applied-ai-018's picture
Add files using upload-large-folder tool
b92a520 verified
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
from collections import defaultdict
from concurrent.futures import as_completed, ProcessPoolExecutor
from functools import reduce
import glob
import json
import numpy as np
import os
from pathlib import Path
import threading
import torch
from tqdm import tqdm
import types
from megatron import get_retro_args, print_rank_0
from megatron.data.indexed_dataset import make_dataset as make_indexed_dataset
from megatron.tokenizer.tokenizer import (
_BertWordPieceTokenizer,
_GPT2BPETokenizer,
)
from tools.bert_embedding.utils import get_missing_blocks_by_rank
from tools.retro.external_libs import h5py
from tools.retro.utils import get_gpt_tokenizer, get_bert_tokenizer
from .utils import (
get_indexed_dataset_infos,
get_indexed_dataset_infos_path,
get_individual_db_dir,
get_individual_chunk_db,
get_individual_doc_offsets,
get_merged_dataset,
get_merged_db_path_map,
save_indexed_dataset_infos,
)
def init_indexed_dataset_infos():
'''Gather meta-info about each indexed dataset.
The returned info array allows for easy access to the configuration, and
helps remove ambiguity.
'''
args = get_retro_args()
assert len(args.data_path) % 2 == 0, \
"currently, only blendable dataset is supported."
# Dataset infos.
infos = []
for i in range(0, len(args.data_path), 2):
ratio = float(args.data_path[i])
prefix = args.data_path[i + 1]
path = prefix + ".bin"
name = os.path.basename(prefix)
assert os.path.exists(path), "couldn't find '%s'." % path
infos.append({
"ratio" : ratio,
"prefix" : prefix,
"path" : path,
"name" : name,
"db_dir" : get_individual_db_dir(name),
"dataset" : make_indexed_dataset(prefix, "mmap", True),
})
return infos
def build_partial_db(
dataset_idx,
n_datasets,
indexed_dataset,
block_id,
n_blocks,
block,
proc_id,
n_procs,
tokenizers,
):
'''Process a document index range of the indexed dataset.
The chunk database is built in parallel blocks, since de-tokenizing &
re-tokenizing for Bert-length computation is expensive. This method
iterates each document and extracts sequential 'chunk-length' sequences
from each document.
'''
args = get_retro_args()
# Document start/end indexes.
doc_range = block["range"]
n_docs = doc_range[1] - doc_range[0]
n_docs_per_proc = int(np.ceil(n_docs / n_procs))
doc_start_id = doc_range[0] + proc_id * n_docs_per_proc
doc_end_id = min(doc_range[1], doc_start_id + n_docs_per_proc)
# Print progress.
progress_proc_ids = set(range(n_procs)) \
if torch.distributed.get_rank() == 0 else set()
if proc_id in progress_proc_ids:
print(" > building partial chunk db, proc %d / %d, docs %d:%d / %d."%(
proc_id,
n_procs,
doc_start_id,
doc_end_id,
n_docs,
))
# Progress bars (snapshot of overall progress).
doc_id_iter = range(doc_start_id, doc_end_id)
pbar = tqdm(doc_id_iter) \
if proc_id in progress_proc_ids else \
doc_id_iter
# Iterate documents & parse chunks.
chunk_db_valid = []
chunk_db_invalid = []
doc_size_map = {}
for doc_id in pbar:
# Progress description.
try:
pbar.set_description("ds %d / %d, block %d / %d, proc %d / %d." % (
dataset_idx,
n_datasets,
block_id,
n_blocks,
proc_id,
n_procs))
except:
pass
# Remove EOD token.
doc = indexed_dataset.get(doc_id)
if doc[-1].item() == tokenizers.gpt.eod:
doc = doc[:-1]
doc_len = len(doc)
# Chunk start/end indexes.
chunk_start_idxs = list(range(0, doc_len, args.retro_gpt_chunk_length))
chunk_end_idxs = [min(doc_len, s + args.retro_gpt_chunk_length)
for s in chunk_start_idxs]
# Re-tokenize each chunk to Bert/Wordpiece (empty bert -> 'invalid').
doc_size_map[doc_id] = 0
for i, chunk_start_idx in enumerate(chunk_start_idxs):
# Re-tokenize.
chunk_end_idx = chunk_end_idxs[i]
gpt_token_ids = indexed_dataset.get(
idx=doc_id,
offset=chunk_start_idx,
length=chunk_end_idx - chunk_start_idx,
)
text = tokenizers.gpt.detokenize(gpt_token_ids.tolist())
bert_token_ids = tokenizers.bert.tokenize(text)
# 'Valid' for non-empty Bert chunks; 'invalid' otherwise.
if len(bert_token_ids) == 0:
_chunk_db = chunk_db_invalid
else:
_chunk_db = chunk_db_valid
doc_size_map[doc_id] += 1
_chunk_db.append((
doc_id,
chunk_start_idx,
chunk_end_idx,
len(bert_token_ids),
))
return proc_id, chunk_db_valid, chunk_db_invalid, doc_size_map
def build_individual_db(dataset_idx, n_datasets, dataset_info, tokenizers):
'''Process a single indexed dataset & extract chunks.'''
args = get_retro_args()
# Make directory.
db_dir = dataset_info["db_dir"]
os.makedirs(db_dir, exist_ok=True)
# Indexed dataset.
indexed_dataset = dataset_info["dataset"]
# Missing db blocks.
n_missing_world, missing_db_blocks = get_missing_blocks_by_rank(
db_dir,
len(indexed_dataset),
args.retro_doc_block_size,
validate=lambda f : f["chunks_valid"].shape == (0,) \
or f["chunks_valid"].shape[1] == 4)
# Prevent missing-path-write race condition.
torch.distributed.barrier()
if not missing_db_blocks:
return
# Num processes.
if n_missing_world == 1:
n_procs = 128
elif n_missing_world <= 2:
n_procs = 64
elif n_missing_world <= 4:
n_procs = 32
elif n_missing_world <= 8:
n_procs = 16
else:
n_procs = 8
# Process documents in parallel.
with ProcessPoolExecutor(max_workers=n_procs) as executor:
for block_idx, block in enumerate(missing_db_blocks):
if block is not None:
db_path = block["path"]
# Build partial dbs.
print_rank_0(' > build partial dbs.')
futures = []
for proc_id in range(n_procs): # not true process id
futures.append(executor.submit(
build_partial_db,
dataset_idx,
n_datasets,
indexed_dataset,
block_idx,
len(missing_db_blocks),
block,
proc_id,
n_procs,
tokenizers,
))
partial_chunk_dbs = []
for future in as_completed(futures):
partial_chunk_dbs.append(future.result())
# Concatenate chunks.
partial_chunk_dbs.sort(key=lambda item:item[0]) # sort by proc_id
chunk_db_valid = [item
for partial_chunk_db in partial_chunk_dbs
for item in partial_chunk_db[1]]
chunk_db_invalid = [item
for partial_chunk_db in partial_chunk_dbs
for item in partial_chunk_db[2]]
# Convert to numpy.
print_rank_0(' > converting chunk db to numpy.')
chunk_db_valid = np.array(chunk_db_valid, dtype="uint32")
chunk_db_invalid = np.array(chunk_db_invalid, dtype="uint32")
# Document offsets.
doc_sizes = [(d, s)
for partial_chunk_db in partial_chunk_dbs
for d, s in partial_chunk_db[3].items()]
doc_sizes.sort(key = lambda item : item[0])
doc_offsets = np.cumsum([item[1] for item in doc_sizes]) \
.astype("uint64")
doc_offsets = np.stack((
np.array([item[0] for item in doc_sizes], dtype="uint64"),
doc_offsets), axis=1)
# Save DB.
print_rank_0(" > saving individual db.")
with h5py.File(db_path, "w") as f:
dset = f.create_dataset("chunks_valid", data=chunk_db_valid)
dset = f.create_dataset("chunks_invalid",
data=chunk_db_invalid)
dset = f.create_dataset("doc_offsets", data=doc_offsets)
# Wait for all ranks to finish block.
print_rank_0(" > waiting for all ranks to finish block.")
torch.distributed.barrier()
print_rank_0(" > finished saving individual db.")
def build_individual_dbs(indexed_dataset_infos):
'''Iterate each indexed dataset & process its chunks.'''
args = get_retro_args()
# Tokenizers.
tokenizers = types.SimpleNamespace(
gpt=get_gpt_tokenizer(),
bert=get_bert_tokenizer(),
)
# Build individual DBs.
print_rank_0(" > build individual chunk dbs.")
for ds_idx, ds_info in enumerate(indexed_dataset_infos):
# Progress.
print_rank_0(" > building individual db, dataset %d / %d ... '%s'." % (
ds_idx,
len(indexed_dataset_infos),
ds_info["name"],
))
# Process single dataset.
build_individual_db(ds_idx, len(indexed_dataset_infos),
ds_info, tokenizers)
def update_chunk_counts(indexed_dataset_infos):
'''Set n_chunks_train & n_chunks sampled for each individual DB.'''
args = get_retro_args()
if torch.distributed.get_rank() != 0:
return
# Data ratio sum (for setting index training chunks).
data_ratio_sum = sum([ d["ratio"] for d in indexed_dataset_infos ])
# Training split size (split at document level).
train_fraction = float(args.split.split(",")[0]) / 100
assert train_fraction > 0 and train_fraction <= 1
# Set n_chunks (including n_chunks_sampled for unambiguity).
print_rank_0(" > compute n_chunks.")
for ds_index, ds_info in enumerate(indexed_dataset_infos):
db_dir = ds_info["db_dir"]
db_paths = sorted(glob.glob(db_dir + "/*.hdf5"))
# Update counts.
ds_info["n_docs"] = len(ds_info["dataset"].doc_idx) - 1
ds_info["n_docs_train"] = int(train_fraction * ds_info["n_docs"])
ds_info["n_chunks"] = 0 # previously, 'n_chunks_valid'
ds_info["n_chunks_train"] = 0
ds_info["n_chunks_invalid"] = 0
for db_path in tqdm(db_paths, "%d/%d, %s" % (
ds_index, len(indexed_dataset_infos), ds_info["name"])):
with h5py.File(db_path, "r") as f:
ds_info["n_chunks"] += len(f["chunks_valid"])
ds_info["n_chunks_invalid"] += len(f["chunks_invalid"])
ds_info["n_chunks_train"] += \
(np.copy(f["chunks_valid"][:, 0]) < ds_info["n_docs_train"]) \
.sum().item()
ds_info["n_chunks_sampled"] = int(args.retro_index_ntrain *
ds_info["ratio"] / data_ratio_sum)
# Verify counts.
assert ds_info["n_chunks_train"] <= ds_info["n_chunks"], \
"n_train (%d) > n_total (%d)." % (
ds_info["n_chunks_train"], ds_info["n_chunks"])
assert ds_info["n_chunks_sampled"] <= ds_info["n_chunks_train"], \
"n_sampled (%d) > n_train (%d)." % (
ds_info["n_chunks_sampled"], ds_info["n_chunks_train"])
def merge_dbs(indexed_dataset_infos, db_type):
'''Merge individual DBs into single DB.'''
if torch.distributed.get_rank() != 0:
return
print(" > build %s chunk db." % db_type)
# Count chunks.
if db_type == "sampled":
n_chunks_key = "n_chunks_sampled"
n_docs_key = None
elif db_type == "train":
n_chunks_key = "n_chunks_train"
n_docs_key = "n_docs_train"
elif db_type == "valid":
n_docs_key = None
else:
raise Exception("handle db_type '%s'." % db_type)
if db_type == "valid":
n_chunks = sum(m["n_chunks"] - m["n_chunks_train"]
for m in indexed_dataset_infos)
else:
n_chunks = sum(m[n_chunks_key] for m in indexed_dataset_infos)
n_docs = None if n_docs_key is None else \
sum(m[n_docs_key] for m in indexed_dataset_infos)
# DB path.
db_path = get_merged_db_path_map()[db_type]
# Delete existing chunk db if incorrect size.
if os.path.exists(db_path):
try:
f = h5py.File(db_path)
n_alloc = len(f["chunks"]) # total allocated
n_written = f["n_written"][0].item() # total written
f.close()
if n_chunks != n_alloc or n_chunks != n_written:
os.remove(db_path)
except Exception as e:
if isinstance(e, OSError):
os.remove(db_path)
elif isinstance(e, KeyError):
f.close()
os.remove(db_path)
else:
raise e
# Build merged chunk db.
if not os.path.exists(db_path):
os.makedirs(os.path.dirname(db_path), exist_ok=True)
f = h5py.File(db_path, "w")
# Initialize output arrays.
merged_chunk_db = \
f.create_dataset("chunks", (n_chunks, 5), dtype="uint32")
merged_doc_offsets = None if n_docs_key is None else \
f.create_dataset("doc_offsets", (n_docs, 3), dtype="uint64")
n_written = f.create_dataset("n_written", (1,), dtype="uint64")
n_written[0] = 0
# Iterate indexed datasets & collect chunks.
chunk_start_index = 0
doc_start_index = 0
doc_start_offset = 0
for ds_idx, ds_info in enumerate(indexed_dataset_infos):
print(" > merging dbs; '%s', dataset %d / %d ... '%s'." %
(db_type, ds_idx, len(indexed_dataset_infos), ds_info["name"]))
individual_chunk_db = get_individual_chunk_db(ds_idx, ds_info)
individual_doc_offsets = None if n_docs_key is None else \
get_individual_doc_offsets(ds_idx, ds_info)
if db_type == "valid":
individual_chunk_db = \
individual_chunk_db[ds_info["n_chunks_train"]:]
if n_docs_key is None:
individual_doc_offsets = None
else:
train_doc_offset = \
individual_doc_offsets[ds_info["n_docs_train"] - 1, 2]
individual_doc_offsets = \
np.copy(individual_doc_offsets[ds_info["n_docs_train"]:])
individual_doc_offsets[:, 2] -= train_doc_offset
print("~~~")
print(individual_doc_offsets)
print(train_doc_offset)
raise Exception("test me.")
else:
individual_chunk_db = \
individual_chunk_db[:ds_info[n_chunks_key]]
individual_doc_offsets = None if n_docs_key is None else \
np.copy(individual_doc_offsets[:ds_info[n_docs_key]])
merged_chunk_db[chunk_start_index:chunk_start_index+len(individual_chunk_db)] = individual_chunk_db
chunk_start_index += len(individual_chunk_db)
n_written[0] = chunk_start_index
if n_docs_key is not None:
individual_doc_offsets[:, 2] += doc_start_offset
doc_end_index = doc_start_index + individual_doc_offsets.shape[0]
merged_doc_offsets[doc_start_index:doc_end_index] = \
individual_doc_offsets
doc_start_index = doc_end_index
doc_start_offset = individual_doc_offsets[-1, 2].item()
f.close()
def build_db():
'''Extract token chunks from each indexed dataset.
Iterate each document of each indexed dataset, extract that document's
chunks, and save to a 'DB' (hdf5 file).
'''
# Indexed dataset info.
indexed_dataset_infos = init_indexed_dataset_infos()
# Build dbs.
build_individual_dbs(indexed_dataset_infos)
# Single-process going forward.
if torch.distributed.get_rank() != 0:
return
# Update n_chunks & save indexed dataset infos.
if not os.path.exists(get_indexed_dataset_infos_path()):
update_chunk_counts(indexed_dataset_infos)
save_indexed_dataset_infos(indexed_dataset_infos)
indexed_dataset_infos = get_indexed_dataset_infos()
# Merge dbs.
merge_dbs(indexed_dataset_infos, "sampled")
merge_dbs(indexed_dataset_infos, "train")
merge_dbs(indexed_dataset_infos, "valid")