peacock-data-public-datasets-idc-mint
/
docker
/intel_code
/llama13b
/Megatron-DeepSpeed
/megatron
/initialize.py
# Copyright (C) 2024 Habana Labs, Ltd. an Intel Company. | |
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. | |
"""Megatron initialization.""" | |
import random | |
import os | |
import time | |
import shutil | |
import numpy as np | |
import torch | |
from datetime import timedelta | |
from megatron import fused_kernels | |
from megatron import get_adlr_autoresume | |
from megatron import get_args | |
from megatron import get_tensorboard_writer | |
from megatron.core import mpu, tensor_parallel | |
from megatron.arguments import (parse_args, validate_args) | |
from megatron.checkpointing import load_args_from_checkpoint | |
from megatron.global_vars import set_global_variables | |
from megatron.model.transformer import bias_dropout_add_fused_train | |
from megatron.model.fused_bias_gelu import bias_gelu | |
from megatron.utils import is_rank_0 | |
from deepspeed.accelerator import get_accelerator | |
import deepspeed | |
from deepspeed.ops.op_builder.builder import OpBuilder | |
is_rocm_pytorch = OpBuilder.is_rocm_pytorch() | |
def initialize_megatron(extra_args_provider=None, args_defaults={}, | |
ignore_unknown_args=False, allow_no_cuda=False): | |
"""Set global variables, initialize distributed, and | |
set autoresume and random seeds. | |
`allow_no_cuda` should not be set unless using megatron for cpu only | |
data processing. In general this arg should not be set unless you know | |
what you are doing. | |
Returns a function to finalize distributed env initialization | |
(optionally, only when args.lazy_mpu_init == True) | |
""" | |
if not allow_no_cuda: | |
# Make sure cuda is available. | |
assert get_accelerator().is_available(), 'Megatron requires accelerator.' | |
# Parse arguments | |
args = parse_args(extra_args_provider, ignore_unknown_args) | |
# Set input args. | |
for key in args_defaults: | |
# The args_defaults is for those who want to set default value or pass parameters when | |
# calling Python functions. Instead of using arguments passed in from outside the program. | |
if getattr(args, key) is not None: | |
if args.rank == 0: | |
print('INFO: overriding default arguments for {key}:{v} \ | |
with {key}:{v2}'.format(key=key, v=getattr(args, key), | |
v2=args_defaults[key]), | |
flush=True) | |
else: | |
setattr(args, key, args_defaults[key]) | |
if args.use_checkpoint_args or args_defaults.get('use_checkpoint_args', False): | |
assert args.load is not None, '--use-checkpoints-args requires --load argument' | |
load_args_from_checkpoint(args) | |
validate_args(args) | |
# set global args, build tokenizer, and set adlr-autoresume, | |
# tensorboard-writer, and timers. | |
set_global_variables(args) | |
# profiler config, must be done before hpu initialization | |
if args.profile == 'hltv': | |
os.environ['HABANA_PROFILE'] = 'profile_api_with_nics' | |
shutil.rmtree('.graph_dumps', ignore_errors=True) | |
# torch.distributed initialization | |
def finish_mpu_init(): | |
args = get_args() | |
# Pytorch distributed. | |
_initialize_distributed() | |
# Random seeds for reproducibility. | |
if args.rank == 0: | |
print('> setting random seeds to {} ...'.format(args.seed)) | |
_set_random_seed(args.seed, args.data_parallel_random_init) | |
args = get_args() | |
if args.lazy_mpu_init: | |
# TODO is this still a necessary option? | |
args.use_cpu_initialization=True | |
# delayed initialization of DDP-related stuff | |
# We only set basic DDP globals | |
mpu.set_tensor_model_parallel_world_size(args.tensor_model_parallel_size) | |
# and return function for external DDP manager | |
# to call when it has DDP initialized | |
mpu.set_tensor_model_parallel_rank(args.rank) | |
return finish_mpu_init | |
else: | |
# Megatron's MPU is the master. Complete initialization right away. | |
finish_mpu_init() | |
# Initialize memory buffers. | |
_initialize_mem_buffs() | |
# Autoresume. | |
_init_autoresume() | |
# Compile dependencies. | |
_compile_dependencies() | |
# No continuation function | |
return None | |
def _compile_dependencies(): | |
args = get_args() | |
# ========================= | |
# Compile dataset C++ code. | |
# ========================= | |
# TODO: move this to ninja | |
if is_rank_0(): | |
start_time = time.time() | |
print('> compiling dataset index builder ...') | |
from megatron.data.dataset_utils import compile_helper | |
compile_helper() | |
print('>>> done with dataset index builder. Compilation time: {:.3f} ' | |
'seconds'.format(time.time() - start_time), flush=True) | |
if not get_accelerator().device_name() == 'cuda': | |
print(">fused kernel is only supported in cuda, skip loading fused kernel") | |
return | |
if args.use_dataset_only: | |
return | |
# ================== | |
# Load fused kernels | |
# ================== | |
# Custom kernel constraints check. | |
seq_len = args.seq_length | |
attn_batch_size = \ | |
(args.num_attention_heads / args.tensor_model_parallel_size) * \ | |
args.micro_batch_size | |
# Constraints on sequence length and attn_batch_size to enable warp based | |
# optimization and upper triangular optimization (for causal mask) | |
custom_kernel_constraint = seq_len > 16 and seq_len <=4096 and \ | |
seq_len % 4 == 0 and attn_batch_size % 4 == 0 | |
# Print a warning. | |
if not ((args.fp16 or args.bf16) and | |
custom_kernel_constraint and | |
args.masked_softmax_fusion): | |
if args.rank == 0: | |
print('WARNING: constraints for invoking optimized' | |
' fused softmax kernel are not met. We default' | |
' back to unfused kernel invocations.', flush=True) | |
# Always build on rank zero first. | |
if is_rank_0(): | |
start_time = time.time() | |
print('> compiling and loading fused kernels ...', flush=True) | |
if get_accelerator().device_count() > 0: # Skip when CPU-only | |
fused_kernels.load(args) | |
torch.distributed.barrier() | |
else: | |
torch.distributed.barrier() | |
fused_kernels.load(args) | |
# Simple barrier to make sure all ranks have passed the | |
# compilation phase successfully before moving on to the | |
# rest of the program. We think this might ensure that | |
# the lock is released. | |
torch.distributed.barrier() | |
if is_rank_0(): | |
print('>>> done with compiling and loading fused kernels. ' | |
'Compilation time: {:.3f} seconds'.format( | |
time.time() - start_time), flush=True) | |
def setup_deepspeed_random_and_activation_checkpointing(args): | |
'''Optional DeepSpeed Activation Checkpointing features. | |
Gives access to partition activations, contiguous memory optimizations | |
and cpu checkpointing. | |
Activation checkpoint requires keep track of the random states | |
and setting the random seed for each MP process. Megatron uses | |
mpu.get_cuda_rng_tracker and mpu.model_parallel_cuda_manual_seed | |
for keeping track of the random states and setting the random seeds. | |
Since they are used in places outside of activation checkpointing, | |
we overwrite them to maintain consistency. | |
This must be called before all the calls to mpu.model_parallel_cuda_manual_seed | |
''' | |
num_layers = args.num_layers // args.checkpoint_num_layers | |
num_layers = num_layers if args.num_layers % args.checkpoint_num_layers == 0 else num_layers + 1 | |
if args.split_transformers: | |
num_layers *= 2 | |
deepspeed.checkpointing.configure( | |
mpu, | |
partition_activations=args.partition_activations, | |
contiguous_checkpointing=args.contigious_checkpointing, | |
num_checkpoints=num_layers, | |
checkpoint_in_cpu=args.checkpoint_in_cpu, | |
synchronize=args.synchronize_each_layer, | |
profile=args.profile_backward) | |
def _initialize_distributed(): | |
"""Initialize torch.distributed and core model parallel.""" | |
args = get_args() | |
device_count = get_accelerator().device_count() | |
if torch.distributed.is_initialized(): | |
if args.rank == 0: | |
print('torch distributed is already initialized, ' | |
'skipping initialization ...', flush=True) | |
args.rank = torch.distributed.get_rank() | |
args.world_size = torch.distributed.get_world_size() | |
else: | |
if args.rank == 0: | |
print('> initializing torch distributed ...', flush=True) | |
# Manually set the device ids. | |
if device_count > 0: | |
device = args.rank % device_count | |
if args.local_rank is not None: | |
assert args.local_rank == device, \ | |
'expected local-rank to be the same as rank % device-count.' | |
else: | |
args.local_rank = device | |
get_accelerator().set_device(device) # only do so when device_count > 0 | |
# Call the init process | |
if args.deepspeed or args.ds_inference: | |
deepspeed.init_distributed() | |
else: | |
if not torch.distributed.is_initialized(): | |
torch.distributed.init_process_group( | |
backend=get_accelerator().communication_backend_name(), | |
world_size=args.world_size, rank=args.rank, | |
timeout=timedelta(minutes=args.distributed_timeout_minutes)) | |
# Set the tensor model-parallel, pipeline model-parallel, and | |
# data-parallel communicators. | |
if device_count > 0: | |
if mpu.model_parallel_is_initialized(): | |
print('model parallel is already initialized') | |
else: | |
if args.ds_sequence_parallel_size > 1 and args.sequence_parallel: | |
raise RuntimeError( | |
f"sequence_parallel_size > 1 enables DeepSpeed's sequence parallel, " | |
f"which is not compatible with Megatron-LM's sequence parallel. " | |
f"Remove --sequence_parallel to use DeepSpeed's sequence parallel." | |
) | |
mpu.initialize_model_parallel(args.tensor_model_parallel_size, | |
args.pipeline_model_parallel_size, | |
args.ds_sequence_parallel_size, | |
args.virtual_pipeline_model_parallel_size, | |
args.pipeline_model_parallel_split_rank, | |
use_distributed_optimizer=args.use_distributed_optimizer) | |
if args.rank == 0: | |
print(f'> initialized tensor model parallel with size ' | |
f'{mpu.get_tensor_model_parallel_world_size()}') | |
print(f'> initialized pipeline model parallel with size ' | |
f'{mpu.get_pipeline_model_parallel_world_size()}') | |
if args.deepspeed and args.deepspeed_activation_checkpointing: | |
setup_deepspeed_random_and_activation_checkpointing(args) | |
def _init_autoresume(): | |
"""Set autoresume start time.""" | |
autoresume = get_adlr_autoresume() | |
if autoresume: | |
torch.distributed.barrier() | |
autoresume.init() | |
torch.distributed.barrier() | |
def _set_random_seed(seed_, data_parallel_random_init=False): | |
"""Set random seed for reproducability.""" | |
if seed_ is not None and seed_ > 0: | |
if get_accelerator().device_count() == 0: | |
# No need for CPU-only case. | |
seed = seed_ | |
else: | |
# Ensure that different pipeline MP stages get different seeds. | |
seed = seed_ + (100 * mpu.get_pipeline_model_parallel_rank()) | |
# Ensure different data parallel ranks get different seeds | |
if data_parallel_random_init: | |
seed = seed + (10 * mpu.get_data_parallel_rank()) | |
random.seed(seed) | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
if get_accelerator().device_count() > 0: | |
tensor_parallel.model_parallel_cuda_manual_seed(seed) | |
else: | |
raise ValueError('Seed ({}) should be a positive integer.'.format(seed)) | |
def write_args_to_tensorboard(): | |
"""Write arguments to tensorboard.""" | |
args = get_args() | |
writer = get_tensorboard_writer() | |
if writer: | |
for arg in vars(args): | |
writer.add_text(arg, str(getattr(args, arg)), | |
global_step=args.iteration) | |
def _initialize_mem_buffs(): | |
"""Initialize manually allocated static memory.""" | |
args = get_args() | |
# Initialize memory for checkpointed activations. | |
if args.distribute_checkpointed_activations: | |
tensor_parallel.init_checkpointed_activations_memory_buffer() | |
def set_jit_fusion_options(): | |
"""Set PyTorch JIT layer fusion options.""" | |
# flags required to enable jit fusion kernels | |
TORCH_MAJOR = int(torch.__version__.split('.')[0]) | |
TORCH_MINOR = int(torch.__version__.split('.')[1]) | |
if ((TORCH_MAJOR > 1) or (TORCH_MAJOR == 1 and TORCH_MINOR >= 10)) and not is_rocm_pytorch: | |
# nvfuser | |
torch._C._jit_set_profiling_executor(True) | |
torch._C._jit_set_profiling_mode(True) | |
torch._C._jit_override_can_fuse_on_cpu(False) | |
torch._C._jit_override_can_fuse_on_gpu(False) | |
torch._C._jit_set_texpr_fuser_enabled(False) | |
torch._C._jit_set_nvfuser_enabled(True) | |
torch._C._debug_set_autodiff_subgraph_inlining(False) | |
else: | |
# legacy pytorch fuser | |
torch._C._jit_set_profiling_mode(False) | |
torch._C._jit_set_profiling_executor(False) | |
torch._C._jit_override_can_fuse_on_cpu(True) | |
torch._C._jit_override_can_fuse_on_gpu(True) | |
_warmup_jit_function() | |
def _warmup_jit_function(): | |
""" Compilie JIT functions before the main training steps """ | |
args = get_args() | |
if args.bf16: | |
dtype = torch.bfloat16 | |
elif args.fp16: | |
dtype = torch.float16 | |
else: | |
dtype = torch.float32 | |
# Warmup fused bias+gelu | |
bias = torch.rand(args.ffn_hidden_size // args.tensor_model_parallel_size, | |
dtype=dtype, device='cuda') | |
input = torch.rand((args.seq_length // args.ds_sequence_parallel_size, args.micro_batch_size, | |
args.ffn_hidden_size // args.tensor_model_parallel_size), | |
dtype=dtype, device='cuda') | |
# Warmup JIT fusions with the input grad_enable state of both forward | |
# prop and recomputation | |
for bias_grad, input_grad in zip([True, True], [False, True]): | |
bias.requires_grad, input.requires_grad = bias_grad, input_grad | |
for _ in range(5): | |
output = bias_gelu(bias, input) | |
del bias, input, output | |
# Warmup fused bias+dropout+add | |
if args.sequence_parallel: | |
seq_length = args.seq_length // mpu.get_tensor_model_parallel_world_size() | |
else: | |
seq_length = args.seq_length | |
input = torch.rand((seq_length // args.ds_sequence_parallel_size, args.micro_batch_size, args.hidden_size), | |
dtype=dtype, device='cuda') | |
residual = torch.rand((seq_length // args.ds_sequence_parallel_size, args.micro_batch_size, args.hidden_size), | |
dtype=dtype, device='cuda') | |
bias = torch.rand((args.hidden_size), dtype=dtype, device='cuda').expand_as(residual) | |
dropout_rate = 0.1 | |
# Warmup JIT fusions with the input grad_enable state of both forward | |
# prop and recomputation | |
for input_grad, bias_grad, residual_grad in zip([False, True], [True, True], [True, True]): | |
input.requires_grad = input_grad | |
bias.requires_grad = bias_grad | |
residual.requires_grad = residual_grad | |
for _ in range(5): | |
output = bias_dropout_add_fused_train(input, bias, residual, dropout_rate) | |
del bias, input, residual, output | |
get_accelerator().empty_cache() | |