|
|
|
|
|
import os |
|
import pandas as pd |
|
import json |
|
import gzip |
|
from tqdm import tqdm |
|
from multiprocessing import Pool |
|
from transformers import AutoTokenizer |
|
import sys |
|
|
|
|
|
HF_TOKEN = "" |
|
base_path = "root" |
|
|
|
|
|
|
|
os.environ["HF_TOKEN"] = HF_TOKEN |
|
|
|
tokenizer = AutoTokenizer.from_pretrained('google/gemma-7b') |
|
|
|
def count_words_in_file(file_path): |
|
language_id = os.path.basename(file_path).split('_')[0] |
|
|
|
token_count = 0 |
|
|
|
|
|
try: |
|
with gzip.open(file_path, 'rt') as f: |
|
for line in f: |
|
data = json.loads(line) |
|
|
|
token_count += len(tokenizer.encode(data["raw_content"])) |
|
except: |
|
print("bad zip file") |
|
return language_id, 0 |
|
return language_id, token_count |
|
|
|
def process_folder(folder_path): |
|
files = [os.path.join(folder_path, f) for f in os.listdir(folder_path) if f.endswith('.json.gz')] |
|
folder_name = folder_path.split('/')[-1] |
|
with Pool() as pool: |
|
results = list(tqdm(pool.imap(count_words_in_file, files), total=len(files), desc=f'Processing {folder_name}') ) |
|
return results |
|
|
|
def main(input_folder, output_file): |
|
|
|
|
|
snaps = ["2018-17", "2018-22", "2018-26", "2018-30", "2018-34", "2018-39", "2018-43", "2018-47", "2018-51", "2019-04", "2019-09", "2019-13", "2019-18", "2019-22", "2019-26", "2019-30", "2019-35", "2019-39", "2019-43", "2019-47", "2019-51", "2020-05", "2020-10", "2020-16", "2020-24", "2020-29", "2020-34", "2020-40", "2020-45", "2020-50", "2021-04", "2021-10", "2021-17", "2021-21", "2021-25", "2021-31", "2021-39", "2021-43", "2021-49", "2022-05", "2022-21", "2022-27", "2022-33", "2022-40", "2022-49", "2023-06", "2023-14", "2023-23", "2023-40", "2023-50", "2024-10"] |
|
|
|
langs = ["as", "bn", "gu", "kn", "hi", "ml", "mr", "ne", "or", "sa", "sd", "ta", "ur", "te", "mai"] |
|
|
|
column_names = {} |
|
column_names["snapshot-id"] = sorted(snaps) |
|
|
|
for lang in sorted(langs): |
|
column_names[lang] = [0] * len(snaps) |
|
|
|
for idx, folder in enumerate(sorted(snaps)): |
|
results = process_folder(input_folder + "/" + folder) |
|
for language_id, number in results: |
|
column_names[language_id][idx] += number |
|
print([column_names[language_id][idx] for language_id in langs]) |
|
|
|
df = pd.DataFrame(column_names) |
|
|
|
df.to_csv(output_file, index=False) |
|
|
|
if __name__ == "__main__": |
|
folder = sys.argv[1] |
|
input_folder = os.path.join(base_path, folder) |
|
output_file = folder + "_token_counts.csv" |
|
main(input_folder, output_file) |
|
|