|
from datasets import concatenate_datasets, load_dataset, load_from_disk |
|
import argparse |
|
from tokenizers import Tokenizer, decoders, models, pre_tokenizers, processors, trainers |
|
from transformers import GPT2TokenizerFast, AutoTokenizer |
|
from datasets import config |
|
from datasets import DatasetDict, Dataset |
|
import logging |
|
|
|
def initialize_logger(log_file): |
|
logging.basicConfig(filename=log_file, level=logging.INFO, format='%(asctime)s: %(message)s') |
|
|
|
def log_parameters(vocab_size, batch_size, fertility_score, proportion_continued_words, log_file='parameters.log'): |
|
initialize_logger(log_file) |
|
logging.info(f"Vocabulary Size: {vocab_size}, Batch Size: {batch_size}, Fertility Score: {fertility_score}, Proportion of Continued word: {proportion_continued_words}") |
|
|
|
def parse_arguments(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument( |
|
"--batch_size", |
|
type=int, |
|
required=True, |
|
help="Batch size to use for training" |
|
) |
|
parser.add_argument( |
|
"--vocab_size", |
|
type=int, |
|
required=True, |
|
help="Vocabulary size to use for tokenizer" |
|
) |
|
parser.add_argument( |
|
"--use_config", |
|
choices=['xlm-roberta', 'vanilla','gemma'], |
|
required=True, |
|
help="Use XLM-RoBERTa config or Vanilla BPE" |
|
) |
|
parser.add_argument( |
|
"--do_evaluate", |
|
action='store_true', |
|
help="Enable evaluation." |
|
) |
|
args = parser.parse_known_args() |
|
return args |
|
def train_tokenizer(args): |
|
|
|
indic_datasets_en= load_dataset('satpalsr/indicCorpv2', 'en', split='train', cache_dir='/sml1/atul/CENTRAL_CACHE')['text'][:205090] |
|
|
|
|
|
combined_train_set=indic_datasets_en |
|
data = { |
|
"train":{"text": combined_train_set}, |
|
"validation": {"text": []}, |
|
"test": {"text": []}, |
|
} |
|
|
|
custom_dataset = DatasetDict() |
|
for split in data: |
|
custom_dataset[split] = Dataset.from_dict(data[split]) |
|
custom_dataset=custom_dataset["train"] |
|
def batch_iterator(): |
|
for idx in range(0, len(custom_dataset), args.batch_size): |
|
yield custom_dataset[idx: idx + args.batch_size]['text'] |
|
|
|
if args.use_config == 'vanilla': |
|
tokenizer = Tokenizer(models.BPE()) |
|
tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=False) |
|
print(f"[INFO] The brown fox jumped over the lazy dog\n{tokenizer.pre_tokenizer.pre_tokenize_str('The brown fox jumped over the lazy dog')}") |
|
print(f"[INFO] Training...") |
|
trainer = trainers.BpeTrainer(vocab_size=args.vocab_size, special_tokens=["<|endoftext|>"]) |
|
tokenizer.train_from_iterator(batch_iterator(), trainer=trainer) |
|
tokenizer.post_processor = processors.ByteLevel(trim_offsets=False) |
|
tokenizer.decoder = decoders.ByteLevel() |
|
tokenizer = GPT2TokenizerFast(tokenizer_object=tokenizer) |
|
elif args.use_config == 'xlm-roberta': |
|
print("skipped") |
|
tokenizer = AutoTokenizer.from_pretrained('xlm-roberta-base') |
|
trained_tokenizer = tokenizer.train_new_from_iterator(batch_iterator(), vocab_size=args.vocab_size) |
|
elif args.use_config == 'gemma': |
|
print("skipped") |
|
tokenizer = AutoTokenizer.from_pretrained('hf-internal-testing/dummy-gemma') |
|
trained_tokenizer = tokenizer.train_new_from_iterator(batch_iterator(), vocab_size=args.vocab_size) |
|
|
|
trained_tokenizer.save_pretrained('hi-indiccorp-gemma-bgpt-bpe-tokenizer1') |
|
print(f"[INFO] Tokenizer saved to disk") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def main(): |
|
args, _ = parse_arguments() |
|
train_tokenizer(args) |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|