peacock-data-public-datasets-idc-mint
/
docker
/intel_code
/llama13b
/Megatron-DeepSpeed
/tools
/preprocess_data_nmt.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. | |
"""Processing nmt data for finetuning.""" | |
import argparse | |
import json | |
import multiprocessing | |
import os | |
import sys | |
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), | |
os.path.pardir))) | |
import time | |
import torch | |
from megatron.tokenizer import build_tokenizer | |
from megatron.data import indexed_dataset | |
class Encoder(object): | |
def __init__(self, args): | |
self.args = args | |
def initializer(self): | |
# Use Encoder class as a container for global data | |
Encoder.tokenizer = build_tokenizer(self.args) | |
def encode(self, text): | |
ids = {} | |
ids = Encoder.tokenizer.tokenize(text) | |
assert len(ids) > 0 | |
return ids, len(text) | |
def get_args(): | |
parser = argparse.ArgumentParser() | |
group = parser.add_argument_group(title='input data') | |
group.add_argument('--input', type=str, required=True, | |
help='Path to input JSON') | |
group = parser.add_argument_group(title='tokenizer') | |
group.add_argument('--tokenizer-type', type=str, default='YTTMTokenizer', | |
choices=['BertWordPieceLowerCase','BertWordPieceCase', | |
'GPT2BPETokenizer', 'SentencePieceTokenizer'], | |
help='What type of tokenizer to use.') | |
group.add_argument('--vocab-file', type=str, default=None, | |
help='Path to the vocab file') | |
group.add_argument('--merge-file', type=str, default=None, | |
help='Path to the BPE merge file (if necessary).') | |
group = parser.add_argument_group(title='output data') | |
group.add_argument('--output-prefix', type=str, required=True, | |
help='Path to binary output file without suffix') | |
group.add_argument('--dataset-impl', type=str, default='mmap', | |
choices=['lazy', 'cached', 'mmap']) | |
group = parser.add_argument_group(title='runtime') | |
group.add_argument('--workers', type=int, default=1, | |
help='Number of worker processes to launch') | |
group.add_argument('--log-interval', type=int, default=100, | |
help='Interval between progress updates') | |
args = parser.parse_args() | |
args.keep_empty = False | |
# some default/dummy values for the tokenizer | |
args.rank = 0 | |
args.make_vocab_size_divisible_by = 128 | |
args.tensor_model_parallel_size = 1 | |
args.vocab_extra_ids = 0 | |
return args | |
def main(): | |
args = get_args() | |
startup_start = time.time() | |
print("Opening", args.input) | |
fin = open(args.input, 'r', encoding='utf-8') | |
encoder = Encoder(args) | |
tokenizer = build_tokenizer(args) | |
pool = multiprocessing.Pool(args.workers, initializer=encoder.initializer) | |
encoded_sentences = pool.imap(encoder.encode, fin, 25) | |
print(f"Vocab size: {tokenizer.vocab_size}") | |
print(f"Output prefix: {args.output_prefix}") | |
output_bin_file = "{}.bin".format(args.output_prefix) | |
output_idx_file = "{}.idx".format(args.output_prefix) | |
builder = indexed_dataset.make_builder(output_bin_file, | |
impl=args.dataset_impl, | |
vocab_size=tokenizer.vocab_size) | |
startup_end = time.time() | |
proc_start = time.time() | |
total_bytes_processed = 0 | |
print("Time to startup:", startup_end - startup_start) | |
for i, (sentence, bytes_processed) in enumerate(encoded_sentences, start=1): | |
total_bytes_processed += bytes_processed | |
builder.add_item(torch.IntTensor(sentence)) | |
# documents contain only one sentence. | |
builder.end_document() | |
if i % args.log_interval == 0: | |
current = time.time() | |
elapsed = current - proc_start | |
mbs = total_bytes_processed/elapsed/1024/1024 | |
print(f"Processed {i} sentences", | |
f"({i/elapsed} sentences/s, {mbs} MB/s).", | |
file=sys.stderr) | |
builder.finalize(output_idx_file) | |
if __name__ == '__main__': | |
main() | |