peacock-data-public-datasets-idc-mint
/
docker
/intel_code
/llama13b
/Megatron-DeepSpeed
/tools
/preprocess_data.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. | |
"""Processing large data for pretraining.""" | |
import argparse | |
import math | |
import json | |
import os | |
import sys | |
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), | |
os.path.pardir))) | |
import time | |
import gzip | |
import glob | |
import torch | |
import numpy as np | |
import multiprocessing | |
try: | |
import nltk | |
nltk_available = True | |
except ImportError: | |
nltk_available = False | |
from megatron.tokenizer import build_tokenizer | |
from megatron.data import indexed_dataset | |
# https://stackoverflow.com/questions/33139531/preserve-empty-lines-with-nltks-punkt-tokenizer | |
class CustomLanguageVars(nltk.tokenize.punkt.PunktLanguageVars): | |
_period_context_fmt = r""" | |
\S* # some word material | |
%(SentEndChars)s # a potential sentence ending | |
\s* # <-- THIS is what I changed | |
(?=(?P<after_tok> | |
%(NonWord)s # either other punctuation | |
| | |
(?P<next_tok>\S+) # <-- Normally you would have \s+ here | |
))""" | |
class IdentitySplitter(object): | |
def tokenize(self, *text): | |
return text | |
class Encoder(object): | |
def __init__(self, args): | |
self.args = args | |
def initializer(self): | |
# Use Encoder class as a container for global data | |
Encoder.tokenizer = build_tokenizer(self.args) | |
if self.args.split_sentences: | |
if not nltk_available: | |
print("NLTK is not available to split sentences.") | |
exit() | |
library = "tokenizers/punkt/{}.pickle".format(self.args.lang) | |
splitter = nltk.load(library) | |
if self.args.keep_newlines: | |
# this prevents punkt from eating newlines after sentences | |
Encoder.splitter = nltk.tokenize.punkt.PunktSentenceTokenizer( | |
train_text = splitter._params, | |
lang_vars = CustomLanguageVars()) | |
else: | |
Encoder.splitter = splitter | |
else: | |
Encoder.splitter = IdentitySplitter() | |
def split(self, json_line): | |
data = json.loads(json_line) | |
output = {} | |
for key in self.args.json_keys: | |
text = data[key] | |
max_len = 1000000 | |
tokens_list = [Encoder.splitter.tokenize(text[i:i+max_len]) for i in range(0, len(text), max_len)] | |
output[key] = [tokens for partial in tokens_list for tokens in partial] | |
return json.dumps(output), len(json_line) | |
def encode(self, json_line): | |
data = json.loads(json_line) | |
ids = {} | |
lens = {} | |
for key in self.args.json_keys: | |
text = data[key] | |
if isinstance(text, list): | |
sentences = text | |
else: | |
sentences = [text] | |
doc_ids = [] | |
sentence_lens = [] | |
for sentence in sentences: | |
sentence_ids = Encoder.tokenizer.tokenize(sentence) | |
if len(sentence_ids) > 0: | |
doc_ids.extend(sentence_ids) | |
sentence_lens.append(len(sentence_ids)) | |
if len(doc_ids) > 0 and self.args.append_eod: | |
doc_ids.append(Encoder.tokenizer.eod) | |
ids[key] = doc_ids | |
lens[key] = sentence_lens | |
return ids, lens, len(json_line) | |
class Partition(object): | |
def __init__(self, args, workers): | |
self.args = args | |
self.workers = workers | |
def print_processing_stats(self, count, proc_start, total_bytes_processed): | |
if count % self.args.log_interval == 0: | |
current = time.time() | |
elapsed = current - proc_start | |
mbs = total_bytes_processed/elapsed/1024/1024 | |
print(f"Processed {count} documents", | |
f"({count/elapsed} docs/s, {mbs} MB/s).", | |
file=sys.stderr) | |
def split_sentences(self, file_name): | |
input_file_name, output_file_name = file_name | |
print("Opening", input_file_name) | |
fin = open(input_file_name, 'r', encoding='utf-8') | |
fout = open(output_file_name, 'w') | |
encoder = Encoder(self.args) | |
pool = multiprocessing.Pool(self.workers, initializer=encoder.initializer) | |
split_docs = pool.imap(encoder.split, fin, 32) | |
proc_start = time.time() | |
total_bytes_processed = 0 | |
for i, (doc, bytes_processed) in enumerate(split_docs, start=1): | |
total_bytes_processed += bytes_processed | |
fout.write(doc + "\n") | |
self.print_processing_stats(i, proc_start, total_bytes_processed) | |
fin.close() | |
fout.close() | |
def process_json_file(self, file_name): | |
input_file_name, output_prefix = file_name | |
print("Opening", input_file_name) | |
fin = open(input_file_name, 'r', encoding='utf-8') | |
startup_start = time.time() | |
encoder = Encoder(self.args) | |
tokenizer = build_tokenizer(self.args) | |
pool = multiprocessing.Pool(self.workers, initializer=encoder.initializer) | |
encoded_docs = pool.imap(encoder.encode, fin, 32) | |
level = "document" | |
if self.args.split_sentences: | |
level = "sentence" | |
output_bin_files = {} | |
output_idx_files = {} | |
builders = {} | |
for key in self.args.json_keys: | |
output_bin_files[key] = "{}_{}_{}.bin".format(output_prefix, | |
key, level) | |
output_idx_files[key] = "{}_{}_{}.idx".format(output_prefix, | |
key, level) | |
builders[key] = indexed_dataset.make_builder(output_bin_files[key], | |
impl=self.args.dataset_impl, | |
vocab_size=tokenizer.vocab_size) | |
startup_end = time.time() | |
proc_start = time.time() | |
total_bytes_processed = 0 | |
print("Time to startup:", startup_end - startup_start) | |
for i, (doc, sentence_lens, bytes_processed) in enumerate(encoded_docs, start=1): | |
total_bytes_processed += bytes_processed | |
for key in doc.keys(): | |
builders[key].add_doc(doc[key], sentence_lens[key]) | |
self.print_processing_stats(i, proc_start, total_bytes_processed) | |
fin.close() | |
builders[key].finalize(output_idx_files[key]) | |
def get_args(): | |
parser = argparse.ArgumentParser() | |
group = parser.add_argument_group(title='input data') | |
group.add_argument('--input', type=str, required=True, | |
help='Path to input JSON') | |
group.add_argument('--json-keys', nargs='+', default=['text'], | |
help='space separate listed of keys to extract from json') | |
group.add_argument('--split-sentences', action='store_true', | |
help='Split documents into sentences.') | |
group.add_argument('--keep-newlines', action='store_true', | |
help='Keep newlines between sentences when splitting.') | |
group = parser.add_argument_group(title='tokenizer') | |
group.add_argument('--tokenizer-type', type=str, required=True, | |
choices=['BertWordPieceLowerCase','BertWordPieceCase', | |
'GPT2BPETokenizer', 'SentencePieceTokenizer', | |
'GPTSentencePieceTokenizer', 'NullTokenizer'], | |
help='What type of tokenizer to use.') | |
group.add_argument('--tokenizer-model', type=str, default=None, | |
help='YTTM tokenizer model.') | |
group.add_argument('--vocab-file', type=str, default=None, | |
help='Path to the vocab file') | |
group.add_argument('--vocab-size', default=786, | |
help='size of vocab for use with NullTokenizer') | |
group.add_argument('--merge-file', type=str, default=None, | |
help='Path to the BPE merge file (if necessary).') | |
group.add_argument('--append-eod', action='store_true', | |
help='Append an <eod> token to the end of a document.') | |
group.add_argument('--lang', type=str, default='english', | |
help='Language to use for NLTK-powered sentence splitting.') | |
group = parser.add_argument_group(title='output data') | |
group.add_argument('--output-prefix', type=str, required=True, | |
help='Path to binary output file without suffix') | |
group.add_argument('--dataset-impl', type=str, default='mmap', | |
choices=['lazy', 'cached', 'mmap']) | |
group = parser.add_argument_group(title='runtime') | |
group.add_argument('--workers', type=int, required=True, | |
help=('Number of worker processes to launch.' | |
'A good default for fast pre-processing ' | |
'is: (workers * partitions) = available CPU cores.')) | |
group.add_argument('--partitions', type=int, default=1, | |
help='Number of file partitions') | |
group.add_argument('--log-interval', type=int, default=1000, | |
help='Interval between progress updates') | |
args = parser.parse_args() | |
args.keep_empty = False | |
if args.tokenizer_type.lower().startswith('bert') and not args.split_sentences: | |
print("Are you sure you don't want to split sentences?") | |
# some default/dummy values for the tokenizer | |
args.rank = 1 | |
args.make_vocab_size_divisible_by = 128 | |
args.tensor_model_parallel_size = 1 | |
args.vocab_extra_ids = 0 | |
return args | |
def get_file_name(args, file_id): | |
file_name, extension = os.path.splitext(args.input) | |
input_file_name = file_name + "_" + str(file_id) + extension | |
sentence_split_file = file_name + "_ss_" + str(file_id) + extension | |
output_prefix = args.output_prefix + "_" + str(file_id) | |
file_names = { | |
'partition': input_file_name, | |
'sentence_split': sentence_split_file, | |
'output_prefix': output_prefix} | |
return file_names | |
def check_files_exist(in_ss_out_names, key, num_partitions): | |
for i in range(num_partitions): | |
if not os.path.exists(in_ss_out_names[i][key]): | |
return False | |
return True | |
def main(): | |
args = get_args() | |
if args.split_sentences: | |
if nltk_available: | |
nltk.download("punkt", quiet=True) | |
else: | |
raise Exception( | |
"nltk library required for sentence splitting is not available.") | |
in_ss_out_names = [] | |
if args.partitions == 1: | |
file_name, extension = os.path.splitext(args.input) | |
sentence_split_file = file_name + "_ss" + extension | |
file_names = { | |
'partition': args.input, | |
'sentence_split': sentence_split_file, | |
'output_prefix': args.output_prefix} | |
in_ss_out_names.append(file_names) | |
else: | |
in_file_names = glob.glob(args.input) | |
# create .jsonl parition files | |
for idx in range(args.partitions): | |
in_ss_out_name = get_file_name(args, idx) | |
in_ss_out_names.append(in_ss_out_name) | |
# check to see if paritions were already created | |
partitions_present = check_files_exist(in_ss_out_names, 'partition', args.partitions) | |
# check to see if paritions with split sentences already created | |
split_sentences_present = check_files_exist(in_ss_out_names, 'sentence_split', args.partitions) | |
if not partitions_present and not split_sentences_present: | |
# populate .jsonl partition files from parent files | |
partitioned_input_files = [] | |
for idx in range(args.partitions): | |
partitioned_input_file = open(in_ss_out_names[idx]['partition'], 'w') | |
partitioned_input_files.append(partitioned_input_file) | |
index = 0 | |
for in_file_name in in_file_names: | |
# support for gzip files | |
if in_file_name.endswith(".gz"): | |
fin = gzip.open(in_file_name, 'rt') | |
else: | |
fin = open(in_file_name, 'r', encoding='utf-8') | |
for line in fin: | |
partitioned_input_files[index].write(line) | |
index = (index + 1)%args.partitions | |
fin.close() | |
for idx in range(args.partitions): | |
partitioned_input_files[idx].close() | |
assert args.workers % args.partitions == 0 | |
partition = Partition(args, args.workers//args.partitions) | |
# check to see if paritions with split sentences already created | |
split_sentences_present = check_files_exist(in_ss_out_names, 'sentence_split', args.partitions) | |
# split sentences in partition files | |
if args.split_sentences and not split_sentences_present: | |
processes = [] | |
for name in in_ss_out_names: | |
p = multiprocessing.Process(target=partition.split_sentences, | |
args=((name['partition'], name['sentence_split']),)) | |
p.start() | |
processes.append(p) | |
for p in processes: | |
p.join() | |
if args.partitions == 1: | |
return | |
# encode partition files in parallel | |
processes = [] | |
input_key = 'sentence_split' if args.split_sentences else 'partition' | |
for name in in_ss_out_names: | |
p = multiprocessing.Process(target=partition.process_json_file, | |
args=((name[input_key], name['output_prefix']),)) | |
p.start() | |
processes.append(p) | |
for p in processes: | |
p.join() | |
if args.partitions == 1: | |
return | |
# merge bin/idx partitions | |
level = "document" | |
if args.split_sentences: | |
level = "sentence" | |
output_bin_files = {} | |
output_idx_files = {} | |
builders = {} | |
tokenizer = build_tokenizer(args) | |
for key in args.json_keys: | |
output_bin_files[key] = "{}_{}_{}.bin".format(args.output_prefix, | |
key, level) | |
output_idx_files[key] = "{}_{}_{}.idx".format(args.output_prefix, | |
key, level) | |
builders[key] = indexed_dataset.make_builder(output_bin_files[key], | |
impl=args.dataset_impl, | |
vocab_size=tokenizer.vocab_size) | |
for name in in_ss_out_names: | |
parition_output_prefix = name['output_prefix'] | |
full_partition_output_prefix = "{}_{}_{}".format(parition_output_prefix, | |
key, level) | |
builders[key].merge_file_(full_partition_output_prefix) | |
builders[key].finalize(output_idx_files[key]) | |
if __name__ == '__main__': | |
main() | |