peacock-data-public-datasets-idc-mint
/
docker
/intel_code
/llama13b
/Megatron-DeepSpeed
/tools
/retro
/cli
/cli.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. | |
import json | |
import numpy as np | |
import os | |
import torch | |
import types | |
from megatron.global_vars import set_global_variables, set_retro_args | |
from megatron.initialize import ( | |
initialize_megatron, | |
_initialize_distributed, | |
_set_random_seed, | |
_compile_dependencies, | |
) | |
from tools.retro.db.utils import ( | |
get_indexed_dataset_infos as get_db_indexed_dataset_infos, | |
get_merged_train_dataset as get_db_dataset, | |
) | |
from tools.retro.main import add_retro_args | |
from tools.retro.query.retro_dataset import get_retro_datasets | |
from tools.retro.utils import get_args_path, get_bert_tokenizer, get_gpt_tokenizer | |
def shorten_str(s, n): | |
s = "\\n".join(s.splitlines()) | |
return s if len(s) <= n else "%s ... %s" % (s[:n//2], s[-n//2:]) | |
class retro: | |
args = None | |
############################################## | |
# initialize. | |
############################################## | |
def parse_dtype_str(cls, dtype_str): | |
return { | |
"torch.float16" : torch.float16, | |
"torch.float32" : torch.float32, | |
"torch.bfloat16" : torch.bfloat16, | |
}[dtype_str] | |
def init_megatron(cls, workdir): | |
'''Custom initialization of Megatron.''' | |
# Load args. | |
args_path = get_args_path(workdir) | |
assert os.path.exists(args_path), "args.json not found in workdir." | |
with open(args_path) as f: | |
cls.args = types.SimpleNamespace(**json.load(f)) | |
cls.args.retro_workdir = workdir # just in case workdir moved | |
cls.args.rank = 0 # override env | |
cls.args.world_size = 1 # override env | |
cls.args.params_dtype = cls.parse_dtype_str(cls.args.params_dtype) | |
set_global_variables(cls.args) | |
set_retro_args(cls.args) | |
_initialize_distributed() | |
_set_random_seed(cls.args.seed, cls.args.data_parallel_random_init) | |
_compile_dependencies() | |
def init(cls, workdir): | |
'''Initialize Megatron, tokenizers, and datasets.''' | |
# Load args. | |
cls.init_megatron(workdir) | |
cls.tokenizers = types.SimpleNamespace( | |
gpt=get_gpt_tokenizer(), | |
bert=get_bert_tokenizer(), | |
) | |
# Load data. | |
cls.db_indexed_dataset_infos = get_db_indexed_dataset_infos() | |
cls.db_dataset = get_db_dataset() | |
pt_train_ds, pt_valid_ds, _ = get_retro_datasets(verify_sizes=False) | |
cls.pt_datasets = types.SimpleNamespace( | |
train=pt_train_ds, | |
valid=pt_valid_ds, | |
) | |
# Retrieve max saved neighbors. | |
for key in vars(cls.pt_datasets): | |
getattr(cls.pt_datasets, key).num_neighbors = \ | |
cls.args.retro_query_num_neighbors_save | |
# Print usage. | |
cls.print_usage() | |
############################################## | |
# utils. | |
############################################## | |
def gpt_to_text(cls, token_ids): | |
'''GPT tokens to text.''' | |
return cls.tokenizers.gpt.detokenize(token_ids.tolist() | |
if isinstance(token_ids, np.ndarray) | |
else token_ids) | |
def text_to_bert(cls, text): | |
'''Text to Bert tokens.''' | |
return cls.tokenizers.bert.tokenize(text) | |
############################################## | |
# chunk db. | |
############################################## | |
def get_db_num_indexed_datasets(cls): | |
'''Number of indexed datasets within blendable dataset.''' | |
return len(cls.db_indexed_dataset_infos) | |
def get_db_indexed_dataset_infos(cls): | |
'''Dataset infos, including number of training & sampled sets.''' | |
return [(info["ratio"], info["name"]) | |
for info in cls.db_indexed_dataset_infos] | |
def get_db_dataset(cls): | |
return cls.db_dataset | |
def get_db_num_chunks(cls): | |
'''Number of DB chunks.''' | |
return len(cls.get_db_dataset()) | |
def get_db_chunk_gpt(cls, idx): | |
'''Get DB chunk as GPT token ids.''' | |
return cls.get_db_dataset()[idx]["text"].tolist() | |
def get_db_chunk_bert(cls, idx): | |
'''Get DB chunk as Bert token ids.''' | |
return cls.text_to_bert(cls.get_db_chunk_text(idx)) | |
def get_db_chunk_text(cls, idx): | |
'''Get DB chunk as text.''' | |
return cls.gpt_to_text(cls.get_db_chunk_gpt(idx)) | |
def get_db_chunk_and_continuation_text(cls, idx): | |
'''Get DB chunk along with continuation, as text.''' | |
# Modulus used here to match original implementation (i.e., last | |
# chunks continuation wraps around to first chunk). | |
return [ | |
cls.get_db_chunk_text(idx), | |
cls.get_db_chunk_text((idx + 1) % len(cls.get_db_dataset())), | |
] | |
############################################## | |
# pretraining corpus. | |
############################################## | |
def get_pt_num_samples_and_chunks(cls, data_key): | |
'''Number of samples & chunks (e.g., 32*n_samples) in corpus.''' | |
assert hasattr(cls.pt_datasets, data_key), \ | |
"pretraining set '%s' not found (choices: %s)." % ( | |
data_key, ", ".join(vars(cls.pt_datasets).keys())) | |
chunk_dataset = getattr(cls.pt_datasets, data_key).chunk_dataset | |
return ( | |
len(chunk_dataset.sample_dataset), | |
len(chunk_dataset), | |
) | |
def get_pt_num_samples(cls, data_key): | |
'''Number of pretraining samples.''' | |
return cls.get_pt_num_samples_and_chunks(data_key)[0] | |
def get_pt_num_chunks(cls, data_key): | |
'''Number of pretraining chunks (e.g., 32*n_samples).''' | |
return cls.get_pt_num_samples_and_chunks(data_key)[1] | |
def get_pt_dataset(cls, data_key): | |
return getattr(cls.pt_datasets, data_key) | |
def get_pt_sample(cls, data_key, idx): | |
return getattr(cls.pt_datasets, data_key)[idx] | |
def get_neighbor_tokens(cls, sample_id, chunk_id, data_key="train"): | |
try: | |
sample = cls.get_pt_sample(data_key, sample_id) | |
sample_token_ids = sample["text"] | |
chunk_length = cls.args.retro_gpt_chunk_length | |
chunk_start_idx = chunk_id * chunk_length | |
chunk_end_idx = min(sample_token_ids.shape[0], | |
chunk_start_idx + chunk_length) | |
chunk_token_ids = sample_token_ids[chunk_start_idx:chunk_end_idx] | |
neighbor_token_ids = sample["neighbor_tokens"][chunk_id] | |
return { | |
"chunk_tokens" : chunk_token_ids, | |
"neighbor_tokens" : neighbor_token_ids, | |
} | |
except: | |
return None | |
def print_neighbor_texts(cls, sample_id, chunk_id, data_key="train"): | |
tokens = cls.get_neighbor_tokens(sample_id, chunk_id, data_key) | |
print("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~") | |
try: | |
print("PRETRAINING CHUNK:") | |
print(" - %s" % shorten_str(cls.gpt_to_text(tokens["chunk_tokens"]), 150)) | |
print("NEIGHBOR_CHUNKS:") | |
for token_ids in tokens["neighbor_tokens"]: | |
print(" - %s" % shorten_str(cls.gpt_to_text(token_ids), 150)) | |
except: | |
print("<no neighbors for sample %d>" % sample_id) | |
############################################## | |
# usage. | |
############################################## | |
def print_usage(cls): | |
'''Print usage.''' | |
print() | |
print("+++++++++++++++++++++++++++++++++++++++++++++++++++") | |
print("examples ... [ *note*: 'db' = chunk db; 'pt' = pretraining corpus. ]") | |
print("+++++++++++++++++++++++++++++++++++++++++++++++++++") | |
print() | |
print("~~~~ indexed datasets ~~~~") | |
print("retro.get_db_num_indexed_datasets() : %s" % | |
cls.get_db_num_indexed_datasets()) | |
print("retro.get_db_indexed_dataset_infos() :") | |
for i, (ratio,prefix) in enumerate(cls.get_db_indexed_dataset_infos()): | |
print(" %s(%f, %s)%s" % ( | |
"[" if i == 0 else " ", | |
ratio, | |
prefix, | |
"]" if i == len(cls.db_indexed_dataset_infos) - 1 else ",", | |
)) | |
print() | |
print("~~~~ counts ~~~~") | |
print("retro.get_db_num_chunks : %d." % cls.get_db_num_chunks()) | |
print() | |
for sq_key in ("sample", "chunk"): | |
for data_key in ("train", "valid"): # test? | |
print("retro.get_pt_num_%ss('%s') : %d." % ( | |
sq_key, data_key, | |
getattr(cls, f"get_pt_num_{sq_key}s")(data_key))) | |
print() | |
print("~~~~ tokens, text ~~~~") | |
print("retro.get_db_chunk_gpt(chunk_id) : %s" % | |
shorten_str(str(retro.get_db_chunk_gpt(0)), 50)) | |
print("retro.get_db_chunk_bert(chunk_id) : %s" % | |
shorten_str(str(retro.get_db_chunk_bert(0)), 50)) | |
print("retro.get_db_chunk_text(chunk_id) : %s" % | |
shorten_str(retro.get_db_chunk_text(0).strip(), 50)) | |
print("retro.get_db_chunk_and_continuation_text(chunk_id) :") | |
for i, t in enumerate(retro.get_db_chunk_and_continuation_text(0)): | |
print(" %s'%s'%s" % ( | |
"[" if i == 0 else " ", | |
shorten_str(t.strip().replace("\n", " "), 50), | |
"]" if i == 1 else ",", | |
)) | |
sample = cls.get_pt_sample("train", 0) | |
sample_chunk_id = sample["neighbor_tokens"].shape[0] // 2 | |
sample_neighbor_id = 0 | |
print() | |
print("retro.get_pt_sample('train', sample_id) :") | |
print(" {") | |
for k, v in sample.items(): | |
print(" '%s' : %s" % (k, shorten_str(str(v), 50))) | |
print(" }") | |
print() | |
print("(e.g., sample = retro.get_pt_sample(...))") | |
print() | |
print(" sample['text'].shape : %s" % str(sample["text"].shape)) | |
print(" sample['neighbor_tokens'].shape : %s" % str(sample["neighbor_tokens"].shape)) | |
print(" sample['text'] : %s" % shorten_str(str(sample["text"]), 50)) | |
print(" sample['neighbor_tokens'][17][1] : %s" % shorten_str(str(sample["neighbor_tokens"][sample_chunk_id][sample_neighbor_id]), 50)) | |
print(" retro.gpt_to_text(sample['text']) : %s" % shorten_str(cls.gpt_to_text(sample["text"]), 50)) | |
print(" retro.gpt_to_text(sample['neighbor_tokens']) : %s" % shorten_str(cls.gpt_to_text(sample["neighbor_tokens"][sample_chunk_id][sample_neighbor_id]), 50)) | |
print("+++++++++++++++++++++++++++++++++++++++++++++++++++") | |