peacock-data-public-datasets-idc-mint
/
docker
/intel_code
/llama13b
/Megatron-DeepSpeed
/megatron
/model
/vision
/inpainting.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. | |
# | |
# This source code is licensed under the BSD license found in the | |
# LICENSE file in the root directory of this source tree. | |
i | |
import math | |
import apex | |
import einops | |
import torch | |
import torch.nn.functional as F | |
from megatron import get_args, print_rank_0 | |
from megatron.model.utils import get_linear_layer | |
from megatron.model.vision.vit_backbone import VitBackbone | |
from megatron.model.module import MegatronModule | |
from megatron.model.vision.mit_backbone import mit_b3 | |
from megatron.model.vision.utils import resize_ | |
class VitInpaintingModel(MegatronModule): | |
def __init__(self, config, pre_process=True, post_process=True): | |
super(VitInpaintingModel, self).__init__() | |
args = get_args() | |
self.pre_process = pre_process | |
self.post_process = post_process | |
self.hidden_size = config.hidden_size | |
self.backbone = VitBackbone( | |
config=config, | |
pre_process=self.pre_process, | |
post_process=self.post_process, | |
class_token=False, | |
) | |
self.patch_dim = args.patch_dim | |
self.img_h = args.img_h | |
self.img_w = args.img_w | |
self.seq_length = args.seq_length | |
# full mask | |
if self.post_process: | |
self.linear_decoder = get_linear_layer( | |
self.hidden_size, | |
self.backbone.flatten_dim, | |
torch.nn.init.zeros_, | |
gather_params_on_init=args.zero_stage == 3 | |
) | |
def set_input_tensor(self, input_tensor): | |
self.backbone.set_input_tensor(input_tensor) | |
def forward(self, input): | |
hidden_states = self.backbone(input) | |
if not self.post_process: | |
return hidden_states | |
decoded_output = self.linear_decoder(hidden_states) | |
output = einops.rearrange( | |
decoded_output, | |
"b (h w) (p1 p2 c) -> b c (h p1) (w p2)", | |
p1=self.patch_dim, | |
p2=self.patch_dim, | |
h=self.img_h//self.patch_dim, | |
w=self.img_w//self.patch_dim, | |
) | |
return output | |
class MLP(torch.nn.Module): | |
""" | |
Linear Embedding | |
""" | |
def __init__(self, input_dim=2048, embed_dim=768): | |
super().__init__() | |
self.proj = torch.nn.Linear(input_dim, embed_dim) | |
def forward(self, x): | |
x = x.flatten(2).transpose(1, 2) | |
x = self.proj(x) | |
return x | |
class MitInpaintingModel(MegatronModule): | |
"""Mix vision Transformer Model.""" | |
def __init__(self, pre_process=True, post_process=True): | |
super(MitInpaintingModel, self).__init__() | |
self.pre_process = pre_process | |
self.post_process = post_process | |
args = get_args() | |
self.patch_dim = args.patch_dim | |
self.img_h = args.img_h | |
self.img_w = args.img_w | |
self.flatten_dim = self.patch_dim * self.patch_dim * 3 | |
self.backbone = mit_b3() | |
self.in_channels = [64, 128, 320, 512] | |
self.embedding_dim = 768 | |
c1_in_channels, c2_in_channels, c3_in_channels, c4_in_channels = self.in_channels | |
self.linear_c4 = MLP(input_dim=c4_in_channels, embed_dim=self.embedding_dim) | |
self.linear_c3 = MLP(input_dim=c3_in_channels, embed_dim=self.embedding_dim) | |
self.linear_c2 = MLP(input_dim=c2_in_channels, embed_dim=self.embedding_dim) | |
self.linear_c1 = MLP(input_dim=c1_in_channels, embed_dim=self.embedding_dim) | |
self.conv_fuse = torch.nn.Conv2d(self.embedding_dim*4, self.embedding_dim, 1, 1, bias=False) | |
self.norm = apex.parallel.SyncBatchNorm(self.embedding_dim) | |
self.dropout = torch.nn.Dropout2d(0.1) | |
self.linear_pred = torch.nn.Conv2d(self.embedding_dim, self.flatten_dim, kernel_size=1) | |
def set_input_tensor(self, input_tensor): | |
"""See megatron.model.transformer.set_input_tensor()""" | |
pass | |
def forward(self, input): | |
c1, c2, c3, c4 = self.backbone(input) | |
n, _, h, w = c4.shape | |
_c4 = self.linear_c4(c4).permute(0, 2, 1).reshape(n, -1, c4.shape[2], c4.shape[3]) | |
_c4 = resize(_c4, size=c1.size()[2:], mode='bilinear', align_corners=False) | |
_c3 = self.linear_c3(c3).permute(0, 2, 1).reshape(n, -1, c3.shape[2], c3.shape[3]) | |
_c3 = resize(_c3, size=c1.size()[2:], mode='bilinear', align_corners=False) | |
_c2 = self.linear_c2(c2).permute(0, 2, 1).reshape(n, -1, c2.shape[2], c2.shape[3]) | |
_c2 = resize(_c2, size=c1.size()[2:], mode='bilinear', align_corners=False) | |
_c1 = self.linear_c1(c1).permute(0, 2, 1).reshape(n, -1, c1.shape[2], c1.shape[3]) | |
_c = torch.cat([_c4, _c3, _c2, _c1], dim=1) | |
_c = self.conv_fuse(_c) | |
x = self.norm(_c) | |
x = F.relu(x, inplace=True) | |
x = self.dropout(x) | |
x = self.linear_pred(x) | |
output = einops.rearrange( | |
x, | |
"b (c p1 p2) h w -> b c (h p1) (w p2)", | |
p1=self.patch_dim, | |
p2=self.patch_dim, | |
h=self.img_h//self.patch_dim, | |
w=self.img_w//self.patch_dim, | |
) | |
return output | |