applied-ai-018's picture
Add files using upload-large-folder tool
6c639a4 verified
# This code is originally from https://github.com/bigscience-workshop/Megatron-DeepSpeed
# under the license https://huggingface.co/spaces/bigscience/license
from functools import reduce
from logging import logMultiprocessing
import os
import sys
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__),
os.path.pardir,os.path.pardir)))
from lm_eval.models.gpt2 import GPT2LM
from lm_eval import evaluator, tasks, utils
from lm_eval.base import CacheHook
from tqdm import tqdm
import torch.nn.functional as F
from lm_eval.tasks import ALL_TASKS
from pretrain_gpt import model_provider
import numpy as np
import time
import torch
from megatron import get_args
from megatron import print_rank_0
from megatron import get_tokenizer
from megatron.core.enums import ModelType
from megatron.core import mpu
from megatron.training import setup_model_and_optimizer, get_model
from megatron.core.tensor_parallel.mappings import gather_from_tensor_model_parallel_region
from megatron.utils import get_ltor_masks_and_position_ids, unwrap_model
from megatron.p2p_communication import recv_forward, send_forward
import pickle
import json
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
from megatron.model.distributed import DistributedDataParallel as LocalDDP
from megatron.model.module import Float16Module
from deepspeed.runtime.pipe import schedule
from deepspeed.accelerator import get_accelerator
class EvalHarnessAdaptor(GPT2LM):
def __init__(self, model, tokenizer):
args = get_args()
self.args = args
self.model = model
self.tokenizer = tokenizer
self.VOCAB_SIZE = tokenizer.vocab_size
self.EOT_TOKEN_ID = tokenizer.eod
self._max_length = args.seq_length
# For ds we split into mini batches and then micro batches to keep pipelining api happy.
# With Megatron we just go to micro_batches directly
self._batch_size = args.micro_batch_size
self.cache_hook = CacheHook(None)
self.is_main = args.rank == 0
self.is_local_main = args.local_rank == 0
self._device = get_accelerator().current_device_name()
self.is_model_parallel = mpu.get_tensor_model_parallel_world_size() > 1
self.is_pipe_parallel = mpu.get_pipeline_model_parallel_world_size() > 1
self.is_data_parallel = mpu.get_data_parallel_world_size() > 1
self.adaptive_seq_len = args.adaptive_seq_len
if self.is_data_parallel and args.moe_expert_parallel_size == 1: # For MoE model, allow a "fake data parallel" in order to partition model into multiple gpus
raise NotImplementedError("Data parallelism is currently not supported for evaluation")
self.is_last_stage = True if not self.is_pipe_parallel else mpu.is_pipeline_last_stage() # only the last stage of the pipeline model will receive the logits
@property
def max_length(self):
return self._max_length
@property
def batch_size(self):
return self._batch_size
@property
def device(self):
return self._device
def loglikelihood(self, requests):
new_reqs = []
for context, continuation in requests:
if context == "":
# end of text as context
context_enc = [self.EOT_TOKEN_ID]
else:
context_enc = self.tokenizer_encode(context)
continuation_enc = self.tokenizer_encode(continuation)
new_reqs.append(((context, continuation), context_enc, continuation_enc))
return self._loglikelihood_tokens(new_reqs)
def loglikelihood_rolling(self, requests):
# TODO: Implement caching once we've confirmed the perplexity implementation
# TODO: automatic batch size detection for vectorization
loglikelihoods = []
with torch.no_grad():
for string, in tqdm(requests):
rolling_token_windows = list(map(utils.make_disjoint_window, utils.get_rolling_token_windows(
token_list=self.tokenizer_encode(string),
prefix_token=self.EOT_TOKEN_ID,
max_seq_len=self.max_length,
context_len=1,
)))
rolling_token_windows = [(None,) + x for x in rolling_token_windows]
# TODO: extract out this call so it only gets called once and also somehow figure out partial caching for that
string_nll = self._loglikelihood_tokens(rolling_token_windows, disable_tqdm=True)
# discard is_greedy
string_nll = [x[0] for x in string_nll]
string_nll = sum(string_nll)
loglikelihoods.append(string_nll)
return loglikelihoods
def _loglikelihood_tokens(self, requests, disable_tqdm=False):
disable_tqdm = disable_tqdm if self.is_main else True
res = []
res_len = 0 # storing the result length for later
self.model.eval()
with torch.no_grad():
def _collate(x):
toks = x[1] + x[2]
return (-len(toks), tuple(toks))
reord = utils.Reorderer(requests, _collate)
for chunk in utils.chunks(tqdm(reord.get_reordered(), disable=disable_tqdm), self.batch_size):
inps, contlens, inplens, padding_length = [], [], [], None
for _, context_enc, continuation_enc in chunk:
# when too long to fit in context, truncate from the left
inp = torch.tensor(
(context_enc + continuation_enc)[-(self.max_length + 1):][:-1]
, dtype=torch.long).to(self.device)
inplen, = inp.shape
cont = continuation_enc
# since in _collate we make sure length is descending, the longest is always the first one.
padding_length = padding_length if padding_length is not None else inplen
if not self.adaptive_seq_len:
padding_length = self.max_length
# pad to length
inp = torch.cat([
inp, # [seq]
torch.zeros(padding_length - inplen, dtype=torch.long).to(inp.device) # [padding_length - seq]
], dim=0)
inps.append(inp.unsqueeze(0))
contlens.append(cont)
inplens.append(inplen)
logits = self._model_call(torch.cat(inps, dim=0))
res_len += len(chunk)
if logits is not None:
multi_logits = F.log_softmax(logits, dim=-1).cpu() # [batch, seq, vocab]
for (cache_key, _, _), logits, inp, inplen, cont_toks in zip(chunk, multi_logits, inps, inplens, contlens):
contlen = len(cont_toks)
logits = logits[inplen - contlen:inplen].unsqueeze(0) # [1, seq, vocab]
greedy_tokens = logits.argmax(dim=-1)
# cont_toks :: [1, seq]
cont_toks = torch.tensor(cont_toks, dtype=torch.long).unsqueeze(0)
max_equal = (greedy_tokens == cont_toks).all()
# last_token_slice = logits[:, -1, :].squeeze(0).tolist()
logits = torch.gather(logits, 2, cont_toks.unsqueeze(-1)).squeeze(-1) # [1, seq]
answer = (float(logits.sum()), bool(max_equal))
# partial caching
if cache_key is not None:
self.cache_hook.add_partial("loglikelihood", cache_key, answer)
res.append(answer)
if not mpu.is_pipeline_last_stage():
# @HACK: To make the eval harness happy on threads that don't have access to the results.
# We just randomly generate some data.
res = [(np.random.rand(), np.random.rand()>0.5) for _ in requests]
return reord.get_original(res)
def create_model_inputs(self, tokens):
args = get_args()
attention_mask, loss_mask, position_ids = get_ltor_masks_and_position_ids(
tokens,
self.EOT_TOKEN_ID,
args.reset_position_ids,
args.reset_attention_mask,
args.eod_mask_loss)
return (tokens, position_ids, attention_mask), (tokens, loss_mask)
def _model_call(self, inps):
args = get_args()
if args.deepspeed:
if args.no_pipeline_parallel:
# self.model.set_batch_fn(self.create_model_inputs)
# round up to multiple of micro_batch_size
new_size = ((len(inps) + args.micro_batch_size-1) // args.micro_batch_size) * args.micro_batch_size
padded = F.pad(inps, (0, 0, 0, new_size-len(inps)), value = 0)
# dummy data iterator for pipelining.
data_iterator = list((torch.stack(inp) for inp in utils.chunks(padded, args.micro_batch_size)))
self.model.micro_batches = len(data_iterator)
# output = self.model.eval_batch(iter(data_iterator), compute_loss = False, reduce_output = None)
output = []
for tokens in data_iterator:
attention_mask, loss_mask, position_ids = get_ltor_masks_and_position_ids(
tokens,
self.EOT_TOKEN_ID,
args.reset_position_ids,
args.reset_attention_mask,
args.eod_mask_loss)
a_output, *other_losses = self.model(tokens,
position_ids,
attention_mask,
tokentype_ids=None)
output.append(a_output)
if output is not None:
output = torch.cat(output, 0)[:len(inps)]
else:
output = None
# hack #2 for adaptive_seq_len to work as total_loss gets appended to and shapes aren't the same
if args.adaptive_seq_len:
self.model.total_loss = None
else:
self.model.set_batch_fn(self.create_model_inputs)
# round up to multiple of micro_batch_size
new_size = ((len(inps) + args.micro_batch_size-1) // args.micro_batch_size) * args.micro_batch_size
padded = F.pad(inps, (0, 0, 0, new_size-len(inps)), value = 0)
# dummy data iterator for pipelining.
data_iterator = list((torch.stack(inp) for inp in utils.chunks(padded, args.micro_batch_size)))
self.model.micro_batches = len(data_iterator)
output = self.model.eval_batch(iter(data_iterator), compute_loss = False, reduce_output = None)
if output is not None:
output = torch.cat(output, 0)[:len(inps)]
else:
output = None
# hack #2 for adaptive_seq_len to work as total_loss gets appended to and shapes aren't the same
if args.adaptive_seq_len:
self.model.total_loss = None
else:
# Since the shape of the micro-batch will change
# We need set the correct shapes here
# So that latter pipeline stages knows which shapes to expect.
# Otherwise we will deadlock.
args.micro_batch_size = len(inps)
args.seq_length = len(inps[0])
args.max_position_embeddings = args.seq_length
input_tensor = recv_forward()
# Forward pass through the model.
unwrapped_model = unwrap_model(self.model, (torchDDP, LocalDDP, Float16Module))
unwrapped_model.set_input_tensor(input_tensor)
output = self.model(*self.create_model_inputs(inps)[0])
send_forward(output)
if mpu.is_pipeline_last_stage():
return gather_from_tensor_model_parallel_region(output)[..., :self.tokenizer.vocab_size]
else:
return None
def tokenizer_encode(self, text):
"""Tokenize text *without* adding special tokens."""
# Splitting this into its own method in case we need to handle special cases for different tokenizers
from megatron.tokenizer.gpt2_tokenization import GPT2Tokenizer
if isinstance(self.tokenizer.tokenizer, GPT2Tokenizer):
return self.tokenizer.tokenizer.encode(text)
else:
return self.tokenizer.tokenizer.encode(text, add_special_tokens=False)
from megatron.initialize import initialize_megatron
import megatron
from tools.convert_checkpoint.deepspeed_checkpoint import DeepSpeedCheckpoint
from tools.convert_checkpoint.deepspeed_to_megatron import _create_rank_checkpoint
def override_args(args, override_args, skip_keys, skip_if_specified_keys):
for k, v in vars(override_args).items():
if k in skip_keys:
continue
if k in skip_if_specified_keys and getattr(args, k) is not None:
continue
setattr(args, k, v)
# Note(Hesslow):
# The model loading is a bit convoluted.
# We want to parse out the model arguments from the checkpoint and use those to initialize megatron-ds.
#
# However megatron-ds expects its arguments on the command line.
# And at that point we don't know them.
#
# Instead we use Jasons way: we load the arguments form the checkpoint and then override _parse_args to return whatever args we want.
#
# If the checkpoint is old, some new arguments may have been introduced and the code will expect these arguments to exist.
# In order to support this we _first_ parse the arguments normally, and then override them with the arguments from the checkpoint.
# Keeping the default-value of newer arguments.
#
# We then use the megatron deepspeed converter to load the deepspeed checkpoints as if they we're megatron checkpoints.
def load_ds_checkpoint_and_setup_megatron(extra_args_provider):
# parse the megatorn args. But wait with initalizing megatron.
# avoid printing the arguments, since they will later be overridden.
_print_args = megatron.arguments._print_args
megatron.arguments._print_args = lambda *_args, **kwarg: None
args = parse_args(extra_args_provider=extra_args_provider)
ds_checkpoint = DeepSpeedCheckpoint(args.load,
tp_degree=args.tensor_model_parallel_size,
pp_degree=args.pipeline_model_parallel_size,
no_pp=args.no_pipeline_parallel)
cp_args = ds_checkpoint.get_args()
# Merge the current args with the checkpoint args.
skip_keys = ['world_size', 'rank', 'local_rank','device_count', 'micro_batch_size','global_batch_size', 'batch_size', 'tensorboard_dir', 'deepspeed', 'deepspeed_config',
'data_parallel_size', 'pipeline_model_parallel_size', 'tensor_model_parallel_size', 'moe_expert_parallel_size', 'moe_token_dropping', 'load', 'rampup_batch_size', 'iteration', 'inference', 'random_ltd']
skip_if_specified = ['merge_file', 'vocab_file']
if args.eval_fp32:
cp_args.fp16 = False
cp_args.bf16 = False
cp_args.params_dtype = torch.float32
cp_args.tokenizer_type = 'GPT2BPETokenizer'
override_args(args, cp_args, skip_keys, skip_if_specified)
# stop megatron from reparsing the arguments.
megatron.arguments.parse_args = lambda *_args, **kwarg: args
megatron.global_vars._ensure_var_is_not_initialized = lambda *_args, **kwarg: None
megatron.global_vars._GLOBAL_ARGS = args
initialize_megatron(extra_args_provider=extra_args_provider)
megatron.global_vars._GLOBAL_ARGS = args
torch.distributed.barrier()
# Initializing megatron will update eg. tokenizer size. Override again.
override_args(args, cp_args, skip_keys, skip_if_specified)
# print final arguments.
_print_args("eval_harness arguments", args)
if args.deepspeed:
# Hack #3:
# Loading pipelined models in deepspeed with different TP than it was originally trained on fails
# due to a sanity check, that makes sure that all state_dicts that we merge contains attention layers.
# This, however, is not true for pipelining when we will merge the state_dict for the embeddings which
# which does not contain these attention-specific keys.
#
# Deepspeed does however manage to load the model if we just turn off this sanity check.
import deepspeed
deepspeed.runtime.state_dict_factory.MegatronSDLoader.sanity_check = lambda self, ckpt_file_name: None
cp_path = args.load
args.load = None
model, _, _ = setup_model_and_optimizer(model_provider, ModelType.encoder_or_decoder)
model = model[0]
zero_enabled = model._config.zero_enabled
model._config.zero_enabled = False
_, _ = model.load_checkpoint(cp_path, tag = '.', load_optimizer_states=False, load_lr_scheduler_states=False, load_module_only=True)
model._config.zero_enabled = zero_enabled
else:
model = get_model(model_provider)[0]
# Initialize megatron model using the parsed state dict.
sd = _create_rank_checkpoint(ds_checkpoint, None, mpu.get_tensor_model_parallel_rank(), mpu.get_pipeline_model_parallel_rank(), True)
model.load_state_dict(sd['model'], strict=True)
if args.eval_fp32:
model = model.float()
torch.distributed.barrier()
return model
def tasks_args(parser):
"""Provide extra arguments required for tasks."""
group = parser.add_argument_group(title='Evaluation options')
group.add_argument('--task_list', type=str, default = "all", help='Either "all" or comma separated list of tasks.')
group.add_argument('--results_path', type=str, default = "./results.json", help='Path to where the results will be stored.')
group.add_argument('--adaptive_seq_len', default = False, action='store_true',
help='Should the sequence length be adapted to the batch during evaluation, if in fp16 the results will be slightly different due to numerical errors but greatly speed up evaluation.')
group.add_argument('--num_fewshot', type=int, default = 0, help='Number of few-shot prompts.')
group.add_argument('--eval_fp32', default = False, action='store_true', help='Should the evaluation run in fp32')
return parser
from megatron.arguments import parse_args
def main():
start = time.time()
model = load_ds_checkpoint_and_setup_megatron(extra_args_provider=tasks_args)
args = get_args()
if args.deepspeed and args.adaptive_seq_len:
# adaptive_seq_len hack #1:
# CL automatically enables reset_activation_shape() which allows us to change input shapes
# and it also reshapes the attenion scores in attention_mask_func
args.curriculum_learning_legacy = 1
task_list = ALL_TASKS if args.task_list == 'all' else args.task_list.split(',')
task_dict = tasks.get_task_dict(task_list)
model.module.activation_checkpoint_interval = 0
model._compute_loss = False
model.fwd_outputs = []
tokenizer = get_tokenizer()
adaptor = EvalHarnessAdaptor(model, tokenizer)
results = evaluator.evaluate(adaptor, task_dict, False, args.num_fewshot, None)
if mpu.is_pipeline_last_stage() and mpu.get_tensor_model_parallel_rank() == 0:
print(json.dumps(results, indent=2))
with open(args.results_path, 'w') as outfile:
json.dump(results, outfile, indent = 4)
end = time.time()
print("evaluation of {} ends in {:.2f} sec, or {:.2f} min, or {:.2f} hr".format(args.task_list, end-start, (end-start)/60.0, (end-start)/3600.0))
if __name__ == '__main__':
main()