to_features = { | |
"input_ids": | |
tf.io.FixedLenFeature([max_seq_length], tf.int64), | |
"input_mask": | |
tf.io.FixedLenFeature([max_seq_length], tf.int64), | |
"segment_ids": | |
tf.io.FixedLenFeature([max_seq_length], tf.int64), | |
"masked_lm_positions": | |
tf.io.FixedLenFeature([max_predictions_per_seq], tf.int64), | |
"masked_lm_ids": | |
tf.io.FixedLenFeature([max_predictions_per_seq], tf.int64), | |
"masked_lm_weights": | |
tf.io.FixedLenFeature([max_predictions_per_seq], tf.float32), | |
"next_sentence_labels": | |
tf.io.FixedLenFeature([1], tf.int64), | |
} | |
if FLAGS.deterministic_run: | |
d = tf.data.TFRecordDataset(input_files) | |
d = d.apply( | |
tf.data.experimental.map_and_batch( | |
lambda record: _decode_record(record, name_to_features), | |
batch_size=batch_size, | |
num_parallel_calls=1, | |
drop_remainder=True)) | |
return d | |
# For training, we want a lot of parallel reading and shuffling. | |
# For eval, we want no shuffling and parallel reading doesn't matter. | |
if is_training: | |
d = tf.data.Dataset.from_tensor_slices(tf.constant(input_files)) | |
if horovod_enabled(): d = d.shard(hvd.size(), hvd.rank()) | |
d = d.repeat() | |
d = d.shuffle(buffer_size=len(input_files)) | |
# `cycle_length` is the number of parallel files that get read. | |
cycle_length = min(num_cpu_threads, len(input_files)) | |
# `sloppy` mode means that the interleaving is not exact. This adds | |
# even more randomness to the training pipeline. | |
d = d.apply( | |
tf.data.experimental.parallel_interleave( | |
tf.data.TFRecordDataset, | |
sloppy=is_training, | |
cycle_length=cycle_length)) | |
d = d.shuffle(buffer_size=100) | |
else: | |
d = tf.data.TFRecordDataset(input_files) | |
# Since we evaluate for a fixed number of steps we don't want to encounter | |
# out-of-range exceptions. | |
d = d.repeat() | |
# We must `drop_remainder` on training because the TPU requires fixed | |
# size dimensions. For eval, we assume we are evaluating on the CPU or GPU | |
# and we *don't* want to drop the remainder, otherwise we wont cover | |
# every sample. | |
d = d.apply( | |
tf.data.experimental.map_and_batch( | |
lambda record: _decode_record(record, name_to_features), | |
batch_size=batch_size, | |
num_parallel_batches=num_cpu_threads, | |
drop_remainder=True if is_training else False)) | |
return d | |
return input_fn | |
def _decode_record(record, name_to_features): | |
"""Decodes a record to a TensorFlow example.""" | |
example = tf.io.parse_single_example(serialized=record, features=name_to_features) | |
# tf.Example only supports tf.int64, but the TPU only supports tf.int32. | |
# So cast all int64 to int32. | |
for name in list(example.keys()): | |
t = example[name] | |
if t.dtype == tf.int64: | |
t = tf.cast(t, dtype=tf.int32) | |
example[name] = t | |
return example | |
def read_avg_seq_per_pack(metadata_file_path : str) -> float: | |
metadata = None | |
avg_seq_per_pack = 1.0 | |
with open(metadata_file_path, mode='r') as json_file: | |
metadata = json.loads(json_file.read()) | |
if metadata is not None: | |
avg_seq_per_sample_key = "avg_seq_per_sample" | |
if avg_seq_per_sample_key in metadata.keys(): | |
avg_seq_per_pack = metadata[avg_seq_per_sample_key] | |
else: | |
raise KeyError(f"Key {avg_seq_per_sample_key} not present in packed dataset metadata file: {metadata_file_path}") | |
return avg_seq_per_pack | |
def main(_): | |
logger = tf.get_logger() | |
logger.propagate = False | |
metadata_file_path = get_metadata_file_path(FLAGS.input_files_dir) | |
avg_seq_per_pack = 1.0 | |
enable_packed_data_mode = False | |
if os.path.exists(metadata_file_path): # file exists, so this is a packed directory | |
avg_seq_per_pack = read_avg_seq_per_pack(metadata_file_path) | |
enable_packed_data_mode = True | |
if enable_packed_data_mode: | |
FLAGS.num_accumulation_steps = round(FLAGS.num_accumulation_steps / avg_seq_per_pack) | |
os.environ["TF_XLA_FLAGS"] = "--tf_xla_enable_lazy_compilation=false" #causes memory fragmentation for bert leading to OOM | |
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.INFO) | |
dllogging = dllogger_class.dllogger_class(FLAGS.dllog_path) | |
if not FLAGS.do_train and not FLAGS.do_eval: | |
raise ValueError("At least one of `do_train` or `do_eval` must be True.") | |
# In multi-node scenario, on each of HLSes there must be a checkpoint directly in the output_dir (read by Phase 2). | |
# There may be only one worker with comm_local_rank() == 0 on each machine and this worker will put its checkpoints there. | |
# All other workers use sub-directories to keep checkpoints. | |
if horovod_enabled() and comm_local_rank() != 0: | |
FLAGS.output_dir = os.path.join(FLAGS.output_dir, f'worker_{hvd.rank()}') | |
bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file) | |
tf.io.gfile.makedirs(FLAGS.output_dir) | |
input_files = [] | |
for input_file_dir in FLAGS.input_files_dir.split(","): | |
input_files.extend(tf.io.gfile.glob(os.path.join(input_file_dir, "*"))) | |
if FLAGS.horovod and len(input_files) < hvd.size(): | |
tf.compat.v1.logging.warning("Input files count lower then expected. Using single file for OVERFIT test.") | |
input_files = [input_files[0] for i in range(hvd.size())] | |
if FLAGS.amp and FLAGS.manual_fp16: | |
raise ValueError("AMP and Manual Mixed Precision Training are both activated! Error") | |
is_per_host = tf.compat.v1.estimator.tpu.InputPipelineConfig.PER_HOST_V2 | |
# The Scoped Allocator Optimization is enabled by default unless disabled by a flag. | |
if FLAGS.enable_scoped_allocator: | |
from tensorflow.core.protobuf import rewriter_config_pb2 # pylint: disable=import-error | |
session_config = tf.compat.v1.ConfigProto() | |
session_config.graph_options.rewrite_options.scoped_allocator_optimization = rewriter_config_pb2.RewriterConfig.ON | |
enable_op = session_config.graph_options.rewrite_options.scoped_allocator_opts.enable_op | |
del enable_op[:] | |
enable_op.append("HorovodAllreduce") | |
else: | |
session_config = tf.compat.v1.ConfigProto() | |
if FLAGS.horovod: | |
session_config.gpu_options.visible_device_list = str(hvd.local_rank()) | |
if hvd.rank() == 0: | |
tf.compat.v1.logging.info("***** Configuaration *****") | |
for key in FLAGS.__flags.keys(): | |
tf.compat.v1.logging.info(' {}: {}'.format(key, getattr(FLAGS, key))) | |
tf.compat.v1.logging.info("**************************") | |
# config.gpu_options.per_process_gpu_memory_fraction = 0.7 | |
if FLAGS.use_xla: | |
session_config.graph_options.optimizer_options.global_jit_level = tf.compat.v1.OptimizerOptions.ON_1 | |
session_config.graph_options.rewrite_options.memory_optimization = rewriter_config_pb2.RewriterConfig.NO_MEM_OPT | |
if FLAGS.amp: | |
tf.compat.v1.enable_resource_variables() | |
run_config = tf.estimator.RunConfig( | |
model_dir=FLAGS.output_dir, | |
session_config=session_config, | |
save_checkpoints_steps=FLAGS.save_checkpoints_steps, | |
keep_checkpoint_max = FLAGS.keep_checkpoint_max, | |
save_summary_steps=FLAGS.save_summary_steps, | |
log_step_count_steps=1) | |
model_fn = model_fn_builder( | |
bert_config=bert_config, | |
init_checkpoint=FLAGS.init_checkpoint, | |
learning_rate=FLAGS.learning_rate if not FLAGS.horovod else FLAGS.learning_rate*hvd.size(), | |
num_train_steps=FLAGS.num_train_steps, | |
num_warmup_steps=FLAGS.num_warmup_steps, | |
use_one_hot_embeddings=False, | |
enable_packed_data_mode=enable_packed_data_mode) | |
estimator = tf.estimator.Estimator( | |
model_fn=model_fn, | |
config=run_config) | |
batch_size_per_node = FLAGS.train_batch_size * FLAGS.num_accumulation_steps | |
global_batch_size = (hvd.size() if FLAGS.horovod else 1) * batch_size_per_node | |
write_hparams_v1(FLAGS.output_dir, { | |
'batch_size': FLAGS.train_batch_size, | |
'batch_size_per_pu': FLAGS.train_batch_size, | |
'batch_size_per_node': batch_size_per_node, | |
'global_batch_size': global_batch_size, | |
**{x: getattr(FLAGS, x) for x in FLAGS} | |
}) | |
if FLAGS.do_train: | |
training_hooks = [] | |
if horovod_enabled(): | |
training_hooks.append(hvd.BroadcastGlobalVariablesHook(0)) | |
global_batch_size = global_batch_size * avg_seq_per_pack if enable_packed_data_mode else global_batch_size | |
batch_size_per_node = batch_size_per_node * avg_seq_per_pack if enable_packed_data_mode else batch_size_per_node | |
train_log_hook = _LogSessionRunHook( | |
global_batch_size, FLAGS.num_accumulation_steps, dllogging, | |
FLAGS.display_loss_steps, FLAGS.save_checkpoints_steps, FLAGS.report_loss) | |
training_hooks.append(train_log_hook) | |
training_hooks.append(ExamplesPerSecondEstimatorHook( | |
batch_size=batch_size_per_node, output_dir=FLAGS.output_dir, | |
extra_metrics={'global_examples/sec': global_batch_size})) | |
if len(FLAGS.profile) > 0: | |
training_hooks.append(TensorBoardHook(output_dir=FLAGS.output_dir,profile_steps=FLAGS.profile)) | |
tf.compat.v1.logging.info("***** Running training *****") | |
tf.compat.v1.logging.info(" Batch size = %d", FLAGS.train_batch_size) | |
train_input_fn = input_fn_builder( | |
input_files=input_files, | |
batch_size=FLAGS.train_batch_size, | |
max_seq_length=FLAGS.max_seq_length, | |
max_predictions_per_seq=FLAGS.max_predictions_per_seq, | |
is_training=True, enable_packed_data_mode=enable_packed_data_mode) | |
train_start_time = time.time() | |
with dump_callback(): | |
estimator.train(input_fn=train_input_fn, hooks=training_hooks, max_steps=FLAGS.num_train_steps) | |
train_time_elapsed = time.time() - train_start_time | |
if (not FLAGS.horovod or hvd.rank() == 0): | |
train_time_wo_overhead = train_log_hook.total_time | |
avg_sentences_per_second = FLAGS.num_train_steps * global_batch_size * 1.0 / train_time_elapsed | |
try: | |
ss_sentences_per_second = (FLAGS.num_train_steps - train_log_hook.skipped) * global_batch_size * 1.0 / train_time_wo_overhead | |
throughput_avg_wo_overhead_msg = ["Throughput Average (sentences/sec) = %0.2f", ss_sentences_per_second] | |
except: | |
ss_sentences_per_second = float('nan') | |
throughput_avg_wo_overhead_msg = [f"Throughput Average W/O Overhead is not logged when num_train_steps < {train_log_hook.skip_iters}"] | |
tf.compat.v1.logging.info("-----------------------------") | |
tf.compat.v1.logging.info("Total Training Time = %0.2f for Sentences = %d", train_time_elapsed, | |
FLAGS.num_train_steps * global_batch_size) | |
tf.compat.v1.logging.info("Total Training Time W/O Overhead = %0.2f for Sentences = %d", train_time_wo_overhead, | |
(FLAGS.num_train_steps - train_log_hook.skipped) * global_batch_size) | |
tf.compat.v1.logging.info("Throughput Average (sentences/sec) with overhead = %0.2f", avg_sentences_per_second) | |
tf.compat.v1.logging.info(*throughput_avg_wo_overhead_msg) | |
dllogging.logger.log(step=(), data={"throughput_train": ss_sentences_per_second}, verbosity=Verbosity.DEFAULT) | |
tf.compat.v1.logging.info("-----------------------------") | |
if FLAGS.export_dir is not None: | |
def serving_input_fn(enable_packed_data_mode=enable_packed_data_mode): | |
max_seq_length_ph_shape = [None, FLAGS.max_seq_length] | |
input_ids = tf.compat.v1.placeholder(tf.int32, max_seq_length_ph_shape, name='input_ids') | |
input_mask = tf.compat.v1.placeholder(tf.int32, max_seq_length_ph_shape, name='input_mask') | |
segment_ids = tf.compat.v1.placeholder(tf.int32, max_seq_length_ph_shape, name='segment_ids') | |
if enable_packed_data_mode and hvd.rank() == 0: | |
masked_lm_positions = tf.compat.v1.placeholder(tf.int32, [None, FLAGS.max_predictions_per_seq + 3], name='masked_lm_positions') | |
masked_lm_ids = tf.compat.v1.placeholder(tf.int32, [None, FLAGS.max_predictions_per_seq + 3], name='masked_lm_ids') | |
masked_lm_weights = tf.compat.v1.placeholder(tf.float32, [None, FLAGS.max_predictions_per_seq + 3], name='masked_lm_weights') | |
next_sentence_labels = tf.compat.v1.placeholder(tf.int32, [None, 3], name='next_sentence_labels') | |
positions = tf.compat.v1.placeholder(tf.int32, max_seq_length_ph_shape, name='positions') | |
next_sentence_positions = tf.compat.v1.placeholder(tf.int32, [None, 3], name='next_sentence_positions') | |
next_sentence_weights = tf.compat.v1.placeholder(tf.float32, [None, 3], name='next_sentence_weights') | |
input_fn = tf.estimator.export.build_raw_serving_input_receiver_fn({ | |
'input_ids': input_ids, 'input_mask': input_mask, 'segment_ids': segment_ids, | |
'masked_lm_positions': masked_lm_positions, 'masked_lm_ids': masked_lm_ids, | |
'masked_lm_weights': masked_lm_weights, 'next_sentence_labels': next_sentence_labels, | |
'positions': positions, 'next_sentence_positions': next_sentence_positions, 'next_sentence_weights': next_sentence_weights})() | |
elif not horovod_enabled(): | |
masked_lm_positions = tf.compat.v1.placeholder(tf.int32, [None, FLAGS.max_predictions_per_seq], name='masked_lm_positions') | |
masked_lm_ids = tf.compat.v1.placeholder(tf.int32, [None, FLAGS.max_predictions_per_seq], name='masked_lm_ids') | |
masked_lm_weights = tf.compat.v1.placeholder(tf.float32, [None, FLAGS.max_predictions_per_seq], name='masked_lm_weights') | |
next_sentence_labels = tf.compat.v1.placeholder(tf.int32, [None, 1], name='next_sentence_labels') | |
input_fn = tf.estimator.export.build_raw_serving_input_receiver_fn({ | |
'input_ids': input_ids, 'input_mask': input_mask, 'segment_ids': segment_ids, | |
'masked_lm_positions': masked_lm_positions, 'masked_lm_ids': masked_lm_ids, | |
'masked_lm_weights': masked_lm_weights, 'next_sentence_labels': next_sentence_labels})() | |
return input_fn | |
if hvd.rank() == 0 or not horovod_enabled(): | |
input_receiver_fn_map={tf.estimator.ModeKeys.TRAIN : serving_input_fn} | |
estimator.experimental_export_all_saved_models(FLAGS.export_dir, input_receiver_fn_map) | |
if FLAGS.do_eval and (not FLAGS.horovod or hvd.rank() == 0): | |
tf.compat.v1.logging.info("***** Running evaluation *****") | |
tf.compat.v1.logging.info(" Batch size = %d", FLAGS.eval_batch_size) | |
eval_files = [] | |
for eval_file_dir in FLAGS.eval_files_dir.split(","): | |
eval_files.extend(tf.io.gfile.glob(os.path.join(eval_file_dir, "*"))) | |
eval_input_fn = input_fn_builder( | |
input_files=eval_files, | |
batch_size=FLAGS.eval_batch_size, | |
max_seq_length=FLAGS.max_seq_length, | |
max_predictions_per_seq=FLAGS.max_predictions_per_seq, | |
is_training=False) | |
eval_hooks = [LogEvalRunHook(FLAGS.eval_batch_size)] | |
eval_start_time = time.time() | |
result = estimator.evaluate( | |
input_fn=eval_input_fn, steps=FLAGS.max_eval_steps, hooks=eval_hooks) | |
eval_time_elapsed = time.time() - eval_start_time | |
time_list = eval_hooks[-1].time_list | |
time_list.sort() | |
# Removing outliers (init/warmup) in throughput computation. | |
eval_time_wo_overhead = sum(time_list[:int(len(time_list) * 0.99)]) | |
num_sentences = (int(len(time_list) * 0.99)) * FLAGS.eval_batch_size | |
ss_sentences_per_second = num_sentences * 1.0 / eval_time_wo_overhead | |
tf.compat.v1.logging.info("-----------------------------") | |
tf.compat.v1.logging.info("Total Inference Time = %0.2f for Sentences = %d", eval_time_elapsed, | |
eval_hooks[-1].count * FLAGS.eval_batch_size) | |
tf.compat.v1.logging.info("Total Inference Time W/O Overhead = %0.2f for Sentences = %d", eval_time_wo_overhead, | |
num_sentences) | |
tf.compat.v1.logging.info("Summary Inference Statistics on EVAL set") | |
tf.compat.v1.logging.info("Batch size = %d", FLAGS.eval_batch_size) | |
tf.compat.v1.logging.info("Sequence Length = %d", FLAGS.max_seq_length) | |
tf.compat.v1.logging.info("Precision = %s", "fp16" if FLAGS.amp else "fp32") | |
tf.compat.v1.logging.info("Throughput Average (sentences/sec) = %0.2f", ss_sentences_per_second) | |
dllogging.logger.log(step=(), data={"throughput_val": ss_sentences_per_second}, verbosity=Verbosity.DEFAULT) | |
tf.compat.v1.logging.info("-----------------------------") | |
output_eval_file = os.path.join(FLAGS.output_dir, "eval_results.txt") | |
with tf.io.gfile.GFile(output_eval_file, "w") as writer: | |
tf.compat.v1.logging.info("***** Eval results *****") | |
for key in sorted(result.keys()): | |
tf.compat.v1.logging.info(" %s = %s", key, str(result[key])) | |
writer.write("%s = %s\n" % (key, str(result[key]))) | |
if __name__ == "__main__": | |
init_flags() | |
if FLAGS.bf16_config_path is not None: | |
os.environ['TF_BF16_CONVERSION'] = FLAGS.bf16_config_path | |
bert_config = json.load(open(FLAGS.bert_config_file, 'r')) | |
if 'hidden_size' in bert_config and bert_config['hidden_size'] == 768: | |
# cluster slicing optimization tested for bert base, works well with this size | |
os.environ.setdefault('TF_PRELIMINARY_CLUSTER_SIZE', '1000') | |
os.environ.setdefault("TF_DISABLE_MKL", "1") | |
flags.mark_flag_as_required("input_files_dir") | |
if FLAGS.do_eval: | |
flags.mark_flag_as_required("eval_files_dir") | |
flags.mark_flag_as_required("bert_config_file") | |
flags.mark_flag_as_required("output_dir") | |
if FLAGS.deterministic_run: | |
set_random_seed(1) | |
modeling.dropout = lambda input_tensor, dropout_prob: input_tensor # disable dropout | |
if FLAGS.horovod: | |
if hvd is None: | |
raise RuntimeError( | |
"Problem encountered during Horovod import. Please make sure that habana-horovod package is installed.") | |
hvd.init() | |
load_habana_module() | |
if FLAGS.use_xla and FLAGS.manual_fp16: | |
print('WARNING! Combining --use_xla with --manual_fp16 may prevent convergence.') | |
print(' This warning message will be removed when the underlying') | |
print(' issues have been fixed and you are running a TF version') | |
print(' that has that fix.') | |
tf.compat.v1.app.run() | |