peacock-data-public-datasets-idc-mint
/
docker
/intel_code
/llama13b
/Megatron-DeepSpeed
/tools
/retro
/db
/utils.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. | |
from collections import defaultdict | |
import glob | |
import json | |
import numpy as np | |
import os | |
from tqdm import tqdm | |
from megatron import get_retro_args, print_rank_0 | |
from megatron.data.indexed_dataset import make_dataset as make_indexed_dataset | |
from tools.retro.external_libs import h5py | |
from .dataset import DBDataset | |
def get_base_db_workdir(): | |
'''Sub-directory for DB data.''' | |
args = get_retro_args() | |
return os.path.join(args.retro_workdir, "db") | |
def get_indexed_dataset_infos_path(): | |
'''Path to indexed dataset meta-infos.''' | |
return os.path.join(get_base_db_workdir(), "indexed_dataset_infos.json") | |
def save_indexed_dataset_infos(indexed_dataset_infos): | |
'''Save dataset order & meta-info.''' | |
# Remove 'dataset' field. | |
clean_infos = [] | |
for info in indexed_dataset_infos: | |
info = dict(info) | |
del info["dataset"] | |
clean_infos.append(info) | |
# Save. | |
with open(get_indexed_dataset_infos_path(), "w") as f: | |
json.dump(clean_infos, f, indent=4) | |
def get_indexed_dataset_infos(): | |
'''Load indexed dataset meta-infos.''' | |
# Load json. | |
path = get_indexed_dataset_infos_path() | |
with open(path) as f: | |
infos = json.load(f) | |
# Add indexed datasets. | |
for info in infos: | |
info["dataset"] = make_indexed_dataset(info["prefix"], "mmap", True) | |
return infos | |
def get_individual_db_dir(name): | |
'''Individual DB's directory.''' | |
return os.path.join(get_base_db_workdir(), "individual", name) | |
def get_individual_chunk_db(ds_id, ds_info): | |
'''Load individual dataset's chunk DB.''' | |
db_paths = sorted(glob.glob(ds_info["db_dir"] + "/*hdf5")) | |
# *Note*: convert to dataset, rather than copying to memory. | |
db = np.zeros((ds_info["n_chunks"], 5), dtype="uint32") | |
db[:, 0] = ds_id | |
start_idx = 0 | |
for db_path in db_paths: | |
f = h5py.File(db_path, "r") | |
n_chunks_current = f["chunks_valid"].shape[0] | |
db[start_idx:(start_idx+n_chunks_current), 1:] = f["chunks_valid"] | |
start_idx += n_chunks_current | |
f.close() | |
assert start_idx == ds_info["n_chunks"] | |
return db | |
def get_individual_doc_offsets(ds_id, ds_info): | |
'''Load individual dataset's chunk DB.''' | |
paths = sorted(glob.glob(ds_info["db_dir"] + "/*hdf5")) | |
# *Note*: convert to dataset, rather than copying to memory. | |
doc_offsets = np.zeros((ds_info["n_docs"], 3), dtype="uint64") | |
doc_offsets[:, 0] = ds_id | |
start_idx = 0 | |
start_offset = 0 | |
for path in paths: | |
with h5py.File(path) as f: | |
current_doc_offsets = np.copy(f["doc_offsets"]) | |
current_doc_offsets[:, 1] += start_offset | |
current_ndocs = current_doc_offsets.shape[0] | |
doc_offsets[start_idx:(start_idx+current_ndocs), 1:] = \ | |
current_doc_offsets | |
start_idx += current_ndocs | |
start_offset = current_doc_offsets[-1, 1].item() | |
return doc_offsets | |
def get_merged_db_path_map(): | |
'''Paths to merged datasets.''' | |
base_dir = get_base_db_workdir() | |
return { | |
"sampled" : os.path.join(base_dir, "merged", "sampled.hdf5"), | |
"train" : os.path.join(base_dir, "merged", "train.hdf5"), | |
"valid" : os.path.join(base_dir, "merged", "valid.hdf5"), | |
} | |
def get_merged_dataset(db_type, indexed_dataset_infos=None): | |
'''Get merged dataset.''' | |
args = get_retro_args() | |
if not indexed_dataset_infos: | |
indexed_dataset_infos = get_indexed_dataset_infos() | |
# Load chunks. | |
db_path = get_merged_db_path_map()[db_type] | |
f = h5py.File(db_path, "r") | |
chunks = f["chunks"] | |
# DB dataset. | |
indexed_datasets = [ info["dataset"] for info in indexed_dataset_infos ] | |
dataset = DBDataset(db_path, indexed_datasets, chunks, | |
args.retro_gpt_chunk_length) | |
return dataset | |
def get_merged_sampled_dataset(indexed_dataset_infos=None): | |
return get_merged_dataset("sampled", indexed_dataset_infos) | |
def get_merged_train_dataset(indexed_dataset_infos=None): | |
return get_merged_dataset("train", indexed_dataset_infos) | |
def get_merged_valid_dataset(indexed_dataset_infos=None): | |
return get_merged_dataset("valid", indexed_dataset_infos) | |