applied-ai-018's picture
Add files using upload-large-folder tool
f653bfd verified
# coding=utf-8
# Copyright (c) 2019 NVIDIA CORPORATION. All rights reserved.
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
###############################################################################
# Copyright (C) 2020-2022 Habana Labs, Ltd. an Intel Company
#
# Changes:
# - Added default values for environment variables:
# - TF_DISABLE_MKL
# - TF_BF16_CONVERSION
# - TF_PRELIMINARY_CLUSTER_SIZE
# - TF_DISABLE_SCOPED_ALLOCATOR
# - FORCE_WEIGHT_SYNC
# - Added support for packed dataset
# - Added support for HPU profiling (command-line flag - `profile`).
# - Added line tf.get_logger().propagate = False
# - Added functionality for reading value for the flag --avg_seq_per_sample
# from packed dataset metadata file created with pack_pretraining_data_tfrec.py script.
# - Added option to save full pretrained model by using --export_dir flag
# - Added keep_checkpoint_max flag
###############################################################################
"""Run masked LM/next sentence masked_lm pre-training for BERT."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import os
import random
import sys
import time
import TensorFlow.nlp.bert.modeling as modeling
import TensorFlow.nlp.bert.optimization as optimization
import tensorflow as tf
import glob
import json
from TensorFlow.nlp.bert.utils.utils import LogEvalRunHook
import TensorFlow.nlp.bert.utils.dllogger_class as dllogger_class
from dllogger import Verbosity
from tensorflow.core.protobuf import rewriter_config_pb2
from TensorFlow.common.tb_utils import ExamplesPerSecondEstimatorHook, write_hparams_v1, TensorBoardHook
from habana_frameworks.tensorflow.multinode_helpers import comm_local_rank
from TensorFlow.common.debug import dump_callback
from TensorFlow.nlp.bert.data_preprocessing.pack_pretraining_data_tfrec import get_metadata_file_path
try:
import horovod.tensorflow as hvd
except ImportError:
hvd = None
def horovod_enabled():
return hvd is not None and hvd.is_initialized()
tf.get_logger().propagate = False
curr_path = os.path.abspath(os.path.dirname(__file__))
sys.path.append(os.path.join(curr_path, '..', '..'))
from habana_frameworks.tensorflow import load_habana_module
flags = tf.compat.v1.flags
FLAGS = flags.FLAGS
from tensorflow.python.framework.tensor import Tensor
from typing import Union
def init_flags():
## Required parameters
flags.DEFINE_string(
"bert_config_file", None,
"The config json file corresponding to the pre-trained BERT model. "
"This specifies the model architecture.")
flags.DEFINE_string(
"input_files_dir", None,
"Directory with input files, comma separated or single directory.")
flags.DEFINE_string(
"eval_files_dir", None,
"Directory with eval files, comma separated or single directory. ")
flags.DEFINE_string(
"output_dir", None,
"The output directory where the model checkpoints will be written.")
## Other parameters
flags.DEFINE_string(
"dllog_path", "/results/bert_dllog.json",
"filename where dllogger writes to")
flags.DEFINE_string(
"init_checkpoint", None,
"Initial checkpoint (usually from a pre-trained BERT model).")
flags.DEFINE_string(
"export_dir", None,
"Directory to save full trained model")
flags.DEFINE_string(
"optimizer_type", "lamb",
"Optimizer used for training - LAMB or ADAM")
flags.DEFINE_integer(
"max_seq_length", 512,
"The maximum total input sequence length after WordPiece tokenization. "
"Sequences longer than this will be truncated, and sequences shorter "
"than this will be padded. Must match data generation.")
flags.DEFINE_integer(
"max_predictions_per_seq", 80,
"Maximum number of masked LM predictions per sequence. "
"Must match data generation.")
flags.DEFINE_bool("do_train", False, "Whether to run training.")
flags.DEFINE_bool("do_eval", False, "Whether to run eval on the dev set.")
flags.DEFINE_integer("train_batch_size", 32, "Total batch size for training.")
flags.DEFINE_integer("eval_batch_size", 8, "Total batch size for eval.")
flags.DEFINE_float("learning_rate", 5e-5, "The initial learning rate for Adam.")
flags.DEFINE_integer("num_train_steps", 100000, "Number of training steps.")
flags.DEFINE_integer("num_warmup_steps", 10000, "Number of warmup steps.")
flags.DEFINE_integer("save_checkpoints_steps", 1000,
"How often to save the model checkpoint.")
flags.DEFINE_integer("save_summary_steps", 1,
"How often to save the summary data.")
flags.DEFINE_integer("display_loss_steps", 10,
"How often to print loss")
flags.DEFINE_integer("iterations_per_loop", 1000,
"How many steps to make in each estimator call.")
flags.DEFINE_integer("max_eval_steps", 100, "Maximum number of eval steps.")
flags.DEFINE_integer("num_accumulation_steps", 1,
"Number of accumulation steps before gradient update."
"Global batch size = num_accumulation_steps * train_batch_size")
flags.DEFINE_bool("allreduce_post_accumulation", False, "Whether to all reduce after accumulation of N steps or after each step")
flags.DEFINE_bool(
"verbose_logging", False,
"If true, all of the trainable parameters are printed")
flags.DEFINE_bool("horovod", False, "Whether to use Horovod for multi-gpu runs")
flags.DEFINE_bool("report_loss", True, "Whether to report total loss during training.")
flags.DEFINE_bool("manual_fp16", False, "Whether to use fp32 or fp16 arithmetic on GPU. "
"Manual casting is done instead of using AMP")
flags.DEFINE_bool("amp", True, "Whether to enable AMP ops. When false, uses TF32 on A100 and FP32 on V100 GPUS.")
flags.DEFINE_bool("use_xla", True, "Whether to enable XLA JIT compilation.")
flags.DEFINE_integer("init_loss_scale", 2**32, "Initial value of loss scale if mixed precision training")
flags.DEFINE_bool("deterministic_run", False, "If set run will be deterministic (set random seed, read dataset in single thread, disable dropout)")
flags.DEFINE_string("bf16_config_path", None, "Defines config for tensor converson to bf16 data type")
flags.DEFINE_bool('enable_scoped_allocator', False, "Enable scoped allocator optimization")
flags.DEFINE_bool("resume", False, "Whether to resume training from init_checkpoint. "
"If enabled, global vars would be set from init_checkpoint.")
flags.DEFINE_string("profile", "", "Profile Steps range X-Y (e.g. --profile 7,10)")
flags.DEFINE_integer("keep_checkpoint_max", 2, "The maximum number of recent checkpoint files to keep.")
def set_random_seed(seed):
tf.compat.v1.set_random_seed(seed)
tf.random.set_seed(seed)
random.seed(seed)
np.random.seed(seed)
# report samples/sec, total loss and learning rate during training
class _LogSessionRunHook(tf.estimator.SessionRunHook):
def __init__(self, global_batch_size, num_accumulation_steps, dllogging, display_every=10,
save_ckpt_steps=1000, report_loss=True, hvd_rank=-1):
self.global_batch_size = global_batch_size
self.display_every = display_every
self.save_ckpt_steps = save_ckpt_steps
self.hvd_rank = hvd_rank
self.num_accumulation_steps = num_accumulation_steps
self.dllogging = dllogging
self.report_loss = report_loss
self.skip_iters = 6
def after_create_session(self, session, coord):
self.elapsed_secs = 0.0 #elapsed seconds between every print
self.count = 0 # number of global steps between every print
self.all_count = 0 #number of steps (including accumulation) between every print
self.loss = 0.0 # accumulation of loss in each step between every print
self.total_time = 0.0 # total time taken to train (excluding warmup + ckpt saving steps)
self.step_time = 0.0 # time taken per step
self.init_global_step = session.run(tf.compat.v1.train.get_global_step()) # training starts at init_global_step
self.skipped = 0
def before_run(self, run_context):
if horovod_enabled() and hvd.rank() != 0:
return
self.t0 = time.time()
if self.num_accumulation_steps <= 1:
if FLAGS.manual_fp16 or FLAGS.amp:
return tf.estimator.SessionRunArgs(
fetches=['step_update:0', 'total_loss:0',
'learning_rate:0', 'nsp_loss:0',
'mlm_loss:0', 'loss_scale:0'])
else:
return tf.estimator.SessionRunArgs(
fetches=['step_update:0', 'total_loss:0',
'learning_rate:0', 'nsp_loss:0',
'mlm_loss:0'])
else:
if FLAGS.manual_fp16 or FLAGS.amp:
return tf.estimator.SessionRunArgs(
fetches=['step_update:0', 'update_step:0', 'total_loss:0',
'learning_rate:0', 'nsp_loss:0',
'mlm_loss:0', 'loss_scale:0'])
else:
return tf.estimator.SessionRunArgs(
fetches=['step_update:0', 'update_step:0', 'total_loss:0',
'learning_rate:0', 'nsp_loss:0',
'mlm_loss:0'])
def after_run(self, run_context, run_values):
if horovod_enabled() and hvd.rank() != 0:
return
run_time = time.time() - self.t0
if self.num_accumulation_steps <=1:
if FLAGS.manual_fp16 or FLAGS.amp:
self.global_step, total_loss, lr, nsp_loss, mlm_loss, loss_scaler = run_values.results
else:
self.global_step, total_loss, lr, nsp_loss, mlm_loss = run_values. \
results
update_step = True
else:
if FLAGS.manual_fp16 or FLAGS.amp:
self.global_step, update_step, total_loss, lr, nsp_loss, mlm_loss, loss_scaler = run_values.results
else:
self.global_step, update_step, total_loss, lr, nsp_loss, mlm_loss = run_values.\
results
self.elapsed_secs += run_time
self.step_time += run_time
print_step = self.global_step + 1 # One-based index for printing.
self.loss += total_loss
self.all_count += 1
if update_step:
self.count += 1
# Removing first six steps after every checkpoint save from timing
if (self.global_step - self.init_global_step) % self.save_ckpt_steps < self.skip_iters:
print("Skipping time record for ", self.global_step, " due to checkpoint-saving/warmup overhead")
self.skipped += 1
else:
self.total_time += self.step_time
self.step_time = 0.0 #Reset Step Time
if (print_step == 1 or print_step % self.display_every == 0):
dt = self.elapsed_secs / self.count
sent_per_sec = self.global_batch_size / dt
avg_loss_step = self.loss / self.all_count
if self.hvd_rank >= 0 and FLAGS.report_loss:
if FLAGS.manual_fp16 or FLAGS.amp:
self.dllogging.logger.log(step=(print_step),
data={"Rank": int(self.hvd_rank), "throughput_train": float(sent_per_sec),
"mlm_loss":float(mlm_loss), "nsp_loss":float(nsp_loss),
"total_loss":float(total_loss), "avg_loss_step":float(avg_loss_step),
"learning_rate": str(lr), "loss_scaler":int(loss_scaler)},
verbosity=Verbosity.DEFAULT)
else:
self.dllogging.logger.log(step=int(print_step),
data={"Rank": int(self.hvd_rank), "throughput_train": float(sent_per_sec),
"mlm_loss":float(mlm_loss), "nsp_loss":float(nsp_loss),
"total_loss":float(total_loss), "avg_loss_step":float(avg_loss_step),
"learning_rate": str(lr)},
verbosity=Verbosity.DEFAULT)
else:
if FLAGS.manual_fp16 or FLAGS.amp:
self.dllogging.logger.log(step=int(print_step),
data={"throughput_train": float(sent_per_sec),
"mlm_loss":float(mlm_loss), "nsp_loss":float(nsp_loss),
"total_loss":float(total_loss), "avg_loss_step":float(avg_loss_step),
"learning_rate": str(lr), "loss_scaler":int(loss_scaler)},
verbosity=Verbosity.DEFAULT)
else:
self.dllogging.logger.log(step=int(print_step),
data={"throughput_train": float(sent_per_sec),
"mlm_loss":float(mlm_loss), "nsp_loss":float(nsp_loss),
"total_loss":float(total_loss), "avg_loss_step":float(avg_loss_step),
"learning_rate": str(lr)},
verbosity=Verbosity.DEFAULT)
self.elapsed_secs = 0.0
self.count = 0
self.loss = 0.0
self.all_count = 0
def model_fn_builder(bert_config, init_checkpoint, learning_rate,
num_train_steps, num_warmup_steps,
use_one_hot_embeddings, enable_packed_data_mode):
"""Returns `model_fn` closure for TPUEstimator."""
def model_fn(features, labels, mode, params): # pylint: disable=unused-argument
"""The `model_fn` for TPUEstimator."""
tf.compat.v1.logging.info("*** Features ***")
for name in sorted(features.keys()):
tf.compat.v1.logging.info(" name = %s, shape = %s" % (name, features[name].shape))
input_ids = features["input_ids"]
input_mask = features["input_mask"]
segment_ids = features["segment_ids"]
masked_lm_positions = features["masked_lm_positions"]
masked_lm_ids = features["masked_lm_ids"]
masked_lm_weights = features["masked_lm_weights"]
next_sentence_labels = features["next_sentence_labels"]
is_training = (mode == tf.estimator.ModeKeys.TRAIN)
positions = None
next_sentence_positions = None
next_sentence_weights = None
if enable_packed_data_mode and is_training: # only training should work in packed mode
positions = features["positions"]
next_sentence_positions = features["next_sentence_positions"]
next_sentence_weights = features["next_sentence_weights"]
model = modeling.BertModel(
config=bert_config,
is_training=is_training,
input_ids=input_ids,
input_mask=input_mask,
token_type_ids=segment_ids,
use_one_hot_embeddings=use_one_hot_embeddings,
compute_type=tf.float16 if FLAGS.manual_fp16 else tf.float32,
enable_packed_data_mode=enable_packed_data_mode,
positions=positions,
next_sentence_positions=next_sentence_positions)
(masked_lm_loss,
masked_lm_example_loss, masked_lm_log_probs) = get_masked_lm_output(
bert_config, model.get_sequence_output(), model.get_embedding_table(),
masked_lm_positions, masked_lm_ids,
masked_lm_weights,
enable_packed_data_mode=enable_packed_data_mode,
is_training=is_training)
(next_sentence_loss, next_sentence_example_loss,
next_sentence_log_probs) = get_next_sentence_output(
bert_config, model.get_pooled_output(), next_sentence_labels,
enable_packed_data_mode=enable_packed_data_mode,
is_training=is_training,
weights=next_sentence_weights)
masked_lm_loss = tf.identity(masked_lm_loss, name="mlm_loss")
next_sentence_loss = tf.identity(next_sentence_loss, name="nsp_loss")
total_loss = masked_lm_loss + next_sentence_loss
total_loss = tf.identity(total_loss, name='total_loss')
tvars = tf.compat.v1.trainable_variables()
if FLAGS.resume:
tvars += tf.compat.v1.global_variables()
initialized_variable_names = {}
if init_checkpoint:
(assignment_map, initialized_variable_names
) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint)
tf.compat.v1.train.init_from_checkpoint(init_checkpoint, assignment_map)
if FLAGS.verbose_logging:
tf.compat.v1.logging.info("**** Trainable Variables ****")
for var in tvars:
init_string = ""
if var.name in initialized_variable_names:
init_string = ", *INIT_FROM_CKPT*"
tf.compat.v1.logging.info(" %d :: name = %s, shape = %s%s", hvd.rank() if horovod_enabled() else 0, var.name, var.shape,
init_string)
output_spec = None
if mode == tf.estimator.ModeKeys.TRAIN:
train_op = optimization.create_optimizer(
total_loss, learning_rate, num_train_steps, num_warmup_steps,
FLAGS.manual_fp16, FLAGS.amp, FLAGS.num_accumulation_steps, FLAGS.optimizer_type, FLAGS.allreduce_post_accumulation, FLAGS.init_loss_scale)
output_spec = tf.estimator.EstimatorSpec(
mode=mode,
loss=total_loss,
train_op=train_op)
elif mode == tf.estimator.ModeKeys.EVAL:
def metric_fn(masked_lm_example_loss, masked_lm_log_probs, masked_lm_ids,
masked_lm_weights, next_sentence_example_loss,
next_sentence_log_probs, next_sentence_labels):
"""Computes the loss and accuracy of the model."""
masked_lm_log_probs = tf.reshape(masked_lm_log_probs,
[-1, masked_lm_log_probs.shape[-1]])
masked_lm_predictions = tf.argmax(
input=masked_lm_log_probs, axis=-1, output_type=tf.int32)
masked_lm_example_loss = tf.reshape(masked_lm_example_loss, [-1])
masked_lm_ids = tf.reshape(masked_lm_ids, [-1])
masked_lm_weights = tf.reshape(masked_lm_weights, [-1])
masked_lm_accuracy = tf.compat.v1.metrics.accuracy(
labels=masked_lm_ids,
predictions=masked_lm_predictions,
weights=masked_lm_weights)
masked_lm_mean_loss = tf.compat.v1.metrics.mean(
values=masked_lm_example_loss, weights=masked_lm_weights)
next_sentence_log_probs = tf.reshape(
next_sentence_log_probs, [-1, next_sentence_log_probs.shape[-1]])
next_sentence_predictions = tf.argmax(
input=next_sentence_log_probs, axis=-1, output_type=tf.int32)
next_sentence_labels = tf.reshape(next_sentence_labels, [-1])
next_sentence_accuracy = tf.compat.v1.metrics.accuracy(
labels=next_sentence_labels, predictions=next_sentence_predictions)
next_sentence_mean_loss = tf.compat.v1.metrics.mean(
values=next_sentence_example_loss)
return {
"masked_lm_accuracy": masked_lm_accuracy,
"masked_lm_loss": masked_lm_mean_loss,
"next_sentence_accuracy": next_sentence_accuracy,
"next_sentence_loss": next_sentence_mean_loss,
}
eval_metric_ops = metric_fn(
masked_lm_example_loss, masked_lm_log_probs, masked_lm_ids,
masked_lm_weights, next_sentence_example_loss,
next_sentence_log_probs, next_sentence_labels
)
output_spec = tf.estimator.EstimatorSpec(
mode=mode,
loss=total_loss,
eval_metric_ops=eval_metric_ops)
else:
raise ValueError("Only TRAIN and EVAL modes are supported: %s" % (mode))
return output_spec
return model_fn
def get_masked_lm_output(bert_config, input_tensor, output_weights, positions,
label_ids, label_weights,
enable_packed_data_mode: bool = False,
is_training: bool = False):
"""Get loss and log probs for the masked LM."""
input_tensor = modeling.gather_indexes(input_tensor, positions)
with tf.compat.v1.variable_scope("cls/predictions"):
# We apply one more non-linear transformation before the output layer.
# This matrix is not used after pre-training.
with tf.compat.v1.variable_scope("transform"):
input_tensor = tf.compat.v1.layers.dense(
input_tensor,
units=bert_config.hidden_size,
activation=modeling.get_activation(bert_config.hidden_act),
kernel_initializer=modeling.create_initializer(
bert_config.initializer_range))
input_tensor = modeling.layer_norm(input_tensor)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
output_bias = tf.compat.v1.get_variable(
"output_bias",
shape=[bert_config.vocab_size],
initializer=tf.compat.v1.zeros_initializer())
logits = tf.matmul(tf.cast(input_tensor, tf.float32), output_weights, transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
log_probs = tf.nn.log_softmax(logits - tf.reduce_max(logits, keepdims=True, axis=-1), axis=-1)
label_ids = tf.reshape(label_ids, [-1])
label_weights = tf.reshape(label_weights, [-1])
one_hot_labels = tf.one_hot(
label_ids, depth=bert_config.vocab_size, dtype=tf.float32)
# The `positions` tensor might be zero-padded (if the sequence is too
# short to have the maximum number of predictions). The `label_weights`
# tensor has a value of 1.0 for every real prediction and 0.0 for the
# padding predictions.
per_example_loss = -tf.reduce_sum(input_tensor=log_probs * one_hot_labels, axis=[-1])
if enable_packed_data_mode and is_training: # only training should work in packed mode
label_weights = tf.cast(label_weights > 0, dtype=tf.float32)
numerator = tf.reduce_sum(input_tensor=label_weights * per_example_loss)
denominator = tf.reduce_sum(input_tensor=label_weights) + 1e-5
loss = numerator / denominator
return (loss, per_example_loss, log_probs)
def get_next_sentence_output(bert_config, input_tensor, labels,
enable_packed_data_mode: bool = False,
is_training: bool = False,
weights: Union[Tensor, type(None)] = None):
"""Get loss and log probs for the next sentence prediction."""
# Simple binary classification. Note that 0 is "next sentence" and 1 is
# "random sentence". This weight matrix is not used after pre-training.
with tf.compat.v1.variable_scope("cls/seq_relationship"):
output_weights = tf.compat.v1.get_variable(
"output_weights",
shape=[2, bert_config.hidden_size],
initializer=modeling.create_initializer(bert_config.initializer_range))
output_bias = tf.compat.v1.get_variable(
"output_bias", shape=[2], initializer=tf.compat.v1.zeros_initializer())
logits = tf.matmul(tf.cast(input_tensor, tf.float32), output_weights, transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
log_probs = tf.nn.log_softmax(logits - tf.reduce_max(logits, keepdims=True, axis=-1), axis=-1)
labels = tf.reshape(labels, [-1])
one_hot_labels = tf.one_hot(labels, depth=2, dtype=tf.float32)
per_example_loss = -tf.reduce_sum(input_tensor=one_hot_labels * log_probs, axis=-1)
if enable_packed_data_mode and is_training: # only training should work in packed mode
weights = tf.reshape(weights, [-1])
numerator = tf.reduce_sum(input_tensor=weights * per_example_loss)
denominator = tf.reduce_sum(input_tensor=weights) + 1e-5
loss = numerator / denominator
else:
loss = tf.reduce_mean(input_tensor=per_example_loss)
return (loss, per_example_loss, log_probs)
def input_fn_builder(input_files,
batch_size,
max_seq_length,
max_predictions_per_seq,
is_training,
enable_packed_data_mode,
num_cpu_threads=4):
"""Creates an `input_fn` closure to be passed to Estimator."""
def input_fn():
"""The actual input function."""
if enable_packed_data_mode and is_training: # only training should work in packed mode
name_to_features = {
"input_ids":
tf.io.FixedLenFeature([max_seq_length], tf.int64),
"input_mask":
tf.io.FixedLenFeature([max_seq_length], tf.int64),
"segment_ids":
tf.io.FixedLenFeature([max_seq_length], tf.int64),
"positions":
tf.io.FixedLenFeature([max_seq_length], tf.int64),
"masked_lm_positions":
tf.io.FixedLenFeature([max_predictions_per_seq + 3], tf.int64),
"masked_lm_ids":
tf.io.FixedLenFeature([max_predictions_per_seq + 3], tf.int64),
"masked_lm_weights":
tf.io.FixedLenFeature([max_predictions_per_seq + 3], tf.float32),
"next_sentence_positions":
tf.io.FixedLenFeature([3], tf.int64),
"next_sentence_labels":
tf.io.FixedLenFeature([3], tf.int64),
"next_sentence_weights":
tf.io.FixedLenFeature([3], tf.float32),
}
else:
name_to_features = {
"input_ids":
tf.io.FixedLenFeature([max_seq_length], tf.int64),
"input_mask":
tf.io.FixedLenFeature([max_seq_length], tf.int64),
"segment_ids":
tf.io.FixedLenFeature([max_seq_length], tf.int64),
"masked_lm_positions":
tf.io.FixedLenFeature([max_predictions_per_seq], tf.int64),
"masked_lm_ids":
tf.io.FixedLenFeature([max_predictions_per_seq], tf.int64),
"masked_lm_weights":
tf.io.FixedLenFeature([max_predictions_per_seq], tf.float32),
"next_sentence_labels":
tf.io.FixedLenFeature([1], tf.int64),
}
if FLAGS.deterministic_run:
d = tf.data.TFRecordDataset(input_files)
d = d.apply(
tf.data.experimental.map_and_batch(
lambda record: _decode_record(record, name_to_features),
batch_size=batch_size,
num_parallel_calls=1,
drop_remainder=True))
return d
# For training, we want a lot of parallel reading and shuffling.
# For eval, we want no shuffling and parallel reading doesn't matter.
if is_training:
d = tf.data.Dataset.from_tensor_slices(tf.constant(input_files))
if horovod_enabled(): d = d.shard(hvd.size(), hvd.rank())
d = d.repeat()
d = d.shuffle(buffer_size=len(input_files))
# `cycle_length` is the number of parallel files that get read.
cycle_length = min(num_cpu_threads, len(input_files))
# `sloppy` mode means that the interleaving is not exact. This adds
# even more randomness to the training pipeline.
d = d.apply(
tf.data.experimental.parallel_interleave(
tf.data.TFRecordDataset,
sloppy=is_training,
cycle_length=cycle_length))
d = d.shuffle(buffer_size=100)
else:
d = tf.data.TFRecordDataset(input_files)
# Since we evaluate for a fixed number of steps we don't want to encounter
# out-of-range exceptions.
d = d.repeat()
# We must `drop_remainder` on training because the TPU requires fixed
# size dimensions. For eval, we assume we are evaluating on the CPU or GPU
# and we *don't* want to drop the remainder, otherwise we wont cover
# every sample.
d = d.apply(
tf.data.experimental.map_and_batch(
lambda record: _decode_record(record, name_to_features),
batch_size=batch_size,
num_parallel_batches=num_cpu_threads,
drop_remainder=True if is_training else False))
return d
return input_fn
def _decode_record(record, name_to_features):
"""Decodes a record to a TensorFlow example."""
example = tf.io.parse_single_example(serialized=record, features=name_to_features)
# tf.Example only supports tf.int64, but the TPU only supports tf.int32.
# So cast all int64 to int32.
for name in list(example.keys()):
t = example[name]
if t.dtype == tf.int64:
t = tf.cast(t, dtype=tf.int32)
example[name] = t
return example
def read_avg_seq_per_pack(metadata_file_path : str) -> float:
metadata = None
avg_seq_per_pack = 1.0
with open(metadata_file_path, mode='r') as json_file:
metadata = json.loads(json_file.read())
if metadata is not None:
avg_seq_per_sample_key = "avg_seq_per_sample"
if avg_seq_per_sample_key in metadata.keys():
avg_seq_per_pack = metadata[avg_seq_per_sample_key]
else:
raise KeyError(f"Key {avg_seq_per_sample_key} not present in packed dataset metadata file: {metadata_file_path}")
return avg_seq_per_pack
def main(_):
logger = tf.get_logger()
logger.propagate = False
metadata_file_path = get_metadata_file_path(FLAGS.input_files_dir)
avg_seq_per_pack = 1.0
enable_packed_data_mode = False
if os.path.exists(metadata_file_path): # file exists, so this is a packed directory
avg_seq_per_pack = read_avg_seq_per_pack(metadata_file_path)
enable_packed_data_mode = True
if enable_packed_data_mode:
FLAGS.num_accumulation_steps = round(FLAGS.num_accumulation_steps / avg_seq_per_pack)
os.environ["TF_XLA_FLAGS"] = "--tf_xla_enable_lazy_compilation=false" #causes memory fragmentation for bert leading to OOM
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.INFO)
dllogging = dllogger_class.dllogger_class(FLAGS.dllog_path)
if not FLAGS.do_train and not FLAGS.do_eval:
raise ValueError("At least one of `do_train` or `do_eval` must be True.")
# In multi-node scenario, on each of HLSes there must be a checkpoint directly in the output_dir (read by Phase 2).
# There may be only one worker with comm_local_rank() == 0 on each machine and this worker will put its checkpoints there.
# All other workers use sub-directories to keep checkpoints.
if horovod_enabled() and comm_local_rank() != 0:
FLAGS.output_dir = os.path.join(FLAGS.output_dir, f'worker_{hvd.rank()}')
bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)
tf.io.gfile.makedirs(FLAGS.output_dir)
input_files = []
for input_file_dir in FLAGS.input_files_dir.split(","):
input_files.extend(tf.io.gfile.glob(os.path.join(input_file_dir, "*")))
if FLAGS.horovod and len(input_files) < hvd.size():
tf.compat.v1.logging.warning("Input files count lower then expected. Using single file for OVERFIT test.")
input_files = [input_files[0] for i in range(hvd.size())]
if FLAGS.amp and FLAGS.manual_fp16:
raise ValueError("AMP and Manual Mixed Precision Training are both activated! Error")
is_per_host = tf.compat.v1.estimator.tpu.InputPipelineConfig.PER_HOST_V2
# The Scoped Allocator Optimization is enabled by default unless disabled by a flag.
if FLAGS.enable_scoped_allocator:
from tensorflow.core.protobuf import rewriter_config_pb2 # pylint: disable=import-error
session_config = tf.compat.v1.ConfigProto()
session_config.graph_options.rewrite_options.scoped_allocator_optimization = rewriter_config_pb2.RewriterConfig.ON
enable_op = session_config.graph_options.rewrite_options.scoped_allocator_opts.enable_op
del enable_op[:]
enable_op.append("HorovodAllreduce")
else:
session_config = tf.compat.v1.ConfigProto()
if FLAGS.horovod:
session_config.gpu_options.visible_device_list = str(hvd.local_rank())
if hvd.rank() == 0:
tf.compat.v1.logging.info("***** Configuaration *****")
for key in FLAGS.__flags.keys():
tf.compat.v1.logging.info(' {}: {}'.format(key, getattr(FLAGS, key)))
tf.compat.v1.logging.info("**************************")
# config.gpu_options.per_process_gpu_memory_fraction = 0.7
if FLAGS.use_xla:
session_config.graph_options.optimizer_options.global_jit_level = tf.compat.v1.OptimizerOptions.ON_1
session_config.graph_options.rewrite_options.memory_optimization = rewriter_config_pb2.RewriterConfig.NO_MEM_OPT
if FLAGS.amp:
tf.compat.v1.enable_resource_variables()
run_config = tf.estimator.RunConfig(
model_dir=FLAGS.output_dir,
session_config=session_config,
save_checkpoints_steps=FLAGS.save_checkpoints_steps,
keep_checkpoint_max = FLAGS.keep_checkpoint_max,
save_summary_steps=FLAGS.save_summary_steps,
log_step_count_steps=1)
model_fn = model_fn_builder(
bert_config=bert_config,
init_checkpoint=FLAGS.init_checkpoint,
learning_rate=FLAGS.learning_rate if not FLAGS.horovod else FLAGS.learning_rate*hvd.size(),
num_train_steps=FLAGS.num_train_steps,
num_warmup_steps=FLAGS.num_warmup_steps,
use_one_hot_embeddings=False,
enable_packed_data_mode=enable_packed_data_mode)
estimator = tf.estimator.Estimator(
model_fn=model_fn,
config=run_config)
batch_size_per_node = FLAGS.train_batch_size * FLAGS.num_accumulation_steps
global_batch_size = (hvd.size() if FLAGS.horovod else 1) * batch_size_per_node
write_hparams_v1(FLAGS.output_dir, {
'batch_size': FLAGS.train_batch_size,
'batch_size_per_pu': FLAGS.train_batch_size,
'batch_size_per_node': batch_size_per_node,
'global_batch_size': global_batch_size,
**{x: getattr(FLAGS, x) for x in FLAGS}
})
if FLAGS.do_train:
training_hooks = []
if horovod_enabled():
training_hooks.append(hvd.BroadcastGlobalVariablesHook(0))
global_batch_size = global_batch_size * avg_seq_per_pack if enable_packed_data_mode else global_batch_size
batch_size_per_node = batch_size_per_node * avg_seq_per_pack if enable_packed_data_mode else batch_size_per_node
train_log_hook = _LogSessionRunHook(
global_batch_size, FLAGS.num_accumulation_steps, dllogging,
FLAGS.display_loss_steps, FLAGS.save_checkpoints_steps, FLAGS.report_loss)
training_hooks.append(train_log_hook)
training_hooks.append(ExamplesPerSecondEstimatorHook(
batch_size=batch_size_per_node, output_dir=FLAGS.output_dir,
extra_metrics={'global_examples/sec': global_batch_size}))
if len(FLAGS.profile) > 0:
training_hooks.append(TensorBoardHook(output_dir=FLAGS.output_dir,profile_steps=FLAGS.profile))
tf.compat.v1.logging.info("***** Running training *****")
tf.compat.v1.logging.info(" Batch size = %d", FLAGS.train_batch_size)
train_input_fn = input_fn_builder(
input_files=input_files,
batch_size=FLAGS.train_batch_size,
max_seq_length=FLAGS.max_seq_length,
max_predictions_per_seq=FLAGS.max_predictions_per_seq,
is_training=True, enable_packed_data_mode=enable_packed_data_mode)
train_start_time = time.time()
with dump_callback():
estimator.train(input_fn=train_input_fn, hooks=training_hooks, max_steps=FLAGS.num_train_steps)
train_time_elapsed = time.time() - train_start_time
if (not FLAGS.horovod or hvd.rank() == 0):
train_time_wo_overhead = train_log_hook.total_time
avg_sentences_per_second = FLAGS.num_train_steps * global_batch_size * 1.0 / train_time_elapsed
try:
ss_sentences_per_second = (FLAGS.num_train_steps - train_log_hook.skipped) * global_batch_size * 1.0 / train_time_wo_overhead
throughput_avg_wo_overhead_msg = ["Throughput Average (sentences/sec) = %0.2f", ss_sentences_per_second]
except:
ss_sentences_per_second = float('nan')
throughput_avg_wo_overhead_msg = [f"Throughput Average W/O Overhead is not logged when num_train_steps < {train_log_hook.skip_iters}"]
tf.compat.v1.logging.info("-----------------------------")
tf.compat.v1.logging.info("Total Training Time = %0.2f for Sentences = %d", train_time_elapsed,
FLAGS.num_train_steps * global_batch_size)
tf.compat.v1.logging.info("Total Training Time W/O Overhead = %0.2f for Sentences = %d", train_time_wo_overhead,
(FLAGS.num_train_steps - train_log_hook.skipped) * global_batch_size)
tf.compat.v1.logging.info("Throughput Average (sentences/sec) with overhead = %0.2f", avg_sentences_per_second)
tf.compat.v1.logging.info(*throughput_avg_wo_overhead_msg)
dllogging.logger.log(step=(), data={"throughput_train": ss_sentences_per_second}, verbosity=Verbosity.DEFAULT)
tf.compat.v1.logging.info("-----------------------------")
if FLAGS.export_dir is not None:
def serving_input_fn(enable_packed_data_mode=enable_packed_data_mode):
max_seq_length_ph_shape = [None, FLAGS.max_seq_length]
input_ids = tf.compat.v1.placeholder(tf.int32, max_seq_length_ph_shape, name='input_ids')
input_mask = tf.compat.v1.placeholder(tf.int32, max_seq_length_ph_shape, name='input_mask')
segment_ids = tf.compat.v1.placeholder(tf.int32, max_seq_length_ph_shape, name='segment_ids')
if enable_packed_data_mode and hvd.rank() == 0:
masked_lm_positions = tf.compat.v1.placeholder(tf.int32, [None, FLAGS.max_predictions_per_seq + 3], name='masked_lm_positions')
masked_lm_ids = tf.compat.v1.placeholder(tf.int32, [None, FLAGS.max_predictions_per_seq + 3], name='masked_lm_ids')
masked_lm_weights = tf.compat.v1.placeholder(tf.float32, [None, FLAGS.max_predictions_per_seq + 3], name='masked_lm_weights')
next_sentence_labels = tf.compat.v1.placeholder(tf.int32, [None, 3], name='next_sentence_labels')
positions = tf.compat.v1.placeholder(tf.int32, max_seq_length_ph_shape, name='positions')
next_sentence_positions = tf.compat.v1.placeholder(tf.int32, [None, 3], name='next_sentence_positions')
next_sentence_weights = tf.compat.v1.placeholder(tf.float32, [None, 3], name='next_sentence_weights')
input_fn = tf.estimator.export.build_raw_serving_input_receiver_fn({
'input_ids': input_ids, 'input_mask': input_mask, 'segment_ids': segment_ids,
'masked_lm_positions': masked_lm_positions, 'masked_lm_ids': masked_lm_ids,
'masked_lm_weights': masked_lm_weights, 'next_sentence_labels': next_sentence_labels,
'positions': positions, 'next_sentence_positions': next_sentence_positions, 'next_sentence_weights': next_sentence_weights})()
elif not horovod_enabled():
masked_lm_positions = tf.compat.v1.placeholder(tf.int32, [None, FLAGS.max_predictions_per_seq], name='masked_lm_positions')
masked_lm_ids = tf.compat.v1.placeholder(tf.int32, [None, FLAGS.max_predictions_per_seq], name='masked_lm_ids')
masked_lm_weights = tf.compat.v1.placeholder(tf.float32, [None, FLAGS.max_predictions_per_seq], name='masked_lm_weights')
next_sentence_labels = tf.compat.v1.placeholder(tf.int32, [None, 1], name='next_sentence_labels')
input_fn = tf.estimator.export.build_raw_serving_input_receiver_fn({
'input_ids': input_ids, 'input_mask': input_mask, 'segment_ids': segment_ids,
'masked_lm_positions': masked_lm_positions, 'masked_lm_ids': masked_lm_ids,
'masked_lm_weights': masked_lm_weights, 'next_sentence_labels': next_sentence_labels})()
return input_fn
if hvd.rank() == 0 or not horovod_enabled():
input_receiver_fn_map={tf.estimator.ModeKeys.TRAIN : serving_input_fn}
estimator.experimental_export_all_saved_models(FLAGS.export_dir, input_receiver_fn_map)
if FLAGS.do_eval and (not FLAGS.horovod or hvd.rank() == 0):
tf.compat.v1.logging.info("***** Running evaluation *****")
tf.compat.v1.logging.info(" Batch size = %d", FLAGS.eval_batch_size)
eval_files = []
for eval_file_dir in FLAGS.eval_files_dir.split(","):
eval_files.extend(tf.io.gfile.glob(os.path.join(eval_file_dir, "*")))
eval_input_fn = input_fn_builder(
input_files=eval_files,
batch_size=FLAGS.eval_batch_size,
max_seq_length=FLAGS.max_seq_length,
max_predictions_per_seq=FLAGS.max_predictions_per_seq,
is_training=False)
eval_hooks = [LogEvalRunHook(FLAGS.eval_batch_size)]
eval_start_time = time.time()
result = estimator.evaluate(
input_fn=eval_input_fn, steps=FLAGS.max_eval_steps, hooks=eval_hooks)
eval_time_elapsed = time.time() - eval_start_time
time_list = eval_hooks[-1].time_list
time_list.sort()
# Removing outliers (init/warmup) in throughput computation.
eval_time_wo_overhead = sum(time_list[:int(len(time_list) * 0.99)])
num_sentences = (int(len(time_list) * 0.99)) * FLAGS.eval_batch_size
ss_sentences_per_second = num_sentences * 1.0 / eval_time_wo_overhead
tf.compat.v1.logging.info("-----------------------------")
tf.compat.v1.logging.info("Total Inference Time = %0.2f for Sentences = %d", eval_time_elapsed,
eval_hooks[-1].count * FLAGS.eval_batch_size)
tf.compat.v1.logging.info("Total Inference Time W/O Overhead = %0.2f for Sentences = %d", eval_time_wo_overhead,
num_sentences)
tf.compat.v1.logging.info("Summary Inference Statistics on EVAL set")
tf.compat.v1.logging.info("Batch size = %d", FLAGS.eval_batch_size)
tf.compat.v1.logging.info("Sequence Length = %d", FLAGS.max_seq_length)
tf.compat.v1.logging.info("Precision = %s", "fp16" if FLAGS.amp else "fp32")
tf.compat.v1.logging.info("Throughput Average (sentences/sec) = %0.2f", ss_sentences_per_second)
dllogging.logger.log(step=(), data={"throughput_val": ss_sentences_per_second}, verbosity=Verbosity.DEFAULT)
tf.compat.v1.logging.info("-----------------------------")
output_eval_file = os.path.join(FLAGS.output_dir, "eval_results.txt")
with tf.io.gfile.GFile(output_eval_file, "w") as writer:
tf.compat.v1.logging.info("***** Eval results *****")
for key in sorted(result.keys()):
tf.compat.v1.logging.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
if __name__ == "__main__":
init_flags()
if FLAGS.bf16_config_path is not None:
os.environ['TF_BF16_CONVERSION'] = FLAGS.bf16_config_path
bert_config = json.load(open(FLAGS.bert_config_file, 'r'))
if 'hidden_size' in bert_config and bert_config['hidden_size'] == 768:
# cluster slicing optimization tested for bert base, works well with this size
os.environ.setdefault('TF_PRELIMINARY_CLUSTER_SIZE', '1000')
os.environ.setdefault("TF_DISABLE_MKL", "1")
flags.mark_flag_as_required("input_files_dir")
if FLAGS.do_eval:
flags.mark_flag_as_required("eval_files_dir")
flags.mark_flag_as_required("bert_config_file")
flags.mark_flag_as_required("output_dir")
if FLAGS.deterministic_run:
set_random_seed(1)
modeling.dropout = lambda input_tensor, dropout_prob: input_tensor # disable dropout
if FLAGS.horovod:
if hvd is None:
raise RuntimeError(
"Problem encountered during Horovod import. Please make sure that habana-horovod package is installed.")
hvd.init()
load_habana_module()
if FLAGS.use_xla and FLAGS.manual_fp16:
print('WARNING! Combining --use_xla with --manual_fp16 may prevent convergence.')
print(' This warning message will be removed when the underlying')
print(' issues have been fixed and you are running a TF version')
print(' that has that fix.')
tf.compat.v1.app.run()