applied-ai-018 commited on
Commit
34cb6ab
·
verified ·
1 Parent(s): b4d9d87

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. docker/intel_code/llama13b/Model-References/PyTorch/examples/bucketing/brute_force_min_pad_waste.py +154 -0
  2. docker/intel_code/llama13b/Model-References/PyTorch/examples/bucketing/bucket.py +169 -0
  3. docker/intel_code/llama13b/Model-References/PyTorch/examples/bucketing/bucket_analysis.svg +1709 -0
  4. docker/intel_code/llama13b/Model-References/PyTorch/examples/bucketing/bucket_analysis_bar_squad.svg +1772 -0
  5. docker/intel_code/llama13b/Model-References/PyTorch/examples/bucketing/datasets_library.py +123 -0
  6. docker/intel_code/llama13b/Model-References/PyTorch/examples/bucketing/requirements.txt +7 -0
  7. docker/intel_code/llama13b/Model-References/PyTorch/examples/bucketing/run_demo_bucketing_gaussian.py +14 -0
  8. docker/intel_code/llama13b/Model-References/PyTorch/examples/bucketing/run_demo_squad.py +9 -0
  9. docker/intel_code/llama13b/Model-References/PyTorch/examples/bucketing/squad.svg +1473 -0
  10. docker/intel_code/llama13b/Model-References/PyTorch/examples/bucketing/test.py +88 -0
  11. docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/dev_mn.yaml +128 -0
  12. docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/dev_mn_dummy.yaml +109 -0
  13. docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/inpainting/v1-edgeinpainting.yaml +157 -0
  14. docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/inpainting/v1-finetune-for-inpainting-laion-aesthetic-larger-masks-and-ucfg.yaml +156 -0
  15. docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/inpainting/v1-finetune-for-inpainting-laion-aesthetic-larger-masks.yaml +149 -0
  16. docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/inpainting/v1-finetune-for-inpainting-laion-iaesthe.yaml +144 -0
  17. docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-1p4B-multinode-clip-encoder-high-res-512.yaml +135 -0
  18. docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-1p4B-multinode-clip-encoder.yaml +131 -0
  19. docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-1p4B-multinode.yaml +128 -0
  20. docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-clip-encoder-dev.yaml +127 -0
  21. docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-ldm-unfrozen-dev.yaml +129 -0
  22. docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-ldm-vae-f8.yaml +130 -0
  23. docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-multinode-clip-encoder-f16-1024-laion-hr.yaml +133 -0
  24. docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-multinode-clip-encoder-f16-256-pretraining.yaml +127 -0
  25. docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-multinode-clip-encoder-f16-768-laion-hr-inference.yaml +65 -0
  26. docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-multinode-clip-encoder-f16-768-laion-hr.yaml +133 -0
  27. docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-multinode-clip-encoder-f16-768.yaml +130 -0
  28. docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-t5-encoder-dev.yaml +128 -0
  29. docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-upscale-clip-encoder-f16-1024.yaml +170 -0
  30. docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-v2-clip-encoder-improved_aesthetics-256.yaml +137 -0
  31. docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-v2-clip-encoder-improved_aesthetics-512.yaml +135 -0
  32. docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/upscaling/upscale-v1-with-f16.yaml +214 -0
  33. docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/v1-inference.yaml +69 -0
  34. docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/v1_improvedaesthetics.yaml +135 -0
  35. docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/v1_laionhr.yaml +135 -0
  36. docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/v2_laionhr1024.yaml +132 -0
  37. docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/v2_laionhr1024_2.yaml +132 -0
  38. docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/v2_pretraining.yaml +131 -0
  39. docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/v3_pretraining.yaml +137 -0
  40. docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/data/__init__.py +0 -0
  41. docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/data/base.py +125 -0
  42. docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/data/coco.py +253 -0
  43. docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/data/dummy.py +34 -0
  44. docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/data/imagenet.py +394 -0
  45. docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/data/inpainting/__init__.py +0 -0
  46. docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/data/inpainting/synthetic_mask.py +166 -0
  47. docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/data/laion.py +516 -0
  48. docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/data/lsun.py +92 -0
  49. docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/lr_scheduler.py +98 -0
  50. docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/models/autoencoder.py +449 -0
docker/intel_code/llama13b/Model-References/PyTorch/examples/bucketing/brute_force_min_pad_waste.py ADDED
@@ -0,0 +1,154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (C) 2023 Habana Labs, Ltd. an Intel Company
2
+
3
+ import numpy as np
4
+ import copy
5
+ import collections
6
+ from itertools import combinations
7
+ import time
8
+
9
+ class BruteForceOptimalBucketing():
10
+ def __init__(self, inp_dist, num_buckets, numbucket_threshold=10000000, verbose=False, collect=1000, print_freq=10000):
11
+ self.inp_dist = collections.OrderedDict(sorted(inp_dist.items()))
12
+ # not sure if deepcopy preserves order, hence resorting
13
+ self.inp_dist_orig = collections.OrderedDict(sorted(copy.deepcopy(self.inp_dist).items()))
14
+ self.num_buckets = num_buckets
15
+ self.numbucket_threshold = numbucket_threshold
16
+ if numbucket_threshold > 0:
17
+ self.simplify_distribution()
18
+ self.verbose = verbose
19
+ if self.verbose:
20
+ print('Original distribution: ', self.inp_dist_orig)
21
+ print('Modified distribution: ', self.inp_dist)
22
+ print('kl divergence: ', self.kl_div())
23
+ self.max_shape = max(self.inp_dist)
24
+ key_col = []
25
+ val_col = []
26
+ for k in sorted(self.inp_dist):
27
+ key_col += [k]
28
+ val_col += [self.inp_dist[k]]
29
+ self.num_shapes = len(key_col)
30
+ self.key_col_tensor = np.array(key_col) # sorted by keys (first column)
31
+ self.val_col_tensor = np.array(val_col)
32
+ self.collect = collect
33
+ self.print_freq = print_freq
34
+ #self.key_col_tensor_tiled = np.tile(self.key_col_tensor, (num_buckets,self.collect,1)).T
35
+ def kl_div(self):
36
+ total = sum(self.inp_dist.values())
37
+ kld = 0
38
+ for k in self.inp_dist_orig:
39
+ q = self.inp_dist_orig[k] / total
40
+ tmp = self.inp_dist.get(k,0)
41
+ if tmp == 0:
42
+ term = 0
43
+ else:
44
+ term = tmp * np.log((tmp / total) / q)
45
+ kld += term
46
+ return kld
47
+ def simplify_distribution(self):
48
+ while self.num_possible_buckets() > self.numbucket_threshold:
49
+ self.fuse_inp_dist()
50
+ def fuse_inp_dist(self):
51
+ # helper finds the smallest frequency (which will be removed)
52
+ def helper(d):
53
+ least_count = None
54
+ for idx, k in enumerate(d):
55
+ if least_count is None or d[k] < least_count:
56
+ least_count = d[k]
57
+ least_idx = idx
58
+ to_be_removed = k
59
+ return least_count, least_idx, to_be_removed
60
+ sum_vals_before = sum(self.inp_dist.values())
61
+ assert sum_vals_before == sum(self.inp_dist_orig.values())
62
+ # Remove the last (largest) shape from the search of lowest frequency to be deleted,
63
+ # because that can't be deleted
64
+ tmp = collections.OrderedDict(sorted(copy.deepcopy(self.inp_dist).items()))
65
+ tmp.pop(max(tmp))
66
+ # search for the shape with least frequency
67
+ least_count, least_idx, to_be_removed = helper(tmp)
68
+ # fuse the shape with least frequency with its right neighbour (next bigger shape)
69
+ fuse_with = least_idx+1
70
+ for idx, k in enumerate(self.inp_dist):
71
+ if fuse_with == idx:
72
+ self.inp_dist[k] = self.inp_dist[k]+least_count
73
+ # Remove the shape with least frequency
74
+ self.inp_dist.pop(to_be_removed)
75
+ sum_vals_after = sum(self.inp_dist.values())
76
+ assert sum_vals_before == sum_vals_after
77
+ def num_possible_buckets(self):
78
+ from functools import reduce
79
+ import operator as op
80
+ n = len(self.inp_dist)-1
81
+ r = self.num_buckets-1
82
+ r = min(r, n-r)
83
+ numer = reduce(op.mul, range(n, n-r, -1), 1)
84
+ denom = reduce(op.mul, range(1, r+1), 1)
85
+ return numer // denom # or / in Python 2
86
+ # function to evaluate
87
+ def num_padding(self, buckets):
88
+ tot_pad = 0
89
+ cur_bucket_idx = 0
90
+ for k in self.inp_dist_orig: # self.inp_dist is expected to be sorted, hence we can do the cur_bucket_idx optimization
91
+ while True:
92
+ bucket = buckets[cur_bucket_idx]
93
+ if k > bucket:
94
+ cur_bucket_idx += 1
95
+ else:
96
+ break
97
+ padding = (bucket - k) * self.inp_dist_orig[k]
98
+ assert padding >= 0
99
+ tot_pad += padding
100
+ return tot_pad
101
+ def find_optimal_buckets(self):
102
+ result_best = None
103
+ sizes = [k for k in self.inp_dist.keys()]
104
+ sizes_without_largest = sizes[:-1]
105
+ num = self.num_possible_buckets()
106
+ if self.verbose:
107
+ print(f'Combinations to try: {num}')
108
+ t0 = time.time()
109
+ collect_ctr = 0
110
+ self.idx_collection = []
111
+ self.bucket_boundary_collection = []
112
+ result_best = None
113
+ def update_helper(idx, result_best, best_padwaste_in_curr_collection, best_bucket_in_curr_collection):
114
+ if result_best is None or result_best['wasted_padding'] > best_padwaste_in_curr_collection:
115
+ tmp = {'wasted_padding':best_padwaste_in_curr_collection, 'idx':idx, 'buckets':copy.deepcopy(best_bucket_in_curr_collection)}
116
+ if self.verbose:
117
+ print('Best till now: ', tmp)
118
+ return tmp
119
+ else:
120
+ return result_best
121
+ for idx, bucket_boundary in (enumerate(combinations(sizes_without_largest, self.num_buckets-1))):
122
+ if collect_ctr == self.collect:
123
+ best_padwaste_in_curr_collection, best_bucket_in_curr_collection, best_idx = self.process_collection()
124
+ result_best = update_helper(idx - self.collect + best_idx, result_best, best_padwaste_in_curr_collection, best_bucket_in_curr_collection)
125
+ self.idx_collection = []
126
+ self.bucket_boundary_collection = []
127
+ collect_ctr = 0
128
+ self.idx_collection.append(idx)
129
+ self.bucket_boundary_collection.append(list(bucket_boundary) + [sizes[-1]])
130
+ collect_ctr += 1
131
+ if idx % self.print_freq == self.print_freq-1 and self.verbose:
132
+ curr_time = time.time()
133
+ time_till_now = curr_time-t0
134
+ projected_time_left = time_till_now * ((num / idx) - 1) if idx > 0 else -1
135
+ print(f'{idx}/{num}: {(idx/num):.3f}. Time taken till now {time_till_now:.3f}. Projected time left {projected_time_left:.3f}. Best {result_best}')
136
+ if len(self.idx_collection) > 0:
137
+ best_padwaste_in_curr_collection, best_bucket_in_curr_collection, best_idx = self.process_collection()
138
+ result_best = update_helper(idx - len(self.idx_collection) + best_idx, result_best, best_padwaste_in_curr_collection, best_bucket_in_curr_collection)
139
+ return result_best
140
+ def process_collection(self):
141
+ # self.collect x self.num_buckets
142
+ bucket_boundary_collection = np.array(self.bucket_boundary_collection)
143
+ # self.num_shapes x self.collect x self.num_buckets
144
+ buckets_tiled = np.tile(np.array(bucket_boundary_collection), (self.num_shapes, 1, 1))
145
+ # self.num_shapes x self.collect
146
+ key_col_tensor_tiled = np.tile(self.key_col_tensor, (self.num_buckets,bucket_boundary_collection.shape[0],1)).T
147
+ bucket_idx = np.argmin(key_col_tensor_tiled > buckets_tiled, 2)
148
+ bucket_for_each_shape = np.take_along_axis(bucket_boundary_collection, bucket_idx.T, 1)
149
+ padding_waste_per_shape = bucket_for_each_shape - np.expand_dims(self.key_col_tensor, 0)
150
+ #assert np.all(padding_waste_per_shape >= 0)
151
+ total_padding_waste = np.sum((padding_waste_per_shape * self.val_col_tensor), 1)
152
+ #assert len(total_padding_waste)
153
+ best_idx = np.argmin(total_padding_waste)
154
+ return total_padding_waste[best_idx], bucket_boundary_collection[best_idx], best_idx
docker/intel_code/llama13b/Model-References/PyTorch/examples/bucketing/bucket.py ADDED
@@ -0,0 +1,169 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (C) 2023 Habana Labs, Ltd. an Intel Company
2
+
3
+ import numpy as np
4
+ import time
5
+ import pickle as pkl
6
+
7
+ # A decorator for input/output validation of bucketing algorithms
8
+ def get_check_bucket(allow_none_return):
9
+ # some bucketing algos like LP can return None
10
+ def check_bucket(bucketer):
11
+ def helper(shapes, num_buckets, *args, **kwargs):
12
+ for k in shapes:
13
+ assert type(k) == type(1)
14
+ assert k >= 0
15
+ assert num_buckets >= 1
16
+ assert type(num_buckets) == type(1)
17
+ buckets = bucketer(shapes, num_buckets, *args, **kwargs)
18
+ if allow_none_return:
19
+ if buckets is None:
20
+ return None
21
+ assert len(buckets) <= num_buckets
22
+ assert buckets[-1] <= max(shapes)
23
+ return buckets
24
+ return helper
25
+ return check_bucket
26
+
27
+ # Percentile based bucketing
28
+ @get_check_bucket(False)
29
+ def percentile_bucket(shapes, num_buckets):
30
+ buckets = np.unique(
31
+ np.percentile(
32
+ shapes,
33
+ np.linspace(0, 100, num_buckets + 1),
34
+ interpolation="lower",
35
+ )[1:]
36
+ )
37
+ return buckets
38
+
39
+ # LP based bucketing
40
+ @get_check_bucket(True)
41
+ def lp_bucket(shapes, num_buckets):
42
+ from pulp import LpMinimize, LpProblem, lpSum, PULP_CBC_CMD, LpStatus, LpVariable, LpInteger
43
+ def padding_overhead(bucket_size,sample_size,num_samples):
44
+ if (sample_size-bucket_size)>0:
45
+ return 1e32
46
+ else:
47
+ return (bucket_size-sample_size)*num_samples
48
+ data_unique=np.unique(shapes)
49
+ prob = LpProblem('OptimalBucket',LpMinimize)
50
+ Combinations=[]; padLoss={}; Indicators={}; DeltaM={}
51
+
52
+ for s in data_unique:
53
+ num_samples=(shapes==s).sum()
54
+ for b in data_unique:
55
+ Combinations.append('ind' + '_{}b_{}s'.format(b,s))
56
+ padLoss['ind' + '_{}b_{}s'.format(b,s)] = padding_overhead(b,s,num_samples)
57
+ Indicators['ind' + '_{}b_{}s'.format(b,s)] = LpVariable('ind' + '_{}b_{}s'.format(b,s),0,1,LpInteger)
58
+
59
+ prob += lpSum([Indicators[ind]*padLoss[ind] for ind in padLoss.keys()]) # Objective (minimize padding)
60
+
61
+ for s in data_unique:
62
+ prob += lpSum([Indicators[key] for key in Combinations if '_{}s'.format(s) in key]) == 1
63
+ bucket_indecators=[]
64
+ for b in data_unique:
65
+ Indicators['ind_bucket' + '_{}'.format(b)]=LpVariable('ind_bucket' + '_{}'.format(b),0,1,LpInteger)
66
+ bucket_indecators.append(Indicators['ind_bucket' + '_{}'.format(b)])
67
+ for b in data_unique:
68
+ prob += lpSum([Indicators[key] for key in Combinations if '_{}b'.format(b) in key]) <= Indicators['ind_bucket' + '_{}'.format(b)]*len(data_unique)
69
+
70
+ prob += lpSum(bucket_indecators)==num_buckets
71
+
72
+ prob.solve(PULP_CBC_CMD(msg=0))
73
+ LpStatus[prob.status]
74
+
75
+ ip_buckets=[]
76
+ for v in prob.variables():
77
+ if 'ind_bucket' in v.name and v.value() > 0:
78
+ ip_buckets.append(int(v.name.split('_')[-1]))
79
+
80
+ if (prob.status==-1):
81
+ print('Infeasable')
82
+ return None
83
+ else:
84
+ return tuple(sorted(ip_buckets))
85
+
86
+ # Pad to max or constant bucketing
87
+ @get_check_bucket(False)
88
+ def const_bucket(shapes, num_buckets):
89
+ return [max(shapes)]
90
+
91
+ # Uniform intervals bucketing
92
+ @get_check_bucket(False)
93
+ def uniform_bucket(shapes, num_buckets):
94
+ mn = min(shapes)
95
+ mx = max(shapes)
96
+ step = (mx - mn) / num_buckets
97
+ buckets = [mx]
98
+ curr_bucket = mx
99
+ step = (mx - mn) / num_buckets
100
+ for i in range(num_buckets-1):
101
+ curr_bucket = curr_bucket - step
102
+ buckets = [curr_bucket] + buckets
103
+ buckets = [round(k) for k in buckets]
104
+ return buckets
105
+
106
+ # Brute force min pad waste bucketing
107
+ @get_check_bucket(False)
108
+ def brute_force_min_pad_waste(shapes, num_buckets, max_elems=10000000):
109
+ from brute_force_min_pad_waste import BruteForceOptimalBucketing
110
+ size_freq = {}
111
+ for k in shapes:
112
+ size_freq[k] = size_freq.get(k,0)+1
113
+ ob = BruteForceOptimalBucketing(size_freq, num_buckets, numbucket_threshold=max_elems)
114
+ res = ob.find_optimal_buckets()
115
+ return res['buckets']
116
+
117
+ # Lloyd-Max quantization based bucketing
118
+ @get_check_bucket(False)
119
+ def lloyd_max_bucketing(shapes, num_buckets, max_steps=20):
120
+ from lloyd_max_bucket import lloydmax
121
+ from scipy.interpolate import CubicSpline
122
+ hist = {}
123
+ for k in shapes:
124
+ hist[k] = hist.get(k,0) + 1
125
+ x = []
126
+ y = []
127
+ for k in sorted(hist.keys()):
128
+ x += [k]
129
+ y += [hist[k]/sum(hist.values())]
130
+ pdf = CubicSpline(x, y)
131
+ repr = uniform_bucket(shapes, num_buckets)
132
+ thresholds = list((np.array(repr[:-1]) + np.array(repr[1:]))/2)
133
+ x,t,e = lloydmax(thresholds,repr,0.01, pdf, min(shapes), max(shapes), max_steps)
134
+ buckets = [int(k) for k in t] + [max(shapes)]
135
+ return buckets
136
+
137
+ def normalize_trial_buckets(trial_buckets):
138
+ if trial_buckets is None:
139
+ trial_buckets = 10
140
+ if type(trial_buckets) == type(1):
141
+ trial_buckets = range(1,trial_buckets)
142
+ return trial_buckets
143
+
144
+ def eval_bucketing(buckets, shapes):
145
+ tot = sum([min([i for i in buckets if i >= k]) for k in shapes])
146
+ return tot, tot/len(shapes)
147
+
148
+
149
+ def bucket_analysis(shapes, bucket_algos, trial_buckets=None):
150
+ trial_buckets = normalize_trial_buckets(trial_buckets)
151
+ results = {}
152
+ for algoidx, (bucket_algo_name, bucket_algo) in enumerate(bucket_algos):
153
+ print(f'Processing {bucket_algo_name}')
154
+ res = {}
155
+ for num_bucket in trial_buckets:
156
+ print(f'Processing bucket={num_bucket}')
157
+ t0 = time.time()
158
+ buckets = bucket_algo(shapes, num_bucket)
159
+ t1 = time.time()
160
+ if buckets is None:
161
+ print(f'Failed to generate buckets for {bucket_algo_name} for {num_bucket} buckets. Falling back to const bucketing')
162
+ buckets = const_bucket(shapes, num_bucket)
163
+ totwaste, avgwaste = eval_bucketing(buckets, shapes)
164
+ res[num_bucket] = {'totwaste':totwaste, 'avgwaste':avgwaste, 'time':t1-t0}
165
+ print(algoidx, num_bucket, totwaste, avgwaste, t1-t0)
166
+ assert bucket_algo_name not in results
167
+ results[bucket_algo_name] = res
168
+ pkl.dump(results, open('res.pkl', 'wb'), protocol=pkl.HIGHEST_PROTOCOL)
169
+ return results
docker/intel_code/llama13b/Model-References/PyTorch/examples/bucketing/bucket_analysis.svg ADDED
docker/intel_code/llama13b/Model-References/PyTorch/examples/bucketing/bucket_analysis_bar_squad.svg ADDED
docker/intel_code/llama13b/Model-References/PyTorch/examples/bucketing/datasets_library.py ADDED
@@ -0,0 +1,123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (C) 2023 Habana Labs, Ltd. an Intel Company
2
+
3
+ import random, itertools
4
+ from tqdm import tqdm
5
+ import numpy as np
6
+
7
+ def get_cdf(pdf):
8
+ # list of tuples, each tuple is a k-v pair (k is the number, v its probability)
9
+ sorted_key_pdf = sorted(pdf, key=lambda x:x[0]) # sort by keys
10
+ run_sum = 0
11
+ cdf = []
12
+ for i in range(len(sorted_key_pdf)):
13
+ k, v = sorted_key_pdf[i]
14
+ run_sum += v
15
+ assert run_sum <= 1 or (1-run_sum) < 0.000000001
16
+ cdf += [(k, 1 if run_sum > 1 else run_sum)]
17
+ last_elem = cdf[-1]
18
+ assert last_elem[1] <= 1.0
19
+ assert (1.0 - last_elem[1]) < 0.000001
20
+ cdf[-1] = (cdf[-1][0], 1.0) # set the last elem to 1
21
+ return cdf
22
+
23
+ def hist_to_tuplelist(pdf):
24
+ inp_is_hist = type(pdf) == type({1:2})
25
+ if inp_is_hist:
26
+ # pdf is a histograms. values add to 1 and are positive
27
+ pdf = [(k,pdf[k]) for k in pdf]
28
+ return pdf, inp_is_hist
29
+
30
+ def format_convert(f):
31
+ def helper(pdf, bs, aggregator):
32
+ pdf, inp_is_hist = hist_to_tuplelist(pdf)
33
+ out = f(pdf, bs, aggregator)
34
+ if inp_is_hist:
35
+ return {k:v for k,v in out}
36
+ else:
37
+ return out
38
+ return helper
39
+
40
+ @format_convert
41
+ def aggregator_batch(pdf, bs, aggregator):
42
+ assert aggregator in ['min', 'max']
43
+ pdf = sorted(pdf, key=lambda x:x[0])
44
+ cdf = get_cdf(pdf)
45
+ assert len(cdf) == len(pdf)
46
+ result = []
47
+ for p, c in zip(pdf, cdf):
48
+ kp, pval = p
49
+ kc, cval = c
50
+ assert kp == kc
51
+ val = bs * pval * ((cval if aggregator == 'max' else (1-cval)) ** (bs-1))
52
+ result += [(kp, val)]
53
+ # the resulting pdf might be unnormalized, probably due to computational issues? normalizing it
54
+ result_val_tot = sum([k[1] for k in result])
55
+ result = [(k[0], k[1]/result_val_tot) for k in result]
56
+ return result
57
+
58
+
59
+ def generate_random_gaussian():
60
+ import numpy as np
61
+ while True:
62
+ x = np.random.normal(500, 50)
63
+ if x < 2: # truncating it so that its not negative
64
+ x = 2
65
+ x = round(x) # its a discrete distribution, so rounding it off
66
+ yield x
67
+
68
+ def gaussian(num_samples):
69
+ return list(itertools.islice(generate_random_gaussian(), num_samples))
70
+
71
+ def batched_gaussian(orig_list, bs, aggregator):
72
+ return [aggregator(orig_list[i * bs : (i+1) * bs]) for i in range(len(orig_list) // bs)]
73
+
74
+
75
+ def batch_by_formula(orig_list, bs, aggregator):
76
+ count_hist = {}
77
+ for item in orig_list:
78
+ count_hist[item] = count_hist.get(item, 0) + 1
79
+ total = sum(list(count_hist.values()))
80
+ pdf_hist = {k:count_hist[k]/total for k in count_hist}
81
+ return aggregator_batch(pdf_hist, bs, aggregator)
82
+
83
+ def sample_from_pdf(pdf, num_samples):
84
+ pdf, _ = hist_to_tuplelist(pdf)
85
+ nums = [k[0] for k in pdf]
86
+ prob = [k[1] for k in pdf]
87
+ return np.random.choice(nums, num_samples, p=prob)
88
+
89
+
90
+ def squad(bs=1, clip=None):
91
+ print('Start squad bs =',bs)
92
+ from datasets import load_dataset
93
+ from torch.utils.data import DataLoader
94
+ from transformers import AutoTokenizer
95
+ import torch
96
+
97
+ # Pad to max length sentence in each batch
98
+ def collate(batch):
99
+ def pad(item, val, maxlen):
100
+ return torch.tensor([i + [val]*(maxlen-len(i)) for i in item])
101
+ token = [k['token_type_ids'] for k in batch]
102
+ attention = [k['attention_mask'] for k in batch]
103
+ inp = [k['input_ids'] for k in batch]
104
+ token_lens = [len(i) for i in token]
105
+ # Find the max length sentence in this batch
106
+ max_len = max(token_lens)
107
+ assert token_lens == [len(i) for i in attention] == [len(i) for i in inp]
108
+ return {'token_type_ids': pad(token, 0, max_len), 'attention_mask': pad(attention, 0, max_len), 'input_ids': pad(inp, 0, max_len)}
109
+
110
+
111
+ tokenizer = AutoTokenizer.from_pretrained('bert-base-cased')
112
+
113
+ squad_dataset = load_dataset('squad')
114
+ tokenized_dataset = squad_dataset.map(lambda x: tokenizer(x['context']), batched=True)
115
+
116
+ dt = DataLoader(tokenized_dataset['train'], batch_size=bs, num_workers=2, collate_fn=collate)
117
+ lens = []
118
+ for idx, data in tqdm(enumerate(dt)):
119
+ lens += [data['input_ids'].shape[1]]
120
+ if clip is not None and len(lens) >= clip:
121
+ break
122
+ print('Done squad bs =', bs)
123
+ return lens
docker/intel_code/llama13b/Model-References/PyTorch/examples/bucketing/requirements.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ matplotlib
2
+ tqdm
3
+ datasets
4
+ transformers
5
+ pulp
6
+ scipy
7
+ pytest
docker/intel_code/llama13b/Model-References/PyTorch/examples/bucketing/run_demo_bucketing_gaussian.py ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (C) 2023 Habana Labs, Ltd. an Intel Company
2
+
3
+ import itertools
4
+ from plotting import plot_bucket_analysis_results
5
+ from bucket import bucket_analysis, lp_bucket, const_bucket, uniform_bucket, percentile_bucket, lloyd_max_bucketing, brute_force_min_pad_waste
6
+ from datasets_library import generate_random_gaussian
7
+
8
+ shapes = list(itertools.islice(generate_random_gaussian(), 1000))
9
+ results = bucket_analysis(shapes, [("lp_bucket", lp_bucket), ("const_bucket", const_bucket), ("uniform_bucket", uniform_bucket), \
10
+ ("percentile_bucket", percentile_bucket), ("lloyd_max_bucketing", lloyd_max_bucketing), \
11
+ ("brute_force_min_pad_waste", brute_force_min_pad_waste)], [2,3,4,5,6,10,20])
12
+ plot_bucket_analysis_results(results, 'bucket_analysis_bar_gaussian.svg')
13
+
14
+
docker/intel_code/llama13b/Model-References/PyTorch/examples/bucketing/run_demo_squad.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (C) 2023 Habana Labs, Ltd. an Intel Company
2
+
3
+ from datasets_library import squad
4
+ from plotting import plotter
5
+
6
+
7
+ if __name__ == '__main__':
8
+ print("Plotting squad, takes 2-3 mins to run")
9
+ plotter([squad(1), squad(4), squad(16), squad(64), squad(256), squad(512)], 'squad.svg', ['bs='+str(bs) for bs in [1,4,16,64,256,512]])
docker/intel_code/llama13b/Model-References/PyTorch/examples/bucketing/squad.svg ADDED
docker/intel_code/llama13b/Model-References/PyTorch/examples/bucketing/test.py ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (C) 2023 Habana Labs, Ltd. an Intel Company
2
+
3
+ from datasets_library import gaussian, batched_gaussian, batch_by_formula, sample_from_pdf, generate_random_gaussian
4
+ import numpy as np
5
+ np.random.seed(0)
6
+ from bucket import bucket_analysis, lp_bucket, const_bucket, uniform_bucket, percentile_bucket, lloyd_max_bucketing, brute_force_min_pad_waste
7
+ import itertools
8
+
9
+ def test_squad_batching():
10
+ print("Plotting gaussian")
11
+ num_samples = 100000
12
+ bs = 4
13
+ gs = gaussian(num_samples)
14
+ print(sum(gs))
15
+ assert len(gs) == 100000
16
+ assert np.abs(np.mean(gs) - 500) <= 2
17
+ assert np.abs(np.var(gs) - 2486.8457) <= 20
18
+ orig = batched_gaussian(gs, 1, max)
19
+ assert len(orig) == 100000
20
+ assert set(orig) == set(gs)
21
+ max_batch4 = batched_gaussian(gs, bs, max)
22
+ assert len(max_batch4) == 25000
23
+ assert np.mean(max_batch4) > np.mean(gs)
24
+ assert np.var(max_batch4) < np.var(gs)
25
+ min_batch4 = batched_gaussian(gs, bs, min)
26
+ assert len(min_batch4) == 25000
27
+ assert np.mean(min_batch4) < np.mean(gs)
28
+ assert np.var(min_batch4) < np.var(gs)
29
+ max_formula_batch4 = sample_from_pdf(batch_by_formula(gs, bs, 'max'), num_samples)
30
+ assert len(max_formula_batch4) == 100000
31
+ assert np.abs(np.mean(max_formula_batch4) - np.mean(max_batch4)) < 5
32
+ assert np.abs(np.var(max_formula_batch4) - np.var(max_batch4)) < 40
33
+ min_formula_batch4 = sample_from_pdf(batch_by_formula(gs, bs, 'min'), num_samples)
34
+ assert len(min_formula_batch4) == 100000
35
+ assert np.abs(np.mean(min_formula_batch4) - np.mean(min_batch4)) < 5
36
+ assert np.abs(np.var(min_formula_batch4) - np.var(min_batch4)) < 40
37
+
38
+
39
+ def test_bucketing():
40
+ shapes = list(itertools.islice(generate_random_gaussian(), 1000))
41
+ assert sum(shapes) == 498957
42
+ assert len(set(shapes)) == 229
43
+ #("lp_bucket", lp_bucket) # this takes quite long, so skipping its test
44
+ results = bucket_analysis(shapes, [("const_bucket", const_bucket), ("uniform_bucket", uniform_bucket), \
45
+ ("percentile_bucket", percentile_bucket), ("lloyd_max_bucketing", lloyd_max_bucketing), \
46
+ ("brute_force_min_pad_waste", brute_force_min_pad_waste)], [2,20])
47
+ expected = {'const_bucket': {2: {'totwaste': 662000, 'avgwaste': 662.0}, 20: {'totwaste': 662000, 'avgwaste': 662.0}}, \
48
+ 'uniform_bucket': {2: {'totwaste': 579218, 'avgwaste': 579.218}, 20: {'totwaste': 506507, 'avgwaste': 506.507}}, \
49
+ 'percentile_bucket': {2: {'totwaste': 579522, 'avgwaste': 579.522}, 20: {'totwaste': 506122, 'avgwaste': 506.122}}, \
50
+ 'lloyd_max_bucketing': {2: {'totwaste': 594004, 'avgwaste': 594.004}, 20: {'totwaste': 506218, 'avgwaste': 506.218}}, \
51
+ 'brute_force_min_pad_waste': {2: {'totwaste': 562739, 'avgwaste': 562.739,}, 20: {'totwaste': 504726, 'avgwaste': 504.726}}}
52
+ for algo_name in ["const_bucket", "uniform_bucket", "percentile_bucket", "lloyd_max_bucketing", "brute_force_min_pad_waste"]:
53
+ assert algo_name in results
54
+ val = results[algo_name]
55
+ for bkt in [2,20]:
56
+ assert bkt in val
57
+ bkt_result = val[bkt]
58
+ bkt_result.pop('time')
59
+ assert bkt_result == expected[algo_name][bkt]
60
+
61
+
62
+ def test_numsteps():
63
+
64
+ shapes = list(itertools.islice(generate_random_gaussian(), 10000))
65
+ lloyd_max_set_step = lambda step : (lambda shp, num_buckets : lloyd_max_bucketing(shp, num_buckets, step))
66
+
67
+ results = bucket_analysis(shapes, [("lloyd_max_02", lloyd_max_set_step(2)), ("lloyd_max_10", lloyd_max_set_step(10)), ("lloyd_max_20", lloyd_max_set_step(20))], [6, 10])
68
+ expected = {'lloyd_max_02': {6: {'totwaste': 5284440, 'avgwaste': 528.444}, \
69
+ 10: {'totwaste': 5172300, 'avgwaste': 517.23,}}, \
70
+ 'lloyd_max_10': {6: {'totwaste': 5226954, 'avgwaste': 522.6954}, \
71
+ 10: {'totwaste': 5149487, 'avgwaste': 514.9487}}, \
72
+ 'lloyd_max_20': {6: {'totwaste': 5209336, 'avgwaste': 520.9336}, \
73
+ 10: {'totwaste': 5137341, 'avgwaste': 513.7341}}, \
74
+ 'lloyd_max_30': {6: {'totwaste': 5203774, 'avgwaste': 520.3774}, \
75
+ 10: {'totwaste': 5131550, 'avgwaste': 513.155}}}
76
+ expected = {'lloyd_max_02': {6: {'totwaste': 5284440, 'avgwaste': 528.444}, 10: {'totwaste': 5172300, 'avgwaste': 517.23}}, \
77
+ 'lloyd_max_10': {6: {'totwaste': 5226191, 'avgwaste': 522.6191}, 10: {'totwaste': 5147715, 'avgwaste': 514.7715}}, \
78
+ 'lloyd_max_20': {6: {'totwaste': 5209807, 'avgwaste': 520.9807}, 10: {'totwaste': 5135907, 'avgwaste': 513.5907}}}
79
+ for algo_name in ["lloyd_max_02", "lloyd_max_10", "lloyd_max_20"]:
80
+ assert algo_name in results
81
+ val = results[algo_name]
82
+ for bkt in [6,10]:
83
+ assert bkt in val
84
+ bkt_result = val[bkt]
85
+ bkt_result.pop('time')
86
+ #print(algo_name, bkt, bkt_result, expected[algo_name][bkt])
87
+ assert bkt_result == expected[algo_name][bkt]
88
+
docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/dev_mn.yaml ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 1.0e-04
3
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
4
+ params:
5
+ linear_start: 0.00085
6
+ linear_end: 0.0120
7
+ num_timesteps_cond: 1
8
+ log_every_t: 200
9
+ timesteps: 1000
10
+ first_stage_key: "jpg"
11
+ cond_stage_key: "txt"
12
+ image_size: 32
13
+ channels: 4
14
+ cond_stage_trainable: true
15
+ conditioning_key: crossattn
16
+ monitor: val/loss_simple_ema
17
+ scale_factor: 0.18215
18
+
19
+ scheduler_config: # 10000 warmup steps
20
+ target: ldm.lr_scheduler.LambdaLinearScheduler
21
+ params:
22
+ warm_up_steps: [ 10000 ]
23
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
24
+ f_start: [ 1.e-6 ]
25
+ f_max: [ 1. ]
26
+ f_min: [ 1. ]
27
+
28
+ unet_config:
29
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
30
+ params:
31
+ image_size: 32
32
+ in_channels: 4
33
+ out_channels: 4
34
+ model_channels: 32 # 320 # TODO increase
35
+ attention_resolutions: [ ] # is equal to fixed spatial resolution: 32 , 16 , 8
36
+ num_res_blocks: 2
37
+ channel_mult: [ 1, ]
38
+ #num_head_channels: 32
39
+ num_heads: 8
40
+ use_spatial_transformer: True
41
+ transformer_depth: 1
42
+ context_dim: 32
43
+ use_checkpoint: False
44
+
45
+ first_stage_config:
46
+ target: ldm.models.autoencoder.AutoencoderKL
47
+ params:
48
+ embed_dim: 4
49
+ monitor: val/rec_loss
50
+ ckpt_path: "models/first_stage_models/kl-f8/model.ckpt"
51
+ ddconfig:
52
+ double_z: true
53
+ z_channels: 4
54
+ resolution: 256
55
+ in_channels: 3
56
+ out_ch: 3
57
+ ch: 128
58
+ ch_mult:
59
+ - 1
60
+ - 2
61
+ - 4
62
+ - 4
63
+ num_res_blocks: 2
64
+ attn_resolutions: []
65
+ dropout: 0.0
66
+ lossconfig:
67
+ target: torch.nn.Identity
68
+
69
+ cond_stage_config:
70
+ target: ldm.modules.encoders.modules.BERTEmbedder
71
+ params:
72
+ n_embed: 32
73
+ n_layer: 1 #32 # TODO: increase
74
+
75
+
76
+ data:
77
+ target: ldm.data.laion.WebDataModuleFromConfig
78
+ params:
79
+ tar_base: "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/"
80
+ batch_size: 4
81
+ num_workers: 4
82
+ n_nodes: 4
83
+ train:
84
+ shards: '{000000..231339}.tar -'
85
+ shuffle: 10000
86
+ image_key: jpg
87
+ image_transforms:
88
+ - target: torchvision.transforms.Resize
89
+ params:
90
+ size: 256
91
+ interpolation: 3
92
+ - target: torchvision.transforms.RandomCrop
93
+ params:
94
+ size: 256
95
+
96
+ # NOTE use enough shards to avoid empty validation loops in workers
97
+ validation:
98
+ shards: '{231346..231349}.tar -'
99
+ shuffle: 0
100
+ image_key: jpg
101
+ image_transforms:
102
+ - target: torchvision.transforms.Resize
103
+ params:
104
+ size: 256
105
+ interpolation: 3
106
+ - target: torchvision.transforms.CenterCrop
107
+ params:
108
+ size: 256
109
+
110
+
111
+ lightning:
112
+ callbacks:
113
+ image_logger:
114
+ target: main.ImageLogger
115
+ params:
116
+ batch_frequency: 500 # 5000
117
+ max_images: 8
118
+ increase_log_steps: False
119
+ log_first_step: False
120
+
121
+
122
+ trainer:
123
+ #replace_sampler_ddp: False
124
+ benchmark: True
125
+ val_check_interval: 1000 # every 20k training steps
126
+ num_sanity_val_steps: 0
127
+
128
+
docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/dev_mn_dummy.yaml ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 1.0e-04
3
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
4
+ params:
5
+ linear_start: 0.00085
6
+ linear_end: 0.0120
7
+ num_timesteps_cond: 1
8
+ log_every_t: 200
9
+ timesteps: 1000
10
+ first_stage_key: "jpg"
11
+ cond_stage_key: "txt"
12
+ image_size: 32
13
+ channels: 4
14
+ cond_stage_trainable: true
15
+ conditioning_key: crossattn
16
+ monitor: val/loss_simple_ema
17
+ scale_factor: 0.18215
18
+
19
+ scheduler_config: # 10000 warmup steps
20
+ target: ldm.lr_scheduler.LambdaLinearScheduler
21
+ params:
22
+ warm_up_steps: [ 10000 ]
23
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
24
+ f_start: [ 1.e-6 ]
25
+ f_max: [ 1. ]
26
+ f_min: [ 1. ]
27
+
28
+ unet_config:
29
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
30
+ params:
31
+ image_size: 32
32
+ in_channels: 4
33
+ out_channels: 4
34
+ model_channels: 32 # 320 # TODO increase
35
+ attention_resolutions: [ ] # is equal to fixed spatial resolution: 32 , 16 , 8
36
+ num_res_blocks: 2
37
+ channel_mult: [ 1, ]
38
+ #num_head_channels: 32
39
+ num_heads: 8
40
+ use_spatial_transformer: True
41
+ transformer_depth: 1
42
+ context_dim: 32
43
+ use_checkpoint: False
44
+
45
+ first_stage_config:
46
+ target: ldm.models.autoencoder.AutoencoderKL
47
+ params:
48
+ embed_dim: 4
49
+ monitor: val/rec_loss
50
+ ckpt_path: "models/first_stage_models/kl-f8/model.ckpt"
51
+ ddconfig:
52
+ double_z: true
53
+ z_channels: 4
54
+ resolution: 256
55
+ in_channels: 3
56
+ out_ch: 3
57
+ ch: 128
58
+ ch_mult:
59
+ - 1
60
+ - 2
61
+ - 4
62
+ - 4
63
+ num_res_blocks: 2
64
+ attn_resolutions: []
65
+ dropout: 0.0
66
+ lossconfig:
67
+ target: torch.nn.Identity
68
+
69
+ cond_stage_config:
70
+ target: ldm.modules.encoders.modules.BERTEmbedder
71
+ params:
72
+ n_embed: 32
73
+ n_layer: 1 #32 # TODO: increase
74
+
75
+
76
+ data:
77
+ target: main.DataModuleFromConfig
78
+ params:
79
+ batch_size: 4
80
+ num_workers: 4
81
+ wrap: false
82
+ train:
83
+ target: ldm.data.dummy.DummyData
84
+ params:
85
+ length: 20000
86
+ size: [256, 256, 3]
87
+ validation:
88
+ target: ldm.data.dummy.DummyData
89
+ params:
90
+ length: 10000
91
+ size: [256, 256, 3]
92
+
93
+
94
+ lightning:
95
+ callbacks:
96
+ image_logger:
97
+ target: main.ImageLogger
98
+ params:
99
+ batch_frequency: 500 # 5000
100
+ max_images: 8
101
+ increase_log_steps: False
102
+ log_first_step: False
103
+
104
+
105
+ trainer:
106
+ #replace_sampler_ddp: False
107
+ benchmark: True
108
+ val_check_interval: 1000 # every 20k training steps
109
+ num_sanity_val_steps: 0
docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/inpainting/v1-edgeinpainting.yaml ADDED
@@ -0,0 +1,157 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 7.5e-05
3
+ target: ldm.models.diffusion.ddpm.LatentInpaintDiffusion
4
+ params:
5
+ linear_start: 0.00085
6
+ linear_end: 0.0120
7
+ num_timesteps_cond: 1
8
+ log_every_t: 200
9
+ timesteps: 1000
10
+ first_stage_key: "jpg"
11
+ cond_stage_key: "txt"
12
+ image_size: 64
13
+ channels: 4
14
+ cond_stage_trainable: false # Note: different from the one we trained before
15
+ conditioning_key: hybrid # important
16
+ monitor: val/loss_simple_ema
17
+ scale_factor: 0.18215
18
+ ckpt_path: "/fsx/stable-diffusion/stable-diffusion/checkpoints/v1pp/v1pp-flatlined-hr.ckpt"
19
+
20
+ concat_keys:
21
+ - mask
22
+ - masked_image
23
+ - smoothing_strength
24
+
25
+ c_concat_log_start: 1
26
+ c_concat_log_end: 5
27
+
28
+ scheduler_config: # 10000 warmup steps
29
+ target: ldm.lr_scheduler.LambdaLinearScheduler
30
+ params:
31
+ warm_up_steps: [ 2500 ]
32
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
33
+ f_start: [ 1.e-6 ]
34
+ f_max: [ 1. ]
35
+ f_min: [ 1. ]
36
+
37
+ unet_config:
38
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
39
+ params:
40
+ image_size: 32 # unused
41
+ in_channels: 10 # 4 data + 4 downscaled image + 1 mask + 1 smoothing strength
42
+ out_channels: 4
43
+ model_channels: 320
44
+ attention_resolutions: [ 4, 2, 1 ]
45
+ num_res_blocks: 2
46
+ channel_mult: [ 1, 2, 4, 4 ]
47
+ num_heads: 8
48
+ use_spatial_transformer: True
49
+ transformer_depth: 1
50
+ context_dim: 768
51
+ use_checkpoint: True
52
+ legacy: False
53
+
54
+ first_stage_config:
55
+ target: ldm.models.autoencoder.AutoencoderKL
56
+ params:
57
+ embed_dim: 4
58
+ monitor: val/rec_loss
59
+ ddconfig:
60
+ double_z: true
61
+ z_channels: 4
62
+ resolution: 256
63
+ in_channels: 3
64
+ out_ch: 3
65
+ ch: 128
66
+ ch_mult:
67
+ - 1
68
+ - 2
69
+ - 4
70
+ - 4
71
+ num_res_blocks: 2
72
+ attn_resolutions: []
73
+ dropout: 0.0
74
+ lossconfig:
75
+ target: torch.nn.Identity
76
+
77
+ cond_stage_config:
78
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
79
+
80
+
81
+ data:
82
+ target: ldm.data.laion.WebDataModuleFromConfig
83
+ params:
84
+ tar_base: "__improvedaesthetic__"
85
+ batch_size: 2
86
+ num_workers: 4
87
+ multinode: True
88
+ min_size: 512
89
+ max_pwatermark: 0.8
90
+ train:
91
+ shards: '{00000..17279}.tar -'
92
+ shuffle: 10000
93
+ image_key: jpg
94
+ image_transforms:
95
+ - target: torchvision.transforms.Resize
96
+ params:
97
+ size: 512
98
+ interpolation: 3
99
+ - target: torchvision.transforms.RandomCrop
100
+ params:
101
+ size: 512
102
+ postprocess:
103
+ target: ldm.data.laion.AddEdge
104
+ params:
105
+ mode: "512train-large"
106
+
107
+ # NOTE use enough shards to avoid empty validation loops in workers
108
+ validation:
109
+ shards: '{17280..17535}.tar -'
110
+ shuffle: 0
111
+ image_key: jpg
112
+ image_transforms:
113
+ - target: torchvision.transforms.Resize
114
+ params:
115
+ size: 512
116
+ interpolation: 3
117
+ - target: torchvision.transforms.CenterCrop
118
+ params:
119
+ size: 512
120
+ postprocess:
121
+ target: ldm.data.laion.AddEdge
122
+ params:
123
+ mode: "512train-large"
124
+
125
+
126
+ lightning:
127
+ find_unused_parameters: False
128
+
129
+ modelcheckpoint:
130
+ params:
131
+ every_n_train_steps: 2000
132
+
133
+ callbacks:
134
+ image_logger:
135
+ target: main.ImageLogger
136
+ params:
137
+ disabled: False
138
+ batch_frequency: 1000
139
+ max_images: 4
140
+ increase_log_steps: False
141
+ log_first_step: False
142
+ log_images_kwargs:
143
+ use_ema_scope: False
144
+ inpaint: False
145
+ plot_progressive_rows: False
146
+ plot_diffusion_rows: False
147
+ N: 4
148
+ unconditional_guidance_scale: 3.0
149
+ unconditional_guidance_label: [""]
150
+ ddim_steps: 100 # todo check these out for inpainting,
151
+ ddim_eta: 1.0 # todo check these out for inpainting,
152
+
153
+ trainer:
154
+ benchmark: True
155
+ val_check_interval: 5000000 # really sorry
156
+ num_sanity_val_steps: 0
157
+ accumulate_grad_batches: 2
docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/inpainting/v1-finetune-for-inpainting-laion-aesthetic-larger-masks-and-ucfg.yaml ADDED
@@ -0,0 +1,156 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 7.5e-05
3
+ target: ldm.models.diffusion.ddpm.LatentInpaintDiffusion
4
+ params:
5
+ linear_start: 0.00085
6
+ linear_end: 0.0120
7
+ num_timesteps_cond: 1
8
+ log_every_t: 200
9
+ timesteps: 1000
10
+ first_stage_key: "jpg"
11
+ cond_stage_key: "txt"
12
+ image_size: 64
13
+ channels: 4
14
+ cond_stage_trainable: false # Note: different from the one we trained before
15
+ conditioning_key: hybrid # important
16
+ monitor: val/loss_simple_ema
17
+ scale_factor: 0.18215
18
+ ckpt_path: "/fsx/stable-diffusion/stable-diffusion/checkpoints/v1pp/v1pphrflatlined2-pruned.ckpt"
19
+
20
+ ucg_training:
21
+ txt:
22
+ p: 0.1
23
+ val: ""
24
+
25
+ scheduler_config: # 10000 warmup steps
26
+ target: ldm.lr_scheduler.LambdaLinearScheduler
27
+ params:
28
+ warm_up_steps: [ 2500 ] # NOTE for resuming. use 10000 if starting from scratch
29
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
30
+ f_start: [ 1.e-6 ]
31
+ f_max: [ 1. ]
32
+ f_min: [ 1. ]
33
+
34
+ unet_config:
35
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
36
+ params:
37
+ image_size: 32 # unused
38
+ in_channels: 9 # 4 data + 4 downscaled image + 1 mask
39
+ out_channels: 4
40
+ model_channels: 320
41
+ attention_resolutions: [ 4, 2, 1 ]
42
+ num_res_blocks: 2
43
+ channel_mult: [ 1, 2, 4, 4 ]
44
+ num_heads: 8
45
+ use_spatial_transformer: True
46
+ transformer_depth: 1
47
+ context_dim: 768
48
+ use_checkpoint: True
49
+ legacy: False
50
+
51
+ first_stage_config:
52
+ target: ldm.models.autoencoder.AutoencoderKL
53
+ params:
54
+ embed_dim: 4
55
+ monitor: val/rec_loss
56
+ ddconfig:
57
+ double_z: true
58
+ z_channels: 4
59
+ resolution: 256
60
+ in_channels: 3
61
+ out_ch: 3
62
+ ch: 128
63
+ ch_mult:
64
+ - 1
65
+ - 2
66
+ - 4
67
+ - 4
68
+ num_res_blocks: 2
69
+ attn_resolutions: []
70
+ dropout: 0.0
71
+ lossconfig:
72
+ target: torch.nn.Identity
73
+
74
+ cond_stage_config:
75
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
76
+
77
+
78
+ data:
79
+ target: ldm.data.laion.WebDataModuleFromConfig
80
+ params:
81
+ tar_base: "__improvedaesthetic__"
82
+ batch_size: 2
83
+ num_workers: 4
84
+ multinode: True
85
+ min_size: 512
86
+ max_pwatermark: 0.8
87
+ train:
88
+ shards: '{00000..17279}.tar -'
89
+ shuffle: 10000
90
+ image_key: jpg
91
+ image_transforms:
92
+ - target: torchvision.transforms.Resize
93
+ params:
94
+ size: 512
95
+ interpolation: 3
96
+ - target: torchvision.transforms.RandomCrop
97
+ params:
98
+ size: 512
99
+ postprocess:
100
+ target: ldm.data.laion.AddMask
101
+ params:
102
+ mode: "512train-large"
103
+ p_drop: 0.25
104
+
105
+ # NOTE use enough shards to avoid empty validation loops in workers
106
+ validation:
107
+ shards: '{17280..17535}.tar -'
108
+ shuffle: 0
109
+ image_key: jpg
110
+ image_transforms:
111
+ - target: torchvision.transforms.Resize
112
+ params:
113
+ size: 512
114
+ interpolation: 3
115
+ - target: torchvision.transforms.CenterCrop
116
+ params:
117
+ size: 512
118
+ postprocess:
119
+ target: ldm.data.laion.AddMask
120
+ params:
121
+ mode: "512train-large"
122
+ p_drop: 0.25
123
+
124
+
125
+ lightning:
126
+ find_unused_parameters: False
127
+
128
+ modelcheckpoint:
129
+ params:
130
+ every_n_train_steps: 2000
131
+
132
+ callbacks:
133
+ image_logger:
134
+ target: main.ImageLogger
135
+ params:
136
+ disabled: False
137
+ batch_frequency: 1000
138
+ max_images: 4
139
+ increase_log_steps: False
140
+ log_first_step: False
141
+ log_images_kwargs:
142
+ use_ema_scope: False
143
+ inpaint: False
144
+ plot_progressive_rows: False
145
+ plot_diffusion_rows: False
146
+ N: 4
147
+ unconditional_guidance_scale: 3.0
148
+ unconditional_guidance_label: [""]
149
+ ddim_steps: 100 # todo check these out for inpainting,
150
+ ddim_eta: 1.0 # todo check these out for inpainting,
151
+
152
+ trainer:
153
+ benchmark: True
154
+ val_check_interval: 5000000 # really sorry
155
+ num_sanity_val_steps: 0
156
+ accumulate_grad_batches: 2
docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/inpainting/v1-finetune-for-inpainting-laion-aesthetic-larger-masks.yaml ADDED
@@ -0,0 +1,149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 7.5e-05
3
+ target: ldm.models.diffusion.ddpm.LatentInpaintDiffusion
4
+ params:
5
+ linear_start: 0.00085
6
+ linear_end: 0.0120
7
+ num_timesteps_cond: 1
8
+ log_every_t: 200
9
+ timesteps: 1000
10
+ first_stage_key: "jpg"
11
+ cond_stage_key: "txt"
12
+ image_size: 64
13
+ channels: 4
14
+ cond_stage_trainable: false # Note: different from the one we trained before
15
+ conditioning_key: hybrid # important
16
+ monitor: val/loss_simple_ema
17
+ scale_factor: 0.18215
18
+ ckpt_path: "/fsx/stable-diffusion/stable-diffusion/checkpoints/v1pp/v1pp-flatlined-hr.ckpt"
19
+
20
+ scheduler_config: # 10000 warmup steps
21
+ target: ldm.lr_scheduler.LambdaLinearScheduler
22
+ params:
23
+ warm_up_steps: [ 2500 ] # NOTE for resuming. use 10000 if starting from scratch
24
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
25
+ f_start: [ 1.e-6 ]
26
+ f_max: [ 1. ]
27
+ f_min: [ 1. ]
28
+
29
+ unet_config:
30
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
31
+ params:
32
+ image_size: 32 # unused
33
+ in_channels: 9 # 4 data + 4 downscaled image + 1 mask
34
+ out_channels: 4
35
+ model_channels: 320
36
+ attention_resolutions: [ 4, 2, 1 ]
37
+ num_res_blocks: 2
38
+ channel_mult: [ 1, 2, 4, 4 ]
39
+ num_heads: 8
40
+ use_spatial_transformer: True
41
+ transformer_depth: 1
42
+ context_dim: 768
43
+ use_checkpoint: True
44
+ legacy: False
45
+
46
+ first_stage_config:
47
+ target: ldm.models.autoencoder.AutoencoderKL
48
+ params:
49
+ embed_dim: 4
50
+ monitor: val/rec_loss
51
+ ddconfig:
52
+ double_z: true
53
+ z_channels: 4
54
+ resolution: 256
55
+ in_channels: 3
56
+ out_ch: 3
57
+ ch: 128
58
+ ch_mult:
59
+ - 1
60
+ - 2
61
+ - 4
62
+ - 4
63
+ num_res_blocks: 2
64
+ attn_resolutions: []
65
+ dropout: 0.0
66
+ lossconfig:
67
+ target: torch.nn.Identity
68
+
69
+ cond_stage_config:
70
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
71
+
72
+
73
+ data:
74
+ target: ldm.data.laion.WebDataModuleFromConfig
75
+ params:
76
+ tar_base: "__improvedaesthetic__"
77
+ batch_size: 2
78
+ num_workers: 4
79
+ multinode: True
80
+ min_size: 512
81
+ max_pwatermark: 0.8
82
+ train:
83
+ shards: '{00000..17279}.tar -'
84
+ shuffle: 10000
85
+ image_key: jpg
86
+ image_transforms:
87
+ - target: torchvision.transforms.Resize
88
+ params:
89
+ size: 512
90
+ interpolation: 3
91
+ - target: torchvision.transforms.RandomCrop
92
+ params:
93
+ size: 512
94
+ postprocess:
95
+ target: ldm.data.laion.AddMask
96
+ params:
97
+ mode: "512train-large"
98
+
99
+ # NOTE use enough shards to avoid empty validation loops in workers
100
+ validation:
101
+ shards: '{17280..17535}.tar -'
102
+ shuffle: 0
103
+ image_key: jpg
104
+ image_transforms:
105
+ - target: torchvision.transforms.Resize
106
+ params:
107
+ size: 512
108
+ interpolation: 3
109
+ - target: torchvision.transforms.CenterCrop
110
+ params:
111
+ size: 512
112
+ postprocess:
113
+ target: ldm.data.laion.AddMask
114
+ params:
115
+ mode: "512train-large"
116
+
117
+
118
+ lightning:
119
+ find_unused_parameters: False
120
+
121
+ modelcheckpoint:
122
+ params:
123
+ every_n_train_steps: 2000
124
+
125
+ callbacks:
126
+ image_logger:
127
+ target: main.ImageLogger
128
+ params:
129
+ disabled: False
130
+ batch_frequency: 1000
131
+ max_images: 4
132
+ increase_log_steps: False
133
+ log_first_step: False
134
+ log_images_kwargs:
135
+ use_ema_scope: False
136
+ inpaint: False
137
+ plot_progressive_rows: False
138
+ plot_diffusion_rows: False
139
+ N: 4
140
+ unconditional_guidance_scale: 3.0
141
+ unconditional_guidance_label: [""]
142
+ ddim_steps: 100 # todo check these out for inpainting,
143
+ ddim_eta: 1.0 # todo check these out for inpainting,
144
+
145
+ trainer:
146
+ benchmark: True
147
+ val_check_interval: 5000000 # really sorry
148
+ num_sanity_val_steps: 0
149
+ accumulate_grad_batches: 2
docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/inpainting/v1-finetune-for-inpainting-laion-iaesthe.yaml ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 7.5e-05
3
+ target: ldm.models.diffusion.ddpm.LatentInpaintDiffusion
4
+ params:
5
+ linear_start: 0.00085
6
+ linear_end: 0.0120
7
+ num_timesteps_cond: 1
8
+ log_every_t: 200
9
+ timesteps: 1000
10
+ first_stage_key: "jpg"
11
+ cond_stage_key: "txt"
12
+ image_size: 64
13
+ channels: 4
14
+ cond_stage_trainable: false # Note: different from the one we trained before
15
+ conditioning_key: hybrid # important
16
+ monitor: val/loss_simple_ema
17
+ scale_factor: 0.18215
18
+ ckpt_path: "/fsx/stable-diffusion/stable-diffusion/checkpoints2/v1pp/v1pp-flatline-pruned.ckpt"
19
+
20
+ scheduler_config: # 10000 warmup steps
21
+ target: ldm.lr_scheduler.LambdaLinearScheduler
22
+ params:
23
+ warm_up_steps: [ 2500 ] # NOTE for resuming. use 10000 if starting from scratch
24
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
25
+ f_start: [ 1.e-6 ]
26
+ f_max: [ 1. ]
27
+ f_min: [ 1. ]
28
+
29
+ unet_config:
30
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
31
+ params:
32
+ image_size: 32 # unused
33
+ in_channels: 9 # 4 data + 4 downscaled image + 1 mask
34
+ out_channels: 4
35
+ model_channels: 320
36
+ attention_resolutions: [ 4, 2, 1 ]
37
+ num_res_blocks: 2
38
+ channel_mult: [ 1, 2, 4, 4 ]
39
+ num_heads: 8
40
+ use_spatial_transformer: True
41
+ transformer_depth: 1
42
+ context_dim: 768
43
+ use_checkpoint: True
44
+ legacy: False
45
+
46
+ first_stage_config:
47
+ target: ldm.models.autoencoder.AutoencoderKL
48
+ params:
49
+ embed_dim: 4
50
+ monitor: val/rec_loss
51
+ ddconfig:
52
+ double_z: true
53
+ z_channels: 4
54
+ resolution: 256
55
+ in_channels: 3
56
+ out_ch: 3
57
+ ch: 128
58
+ ch_mult:
59
+ - 1
60
+ - 2
61
+ - 4
62
+ - 4
63
+ num_res_blocks: 2
64
+ attn_resolutions: []
65
+ dropout: 0.0
66
+ lossconfig:
67
+ target: torch.nn.Identity
68
+
69
+ cond_stage_config:
70
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
71
+
72
+
73
+ data:
74
+ target: ldm.data.laion.WebDataModuleFromConfig
75
+ params:
76
+ tar_base: "pipe:aws s3 cp s3://s-datasets/laion-high-resolution/"
77
+ batch_size: 4
78
+ num_workers: 4
79
+ multinode: True
80
+ min_size: 512
81
+ train:
82
+ shards: '{00000..17279}.tar -'
83
+ shuffle: 10000
84
+ image_key: jpg
85
+ image_transforms:
86
+ - target: torchvision.transforms.Resize
87
+ params:
88
+ size: 512
89
+ interpolation: 3
90
+ - target: torchvision.transforms.RandomCrop
91
+ params:
92
+ size: 512
93
+ postprocess:
94
+ target: ldm.data.laion.AddMask
95
+
96
+ # NOTE use enough shards to avoid empty validation loops in workers
97
+ validation:
98
+ shards: '{17280..17535}.tar -'
99
+ shuffle: 0
100
+ image_key: jpg
101
+ image_transforms:
102
+ - target: torchvision.transforms.Resize
103
+ params:
104
+ size: 512
105
+ interpolation: 3
106
+ - target: torchvision.transforms.CenterCrop
107
+ params:
108
+ size: 512
109
+ postprocess:
110
+ target: ldm.data.laion.AddMask
111
+
112
+
113
+ lightning:
114
+ find_unused_parameters: False
115
+
116
+ modelcheckpoint:
117
+ params:
118
+ every_n_train_steps: 2000
119
+
120
+ callbacks:
121
+ image_logger:
122
+ target: main.ImageLogger
123
+ params:
124
+ disabled: False
125
+ batch_frequency: 1000
126
+ max_images: 4
127
+ increase_log_steps: False
128
+ log_first_step: False
129
+ log_images_kwargs:
130
+ use_ema_scope: False
131
+ inpaint: False
132
+ plot_progressive_rows: False
133
+ plot_diffusion_rows: False
134
+ N: 4
135
+ unconditional_guidance_scale: 3.0
136
+ unconditional_guidance_label: [""]
137
+ ddim_steps: 100 # todo check these out for inpainting,
138
+ ddim_eta: 1.0 # todo check these out for inpainting,
139
+
140
+ trainer:
141
+ benchmark: True
142
+ val_check_interval: 5000000 # really sorry
143
+ num_sanity_val_steps: 0
144
+ accumulate_grad_batches: 2
docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-1p4B-multinode-clip-encoder-high-res-512.yaml ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 1.0e-04
3
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
4
+ params:
5
+ linear_start: 0.00085
6
+ linear_end: 0.0120
7
+ num_timesteps_cond: 1
8
+ log_every_t: 200
9
+ timesteps: 1000
10
+ first_stage_key: "jpg"
11
+ cond_stage_key: "txt"
12
+ image_size: 64
13
+ channels: 4
14
+ cond_stage_trainable: false # Note: different from the one we trained before
15
+ conditioning_key: crossattn
16
+ monitor: val/loss_simple_ema
17
+ scale_factor: 0.18215
18
+
19
+ scheduler_config: # 10000 warmup steps
20
+ target: ldm.lr_scheduler.LambdaLinearScheduler
21
+ params:
22
+ warm_up_steps: [ 1 ] # NOTE for resuming. use 10000 if starting from scratch
23
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
24
+ f_start: [ 1.e-6 ]
25
+ f_max: [ 1. ]
26
+ f_min: [ 1. ]
27
+
28
+ unet_config:
29
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
30
+ params:
31
+ image_size: 32 # unused
32
+ in_channels: 4
33
+ out_channels: 4
34
+ model_channels: 320
35
+ attention_resolutions: [ 4, 2, 1 ]
36
+ num_res_blocks: 2
37
+ channel_mult: [ 1, 2, 4, 4 ]
38
+ num_heads: 8
39
+ use_spatial_transformer: True
40
+ transformer_depth: 1
41
+ context_dim: 768
42
+ use_checkpoint: True
43
+ legacy: False
44
+
45
+ first_stage_config:
46
+ target: ldm.models.autoencoder.AutoencoderKL
47
+ params:
48
+ embed_dim: 4
49
+ monitor: val/rec_loss
50
+ ddconfig:
51
+ double_z: true
52
+ z_channels: 4
53
+ resolution: 256
54
+ in_channels: 3
55
+ out_ch: 3
56
+ ch: 128
57
+ ch_mult:
58
+ - 1
59
+ - 2
60
+ - 4
61
+ - 4
62
+ num_res_blocks: 2
63
+ attn_resolutions: []
64
+ dropout: 0.0
65
+ lossconfig:
66
+ target: torch.nn.Identity
67
+
68
+ cond_stage_config:
69
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
70
+
71
+
72
+ data:
73
+ target: ldm.data.laion.WebDataModuleFromConfig
74
+ params:
75
+ tar_base: "pipe:aws s3 cp s3://s-datasets/laion-high-resolution/"
76
+ batch_size: 4
77
+ num_workers: 4
78
+ multinode: True
79
+ train:
80
+ shards: '{00000..17279}.tar -'
81
+ shuffle: 10000
82
+ image_key: jpg
83
+ image_transforms:
84
+ - target: torchvision.transforms.Resize
85
+ params:
86
+ size: 512
87
+ interpolation: 3
88
+ - target: torchvision.transforms.RandomCrop
89
+ params:
90
+ size: 512
91
+
92
+ # NOTE use enough shards to avoid empty validation loops in workers
93
+ validation:
94
+ shards: '{17280..17535}.tar -'
95
+ shuffle: 0
96
+ image_key: jpg
97
+ image_transforms:
98
+ - target: torchvision.transforms.Resize
99
+ params:
100
+ size: 512
101
+ interpolation: 3
102
+ - target: torchvision.transforms.CenterCrop
103
+ params:
104
+ size: 512
105
+
106
+
107
+ lightning:
108
+ find_unused_parameters: False
109
+
110
+ modelcheckpoint:
111
+ params:
112
+ every_n_train_steps: 5000
113
+
114
+ callbacks:
115
+ image_logger:
116
+ target: main.ImageLogger
117
+ params:
118
+ batch_frequency: 5000
119
+ max_images: 4
120
+ increase_log_steps: False
121
+ log_first_step: False
122
+ log_images_kwargs:
123
+ use_ema_scope: False
124
+ inpaint: False
125
+ plot_progressive_rows: False
126
+ plot_diffusion_rows: False
127
+ N: 4
128
+ unconditional_guidance_scale: 3.0
129
+ unconditional_guidance_label: [""]
130
+
131
+ trainer:
132
+ benchmark: True
133
+ val_check_interval: 5000000 # really sorry
134
+ num_sanity_val_steps: 0
135
+ accumulate_grad_batches: 2
docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-1p4B-multinode-clip-encoder.yaml ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 1.0e-04
3
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
4
+ params:
5
+ linear_start: 0.00085
6
+ linear_end: 0.0120
7
+ num_timesteps_cond: 1
8
+ log_every_t: 200
9
+ timesteps: 1000
10
+ first_stage_key: "jpg"
11
+ cond_stage_key: "txt"
12
+ image_size: 32
13
+ channels: 4
14
+ cond_stage_trainable: false # Note: different from the one we trained before
15
+ conditioning_key: crossattn
16
+ monitor: val/loss_simple_ema
17
+ scale_factor: 0.18215
18
+
19
+ scheduler_config: # 10000 warmup steps
20
+ target: ldm.lr_scheduler.LambdaLinearScheduler
21
+ params:
22
+ warm_up_steps: [ 10000 ]
23
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
24
+ f_start: [ 1.e-6 ]
25
+ f_max: [ 1. ]
26
+ f_min: [ 1. ]
27
+
28
+ unet_config:
29
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
30
+ params:
31
+ image_size: 32
32
+ in_channels: 4
33
+ out_channels: 4
34
+ model_channels: 320
35
+ attention_resolutions: [ 4, 2, 1 ]
36
+ num_res_blocks: 2
37
+ channel_mult: [ 1, 2, 4, 4 ]
38
+ num_heads: 8
39
+ use_spatial_transformer: True
40
+ transformer_depth: 1
41
+ context_dim: 768
42
+ use_checkpoint: True
43
+ legacy: False
44
+
45
+ first_stage_config:
46
+ target: ldm.models.autoencoder.AutoencoderKL
47
+ params:
48
+ embed_dim: 4
49
+ monitor: val/rec_loss
50
+ ckpt_path: "models/first_stage_models/kl-f8/model.ckpt"
51
+ ddconfig:
52
+ double_z: true
53
+ z_channels: 4
54
+ resolution: 256
55
+ in_channels: 3
56
+ out_ch: 3
57
+ ch: 128
58
+ ch_mult:
59
+ - 1
60
+ - 2
61
+ - 4
62
+ - 4
63
+ num_res_blocks: 2
64
+ attn_resolutions: []
65
+ dropout: 0.0
66
+ lossconfig:
67
+ target: torch.nn.Identity
68
+
69
+ cond_stage_config:
70
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
71
+
72
+
73
+ data:
74
+ target: ldm.data.laion.WebDataModuleFromConfig
75
+ params:
76
+ tar_base: "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/"
77
+ batch_size: 50
78
+ num_workers: 4
79
+ multinode: True
80
+ train:
81
+ shards: '{000000..231317}.tar -'
82
+ shuffle: 10000
83
+ image_key: jpg
84
+ image_transforms:
85
+ - target: torchvision.transforms.Resize
86
+ params:
87
+ size: 256
88
+ interpolation: 3
89
+ - target: torchvision.transforms.RandomCrop
90
+ params:
91
+ size: 256
92
+
93
+ # NOTE use enough shards to avoid empty validation loops in workers
94
+ validation:
95
+ shards: '{231318..231349}.tar -'
96
+ shuffle: 0
97
+ image_key: jpg
98
+ image_transforms:
99
+ - target: torchvision.transforms.Resize
100
+ params:
101
+ size: 256
102
+ interpolation: 3
103
+ - target: torchvision.transforms.CenterCrop
104
+ params:
105
+ size: 256
106
+
107
+
108
+ lightning:
109
+ callbacks:
110
+ image_logger:
111
+ target: main.ImageLogger
112
+ params:
113
+ batch_frequency: 5000
114
+ max_images: 4
115
+ increase_log_steps: False
116
+ log_first_step: False
117
+ log_images_kwargs:
118
+ use_ema_scope: False
119
+ inpaint: False
120
+ plot_progressive_rows: False
121
+ plot_diffusion_rows: False
122
+ N: 4
123
+ unconditional_guidance_scale: 3.0
124
+ unconditional_guidance_label: [""]
125
+
126
+ trainer:
127
+ #replace_sampler_ddp: False
128
+ benchmark: True
129
+ val_check_interval: 5000000 # really sorry
130
+ num_sanity_val_steps: 0
131
+ accumulate_grad_batches: 2
docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-1p4B-multinode.yaml ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 1.0e-04
3
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
4
+ params:
5
+ linear_start: 0.00085
6
+ linear_end: 0.0120
7
+ num_timesteps_cond: 1
8
+ log_every_t: 200
9
+ timesteps: 1000
10
+ first_stage_key: "jpg"
11
+ cond_stage_key: "txt"
12
+ image_size: 32
13
+ channels: 4
14
+ cond_stage_trainable: true
15
+ conditioning_key: crossattn
16
+ monitor: val/loss_simple_ema
17
+ scale_factor: 0.18215
18
+
19
+ scheduler_config: # 10000 warmup steps
20
+ target: ldm.lr_scheduler.LambdaLinearScheduler
21
+ params:
22
+ warm_up_steps: [ 10000 ]
23
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
24
+ f_start: [ 1.e-6 ]
25
+ f_max: [ 1. ]
26
+ f_min: [ 1. ]
27
+
28
+ unet_config:
29
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
30
+ params:
31
+ image_size: 32
32
+ in_channels: 4
33
+ out_channels: 4
34
+ model_channels: 320
35
+ attention_resolutions: [ 4, 2, 1 ]
36
+ num_res_blocks: 2
37
+ channel_mult: [ 1, 2, 4, 4 ]
38
+ num_heads: 8
39
+ use_spatial_transformer: True
40
+ transformer_depth: 1
41
+ context_dim: 1280
42
+ use_checkpoint: True
43
+ legacy: False
44
+
45
+ first_stage_config:
46
+ target: ldm.models.autoencoder.AutoencoderKL
47
+ params:
48
+ embed_dim: 4
49
+ monitor: val/rec_loss
50
+ ckpt_path: "models/first_stage_models/kl-f8/model.ckpt"
51
+ ddconfig:
52
+ double_z: true
53
+ z_channels: 4
54
+ resolution: 256
55
+ in_channels: 3
56
+ out_ch: 3
57
+ ch: 128
58
+ ch_mult:
59
+ - 1
60
+ - 2
61
+ - 4
62
+ - 4
63
+ num_res_blocks: 2
64
+ attn_resolutions: []
65
+ dropout: 0.0
66
+ lossconfig:
67
+ target: torch.nn.Identity
68
+
69
+ cond_stage_config:
70
+ target: ldm.modules.encoders.modules.BERTEmbedder
71
+ params:
72
+ n_embed: 1280
73
+ n_layer: 32
74
+
75
+
76
+ data:
77
+ target: ldm.data.laion.WebDataModuleFromConfig
78
+ params:
79
+ tar_base: "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/"
80
+ batch_size: 12
81
+ num_workers: 4
82
+ train:
83
+ shards: '{000000..231317}.tar -'
84
+ shuffle: 10000
85
+ image_key: jpg
86
+ image_transforms:
87
+ - target: torchvision.transforms.Resize
88
+ params:
89
+ size: 256
90
+ interpolation: 3
91
+ - target: torchvision.transforms.RandomCrop
92
+ params:
93
+ size: 256
94
+
95
+ # NOTE use enough shards to avoid empty validation loops in workers
96
+ validation:
97
+ shards: '{231318..231349}.tar -'
98
+ shuffle: 0
99
+ image_key: jpg
100
+ image_transforms:
101
+ - target: torchvision.transforms.Resize
102
+ params:
103
+ size: 256
104
+ interpolation: 3
105
+ - target: torchvision.transforms.CenterCrop
106
+ params:
107
+ size: 256
108
+
109
+
110
+ lightning:
111
+ callbacks:
112
+ image_logger:
113
+ target: main.ImageLogger
114
+ params:
115
+ batch_frequency: 5000
116
+ max_images: 8
117
+ increase_log_steps: False
118
+ log_first_step: False
119
+
120
+
121
+ trainer:
122
+ #replace_sampler_ddp: False
123
+ benchmark: True
124
+ val_check_interval: 50000
125
+ num_sanity_val_steps: 0
126
+
127
+
128
+
docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-clip-encoder-dev.yaml ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 1.0e-04
3
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
4
+ params:
5
+ linear_start: 0.00085
6
+ linear_end: 0.0120
7
+ num_timesteps_cond: 1
8
+ log_every_t: 200
9
+ timesteps: 1000
10
+ first_stage_key: "jpg"
11
+ cond_stage_key: "txt"
12
+ image_size: 32
13
+ channels: 4
14
+ cond_stage_trainable: false # Note: different from the one we trained before
15
+ conditioning_key: crossattn
16
+ monitor: val/loss_simple_ema
17
+ scale_factor: 0.18215
18
+
19
+ scheduler_config: # 10000 warmup steps
20
+ target: ldm.lr_scheduler.LambdaLinearScheduler
21
+ params:
22
+ warm_up_steps: [ 10000 ]
23
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
24
+ f_start: [ 1.e-6 ]
25
+ f_max: [ 1. ]
26
+ f_min: [ 1. ]
27
+
28
+ unet_config:
29
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
30
+ params:
31
+ image_size: 32
32
+ in_channels: 4
33
+ out_channels: 4
34
+ model_channels: 320
35
+ attention_resolutions: [ 4, 2, 1 ]
36
+ num_res_blocks: 2
37
+ channel_mult: [ 1, 2, 4, 4 ]
38
+ num_heads: 8
39
+ use_spatial_transformer: True
40
+ transformer_depth: 1
41
+ context_dim: 768
42
+ use_checkpoint: True
43
+ legacy: False
44
+
45
+ first_stage_config:
46
+ target: ldm.models.autoencoder.AutoencoderKL
47
+ params:
48
+ embed_dim: 4
49
+ monitor: val/rec_loss
50
+ ckpt_path: "models/first_stage_models/kl-f8/model.ckpt"
51
+ ddconfig:
52
+ double_z: true
53
+ z_channels: 4
54
+ resolution: 256
55
+ in_channels: 3
56
+ out_ch: 3
57
+ ch: 128
58
+ ch_mult:
59
+ - 1
60
+ - 2
61
+ - 4
62
+ - 4
63
+ num_res_blocks: 2
64
+ attn_resolutions: []
65
+ dropout: 0.0
66
+ lossconfig:
67
+ target: torch.nn.Identity
68
+
69
+ cond_stage_config:
70
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
71
+
72
+
73
+ data:
74
+ target: ldm.data.laion.WebDataModuleFromConfig
75
+ params:
76
+ tar_base: "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/"
77
+ batch_size: 56
78
+ num_workers: 4
79
+ multinode: True
80
+ train:
81
+ shards: '{000000..231317}.tar -'
82
+ shuffle: 10000
83
+ image_key: jpg
84
+ image_transforms:
85
+ - target: torchvision.transforms.Resize
86
+ params:
87
+ size: 256
88
+ interpolation: 3
89
+ - target: torchvision.transforms.RandomCrop
90
+ params:
91
+ size: 256
92
+
93
+ # NOTE use enough shards to avoid empty validation loops in workers
94
+ validation:
95
+ shards: '{231318..231349}.tar -'
96
+ shuffle: 0
97
+ image_key: jpg
98
+ image_transforms:
99
+ - target: torchvision.transforms.Resize
100
+ params:
101
+ size: 256
102
+ interpolation: 3
103
+ - target: torchvision.transforms.CenterCrop
104
+ params:
105
+ size: 256
106
+
107
+
108
+ lightning:
109
+ callbacks:
110
+ image_logger:
111
+ target: main.ImageLogger
112
+ params:
113
+ batch_frequency: 5000
114
+ max_images: 8
115
+ increase_log_steps: False
116
+ log_first_step: False
117
+
118
+
119
+ trainer:
120
+ #replace_sampler_ddp: False
121
+ benchmark: True
122
+ val_check_interval: 50000
123
+ num_sanity_val_steps: 0
124
+ accumulate_grad_batches: 2
125
+
126
+
127
+
docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-ldm-unfrozen-dev.yaml ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 1.0e-04
3
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
4
+ params:
5
+ linear_start: 0.00085
6
+ linear_end: 0.0120
7
+ num_timesteps_cond: 1
8
+ log_every_t: 200
9
+ timesteps: 1000
10
+ first_stage_key: "jpg"
11
+ cond_stage_key: "txt"
12
+ image_size: 32
13
+ channels: 4
14
+ cond_stage_trainable: true
15
+ conditioning_key: crossattn
16
+ monitor: val/loss_simple_ema
17
+ scale_factor: 0.18215
18
+
19
+ scheduler_config: # 10000 warmup steps
20
+ target: ldm.lr_scheduler.LambdaLinearScheduler
21
+ params:
22
+ warm_up_steps: [ 10000 ]
23
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
24
+ f_start: [ 1.e-6 ]
25
+ f_max: [ 1. ]
26
+ f_min: [ 1. ]
27
+
28
+ unet_config:
29
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
30
+ params:
31
+ image_size: 32
32
+ in_channels: 4
33
+ out_channels: 4
34
+ model_channels: 320
35
+ attention_resolutions: [ 4, 2, 1 ]
36
+ num_res_blocks: 2
37
+ channel_mult: [ 1, 2, 4, 4 ]
38
+ num_heads: 8
39
+ use_spatial_transformer: True
40
+ transformer_depth: 1
41
+ context_dim: 1280
42
+ use_checkpoint: True
43
+ legacy: False
44
+
45
+ first_stage_config:
46
+ target: ldm.models.autoencoder.AutoencoderKL
47
+ params:
48
+ embed_dim: 4
49
+ monitor: val/rec_loss
50
+ ckpt_path: "models/first_stage_models/kl-f8/model.ckpt"
51
+ ddconfig:
52
+ double_z: true
53
+ z_channels: 4
54
+ resolution: 256
55
+ in_channels: 3
56
+ out_ch: 3
57
+ ch: 128
58
+ ch_mult:
59
+ - 1
60
+ - 2
61
+ - 4
62
+ - 4
63
+ num_res_blocks: 2
64
+ attn_resolutions: []
65
+ dropout: 0.0
66
+ lossconfig:
67
+ target: torch.nn.Identity
68
+
69
+ cond_stage_config:
70
+ target: ldm.modules.encoders.modules.BERTEmbedder
71
+ params:
72
+ n_embed: 1280
73
+ n_layer: 32
74
+
75
+
76
+ data:
77
+ target: ldm.data.laion.WebDataModuleFromConfig
78
+ params:
79
+ tar_base: "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/"
80
+ batch_size: 12
81
+ num_workers: 4
82
+ multinode: False
83
+ train:
84
+ shards: '{000000..231317}.tar -'
85
+ shuffle: 10000
86
+ image_key: jpg
87
+ image_transforms:
88
+ - target: torchvision.transforms.Resize
89
+ params:
90
+ size: 256
91
+ interpolation: 3
92
+ - target: torchvision.transforms.RandomCrop
93
+ params:
94
+ size: 256
95
+
96
+ # NOTE use enough shards to avoid empty validation loops in workers
97
+ validation:
98
+ shards: '{231318..231349}.tar -'
99
+ shuffle: 0
100
+ image_key: jpg
101
+ image_transforms:
102
+ - target: torchvision.transforms.Resize
103
+ params:
104
+ size: 256
105
+ interpolation: 3
106
+ - target: torchvision.transforms.CenterCrop
107
+ params:
108
+ size: 256
109
+
110
+
111
+ lightning:
112
+ callbacks:
113
+ image_logger:
114
+ target: main.ImageLogger
115
+ params:
116
+ batch_frequency: 5000
117
+ max_images: 8
118
+ increase_log_steps: False
119
+ log_first_step: False
120
+
121
+
122
+ trainer:
123
+ #replace_sampler_ddp: False
124
+ benchmark: True
125
+ val_check_interval: 50000
126
+ num_sanity_val_steps: 0
127
+
128
+
129
+
docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-ldm-vae-f8.yaml ADDED
@@ -0,0 +1,130 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 1.0e-04 # TODO: run with scale_lr False
3
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
4
+ params:
5
+ linear_start: 0.00085
6
+ linear_end: 0.0120
7
+ num_timesteps_cond: 1
8
+ log_every_t: 200
9
+ timesteps: 1000
10
+ first_stage_key: "jpg"
11
+ cond_stage_key: "txt"
12
+ image_size: 32
13
+ channels: 4
14
+ cond_stage_trainable: true
15
+ conditioning_key: crossattn
16
+ monitor: val/loss_simple_ema
17
+ scale_factor: 0.18215
18
+
19
+ scheduler_config: # 10000 warmup steps
20
+ target: ldm.lr_scheduler.LambdaLinearScheduler
21
+ params:
22
+ warm_up_steps: [ 10000 ]
23
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
24
+ f_start: [ 1.e-6 ]
25
+ f_max: [ 1. ]
26
+ f_min: [ 1. ]
27
+
28
+ unet_config:
29
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
30
+ params:
31
+ image_size: 32
32
+ in_channels: 4
33
+ out_channels: 4
34
+ model_channels: 128 # 320 # TODO increase
35
+ attention_resolutions: [ 4, 2, 1 ] # is equal to fixed spatial resolution: 32 , 16 , 8
36
+ num_res_blocks: 2
37
+ channel_mult: [ 1,2,4,4 ]
38
+ #num_head_channels: 32
39
+ num_heads: 8
40
+ use_spatial_transformer: True
41
+ transformer_depth: 1
42
+ context_dim: 1280
43
+ use_checkpoint: True
44
+
45
+ first_stage_config:
46
+ target: ldm.models.autoencoder.AutoencoderKL
47
+ params:
48
+ embed_dim: 4
49
+ monitor: val/rec_loss
50
+ ckpt_path: "/home/robin/projects/latent-diffusion/models/first_stage_models/kl-f8/model.ckpt"
51
+ ddconfig:
52
+ double_z: true
53
+ z_channels: 4
54
+ resolution: 256
55
+ in_channels: 3
56
+ out_ch: 3
57
+ ch: 128
58
+ ch_mult:
59
+ - 1
60
+ - 2
61
+ - 4
62
+ - 4
63
+ num_res_blocks: 2
64
+ attn_resolutions: []
65
+ dropout: 0.0
66
+ lossconfig:
67
+ target: torch.nn.Identity
68
+
69
+ cond_stage_config:
70
+ target: ldm.modules.encoders.modules.BERTEmbedder
71
+ params:
72
+ n_embed: 1280
73
+ n_layer: 3 #32 # TODO: increase
74
+
75
+
76
+ data:
77
+ target: ldm.data.laion.WebDataModuleFromConfig
78
+ params:
79
+ tar_base: "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/"
80
+ batch_size: 60
81
+ num_workers: 4
82
+ n_nodes: 2 # TODO: runs with two gpus
83
+ train:
84
+ shards: '{000000..000010}.tar -' # TODO: wild guess, change
85
+ image_key: jpg
86
+ image_transforms:
87
+ - target: torchvision.transforms.Resize
88
+ params:
89
+ size: 512
90
+ interpolation: 3
91
+ - target: torchvision.transforms.RandomCrop
92
+ params:
93
+ size: 512
94
+
95
+ shuffle: 5000
96
+ n_examples: 16519100 # TODO: find out
97
+ validation:
98
+ shards: '{000011..000012}.tar -' # TODO: wild guess, change
99
+ image_key: jpg
100
+ image_transforms:
101
+ - target: torchvision.transforms.Resize
102
+ params:
103
+ size: 512
104
+ interpolation: 3
105
+ - target: torchvision.transforms.CenterCrop
106
+ params:
107
+ size: 512
108
+
109
+ shuffle: 0
110
+ n_examples: 60000 # TODO: find out
111
+ val_num_workers: 2
112
+
113
+
114
+
115
+ lightning:
116
+ callbacks:
117
+ image_logger:
118
+ target: main.ImageLogger
119
+ params:
120
+ batch_frequency: 5000 # 5000
121
+ max_images: 8
122
+ increase_log_steps: False
123
+ log_first_step: True
124
+
125
+
126
+ trainer:
127
+ replace_sampler_ddp: False
128
+ benchmark: True
129
+ val_check_interval: 20000 # every 20k training steps
130
+ num_sanity_val_steps: 0
docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-multinode-clip-encoder-f16-1024-laion-hr.yaml ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 1.0e-04
3
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
4
+ params:
5
+ linear_start: 0.001
6
+ linear_end: 0.015
7
+ num_timesteps_cond: 1
8
+ log_every_t: 200
9
+ timesteps: 1000
10
+ first_stage_key: "jpg"
11
+ cond_stage_key: "txt"
12
+ image_size: 64
13
+ channels: 16
14
+ cond_stage_trainable: false # Note: different from the one we trained before
15
+ conditioning_key: crossattn
16
+ monitor: val/loss_simple_ema
17
+ scale_factor: 0.22765929 # magic number
18
+
19
+ #ckpt_path: "/home/mchorse/stable-diffusion-ckpts/768f16-2022-06-23-pruned.ckpt"
20
+
21
+ #scheduler_config: # 10000 warmup steps
22
+ # target: ldm.lr_scheduler.LambdaLinearScheduler
23
+ # params:
24
+ # warm_up_steps: [ 10000 ]
25
+ # cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
26
+ # f_start: [ 1.e-6 ]
27
+ # f_max: [ 1. ]
28
+ # f_min: [ 1. ]
29
+
30
+ unet_config:
31
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
32
+ params:
33
+ image_size: 64 # not really needed
34
+ in_channels: 16
35
+ out_channels: 16
36
+ model_channels: 320
37
+ attention_resolutions: [ 4, 2, 1 ]
38
+ num_res_blocks: 2
39
+ channel_mult: [ 1, 2, 4, 4 ]
40
+ num_heads: 8
41
+ use_spatial_transformer: True
42
+ transformer_depth: 1
43
+ context_dim: 768
44
+ use_checkpoint: True
45
+ legacy: False
46
+
47
+ first_stage_config:
48
+ target: ldm.models.autoencoder.AutoencoderKL
49
+ params:
50
+ embed_dim: 16
51
+ monitor: val/rec_loss
52
+ ddconfig:
53
+ double_z: True
54
+ z_channels: 16
55
+ resolution: 256
56
+ in_channels: 3
57
+ out_ch: 3
58
+ ch: 128
59
+ ch_mult: [ 1,1,2,2,4 ] # num_down = len(ch_mult)-1
60
+ num_res_blocks: 2
61
+ attn_resolutions: [ 16 ]
62
+ dropout: 0.0
63
+ lossconfig:
64
+ target: torch.nn.Identity
65
+
66
+ cond_stage_config:
67
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
68
+
69
+
70
+ data:
71
+ target: ldm.data.laion.WebDataModuleFromConfig
72
+ params:
73
+ tar_base: "pipe:aws s3 cp s3://s-datasets/laion-high-resolution/"
74
+ batch_size: 3
75
+ num_workers: 4
76
+ multinode: True
77
+ train:
78
+ shards: '{00000..17279}.tar -'
79
+ shuffle: 10000
80
+ image_key: jpg
81
+ image_transforms:
82
+ - target: torchvision.transforms.Resize
83
+ params:
84
+ size: 1024
85
+ interpolation: 3
86
+ - target: torchvision.transforms.RandomCrop
87
+ params:
88
+ size: 1024
89
+
90
+ # NOTE use enough shards to avoid empty validation loops in workers
91
+ validation:
92
+ shards: '{17280..17535}.tar -'
93
+ shuffle: 0
94
+ image_key: jpg
95
+ image_transforms:
96
+ - target: torchvision.transforms.Resize
97
+ params:
98
+ size: 1024
99
+ interpolation: 3
100
+ - target: torchvision.transforms.CenterCrop
101
+ params:
102
+ size: 1024
103
+
104
+
105
+ lightning:
106
+ find_unused_parameters: False
107
+
108
+ modelcheckpoint:
109
+ params:
110
+ every_n_train_steps: 2000
111
+
112
+ callbacks:
113
+ image_logger:
114
+ target: main.ImageLogger
115
+ params:
116
+ batch_frequency: 2000
117
+ max_images: 2
118
+ increase_log_steps: False
119
+ log_first_step: False
120
+ log_images_kwargs:
121
+ use_ema_scope: False
122
+ inpaint: False
123
+ plot_progressive_rows: False
124
+ plot_diffusion_rows: False
125
+ N: 2
126
+ unconditional_guidance_scale: 5.0
127
+ unconditional_guidance_label: [""]
128
+
129
+ trainer:
130
+ benchmark: True
131
+ val_check_interval: 5000000
132
+ num_sanity_val_steps: 0
133
+ accumulate_grad_batches: 4
docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-multinode-clip-encoder-f16-256-pretraining.yaml ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 1.0e-04
3
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
4
+ params:
5
+ linear_start: 0.001
6
+ linear_end: 0.015
7
+ num_timesteps_cond: 1
8
+ log_every_t: 200
9
+ timesteps: 1000
10
+ first_stage_key: "jpg"
11
+ cond_stage_key: "txt"
12
+ image_size: 16
13
+ channels: 16
14
+ cond_stage_trainable: false # Note: different from the one we trained before
15
+ conditioning_key: crossattn
16
+ monitor: val/loss_simple_ema
17
+ scale_factor: 0.22765929 # magic number
18
+
19
+ scheduler_config: # 10000 warmup steps
20
+ target: ldm.lr_scheduler.LambdaLinearScheduler
21
+ params:
22
+ warm_up_steps: [ 10000 ]
23
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
24
+ f_start: [ 1.e-6 ]
25
+ f_max: [ 1. ]
26
+ f_min: [ 1. ]
27
+
28
+ unet_config:
29
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
30
+ params:
31
+ image_size: 16 # not really needed
32
+ in_channels: 16
33
+ out_channels: 16
34
+ model_channels: 320 # TODO: scale model here
35
+ attention_resolutions: [ 4, 2, 1 ]
36
+ num_res_blocks: 2
37
+ channel_mult: [ 1, 2, 4, 4 ]
38
+ num_heads: 8
39
+ use_spatial_transformer: True
40
+ transformer_depth: 1
41
+ context_dim: 768
42
+ use_checkpoint: True
43
+ legacy: False
44
+
45
+ first_stage_config:
46
+ target: ldm.models.autoencoder.AutoencoderKL
47
+ params:
48
+ embed_dim: 16
49
+ monitor: val/rec_loss
50
+ ckpt_path: "models/first_stage_models/kl-f16/model.ckpt"
51
+ ddconfig:
52
+ double_z: True
53
+ z_channels: 16
54
+ resolution: 256
55
+ in_channels: 3
56
+ out_ch: 3
57
+ ch: 128
58
+ ch_mult: [ 1,1,2,2,4 ] # num_down = len(ch_mult)-1
59
+ num_res_blocks: 2
60
+ attn_resolutions: [ 16 ]
61
+ dropout: 0.0
62
+ lossconfig:
63
+ target: torch.nn.Identity
64
+
65
+ cond_stage_config:
66
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
67
+
68
+
69
+ data:
70
+ target: ldm.data.laion.WebDataModuleFromConfig
71
+ params:
72
+ tar_base: "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/"
73
+ batch_size: 55
74
+ num_workers: 4
75
+ multinode: True
76
+ min_size: 256 # TODO: experiment. Note: for 2B, images are stored at max 384 resolution
77
+ train:
78
+ shards: '{000000..231317}.tar -'
79
+ shuffle: 10000
80
+ image_key: jpg
81
+ image_transforms:
82
+ - target: torchvision.transforms.Resize
83
+ params:
84
+ size: 256
85
+ interpolation: 3
86
+ - target: torchvision.transforms.RandomCrop
87
+ params:
88
+ size: 256
89
+
90
+ # NOTE use enough shards to avoid empty validation loops in workers
91
+ validation:
92
+ shards: '{231318..231349}.tar -'
93
+ shuffle: 0
94
+ image_key: jpg
95
+ image_transforms:
96
+ - target: torchvision.transforms.Resize
97
+ params:
98
+ size: 256
99
+ interpolation: 3
100
+ - target: torchvision.transforms.CenterCrop
101
+ params:
102
+ size: 256
103
+
104
+
105
+ lightning:
106
+ callbacks:
107
+ image_logger:
108
+ target: main.ImageLogger
109
+ params:
110
+ batch_frequency: 5000
111
+ max_images: 4
112
+ increase_log_steps: False
113
+ log_first_step: False
114
+ log_images_kwargs:
115
+ use_ema_scope: False
116
+ inpaint: False
117
+ plot_progressive_rows: False
118
+ plot_diffusion_rows: False
119
+ N: 4
120
+ unconditional_guidance_scale: 3.0
121
+ unconditional_guidance_label: [""]
122
+
123
+ trainer:
124
+ benchmark: True
125
+ val_check_interval: 5000000 # really sorry
126
+ num_sanity_val_steps: 0
127
+ accumulate_grad_batches: 2
docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-multinode-clip-encoder-f16-768-laion-hr-inference.yaml ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 1.0e-04
3
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
4
+ params:
5
+ linear_start: 0.001
6
+ linear_end: 0.015
7
+ num_timesteps_cond: 1
8
+ log_every_t: 200
9
+ timesteps: 1000
10
+ first_stage_key: "jpg"
11
+ cond_stage_key: "txt"
12
+ image_size: 48
13
+ channels: 16
14
+ cond_stage_trainable: false
15
+ conditioning_key: crossattn
16
+ monitor: val/loss_simple_ema
17
+ scale_factor: 0.22765929 # magic number
18
+
19
+ scheduler_config: # 10000 warmup steps
20
+ target: ldm.lr_scheduler.LambdaLinearScheduler
21
+ params:
22
+ warm_up_steps: [ 10000 ]
23
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
24
+ f_start: [ 1.e-6 ]
25
+ f_max: [ 1. ]
26
+ f_min: [ 1. ]
27
+
28
+ unet_config:
29
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
30
+ params:
31
+ image_size: 48
32
+ in_channels: 16
33
+ out_channels: 16
34
+ model_channels: 320
35
+ attention_resolutions: [ 4, 2, 1 ]
36
+ num_res_blocks: 2
37
+ channel_mult: [ 1, 2, 4, 4 ]
38
+ num_heads: 8
39
+ use_spatial_transformer: True
40
+ transformer_depth: 1
41
+ context_dim: 768
42
+ use_checkpoint: True
43
+ legacy: False
44
+
45
+ first_stage_config:
46
+ target: ldm.models.autoencoder.AutoencoderKL
47
+ params:
48
+ embed_dim: 16
49
+ monitor: val/rec_loss
50
+ ddconfig:
51
+ double_z: True
52
+ z_channels: 16
53
+ resolution: 256
54
+ in_channels: 3
55
+ out_ch: 3
56
+ ch: 128
57
+ ch_mult: [ 1,1,2,2,4 ] # num_down = len(ch_mult)-1
58
+ num_res_blocks: 2
59
+ attn_resolutions: [ 16 ]
60
+ dropout: 0.0
61
+ lossconfig:
62
+ target: torch.nn.Identity
63
+
64
+ cond_stage_config:
65
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-multinode-clip-encoder-f16-768-laion-hr.yaml ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 1.0e-04
3
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
4
+ params:
5
+ linear_start: 0.001
6
+ linear_end: 0.015
7
+ num_timesteps_cond: 1
8
+ log_every_t: 200
9
+ timesteps: 1000
10
+ first_stage_key: "jpg"
11
+ cond_stage_key: "txt"
12
+ image_size: 48
13
+ channels: 16
14
+ cond_stage_trainable: false # Note: different from the one we trained before
15
+ conditioning_key: crossattn
16
+ monitor: val/loss_simple_ema
17
+ scale_factor: 0.22765929 # magic number
18
+
19
+ ckpt_path: "/home/mchorse/stable-diffusion-ckpts/768f16-2022-06-23-pruned.ckpt"
20
+
21
+ scheduler_config: # 10000 warmup steps
22
+ target: ldm.lr_scheduler.LambdaLinearScheduler
23
+ params:
24
+ warm_up_steps: [ 10000 ]
25
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
26
+ f_start: [ 1.e-6 ]
27
+ f_max: [ 1. ]
28
+ f_min: [ 1. ]
29
+
30
+ unet_config:
31
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
32
+ params:
33
+ image_size: 48 # not really needed
34
+ in_channels: 16
35
+ out_channels: 16
36
+ model_channels: 320
37
+ attention_resolutions: [ 4, 2, 1 ]
38
+ num_res_blocks: 2
39
+ channel_mult: [ 1, 2, 4, 4 ]
40
+ num_heads: 8
41
+ use_spatial_transformer: True
42
+ transformer_depth: 1
43
+ context_dim: 768
44
+ use_checkpoint: True
45
+ legacy: False
46
+
47
+ first_stage_config:
48
+ target: ldm.models.autoencoder.AutoencoderKL
49
+ params:
50
+ embed_dim: 16
51
+ monitor: val/rec_loss
52
+ ddconfig:
53
+ double_z: True
54
+ z_channels: 16
55
+ resolution: 256
56
+ in_channels: 3
57
+ out_ch: 3
58
+ ch: 128
59
+ ch_mult: [ 1,1,2,2,4 ] # num_down = len(ch_mult)-1
60
+ num_res_blocks: 2
61
+ attn_resolutions: [ 16 ]
62
+ dropout: 0.0
63
+ lossconfig:
64
+ target: torch.nn.Identity
65
+
66
+ cond_stage_config:
67
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
68
+
69
+
70
+ data:
71
+ target: ldm.data.laion.WebDataModuleFromConfig
72
+ params:
73
+ tar_base: "pipe:aws s3 cp s3://s-datasets/laion-high-resolution/"
74
+ batch_size: 6
75
+ num_workers: 4
76
+ multinode: True
77
+ train:
78
+ shards: '{00000..17279}.tar -'
79
+ shuffle: 10000
80
+ image_key: jpg
81
+ image_transforms:
82
+ - target: torchvision.transforms.Resize
83
+ params:
84
+ size: 768
85
+ interpolation: 3
86
+ - target: torchvision.transforms.RandomCrop
87
+ params:
88
+ size: 768
89
+
90
+ # NOTE use enough shards to avoid empty validation loops in workers
91
+ validation:
92
+ shards: '{17280..17535}.tar -'
93
+ shuffle: 0
94
+ image_key: jpg
95
+ image_transforms:
96
+ - target: torchvision.transforms.Resize
97
+ params:
98
+ size: 768
99
+ interpolation: 3
100
+ - target: torchvision.transforms.CenterCrop
101
+ params:
102
+ size: 768
103
+
104
+
105
+ lightning:
106
+ find_unused_parameters: False
107
+
108
+ modelcheckpoint:
109
+ params:
110
+ every_n_train_steps: 5000
111
+
112
+ callbacks:
113
+ image_logger:
114
+ target: main.ImageLogger
115
+ params:
116
+ batch_frequency: 5000
117
+ max_images: 4
118
+ increase_log_steps: False
119
+ log_first_step: False
120
+ log_images_kwargs:
121
+ use_ema_scope: False
122
+ inpaint: False
123
+ plot_progressive_rows: False
124
+ plot_diffusion_rows: False
125
+ N: 4
126
+ unconditional_guidance_scale: 3.0
127
+ unconditional_guidance_label: [""]
128
+
129
+ trainer:
130
+ benchmark: True
131
+ val_check_interval: 5000000
132
+ num_sanity_val_steps: 0
133
+ accumulate_grad_batches: 2
docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-multinode-clip-encoder-f16-768.yaml ADDED
@@ -0,0 +1,130 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 1.0e-04
3
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
4
+ params:
5
+ linear_start: 0.001
6
+ linear_end: 0.015
7
+ num_timesteps_cond: 1
8
+ log_every_t: 200
9
+ timesteps: 1000
10
+ first_stage_key: "jpg"
11
+ cond_stage_key: "txt"
12
+ image_size: 48
13
+ channels: 16
14
+ cond_stage_trainable: false # Note: different from the one we trained before
15
+ conditioning_key: crossattn
16
+ monitor: val/loss_simple_ema
17
+ scale_factor: 0.22765929 # magic number
18
+
19
+ ckpt_path: "/home/mchorse/stable-diffusion-ckpts/256f16-2022-06-15-216k-pruned.ckpt"
20
+
21
+ scheduler_config: # 10000 warmup steps
22
+ target: ldm.lr_scheduler.LambdaLinearScheduler
23
+ params:
24
+ warm_up_steps: [ 10000 ]
25
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
26
+ f_start: [ 1.e-6 ]
27
+ f_max: [ 1. ]
28
+ f_min: [ 1. ]
29
+
30
+ unet_config:
31
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
32
+ params:
33
+ image_size: 48 # not really needed
34
+ in_channels: 16
35
+ out_channels: 16
36
+ model_channels: 320 # TODO: scale model here
37
+ attention_resolutions: [ 4, 2, 1 ]
38
+ num_res_blocks: 2
39
+ channel_mult: [ 1, 2, 4, 4 ]
40
+ num_heads: 8
41
+ use_spatial_transformer: True
42
+ transformer_depth: 1
43
+ context_dim: 768
44
+ use_checkpoint: True
45
+ legacy: False
46
+
47
+ first_stage_config:
48
+ target: ldm.models.autoencoder.AutoencoderKL
49
+ params:
50
+ embed_dim: 16
51
+ monitor: val/rec_loss
52
+ ddconfig:
53
+ double_z: True
54
+ z_channels: 16
55
+ resolution: 256
56
+ in_channels: 3
57
+ out_ch: 3
58
+ ch: 128
59
+ ch_mult: [ 1,1,2,2,4 ] # num_down = len(ch_mult)-1
60
+ num_res_blocks: 2
61
+ attn_resolutions: [ 16 ]
62
+ dropout: 0.0
63
+ lossconfig:
64
+ target: torch.nn.Identity
65
+
66
+ cond_stage_config:
67
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
68
+
69
+
70
+ data:
71
+ target: ldm.data.laion.WebDataModuleFromConfig
72
+ params:
73
+ tar_base: "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/"
74
+ batch_size: 6
75
+ num_workers: 4
76
+ multinode: True
77
+ min_size: 384 # TODO: experiment. Note: for 2B, images are stored at max 384 resolution
78
+ train:
79
+ shards: '{000000..231317}.tar -'
80
+ shuffle: 10000
81
+ image_key: jpg
82
+ image_transforms:
83
+ - target: torchvision.transforms.Resize
84
+ params:
85
+ size: 768
86
+ interpolation: 3
87
+ - target: torchvision.transforms.RandomCrop
88
+ params:
89
+ size: 768
90
+
91
+ # NOTE use enough shards to avoid empty validation loops in workers
92
+ validation:
93
+ shards: '{231318..231349}.tar -'
94
+ shuffle: 0
95
+ image_key: jpg
96
+ image_transforms:
97
+ - target: torchvision.transforms.Resize
98
+ params:
99
+ size: 768
100
+ interpolation: 3
101
+ - target: torchvision.transforms.CenterCrop
102
+ params:
103
+ size: 768
104
+
105
+
106
+ lightning:
107
+ find_unused_parameters: False
108
+
109
+ callbacks:
110
+ image_logger:
111
+ target: main.ImageLogger
112
+ params:
113
+ batch_frequency: 5000
114
+ max_images: 4
115
+ increase_log_steps: False
116
+ log_first_step: False
117
+ log_images_kwargs:
118
+ use_ema_scope: False
119
+ inpaint: False
120
+ plot_progressive_rows: False
121
+ plot_diffusion_rows: False
122
+ N: 4
123
+ unconditional_guidance_scale: 3.0
124
+ unconditional_guidance_label: [""]
125
+
126
+ trainer:
127
+ benchmark: True
128
+ val_check_interval: 5000000
129
+ num_sanity_val_steps: 0
130
+ accumulate_grad_batches: 2
docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-t5-encoder-dev.yaml ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 1.0e-04
3
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
4
+ params:
5
+ linear_start: 0.00085
6
+ linear_end: 0.0120
7
+ num_timesteps_cond: 1
8
+ log_every_t: 200
9
+ timesteps: 1000
10
+ first_stage_key: "jpg"
11
+ cond_stage_key: "txt"
12
+ image_size: 32
13
+ channels: 4
14
+ cond_stage_trainable: false # Note: different from the one we trained before
15
+ conditioning_key: crossattn
16
+ monitor: val/loss_simple_ema
17
+ scale_factor: 0.18215
18
+
19
+ scheduler_config: # 10000 warmup steps
20
+ target: ldm.lr_scheduler.LambdaLinearScheduler
21
+ params:
22
+ warm_up_steps: [ 10000 ]
23
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
24
+ f_start: [ 1.e-6 ]
25
+ f_max: [ 1. ]
26
+ f_min: [ 1. ]
27
+
28
+ unet_config:
29
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
30
+ params:
31
+ image_size: 32
32
+ in_channels: 4
33
+ out_channels: 4
34
+ model_channels: 320
35
+ attention_resolutions: [ 4, 2, 1 ]
36
+ num_res_blocks: 2
37
+ channel_mult: [ 1, 2, 4, 4 ]
38
+ num_heads: 8
39
+ use_spatial_transformer: True
40
+ transformer_depth: 1
41
+ context_dim: 2048
42
+ use_checkpoint: True
43
+ legacy: False
44
+
45
+ first_stage_config:
46
+ target: ldm.models.autoencoder.AutoencoderKL
47
+ params:
48
+ embed_dim: 4
49
+ monitor: val/rec_loss
50
+ ckpt_path: "models/first_stage_models/kl-f8/model.ckpt"
51
+ ddconfig:
52
+ double_z: true
53
+ z_channels: 4
54
+ resolution: 256
55
+ in_channels: 3
56
+ out_ch: 3
57
+ ch: 128
58
+ ch_mult:
59
+ - 1
60
+ - 2
61
+ - 4
62
+ - 4
63
+ num_res_blocks: 2
64
+ attn_resolutions: []
65
+ dropout: 0.0
66
+ lossconfig:
67
+ target: torch.nn.Identity
68
+
69
+ cond_stage_config:
70
+ target: ldm.modules.encoders.modules.FrozenT5Embedder
71
+ params:
72
+ version: "google/t5-v1_1-xl"
73
+
74
+
75
+ data:
76
+ target: ldm.data.laion.WebDataModuleFromConfig
77
+ params:
78
+ tar_base: "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/"
79
+ batch_size: 40
80
+ num_workers: 4
81
+ multinode: False
82
+ train:
83
+ shards: '{000000..231317}.tar -'
84
+ shuffle: 10000
85
+ image_key: jpg
86
+ image_transforms:
87
+ - target: torchvision.transforms.Resize
88
+ params:
89
+ size: 256
90
+ interpolation: 3
91
+ - target: torchvision.transforms.RandomCrop
92
+ params:
93
+ size: 256
94
+
95
+ # NOTE use enough shards to avoid empty validation loops in workers
96
+ validation:
97
+ shards: '{231318..231349}.tar -'
98
+ shuffle: 0
99
+ image_key: jpg
100
+ image_transforms:
101
+ - target: torchvision.transforms.Resize
102
+ params:
103
+ size: 256
104
+ interpolation: 3
105
+ - target: torchvision.transforms.CenterCrop
106
+ params:
107
+ size: 256
108
+
109
+
110
+ lightning:
111
+ callbacks:
112
+ image_logger:
113
+ target: main.ImageLogger
114
+ params:
115
+ batch_frequency: 5000
116
+ max_images: 8
117
+ increase_log_steps: False
118
+ log_first_step: False
119
+
120
+
121
+ trainer:
122
+ #replace_sampler_ddp: False
123
+ benchmark: True
124
+ val_check_interval: 50000
125
+ num_sanity_val_steps: 0
126
+
127
+
128
+
docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-upscale-clip-encoder-f16-1024.yaml ADDED
@@ -0,0 +1,170 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 5.0e-05
3
+ target: ldm.models.diffusion.ddpm.LatentUpscaleDiffusion
4
+ params:
5
+ low_scale_key: "lr"
6
+ linear_start: 0.001
7
+ linear_end: 0.015
8
+ num_timesteps_cond: 1
9
+ log_every_t: 200
10
+ timesteps: 1000
11
+ first_stage_key: "jpg"
12
+ cond_stage_key: "txt"
13
+ image_size: 64
14
+ channels: 16
15
+ cond_stage_trainable: false
16
+ conditioning_key: "hybrid-adm"
17
+ monitor: val/loss_simple_ema
18
+ scale_factor: 0.22765929 # magic number
19
+
20
+ low_scale_config:
21
+ target: ldm.modules.encoders.modules.LowScaleEncoder
22
+ params:
23
+ scale_factor: 0.18215
24
+ linear_start: 0.00085
25
+ linear_end: 0.0120
26
+ timesteps: 1000
27
+ max_noise_level: 100
28
+ output_size: 64
29
+ model_config:
30
+ target: ldm.models.autoencoder.AutoencoderKL
31
+ params:
32
+ embed_dim: 4
33
+ monitor: val/rec_loss
34
+ ckpt_path: "models/first_stage_models/kl-f8/model.ckpt"
35
+ ddconfig:
36
+ double_z: true
37
+ z_channels: 4
38
+ resolution: 256
39
+ in_channels: 3
40
+ out_ch: 3
41
+ ch: 128
42
+ ch_mult:
43
+ - 1
44
+ - 2
45
+ - 4
46
+ - 4
47
+ num_res_blocks: 2
48
+ attn_resolutions: [ ]
49
+ dropout: 0.0
50
+ lossconfig:
51
+ target: torch.nn.Identity
52
+
53
+ scheduler_config: # 10000 warmup steps
54
+ target: ldm.lr_scheduler.LambdaLinearScheduler
55
+ params:
56
+ warm_up_steps: [ 10000 ]
57
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
58
+ f_start: [ 1.e-6 ]
59
+ f_max: [ 1. ]
60
+ f_min: [ 1. ]
61
+
62
+ unet_config:
63
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
64
+ params:
65
+ num_classes: 1000 # timesteps for noise conditoining
66
+ image_size: 64 # not really needed
67
+ in_channels: 20
68
+ out_channels: 16
69
+ model_channels: 96
70
+ attention_resolutions: [ 8, 4, 2 ] # -> at 32, 16, 8
71
+ num_res_blocks: 2
72
+ channel_mult: [ 1, 2, 4, 8, 8 ]
73
+ # -> res, ds: (64, 1), (32, 2), (16, 4), (8, 8), (4, 16)
74
+ num_heads: 8
75
+ use_spatial_transformer: True
76
+ transformer_depth: 1
77
+ context_dim: 768
78
+ use_checkpoint: True
79
+ legacy: False
80
+
81
+ first_stage_config:
82
+ target: ldm.models.autoencoder.AutoencoderKL
83
+ params:
84
+ embed_dim: 16
85
+ monitor: val/rec_loss
86
+ ckpt_path: "models/first_stage_models/kl-f16/model.ckpt"
87
+ ddconfig:
88
+ double_z: True
89
+ z_channels: 16
90
+ resolution: 256
91
+ in_channels: 3
92
+ out_ch: 3
93
+ ch: 128
94
+ ch_mult: [ 1,1,2,2,4 ] # num_down = len(ch_mult)-1
95
+ num_res_blocks: 2
96
+ attn_resolutions: [ 16 ]
97
+ dropout: 0.0
98
+ lossconfig:
99
+ target: torch.nn.Identity
100
+
101
+ cond_stage_config:
102
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
103
+
104
+
105
+ data:
106
+ target: ldm.data.laion.WebDataModuleFromConfig
107
+ params:
108
+ tar_base: "pipe:aws s3 cp s3://s-datasets/laion-high-resolution/"
109
+ batch_size: 10
110
+ num_workers: 4
111
+ train:
112
+ shards: '{00000..17279}.tar -'
113
+ shuffle: 10000
114
+ image_key: jpg
115
+ image_transforms:
116
+ - target: torchvision.transforms.Resize
117
+ params:
118
+ size: 1024
119
+ interpolation: 3
120
+ - target: torchvision.transforms.RandomCrop
121
+ params:
122
+ size: 1024
123
+ postprocess:
124
+ target: ldm.data.laion.AddLR
125
+ params:
126
+ factor: 4
127
+
128
+ # NOTE use enough shards to avoid empty validation loops in workers
129
+ validation:
130
+ shards: '{17280..17535}.tar -'
131
+ shuffle: 0
132
+ image_key: jpg
133
+ image_transforms:
134
+ - target: torchvision.transforms.Resize
135
+ params:
136
+ size: 1024
137
+ interpolation: 3
138
+ - target: torchvision.transforms.CenterCrop
139
+ params:
140
+ size: 1024
141
+ postprocess:
142
+ target: ldm.data.laion.AddLR
143
+ params:
144
+ factor: 4
145
+
146
+ lightning:
147
+ find_unused_parameters: False
148
+
149
+ callbacks:
150
+ image_logger:
151
+ target: main.ImageLogger
152
+ params:
153
+ batch_frequency: 1000
154
+ max_images: 4
155
+ increase_log_steps: False
156
+ log_first_step: False
157
+ log_images_kwargs:
158
+ use_ema_scope: False
159
+ inpaint: False
160
+ plot_progressive_rows: False
161
+ plot_diffusion_rows: False
162
+ N: 4
163
+ unconditional_guidance_scale: 3.0
164
+ unconditional_guidance_label: [""]
165
+
166
+ trainer:
167
+ benchmark: True
168
+ val_check_interval: 5000000 # really sorry
169
+ num_sanity_val_steps: 0
170
+ accumulate_grad_batches: 4
docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-v2-clip-encoder-improved_aesthetics-256.yaml ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 8.e-05
3
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
4
+ params:
5
+ linear_start: 0.00085
6
+ linear_end: 0.0120
7
+ num_timesteps_cond: 1
8
+ log_every_t: 200
9
+ timesteps: 1000
10
+ first_stage_key: "jpg"
11
+ cond_stage_key: "txt"
12
+ image_size: 32
13
+ channels: 4
14
+ cond_stage_trainable: false # Note: different from the one we trained before
15
+ conditioning_key: crossattn
16
+ monitor: val/loss_simple_ema
17
+ scale_factor: 0.18215
18
+
19
+ scheduler_config: # 10000 warmup steps
20
+ target: ldm.lr_scheduler.LambdaLinearScheduler
21
+ params:
22
+ warm_up_steps: [ 10000 ]
23
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
24
+ f_start: [ 1.e-6 ]
25
+ f_max: [ 1. ]
26
+ f_min: [ 1. ]
27
+
28
+ unet_config:
29
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
30
+ params:
31
+ image_size: 32 # unused
32
+ in_channels: 4
33
+ out_channels: 4
34
+ model_channels: 416
35
+ attention_resolutions: [ 4, 2, 1 ]
36
+ num_res_blocks: [ 2, 2, 2, 2 ]
37
+ channel_mult: [ 1, 2, 4, 4 ]
38
+ disable_self_attentions: [ False, False, False, False ] # converts the self-attention to a cross-attention layer if true
39
+ num_heads: 8
40
+ use_spatial_transformer: True
41
+ transformer_depth: 1
42
+ context_dim: 768
43
+ use_checkpoint: True
44
+ legacy: False
45
+
46
+ first_stage_config:
47
+ target: ldm.models.autoencoder.AutoencoderKL
48
+ params:
49
+ embed_dim: 4
50
+ monitor: val/rec_loss
51
+ ckpt_path: "/fsx/stable-diffusion/stable-diffusion/models/first_stage_models/kl-f8/model.ckpt"
52
+ ddconfig:
53
+ double_z: true
54
+ z_channels: 4
55
+ resolution: 256
56
+ in_channels: 3
57
+ out_ch: 3
58
+ ch: 128
59
+ ch_mult:
60
+ - 1
61
+ - 2
62
+ - 4
63
+ - 4
64
+ num_res_blocks: 2
65
+ attn_resolutions: []
66
+ dropout: 0.0
67
+ lossconfig:
68
+ target: torch.nn.Identity
69
+
70
+ cond_stage_config:
71
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
72
+
73
+
74
+ data:
75
+ target: ldm.data.laion.WebDataModuleFromConfig
76
+ params:
77
+ tar_base: "__improvedaesthetic__"
78
+ batch_size: 8
79
+ num_workers: 4
80
+ multinode: True
81
+ train:
82
+ shards: '{00000..17279}.tar -'
83
+ shuffle: 10000
84
+ image_key: jpg
85
+ image_transforms:
86
+ - target: torchvision.transforms.Resize
87
+ params:
88
+ size: 256
89
+ interpolation: 3
90
+ - target: torchvision.transforms.RandomCrop
91
+ params:
92
+ size: 256
93
+
94
+ # # NOTE use enough shards to avoid empty validation loops in workers
95
+ validation:
96
+ shards: '{17280..17535}.tar -'
97
+ shuffle: 0
98
+ image_key: jpg
99
+ image_transforms:
100
+ - target: torchvision.transforms.Resize
101
+ params:
102
+ size: 256
103
+ interpolation: 3
104
+ - target: torchvision.transforms.CenterCrop
105
+ params:
106
+ size: 256
107
+
108
+
109
+ lightning:
110
+ find_unused_parameters: false
111
+ modelcheckpoint:
112
+ params:
113
+ every_n_train_steps: 5000
114
+ callbacks:
115
+ image_logger:
116
+ target: main.ImageLogger
117
+ params:
118
+ disabled: True
119
+ batch_frequency: 2500
120
+ max_images: 4
121
+ increase_log_steps: False
122
+ log_first_step: False
123
+ log_images_kwargs:
124
+ use_ema_scope: False
125
+ inpaint: False
126
+ plot_progressive_rows: False
127
+ plot_diffusion_rows: False
128
+ N: 4
129
+ unconditional_guidance_scale: 3.0
130
+ unconditional_guidance_label: [""]
131
+
132
+ trainer:
133
+ #replace_sampler_ddp: False
134
+ benchmark: True
135
+ val_check_interval: 5000000 # really sorry
136
+ num_sanity_val_steps: 0
137
+ accumulate_grad_batches: 1
docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/txt2img-v2-clip-encoder-improved_aesthetics-512.yaml ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 1.0e-04
3
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
4
+ params:
5
+ linear_start: 0.00085
6
+ linear_end: 0.0120
7
+ num_timesteps_cond: 1
8
+ log_every_t: 200
9
+ timesteps: 1000
10
+ first_stage_key: "jpg"
11
+ cond_stage_key: "txt"
12
+ image_size: 32
13
+ channels: 4
14
+ cond_stage_trainable: false # Note: different from the one we trained before
15
+ conditioning_key: crossattn
16
+ monitor: val/loss_simple_ema
17
+ scale_factor: 0.18215
18
+
19
+ scheduler_config: # 10000 warmup steps
20
+ target: ldm.lr_scheduler.LambdaLinearScheduler
21
+ params:
22
+ warm_up_steps: [ 10000 ]
23
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
24
+ f_start: [ 1.e-6 ]
25
+ f_max: [ 1. ]
26
+ f_min: [ 1. ]
27
+
28
+ unet_config:
29
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
30
+ params:
31
+ image_size: 32 # unused
32
+ in_channels: 4
33
+ out_channels: 4
34
+ model_channels: 416
35
+ attention_resolutions: [ 4, 2, 1 ]
36
+ num_res_blocks: [ 2, 2, 2, 2 ]
37
+ channel_mult: [ 1, 2, 4, 4 ]
38
+ disable_self_attentions: [ False, False, False, False ] # converts the self-attention to a cross-attention layer if true
39
+ num_heads: 8
40
+ use_spatial_transformer: True
41
+ transformer_depth: 1
42
+ context_dim: 768
43
+ use_checkpoint: True
44
+ legacy: False
45
+
46
+ first_stage_config:
47
+ target: ldm.models.autoencoder.AutoencoderKL
48
+ params:
49
+ embed_dim: 4
50
+ monitor: val/rec_loss
51
+ ddconfig:
52
+ double_z: true
53
+ z_channels: 4
54
+ resolution: 256
55
+ in_channels: 3
56
+ out_ch: 3
57
+ ch: 128
58
+ ch_mult:
59
+ - 1
60
+ - 2
61
+ - 4
62
+ - 4
63
+ num_res_blocks: 2
64
+ attn_resolutions: []
65
+ dropout: 0.0
66
+ lossconfig:
67
+ target: torch.nn.Identity
68
+
69
+ cond_stage_config:
70
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
71
+
72
+
73
+ data:
74
+ target: ldm.data.laion.WebDataModuleFromConfig
75
+ params:
76
+ tar_base: "__improvedaesthetic__"
77
+ batch_size: 1
78
+ num_workers: 4
79
+ multinode: True
80
+ train:
81
+ shards: '{00000..17279}.tar -'
82
+ shuffle: 10000
83
+ image_key: jpg
84
+ image_transforms:
85
+ - target: torchvision.transforms.Resize
86
+ params:
87
+ size: 512
88
+ interpolation: 3
89
+ - target: torchvision.transforms.RandomCrop
90
+ params:
91
+ size: 512
92
+
93
+ # # NOTE use enough shards to avoid empty validation loops in workers
94
+ validation:
95
+ shards: '{17280..17535}.tar -'
96
+ shuffle: 0
97
+ image_key: jpg
98
+ image_transforms:
99
+ - target: torchvision.transforms.Resize
100
+ params:
101
+ size: 512
102
+ interpolation: 3
103
+ - target: torchvision.transforms.CenterCrop
104
+ params:
105
+ size: 512
106
+
107
+
108
+ lightning:
109
+ find_unused_parameters: false
110
+ modelcheckpoint:
111
+ params:
112
+ every_n_train_steps: 5000
113
+ callbacks:
114
+ image_logger:
115
+ target: main.ImageLogger
116
+ params:
117
+ batch_frequency: 2500
118
+ max_images: 2
119
+ increase_log_steps: False
120
+ log_first_step: False
121
+ log_images_kwargs:
122
+ use_ema_scope: False
123
+ inpaint: False
124
+ plot_progressive_rows: False
125
+ plot_diffusion_rows: False
126
+ N: 2
127
+ unconditional_guidance_scale: 3.0
128
+ unconditional_guidance_label: [""]
129
+
130
+ trainer:
131
+ #replace_sampler_ddp: False
132
+ benchmark: True
133
+ val_check_interval: 5000000 # really sorry
134
+ num_sanity_val_steps: 0
135
+ accumulate_grad_batches: 2
docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/upscaling/upscale-v1-with-f16.yaml ADDED
@@ -0,0 +1,214 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 5.0e-05
3
+ target: ldm.models.diffusion.ddpm.LatentUpscaleDiffusion
4
+ params:
5
+ low_scale_key: "lr"
6
+ linear_start: 0.001
7
+ linear_end: 0.015
8
+ num_timesteps_cond: 1
9
+ log_every_t: 200
10
+ timesteps: 1000
11
+ first_stage_key: "jpg"
12
+ cond_stage_key: "txt"
13
+ image_size: 32
14
+ channels: 16
15
+ cond_stage_trainable: false
16
+ conditioning_key: "hybrid-adm"
17
+ monitor: val/loss_simple_ema
18
+ scale_factor: 0.22765929 # magic number
19
+
20
+ low_scale_config:
21
+ target: ldm.modules.encoders.modules.LowScaleEncoder
22
+ params:
23
+ scale_factor: 0.18215
24
+ linear_start: 0.00085
25
+ linear_end: 0.0120
26
+ timesteps: 1000
27
+ max_noise_level: 250
28
+ output_size: null
29
+ model_config:
30
+ target: ldm.models.autoencoder.AutoencoderKL
31
+ params:
32
+ embed_dim: 4
33
+ monitor: val/rec_loss
34
+ ckpt_path: "/fsx/stable-diffusion/stable-diffusion/models/first_stage_models/kl-f8/model.ckpt"
35
+ ddconfig:
36
+ double_z: true
37
+ z_channels: 4
38
+ resolution: 256
39
+ in_channels: 3
40
+ out_ch: 3
41
+ ch: 128
42
+ ch_mult:
43
+ - 1
44
+ - 2
45
+ - 4
46
+ - 4
47
+ num_res_blocks: 2
48
+ attn_resolutions: [ ]
49
+ dropout: 0.0
50
+ lossconfig:
51
+ target: torch.nn.Identity
52
+
53
+ scheduler_config: # 10000 warmup steps
54
+ target: ldm.lr_scheduler.LambdaLinearScheduler
55
+ params:
56
+ warm_up_steps: [ 10000 ]
57
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
58
+ f_start: [ 1.e-6 ]
59
+ f_max: [ 1. ]
60
+ f_min: [ 1. ]
61
+
62
+ unet_config:
63
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
64
+ params:
65
+ num_classes: 251 # timesteps for noise conditoining
66
+ image_size: 64 # not really needed
67
+ in_channels: 20
68
+ out_channels: 16
69
+ model_channels: 128
70
+ attention_resolutions: [ 8, 4, 2 ] # -> at 32, 16, 8
71
+ num_res_blocks: 2
72
+ channel_mult: [ 1, 2, 4, 6, 8 ]
73
+ # -> res, ds: (64, 1), (32, 2), (16, 4), (6, 8), (4, 16)
74
+ num_heads: 8
75
+ use_spatial_transformer: True
76
+ transformer_depth: 1
77
+ context_dim: 768
78
+ use_checkpoint: True
79
+ legacy: False
80
+
81
+ first_stage_config:
82
+ target: ldm.models.autoencoder.AutoencoderKL
83
+ params:
84
+ embed_dim: 16
85
+ monitor: val/rec_loss
86
+ ckpt_path: "/fsx/stable-diffusion/stable-diffusion/models/first_stage_models/kl-f16/model.ckpt"
87
+ ddconfig:
88
+ double_z: True
89
+ z_channels: 16
90
+ resolution: 256
91
+ in_channels: 3
92
+ out_ch: 3
93
+ ch: 128
94
+ ch_mult: [ 1,1,2,2,4 ] # num_down = len(ch_mult)-1
95
+ num_res_blocks: 2
96
+ attn_resolutions: [ 16 ]
97
+ dropout: 0.0
98
+ lossconfig:
99
+ target: torch.nn.Identity
100
+
101
+ cond_stage_config:
102
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
103
+
104
+
105
+ #data: # TODO: finetune here later
106
+ # target: ldm.data.laion.WebDataModuleFromConfig
107
+ # params:
108
+ # tar_base: "pipe:aws s3 cp s3://s-datasets/laion-high-resolution/"
109
+ # batch_size: 10
110
+ # num_workers: 4
111
+ # train:
112
+ # shards: '{00000..17279}.tar -'
113
+ # shuffle: 10000
114
+ # image_key: jpg
115
+ # image_transforms:
116
+ # - target: torchvision.transforms.Resize
117
+ # params:
118
+ # size: 1024
119
+ # interpolation: 3
120
+ # - target: torchvision.transforms.RandomCrop
121
+ # params:
122
+ # size: 1024
123
+ # postprocess:
124
+ # target: ldm.data.laion.AddLR
125
+ # params:
126
+ # factor: 2
127
+ #
128
+ # # NOTE use enough shards to avoid empty validation loops in workers
129
+ # validation:
130
+ # shards: '{17280..17535}.tar -'
131
+ # shuffle: 0
132
+ # image_key: jpg
133
+ # image_transforms:
134
+ # - target: torchvision.transforms.Resize
135
+ # params:
136
+ # size: 1024
137
+ # interpolation: 3
138
+ # - target: torchvision.transforms.CenterCrop
139
+ # params:
140
+ # size: 1024
141
+ # postprocess:
142
+ # target: ldm.data.laion.AddLR
143
+ # params:
144
+ # factor: 2
145
+
146
+ data:
147
+ target: ldm.data.laion.WebDataModuleFromConfig
148
+ params:
149
+ tar_base: "__improvedaesthetic__"
150
+ batch_size: 28
151
+ num_workers: 4
152
+ multinode: True
153
+ min_size: 512
154
+ train:
155
+ shards: '{00000..17279}.tar -'
156
+ shuffle: 10000
157
+ image_key: jpg
158
+ image_transforms:
159
+ - target: torchvision.transforms.Resize
160
+ params:
161
+ size: 512
162
+ interpolation: 3
163
+ - target: torchvision.transforms.RandomCrop
164
+ params:
165
+ size: 512
166
+ postprocess:
167
+ target: ldm.data.laion.AddLR
168
+ params:
169
+ factor: 2
170
+
171
+ # NOTE use enough shards to avoid empty validation loops in workers
172
+ validation:
173
+ shards: '{17280..17535}.tar -'
174
+ shuffle: 0
175
+ image_key: jpg
176
+ image_transforms:
177
+ - target: torchvision.transforms.Resize
178
+ params:
179
+ size: 512
180
+ interpolation: 3
181
+ - target: torchvision.transforms.CenterCrop
182
+ params:
183
+ size: 512
184
+ postprocess:
185
+ target: ldm.data.laion.AddLR
186
+ params:
187
+ factor: 2
188
+
189
+
190
+ lightning:
191
+ find_unused_parameters: False
192
+
193
+ callbacks:
194
+ image_logger:
195
+ target: main.ImageLogger
196
+ params:
197
+ batch_frequency: 1000
198
+ max_images: 4
199
+ increase_log_steps: False
200
+ log_first_step: False
201
+ log_images_kwargs:
202
+ use_ema_scope: False
203
+ inpaint: False
204
+ plot_progressive_rows: False
205
+ plot_diffusion_rows: False
206
+ N: 4
207
+ unconditional_guidance_scale: 3.0
208
+ unconditional_guidance_label: [""]
209
+
210
+ trainer:
211
+ benchmark: True
212
+ val_check_interval: 5000000 # really sorry
213
+ num_sanity_val_steps: 0
214
+ accumulate_grad_batches: 2
docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/v1-inference.yaml ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 1.0e-04
3
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
4
+ params:
5
+ linear_start: 0.00085
6
+ linear_end: 0.0120
7
+ num_timesteps_cond: 1
8
+ log_every_t: 200
9
+ timesteps: 1000
10
+ first_stage_key: "jpg"
11
+ cond_stage_key: "txt"
12
+ image_size: 64
13
+ channels: 4
14
+ cond_stage_trainable: false # Note: different from the one we trained before
15
+ conditioning_key: crossattn
16
+ monitor: val/loss_simple_ema
17
+ scale_factor: 0.18215
18
+
19
+ scheduler_config: # 10000 warmup steps
20
+ target: ldm.lr_scheduler.LambdaLinearScheduler
21
+ params:
22
+ warm_up_steps: [ 10000 ]
23
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
24
+ f_start: [ 1.e-6 ]
25
+ f_max: [ 1. ]
26
+ f_min: [ 1. ]
27
+
28
+ unet_config:
29
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
30
+ params:
31
+ image_size: 32 # unused
32
+ in_channels: 4
33
+ out_channels: 4
34
+ model_channels: 320
35
+ attention_resolutions: [ 4, 2, 1 ]
36
+ num_res_blocks: 2
37
+ channel_mult: [ 1, 2, 4, 4 ]
38
+ num_heads: 8
39
+ use_spatial_transformer: True
40
+ transformer_depth: 1
41
+ context_dim: 768
42
+ use_checkpoint: True
43
+ legacy: False
44
+
45
+ first_stage_config:
46
+ target: ldm.models.autoencoder.AutoencoderKL
47
+ params:
48
+ embed_dim: 4
49
+ monitor: val/rec_loss
50
+ ddconfig:
51
+ double_z: true
52
+ z_channels: 4
53
+ resolution: 256
54
+ in_channels: 3
55
+ out_ch: 3
56
+ ch: 128
57
+ ch_mult:
58
+ - 1
59
+ - 2
60
+ - 4
61
+ - 4
62
+ num_res_blocks: 2
63
+ attn_resolutions: []
64
+ dropout: 0.0
65
+ lossconfig:
66
+ target: torch.nn.Identity
67
+
68
+ cond_stage_config:
69
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/v1_improvedaesthetics.yaml ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 1.0e-04
3
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
4
+ params:
5
+ linear_start: 0.00085
6
+ linear_end: 0.0120
7
+ num_timesteps_cond: 1
8
+ log_every_t: 200
9
+ timesteps: 1000
10
+ first_stage_key: "jpg"
11
+ cond_stage_key: "txt"
12
+ image_size: 64
13
+ channels: 4
14
+ cond_stage_trainable: false # Note: different from the one we trained before
15
+ conditioning_key: crossattn
16
+ monitor: val/loss_simple_ema
17
+ scale_factor: 0.18215
18
+
19
+ scheduler_config: # 10000 warmup steps
20
+ target: ldm.lr_scheduler.LambdaLinearScheduler
21
+ params:
22
+ warm_up_steps: [ 1 ] # NOTE for resuming. use 10000 if starting from scratch
23
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
24
+ f_start: [ 1.e-6 ]
25
+ f_max: [ 1. ]
26
+ f_min: [ 1. ]
27
+
28
+ unet_config:
29
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
30
+ params:
31
+ image_size: 32 # unused
32
+ in_channels: 4
33
+ out_channels: 4
34
+ model_channels: 320
35
+ attention_resolutions: [ 4, 2, 1 ]
36
+ num_res_blocks: 2
37
+ channel_mult: [ 1, 2, 4, 4 ]
38
+ num_heads: 8
39
+ use_spatial_transformer: True
40
+ transformer_depth: 1
41
+ context_dim: 768
42
+ use_checkpoint: True
43
+ legacy: False
44
+
45
+ first_stage_config:
46
+ target: ldm.models.autoencoder.AutoencoderKL
47
+ params:
48
+ embed_dim: 4
49
+ monitor: val/rec_loss
50
+ ddconfig:
51
+ double_z: true
52
+ z_channels: 4
53
+ resolution: 256
54
+ in_channels: 3
55
+ out_ch: 3
56
+ ch: 128
57
+ ch_mult:
58
+ - 1
59
+ - 2
60
+ - 4
61
+ - 4
62
+ num_res_blocks: 2
63
+ attn_resolutions: []
64
+ dropout: 0.0
65
+ lossconfig:
66
+ target: torch.nn.Identity
67
+
68
+ cond_stage_config:
69
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
70
+
71
+
72
+ data:
73
+ target: ldm.data.laion.WebDataModuleFromConfig
74
+ params:
75
+ tar_base: "__improvedaesthetic__"
76
+ batch_size: 4
77
+ num_workers: 4
78
+ multinode: True
79
+ train:
80
+ shards: '{00000..17279}.tar -'
81
+ shuffle: 10000
82
+ image_key: jpg
83
+ image_transforms:
84
+ - target: torchvision.transforms.Resize
85
+ params:
86
+ size: 512
87
+ interpolation: 3
88
+ - target: torchvision.transforms.RandomCrop
89
+ params:
90
+ size: 512
91
+
92
+ # NOTE use enough shards to avoid empty validation loops in workers
93
+ validation:
94
+ shards: '{17280..17535}.tar -'
95
+ shuffle: 0
96
+ image_key: jpg
97
+ image_transforms:
98
+ - target: torchvision.transforms.Resize
99
+ params:
100
+ size: 512
101
+ interpolation: 3
102
+ - target: torchvision.transforms.CenterCrop
103
+ params:
104
+ size: 512
105
+
106
+
107
+ lightning:
108
+ find_unused_parameters: False
109
+
110
+ modelcheckpoint:
111
+ params:
112
+ every_n_train_steps: 5000
113
+
114
+ callbacks:
115
+ image_logger:
116
+ target: main.ImageLogger
117
+ params:
118
+ batch_frequency: 5000
119
+ max_images: 4
120
+ increase_log_steps: False
121
+ log_first_step: False
122
+ log_images_kwargs:
123
+ use_ema_scope: False
124
+ inpaint: False
125
+ plot_progressive_rows: False
126
+ plot_diffusion_rows: False
127
+ N: 4
128
+ unconditional_guidance_scale: 3.0
129
+ unconditional_guidance_label: [""]
130
+
131
+ trainer:
132
+ benchmark: True
133
+ val_check_interval: 5000000 # really sorry
134
+ num_sanity_val_steps: 0
135
+ accumulate_grad_batches: 2
docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/v1_laionhr.yaml ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 1.0e-04
3
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
4
+ params:
5
+ linear_start: 0.00085
6
+ linear_end: 0.0120
7
+ num_timesteps_cond: 1
8
+ log_every_t: 200
9
+ timesteps: 1000
10
+ first_stage_key: "jpg"
11
+ cond_stage_key: "txt"
12
+ image_size: 64
13
+ channels: 4
14
+ cond_stage_trainable: false # Note: different from the one we trained before
15
+ conditioning_key: crossattn
16
+ monitor: val/loss_simple_ema
17
+ scale_factor: 0.18215
18
+
19
+ scheduler_config: # 10000 warmup steps
20
+ target: ldm.lr_scheduler.LambdaLinearScheduler
21
+ params:
22
+ warm_up_steps: [ 1 ] # NOTE for resuming. use 10000 if starting from scratch
23
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
24
+ f_start: [ 1.e-6 ]
25
+ f_max: [ 1. ]
26
+ f_min: [ 1. ]
27
+
28
+ unet_config:
29
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
30
+ params:
31
+ image_size: 32 # unused
32
+ in_channels: 4
33
+ out_channels: 4
34
+ model_channels: 320
35
+ attention_resolutions: [ 4, 2, 1 ]
36
+ num_res_blocks: 2
37
+ channel_mult: [ 1, 2, 4, 4 ]
38
+ num_heads: 8
39
+ use_spatial_transformer: True
40
+ transformer_depth: 1
41
+ context_dim: 768
42
+ use_checkpoint: True
43
+ legacy: False
44
+
45
+ first_stage_config:
46
+ target: ldm.models.autoencoder.AutoencoderKL
47
+ params:
48
+ embed_dim: 4
49
+ monitor: val/rec_loss
50
+ ddconfig:
51
+ double_z: true
52
+ z_channels: 4
53
+ resolution: 256
54
+ in_channels: 3
55
+ out_ch: 3
56
+ ch: 128
57
+ ch_mult:
58
+ - 1
59
+ - 2
60
+ - 4
61
+ - 4
62
+ num_res_blocks: 2
63
+ attn_resolutions: []
64
+ dropout: 0.0
65
+ lossconfig:
66
+ target: torch.nn.Identity
67
+
68
+ cond_stage_config:
69
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
70
+
71
+
72
+ data:
73
+ target: ldm.data.laion.WebDataModuleFromConfig
74
+ params:
75
+ tar_base: "pipe:aws s3 cp s3://s-datasets/laion-high-resolution/"
76
+ batch_size: 4
77
+ num_workers: 4
78
+ multinode: True
79
+ train:
80
+ shards: '{00000..17279}.tar -'
81
+ shuffle: 10000
82
+ image_key: jpg
83
+ image_transforms:
84
+ - target: torchvision.transforms.Resize
85
+ params:
86
+ size: 512
87
+ interpolation: 3
88
+ - target: torchvision.transforms.RandomCrop
89
+ params:
90
+ size: 512
91
+
92
+ # NOTE use enough shards to avoid empty validation loops in workers
93
+ validation:
94
+ shards: '{17280..17535}.tar -'
95
+ shuffle: 0
96
+ image_key: jpg
97
+ image_transforms:
98
+ - target: torchvision.transforms.Resize
99
+ params:
100
+ size: 512
101
+ interpolation: 3
102
+ - target: torchvision.transforms.CenterCrop
103
+ params:
104
+ size: 512
105
+
106
+
107
+ lightning:
108
+ find_unused_parameters: False
109
+
110
+ modelcheckpoint:
111
+ params:
112
+ every_n_train_steps: 5000
113
+
114
+ callbacks:
115
+ image_logger:
116
+ target: main.ImageLogger
117
+ params:
118
+ batch_frequency: 5000
119
+ max_images: 4
120
+ increase_log_steps: False
121
+ log_first_step: False
122
+ log_images_kwargs:
123
+ use_ema_scope: False
124
+ inpaint: False
125
+ plot_progressive_rows: False
126
+ plot_diffusion_rows: False
127
+ N: 4
128
+ unconditional_guidance_scale: 3.0
129
+ unconditional_guidance_label: [""]
130
+
131
+ trainer:
132
+ benchmark: True
133
+ val_check_interval: 5000000 # really sorry
134
+ num_sanity_val_steps: 0
135
+ accumulate_grad_batches: 2
docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/v2_laionhr1024.yaml ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 1.0e-04
3
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
4
+ params:
5
+ linear_start: 0.001
6
+ linear_end: 0.015
7
+ num_timesteps_cond: 1
8
+ log_every_t: 200
9
+ timesteps: 1000
10
+ first_stage_key: "jpg"
11
+ cond_stage_key: "txt"
12
+ image_size: 64
13
+ channels: 16
14
+ cond_stage_trainable: false # Note: different from the one we trained before
15
+ conditioning_key: crossattn
16
+ monitor: val/loss_simple_ema
17
+ scale_factor: 0.22765929 # magic number
18
+
19
+ # NOTE disabled for resuming
20
+ #scheduler_config: # 10000 warmup steps
21
+ # target: ldm.lr_scheduler.LambdaLinearScheduler
22
+ # params:
23
+ # warm_up_steps: [ 10000 ]
24
+ # cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
25
+ # f_start: [ 1.e-6 ]
26
+ # f_max: [ 1. ]
27
+ # f_min: [ 1. ]
28
+
29
+ unet_config:
30
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
31
+ params:
32
+ image_size: 64 # not really needed
33
+ in_channels: 16
34
+ out_channels: 16
35
+ model_channels: 320
36
+ attention_resolutions: [ 4, 2, 1 ]
37
+ num_res_blocks: 2
38
+ channel_mult: [ 1, 2, 4, 4 ]
39
+ num_heads: 8
40
+ use_spatial_transformer: True
41
+ transformer_depth: 1
42
+ context_dim: 768
43
+ use_checkpoint: True
44
+ legacy: False
45
+
46
+ first_stage_config:
47
+ target: ldm.models.autoencoder.AutoencoderKL
48
+ params:
49
+ embed_dim: 16
50
+ monitor: val/rec_loss
51
+ ddconfig:
52
+ double_z: True
53
+ z_channels: 16
54
+ resolution: 256
55
+ in_channels: 3
56
+ out_ch: 3
57
+ ch: 128
58
+ ch_mult: [ 1,1,2,2,4 ] # num_down = len(ch_mult)-1
59
+ num_res_blocks: 2
60
+ attn_resolutions: [ 16 ]
61
+ dropout: 0.0
62
+ lossconfig:
63
+ target: torch.nn.Identity
64
+
65
+ cond_stage_config:
66
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
67
+
68
+
69
+ data:
70
+ target: ldm.data.laion.WebDataModuleFromConfig
71
+ params:
72
+ tar_base: "pipe:aws s3 cp s3://s-datasets/laion-high-resolution/"
73
+ batch_size: 3
74
+ num_workers: 4
75
+ multinode: True
76
+ train:
77
+ shards: '{00000..17279}.tar -'
78
+ shuffle: 10000
79
+ image_key: jpg
80
+ image_transforms:
81
+ - target: torchvision.transforms.Resize
82
+ params:
83
+ size: 1024
84
+ interpolation: 3
85
+ - target: torchvision.transforms.RandomCrop
86
+ params:
87
+ size: 1024
88
+
89
+ # NOTE use enough shards to avoid empty validation loops in workers
90
+ validation:
91
+ shards: '{17280..17535}.tar -'
92
+ shuffle: 0
93
+ image_key: jpg
94
+ image_transforms:
95
+ - target: torchvision.transforms.Resize
96
+ params:
97
+ size: 1024
98
+ interpolation: 3
99
+ - target: torchvision.transforms.CenterCrop
100
+ params:
101
+ size: 1024
102
+
103
+
104
+ lightning:
105
+ find_unused_parameters: False
106
+
107
+ modelcheckpoint:
108
+ params:
109
+ every_n_train_steps: 2000
110
+
111
+ callbacks:
112
+ image_logger:
113
+ target: main.ImageLogger
114
+ params:
115
+ batch_frequency: 2000
116
+ max_images: 2
117
+ increase_log_steps: False
118
+ log_first_step: False
119
+ log_images_kwargs:
120
+ use_ema_scope: False
121
+ inpaint: False
122
+ plot_progressive_rows: False
123
+ plot_diffusion_rows: False
124
+ N: 2
125
+ unconditional_guidance_scale: 5.0
126
+ unconditional_guidance_label: [""]
127
+
128
+ trainer:
129
+ benchmark: True
130
+ val_check_interval: 5000000
131
+ num_sanity_val_steps: 0
132
+ accumulate_grad_batches: 4
docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/v2_laionhr1024_2.yaml ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 7.5e-05
3
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
4
+ params:
5
+ linear_start: 0.001
6
+ linear_end: 0.015
7
+ num_timesteps_cond: 1
8
+ log_every_t: 200
9
+ timesteps: 1000
10
+ first_stage_key: "jpg"
11
+ cond_stage_key: "txt"
12
+ image_size: 64
13
+ channels: 16
14
+ cond_stage_trainable: false # Note: different from the one we trained before
15
+ conditioning_key: crossattn
16
+ monitor: val/loss_simple_ema
17
+ scale_factor: 0.22765929 # magic number
18
+
19
+ # NOTE disabled for resuming
20
+ #scheduler_config: # 10000 warmup steps
21
+ # target: ldm.lr_scheduler.LambdaLinearScheduler
22
+ # params:
23
+ # warm_up_steps: [ 10000 ]
24
+ # cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
25
+ # f_start: [ 1.e-6 ]
26
+ # f_max: [ 1. ]
27
+ # f_min: [ 1. ]
28
+
29
+ unet_config:
30
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
31
+ params:
32
+ image_size: 64 # not really needed
33
+ in_channels: 16
34
+ out_channels: 16
35
+ model_channels: 320
36
+ attention_resolutions: [ 4, 2, 1 ]
37
+ num_res_blocks: 2
38
+ channel_mult: [ 1, 2, 4, 4 ]
39
+ num_heads: 8
40
+ use_spatial_transformer: True
41
+ transformer_depth: 1
42
+ context_dim: 768
43
+ use_checkpoint: True
44
+ legacy: False
45
+
46
+ first_stage_config:
47
+ target: ldm.models.autoencoder.AutoencoderKL
48
+ params:
49
+ embed_dim: 16
50
+ monitor: val/rec_loss
51
+ ddconfig:
52
+ double_z: True
53
+ z_channels: 16
54
+ resolution: 256
55
+ in_channels: 3
56
+ out_ch: 3
57
+ ch: 128
58
+ ch_mult: [ 1,1,2,2,4 ] # num_down = len(ch_mult)-1
59
+ num_res_blocks: 2
60
+ attn_resolutions: [ 16 ]
61
+ dropout: 0.0
62
+ lossconfig:
63
+ target: torch.nn.Identity
64
+
65
+ cond_stage_config:
66
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
67
+
68
+
69
+ data:
70
+ target: ldm.data.laion.WebDataModuleFromConfig
71
+ params:
72
+ tar_base: "pipe:aws s3 cp s3://s-datasets/laion-high-resolution/"
73
+ batch_size: 3
74
+ num_workers: 4
75
+ multinode: True
76
+ train:
77
+ shards: '{00000..17279}.tar -'
78
+ shuffle: 10000
79
+ image_key: jpg
80
+ image_transforms:
81
+ - target: torchvision.transforms.Resize
82
+ params:
83
+ size: 1024
84
+ interpolation: 3
85
+ - target: torchvision.transforms.RandomCrop
86
+ params:
87
+ size: 1024
88
+
89
+ # NOTE use enough shards to avoid empty validation loops in workers
90
+ validation:
91
+ shards: '{17280..17535}.tar -'
92
+ shuffle: 0
93
+ image_key: jpg
94
+ image_transforms:
95
+ - target: torchvision.transforms.Resize
96
+ params:
97
+ size: 1024
98
+ interpolation: 3
99
+ - target: torchvision.transforms.CenterCrop
100
+ params:
101
+ size: 1024
102
+
103
+
104
+ lightning:
105
+ find_unused_parameters: False
106
+
107
+ modelcheckpoint:
108
+ params:
109
+ every_n_train_steps: 2000
110
+
111
+ callbacks:
112
+ image_logger:
113
+ target: main.ImageLogger
114
+ params:
115
+ batch_frequency: 2000
116
+ max_images: 2
117
+ increase_log_steps: False
118
+ log_first_step: False
119
+ log_images_kwargs:
120
+ use_ema_scope: False
121
+ inpaint: False
122
+ plot_progressive_rows: False
123
+ plot_diffusion_rows: False
124
+ N: 2
125
+ unconditional_guidance_scale: 5.0
126
+ unconditional_guidance_label: [""]
127
+
128
+ trainer:
129
+ benchmark: True
130
+ val_check_interval: 5000000
131
+ num_sanity_val_steps: 0
132
+ accumulate_grad_batches: 2
docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/v2_pretraining.yaml ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 1.0e-04
3
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
4
+ params:
5
+ linear_start: 0.001
6
+ linear_end: 0.015
7
+ num_timesteps_cond: 1
8
+ log_every_t: 200
9
+ timesteps: 1000
10
+ first_stage_key: "jpg"
11
+ cond_stage_key: "txt"
12
+ image_size: 16
13
+ channels: 16
14
+ cond_stage_trainable: false # Note: different from the one we trained before
15
+ conditioning_key: crossattn
16
+ monitor: val/loss_simple_ema
17
+ scale_factor: 0.22765929 # magic number
18
+
19
+ scheduler_config: # 10000 warmup steps
20
+ target: ldm.lr_scheduler.LambdaLinearScheduler
21
+ params:
22
+ warm_up_steps: [ 10000 ]
23
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
24
+ f_start: [ 1.e-6 ]
25
+ f_max: [ 1. ]
26
+ f_min: [ 1. ]
27
+
28
+ unet_config:
29
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
30
+ params:
31
+ image_size: 16 # not really needed
32
+ in_channels: 16
33
+ out_channels: 16
34
+ model_channels: 320 # TODO: scale model here
35
+ attention_resolutions: [ 4, 2, 1 ]
36
+ num_res_blocks: 2
37
+ channel_mult: [ 1, 2, 4, 4 ]
38
+ num_heads: 8
39
+ use_spatial_transformer: True
40
+ transformer_depth: 1
41
+ context_dim: 768
42
+ use_checkpoint: True
43
+ legacy: False
44
+
45
+ first_stage_config:
46
+ target: ldm.models.autoencoder.AutoencoderKL
47
+ params:
48
+ embed_dim: 16
49
+ monitor: val/rec_loss
50
+ ckpt_path: "models/first_stage_models/kl-f16/model.ckpt"
51
+ ddconfig:
52
+ double_z: True
53
+ z_channels: 16
54
+ resolution: 256
55
+ in_channels: 3
56
+ out_ch: 3
57
+ ch: 128
58
+ ch_mult: [ 1,1,2,2,4 ] # num_down = len(ch_mult)-1
59
+ num_res_blocks: 2
60
+ attn_resolutions: [ 16 ]
61
+ dropout: 0.0
62
+ lossconfig:
63
+ target: torch.nn.Identity
64
+
65
+ cond_stage_config:
66
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
67
+
68
+
69
+ data:
70
+ target: ldm.data.laion.WebDataModuleFromConfig
71
+ params:
72
+ tar_base: "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/"
73
+ batch_size: 55
74
+ num_workers: 4
75
+ multinode: True
76
+ min_size: 256
77
+ train:
78
+ shards: '{000000..231317}.tar -'
79
+ shuffle: 10000
80
+ image_key: jpg
81
+ image_transforms:
82
+ - target: torchvision.transforms.Resize
83
+ params:
84
+ size: 256
85
+ interpolation: 3
86
+ - target: torchvision.transforms.RandomCrop
87
+ params:
88
+ size: 256
89
+
90
+ # NOTE use enough shards to avoid empty validation loops in workers
91
+ validation:
92
+ shards: '{231318..231349}.tar -'
93
+ shuffle: 0
94
+ image_key: jpg
95
+ image_transforms:
96
+ - target: torchvision.transforms.Resize
97
+ params:
98
+ size: 256
99
+ interpolation: 3
100
+ - target: torchvision.transforms.CenterCrop
101
+ params:
102
+ size: 256
103
+
104
+
105
+ lightning:
106
+ find_unused_parameters: false
107
+ modelcheckpoint:
108
+ params:
109
+ every_n_train_steps: 5000
110
+ callbacks:
111
+ image_logger:
112
+ target: main.ImageLogger
113
+ params:
114
+ batch_frequency: 5000
115
+ max_images: 4
116
+ increase_log_steps: False
117
+ log_first_step: False
118
+ log_images_kwargs:
119
+ use_ema_scope: False
120
+ inpaint: False
121
+ plot_progressive_rows: False
122
+ plot_diffusion_rows: False
123
+ N: 4
124
+ unconditional_guidance_scale: 3.0
125
+ unconditional_guidance_label: [""]
126
+
127
+ trainer:
128
+ benchmark: True
129
+ val_check_interval: 5000000 # really sorry
130
+ num_sanity_val_steps: 0
131
+ accumulate_grad_batches: 1
docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/configs/stable-diffusion/v3_pretraining.yaml ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 8.e-05
3
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
4
+ params:
5
+ linear_start: 0.00085
6
+ linear_end: 0.0120
7
+ num_timesteps_cond: 1
8
+ log_every_t: 200
9
+ timesteps: 1000
10
+ first_stage_key: "jpg"
11
+ cond_stage_key: "txt"
12
+ image_size: 32
13
+ channels: 4
14
+ cond_stage_trainable: false # Note: different from the one we trained before
15
+ conditioning_key: crossattn
16
+ monitor: val/loss_simple_ema
17
+ scale_factor: 0.18215
18
+
19
+ scheduler_config: # 10000 warmup steps
20
+ target: ldm.lr_scheduler.LambdaLinearScheduler
21
+ params:
22
+ warm_up_steps: [ 10000 ]
23
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
24
+ f_start: [ 1.e-6 ]
25
+ f_max: [ 1. ]
26
+ f_min: [ 1. ]
27
+
28
+ unet_config:
29
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
30
+ params:
31
+ image_size: 32 # unused
32
+ in_channels: 4
33
+ out_channels: 4
34
+ model_channels: 416
35
+ attention_resolutions: [ 4, 2, 1 ]
36
+ num_res_blocks: [ 2, 2, 2, 2 ]
37
+ channel_mult: [ 1, 2, 4, 4 ]
38
+ disable_self_attentions: [ False, False, False, False ] # converts the self-attention to a cross-attention layer if true
39
+ num_heads: 8
40
+ use_spatial_transformer: True
41
+ transformer_depth: 1
42
+ context_dim: 768
43
+ use_checkpoint: True
44
+ legacy: False
45
+
46
+ first_stage_config:
47
+ target: ldm.models.autoencoder.AutoencoderKL
48
+ params:
49
+ embed_dim: 4
50
+ monitor: val/rec_loss
51
+ ckpt_path: "/fsx/stable-diffusion/stable-diffusion/models/first_stage_models/kl-f8/model.ckpt"
52
+ ddconfig:
53
+ double_z: true
54
+ z_channels: 4
55
+ resolution: 256
56
+ in_channels: 3
57
+ out_ch: 3
58
+ ch: 128
59
+ ch_mult:
60
+ - 1
61
+ - 2
62
+ - 4
63
+ - 4
64
+ num_res_blocks: 2
65
+ attn_resolutions: []
66
+ dropout: 0.0
67
+ lossconfig:
68
+ target: torch.nn.Identity
69
+
70
+ cond_stage_config:
71
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
72
+
73
+
74
+ data:
75
+ target: ldm.data.laion.WebDataModuleFromConfig
76
+ params:
77
+ tar_base: "__improvedaesthetic__"
78
+ batch_size: 8
79
+ num_workers: 4
80
+ multinode: True
81
+ train:
82
+ shards: '{00000..17279}.tar -'
83
+ shuffle: 10000
84
+ image_key: jpg
85
+ image_transforms:
86
+ - target: torchvision.transforms.Resize
87
+ params:
88
+ size: 256
89
+ interpolation: 3
90
+ - target: torchvision.transforms.RandomCrop
91
+ params:
92
+ size: 256
93
+
94
+ # # NOTE use enough shards to avoid empty validation loops in workers
95
+ validation:
96
+ shards: '{17280..17535}.tar -'
97
+ shuffle: 0
98
+ image_key: jpg
99
+ image_transforms:
100
+ - target: torchvision.transforms.Resize
101
+ params:
102
+ size: 256
103
+ interpolation: 3
104
+ - target: torchvision.transforms.CenterCrop
105
+ params:
106
+ size: 256
107
+
108
+
109
+ lightning:
110
+ find_unused_parameters: false
111
+ modelcheckpoint:
112
+ params:
113
+ every_n_train_steps: 5000
114
+ callbacks:
115
+ image_logger:
116
+ target: main.ImageLogger
117
+ params:
118
+ disabled: True
119
+ batch_frequency: 2500
120
+ max_images: 4
121
+ increase_log_steps: False
122
+ log_first_step: False
123
+ log_images_kwargs:
124
+ use_ema_scope: False
125
+ inpaint: False
126
+ plot_progressive_rows: False
127
+ plot_diffusion_rows: False
128
+ N: 4
129
+ unconditional_guidance_scale: 3.0
130
+ unconditional_guidance_label: [""]
131
+
132
+ trainer:
133
+ #replace_sampler_ddp: False
134
+ benchmark: True
135
+ val_check_interval: 5000000 # really sorry
136
+ num_sanity_val_steps: 0
137
+ accumulate_grad_batches: 1
docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/data/__init__.py ADDED
File without changes
docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/data/base.py ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ from abc import abstractmethod
3
+
4
+ import torch
5
+ from torch.utils.data import Dataset, ConcatDataset, ChainDataset, IterableDataset
6
+ import os
7
+ import numpy as np
8
+ #import cv2
9
+ from PIL import Image
10
+ import torch.distributed as dist
11
+
12
+ def get_rank():
13
+ if not dist.is_available():
14
+ return 0
15
+ if not dist.is_initialized():
16
+ return 0
17
+ return dist.get_rank()
18
+
19
+ class Txt2ImgIterableBaseDataset(IterableDataset):
20
+ '''
21
+ Define an interface to make the IterableDatasets for text2img data chainable
22
+ '''
23
+ def __init__(self, file_path: str, rank, world_size,**kwargs):
24
+ super().__init__()
25
+ self.file_path = file_path
26
+ self.folder_list = []
27
+ self.file_list = []
28
+ self.txt_list = []
29
+ self.info = self._get_file_info(file_path)
30
+ self.start = self.info['start']
31
+ self.end = self.info['end']
32
+ #self.rank = int(rank)
33
+ self.rank = get_rank()
34
+ self.world_size = world_size
35
+ self.per_worker = int(math.floor((self.end - self.start) / float(self.world_size)))
36
+ self.iter_start = self.start + self.rank * self.per_worker
37
+ self.iter_end = min(self.iter_start + self.per_worker, self.end)
38
+ self.num_records = self.iter_end - self.iter_start
39
+ self.valid_ids = [i for i in range(self.iter_end)]
40
+ #self.num_records = self.end - self.start
41
+ #self.valid_ids = [i for i in range(self.end)]
42
+ self.transforms = self.get_transforms(kwargs)
43
+ print(f'{self.__class__.__name__} dataset contains {self.__len__()} examples (rank: {self.rank}/{world_size})\nstart {self.iter_start} end {self.iter_end}')
44
+
45
+ def get_transforms(self,dataset_config):
46
+ import torchvision
47
+ from ldm.util import instantiate_from_config
48
+ from einops import rearrange
49
+ if 'image_transforms' in dataset_config:
50
+ image_transforms = [instantiate_from_config(tt) for tt in dataset_config['image_transforms']]
51
+ else:
52
+ image_transforms = []
53
+
54
+ image_transforms.extend([torchvision.transforms.ToTensor(),
55
+ torchvision.transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
56
+ return torchvision.transforms.Compose(image_transforms)
57
+
58
+ # if 'transforms' in dataset_config:
59
+ # transforms_config = OmegaConf.to_container(dataset_config.transforms)
60
+ # else:
61
+ # transforms_config = dict()
62
+
63
+ # transform_dict = {dkey: load_partial_from_config(transforms_config[dkey])
64
+ # if transforms_config[dkey] != 'identity' else identity
65
+ # for dkey in transforms_config}
66
+ # img_key = dataset_config.get('image_key', 'jpeg')
67
+ # transform_dict.update({img_key: image_transforms})
68
+
69
+ def __len__(self):
70
+ return self.iter_end - self.iter_start
71
+ #return self.end - self.start
72
+
73
+ def __iter__(self):
74
+ #sample_iterator = self._sample_generator(self.start, self.end)
75
+ sample_iterator = self._sample_generator(self.iter_start, self.iter_end)
76
+ return sample_iterator
77
+
78
+ def _sample_generator(self, start, end):
79
+ for idx in range(start, end):
80
+ file_name = self.file_list[idx]
81
+ txt_name = self.txt_list[idx]
82
+ f_ = open(txt_name, 'r')
83
+ txt_ = f_.read()
84
+ f_.close()
85
+ #image = cv2.imdecode(np.fromfile(file_name, dtype=np.uint8), 1)
86
+ #image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
87
+ #image = torch.from_numpy(image) / 255
88
+ image = Image.open(file_name).convert('RGB')
89
+ image = self.transforms(image)
90
+ yield {"caption": txt_, "image":image}
91
+
92
+
93
+ def _get_file_info(self, file_path):
94
+ info = \
95
+ {
96
+ "start": 1,
97
+ "end": 0,
98
+ }
99
+ self.folder_list = [file_path + i for i in os.listdir(file_path) if '.' not in i]
100
+ for folder in self.folder_list:
101
+ files = [folder + '/' + i for i in os.listdir(folder) if 'jpg' in i]
102
+ txts = [k.replace('jpg', 'txt') for k in files]
103
+ self.file_list.extend(files)
104
+ self.txt_list.extend(txts)
105
+ info['end'] = len(self.file_list)
106
+ # with open(file_path, 'r') as fin:
107
+ # for _ in enumerate(fin):
108
+ # info['end'] += 1
109
+ # self.txt_list = [k.replace('jpg', 'txt') for k in self.file_list]
110
+ return info
111
+
112
+ class PRNGMixin(object):
113
+ """
114
+ Adds a prng property which is a numpy RandomState which gets
115
+ reinitialized whenever the pid changes to avoid synchronized sampling
116
+ behavior when used in conjunction with multiprocessing.
117
+ """
118
+ @property
119
+ def prng(self):
120
+ currentpid = os.getpid()
121
+ if getattr(self, "_initpid", None) != currentpid:
122
+ self._initpid = currentpid
123
+ self._prng = np.random.RandomState()
124
+ return self._prng
125
+
docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/data/coco.py ADDED
@@ -0,0 +1,253 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ import albumentations
4
+ import numpy as np
5
+ from PIL import Image
6
+ from tqdm import tqdm
7
+ from torch.utils.data import Dataset
8
+ from abc import abstractmethod
9
+
10
+
11
+ class CocoBase(Dataset):
12
+ """needed for (image, caption, segmentation) pairs"""
13
+ def __init__(self, size=None, dataroot="", datajson="", onehot_segmentation=False, use_stuffthing=False,
14
+ crop_size=None, force_no_crop=False, given_files=None, use_segmentation=True,crop_type=None):
15
+ self.split = self.get_split()
16
+ self.size = size
17
+ if crop_size is None:
18
+ self.crop_size = size
19
+ else:
20
+ self.crop_size = crop_size
21
+
22
+ assert crop_type in [None, 'random', 'center']
23
+ self.crop_type = crop_type
24
+ self.use_segmenation = use_segmentation
25
+ self.onehot = onehot_segmentation # return segmentation as rgb or one hot
26
+ self.stuffthing = use_stuffthing # include thing in segmentation
27
+ if self.onehot and not self.stuffthing:
28
+ raise NotImplemented("One hot mode is only supported for the "
29
+ "stuffthings version because labels are stored "
30
+ "a bit different.")
31
+
32
+ data_json = datajson
33
+ with open(data_json) as json_file:
34
+ self.json_data = json.load(json_file)
35
+ self.img_id_to_captions = dict()
36
+ self.img_id_to_filepath = dict()
37
+ self.img_id_to_segmentation_filepath = dict()
38
+
39
+ assert data_json.split("/")[-1] in [f"captions_train{self.year()}.json",
40
+ f"captions_val{self.year()}.json"]
41
+ # TODO currently hardcoded paths, would be better to follow logic in
42
+ # cocstuff pixelmaps
43
+ if self.use_segmenation:
44
+ if self.stuffthing:
45
+ self.segmentation_prefix = (
46
+ f"data/cocostuffthings/val{self.year()}" if
47
+ data_json.endswith(f"captions_val{self.year()}.json") else
48
+ f"data/cocostuffthings/train{self.year()}")
49
+ else:
50
+ self.segmentation_prefix = (
51
+ f"data/coco/annotations/stuff_val{self.year()}_pixelmaps" if
52
+ data_json.endswith(f"captions_val{self.year()}.json") else
53
+ f"data/coco/annotations/stuff_train{self.year()}_pixelmaps")
54
+
55
+ imagedirs = self.json_data["images"]
56
+ self.labels = {"image_ids": list()}
57
+ for imgdir in tqdm(imagedirs, desc="ImgToPath"):
58
+ self.img_id_to_filepath[imgdir["id"]] = os.path.join(dataroot, imgdir["file_name"])
59
+ self.img_id_to_captions[imgdir["id"]] = list()
60
+ pngfilename = imgdir["file_name"].replace("jpg", "png")
61
+ if self.use_segmenation:
62
+ self.img_id_to_segmentation_filepath[imgdir["id"]] = os.path.join(
63
+ self.segmentation_prefix, pngfilename)
64
+ if given_files is not None:
65
+ if pngfilename in given_files:
66
+ self.labels["image_ids"].append(imgdir["id"])
67
+ else:
68
+ self.labels["image_ids"].append(imgdir["id"])
69
+
70
+ capdirs = self.json_data["annotations"]
71
+ for capdir in tqdm(capdirs, desc="ImgToCaptions"):
72
+ # there are in average 5 captions per image
73
+ #self.img_id_to_captions[capdir["image_id"]].append(np.array([capdir["caption"]]))
74
+ self.img_id_to_captions[capdir["image_id"]].append(capdir["caption"])
75
+
76
+ self.rescaler = albumentations.SmallestMaxSize(max_size=self.size)
77
+ if self.split=="validation":
78
+ self.cropper = albumentations.CenterCrop(height=self.crop_size, width=self.crop_size)
79
+ else:
80
+ # default option for train is random crop
81
+ if self.crop_type in [None, 'random']:
82
+ self.cropper = albumentations.RandomCrop(height=self.crop_size, width=self.crop_size)
83
+ else:
84
+ self.cropper = albumentations.CenterCrop(height=self.crop_size, width=self.crop_size)
85
+ self.preprocessor = albumentations.Compose(
86
+ [self.rescaler, self.cropper],
87
+ additional_targets={"segmentation": "image"})
88
+ if force_no_crop:
89
+ self.rescaler = albumentations.Resize(height=self.size, width=self.size)
90
+ self.preprocessor = albumentations.Compose(
91
+ [self.rescaler],
92
+ additional_targets={"segmentation": "image"})
93
+
94
+ @abstractmethod
95
+ def year(self):
96
+ raise NotImplementedError()
97
+
98
+ def __len__(self):
99
+ return len(self.labels["image_ids"])
100
+
101
+ def preprocess_image(self, image_path, segmentation_path=None):
102
+ image = Image.open(image_path)
103
+ if not image.mode == "RGB":
104
+ image = image.convert("RGB")
105
+ image = np.array(image).astype(np.uint8)
106
+ if segmentation_path:
107
+ segmentation = Image.open(segmentation_path)
108
+ if not self.onehot and not segmentation.mode == "RGB":
109
+ segmentation = segmentation.convert("RGB")
110
+ segmentation = np.array(segmentation).astype(np.uint8)
111
+ if self.onehot:
112
+ assert self.stuffthing
113
+ # stored in caffe format: unlabeled==255. stuff and thing from
114
+ # 0-181. to be compatible with the labels in
115
+ # https://github.com/nightrome/cocostuff/blob/master/labels.txt
116
+ # we shift stuffthing one to the right and put unlabeled in zero
117
+ # as long as segmentation is uint8 shifting to right handles the
118
+ # latter too
119
+ assert segmentation.dtype == np.uint8
120
+ segmentation = segmentation + 1
121
+
122
+ processed = self.preprocessor(image=image, segmentation=segmentation)
123
+
124
+ image, segmentation = processed["image"], processed["segmentation"]
125
+ else:
126
+ image = self.preprocessor(image=image,)['image']
127
+
128
+ image = (image / 127.5 - 1.0).astype(np.float32)
129
+ if segmentation_path:
130
+ if self.onehot:
131
+ assert segmentation.dtype == np.uint8
132
+ # make it one hot
133
+ n_labels = 183
134
+ flatseg = np.ravel(segmentation)
135
+ onehot = np.zeros((flatseg.size, n_labels), dtype=np.bool)
136
+ onehot[np.arange(flatseg.size), flatseg] = True
137
+ onehot = onehot.reshape(segmentation.shape + (n_labels,)).astype(int)
138
+ segmentation = onehot
139
+ else:
140
+ segmentation = (segmentation / 127.5 - 1.0).astype(np.float32)
141
+ return image, segmentation
142
+ else:
143
+ return image
144
+
145
+ def __getitem__(self, i):
146
+ img_path = self.img_id_to_filepath[self.labels["image_ids"][i]]
147
+ if self.use_segmenation:
148
+ seg_path = self.img_id_to_segmentation_filepath[self.labels["image_ids"][i]]
149
+ image, segmentation = self.preprocess_image(img_path, seg_path)
150
+ else:
151
+ image = self.preprocess_image(img_path)
152
+ captions = self.img_id_to_captions[self.labels["image_ids"][i]]
153
+ # randomly draw one of all available captions per image
154
+ caption = captions[np.random.randint(0, len(captions))]
155
+ example = {"image": image,
156
+ #"caption": [str(caption[0])],
157
+ "caption": caption,
158
+ "img_path": img_path,
159
+ "filename_": img_path.split(os.sep)[-1]
160
+ }
161
+ if self.use_segmenation:
162
+ example.update({"seg_path": seg_path, 'segmentation': segmentation})
163
+ return example
164
+
165
+
166
+ class CocoImagesAndCaptionsTrain2017(CocoBase):
167
+ """returns a pair of (image, caption)"""
168
+ def __init__(self, size, onehot_segmentation=False, use_stuffthing=False, crop_size=None, force_no_crop=False,):
169
+ super().__init__(size=size,
170
+ dataroot="data/coco/train2017",
171
+ datajson="data/coco/annotations/captions_train2017.json",
172
+ onehot_segmentation=onehot_segmentation,
173
+ use_stuffthing=use_stuffthing, crop_size=crop_size, force_no_crop=force_no_crop)
174
+
175
+ def get_split(self):
176
+ return "train"
177
+
178
+ def year(self):
179
+ return '2017'
180
+
181
+
182
+ class CocoImagesAndCaptionsValidation2017(CocoBase):
183
+ """returns a pair of (image, caption)"""
184
+ def __init__(self, size, onehot_segmentation=False, use_stuffthing=False, crop_size=None, force_no_crop=False,
185
+ given_files=None):
186
+ super().__init__(size=size,
187
+ dataroot="data/coco/val2017",
188
+ datajson="data/coco/annotations/captions_val2017.json",
189
+ onehot_segmentation=onehot_segmentation,
190
+ use_stuffthing=use_stuffthing, crop_size=crop_size, force_no_crop=force_no_crop,
191
+ given_files=given_files)
192
+
193
+ def get_split(self):
194
+ return "validation"
195
+
196
+ def year(self):
197
+ return '2017'
198
+
199
+
200
+
201
+ class CocoImagesAndCaptionsTrain2014(CocoBase):
202
+ """returns a pair of (image, caption)"""
203
+ def __init__(self, size, onehot_segmentation=False, use_stuffthing=False, crop_size=None, force_no_crop=False,crop_type='random'):
204
+ super().__init__(size=size,
205
+ dataroot="data/coco/train2014",
206
+ datajson="data/coco/annotations2014/annotations/captions_train2014.json",
207
+ onehot_segmentation=onehot_segmentation,
208
+ use_stuffthing=use_stuffthing, crop_size=crop_size, force_no_crop=force_no_crop,
209
+ use_segmentation=False,
210
+ crop_type=crop_type)
211
+
212
+ def get_split(self):
213
+ return "train"
214
+
215
+ def year(self):
216
+ return '2014'
217
+
218
+ class CocoImagesAndCaptionsValidation2014(CocoBase):
219
+ """returns a pair of (image, caption)"""
220
+ def __init__(self, size, onehot_segmentation=False, use_stuffthing=False, crop_size=None, force_no_crop=False,
221
+ given_files=None,crop_type='center',**kwargs):
222
+ super().__init__(size=size,
223
+ dataroot="data/coco/val2014",
224
+ datajson="data/coco/annotations2014/annotations/captions_val2014.json",
225
+ onehot_segmentation=onehot_segmentation,
226
+ use_stuffthing=use_stuffthing, crop_size=crop_size, force_no_crop=force_no_crop,
227
+ given_files=given_files,
228
+ use_segmentation=False,
229
+ crop_type=crop_type)
230
+
231
+ def get_split(self):
232
+ return "validation"
233
+
234
+ def year(self):
235
+ return '2014'
236
+
237
+ if __name__ == '__main__':
238
+ with open("data/coco/annotations2014/annotations/captions_val2014.json", "r") as json_file:
239
+ json_data = json.load(json_file)
240
+ capdirs = json_data["annotations"]
241
+ import pudb; pudb.set_trace()
242
+ #d2 = CocoImagesAndCaptionsTrain2014(size=256)
243
+ d2 = CocoImagesAndCaptionsValidation2014(size=256)
244
+ print("constructed dataset.")
245
+ print(f"length of {d2.__class__.__name__}: {len(d2)}")
246
+
247
+ ex2 = d2[0]
248
+ # ex3 = d3[0]
249
+ # print(ex1["image"].shape)
250
+ print(ex2["image"].shape)
251
+ # print(ex3["image"].shape)
252
+ # print(ex1["segmentation"].shape)
253
+ print(ex2["caption"].__class__.__name__)
docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/data/dummy.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import random
3
+ import string
4
+ from torch.utils.data import Dataset, Subset
5
+
6
+ class DummyData(Dataset):
7
+ def __init__(self, length, size):
8
+ self.length = length
9
+ self.size = size
10
+
11
+ def __len__(self):
12
+ return self.length
13
+
14
+ def __getitem__(self, i):
15
+ x = np.random.randn(*self.size)
16
+ letters = string.ascii_lowercase
17
+ y = ''.join(random.choice(string.ascii_lowercase) for i in range(10))
18
+ return {"jpg": x, "txt": y}
19
+
20
+
21
+ class DummyDataWithEmbeddings(Dataset):
22
+ def __init__(self, length, size, emb_size):
23
+ self.length = length
24
+ self.size = size
25
+ self.emb_size = emb_size
26
+
27
+ def __len__(self):
28
+ return self.length
29
+
30
+ def __getitem__(self, i):
31
+ x = np.random.randn(*self.size)
32
+ y = np.random.randn(*self.emb_size).astype(np.float32)
33
+ return {"jpg": x, "txt": y}
34
+
docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/data/imagenet.py ADDED
@@ -0,0 +1,394 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os, yaml, pickle, shutil, tarfile, glob
2
+ import cv2
3
+ import albumentations
4
+ import PIL
5
+ import numpy as np
6
+ import torchvision.transforms.functional as TF
7
+ from omegaconf import OmegaConf
8
+ from functools import partial
9
+ from PIL import Image
10
+ from tqdm import tqdm
11
+ from torch.utils.data import Dataset, Subset
12
+
13
+ import taming.data.utils as tdu
14
+ from taming.data.imagenet import str_to_indices, give_synsets_from_indices, download, retrieve
15
+ from taming.data.imagenet import ImagePaths
16
+
17
+ from ldm.modules.image_degradation import degradation_fn_bsr, degradation_fn_bsr_light
18
+
19
+
20
+ def synset2idx(path_to_yaml="data/index_synset.yaml"):
21
+ with open(path_to_yaml) as f:
22
+ di2s = yaml.load(f)
23
+ return dict((v,k) for k,v in di2s.items())
24
+
25
+
26
+ class ImageNetBase(Dataset):
27
+ def __init__(self, config=None):
28
+ self.config = config or OmegaConf.create()
29
+ if not type(self.config)==dict:
30
+ self.config = OmegaConf.to_container(self.config)
31
+ self.keep_orig_class_label = self.config.get("keep_orig_class_label", False)
32
+ self.process_images = True # if False we skip loading & processing images and self.data contains filepaths
33
+ self._prepare()
34
+ self._prepare_synset_to_human()
35
+ self._prepare_idx_to_synset()
36
+ self._prepare_human_to_integer_label()
37
+ self._load()
38
+
39
+ def __len__(self):
40
+ return len(self.data)
41
+
42
+ def __getitem__(self, i):
43
+ return self.data[i]
44
+
45
+ def _prepare(self):
46
+ raise NotImplementedError()
47
+
48
+ def _filter_relpaths(self, relpaths):
49
+ ignore = set([
50
+ "n06596364_9591.JPEG",
51
+ ])
52
+ relpaths = [rpath for rpath in relpaths if not rpath.split("/")[-1] in ignore]
53
+ if "sub_indices" in self.config:
54
+ indices = str_to_indices(self.config["sub_indices"])
55
+ synsets = give_synsets_from_indices(indices, path_to_yaml=self.idx2syn) # returns a list of strings
56
+ self.synset2idx = synset2idx(path_to_yaml=self.idx2syn)
57
+ files = []
58
+ for rpath in relpaths:
59
+ syn = rpath.split("/")[0]
60
+ if syn in synsets:
61
+ files.append(rpath)
62
+ return files
63
+ else:
64
+ return relpaths
65
+
66
+ def _prepare_synset_to_human(self):
67
+ SIZE = 2655750
68
+ URL = "https://heibox.uni-heidelberg.de/f/9f28e956cd304264bb82/?dl=1"
69
+ self.human_dict = os.path.join(self.root, "synset_human.txt")
70
+ if (not os.path.exists(self.human_dict) or
71
+ not os.path.getsize(self.human_dict)==SIZE):
72
+ download(URL, self.human_dict)
73
+
74
+ def _prepare_idx_to_synset(self):
75
+ URL = "https://heibox.uni-heidelberg.de/f/d835d5b6ceda4d3aa910/?dl=1"
76
+ self.idx2syn = os.path.join(self.root, "index_synset.yaml")
77
+ if (not os.path.exists(self.idx2syn)):
78
+ download(URL, self.idx2syn)
79
+
80
+ def _prepare_human_to_integer_label(self):
81
+ URL = "https://heibox.uni-heidelberg.de/f/2362b797d5be43b883f6/?dl=1"
82
+ self.human2integer = os.path.join(self.root, "imagenet1000_clsidx_to_labels.txt")
83
+ if (not os.path.exists(self.human2integer)):
84
+ download(URL, self.human2integer)
85
+ with open(self.human2integer, "r") as f:
86
+ lines = f.read().splitlines()
87
+ assert len(lines) == 1000
88
+ self.human2integer_dict = dict()
89
+ for line in lines:
90
+ value, key = line.split(":")
91
+ self.human2integer_dict[key] = int(value)
92
+
93
+ def _load(self):
94
+ with open(self.txt_filelist, "r") as f:
95
+ self.relpaths = f.read().splitlines()
96
+ l1 = len(self.relpaths)
97
+ self.relpaths = self._filter_relpaths(self.relpaths)
98
+ print("Removed {} files from filelist during filtering.".format(l1 - len(self.relpaths)))
99
+
100
+ self.synsets = [p.split("/")[0] for p in self.relpaths]
101
+ self.abspaths = [os.path.join(self.datadir, p) for p in self.relpaths]
102
+
103
+ unique_synsets = np.unique(self.synsets)
104
+ class_dict = dict((synset, i) for i, synset in enumerate(unique_synsets))
105
+ if not self.keep_orig_class_label:
106
+ self.class_labels = [class_dict[s] for s in self.synsets]
107
+ else:
108
+ self.class_labels = [self.synset2idx[s] for s in self.synsets]
109
+
110
+ with open(self.human_dict, "r") as f:
111
+ human_dict = f.read().splitlines()
112
+ human_dict = dict(line.split(maxsplit=1) for line in human_dict)
113
+
114
+ self.human_labels = [human_dict[s] for s in self.synsets]
115
+
116
+ labels = {
117
+ "relpath": np.array(self.relpaths),
118
+ "synsets": np.array(self.synsets),
119
+ "class_label": np.array(self.class_labels),
120
+ "human_label": np.array(self.human_labels),
121
+ }
122
+
123
+ if self.process_images:
124
+ self.size = retrieve(self.config, "size", default=256)
125
+ self.data = ImagePaths(self.abspaths,
126
+ labels=labels,
127
+ size=self.size,
128
+ random_crop=self.random_crop,
129
+ )
130
+ else:
131
+ self.data = self.abspaths
132
+
133
+
134
+ class ImageNetTrain(ImageNetBase):
135
+ NAME = "ILSVRC2012_train"
136
+ URL = "http://www.image-net.org/challenges/LSVRC/2012/"
137
+ AT_HASH = "a306397ccf9c2ead27155983c254227c0fd938e2"
138
+ FILES = [
139
+ "ILSVRC2012_img_train.tar",
140
+ ]
141
+ SIZES = [
142
+ 147897477120,
143
+ ]
144
+
145
+ def __init__(self, process_images=True, data_root=None, **kwargs):
146
+ self.process_images = process_images
147
+ self.data_root = data_root
148
+ super().__init__(**kwargs)
149
+
150
+ def _prepare(self):
151
+ if self.data_root:
152
+ self.root = os.path.join(self.data_root, self.NAME)
153
+ else:
154
+ cachedir = os.environ.get("XDG_CACHE_HOME", os.path.expanduser("~/.cache"))
155
+ self.root = os.path.join(cachedir, "autoencoders/data", self.NAME)
156
+
157
+ self.datadir = os.path.join(self.root, "data")
158
+ self.txt_filelist = os.path.join(self.root, "filelist.txt")
159
+ self.expected_length = 1281167
160
+ self.random_crop = retrieve(self.config, "ImageNetTrain/random_crop",
161
+ default=True)
162
+ if not tdu.is_prepared(self.root):
163
+ # prep
164
+ print("Preparing dataset {} in {}".format(self.NAME, self.root))
165
+
166
+ datadir = self.datadir
167
+ if not os.path.exists(datadir):
168
+ path = os.path.join(self.root, self.FILES[0])
169
+ if not os.path.exists(path) or not os.path.getsize(path)==self.SIZES[0]:
170
+ import academictorrents as at
171
+ atpath = at.get(self.AT_HASH, datastore=self.root)
172
+ assert atpath == path
173
+
174
+ print("Extracting {} to {}".format(path, datadir))
175
+ os.makedirs(datadir, exist_ok=True)
176
+ with tarfile.open(path, "r:") as tar:
177
+ tar.extractall(path=datadir)
178
+
179
+ print("Extracting sub-tars.")
180
+ subpaths = sorted(glob.glob(os.path.join(datadir, "*.tar")))
181
+ for subpath in tqdm(subpaths):
182
+ subdir = subpath[:-len(".tar")]
183
+ os.makedirs(subdir, exist_ok=True)
184
+ with tarfile.open(subpath, "r:") as tar:
185
+ tar.extractall(path=subdir)
186
+
187
+ filelist = glob.glob(os.path.join(datadir, "**", "*.JPEG"))
188
+ filelist = [os.path.relpath(p, start=datadir) for p in filelist]
189
+ filelist = sorted(filelist)
190
+ filelist = "\n".join(filelist)+"\n"
191
+ with open(self.txt_filelist, "w") as f:
192
+ f.write(filelist)
193
+
194
+ tdu.mark_prepared(self.root)
195
+
196
+
197
+ class ImageNetValidation(ImageNetBase):
198
+ NAME = "ILSVRC2012_validation"
199
+ URL = "http://www.image-net.org/challenges/LSVRC/2012/"
200
+ AT_HASH = "5d6d0df7ed81efd49ca99ea4737e0ae5e3a5f2e5"
201
+ VS_URL = "https://heibox.uni-heidelberg.de/f/3e0f6e9c624e45f2bd73/?dl=1"
202
+ FILES = [
203
+ "ILSVRC2012_img_val.tar",
204
+ "validation_synset.txt",
205
+ ]
206
+ SIZES = [
207
+ 6744924160,
208
+ 1950000,
209
+ ]
210
+
211
+ def __init__(self, process_images=True, data_root=None, **kwargs):
212
+ self.data_root = data_root
213
+ self.process_images = process_images
214
+ super().__init__(**kwargs)
215
+
216
+ def _prepare(self):
217
+ if self.data_root:
218
+ self.root = os.path.join(self.data_root, self.NAME)
219
+ else:
220
+ cachedir = os.environ.get("XDG_CACHE_HOME", os.path.expanduser("~/.cache"))
221
+ self.root = os.path.join(cachedir, "autoencoders/data", self.NAME)
222
+ self.datadir = os.path.join(self.root, "data")
223
+ self.txt_filelist = os.path.join(self.root, "filelist.txt")
224
+ self.expected_length = 50000
225
+ self.random_crop = retrieve(self.config, "ImageNetValidation/random_crop",
226
+ default=False)
227
+ if not tdu.is_prepared(self.root):
228
+ # prep
229
+ print("Preparing dataset {} in {}".format(self.NAME, self.root))
230
+
231
+ datadir = self.datadir
232
+ if not os.path.exists(datadir):
233
+ path = os.path.join(self.root, self.FILES[0])
234
+ if not os.path.exists(path) or not os.path.getsize(path)==self.SIZES[0]:
235
+ import academictorrents as at
236
+ atpath = at.get(self.AT_HASH, datastore=self.root)
237
+ assert atpath == path
238
+
239
+ print("Extracting {} to {}".format(path, datadir))
240
+ os.makedirs(datadir, exist_ok=True)
241
+ with tarfile.open(path, "r:") as tar:
242
+ tar.extractall(path=datadir)
243
+
244
+ vspath = os.path.join(self.root, self.FILES[1])
245
+ if not os.path.exists(vspath) or not os.path.getsize(vspath)==self.SIZES[1]:
246
+ download(self.VS_URL, vspath)
247
+
248
+ with open(vspath, "r") as f:
249
+ synset_dict = f.read().splitlines()
250
+ synset_dict = dict(line.split() for line in synset_dict)
251
+
252
+ print("Reorganizing into synset folders")
253
+ synsets = np.unique(list(synset_dict.values()))
254
+ for s in synsets:
255
+ os.makedirs(os.path.join(datadir, s), exist_ok=True)
256
+ for k, v in synset_dict.items():
257
+ src = os.path.join(datadir, k)
258
+ dst = os.path.join(datadir, v)
259
+ shutil.move(src, dst)
260
+
261
+ filelist = glob.glob(os.path.join(datadir, "**", "*.JPEG"))
262
+ filelist = [os.path.relpath(p, start=datadir) for p in filelist]
263
+ filelist = sorted(filelist)
264
+ filelist = "\n".join(filelist)+"\n"
265
+ with open(self.txt_filelist, "w") as f:
266
+ f.write(filelist)
267
+
268
+ tdu.mark_prepared(self.root)
269
+
270
+
271
+
272
+ class ImageNetSR(Dataset):
273
+ def __init__(self, size=None,
274
+ degradation=None, downscale_f=4, min_crop_f=0.5, max_crop_f=1.,
275
+ random_crop=True):
276
+ """
277
+ Imagenet Superresolution Dataloader
278
+ Performs following ops in order:
279
+ 1. crops a crop of size s from image either as random or center crop
280
+ 2. resizes crop to size with cv2.area_interpolation
281
+ 3. degrades resized crop with degradation_fn
282
+
283
+ :param size: resizing to size after cropping
284
+ :param degradation: degradation_fn, e.g. cv_bicubic or bsrgan_light
285
+ :param downscale_f: Low Resolution Downsample factor
286
+ :param min_crop_f: determines crop size s,
287
+ where s = c * min_img_side_len with c sampled from interval (min_crop_f, max_crop_f)
288
+ :param max_crop_f: ""
289
+ :param data_root:
290
+ :param random_crop:
291
+ """
292
+ self.base = self.get_base()
293
+ assert size
294
+ assert (size / downscale_f).is_integer()
295
+ self.size = size
296
+ self.LR_size = int(size / downscale_f)
297
+ self.min_crop_f = min_crop_f
298
+ self.max_crop_f = max_crop_f
299
+ assert(max_crop_f <= 1.)
300
+ self.center_crop = not random_crop
301
+
302
+ self.image_rescaler = albumentations.SmallestMaxSize(max_size=size, interpolation=cv2.INTER_AREA)
303
+
304
+ self.pil_interpolation = False # gets reset later if incase interp_op is from pillow
305
+
306
+ if degradation == "bsrgan":
307
+ self.degradation_process = partial(degradation_fn_bsr, sf=downscale_f)
308
+
309
+ elif degradation == "bsrgan_light":
310
+ self.degradation_process = partial(degradation_fn_bsr_light, sf=downscale_f)
311
+
312
+ else:
313
+ interpolation_fn = {
314
+ "cv_nearest": cv2.INTER_NEAREST,
315
+ "cv_bilinear": cv2.INTER_LINEAR,
316
+ "cv_bicubic": cv2.INTER_CUBIC,
317
+ "cv_area": cv2.INTER_AREA,
318
+ "cv_lanczos": cv2.INTER_LANCZOS4,
319
+ "pil_nearest": PIL.Image.NEAREST,
320
+ "pil_bilinear": PIL.Image.BILINEAR,
321
+ "pil_bicubic": PIL.Image.BICUBIC,
322
+ "pil_box": PIL.Image.BOX,
323
+ "pil_hamming": PIL.Image.HAMMING,
324
+ "pil_lanczos": PIL.Image.LANCZOS,
325
+ }[degradation]
326
+
327
+ self.pil_interpolation = degradation.startswith("pil_")
328
+
329
+ if self.pil_interpolation:
330
+ self.degradation_process = partial(TF.resize, size=self.LR_size, interpolation=interpolation_fn)
331
+
332
+ else:
333
+ self.degradation_process = albumentations.SmallestMaxSize(max_size=self.LR_size,
334
+ interpolation=interpolation_fn)
335
+
336
+ def __len__(self):
337
+ return len(self.base)
338
+
339
+ def __getitem__(self, i):
340
+ example = self.base[i]
341
+ image = Image.open(example["file_path_"])
342
+
343
+ if not image.mode == "RGB":
344
+ image = image.convert("RGB")
345
+
346
+ image = np.array(image).astype(np.uint8)
347
+
348
+ min_side_len = min(image.shape[:2])
349
+ crop_side_len = min_side_len * np.random.uniform(self.min_crop_f, self.max_crop_f, size=None)
350
+ crop_side_len = int(crop_side_len)
351
+
352
+ if self.center_crop:
353
+ self.cropper = albumentations.CenterCrop(height=crop_side_len, width=crop_side_len)
354
+
355
+ else:
356
+ self.cropper = albumentations.RandomCrop(height=crop_side_len, width=crop_side_len)
357
+
358
+ image = self.cropper(image=image)["image"]
359
+ image = self.image_rescaler(image=image)["image"]
360
+
361
+ if self.pil_interpolation:
362
+ image_pil = PIL.Image.fromarray(image)
363
+ LR_image = self.degradation_process(image_pil)
364
+ LR_image = np.array(LR_image).astype(np.uint8)
365
+
366
+ else:
367
+ LR_image = self.degradation_process(image=image)["image"]
368
+
369
+ example["image"] = (image/127.5 - 1.0).astype(np.float32)
370
+ example["LR_image"] = (LR_image/127.5 - 1.0).astype(np.float32)
371
+ example["caption"] = example["human_label"] # dummy caption
372
+ return example
373
+
374
+
375
+ class ImageNetSRTrain(ImageNetSR):
376
+ def __init__(self, **kwargs):
377
+ super().__init__(**kwargs)
378
+
379
+ def get_base(self):
380
+ with open("data/imagenet_train_hr_indices.p", "rb") as f:
381
+ indices = pickle.load(f)
382
+ dset = ImageNetTrain(process_images=False,)
383
+ return Subset(dset, indices)
384
+
385
+
386
+ class ImageNetSRValidation(ImageNetSR):
387
+ def __init__(self, **kwargs):
388
+ super().__init__(**kwargs)
389
+
390
+ def get_base(self):
391
+ with open("data/imagenet_val_hr_indices.p", "rb") as f:
392
+ indices = pickle.load(f)
393
+ dset = ImageNetValidation(process_images=False,)
394
+ return Subset(dset, indices)
docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/data/inpainting/__init__.py ADDED
File without changes
docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/data/inpainting/synthetic_mask.py ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from PIL import Image, ImageDraw
2
+ import numpy as np
3
+
4
+ settings = {
5
+ "256narrow": {
6
+ "p_irr": 1,
7
+ "min_n_irr": 4,
8
+ "max_n_irr": 50,
9
+ "max_l_irr": 40,
10
+ "max_w_irr": 10,
11
+ "min_n_box": None,
12
+ "max_n_box": None,
13
+ "min_s_box": None,
14
+ "max_s_box": None,
15
+ "marg": None,
16
+ },
17
+ "256train": {
18
+ "p_irr": 0.5,
19
+ "min_n_irr": 1,
20
+ "max_n_irr": 5,
21
+ "max_l_irr": 200,
22
+ "max_w_irr": 100,
23
+ "min_n_box": 1,
24
+ "max_n_box": 4,
25
+ "min_s_box": 30,
26
+ "max_s_box": 150,
27
+ "marg": 10,
28
+ },
29
+ "512train": { # TODO: experimental
30
+ "p_irr": 0.5,
31
+ "min_n_irr": 1,
32
+ "max_n_irr": 5,
33
+ "max_l_irr": 450,
34
+ "max_w_irr": 250,
35
+ "min_n_box": 1,
36
+ "max_n_box": 4,
37
+ "min_s_box": 30,
38
+ "max_s_box": 300,
39
+ "marg": 10,
40
+ },
41
+ "512train-large": { # TODO: experimental
42
+ "p_irr": 0.5,
43
+ "min_n_irr": 1,
44
+ "max_n_irr": 5,
45
+ "max_l_irr": 450,
46
+ "max_w_irr": 400,
47
+ "min_n_box": 1,
48
+ "max_n_box": 4,
49
+ "min_s_box": 75,
50
+ "max_s_box": 450,
51
+ "marg": 10,
52
+ },
53
+ }
54
+
55
+
56
+ def gen_segment_mask(mask, start, end, brush_width):
57
+ mask = mask > 0
58
+ mask = (255 * mask).astype(np.uint8)
59
+ mask = Image.fromarray(mask)
60
+ draw = ImageDraw.Draw(mask)
61
+ draw.line([start, end], fill=255, width=brush_width, joint="curve")
62
+ mask = np.array(mask) / 255
63
+ return mask
64
+
65
+
66
+ def gen_box_mask(mask, masked):
67
+ x_0, y_0, w, h = masked
68
+ mask[y_0:y_0 + h, x_0:x_0 + w] = 1
69
+ return mask
70
+
71
+
72
+ def gen_round_mask(mask, masked, radius):
73
+ x_0, y_0, w, h = masked
74
+ xy = [(x_0, y_0), (x_0 + w, y_0 + w)]
75
+
76
+ mask = mask > 0
77
+ mask = (255 * mask).astype(np.uint8)
78
+ mask = Image.fromarray(mask)
79
+ draw = ImageDraw.Draw(mask)
80
+ draw.rounded_rectangle(xy, radius=radius, fill=255)
81
+ mask = np.array(mask) / 255
82
+ return mask
83
+
84
+
85
+ def gen_large_mask(prng, img_h, img_w,
86
+ marg, p_irr, min_n_irr, max_n_irr, max_l_irr, max_w_irr,
87
+ min_n_box, max_n_box, min_s_box, max_s_box):
88
+ """
89
+ img_h: int, an image height
90
+ img_w: int, an image width
91
+ marg: int, a margin for a box starting coordinate
92
+ p_irr: float, 0 <= p_irr <= 1, a probability of a polygonal chain mask
93
+
94
+ min_n_irr: int, min number of segments
95
+ max_n_irr: int, max number of segments
96
+ max_l_irr: max length of a segment in polygonal chain
97
+ max_w_irr: max width of a segment in polygonal chain
98
+
99
+ min_n_box: int, min bound for the number of box primitives
100
+ max_n_box: int, max bound for the number of box primitives
101
+ min_s_box: int, min length of a box side
102
+ max_s_box: int, max length of a box side
103
+ """
104
+
105
+ mask = np.zeros((img_h, img_w))
106
+ uniform = prng.randint
107
+
108
+ if np.random.uniform(0, 1) < p_irr: # generate polygonal chain
109
+ n = uniform(min_n_irr, max_n_irr) # sample number of segments
110
+
111
+ for _ in range(n):
112
+ y = uniform(0, img_h) # sample a starting point
113
+ x = uniform(0, img_w)
114
+
115
+ a = uniform(0, 360) # sample angle
116
+ l = uniform(10, max_l_irr) # sample segment length
117
+ w = uniform(5, max_w_irr) # sample a segment width
118
+
119
+ # draw segment starting from (x,y) to (x_,y_) using brush of width w
120
+ x_ = x + l * np.sin(a)
121
+ y_ = y + l * np.cos(a)
122
+
123
+ mask = gen_segment_mask(mask, start=(x, y), end=(x_, y_), brush_width=w)
124
+ x, y = x_, y_
125
+ else: # generate Box masks
126
+ n = uniform(min_n_box, max_n_box) # sample number of rectangles
127
+
128
+ for _ in range(n):
129
+ h = uniform(min_s_box, max_s_box) # sample box shape
130
+ w = uniform(min_s_box, max_s_box)
131
+
132
+ x_0 = uniform(marg, img_w - marg - w) # sample upper-left coordinates of box
133
+ y_0 = uniform(marg, img_h - marg - h)
134
+
135
+ if np.random.uniform(0, 1) < 0.5:
136
+ mask = gen_box_mask(mask, masked=(x_0, y_0, w, h))
137
+ else:
138
+ r = uniform(0, 60) # sample radius
139
+ mask = gen_round_mask(mask, masked=(x_0, y_0, w, h), radius=r)
140
+ return mask
141
+
142
+
143
+ make_lama_mask = lambda prng, h, w: gen_large_mask(prng, h, w, **settings["256train"])
144
+ make_narrow_lama_mask = lambda prng, h, w: gen_large_mask(prng, h, w, **settings["256narrow"])
145
+ make_512_lama_mask = lambda prng, h, w: gen_large_mask(prng, h, w, **settings["512train"])
146
+ make_512_lama_mask_large = lambda prng, h, w: gen_large_mask(prng, h, w, **settings["512train-large"])
147
+
148
+
149
+ MASK_MODES = {
150
+ "256train": make_lama_mask,
151
+ "256narrow": make_narrow_lama_mask,
152
+ "512train": make_512_lama_mask,
153
+ "512train-large": make_512_lama_mask_large
154
+ }
155
+
156
+ if __name__ == "__main__":
157
+ import sys
158
+
159
+ out = sys.argv[1]
160
+
161
+ prng = np.random.RandomState(1)
162
+ kwargs = settings["256train"]
163
+ mask = gen_large_mask(prng, 256, 256, **kwargs)
164
+ mask = (255 * mask).astype(np.uint8)
165
+ mask = Image.fromarray(mask)
166
+ mask.save(out)
docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/data/laion.py ADDED
@@ -0,0 +1,516 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import webdataset as wds
2
+ import kornia
3
+ from PIL import Image
4
+ import io
5
+ import os
6
+ import torchvision
7
+ from PIL import Image
8
+ import glob
9
+ import random
10
+ import numpy as np
11
+ from lightning_utilities import module_available
12
+
13
+ if module_available("lightning"):
14
+ import lightning.pytorch as pl
15
+ elif module_available("pytorch_lightning"):
16
+ import pytorch_lightning as pl
17
+ from tqdm import tqdm
18
+ from omegaconf import OmegaConf
19
+ from einops import rearrange
20
+ import torch
21
+ from webdataset.handlers import warn_and_continue
22
+
23
+
24
+ from ldm.util import instantiate_from_config
25
+ from ldm.data.inpainting.synthetic_mask import gen_large_mask, MASK_MODES
26
+ from ldm.data.base import PRNGMixin
27
+
28
+
29
+ class DataWithWings(torch.utils.data.IterableDataset):
30
+ def __init__(self, min_size, transform=None, target_transform=None):
31
+ self.min_size = min_size
32
+ self.transform = transform if transform is not None else nn.Identity()
33
+ self.target_transform = target_transform if target_transform is not None else nn.Identity()
34
+ self.kv = OnDiskKV(file='/home/ubuntu/laion5B-watermark-safety-ordered', key_format='q', value_format='ee')
35
+ self.kv_aesthetic = OnDiskKV(file='/home/ubuntu/laion5B-aesthetic-tags-kv', key_format='q', value_format='e')
36
+ self.pwatermark_threshold = 0.8
37
+ self.punsafe_threshold = 0.5
38
+ self.aesthetic_threshold = 5.
39
+ self.total_samples = 0
40
+ self.samples = 0
41
+ location = 'pipe:aws s3 cp --quiet s3://s-datasets/laion5b/laion2B-data/{000000..231349}.tar -'
42
+
43
+ self.inner_dataset = wds.DataPipeline(
44
+ wds.ResampledShards(location),
45
+ wds.tarfile_to_samples(handler=wds.warn_and_continue),
46
+ wds.shuffle(1000, handler=wds.warn_and_continue),
47
+ wds.decode('pilrgb', handler=wds.warn_and_continue),
48
+ wds.map(self._add_tags, handler=wds.ignore_and_continue),
49
+ wds.select(self._filter_predicate),
50
+ wds.map_dict(jpg=self.transform, txt=self.target_transform, punsafe=self._punsafe_to_class, handler=wds.warn_and_continue),
51
+ wds.to_tuple('jpg', 'txt', 'punsafe', handler=wds.warn_and_continue),
52
+ )
53
+
54
+ @staticmethod
55
+ def _compute_hash(url, text):
56
+ if url is None:
57
+ url = ''
58
+ if text is None:
59
+ text = ''
60
+ total = (url + text).encode('utf-8')
61
+ return mmh3.hash64(total)[0]
62
+
63
+ def _add_tags(self, x):
64
+ hsh = self._compute_hash(x['json']['url'], x['txt'])
65
+ pwatermark, punsafe = self.kv[hsh]
66
+ aesthetic = self.kv_aesthetic[hsh][0]
67
+ return {**x, 'pwatermark': pwatermark, 'punsafe': punsafe, 'aesthetic': aesthetic}
68
+
69
+ def _punsafe_to_class(self, punsafe):
70
+ return torch.tensor(punsafe >= self.punsafe_threshold).long()
71
+
72
+ def _filter_predicate(self, x):
73
+ try:
74
+ return x['pwatermark'] < self.pwatermark_threshold and x['aesthetic'] >= self.aesthetic_threshold and x['json']['original_width'] >= self.min_size and x['json']['original_height'] >= self.min_size
75
+ except:
76
+ return False
77
+
78
+ def __iter__(self):
79
+ return iter(self.inner_dataset)
80
+
81
+
82
+ def dict_collation_fn(samples, combine_tensors=True, combine_scalars=True):
83
+ """Take a list of samples (as dictionary) and create a batch, preserving the keys.
84
+ If `tensors` is True, `ndarray` objects are combined into
85
+ tensor batches.
86
+ :param dict samples: list of samples
87
+ :param bool tensors: whether to turn lists of ndarrays into a single ndarray
88
+ :returns: single sample consisting of a batch
89
+ :rtype: dict
90
+ """
91
+ keys = set.intersection(*[set(sample.keys()) for sample in samples])
92
+ batched = {key: [] for key in keys}
93
+
94
+ for s in samples:
95
+ [batched[key].append(s[key]) for key in batched]
96
+
97
+ result = {}
98
+ for key in batched:
99
+ if isinstance(batched[key][0], (int, float)):
100
+ if combine_scalars:
101
+ result[key] = np.array(list(batched[key]))
102
+ elif isinstance(batched[key][0], torch.Tensor):
103
+ if combine_tensors:
104
+ result[key] = torch.stack(list(batched[key]))
105
+ elif isinstance(batched[key][0], np.ndarray):
106
+ if combine_tensors:
107
+ result[key] = np.array(list(batched[key]))
108
+ else:
109
+ result[key] = list(batched[key])
110
+ return result
111
+
112
+
113
+ class WebDataModuleFromConfig(pl.LightningDataModule):
114
+ def __init__(self, tar_base, batch_size, train=None, validation=None,
115
+ test=None, num_workers=4, multinode=True, min_size=None,
116
+ max_pwatermark=1.0,
117
+ **kwargs):
118
+ super().__init__()
119
+ print(f'Setting tar base to {tar_base}')
120
+ self.tar_base = tar_base
121
+ self.batch_size = batch_size
122
+ self.num_workers = num_workers
123
+ self.train = train
124
+ self.validation = validation
125
+ self.test = test
126
+ self.multinode = multinode
127
+ self.min_size = min_size # filter out very small images
128
+ self.max_pwatermark = max_pwatermark # filter out watermarked images
129
+
130
+ def make_loader(self, dataset_config, train=True):
131
+ if 'image_transforms' in dataset_config:
132
+ image_transforms = [instantiate_from_config(tt) for tt in dataset_config.image_transforms]
133
+ else:
134
+ image_transforms = []
135
+
136
+ image_transforms.extend([torchvision.transforms.ToTensor(),
137
+ torchvision.transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
138
+ image_transforms = torchvision.transforms.Compose(image_transforms)
139
+
140
+ if 'transforms' in dataset_config:
141
+ transforms_config = OmegaConf.to_container(dataset_config.transforms)
142
+ else:
143
+ transforms_config = dict()
144
+
145
+ transform_dict = {dkey: load_partial_from_config(transforms_config[dkey])
146
+ if transforms_config[dkey] != 'identity' else identity
147
+ for dkey in transforms_config}
148
+ img_key = dataset_config.get('image_key', 'jpeg')
149
+ transform_dict.update({img_key: image_transforms})
150
+
151
+ if 'postprocess' in dataset_config:
152
+ postprocess = instantiate_from_config(dataset_config['postprocess'])
153
+ else:
154
+ postprocess = None
155
+
156
+ shuffle = dataset_config.get('shuffle', 0)
157
+ shardshuffle = shuffle > 0
158
+
159
+ nodesplitter = wds.shardlists.split_by_node if self.multinode else wds.shardlists.single_node_only
160
+
161
+ if self.tar_base == "__improvedaesthetic__":
162
+ print("## Warning, loading the same improved aesthetic dataset "
163
+ "for all splits and ignoring shards parameter.")
164
+ tars = "pipe:aws s3 cp s3://s-laion/improved-aesthetics-laion-2B-en-subsets/aesthetics_tars/{000000..060207}.tar -"
165
+ else:
166
+ tars = os.path.join(self.tar_base, dataset_config.shards)
167
+
168
+ dset = wds.WebDataset(
169
+ tars,
170
+ nodesplitter=nodesplitter,
171
+ shardshuffle=shardshuffle,
172
+ handler=wds.warn_and_continue).repeat().shuffle(shuffle)
173
+ print(f'Loading webdataset with {len(dset.pipeline[0].urls)} shards.')
174
+
175
+ dset = (dset
176
+ .select(self.filter_keys)
177
+ .decode('pil', handler=wds.warn_and_continue)
178
+ .select(self.filter_size)
179
+ .map_dict(**transform_dict, handler=wds.warn_and_continue)
180
+ )
181
+ if postprocess is not None:
182
+ dset = dset.map(postprocess)
183
+ dset = (dset
184
+ .batched(self.batch_size, partial=False,
185
+ collation_fn=dict_collation_fn)
186
+ )
187
+
188
+ num_workers = self.num_workers
189
+ if not train:
190
+ num_workers = 1
191
+ loader = wds.WebLoader(dset, batch_size=None, shuffle=False,
192
+ num_workers=num_workers)
193
+
194
+ return loader
195
+
196
+ def filter_size(self, x):
197
+ try:
198
+ valid = True
199
+ if self.min_size is not None and self.min_size > 1:
200
+ try:
201
+ valid = valid and x['json']['original_width'] >= self.min_size and x['json']['original_height'] >= self.min_size
202
+ except Exception:
203
+ valid = False
204
+ if self.max_pwatermark is not None and self.max_pwatermark < 1.0:
205
+ try:
206
+ valid = valid and x['json']['pwatermark'] <= self.max_pwatermark
207
+ except Exception:
208
+ valid = False
209
+ return valid
210
+ except Exception:
211
+ return False
212
+
213
+ def filter_keys(self, x):
214
+ try:
215
+ return ("jpg" in x) and ("txt" in x)
216
+ except Exception:
217
+ return False
218
+
219
+ def train_dataloader(self):
220
+ return self.make_loader(self.train)
221
+
222
+ def val_dataloader(self):
223
+ return self.make_loader(self.validation, train=False)
224
+
225
+ def test_dataloader(self):
226
+ return self.make_loader(self.test, train=False)
227
+
228
+
229
+ from ldm.modules.image_degradation import degradation_fn_bsr_light
230
+
231
+ class AddLR(object):
232
+ def __init__(self, factor):
233
+ self.factor = factor
234
+
235
+ def pt2np(self, x):
236
+ x = ((x+1.0)*127.5).clamp(0, 255).to(dtype=torch.uint8).detach().cpu().numpy()
237
+ return x
238
+
239
+ def np2pt(self, x):
240
+ x = torch.from_numpy(x)/127.5-1.0
241
+ return x
242
+
243
+ def __call__(self, sample):
244
+ # sample['jpg'] is tensor hwc in [-1, 1] at this point
245
+ x = self.pt2np(sample['jpg'])
246
+ x = degradation_fn_bsr_light(x, sf=self.factor)['image']
247
+ x = self.np2pt(x)
248
+ sample['lr'] = x
249
+ return sample
250
+
251
+
252
+ class AddMask(PRNGMixin):
253
+ def __init__(self, mode="512train", p_drop=0.):
254
+ super().__init__()
255
+ assert mode in list(MASK_MODES.keys()), f'unknown mask generation mode "{mode}"'
256
+ self.make_mask = MASK_MODES[mode]
257
+ self.p_drop = p_drop
258
+
259
+ def __call__(self, sample):
260
+ # sample['jpg'] is tensor hwc in [-1, 1] at this point
261
+ x = sample['jpg']
262
+ mask = self.make_mask(self.prng, x.shape[0], x.shape[1])
263
+ if self.prng.choice(2, p=[1 - self.p_drop, self.p_drop]):
264
+ mask = np.ones_like(mask)
265
+ mask[mask < 0.5] = 0
266
+ mask[mask > 0.5] = 1
267
+ mask = torch.from_numpy(mask[..., None])
268
+ sample['mask'] = mask
269
+ sample['masked_image'] = x * (mask < 0.5)
270
+ return sample
271
+
272
+
273
+ class AddEdge(PRNGMixin):
274
+ def __init__(self, mode="512train", mask_edges=True):
275
+ super().__init__()
276
+ assert mode in list(MASK_MODES.keys()), f'unknown mask generation mode "{mode}"'
277
+ self.make_mask = MASK_MODES[mode]
278
+ self.n_down_choices = [0]
279
+ self.sigma_choices = [1, 2]
280
+ self.mask_edges = mask_edges
281
+
282
+ @torch.no_grad()
283
+ def __call__(self, sample):
284
+ # sample['jpg'] is tensor hwc in [-1, 1] at this point
285
+ x = sample['jpg']
286
+
287
+ mask = self.make_mask(self.prng, x.shape[0], x.shape[1])
288
+ mask[mask < 0.5] = 0
289
+ mask[mask > 0.5] = 1
290
+ mask = torch.from_numpy(mask[..., None])
291
+ sample['mask'] = mask
292
+
293
+ n_down_idx = self.prng.choice(len(self.n_down_choices))
294
+ sigma_idx = self.prng.choice(len(self.sigma_choices))
295
+
296
+ n_choices = len(self.n_down_choices)*len(self.sigma_choices)
297
+ raveled_idx = np.ravel_multi_index((n_down_idx, sigma_idx),
298
+ (len(self.n_down_choices), len(self.sigma_choices)))
299
+ normalized_idx = raveled_idx/max(1, n_choices-1)
300
+
301
+ n_down = self.n_down_choices[n_down_idx]
302
+ sigma = self.sigma_choices[sigma_idx]
303
+
304
+ kernel_size = 4*sigma+1
305
+ kernel_size = (kernel_size, kernel_size)
306
+ sigma = (sigma, sigma)
307
+ canny = kornia.filters.Canny(
308
+ low_threshold=0.1,
309
+ high_threshold=0.2,
310
+ kernel_size=kernel_size,
311
+ sigma=sigma,
312
+ hysteresis=True,
313
+ )
314
+ y = (x+1.0)/2.0 # in 01
315
+ y = y.unsqueeze(0).permute(0, 3, 1, 2).contiguous()
316
+
317
+ # down
318
+ for i_down in range(n_down):
319
+ size = min(y.shape[-2], y.shape[-1])//2
320
+ y = kornia.geometry.transform.resize(y, size, antialias=True)
321
+
322
+ # edge
323
+ _, y = canny(y)
324
+
325
+ if n_down > 0:
326
+ size = x.shape[0], x.shape[1]
327
+ y = kornia.geometry.transform.resize(y, size, interpolation="nearest")
328
+
329
+ y = y.permute(0, 2, 3, 1)[0].expand(-1, -1, 3).contiguous()
330
+ y = y*2.0-1.0
331
+
332
+ if self.mask_edges:
333
+ sample['masked_image'] = y * (mask < 0.5)
334
+ else:
335
+ sample['masked_image'] = y
336
+ sample['mask'] = torch.zeros_like(sample['mask'])
337
+
338
+ # concat normalized idx
339
+ sample['smoothing_strength'] = torch.ones_like(sample['mask'])*normalized_idx
340
+
341
+ return sample
342
+
343
+
344
+ def example00():
345
+ url = "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/000000.tar -"
346
+ dataset = wds.WebDataset(url)
347
+ example = next(iter(dataset))
348
+ for k in example:
349
+ print(k, type(example[k]))
350
+
351
+ print(example["__key__"])
352
+ for k in ["json", "txt"]:
353
+ print(example[k].decode())
354
+
355
+ image = Image.open(io.BytesIO(example["jpg"]))
356
+ outdir = "tmp"
357
+ os.makedirs(outdir, exist_ok=True)
358
+ image.save(os.path.join(outdir, example["__key__"] + ".png"))
359
+
360
+
361
+ def load_example(example):
362
+ return {
363
+ "key": example["__key__"],
364
+ "image": Image.open(io.BytesIO(example["jpg"])),
365
+ "text": example["txt"].decode(),
366
+ }
367
+
368
+
369
+ for i, example in tqdm(enumerate(dataset)):
370
+ ex = load_example(example)
371
+ print(ex["image"].size, ex["text"])
372
+ if i >= 100:
373
+ break
374
+
375
+
376
+ def example01():
377
+ # the first laion shards contain ~10k examples each
378
+ url = "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/{000000..000002}.tar -"
379
+
380
+ batch_size = 3
381
+ shuffle_buffer = 10000
382
+ dset = wds.WebDataset(
383
+ url,
384
+ nodesplitter=wds.shardlists.split_by_node,
385
+ shardshuffle=True,
386
+ )
387
+ dset = (dset
388
+ .shuffle(shuffle_buffer, initial=shuffle_buffer)
389
+ .decode('pil', handler=warn_and_continue)
390
+ .batched(batch_size, partial=False,
391
+ collation_fn=dict_collation_fn)
392
+ )
393
+
394
+ num_workers = 2
395
+ loader = wds.WebLoader(dset, batch_size=None, shuffle=False, num_workers=num_workers)
396
+
397
+ batch_sizes = list()
398
+ keys_per_epoch = list()
399
+ for epoch in range(5):
400
+ keys = list()
401
+ for batch in tqdm(loader):
402
+ batch_sizes.append(len(batch["__key__"]))
403
+ keys.append(batch["__key__"])
404
+
405
+ for bs in batch_sizes:
406
+ assert bs==batch_size
407
+ print(f"{len(batch_sizes)} batches of size {batch_size}.")
408
+ batch_sizes = list()
409
+
410
+ keys_per_epoch.append(keys)
411
+ for i_batch in [0, 1, -1]:
412
+ print(f"Batch {i_batch} of epoch {epoch}:")
413
+ print(keys[i_batch])
414
+ print("next epoch.")
415
+
416
+
417
+ def example02():
418
+ from omegaconf import OmegaConf
419
+ from torch.utils.data.distributed import DistributedSampler
420
+ from torch.utils.data import IterableDataset
421
+ from torch.utils.data import DataLoader, RandomSampler, Sampler, SequentialSampler
422
+ from pytorch_lightning.trainer.supporters import CombinedLoader, CycleIterator
423
+
424
+ #config = OmegaConf.load("configs/stable-diffusion/txt2img-1p4B-multinode-clip-encoder-high-res-512.yaml")
425
+ #config = OmegaConf.load("configs/stable-diffusion/txt2img-upscale-clip-encoder-f16-1024.yaml")
426
+ config = OmegaConf.load("configs/stable-diffusion/txt2img-v2-clip-encoder-improved_aesthetics-256.yaml")
427
+ datamod = WebDataModuleFromConfig(**config["data"]["params"])
428
+ dataloader = datamod.train_dataloader()
429
+
430
+ for batch in dataloader:
431
+ print(batch.keys())
432
+ print(batch["jpg"].shape)
433
+ break
434
+
435
+
436
+ def example03():
437
+ # improved aesthetics
438
+ tars = "pipe:aws s3 cp s3://s-laion/improved-aesthetics-laion-2B-en-subsets/aesthetics_tars/{000000..060207}.tar -"
439
+ dataset = wds.WebDataset(tars)
440
+
441
+ def filter_keys(x):
442
+ try:
443
+ return ("jpg" in x) and ("txt" in x)
444
+ except Exception:
445
+ return False
446
+
447
+ def filter_size(x):
448
+ try:
449
+ return x['json']['original_width'] >= 512 and x['json']['original_height'] >= 512
450
+ except Exception:
451
+ return False
452
+
453
+ def filter_watermark(x):
454
+ try:
455
+ return x['json']['pwatermark'] < 0.5
456
+ except Exception:
457
+ return False
458
+
459
+ dataset = (dataset
460
+ .select(filter_keys)
461
+ .decode('pil', handler=wds.warn_and_continue))
462
+ n_save = 20
463
+ n_total = 0
464
+ n_large = 0
465
+ n_large_nowm = 0
466
+ for i, example in enumerate(dataset):
467
+ n_total += 1
468
+ if filter_size(example):
469
+ n_large += 1
470
+ if filter_watermark(example):
471
+ n_large_nowm += 1
472
+ if n_large_nowm < n_save+1:
473
+ image = example["jpg"]
474
+ image.save(os.path.join("tmp", f"{n_large_nowm-1:06}.png"))
475
+
476
+ if i%500 == 0:
477
+ print(i)
478
+ print(f"Large: {n_large}/{n_total} | {n_large/n_total*100:.2f}%")
479
+ if n_large > 0:
480
+ print(f"No Watermark: {n_large_nowm}/{n_large} | {n_large_nowm/n_large*100:.2f}%")
481
+
482
+
483
+
484
+ def example04():
485
+ # improved aesthetics
486
+ for i_shard in range(60208)[::-1]:
487
+ print(i_shard)
488
+ tars = "pipe:aws s3 cp s3://s-laion/improved-aesthetics-laion-2B-en-subsets/aesthetics_tars/{:06}.tar -".format(i_shard)
489
+ dataset = wds.WebDataset(tars)
490
+
491
+ def filter_keys(x):
492
+ try:
493
+ return ("jpg" in x) and ("txt" in x)
494
+ except Exception:
495
+ return False
496
+
497
+ def filter_size(x):
498
+ try:
499
+ return x['json']['original_width'] >= 512 and x['json']['original_height'] >= 512
500
+ except Exception:
501
+ return False
502
+
503
+ dataset = (dataset
504
+ .select(filter_keys)
505
+ .decode('pil', handler=wds.warn_and_continue))
506
+ try:
507
+ example = next(iter(dataset))
508
+ except Exception:
509
+ print(f"Error @ {i_shard}")
510
+
511
+
512
+ if __name__ == "__main__":
513
+ #example01()
514
+ #example02()
515
+ example03()
516
+ #example04()
docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/data/lsun.py ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import numpy as np
3
+ import PIL
4
+ from PIL import Image
5
+ from torch.utils.data import Dataset
6
+ from torchvision import transforms
7
+
8
+
9
+ class LSUNBase(Dataset):
10
+ def __init__(self,
11
+ txt_file,
12
+ data_root,
13
+ size=None,
14
+ interpolation="bicubic",
15
+ flip_p=0.5
16
+ ):
17
+ self.data_paths = txt_file
18
+ self.data_root = data_root
19
+ with open(self.data_paths, "r") as f:
20
+ self.image_paths = f.read().splitlines()
21
+ self._length = len(self.image_paths)
22
+ self.labels = {
23
+ "relative_file_path_": [l for l in self.image_paths],
24
+ "file_path_": [os.path.join(self.data_root, l)
25
+ for l in self.image_paths],
26
+ }
27
+
28
+ self.size = size
29
+ self.interpolation = {"linear": PIL.Image.LINEAR,
30
+ "bilinear": PIL.Image.BILINEAR,
31
+ "bicubic": PIL.Image.BICUBIC,
32
+ "lanczos": PIL.Image.LANCZOS,
33
+ }[interpolation]
34
+ self.flip = transforms.RandomHorizontalFlip(p=flip_p)
35
+
36
+ def __len__(self):
37
+ return self._length
38
+
39
+ def __getitem__(self, i):
40
+ example = dict((k, self.labels[k][i]) for k in self.labels)
41
+ image = Image.open(example["file_path_"])
42
+ if not image.mode == "RGB":
43
+ image = image.convert("RGB")
44
+
45
+ # default to score-sde preprocessing
46
+ img = np.array(image).astype(np.uint8)
47
+ crop = min(img.shape[0], img.shape[1])
48
+ h, w, = img.shape[0], img.shape[1]
49
+ img = img[(h - crop) // 2:(h + crop) // 2,
50
+ (w - crop) // 2:(w + crop) // 2]
51
+
52
+ image = Image.fromarray(img)
53
+ if self.size is not None:
54
+ image = image.resize((self.size, self.size), resample=self.interpolation)
55
+
56
+ image = self.flip(image)
57
+ image = np.array(image).astype(np.uint8)
58
+ example["image"] = (image / 127.5 - 1.0).astype(np.float32)
59
+ return example
60
+
61
+
62
+ class LSUNChurchesTrain(LSUNBase):
63
+ def __init__(self, **kwargs):
64
+ super().__init__(txt_file="data/lsun/church_outdoor_train.txt", data_root="data/lsun/churches", **kwargs)
65
+
66
+
67
+ class LSUNChurchesValidation(LSUNBase):
68
+ def __init__(self, flip_p=0., **kwargs):
69
+ super().__init__(txt_file="data/lsun/church_outdoor_val.txt", data_root="data/lsun/churches",
70
+ flip_p=flip_p, **kwargs)
71
+
72
+
73
+ class LSUNBedroomsTrain(LSUNBase):
74
+ def __init__(self, **kwargs):
75
+ super().__init__(txt_file="data/lsun/bedrooms_train.txt", data_root="data/lsun/bedrooms", **kwargs)
76
+
77
+
78
+ class LSUNBedroomsValidation(LSUNBase):
79
+ def __init__(self, flip_p=0.0, **kwargs):
80
+ super().__init__(txt_file="data/lsun/bedrooms_val.txt", data_root="data/lsun/bedrooms",
81
+ flip_p=flip_p, **kwargs)
82
+
83
+
84
+ class LSUNCatsTrain(LSUNBase):
85
+ def __init__(self, **kwargs):
86
+ super().__init__(txt_file="data/lsun/cat_train.txt", data_root="data/lsun/cats", **kwargs)
87
+
88
+
89
+ class LSUNCatsValidation(LSUNBase):
90
+ def __init__(self, flip_p=0., **kwargs):
91
+ super().__init__(txt_file="data/lsun/cat_val.txt", data_root="data/lsun/cats",
92
+ flip_p=flip_p, **kwargs)
docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/lr_scheduler.py ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+
4
+ class LambdaWarmUpCosineScheduler:
5
+ """
6
+ note: use with a base_lr of 1.0
7
+ """
8
+ def __init__(self, warm_up_steps, lr_min, lr_max, lr_start, max_decay_steps, verbosity_interval=0):
9
+ self.lr_warm_up_steps = warm_up_steps
10
+ self.lr_start = lr_start
11
+ self.lr_min = lr_min
12
+ self.lr_max = lr_max
13
+ self.lr_max_decay_steps = max_decay_steps
14
+ self.last_lr = 0.
15
+ self.verbosity_interval = verbosity_interval
16
+
17
+ def schedule(self, n, **kwargs):
18
+ if self.verbosity_interval > 0:
19
+ if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_lr}")
20
+ if n < self.lr_warm_up_steps:
21
+ lr = (self.lr_max - self.lr_start) / self.lr_warm_up_steps * n + self.lr_start
22
+ self.last_lr = lr
23
+ return lr
24
+ else:
25
+ t = (n - self.lr_warm_up_steps) / (self.lr_max_decay_steps - self.lr_warm_up_steps)
26
+ t = min(t, 1.0)
27
+ lr = self.lr_min + 0.5 * (self.lr_max - self.lr_min) * (
28
+ 1 + np.cos(t * np.pi))
29
+ self.last_lr = lr
30
+ return lr
31
+
32
+ def __call__(self, n, **kwargs):
33
+ return self.schedule(n,**kwargs)
34
+
35
+
36
+ class LambdaWarmUpCosineScheduler2:
37
+ """
38
+ supports repeated iterations, configurable via lists
39
+ note: use with a base_lr of 1.0.
40
+ """
41
+ def __init__(self, warm_up_steps, f_min, f_max, f_start, cycle_lengths, verbosity_interval=0):
42
+ assert len(warm_up_steps) == len(f_min) == len(f_max) == len(f_start) == len(cycle_lengths)
43
+ self.lr_warm_up_steps = warm_up_steps
44
+ self.f_start = f_start
45
+ self.f_min = f_min
46
+ self.f_max = f_max
47
+ self.cycle_lengths = cycle_lengths
48
+ self.cum_cycles = np.cumsum([0] + list(self.cycle_lengths))
49
+ self.last_f = 0.
50
+ self.verbosity_interval = verbosity_interval
51
+
52
+ def find_in_interval(self, n):
53
+ interval = 0
54
+ for cl in self.cum_cycles[1:]:
55
+ if n <= cl:
56
+ return interval
57
+ interval += 1
58
+
59
+ def schedule(self, n, **kwargs):
60
+ cycle = self.find_in_interval(n)
61
+ n = n - self.cum_cycles[cycle]
62
+ if self.verbosity_interval > 0:
63
+ if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_f}, "
64
+ f"current cycle {cycle}")
65
+ if n < self.lr_warm_up_steps[cycle]:
66
+ f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle]
67
+ self.last_f = f
68
+ return f
69
+ else:
70
+ t = (n - self.lr_warm_up_steps[cycle]) / (self.cycle_lengths[cycle] - self.lr_warm_up_steps[cycle])
71
+ t = min(t, 1.0)
72
+ f = self.f_min[cycle] + 0.5 * (self.f_max[cycle] - self.f_min[cycle]) * (
73
+ 1 + np.cos(t * np.pi))
74
+ self.last_f = f
75
+ return f
76
+
77
+ def __call__(self, n, **kwargs):
78
+ return self.schedule(n, **kwargs)
79
+
80
+
81
+ class LambdaLinearScheduler(LambdaWarmUpCosineScheduler2):
82
+
83
+ def schedule(self, n, **kwargs):
84
+ cycle = self.find_in_interval(n)
85
+ n = n - self.cum_cycles[cycle]
86
+ if self.verbosity_interval > 0:
87
+ if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_f}, "
88
+ f"current cycle {cycle}")
89
+
90
+ if n < self.lr_warm_up_steps[cycle]:
91
+ f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle]
92
+ self.last_f = f
93
+ return f
94
+ else:
95
+ f = self.f_min[cycle] + (self.f_max[cycle] - self.f_min[cycle]) * (self.cycle_lengths[cycle] - n) / (self.cycle_lengths[cycle])
96
+ self.last_f = f
97
+ return f
98
+
docker/intel_code/llama13b/Model-References/PyTorch/generative_models/stable-diffusion/ldm/models/autoencoder.py ADDED
@@ -0,0 +1,449 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+ from lightning_utilities import module_available
4
+
5
+ if module_available("lightning"):
6
+ import lightning.pytorch as pl
7
+ elif module_available("pytorch_lightning"):
8
+ import pytorch_lightning as pl
9
+ import torch.nn.functional as F
10
+ from contextlib import contextmanager
11
+
12
+ from taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer
13
+
14
+ from ldm.modules.diffusionmodules.model import Encoder, Decoder
15
+ from ldm.modules.distributions.distributions import DiagonalGaussianDistribution
16
+
17
+ from ldm.util import instantiate_from_config
18
+
19
+
20
+ class VQModel(pl.LightningModule):
21
+ def __init__(self,
22
+ ddconfig,
23
+ lossconfig,
24
+ n_embed,
25
+ embed_dim,
26
+ ckpt_path=None,
27
+ ignore_keys=[],
28
+ image_key="image",
29
+ colorize_nlabels=None,
30
+ monitor=None,
31
+ batch_resize_range=None,
32
+ scheduler_config=None,
33
+ lr_g_factor=1.0,
34
+ remap=None,
35
+ sane_index_shape=False, # tell vector quantizer to return indices as bhw
36
+ use_ema=False
37
+ ):
38
+ super().__init__()
39
+ self.embed_dim = embed_dim
40
+ self.n_embed = n_embed
41
+ self.image_key = image_key
42
+ self.encoder = Encoder(**ddconfig)
43
+ self.decoder = Decoder(**ddconfig)
44
+ self.loss = instantiate_from_config(lossconfig)
45
+ self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25,
46
+ remap=remap,
47
+ sane_index_shape=sane_index_shape)
48
+ self.quant_conv = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1)
49
+ self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
50
+ if colorize_nlabels is not None:
51
+ assert type(colorize_nlabels)==int
52
+ self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
53
+ if monitor is not None:
54
+ self.monitor = monitor
55
+ self.batch_resize_range = batch_resize_range
56
+ if self.batch_resize_range is not None:
57
+ print(f"{self.__class__.__name__}: Using per-batch resizing in range {batch_resize_range}.")
58
+
59
+ self.use_ema = use_ema
60
+ if self.use_ema:
61
+ self.model_ema = LitEma(self)
62
+ print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
63
+
64
+ if ckpt_path is not None:
65
+ self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
66
+ self.scheduler_config = scheduler_config
67
+ self.lr_g_factor = lr_g_factor
68
+
69
+ @contextmanager
70
+ def ema_scope(self, context=None):
71
+ if self.use_ema:
72
+ self.model_ema.store(self.parameters())
73
+ self.model_ema.copy_to(self)
74
+ if context is not None:
75
+ print(f"{context}: Switched to EMA weights")
76
+ try:
77
+ yield None
78
+ finally:
79
+ if self.use_ema:
80
+ self.model_ema.restore(self.parameters())
81
+ if context is not None:
82
+ print(f"{context}: Restored training weights")
83
+
84
+ def init_from_ckpt(self, path, ignore_keys=list()):
85
+ sd = torch.load(path, map_location="cpu")["state_dict"]
86
+ keys = list(sd.keys())
87
+ for k in keys:
88
+ for ik in ignore_keys:
89
+ if k.startswith(ik):
90
+ print("Deleting key {} from state_dict.".format(k))
91
+ del sd[k]
92
+ missing, unexpected = self.load_state_dict(sd, strict=False)
93
+ print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
94
+ if len(missing) > 0:
95
+ print(f"Missing Keys: {missing}")
96
+ print(f"Unexpected Keys: {unexpected}")
97
+
98
+ def on_train_batch_end(self, *args, **kwargs):
99
+ if self.use_ema:
100
+ self.model_ema(self)
101
+
102
+ def encode(self, x):
103
+ h = self.encoder(x)
104
+ h = self.quant_conv(h)
105
+ quant, emb_loss, info = self.quantize(h)
106
+ return quant, emb_loss, info
107
+
108
+ def encode_to_prequant(self, x):
109
+ h = self.encoder(x)
110
+ h = self.quant_conv(h)
111
+ return h
112
+
113
+ def decode(self, quant):
114
+ quant = self.post_quant_conv(quant)
115
+ dec = self.decoder(quant)
116
+ return dec
117
+
118
+ def decode_code(self, code_b):
119
+ quant_b = self.quantize.embed_code(code_b)
120
+ dec = self.decode(quant_b)
121
+ return dec
122
+
123
+ def forward(self, input, return_pred_indices=False):
124
+ quant, diff, (_,_,ind) = self.encode(input)
125
+ dec = self.decode(quant)
126
+ if return_pred_indices:
127
+ return dec, diff, ind
128
+ return dec, diff
129
+
130
+ def get_input(self, batch, k):
131
+ x = batch[k]
132
+ if len(x.shape) == 3:
133
+ x = x[..., None]
134
+ x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
135
+ if self.batch_resize_range is not None:
136
+ lower_size = self.batch_resize_range[0]
137
+ upper_size = self.batch_resize_range[1]
138
+ if self.global_step <= 4:
139
+ # do the first few batches with max size to avoid later oom
140
+ new_resize = upper_size
141
+ else:
142
+ new_resize = np.random.choice(np.arange(lower_size, upper_size+16, 16))
143
+ if new_resize != x.shape[2]:
144
+ x = F.interpolate(x, size=new_resize, mode="bicubic")
145
+ x = x.detach()
146
+ return x
147
+
148
+ def training_step(self, batch, batch_idx, optimizer_idx):
149
+ # https://github.com/pytorch/pytorch/issues/37142
150
+ # try not to fool the heuristics
151
+ x = self.get_input(batch, self.image_key)
152
+ xrec, qloss, ind = self(x, return_pred_indices=True)
153
+
154
+ if optimizer_idx == 0:
155
+ # autoencode
156
+ aeloss, log_dict_ae = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
157
+ last_layer=self.get_last_layer(), split="train",
158
+ predicted_indices=ind)
159
+
160
+ self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True)
161
+ return aeloss
162
+
163
+ if optimizer_idx == 1:
164
+ # discriminator
165
+ discloss, log_dict_disc = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
166
+ last_layer=self.get_last_layer(), split="train")
167
+ self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True)
168
+ return discloss
169
+
170
+ def validation_step(self, batch, batch_idx):
171
+ log_dict = self._validation_step(batch, batch_idx)
172
+ with self.ema_scope():
173
+ log_dict_ema = self._validation_step(batch, batch_idx, suffix="_ema")
174
+ return log_dict
175
+
176
+ def _validation_step(self, batch, batch_idx, suffix=""):
177
+ x = self.get_input(batch, self.image_key)
178
+ xrec, qloss, ind = self(x, return_pred_indices=True)
179
+ aeloss, log_dict_ae = self.loss(qloss, x, xrec, 0,
180
+ self.global_step,
181
+ last_layer=self.get_last_layer(),
182
+ split="val"+suffix,
183
+ predicted_indices=ind
184
+ )
185
+
186
+ discloss, log_dict_disc = self.loss(qloss, x, xrec, 1,
187
+ self.global_step,
188
+ last_layer=self.get_last_layer(),
189
+ split="val"+suffix,
190
+ predicted_indices=ind
191
+ )
192
+ rec_loss = log_dict_ae[f"val{suffix}/rec_loss"]
193
+ self.log(f"val{suffix}/rec_loss", rec_loss,
194
+ prog_bar=True, logger=True, on_step=False, on_epoch=True)
195
+ self.log(f"val{suffix}/aeloss", aeloss,
196
+ prog_bar=True, logger=True, on_step=False, on_epoch=True)
197
+ if version.parse(pl.__version__) >= version.parse('1.4.0'):
198
+ del log_dict_ae[f"val{suffix}/rec_loss"]
199
+ self.log_dict(log_dict_ae)
200
+ self.log_dict(log_dict_disc)
201
+ return self.log_dict
202
+
203
+ def configure_optimizers(self):
204
+ lr_d = self.learning_rate
205
+ lr_g = self.lr_g_factor*self.learning_rate
206
+ print("lr_d", lr_d)
207
+ print("lr_g", lr_g)
208
+ opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
209
+ list(self.decoder.parameters())+
210
+ list(self.quantize.parameters())+
211
+ list(self.quant_conv.parameters())+
212
+ list(self.post_quant_conv.parameters()),
213
+ lr=lr_g, betas=(0.5, 0.9))
214
+ opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
215
+ lr=lr_d, betas=(0.5, 0.9))
216
+
217
+ if self.scheduler_config is not None:
218
+ scheduler = instantiate_from_config(self.scheduler_config)
219
+
220
+ print("Setting up LambdaLR scheduler...")
221
+ scheduler = [
222
+ {
223
+ 'scheduler': LambdaLR(opt_ae, lr_lambda=scheduler.schedule),
224
+ 'interval': 'step',
225
+ 'frequency': 1
226
+ },
227
+ {
228
+ 'scheduler': LambdaLR(opt_disc, lr_lambda=scheduler.schedule),
229
+ 'interval': 'step',
230
+ 'frequency': 1
231
+ },
232
+ ]
233
+ return [opt_ae, opt_disc], scheduler
234
+ return [opt_ae, opt_disc], []
235
+
236
+ def get_last_layer(self):
237
+ return self.decoder.conv_out.weight
238
+
239
+ def log_images(self, batch, only_inputs=False, plot_ema=False, **kwargs):
240
+ log = dict()
241
+ x = self.get_input(batch, self.image_key)
242
+ x = x.to(self.device)
243
+ if only_inputs:
244
+ log["inputs"] = x
245
+ return log
246
+ xrec, _ = self(x)
247
+ if x.shape[1] > 3:
248
+ # colorize with random projection
249
+ assert xrec.shape[1] > 3
250
+ x = self.to_rgb(x)
251
+ xrec = self.to_rgb(xrec)
252
+ log["inputs"] = x
253
+ log["reconstructions"] = xrec
254
+ if plot_ema:
255
+ with self.ema_scope():
256
+ xrec_ema, _ = self(x)
257
+ if x.shape[1] > 3: xrec_ema = self.to_rgb(xrec_ema)
258
+ log["reconstructions_ema"] = xrec_ema
259
+ return log
260
+
261
+ def to_rgb(self, x):
262
+ assert self.image_key == "segmentation"
263
+ if not hasattr(self, "colorize"):
264
+ self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
265
+ x = F.conv2d(x, weight=self.colorize)
266
+ x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
267
+ return x
268
+
269
+
270
+ class VQModelInterface(VQModel):
271
+ def __init__(self, embed_dim, *args, **kwargs):
272
+ super().__init__(embed_dim=embed_dim, *args, **kwargs)
273
+ self.embed_dim = embed_dim
274
+
275
+ def encode(self, x):
276
+ h = self.encoder(x)
277
+ h = self.quant_conv(h)
278
+ return h
279
+
280
+ def decode(self, h, force_not_quantize=False):
281
+ # also go through quantization layer
282
+ if not force_not_quantize:
283
+ quant, emb_loss, info = self.quantize(h)
284
+ else:
285
+ quant = h
286
+ quant = self.post_quant_conv(quant)
287
+ dec = self.decoder(quant)
288
+ return dec
289
+
290
+
291
+ class AutoencoderKL(pl.LightningModule):
292
+ def __init__(self,
293
+ ddconfig,
294
+ lossconfig,
295
+ embed_dim,
296
+ ckpt_path=None,
297
+ ignore_keys=[],
298
+ image_key="image",
299
+ colorize_nlabels=None,
300
+ monitor=None
301
+ ):
302
+ super().__init__()
303
+ self.image_key = image_key
304
+ self.encoder = Encoder(**ddconfig)
305
+ self.decoder = Decoder(**ddconfig)
306
+ self.loss = instantiate_from_config(lossconfig)
307
+ assert ddconfig["double_z"]
308
+ self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1)
309
+ self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
310
+ self.embed_dim = embed_dim
311
+ if colorize_nlabels is not None:
312
+ assert type(colorize_nlabels)==int
313
+ self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
314
+ if monitor is not None:
315
+ self.monitor = monitor
316
+ if ckpt_path is not None:
317
+ self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
318
+
319
+ def init_from_ckpt(self, path, ignore_keys=list()):
320
+ sd = torch.load(path, map_location="cpu")["state_dict"]
321
+ keys = list(sd.keys())
322
+ for k in keys:
323
+ for ik in ignore_keys:
324
+ if k.startswith(ik):
325
+ print("Deleting key {} from state_dict.".format(k))
326
+ del sd[k]
327
+ self.load_state_dict(sd, strict=False)
328
+ print(f"Restored from {path}")
329
+
330
+ def encode(self, x):
331
+ h = self.encoder(x)
332
+ moments = self.quant_conv(h)
333
+ posterior = DiagonalGaussianDistribution(moments)
334
+ return posterior
335
+
336
+ def decode(self, z):
337
+ z = self.post_quant_conv(z)
338
+ dec = self.decoder(z)
339
+ return dec
340
+
341
+ def forward(self, input, sample_posterior=True):
342
+ posterior = self.encode(input)
343
+ if sample_posterior:
344
+ z = posterior.sample()
345
+ else:
346
+ z = posterior.mode()
347
+ dec = self.decode(z)
348
+ return dec, posterior
349
+
350
+ def get_input(self, batch, k):
351
+ x = batch[k]
352
+ if len(x.shape) == 3:
353
+ x = x[..., None]
354
+ x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
355
+ return x
356
+
357
+ def training_step(self, batch, batch_idx, optimizer_idx):
358
+ inputs = self.get_input(batch, self.image_key)
359
+ reconstructions, posterior = self(inputs)
360
+
361
+ if optimizer_idx == 0:
362
+ # train encoder+decoder+logvar
363
+ aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
364
+ last_layer=self.get_last_layer(), split="train")
365
+ self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
366
+ self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False)
367
+ return aeloss
368
+
369
+ if optimizer_idx == 1:
370
+ # train the discriminator
371
+ discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
372
+ last_layer=self.get_last_layer(), split="train")
373
+
374
+ self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
375
+ self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False)
376
+ return discloss
377
+
378
+ def validation_step(self, batch, batch_idx):
379
+ inputs = self.get_input(batch, self.image_key)
380
+ reconstructions, posterior = self(inputs)
381
+ aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step,
382
+ last_layer=self.get_last_layer(), split="val")
383
+
384
+ discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step,
385
+ last_layer=self.get_last_layer(), split="val")
386
+
387
+ self.log("val/rec_loss", log_dict_ae["val/rec_loss"])
388
+ self.log_dict(log_dict_ae)
389
+ self.log_dict(log_dict_disc)
390
+ return self.log_dict
391
+
392
+ def configure_optimizers(self):
393
+ lr = self.learning_rate
394
+ opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
395
+ list(self.decoder.parameters())+
396
+ list(self.quant_conv.parameters())+
397
+ list(self.post_quant_conv.parameters()),
398
+ lr=lr, betas=(0.5, 0.9))
399
+ opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
400
+ lr=lr, betas=(0.5, 0.9))
401
+ return [opt_ae, opt_disc], []
402
+
403
+ def get_last_layer(self):
404
+ return self.decoder.conv_out.weight
405
+
406
+ @torch.no_grad()
407
+ def log_images(self, batch, only_inputs=False, **kwargs):
408
+ log = dict()
409
+ x = self.get_input(batch, self.image_key)
410
+ x = x.to(self.device)
411
+ if not only_inputs:
412
+ xrec, posterior = self(x)
413
+ if x.shape[1] > 3:
414
+ # colorize with random projection
415
+ assert xrec.shape[1] > 3
416
+ x = self.to_rgb(x)
417
+ xrec = self.to_rgb(xrec)
418
+ log["samples"] = self.decode(torch.randn_like(posterior.sample()))
419
+ log["reconstructions"] = xrec
420
+ log["inputs"] = x
421
+ return log
422
+
423
+ def to_rgb(self, x):
424
+ assert self.image_key == "segmentation"
425
+ if not hasattr(self, "colorize"):
426
+ self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
427
+ x = F.conv2d(x, weight=self.colorize)
428
+ x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
429
+ return x
430
+
431
+
432
+ class IdentityFirstStage(torch.nn.Module):
433
+ def __init__(self, *args, vq_interface=False, **kwargs):
434
+ self.vq_interface = vq_interface # TODO: Should be true by default but check to not break older stuff
435
+ super().__init__()
436
+
437
+ def encode(self, x, *args, **kwargs):
438
+ return x
439
+
440
+ def decode(self, x, *args, **kwargs):
441
+ return x
442
+
443
+ def quantize(self, x, *args, **kwargs):
444
+ if self.vq_interface:
445
+ return x, None, [None, None, None]
446
+ return x
447
+
448
+ def forward(self, x, *args, **kwargs):
449
+ return x