|
from datasets import concatenate_datasets, load_dataset, load_from_disk |
|
import argparse |
|
from tokenizers import Tokenizer, decoders, models, pre_tokenizers, processors, trainers |
|
from transformers import GPT2TokenizerFast, AutoTokenizer |
|
from datasets import config |
|
import logging |
|
from datasets import DatasetDict, Dataset |
|
import csv |
|
import time |
|
import json |
|
tokenizer = AutoTokenizer.from_pretrained('Telugu-LLM-Labs/Telugu-Llama2-7B-v0-Base') |
|
def initialize_logger(log_file): |
|
logging.basicConfig(filename=log_file, level=logging.INFO, format='%(asctime)s: %(message)s') |
|
|
|
def log_parameters(vocab_size, pretrained_model, en_fertility_score, hi_fertility_score , ta_fertility_score , log_file='parameters.log'): |
|
initialize_logger(log_file) |
|
logging.info(f"Vocabulary Size: {vocab_size}, Tokenizer type: {pretrained_model}, English Fertility Score: {en_fertility_score} , Hindi Fertility Score: {hi_fertility_score}, Telugu Fertility Score: {ta_fertility_score}") |
|
|
|
dataset_hi= load_dataset('ai4bharat/samanantar', 'hi', split='train', cache_dir='/sml1/atul/CENTRAL_CACHE') |
|
dataset_ta= load_dataset('ai4bharat/samanantar', 'te', split='train', cache_dir='/sml1/atul/CENTRAL_CACHE') |
|
|
|
test_en = dataset_hi['src'][:10000] |
|
test_hi = dataset_hi['tgt'][:10000] |
|
test_ta = dataset_ta['tgt'][:10000] |
|
|
|
en_fertility_score=0 |
|
hi_fertility_score=0 |
|
ta_fertility_score=0 |
|
|
|
for data in test_en: |
|
tok=tokenizer(data) |
|
en_fertility_score += len(tok['input_ids']) / len(data.split()) |
|
en_fertility_score=en_fertility_score/10000 |
|
|
|
for data in test_hi: |
|
|
|
tok=tokenizer(data) |
|
|
|
|
|
hi_fertility_score += len(tok['input_ids']) / len(data.split()) |
|
hi_fertility_score=hi_fertility_score/10000 |
|
|
|
for data in test_ta: |
|
tok=tokenizer(data) |
|
ta_fertility_score += len(tok['input_ids']) / len(data.split()) |
|
ta_fertility_score=ta_fertility_score/10000 |
|
log_parameters(64000, "Telugu-Llama7B", en_fertility_score, hi_fertility_score , ta_fertility_score ) |
|
|
|
|
|
|