applied-ai-018's picture
Add files using upload-large-folder tool
7ef6853 verified
# Copyright (C) 2024 Habana Labs, Ltd. an Intel Company.
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
"""Pretrain utilities."""
from datetime import datetime
import math
import sys
import time
import json
# The earliest we can measure the start time.
_TRAIN_START_TIME = time.time()
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
from contextlib import nullcontext
from megatron import get_args
from megatron import get_signal_handler
from megatron import get_timers
from megatron import get_tensorboard_writer
from megatron import get_current_global_batch_size
from megatron import get_num_microbatches, get_num_eval_microbatches
from megatron import is_last_rank
from megatron import update_num_microbatches
from megatron.core import mpu, tensor_parallel
from megatron import print_rank_0, is_rank_0
from megatron import print_rank_last
from megatron.checkpointing import load_checkpoint
from megatron.checkpointing import save_checkpoint
from megatron.model import Float16Module
from megatron.model import GPTModel
from megatron.core.enums import ModelType
from megatron.optimizer import get_megatron_optimizer
from megatron.initialize import initialize_megatron
from megatron.initialize import write_args_to_tensorboard
from megatron.initialize import set_jit_fusion_options
from megatron.optimizer_param_scheduler import OptimizerParamScheduler
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.utils import check_adlr_autoresume_termination
from megatron.utils import unwrap_model, found_kill_switch
from megatron.data.data_samplers import build_pretraining_data_loader
from megatron.utils import calc_params_l2_norm
from megatron.core.pipeline_parallel import get_forward_backward_func
from megatron.utils import report_memory, throughput_calculator, checkpoint_throughput_calculator, update_rotary_pos_emb, get_fp8_recipe
from megatron.core.tensor_parallel.data import reset_cached_broadcast_sizes
from megatron.utils import report_memory, throughput_calculator, checkpoint_throughput_calculator
from megatron.model.vision.knn_monitor import compute_feature_bank
from megatron.arguments import core_transformer_config_from_args
from megatron.profiler import setup_profiler, trigger, on_step_begin, on_step_end
import deepspeed
from deepspeed.accelerator import get_accelerator
from deepspeed.compression.compress import init_compression, redundancy_clean
from deepspeed.runtime.data_pipeline.data_routing.helper import convert_to_random_ltd
from megatron.model.transformer import ParallelTransformerLayer
from deepspeed import comm as dist
try:
import wandb
except (ImportError, ModuleNotFoundError):
wandb = None
try:
from habana_frameworks.torch.hpex.experimental.transformer_engine import fp8_autocast
from habana_frameworks.torch.hpex.experimental.transformer_engine import recipe
except (ImportError, ModuleNotFoundError):
fp8_autocast = None
recipe = None
def print_datetime(string):
"""Note that this call will sync across all ranks."""
torch.distributed.barrier()
time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
print_rank_0('[' + string + '] datetime: {} '.format(time_str))
'''
Since v0.9.0, deepspeed.initialize() has forbidden simultaneous setting of args.deepspeed_config (Path) and ds_config dict.
So, we use ds_config dict which is the more flexible option.
'''
def _create_ds_config_dict():
args = get_args()
if isinstance(args.deepspeed_config, dict) :
ds_config_dict = args.deepspeed_config
else:
with open(args.deepspeed_config, 'r', encoding='utf-8') as config_file:
ds_config_dict = json.load(config_file)
if args.universal_checkpoint:
ds_config_dict["checkpoint"] = {"load_universal": True}
# Clear config path
args.deepspeed_config = None
return ds_config_dict
def pretrain(train_valid_test_dataset_provider,
model_provider,
model_type,
forward_step_func,
process_non_loss_data_func=None,
extra_args_provider=None,
args_defaults={},
data_post_process=None):
"""Main training program.
This function will run the followings in the order provided:
1) initialize Megatron.
2) setup model, optimizer and lr schedule using the model_provider.
3) call train_val_test_data_provider to get train/val/test datasets.
4) train the modle using the forward_step_func.
Arguments:
train_valid_test_dataset_provider: a function that takes the size of
train/valid/test dataset and returns `train, valid, test` datasets.
model_provider: a function that returns a vanilla version of the
model. By vanilla we mean a simple model on cpu with no fp16 or ddp.
model_type: an enum that specifies the type of model being trained.
forward_step_func: a function that takes a `data iterator` and `model`,
and returns a `loss` scalar with a dictionary with key:values being
the info we would like to monitor during training, for example
`lm-loss: value`. We also require that this function add
`batch generator` to the timers class.
process_non_loss_data_func: a function to post process outputs of the
network. It can be used for dumping output tensors (e.g images) to
tensorboard. It takes `collected data`(list of tensors),
`current iteration index` and `tensorboard writer` as arguments.
extra_args_provider: a function that takes a parser and adds arguments
to it. It is used for programs to add their own arguments.
args_defaults: a dictionary from argument-name to argument-value. It
to set already parse arguments.
"""
# Initalize and get arguments, timers, and Tensorboard writer.
initialize_megatron(extra_args_provider=extra_args_provider,
args_defaults=args_defaults)
args = get_args()
if found_kill_switch():
print_datetime(f"Detected kill switch at {args.kill_switch_path}. Exiting")
torch.distributed.barrier()
sys.exit()
# Set pytorch JIT layer fusion options and warmup JIT functions.
if get_accelerator().device_name() == 'cuda':
set_jit_fusion_options()
# Adjust the startup time so it reflects the largest value.
# This will be closer to what scheduler will see (outside of
# image ... launches.
global _TRAIN_START_TIME
start_time_tensor = get_accelerator().DoubleTensor([_TRAIN_START_TIME])
torch.distributed.all_reduce(start_time_tensor,
op=torch.distributed.ReduceOp.MIN)
_TRAIN_START_TIME = start_time_tensor.item()
print_rank_0('time to initialize megatron (seconds): {:.3f}'.format(
time.time() - _TRAIN_START_TIME))
print_datetime('after megatron is initialized')
timers = get_timers()
if args.deepspeed:
args.deepspeed_config_dict = _create_ds_config_dict()
if "curriculum_learning" in args.deepspeed_config_dict and \
"enabled" in args.deepspeed_config_dict["curriculum_learning"]:
args.curriculum_learning_legacy = args.deepspeed_config_dict[ \
"curriculum_learning"]["enabled"]
if args.curriculum_learning_legacy and not args.no_pipeline_parallel:
from deepspeed.runtime.data_pipeline.curriculum_scheduler \
import CurriculumScheduler
args.curriculum_scheduler = CurriculumScheduler( \
args.deepspeed_config_dict["curriculum_learning"])
if "compression_training" in args.deepspeed_config_dict:
args.compression_training = True
# Model, optimizer, and learning rate.
timers('model-and-optimizer-setup', log_level=0).start(barrier=True)
model, optimizer, opt_param_scheduler = setup_model_and_optimizer(
model_provider, model_type, teacher=False, data_post_process=data_post_process,
build_train_valid_test_datasets_provider=train_valid_test_dataset_provider)
timers('model-and-optimizer-setup').stop()
print_datetime('after model, optimizer, and learning rate '
'scheduler are built')
# Data stuff.
timers('train/valid/test-data-iterators-setup', log_level=0).start(
barrier=True)
if args.virtual_pipeline_model_parallel_size is not None:
all_data_iterators = [
build_train_valid_test_data_iterators(
train_valid_test_dataset_provider)
for _ in range(len(model))
]
train_data_iterator = [data_iterators[0]
for data_iterators in all_data_iterators]
valid_data_iterator = [data_iterators[1]
for data_iterators in all_data_iterators]
test_data_iterator = [data_iterators[2]
for data_iterators in all_data_iterators]
else:
train_data_iterator, valid_data_iterator, test_data_iterator \
= build_train_valid_test_data_iterators(
train_valid_test_dataset_provider)
if args.data_efficiency_curriculum_learning:
if args.deepspeed_dataloader is not None:
# We use args to pass the deepspeed_dataloader because adding
# output to setup_model_and_optimizer will break the API for other
# cases. We clear args.deepspeed_dataloader after updating
# train_data_iterator because args will be saved in checkpoint and
# attempting to save the whole deepspeed_dataloader will lead to
# "AttributeError: Can't pickle local object...".
train_data_iterator = iter(args.deepspeed_dataloader)
args.deepspeed_dataloader = None
else:
train_data_iterator = None
timers('train/valid/test-data-iterators-setup').stop()
print_datetime('after dataloaders are built')
# args.teacher_model is used as global variable to pass the teacher model
# for knowledge distillation. Users do not need to set it in the command
# line to use kd, but users do need to provide teacher model configurations
# like args.num_layers_teacher as described in setup_teacher_model()
args.teacher_model = None
if args.mos or args.kd: # Set up teacher model
args.teacher_model = setup_teacher_model(args, model_provider)
# Print setup timing.
print_rank_0('done with setup ...')
timers.log(['model-and-optimizer-setup',
'train/valid/test-data-iterators-setup'], barrier=True)
if not args.skip_train:
print_rank_0('training ...')
if args.dataloader_type == 'cyclic' and args.retro_add_retriever:
args.train_iters = args.retro_cyclic_train_iters
print_rank_0("retro cyclic train iters : %d" % args.train_iters)
iteration = 0
if args.do_train and args.train_iters > 0:
iteration = train(forward_step_func,
model, optimizer, opt_param_scheduler,
train_data_iterator, valid_data_iterator,
process_non_loss_data_func)
print_datetime('after training is done')
# Clean the model
if args.compression_training:
model = [redundancy_clean(model[0], args.deepspeed_config_dict, mpu)]
if args.save and iteration != 0:
save_checkpoint(iteration, model, optimizer, opt_param_scheduler)
else:
print_rank_0('skipping training (--skip-train is on) ...')
iteration = args.iteration
if args.save and (iteration != 0 or args.universal_checkpoint):
save_checkpoint(iteration, model, optimizer, opt_param_scheduler)
config = core_transformer_config_from_args(args)
if args.do_valid:
prefix = f'iteration {iteration} on {args.eval_iters * args.global_batch_size}-sample draw from validation set'
_ = evaluate_and_print_results(prefix, forward_step_func,
valid_data_iterator, model,
iteration, process_non_loss_data_func, config,
verbose=True, write_to_tensorboard=not args.skip_train)
if args.do_test:
prefix = f'iteration {iteration} on {args.eval_iters * args.global_batch_size}-sample draw from test set'
_ = evaluate_and_print_results(prefix, forward_step_func,
test_data_iterator, model,
iteration, process_non_loss_data_func, config,
verbose=True, write_to_tensorboard=not args.skip_train, test=True)
return model
def update_train_iters(args):
# For iteration-based training, we don't need to do anything
if args.train_iters:
return
# Constant batch size with sample-based training.
if args.rampup_batch_size is None:
args.train_iters = args.train_samples // args.global_batch_size
else:
# Sample based training with rampup batch size.
iterations = 0
consumed_samples = 0
# Rampup phase.
while consumed_samples <= int(args.rampup_batch_size[2]):
update_num_microbatches(consumed_samples, consistency_check=False)
consumed_samples += get_current_global_batch_size()
iterations += 1
# Reset
update_num_microbatches(0, consistency_check=False)
# Constant phase
# Note that we throw away any partial last batch.
iterations += (args.train_samples - consumed_samples) // \
args.global_batch_size
args.train_iters = iterations
print_rank_0('setting training iterations to {}'.format(args.train_iters))
def setup_teacher_model(args, model_provider):
print_rank_0('***>>>>> Student model checkpoint iteration:{}'.format(args.iteration))
iteration_stuent = args.iteration
num_layers_student = args.num_layers
num_experts_student = args.num_experts
hidden_size_student = args.hidden_size
num_attention_heads_student = args.num_attention_heads
load_student = args.load
print_rank_0('***>>>>> Setting up the teacher model')
args.num_layers = args.num_layers_teacher
args.num_experts = args.num_experts_teacher
args.hidden_size = args.hidden_size_teacher
args.num_attention_heads = args.num_attention_heads_teacher
args.load = args.load_teacher
teacher_model, _, _ = load_model_weights_only(model_provider)
print_rank_0('***>>>>> Teacher model:{}'.format(teacher_model))
args.num_layers = num_layers_student
args.num_experts = num_experts_student
args.hidden_size = hidden_size_student
args.num_attention_heads = num_attention_heads_student
args.load = load_student
args.iteration = iteration_stuent
return teacher_model
def get_model(model_provider_func, model_type=ModelType.encoder_or_decoder, wrap_with_ddp=True):
"""Build the model."""
args = get_args()
args.model_type = model_type
# Build model.
if mpu.get_pipeline_model_parallel_world_size() > 1 and \
args.virtual_pipeline_model_parallel_size is not None:
assert model_type != ModelType.encoder_and_decoder, \
"Interleaved schedule not supported for model with both encoder and decoder"
model = []
for i in range(args.virtual_pipeline_model_parallel_size):
mpu.set_virtual_pipeline_model_parallel_rank(i)
# Set pre_process and post_process only after virtual rank is set.
pre_process = mpu.is_pipeline_first_stage()
post_process = mpu.is_pipeline_last_stage()
this_model = model_provider_func(
pre_process=pre_process,
post_process=post_process
)
this_model.model_type = model_type
model.append(this_model)
else:
pre_process = mpu.is_pipeline_first_stage()
post_process = mpu.is_pipeline_last_stage()
add_encoder = True
add_decoder = True
if model_type == ModelType.encoder_and_decoder:
if mpu.get_pipeline_model_parallel_world_size() > 1:
assert args.pipeline_model_parallel_split_rank is not None, \
"Split rank needs to be specified for model with both encoder and decoder"
rank = mpu.get_pipeline_model_parallel_rank()
split_rank = args.pipeline_model_parallel_split_rank
world_size = mpu.get_pipeline_model_parallel_world_size()
pre_process = rank == 0 or rank == split_rank
post_process = (rank == (split_rank - 1)) or (
rank == (world_size - 1))
add_encoder = mpu.is_pipeline_stage_before_split()
add_decoder = mpu.is_pipeline_stage_after_split()
model = model_provider_func(
pre_process=pre_process,
post_process=post_process,
add_encoder=add_encoder,
add_decoder=add_decoder)
else:
model = model_provider_func(
pre_process=pre_process,
post_process=post_process
)
model.model_type = model_type
if not isinstance(model, list):
model = [model]
# Disallow training and inference with Transformer Engine
# for non-GPT models
args.allow_transformer_engine = all([type(m).__name__ in ['GPTModelPipe', 'GPTModel'] for m in model])
assert args.allow_transformer_engine or args.transformer_impl == 'local', \
'Transformer Engine is only approved for GPT models'
# Set tensor model parallel attributes if not set.
# Only parameters that are already tensor model parallel have these
# attributes set for them. We should make sure the default attributes
# are set for all params so the optimizer can use them.
for model_module in model:
for param in model_module.parameters():
tensor_parallel.set_defaults_if_not_set_tensor_model_parallel_attributes(param)
# Print number of parameters.
if mpu.get_data_parallel_rank() == 0:
print(' > number of parameters on (tensor, pipeline) '
'model parallel rank ({}, {}): {}'.format(
mpu.get_tensor_model_parallel_rank(),
mpu.get_pipeline_model_parallel_rank(),
sum([sum([p.ds_numel if hasattr(p,'ds_id') else p.nelement() for p in model_module.parameters()])
for model_module in model])), flush=True)
if args.deepspeed:
return model
# GPU allocation.
for model_module in model:
model_module.to(get_accelerator().current_device_name())
# Fp16 conversion.
if args.fp16 or args.bf16:
model = [Float16Module(model_module, args) for model_module in model]
if wrap_with_ddp:
if args.DDP_impl == 'torch':
i = get_accelerator().current_device()
model = [torchDDP(model_module, device_ids=[i], output_device=i,
process_group=mpu.get_data_parallel_group())
for model_module in model]
elif args.DDP_impl == 'local':
model = [LocalDDP(model_module,
args.accumulate_allreduce_grads_in_fp32,
args.use_contiguous_buffers_in_local_ddp)
for model_module in model]
# broad cast params from data parallel src rank to other data parallel ranks
if args.data_parallel_random_init:
for model_module in model:
model_module.broadcast_params()
else:
raise NotImplementedError('Unknown DDP implementation specified: '
'{}. Exiting.'.format(args.DDP_impl))
return model
def get_optimizer_param_scheduler(optimizer):
"""Build the learning rate scheduler."""
args = get_args()
# Iteration-based training.
if args.train_iters:
if args.lr_decay_iters is None:
args.lr_decay_iters = args.train_iters
lr_decay_steps = args.lr_decay_iters * args.global_batch_size
wd_incr_steps = args.train_iters * args.global_batch_size
if args.lr_warmup_fraction is not None:
lr_warmup_steps = args.lr_warmup_fraction * lr_decay_steps
else:
lr_warmup_steps = args.lr_warmup_iters * args.global_batch_size
# Sample-based training.
elif args.train_samples:
# We need to set training iters for later use. Technically
# we need to adjust the training samples too (due to last
# batch being incomplete) but we leave it as is for now.
update_train_iters(args)
if args.lr_decay_samples is None:
args.lr_decay_samples = args.train_samples
lr_decay_steps = args.lr_decay_samples
wd_incr_steps = args.train_samples
if args.lr_warmup_fraction is not None:
lr_warmup_steps = args.lr_warmup_fraction * lr_decay_steps
else:
lr_warmup_steps = args.lr_warmup_samples
else:
raise Exception(
'either train-iters or train-samples should be provided.')
opt_param_scheduler = OptimizerParamScheduler(
optimizer,
max_lr=args.lr,
min_lr=args.min_lr,
lr_warmup_steps=lr_warmup_steps,
lr_decay_steps=lr_decay_steps,
lr_decay_style=args.lr_decay_style,
start_wd=args.start_weight_decay,
end_wd=args.end_weight_decay,
wd_incr_steps=wd_incr_steps,
wd_incr_style=args.weight_decay_incr_style,
use_checkpoint_opt_param_scheduler=args.use_checkpoint_opt_param_scheduler,
override_opt_param_scheduler=args.override_opt_param_scheduler)
return opt_param_scheduler
def load_model_weights_only(model_provider_func):
"""Setup model and optimizer."""
args = get_args()
print_rank_0('***>>>>> Args:{}'.format(args))
model = get_model(model_provider_func)
optimizer = None
lr_scheduler = None
if args.deepspeed:
# When loading just the model weights, ZeRO can be disabled.
if 'zero_optimization' in args.deepspeed_config_dict:
del args.deepspeed_config_dict['zero_optimization']
model, optimizer, _, lr_scheduler = deepspeed.initialize(
model=model[0],
config=args.deepspeed_config_dict
)
assert not isinstance(model, deepspeed.PipelineEngine), \
'Weight loading only mode is not supported in pipeline parallelism yet.'
model = [model]
print_datetime('before load checkpoint')
if args.load is not None:
iteration = load_checkpoint(model, optimizer, lr_scheduler, strict=True, load_only_weights=True)
print_datetime('after load checkpoint weights')
return model, optimizer, lr_scheduler
def setup_model_and_optimizer(model_provider_func,
model_type,
no_wd_decay_cond=None,
scale_lr_cond=None,
lr_mult=1.0,
teacher=False,
data_post_process=None,
build_train_valid_test_datasets_provider=None):
"""Setup model and optimizer."""
args = get_args()
model = get_model(model_provider_func, model_type)
# initialize the compression here
student_global_steps = 0
if args.kd or args.mos:
model, _, _, _ = deepspeed.initialize(
model=model[0],
args=args,
mpu=mpu if args.no_pipeline_parallel else None,
config=args.deepspeed_config_dict,
)
model = [model]
if args.load is not None:
args.iteration = load_checkpoint(model, None, None, strict=False)
else:
args.iteration = 0
student_global_steps = model[0].global_steps
print_rank_0('***>>>>> Student model, global step:{}'.format(student_global_steps))
if args.compression_training:
model, _, _, _ = deepspeed.initialize(
model=model[0],
args=args,
mpu=mpu if args.no_pipeline_parallel else None,
config=args.deepspeed_config_dict,
)
model = [model]
model = [init_compression(model[0].module, args.deepspeed_config_dict, mpu)]
unwrapped_model = unwrap_model(model,
(torchDDP, LocalDDP, Float16Module))
if args.inference:
optimizer = None
opt_param_scheduler = None
else:
if teacher:
optimizer = None
else:
optimizer = get_megatron_optimizer(model, no_wd_decay_cond,
scale_lr_cond, lr_mult)
# opt_param_scheduler is the old lr_scheduler plus weight decay scheduling
opt_param_scheduler = get_optimizer_param_scheduler(optimizer)
if args.deepspeed:
print_rank_0("DeepSpeed is enabled.")
pp = mpu.get_pipeline_model_parallel_world_size()
if args.data_efficiency_curriculum_learning and build_train_valid_test_datasets_provider is not None:
train_ds = None
# Only need to build dataset on tp rank 0 since Megatron has the
# broadcast_data() function that broadcast data from tp rank 0.
if mpu.get_tensor_model_parallel_rank() == 0:
# Number of train/valid/test samples.
if args.train_samples:
train_samples = args.train_samples
update_train_iters(args)
else:
train_samples = args.train_iters * args.global_batch_size
# eval_iters and test_iters here are not actually used, only for
# satisfying the input of build_train_valid_test_datasets_provider.
# We only need to build the training data here. And we follow
# baseline's logic to build eval/test dataset later in
# build_train_valid_test_data_iterators.
eval_iters = (args.train_iters // args.eval_interval + 1) * \
args.eval_iters
test_iters = args.eval_iters
train_val_test_num_samples = [train_samples,
eval_iters * args.global_batch_size,
test_iters * args.global_batch_size]
# Build the datasets.
train_ds, _, _ = build_train_valid_test_datasets_provider(
train_val_test_num_samples)
model, optimizer, args.deepspeed_dataloader, opt_param_scheduler = deepspeed.initialize(
model=model[0],
optimizer=optimizer,
args=args,
lr_scheduler=opt_param_scheduler,
training_data=train_ds,
mpu=mpu if args.no_pipeline_parallel else None,
config=args.deepspeed_config_dict,
)
model.set_data_post_process_func(data_post_process)
else:
model, optimizer, _, opt_param_scheduler = deepspeed.initialize(
model=model[0],
optimizer=optimizer,
args=args,
lr_scheduler=opt_param_scheduler,
mpu=mpu if args.no_pipeline_parallel else None,
config=args.deepspeed_config_dict,
)
if isinstance(model, deepspeed.PipelineEngine):
# hack to get batch_fn from pretrain_gpt.py
model.set_batch_fn(model.module._megatron_batch_fn)
assert model.grid.get_pipe_parallel_rank() == mpu.get_pipeline_model_parallel_rank()
assert model.grid.get_slice_parallel_rank() == mpu.get_tensor_model_parallel_rank()
assert model.grid.get_data_parallel_rank() == mpu.get_data_parallel_rank()
model = [model]
# Compression has its own checkpoint loading path (e.g, loading both teacher and student models). So if compression is enabled, we skip the following checkpoint loading.
no_post_init_checkpoint_loading = args.kd or args.mos
if not no_post_init_checkpoint_loading:
if args.load is not None:
timers = get_timers()
timers('load-checkpoint', log_level=0).start(barrier=True)
args.iteration = load_checkpoint(model, optimizer, opt_param_scheduler)
timers('load-checkpoint').stop(barrier=True)
timers.log(['load-checkpoint'])
else:
args.iteration = 0
else:
model[0].global_steps = student_global_steps
# We only support local DDP with multiple micro-batches.
if len(model) > 1 or mpu.get_pipeline_model_parallel_world_size() > 1:
assert args.DDP_impl == 'local'
# get model without FP16 and/or TorchDDP wrappers
if args.iteration == 0 and len(unwrapped_model) == 1 \
and hasattr(unwrapped_model[0], 'init_state_dict_from_bert'):
print_rank_0("Initializing ICT from pretrained BERT model")
unwrapped_model[0].init_state_dict_from_bert()
if args.fp16:
optimizer.reload_model_params()
# random-LTD requires converting transformer layers
if args.random_ltd:
model[0] = convert_to_random_ltd(model[0], ParallelTransformerLayer)
return model, optimizer, opt_param_scheduler
def train_step(forward_step_func, data_iterator,
model, optimizer, opt_param_scheduler, config):
"""Single training step."""
args = get_args()
timers = get_timers()
hpu_transformer_engine = get_accelerator().device_name() == 'hpu' and get_args().transformer_impl == "transformer_engine"
if args.deepspeed and args.ds_pipeline_enabled:
skipped_iter = 0
num_zeros_in_grad = 0
assert isinstance(model[0], deepspeed.PipelineEngine)
with fp8_autocast(enabled=True, fp8_recipe=get_fp8_recipe(args)) \
if hpu_transformer_engine else nullcontext():
loss = model[0].train_batch(data_iter=data_iterator)
grad_norm = model[0].get_global_grad_norm()
return {'lm loss' : loss}, skipped_iter, grad_norm, num_zeros_in_grad
# Set grad to zero.
if not args.deepspeed:
if args.DDP_impl == 'local' and args.use_contiguous_buffers_in_local_ddp:
for partition in model:
partition.zero_grad_buffer()
optimizer.zero_grad()
# Forward pass.
timers('forward-backward', log_level=1).start(
barrier=args.barrier_with_L1_time)
forward_backward_func = get_forward_backward_func()
if args.mos or args.kd:
# args.teacher_forward is used as global variable to enable kd loss
# calculation in forward pass. Users do not need to set it in the
# command line to use kd.
args.teacher_forward = True
# set timers to None if none of the timers in fwd_bwd are active, just to save the checks
if args.timing_log_level < 2:
config.timers = None
losses_reduced = forward_backward_func(
forward_step_func=forward_step_func,
data_iterator=data_iterator,
model=model,
num_microbatches=get_num_microbatches(),
seq_length=args.seq_length,
micro_batch_size=args.micro_batch_size,
decoder_seq_length=args.decoder_seq_length,
forward_only=False)
# reset timers if necessary
if config.timers is None:
config.timers = timers
timers('forward-backward').stop()
if args.mos or args.kd:
args.teacher_forward = False
# Empty unused memory.
if args.empty_unused_memory_level >= 1:
torch.cuda.empty_cache()
# Reduce gradients.
if not args.deepspeed:
optimizer.reduce_model_grads(args, timers)
# Vision gradients.
if args.vision_pretraining and args.vision_pretraining_type == "dino":
unwrapped_model = unwrap_model(model[0],
(torchDDP, LocalDDP, Float16Module))
unwrapped_model.cancel_gradients_last_layer(args.curr_iteration)
# Update parameters.
timers('optimizer', log_level=1).start(barrier=args.barrier_with_L1_time)
if args.deepspeed:
increment = get_num_microbatches() * \
args.micro_batch_size * \
args.data_parallel_size
model[0].step(lr_kwargs={'increment': increment})
update_successful = model[0].was_step_applied()
else:
update_successful, grad_norm, num_zeros_in_grad = optimizer.step(args, timers)
timers('optimizer').stop()
# Gather params.
if not args.deepspeed and update_successful:
optimizer.gather_model_params(args, timers)
# Vision momentum.
if args.vision_pretraining and args.vision_pretraining_type == "dino":
unwrapped_model = unwrap_model(model[0],
(torchDDP, LocalDDP, Float16Module))
unwrapped_model.update_momentum(args.curr_iteration)
# Update learning rate.
if args.deepspeed:
skipped_iter = 0
grad_norm = None
num_zeros_in_grad = None
loss_reduced = {}
for key in losses_reduced[0]:
losses_reduced_for_key = [x[key] for x in losses_reduced]
loss_reduced[key] = sum(losses_reduced_for_key) / len(losses_reduced_for_key)
return loss_reduced, skipped_iter, grad_norm, num_zeros_in_grad
else:
if update_successful:
increment = get_num_microbatches() * \
args.micro_batch_size * \
args.data_parallel_size
opt_param_scheduler.step(increment=increment)
skipped_iter = 0
else:
skipped_iter = 1
# Empty unused memory.
if args.empty_unused_memory_level >= 2:
torch.cuda.empty_cache()
if mpu.is_pipeline_last_stage(ignore_virtual=True):
# Average loss across microbatches.
loss_reduced = {}
for key in losses_reduced[0]:
losses_reduced_for_key = [x[key] for x in losses_reduced]
loss_reduced[key] = sum(losses_reduced_for_key) / len(losses_reduced_for_key)
return loss_reduced, skipped_iter, grad_norm, num_zeros_in_grad
return {}, skipped_iter, grad_norm, num_zeros_in_grad
def training_log(loss_dict, total_loss_dict, learning_rate, iteration,
loss_scale, report_memory_flag, skipped_iter,
grad_norm, params_norm, num_zeros_in_grad,
model=None, optimizer=None):
"""Log training information such as losses, timing, ...."""
args = get_args()
timers = get_timers()
writer = get_tensorboard_writer()
# Advanced, skipped, and Nan iterations.
advanced_iters_key = 'advanced iterations'
skipped_iters_key = 'skipped iterations'
nan_iters_key = 'nan iterations'
# Advanced iterations.
if not skipped_iter:
total_loss_dict[advanced_iters_key] = total_loss_dict.get(
advanced_iters_key, 0) + 1
else:
if advanced_iters_key not in total_loss_dict:
total_loss_dict[advanced_iters_key] = 0
# Skipped iterations.
total_loss_dict[skipped_iters_key] = total_loss_dict.get(
skipped_iters_key, 0) + skipped_iter
# Update losses and set nan iterations
got_nan = False
for key in loss_dict:
if not skipped_iter:
total_loss_dict[key] = total_loss_dict.get(
key, get_accelerator().FloatTensor([0.0])) + loss_dict[key]
else:
value = loss_dict[key].float().sum().item()
is_nan = value == float('inf') or \
value == -float('inf') or \
value != value
got_nan = got_nan or is_nan
total_loss_dict[nan_iters_key] = total_loss_dict.get(
nan_iters_key, 0) + int(got_nan)
# Logging.
timers_to_log = [
'forward-backward',
'forward-compute',
'backward-compute',
'batch-generator',
'forward-recv',
'forward-send',
'backward-recv',
'backward-send',
'forward-send-forward-recv',
'forward-send-backward-recv',
'backward-send-forward-recv',
'backward-send-backward-recv',
'forward-backward-send-forward-backward-recv',
'layernorm-grads-all-reduce',
'embedding-grads-all-reduce',
'grads-all-reduce',
'grads-reduce-scatter',
'params-all-gather',
'optimizer-copy-to-main-grad',
'optimizer-unscale-and-check-inf',
'optimizer-clip-main-grad',
'optimizer-count-zeros',
'optimizer-inner-step',
'optimizer-copy-main-to-model-params',
'optimizer']
# Calculate batch size.
batch_size = args.micro_batch_size * args.data_parallel_size * \
get_num_microbatches()
total_iterations = total_loss_dict[advanced_iters_key] + \
total_loss_dict[skipped_iters_key]
# Tensorboard values.
# Timer requires all the ranks to call.
if args.log_timers_to_tensorboard and \
(iteration % args.tensorboard_log_interval == 0):
timers.write(timers_to_log, writer, iteration,
normalizer=total_iterations)
if writer and (iteration % args.tensorboard_log_interval == 0):
writer.add_scalar('steps-vs-samples/y=steps,x=samples', iteration, args.consumed_train_samples)
writer.add_scalar('steps-vs-samples/y=samples,x=steps', args.consumed_train_samples, iteration)
writer.add_scalar('steps-vs-tokens/y=steps,x=tokens', iteration, args.consumed_train_tokens)
writer.add_scalar('steps-vs-tokens/y=tokens,x=steps', args.consumed_train_tokens, iteration)
if args.log_learning_rate_to_tensorboard:
writer.add_scalar('learning-rate/learning-rate', learning_rate, iteration)
writer.add_scalar('learning-rate/learning-rate vs samples', learning_rate,
args.consumed_train_samples)
writer.add_scalar('learning-rate/learning-rate vs tokens', learning_rate,
args.consumed_train_tokens)
if args.log_batch_size_to_tensorboard:
writer.add_scalar('batch-size/batch-size', batch_size, iteration)
writer.add_scalar('batch-size/batch-size vs samples', batch_size,
args.consumed_train_samples)
writer.add_scalar('batch-size/batch-size vs tokens', batch_size,
args.consumed_train_tokens)
for key in loss_dict:
writer.add_scalar(f"lm-loss-training/{key}", loss_dict[key], iteration)
writer.add_scalar(f"lm-loss-training/{key}" + ' vs samples', loss_dict[key],
args.consumed_train_samples)
writer.add_scalar(f"lm-loss-training/{key}" + ' vs tokens', loss_dict[key],
args.consumed_train_tokens)
if args.fp16 and (loss_scale and args.log_loss_scale_to_tensorboard):
writer.add_scalar('loss-scale/loss-scale', loss_scale, iteration)
writer.add_scalar('loss-scale/loss-scale vs samples', loss_scale,
args.consumed_train_samples)
writer.add_scalar('loss-scale/loss-scale vs tokens', loss_scale,
args.consumed_train_tokens)
if args.log_world_size_to_tensorboard:
writer.add_scalar('world-size/world-size', args.world_size, iteration)
writer.add_scalar('world-size/world-size vs samples', args.world_size,
args.consumed_train_samples)
writer.add_scalar('world-size/world-size vs tokens', args.world_size,
args.consumed_train_tokens)
if grad_norm is not None:
writer.add_scalar('grad-norm/grad-norm', grad_norm, iteration)
writer.add_scalar('grad-norm/grad-norm vs samples', grad_norm,
args.consumed_train_samples)
writer.add_scalar('grad-norm/grad-norm vs tokens', grad_norm,
args.consumed_train_tokens)
if num_zeros_in_grad is not None:
writer.add_scalar('num-zeros/num-zeros', num_zeros_in_grad, iteration)
writer.add_scalar('num-zeros/num-zeros vs samples', num_zeros_in_grad,
args.consumed_train_samples)
writer.add_scalar('num-zeros/num-zeros vs tokens', num_zeros_in_grad,
args.consumed_train_tokens)
if params_norm is not None:
writer.add_scalar('params-norm/params-norm', params_norm, iteration)
writer.add_scalar('params-norm/params-norm vs samples', params_norm,
args.consumed_train_samples)
writer.add_scalar('params-norm/params-norm vs tokens', params_norm,
args.consumed_train_tokens)
if hasattr(args, 'actual_seq_length'):
writer.add_scalar('seqlen/actual_seq_length', args.actual_seq_length,
iteration)
writer.add_scalar('seqlen/actual_seq_length vs samples', args.actual_seq_length,
args.consumed_train_samples)
writer.add_scalar('seqlen/actual_seq_length vs tokens', args.actual_seq_length,
args.consumed_train_tokens)
if args.curriculum_learning_legacy or args.data_efficiency_curriculum_learning:
writer.add_scalar('seqlen/curriculum_seqlen', args.curriculum_seqlen,
iteration)
writer.add_scalar('seqlen/curriculum_seqlen vs samples', args.curriculum_seqlen,
args.consumed_train_samples)
writer.add_scalar('seqlen/curriculum_seqlen vs tokens', args.curriculum_seqlen,
args.consumed_train_tokens)
if args.random_ltd:
writer.add_scalar('seqlen/random_ltd_reserved_length', args.random_ltd_reserved_length,
iteration)
writer.add_scalar('seqlen/random_ltd_reserved_length vs samples', args.random_ltd_reserved_length,
args.consumed_train_samples)
writer.add_scalar('seqlen/random_ltd_reserved_length vs tokens', args.random_ltd_reserved_length,
args.consumed_train_tokens)
if args.log_memory_to_tensorboard:
mem_stats = torch.cuda.memory_stats()
writer.add_scalar(
"mem-reserved-bytes",
mem_stats["reserved_bytes.all.current"],
iteration,
)
writer.add_scalar(
"mem-allocated-bytes",
mem_stats["allocated_bytes.all.current"],
iteration,
)
writer.add_scalar(
"mem-allocated-count",
mem_stats["allocation.all.current"],
iteration,
)
if iteration % args.tensorboard_log_interval == 0:
# This logging write various optimizer states to tensorboard. This
# feature may consume extra GPU memory thus is set at false by default.
if args.log_optimizer_states_to_tensorboard and optimizer is not None:
opt_stats = [0.0] * 8
opt_stats_2 = [0.0] * 4
for _, group in enumerate(optimizer.param_groups):
for _, param in enumerate(group['params']):
opt_stats[0] += (torch.norm(optimizer.state[param]['exp_avg_sq']).item())**2
opt_stats[1] += (torch.norm(optimizer.state[param]['exp_avg_sq'].sqrt()).item())**2
opt_stats[2] += (torch.norm(optimizer.state[param]['exp_avg']).item())**2
opt_stats[3] += (torch.norm(param).item())**2
opt_stats[4] += torch.norm(optimizer.state[param]['exp_avg_sq'],p=1).item()
opt_stats[5] += torch.norm(optimizer.state[param]['exp_avg_sq'].sqrt(),p=1).item()
opt_stats[6] += torch.norm(optimizer.state[param]['exp_avg'],p=1).item()
opt_stats[7] += torch.norm(param,p=1).item()
opt_stats_2[0] = max(opt_stats_2[0], abs(optimizer.state[param]['exp_avg_sq'].max().item()), abs(optimizer.state[param]['exp_avg_sq'].min().item()))
opt_stats_2[1] = max(opt_stats_2[1], optimizer.state[param]['exp_avg_sq'].sqrt().abs_().max().item())
opt_stats_2[2] = max(opt_stats_2[2], abs(optimizer.state[param]['exp_avg'].max().item()), abs(optimizer.state[param]['exp_avg'].min().item()))
opt_stats_2[3] = max(opt_stats_2[3], abs(param.max().item()), abs(param.min().item()))
# print('step {} rank {} before sync opt_stats {}, {}'.format(iteration, torch.distributed.get_rank(), opt_stats_2, opt_stats))
if args.zero_stage > 0:
# ZeRO partiions optimizer states
opt_stats = get_accelerator().FloatTensor(opt_stats)
torch.distributed.all_reduce(opt_stats, group=mpu.get_sequence_data_parallel_group())
opt_stats_2 = get_accelerator().FloatTensor(opt_stats_2)
torch.distributed.all_reduce(opt_stats_2, op=torch.distributed.ReduceOp.MAX,
group=mpu.get_sequence_data_parallel_group())
if args.tensor_model_parallel_size > 1:
opt_stats = get_accelerator().FloatTensor(opt_stats)
torch.distributed.all_reduce(opt_stats, group=mpu.get_tensor_model_parallel_group())
opt_stats_2 = get_accelerator().FloatTensor(opt_stats_2)
torch.distributed.all_reduce(opt_stats_2, op=torch.distributed.ReduceOp.MAX,
group=mpu.get_tensor_model_parallel_group())
if args.pipeline_model_parallel_size > 1:
opt_stats = get_accelerator().FloatTensor(opt_stats)
torch.distributed.all_reduce(opt_stats, group=mpu.get_pipeline_model_parallel_group())
opt_stats_2 = get_accelerator().FloatTensor(opt_stats_2)
torch.distributed.all_reduce(opt_stats_2, op=torch.distributed.ReduceOp.MAX,
group=mpu.get_pipeline_model_parallel_group())
# print('step {} rank {} after sync opt_stats {}, {}'.format(iteration, torch.distributed.get_rank(), opt_stats_2, opt_stats))
if writer and is_last_rank():
writer.add_scalar('optimizer/variance_l2 vs tokens', opt_stats[0]**0.5, args.consumed_train_tokens)
writer.add_scalar('optimizer/variance_sqrt_l2 vs tokens', opt_stats[1]**0.5, args.consumed_train_tokens)
writer.add_scalar('optimizer/momentum_l2 vs tokens', opt_stats[2]**0.5, args.consumed_train_tokens)
writer.add_scalar('optimizer/weight_l2 vs tokens', opt_stats[3]**0.5, args.consumed_train_tokens)
writer.add_scalar('optimizer/variance_l1 vs tokens', opt_stats[4], args.consumed_train_tokens)
writer.add_scalar('optimizer/variance_sqrt_l1 vs tokens', opt_stats[5], args.consumed_train_tokens)
writer.add_scalar('optimizer/momentum_l1 vs tokens', opt_stats[6], args.consumed_train_tokens)
writer.add_scalar('optimizer/weight_l1 vs tokens', opt_stats[7], args.consumed_train_tokens)
writer.add_scalar('optimizer/variance_abs_max vs tokens', opt_stats_2[0], args.consumed_train_tokens)
writer.add_scalar('optimizer/variance_sqrt_abs_max vs tokens', opt_stats_2[1], args.consumed_train_tokens)
writer.add_scalar('optimizer/momentum_abs_max vs tokens', opt_stats_2[2], args.consumed_train_tokens)
writer.add_scalar('optimizer/weight_abs_max vs tokens', opt_stats_2[3], args.consumed_train_tokens)
writer.add_scalar('optimizer/variance_l2', opt_stats[0]**0.5, iteration)
writer.add_scalar('optimizer/variance_sqrt_l2', opt_stats[1]**0.5, iteration)
writer.add_scalar('optimizer/momentum_l2', opt_stats[2]**0.5, iteration)
writer.add_scalar('optimizer/weight_l2', opt_stats[3]**0.5, iteration)
writer.add_scalar('optimizer/variance_l1', opt_stats[4], iteration)
writer.add_scalar('optimizer/variance_sqrt_l1', opt_stats[5], iteration)
writer.add_scalar('optimizer/momentum_l1', opt_stats[6], iteration)
writer.add_scalar('optimizer/weight_l1', opt_stats[7], iteration)
writer.add_scalar('optimizer/variance_abs_max', opt_stats_2[0], iteration)
writer.add_scalar('optimizer/variance_sqrt_abs_max', opt_stats_2[1], iteration)
writer.add_scalar('optimizer/momentum_abs_max', opt_stats_2[2], iteration)
writer.add_scalar('optimizer/weight_abs_max', opt_stats_2[3], iteration)
if iteration % args.log_interval == 0:
elapsed_time = timers('interval-time').elapsed(barrier=True)
elapsed_time_per_iteration = elapsed_time / total_iterations
seq_len = args.seq_length
if hasattr(args, 'actual_seq_length'):
seq_len = args.actual_seq_length
samples_per_sec, tflops, approx_parameters_in_billions = throughput_calculator(
model,
args,
elapsed_time,
total_iterations
)
samples_per_sec_per_replica = samples_per_sec / args.data_parallel_size
tokens_per_sec = samples_per_sec * seq_len
tokens_per_sec_per_replica = tokens_per_sec / args.data_parallel_size
tokens_per_gpu_per_second = tokens_per_sec / args.world_size
tokens_per_gpu_per_second_per_replica = tokens_per_gpu_per_second / args.data_parallel_size
if wandb is not None and getattr(wandb, 'run', None) is not None:
tput = {
'throughput/iteration-time': elapsed_time_per_iteration, # 1000 ms / s
'throughput/samples_per_sec': samples_per_sec,
'throughput/samples_per_sec_per_replica': samples_per_sec_per_replica,
'throughput/tokens_per_sec': tokens_per_sec,
'throughput/tokens_per_sec_per_replica': tokens_per_sec_per_replica,
'throughput/tokens_per_gpu_per_sec': tokens_per_gpu_per_second,
'throughput/tokens_per_gpu_per_sec_per_replica': tokens_per_gpu_per_second_per_replica,
'throughput/tflops': tflops,
'throughput/approx_params_in_billions': approx_parameters_in_billions,
'throughput/elapsed_ms_per_iteration': elapsed_time_per_iteration,
}
wandb.run.log(tput)
if writer:
if args.log_timers_to_tensorboard:
writer.add_scalar('iteration-time/iteration-time',
elapsed_time_per_iteration, iteration)
writer.add_scalar('iteration-time/iteration-time vs samples',
elapsed_time_per_iteration, args.consumed_train_samples)
writer.add_scalar('iteration-time/iteration-time vs tokens',
elapsed_time_per_iteration, args.consumed_train_tokens)
log_string = ' iteration {:8d}/{:8d} |'.format(
iteration, args.train_iters)
log_string += ' consumed samples: {:12d} |'.format(
args.consumed_train_samples)
log_string += ' consumed tokens: {:12d} |'.format(
args.consumed_train_tokens)
log_string += ' elapsed time per iteration (ms): {:.1f} |'.format(
elapsed_time_per_iteration * 1000.0)
log_string += ' learning rate: {:.3E} |'.format(learning_rate)
log_string += ' global batch size: {:5d} |'.format(batch_size)
for key in total_loss_dict:
if key not in [advanced_iters_key, skipped_iters_key,
nan_iters_key]:
avg = total_loss_dict[key].item() / \
float(max(1, total_loss_dict[advanced_iters_key]))
if avg > 0.0:
log_string += ' {}: {:.6E} |'.format(key, avg)
total_loss_dict[key] = get_accelerator().FloatTensor([0.0])
if loss_scale is not None:
log_string += ' loss scale: {:.1f} |'.format(loss_scale)
if grad_norm is not None:
log_string += ' grad norm: {:.3f} |'.format(grad_norm)
if num_zeros_in_grad is not None:
log_string += ' num zeros: {:.1f} |'.format(num_zeros_in_grad)
if params_norm is not None:
log_string += ' params norm: {:.3f} |'.format(params_norm)
if args.curriculum_learning_legacy or args.data_efficiency_curriculum_learning:
log_string += ' curriculum seqlen: {:5d} |'.format(args.curriculum_seqlen)
if args.random_ltd:
log_string += ' random ltd reserved length: {:5d} |'.format(args.random_ltd_reserved_length)
log_string += ' actual seqlen: {:5d} |'.format(seq_len)
log_string += ' number of skipped iterations: {:3d} |'.format(
total_loss_dict[skipped_iters_key])
log_string += ' number of nan iterations: {:3d} |'.format(
total_loss_dict[nan_iters_key])
log_string += ' samples per second: {:.3f} |'.format(samples_per_sec)
log_string += ' tokens per gpu per second (tgs): {:.3f} |'.format(tokens_per_gpu_per_second)
log_string += ' TFLOPs: {:.2f} |'.format(tflops)
total_loss_dict[advanced_iters_key] = 0
total_loss_dict[skipped_iters_key] = 0
total_loss_dict[nan_iters_key] = 0
print_rank_last(log_string)
if report_memory_flag and learning_rate > 0.:
# Report memory after optimizer state has been initialized.
report_memory('(after {} iterations)'.format(iteration))
report_memory_flag = False
timers.log(timers_to_log, normalizer=args.log_interval)
return report_memory_flag
def save_checkpoint_and_time(iteration, model, optimizer, opt_param_scheduler):
timers = get_timers()
# Extra barrier is added to make sure
# all ranks report the max time.
timers('save-checkpoint', log_level=0).start(barrier=True)
save_checkpoint(iteration, model, optimizer, opt_param_scheduler)
timers('save-checkpoint').stop(barrier=True)
checkpoint_throughput_calculator(model, timers('save-checkpoint').elapsed(reset=False))
timers.log(['save-checkpoint'])
def train(forward_step_func, model, optimizer, opt_param_scheduler,
train_data_iterator, valid_data_iterator,
process_non_loss_data_func):
"""Train the model function."""
args = get_args()
timers = get_timers()
# Write args to tensorboard
write_args_to_tensorboard()
setup_profiler(args, get_accelerator().device_name())
if args.random_ltd:
# random-ltd requires different randomness on each rank
import random
random.seed(args.seed + torch.distributed.get_rank())
# Turn on training mode which enables dropout.
for model_module in model:
model_module.train()
# Tracking loss.
total_loss_dict = {}
# Iterations.
iteration = args.iteration
# Translate args to core configuration
config = core_transformer_config_from_args(args)
if not args.deepspeed:
config.grad_scale_func = optimizer.scale_loss
config.timers = timers
timers('interval-time', log_level=0).start(barrier=True)
print_datetime('before the start of training step')
report_memory_flag = True
if args.random_ltd:
assert model[0].random_ltd_enabled()
args.random_ltd_layer_num = model[0].random_ltd_scheduler.get_random_ltd_layer_num()
while iteration < args.train_iters and (args.train_tokens is None or \
args.consumed_train_tokens < args.train_tokens):
trigger(on_step_begin)
update_num_microbatches(args.consumed_train_samples)
if args.deepspeed:
# inform deepspeed of any batch size changes
global_batch_size = mpu.get_data_parallel_world_size() * \
args.micro_batch_size * \
get_num_microbatches()
model[0].set_train_batch_size(global_batch_size)
if args.curriculum_learning_legacy and not args.no_pipeline_parallel:
curriculum_seqlen = args.curriculum_scheduler.update_difficulty( \
args.iteration + 1)
if iteration == 0 or curriculum_seqlen != args.curriculum_seqlen:
if args.use_rotary_position_embeddings:
update_rotary_pos_emb(curriculum_seqlen)
args.curriculum_seqlen = curriculum_seqlen
args.curr_iteration = iteration
loss_dict, skipped_iter, grad_norm, num_zeros_in_grad = \
train_step(forward_step_func,
train_data_iterator,
model,
optimizer,
opt_param_scheduler,
config)
iteration += 1
args.iteration = iteration
new_samples = mpu.get_data_parallel_world_size() * \
args.micro_batch_size * \
get_num_microbatches()
args.consumed_train_samples += new_samples
# This actual_seq_length is used for actual consumed tokens calculation, flops calculation, and logging.
args.actual_seq_length = args.seq_length
if args.curriculum_learning_legacy or args.data_efficiency_curriculum_learning:
args.actual_seq_length = args.curriculum_seqlen
if args.random_ltd:
args.random_ltd_reserved_length = model[0].random_ltd_scheduler.get_current_seq()
if args.random_ltd_reserved_length < args.actual_seq_length:
args.actual_seq_length = (args.actual_seq_length * (args.num_layers - args.random_ltd_layer_num) + args.random_ltd_reserved_length * args.random_ltd_layer_num) // args.num_layers
if args.curriculum_learning_legacy or args.data_efficiency_curriculum_learning:
if hasattr(args, 'data_efficiency_curriculum_learning_numel'):
act_mbsz = args.data_efficiency_curriculum_learning_numel / args.curriculum_seqlen
act_token = act_mbsz * args.actual_seq_length
args.consumed_train_tokens += mpu.get_data_parallel_world_size() * \
get_num_microbatches() * act_token
else:
args.consumed_train_tokens += new_samples * args.actual_seq_length
else:
args.consumed_train_tokens += new_samples * args.actual_seq_length
# Logging.
if args.deepspeed:
if hasattr(model[0].optimizer, 'cur_scale'):
loss_scale = model[0].optimizer.cur_scale
else:
loss_scale = None
else:
loss_scale = optimizer.get_loss_scale().item()
params_norm = None
if args.log_params_norm:
params_norm = calc_params_l2_norm(model)
report_memory_flag = training_log(loss_dict, total_loss_dict,
optimizer.param_groups[0]['lr'],
iteration, loss_scale,
report_memory_flag, skipped_iter,
grad_norm, params_norm, num_zeros_in_grad,
model, optimizer)
# Autoresume
if args.adlr_autoresume and \
(iteration % args.adlr_autoresume_interval == 0):
check_adlr_autoresume_termination(iteration, model, optimizer,
opt_param_scheduler)
# Evaluation
if args.eval_interval and iteration % args.eval_interval == 0 and \
args.do_valid:
prefix = 'iteration {}'.format(iteration)
eval_loss = evaluate_and_print_results(prefix, forward_step_func,
valid_data_iterator, model,
iteration,
process_non_loss_data_func,
config, False)
# Exiting based on eval loss
if args.eval_loss_exit_value is not None and eval_loss <= args.eval_loss_exit_value:
if args.save:
save_checkpoint_and_time(iteration, model, optimizer,
opt_param_scheduler)
torch.distributed.barrier()
print_datetime(f"Reached target loss value: {args.eval_loss_exit_value}. "
f"Stopping the training at iteration: {iteration} with loss: {eval_loss}")
sys.exit()
# Checkpointing
saved_checkpoint = False
if args.exit_signal_handler:
signal_handler = get_signal_handler()
if any(signal_handler.signals_received()):
save_checkpoint_and_time(iteration, model, optimizer,
opt_param_scheduler)
print_datetime('exiting program after receiving SIGTERM.')
sys.exit()
if args.save and args.save_interval and \
iteration % args.save_interval == 0:
save_checkpoint_and_time(iteration, model, optimizer,
opt_param_scheduler)
saved_checkpoint = True
# Exiting based on duration
if args.exit_duration_in_mins:
train_time = (time.time() - _TRAIN_START_TIME) / 60.0
done_cuda = get_accelerator().IntTensor(
[train_time > args.exit_duration_in_mins])
torch.distributed.all_reduce(
done_cuda, op=torch.distributed.ReduceOp.MAX)
done = done_cuda.item()
if done:
if not saved_checkpoint:
save_checkpoint_and_time(iteration, model, optimizer,
opt_param_scheduler)
print_datetime('exiting program after {} minutes'.format(train_time))
sys.exit()
# Exiting based on iterations
if args.exit_interval and iteration % args.exit_interval == 0:
if args.save and not saved_checkpoint:
save_checkpoint_and_time(iteration, model, optimizer,
opt_param_scheduler)
torch.distributed.barrier()
print_datetime('exiting program at iteration {}'.format(iteration))
sys.exit()
trigger(on_step_end)
# Exiting based on kill-switch
if found_kill_switch():
if not saved_checkpoint:
save_checkpoint_and_time(iteration, model, optimizer,
opt_param_scheduler)
print_datetime(f"Detected kill switch at {args.kill_switch_path}, "
f"iteration={iteration}. Exiting")
torch.distributed.barrier()
sys.exit()
return iteration
def evaluate(forward_step_func,
data_iterator,
model,
process_non_loss_data_func,
config,
verbose=False):
"""Evaluation."""
args = get_args()
if args.vision_pretraining and args.vision_pretraining_type == "dino":
compute_feature_bank(model)
# Turn on evaluation mode which disables dropout.
for model_module in model:
model_module.eval()
if args.curriculum_learning_legacy and not args.no_pipeline_parallel:
# When curriculum learning is used with pipeline parallelism, we need
# this logic to ensure that the eval data is not truncated. If there
# is a seqlen change due to that, we need to call
# reset_activation_shape() to reset some buffers in deepspeed pipeline
# engine.
if args.curriculum_seqlen < args.seq_length:
args.curriculum_seqlen = args.seq_length
if args.use_rotary_position_embeddings:
update_rotary_pos_emb(args.curriculum_seqlen)
model[0].reset_activation_shape()
if args.eval_micro_batch_size != args.micro_batch_size:
reset_cached_broadcast_sizes()
model[0].reset_activation_shape()
total_loss_dict = {}
with torch.no_grad():
iteration = 0
total_iterations = args.eval_iters
if args.eval_iters == -1:
print_rank_0(F"Evaluation on the entire set as eval-iters is set to {args.eval_iters}")
samples_per_iteration = mpu.get_data_parallel_world_size() \
* args.eval_micro_batch_size \
* get_num_eval_microbatches()
total_iterations = math.ceil(args.eval_total_samples / samples_per_iteration)
print_rank_0(F"Evaluation Iterations: {total_iterations}, Total Eval Samples: {args.eval_total_samples}, samples per iteration: {samples_per_iteration}")
args.consumed_valid_samples = 0
num_eval_microbatches = get_num_eval_microbatches()
while iteration < total_iterations:
iteration += 1
if iteration == total_iterations and args.eval_iters == -1:
num_eval_microbatches = math.ceil((args.eval_total_samples - args.consumed_valid_samples) / \
(mpu.get_data_parallel_world_size() * args.eval_micro_batch_size))
if verbose and iteration % args.log_interval == 0:
print_rank_0('Evaluating iter {}/{}'.format(iteration,
args.eval_iters))
forward_backward_func = get_forward_backward_func()
# Don't care about timing during evaluation
config.timers = None
if args.deepspeed and args.ds_pipeline_enabled:
# DeepSpeed uses eval_batch() and already aggregates losses.
assert isinstance(model, list) and len(model) == 1
loss = model[0].eval_batch(data_iterator, eval_micro_batches=num_eval_microbatches)
loss_dicts = [{'lm loss' : loss}] * num_eval_microbatches
else:
assert args.micro_batch_size == args.eval_micro_batch_size, \
"evaluate (training) - Megatron's forward_backward_func options - " \
"Unsupported for split micro batch size"
loss_dicts = forward_backward_func(
forward_step_func=forward_step_func,
data_iterator=data_iterator,
model=model,
num_microbatches=get_num_microbatches(),
seq_length=args.seq_length,
micro_batch_size=args.micro_batch_size,
decoder_seq_length=args.decoder_seq_length,
forward_only=True)
config.timers = get_timers()
# Empty unused memory
if args.empty_unused_memory_level >= 1:
torch.cuda.empty_cache()
if mpu.is_pipeline_last_stage(ignore_virtual=True):
# Reduce across processes.
for loss_dict in loss_dicts:
for key in loss_dict:
if 'moe' not in key:
total_loss_dict[key] = total_loss_dict.get(
key, get_accelerator().FloatTensor([0.0])) + loss_dict[key]
args.consumed_valid_samples += mpu.get_data_parallel_world_size() \
* args.eval_micro_batch_size \
* num_eval_microbatches
collected_non_loss_data = None
if process_non_loss_data_func is not None and is_last_rank():
collected_non_loss_data = forward_backward_func(
forward_step_func=forward_step_func,
data_iterator=data_iterator,
model=model,
num_microbatches=get_num_microbatches(),
seq_length=args.seq_length,
micro_batch_size=args.micro_batch_size,
decoder_seq_length=args.decoder_seq_length,
forward_only=True,
collect_non_loss_data=True)
# Move model back to the train mode.
for model_module in model:
model_module.train()
for key in total_loss_dict:
total_loss_dict[key] /= (((total_iterations-1) * get_num_eval_microbatches()) + num_eval_microbatches)
if args.curriculum_learning_legacy and not args.no_pipeline_parallel:
# roll back to actual curriculum seqlen at the end of eval.
args.curriculum_seqlen = args.curriculum_scheduler.update_difficulty( \
args.iteration + 1)
if args.curriculum_seqlen < args.seq_length:
if args.use_rotary_position_embeddings:
update_rotary_pos_emb(args.curriculum_seqlen)
model[0].reset_activation_shape()
if args.eval_micro_batch_size != args.micro_batch_size:
reset_cached_broadcast_sizes()
model[0].reset_activation_shape()
return total_loss_dict, collected_non_loss_data
def evaluate_and_print_results(prefix, forward_step_func,
data_iterator, model,
iteration, process_non_loss_data_func, config,
verbose=False, write_to_tensorboard=True, test=False):
"""Helper function to evaluate and dump results on screen."""
args = get_args()
if write_to_tensorboard:
writer = get_tensorboard_writer()
else:
writer = None
total_loss_dict, collected_non_loss_data = evaluate(
forward_step_func, data_iterator, model,
process_non_loss_data_func, config, verbose)
string = ' validation loss at {} | '.format(prefix)
eval_loss = 0
for key in total_loss_dict:
eval_loss = total_loss_dict[key].item()
string += '{} value: {:.6E} | '.format(key, eval_loss)
ppl = math.exp(min(20, eval_loss))
string += '{} PPL: {:.6E} | '.format(key, ppl)
if writer and is_last_rank():
data_type = 'test' if test else 'validation'
writer.add_scalar(f'lm-loss-validation/{key} {data_type}',
eval_loss,
iteration)
writer.add_scalar(f'lm-loss-validation/{key} {data_type} vs samples',
eval_loss,
args.consumed_train_samples)
writer.add_scalar(f'lm-loss-validation/{key} {data_type} vs tokens',
eval_loss,
args.consumed_train_tokens)
if args.log_validation_ppl_to_tensorboard:
writer.add_scalar(f'lm-loss-validation/{key} {data_type} ppl', ppl,
iteration)
writer.add_scalar(f'lm-loss-validation/{key} {data_type} ppl vs samples',
ppl, args.consumed_train_samples)
writer.add_scalar(f'lm-loss-validation/{key} {data_type} ppl vs tokens',
ppl, args.consumed_train_tokens)
if process_non_loss_data_func is not None and writer and is_last_rank():
process_non_loss_data_func(collected_non_loss_data, iteration, writer)
length = len(string) + 1
print_rank_last('-' * length)
print_rank_last(string)
print_rank_last('-' * length)
if args.eval_loss_exit_value is not None:
eval_loss_tensor = get_accelerator().FloatTensor([eval_loss])
torch.distributed.all_reduce(eval_loss_tensor, op=torch.distributed.ReduceOp.MAX)
eval_loss = eval_loss_tensor.item()
return eval_loss
def cyclic_iter(iter):
while True:
for x in iter:
yield x
def build_train_valid_test_datasets(build_train_valid_test_datasets_provider):
"""Build pretraining datasets."""
args = get_args()
# Number of train/valid/test samples.
if args.train_samples:
train_samples = args.train_samples
else:
train_samples = args.train_iters * args.global_batch_size
eval_iters = (args.train_iters // args.eval_interval + 1) * \
args.eval_iters
test_iters = args.eval_iters
if args.eval_iters == -1:
print_rank_0("Evaluation iterations are set to -1")
train_val_test_num_samples = [train_samples, -1, -1]
else:
train_val_test_num_samples = [train_samples,
eval_iters * args.global_batch_size,
test_iters * args.global_batch_size]
print_rank_0(' > datasets target sizes (minimum size):')
print_rank_0(' train: {}'.format(train_val_test_num_samples[0]))
print_rank_0(' validation: {}'.format(train_val_test_num_samples[1]))
print_rank_0(' test: {}'.format(train_val_test_num_samples[2]))
# Build the datasets.
return build_train_valid_test_datasets_provider(train_val_test_num_samples)
def build_train_valid_test_data_loaders(
build_train_valid_test_datasets_provider):
"""Build pretraining data loaders."""
args = get_args()
(train_dataloader, valid_dataloader, test_dataloader) = (None, None, None)
print_rank_0('> building train, validation, and test datasets ...')
# Backward compatibility, assume fixed batch size.
if args.iteration > 0 and args.consumed_train_samples == 0:
assert args.train_samples is None, \
'only backward compatiblity support for iteration-based training'
args.consumed_train_samples = args.iteration * args.global_batch_size
if args.iteration > 0 and args.consumed_valid_samples == 0:
if args.train_samples is None:
args.consumed_valid_samples = (args.iteration // args.eval_interval) * \
args.eval_iters * args.global_batch_size
# Data loader only on rank 0 of each model parallel group.
ds_sequence_parallel = mpu.get_sequence_parallel_world_size() > 1 or args.force_ds_sequence_parallel
rank_in_parallel_group = mpu.get_sequence_parallel_rank() if ds_sequence_parallel else mpu.get_tensor_model_parallel_rank()
if rank_in_parallel_group == 0:
# Build datasets.
train_ds, valid_ds, test_ds = build_train_valid_test_datasets(
build_train_valid_test_datasets_provider)
if args.eval_iters == -1:
eval_total_samples = len(valid_ds)
consumed_valid_samples = 0
use_all_eval_samples = True
else:
eval_total_samples = 0
consumed_valid_samples = args.consumed_valid_samples
use_all_eval_samples = False
# Build dataloders.
train_dataloader = build_pretraining_data_loader(
train_ds, args.consumed_train_samples, True)
valid_dataloader = build_pretraining_data_loader(
valid_ds, consumed_valid_samples, False, use_all_eval_samples)
test_dataloader = build_pretraining_data_loader(test_ds, 0, False)
# Flags to know if we need to do training/validation/testing.
do_train = train_dataloader is not None and args.train_iters > 0
do_valid = valid_dataloader is not None and (args.eval_iters > 0 or args.eval_iters == -1)
do_test = test_dataloader is not None and args.eval_iters > 0
# Need to broadcast num_tokens and num_type_tokens.
flags = get_accelerator().LongTensor(
[int(do_train), int(do_valid), int(do_test), int(eval_total_samples)])
else:
flags = get_accelerator().LongTensor([0, 0, 0, 0])
# Broadcast num tokens.
if ds_sequence_parallel:
torch.distributed.broadcast(flags,
mpu.get_sequence_parallel_src_rank(),
group=mpu.get_sequence_parallel_group())
else:
torch.distributed.broadcast(flags,
mpu.get_tensor_model_parallel_src_rank(),
group=mpu.get_tensor_model_parallel_group())
args.do_train = flags[0].item()
args.do_valid = flags[1].item()
args.do_test = flags[2].item()
args.eval_total_samples = flags[3].item()
return train_dataloader, valid_dataloader, test_dataloader
def build_train_valid_test_data_iterators(
build_train_valid_test_datasets_provider):
"""Build pretraining data iterators."""
args = get_args()
# Build loaders.
train_dataloader, valid_dataloader, test_dataloader = \
build_train_valid_test_data_loaders(
build_train_valid_test_datasets_provider)
# Build iterators.
dl_type = args.dataloader_type
assert dl_type in ['single', 'cyclic']
if train_dataloader is not None:
train_data_iterator = iter(train_dataloader) if dl_type == 'single' \
else iter(cyclic_iter(train_dataloader))
else:
train_data_iterator = None
if valid_dataloader is not None:
valid_data_iterator = iter(valid_dataloader) if (dl_type == 'single' and args.eval_iters != -1) \
else iter(cyclic_iter(valid_dataloader))
else:
valid_data_iterator = None
if test_dataloader is not None:
test_data_iterator = iter(test_dataloader) if dl_type == 'single' \
else iter(cyclic_iter(test_dataloader))
else:
test_data_iterator = None
return train_data_iterator, valid_data_iterator, test_data_iterator