question_id
stringlengths
8
35
subject
stringclasses
1 value
chapter
stringclasses
32 values
topic
stringclasses
178 values
question
stringlengths
26
9.64k
options
stringlengths
2
1.63k
correct_option
stringclasses
5 values
answer
stringclasses
293 values
explanation
stringlengths
13
9.38k
question_type
stringclasses
3 values
paper_id
stringclasses
149 values
1l5c2cwqz
maths
definite-integration
properties-of-definite-integration
<p>Let $$\mathop {Max}\limits_{0\, \le x\, \le 2} \left\{ {{{9 - {x^2}} \over {5 - x}}} \right\} = \alpha $$ and $$\mathop {Min}\limits_{0\, \le x\, \le 2} \left\{ {{{9 - {x^2}} \over {5 - x}}} \right\} = \beta $$.</p> <p>If $$\int\limits_{\beta - {8 \over 3}}^{2\alpha - 1} {Max\left\{ {{{9 - {x^2}} \over {5 - x}},x} \right\}dx = {\alpha _1} + {\alpha _2}{{\log }_e}\left( {{8 \over {15}}} \right)} $$ then $${\alpha _1} + {\alpha _2}$$ is equal to _____________.</p>
[]
null
34
Let $f(x)=\frac{x^{2}-9}{x-5} \Rightarrow f^{\prime}(x)=\frac{(x-1)(x-9)}{(x-5)^{2}}$ <br/><br/> So, $\alpha=f(1)=2$ and $\beta=\min (f(0), f(2))=\frac{5}{3}$ <br/><br/> Now, $\int_{-1}^{3} \max \left\{\frac{x^{2}-9}{x-5}, x\right\} d x=\int_{-1}^{9 / 5} \frac{x^{2}-9}{x-5} d x+\int_{9 / 5}^{3} x d x$ <br/><br/> $$ =\int_{-1}^{9 / 5}\left(x+5+\frac{16}{x-5}\right) d x+\left.\frac{x^{2}}{2}\right|_{9 / 5} ^{3} $$ <br/><br/> $$ =\frac{28}{25}+14+16 \ln \left(\frac{8}{15}\right)+\frac{72}{25}=18+16 \ln \left(\frac{8}{15}\right) $$ <br/><br/> Clearly $\alpha_{1}=18$ and $\alpha_{2}=16$, so $\alpha_{1}+\alpha_{2}=34$.
integer
jee-main-2022-online-24th-june-morning-shift
1l5w1ciod
maths
definite-integration
properties-of-definite-integration
<p>Let $$f(t) = \int\limits_0^t {{e^{{x^3}}}\left( {{{{x^8}} \over {{{({x^6} + 2{x^3} + 2)}^2}}}} \right)dx} $$. If $$f(1) + f'(1) = \alpha e - {1 \over 6}$$, then the value of 150$$\alpha$$ is equal to ___________.</p>
[]
null
16
<p>Given,</p> <p>$$f(t) = \int\limits_0^t {{e^{{x^3}}}\left( {{{{x^8}} \over {{{({x^6} + 2{x^3} + 2)}^2}}}} \right)dx} $$</p> <p>$$f'(t) = {e^{{t^3}}}\left( {{{{t^8}} \over {{{({t^6} + 2{t^3} + 2)}^2}}}} \right)$$</p> <p>$$\therefore$$ $$f'(1) = {e^1}\left( {{1 \over {{{(1 + 2 + 2)}^2}}}} \right)$$</p> <p>$$ = {e \over {{5^2}}}$$</p> <p>Now, $$f(t) = \int\limits_0^t {{e^{{x^3}}}\left( {{{{x^8}} \over {{{({x^6} + 2{x^2} + 2)}^2}}}} \right)dx} $$</p> <p>Let $${x^3} = z \Rightarrow 3{x^2}dx = dz$$</p> <p>$$ = \int\limits_0^{{t^3}} {{e^z}\left( {{{{x^6}\,.\,{x^2}dx} \over {{{({x^6} + 2{x^3} + 2)}^2}}}} \right)} $$</p> <p>$$ = {1 \over 3}\int\limits_0^{{t^3}} {{e^z}\left( {{{{z^2}dz} \over {{{({z^2} + 2z + 2)}^2}}}} \right)} $$</p> <p>$$ = {1 \over 3}\int\limits_0^{{t^3}} {{e^z}\left( {{{{z^2} + 2z + 2 - 2z - 2} \over {{{({z^2} + 2z + 2)}^2}}}} \right)} dz$$</p> <p>$$ = {1 \over 3}\int\limits_0^{{t^3}} {{e^z}\left( {{{{z^2} + 2z + 2} \over {{{({z^2} + 2z + 2)}^2}}} - {{2z + 2} \over {{{({z^2} + 2z + 2)}^2}}}} \right)dz} $$</p> <p>$$ = {1 \over 3}\int\limits_0^{{t^3}} {{e^z}\left( {{1 \over {{z^2} + 2z + 2}} - {{2z + 2} \over {{{({z^2} + 2z + 2)}^2}}}} \right)dz} $$</p> <p>$$ = {1 \over 3}\int\limits_0^{{t^3}} {{e^z}\left( {f(z) + f'(z)} \right)dz} $$</p> <p>$$ = {1 \over 3}\left[ {{e^z}f(z)} \right]_0^{{t^3}}$$</p> <p>$$ = {1 \over 3}\left[ {{e^z} \times {1 \over {{z^2} + 2z + 2}}} \right]_0^{{t^3}}$$</p> <p>$$ = {1 \over 3}\left[ {{e^{{t^3}}} \times {1 \over {{t^6} + 2{t^3} + 2}} - {1 \over 2}} \right]$$</p> <p>$$\therefore$$ $$f(t) = {1 \over 3}\left[ {{{{e^{{t^3}}}} \over {{t^6} + 2{t^3} + 2}} - {1 \over 2}} \right]$$</p> <p>So, $$f(1) = {1 \over 3}\left[ {{e \over {1 + 2 + 2}} - {1 \over 2}} \right]$$</p> <p>$$ = {1 \over 3}\left[ {{e \over 5} - {1 \over 2}} \right]$$</p> <p>Given, $$f(1) + f'(1) = \alpha e - {1 \over 6}$$</p> <p>$$ \Rightarrow {1 \over 3}\left[ {{e \over 5} - {1 \over 2}} \right] + {e \over {25}} = \alpha e - {1 \over 6}$$</p> <p>$$ \Rightarrow {e \over {15}} - {1 \over 6} + {e \over {25}} = \alpha e - {1 \over 6}$$</p> <p>$$ \Rightarrow {e \over {15}} + {e \over {25}} = \alpha e$$</p> <p>$$ \Rightarrow {{10e + 6e} \over {150}} = \alpha e$$</p> <p>$$ \Rightarrow {{16e} \over {150}} = \alpha e$$</p> <p>$$ \Rightarrow \alpha = {{16} \over {150}}$$</p> <p>$$\therefore$$ $$150\alpha = 150 \times {{16} \over {150}} = 16$$</p>
integer
jee-main-2022-online-30th-june-morning-shift
1l6dvfwkf
maths
definite-integration
properties-of-definite-integration
<p>For any real number $$x$$, let $$[x]$$ denote the largest integer less than equal to $$x$$. Let $$f$$ be a real valued function defined on the interval $$[-10,10]$$ by $$f(x)=\left\{\begin{array}{l}x-[x], \text { if }[x] \text { is odd } \\ 1+[x]-x, \text { if }[x] \text { is even } .\end{array}\right.$$ Then the value of $$\frac{\pi^{2}}{10} \int_{-10}^{10} f(x) \cos \pi x \,d x$$ is :</p>
[{"identifier": "A", "content": "4"}, {"identifier": "B", "content": "2"}, {"identifier": "C", "content": "1"}, {"identifier": "D", "content": "0"}]
["A"]
null
<p>Case 1 :</p> <p>Let $$0 \le x &lt; 1$$</p> <p>then $$\left[ x \right] = 0$$, which is even</p> <p>$$\therefore$$ $$f(x) = 1 + \left[ x \right] - x$$</p> <p>$$ = 1 + 0 - x$$</p> <p>$$ = 1 - x$$</p> <p>Case 2 :</p> <p>Let $$1 \le x &lt; 2$$</p> <p>then $$\left[ x \right] = 1$$, which is odd</p> <p>$$\therefore$$ $$f(x) = x - \left[ x \right]$$</p> <p>$$ = x - 1$$</p> <p>Case 3 :</p> <p>Let $$2 \le x &lt; 3$$</p> <p>then $$\left[ x \right] = 2$$, which is even</p> <p>$$\therefore$$ $$f(x) = 1 + \left[ x \right] - x$$</p> <p>$$ = 1 + 2 - x$$</p> <p>$$ = 3 - x$$</p> <p>Case 4 :</p> <p>Let $$3 \le x &lt; 4$$</p> <p>then $$\left[ x \right] = 3$$, which is odd</p> <p>$$\therefore$$ $$f(x) = x - \left[ x \right]$$</p> <p>$$ = x - 3$$</p> <p>$$\therefore$$ $$f(x) = \left\{ {\matrix{ {1 - x} &amp; ; &amp; {0 \le x &lt; 1} \cr {x - 1} &amp; ; &amp; {1 \le x &lt; 2} \cr {3 - x} &amp; ; &amp; {2 \le x &lt; 3} \cr {x - 3} &amp; ; &amp; {3 \le x &lt; 4} \cr } } \right.$$</p> <p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1l79fc2ri/bc49e861-7a20-4168-b847-928ce9f0304f/283cb1e0-24aa-11ed-8d2e-5f0df5271c2d/file-1l79fc2rj.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1l79fc2ri/bc49e861-7a20-4168-b847-928ce9f0304f/283cb1e0-24aa-11ed-8d2e-5f0df5271c2d/file-1l79fc2rj.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh;" alt="JEE Main 2022 (Online) 25th July Morning Shift Mathematics - Definite Integration Question 106 English Explanation"></p> <p>$$\therefore$$ $$f(x)$$ is periodic and period of $$f(x) = 2$$</p> <p>And period of $$\cos \pi x = {{2\pi } \over \pi } = 2$$</p> <p>$$\therefore$$ Period of $$f(x)\cos \pi x = 2$$</p> <p>Now,</p> <p>$$I = {{{\pi ^2}} \over {10}}\int_{ - 10}^{10} {f(x)\cos \pi x\,dx} $$</p> <p>$$ = {{{\pi ^2}} \over {10}}\int_{ - 10}^{ - 10 + 10 \times 2} {f(x)\cos \pi x\,dx} $$</p> <p>$$ = {{{\pi ^2}} \over {10}}\int_0^{10 \times 2} {f(x)\cos \pi x\,dx} $$</p> <p>$$ = {{{\pi ^2}} \over {10}} \times 10\int_0^2 {f(x)\cos \pi x\,dx} $$</p> <p>$$ = {\pi ^2}\int_0^2 {f(x)\cos \pi x\,dx} $$</p> <p>$$\therefore$$ $$I = {\pi ^2}\left[ {\int_0^1 {f(x)\cos \pi x\,dx + \int_1^2 {f(x)\cos \pi x\,dx} } } \right]$$</p> <p>$$ = {\pi ^2}\left[ {\int_0^1 {(1 - x)\cos \pi x\,dx + \int_1^2 {(x - 1)\cos \pi x\,dx} } } \right]$$</p> <p>$$ = {\pi ^2}\left[ {\int_0^1 {\cos \pi x\,dx - \int_0^1 {x\cos \pi x\,dx + \int_1^2 {x\cos \pi x\,dx - \int_1^2 {\cos \pi x\,dx} } } } } \right]$$</p> <p>$$ = {\pi ^2}\left[ {{1 \over \pi }\left[ {\sin \pi x} \right]_0^1 - \int_0^1 {x\cos \pi x\,dx + \int_1^2 {x\cos \pi x\,dx - {1 \over \pi }\left[ {\sin \pi x} \right]_1^2} } } \right]$$</p> <p>$$ = {\pi ^2}\left[ {0 - \int_0^1 {x\cos \pi x\,dx + \int_1^2 {x\cos \pi x\,dx - 0} } } \right]$$</p> <p>$$ = {\pi ^2}\left[ { - \left[ {x{{\sin \pi x} \over \pi } + {1 \over {{\pi ^2}}}\cos \pi x} \right]_0^1 + \left[ {x{{\sin \pi x} \over \pi } + {1 \over {{\pi ^2}}}\cos \pi x} \right]_1^2} \right]$$</p> <p>$$\left[ {\mathrm{As}\,\int {x\cos \pi x\,dx = x\,.\,\int {\cos \pi x - \int {\left( {1\,.\,{{\sin \pi x} \over \pi }} \right)dx = x\,.\,{{\sin \pi x} \over \pi } + {1 \over {{\pi ^2}}}\cos \pi x + c} } } } \right]$$</p> <p>$$ = {\pi ^2}\left[ { - \left[ {\left( {1\,.\,{{\sin \pi } \over \pi } + {1 \over {{\pi ^2}}}\,.\,\cos \pi } \right) - \left( {0 + {1 \over {{\pi ^2}}}\,.\,\cos 0} \right)} \right] + \left[ {\left( {2\,.\,{{\sin 2\pi } \over \pi } + {1 \over {{\pi ^2}}}\cos 2\pi } \right) - \left( {1\,.\,{{\sin \pi } \over \pi } + {1 \over {{\pi ^2}}}\cos \pi } \right)} \right]} \right]$$</p> <p>$$ = {\pi ^2}\left[ { - \left\{ {\left( { - {1 \over {{\pi ^2}}}} \right) - \left( {{1 \over {{\pi ^2}}}} \right)} \right\} + \left( {\left( { + {1 \over {{\pi ^2}}}} \right) - \left( { - {1 \over {{\pi ^2}}}} \right)} \right.} \right]$$</p> <p>$$ = {\pi ^2}\left[ { - \left( { - {2 \over {{\pi ^2}}}} \right) + {2 \over {{\pi ^2}}}} \right]$$</p> <p>$$ = {\pi ^2}\left[ {{2 \over {{\pi ^2}}} + {2 \over {{\pi ^2}}}} \right]$$</p> <p>$$ = {\pi ^2} \times {4 \over {{\pi ^2}}}$$</p> <p>$$ = 4$$</p>
mcq
jee-main-2022-online-25th-july-morning-shift
1l6f157cx
maths
definite-integration
properties-of-definite-integration
<p>Let $$[t]$$ denote the greatest integer less than or equal to $$t$$. Then the value of the integral $$\int_{-3}^{101}\left([\sin (\pi x)]+e^{[\cos (2 \pi x)]}\right) d x$$ is equal to</p>
[{"identifier": "A", "content": "$$\\frac{52(1-e)}{e}$$"}, {"identifier": "B", "content": "$$\\frac{52}{e}$$"}, {"identifier": "C", "content": "$$\\frac{52(2+e)}{e}$$"}, {"identifier": "D", "content": "$$\\frac{104}{e}$$"}]
["B"]
null
<p>$$I = \int_{ - 3}^{101} {\left( {\left[ {\sin (\pi x)} \right] + {e^{[\cos (2\pi x)]}}} \right)dx} $$</p> $$[\sin \pi x]$$ is periodic with period 2 and $${{e^{[\cos (2\pi x)]}}}$$ is periodic with period 1.</p> <p>So,</p> <p>$$I = 52\int_0^2 {\left( {\left[ {\sin \pi x} \right] + {e^{[\cos 2\pi x]}}} \right)dx} $$</p> <p>$$ = 52\left\{ {\int_1^2 { - 1} \,dx + \int_{{1 \over 4}}^{{3 \over 4}} {{e^{ - 1}}\,dx + \int_{{5 \over 4}}^{{7 \over 4}} {{e^{ - 1}}\,dx + \int_0^{{1 \over 4}} {{e^0}\,dx + \int_{{3 \over 4}}^{{5 \over 4}} {{e^0}\,dx + \int_{{7 \over 4}}^2 {{e^0}\,dx} } } } } } \right\}$$</p> <p>$$ = {{52} \over e}$$</p>
mcq
jee-main-2022-online-25th-july-evening-shift
1l6f3l2tc
maths
definite-integration
properties-of-definite-integration
<p>Let $${a_n} = \int\limits_{ - 1}^n {\left( {1 + {x \over 2} + {{{x^2}} \over 3} + \,\,.....\,\, + \,\,{{{x^{n - 1}}} \over n}} \right)dx} $$ for every n $$\in$$ N. Then the sum of all the elements of the set {n $$\in$$ N : a<sub>n</sub> $$\in$$ (2, 30)} is ____________.</p>
[]
null
5
<p>$$\because$$ $${a_n} = \int\limits_{ - 1}^n {\left( {1 + {x \over 2} + {{{x^2}} \over 3}\, + \,....\, + \,{{{x^{n - 1}}} \over n}} \right)dx} $$</p> <p>$$ = \left[ {x + {{{x^2}} \over {{2^2}}} + {{{x^3}} \over {{3^2}}}\, + \,......\, + \,{{{x^n}} \over {{n^2}}}} \right]_{ - 1}^n$$</p> <p>$${a_n} = {{n + 1} \over {{1^2}}} + {{{n^2} - 1} \over {{2^2}}} + {{{n^3} + 1} \over {{3^2}}} + {{{n^4} - 1} \over {{4^2}}}\, + \,...\, + \,{{{n^n} + {{( - 1)}^{n + 1}}} \over {{n^2}}}$$</p> <p>Here, $${a_1} = 2,\,{a_2} = {{2 + 1} \over 1} + {{{2^2} - 1} \over 2} = 3 + {3 \over 2} = {9 \over 2}$$</p> <p>$${a_3} = 4 + 2 + {{28} \over 9} = {{100} \over 9}$$</p> <p>$${a_4} = 5 + {{15} \over 4} + {{65} \over 9} + {{255} \over {16}} > 31$$.</p> <p>$$\therefore$$ The required set is $$\{ 2,3\} $$. $$\because$$ $${a_n} \in (2,30)$$</p> <p>$$\therefore$$ Sum of elements = 5.</p>
integer
jee-main-2022-online-25th-july-evening-shift
1l6gjh7xh
maths
definite-integration
properties-of-definite-integration
<p>If $$\mathrm{n}(2 \mathrm{n}+1) \int_{0}^{1}\left(1-x^{\mathrm{n}}\right)^{2 \mathrm{n}} \mathrm{d} x=1177 \int_{0}^{1}\left(1-x^{\mathrm{n}}\right)^{2 \mathrm{n}+1} \mathrm{~d} x$$, then $$\mathrm{n} \in \mathbf{N}$$ is equal to ______________.</p>
[]
null
24
<p>$$\int_0^1 {{{(1 - {x^n})}^{2n + 1}}dx = \int_0^1 {1\,.\,{{(1 - {x^n})}^{2n + 1}}dx} } $$</p> <p>$$ = \left[ {{{(1 - {x^n})}^{2n + 1}}\,.\,x} \right]_0^1 - \int_0^1 {x\,.\,(2n + 1){{(1 - {x^n})}^{2n}}\,.\, - n{x^{n - 1}}dx} $$</p> <p>$$ = n(2n + 1)\int_0^1 {(1 - (1 - {x^n})){{(1 - {x^n})}^{2n}}dx} $$</p> <p>$$ = n(2n + 1)\int_0^1 {{{(1 - {x^n})}^{2n}}dx - n(2n + 1)\int_0^1 {{{(1 - {x^n})}^{2n + 1}}dx} } $$</p> <p>$$(1 + n(2n + 1))\int_0^1 {{{(1 - {x^n})}^{2n + 1}}dx = n(2n + 1)\int_0^1 {{{(1 - {x^n})}^{2n}}dx} } $$</p> <p>$$(2{n^2} + n + 1)\int_0^1 {{{(1 - {x^n})}^{2n + 1}}dx = 1177\int_0^1 {{{(1 - {x^n})}^{2n + 1}}dx} } $$</p> <p>$$\therefore$$ $$2{n^2} + n + 1 = 1177$$</p> <p>$$2{n^2} + n - 1176 = 0$$</p> <p>$$\therefore$$ $$n = 24$$ or $$ - {{49} \over 2}$$</p> <p>$$\therefore$$ $$n = 24$$</p>
integer
jee-main-2022-online-26th-july-morning-shift
1l6hydgfm
maths
definite-integration
properties-of-definite-integration
<p>$$ \int\limits_{0}^{20 \pi}(|\sin x|+|\cos x|)^{2} d x \text { is equal to } $$</p>
[{"identifier": "A", "content": "$$10(\\pi+4)$$"}, {"identifier": "B", "content": "$$10(\\pi+2)$$"}, {"identifier": "C", "content": "$$20(\\pi-2)$$"}, {"identifier": "D", "content": "$$20(\\pi+2)$$"}]
["D"]
null
<p>$$I = \int\limits_0^{20\pi } {{{\left( {|\sin x| + |\cos x|} \right)}^2}\,dx} $$</p> <p>$$ = 20\int\limits_0^\pi {\left( {1 + |\sin 2x|} \right)\,dx} $$</p> <p>$$ = 40\int\limits_0^{{\pi \over 2}} {(1 + \sin 2x)\,dx} $$</p> <p>$$ = \left. {40\left( {x - {{\cos 2x} \over 2}} \right)} \right|_0^{{\pi \over 2}}$$</p> <p>$$ = 40\left( {{\pi \over 2} + {1 \over 2} + {1 \over 2}} \right) = 20(\pi + 2)$$</p>
mcq
jee-main-2022-online-26th-july-evening-shift
1l6jbku4w
maths
definite-integration
properties-of-definite-integration
<p>Let $$f: \mathbb{R} \rightarrow \mathbb{R}$$ be a function defined as</p> <p>$$f(x)=a \sin \left(\frac{\pi[x]}{2}\right)+[2-x], a \in \mathbb{R}$$ where $$[t]$$ is the greatest integer less than or equal to $$t$$. If $$\mathop {\lim }\limits_{x \to -1 } f(x)$$ exists, then the value of $$\int\limits_{0}^{4} f(x) d x$$ is equal to</p>
[{"identifier": "A", "content": "$$-$$1"}, {"identifier": "B", "content": "$$-$$2"}, {"identifier": "C", "content": "1"}, {"identifier": "D", "content": "2"}]
["B"]
null
<p>$$f(x) = a\sin \left( {{{\pi [x]} \over 2}} \right) + [2 - x]\,a \in R$$</p> <p>Now,</p> <p>$$\because$$ $$\mathop {\lim }\limits_{x \to - 1} f(x)$$ exist</p> <p>$$\therefore$$ $$\mathop {\lim }\limits_{x \to - {1^ - }} f(x) = \mathop {\lim }\limits_{x \to - {1^ + }} f(x)$$</p> <p>$$ \Rightarrow a\sin \left( {{{ - 2\pi } \over 2}} \right) + 3 = a\sin \left( {{{ - \pi } \over 2}} \right) + 2$$</p> <p>$$ \Rightarrow - a = 1 \Rightarrow a = - 1$$</p> <p>Now, $$\int_0^4 {f(x)dx = \int_0^4 {\left( { - \sin \left( {{{\pi [x]} \over 2}} \right) + [2 - x]} \right)dx} } $$</p> <p>$$ = \int_0^1 {1dx + \int_1^2 { - 1dx + \int_2^3 { - 1dx + \int_3^4 {(1 - 2)dx} } } } $$</p> <p>$$ = 1 - 1 - 1 - 1 = - 2$$</p>
mcq
jee-main-2022-online-27th-july-morning-shift
1l6jbqfar
maths
definite-integration
properties-of-definite-integration
<p>Let $$ I=\int_{\pi / 4}^{\pi / 3}\left(\frac{8 \sin x-\sin 2 x}{x}\right) d x $$. Then</p>
[{"identifier": "A", "content": "$${\\pi \\over 2} < I < {{3\\pi } \\over 4}$$"}, {"identifier": "B", "content": "$${\\pi \\over 5} < I < {{5\\pi } \\over {12}}$$"}, {"identifier": "C", "content": "$${{5\\pi } \\over {12}} < I < {{\\sqrt 2 } \\over 3}\\pi $$"}, {"identifier": "D", "content": "$${{3\\pi } \\over 4} < I < \\pi $$"}]
["C"]
null
<p>I comes out around 1.536 which is not satisfied by any given options.</p> <p>$$\int\limits_{\pi /4}^{\pi /3} {{{8x - 2x} \over x}dx > I > \int\limits_{\pi /4}^{\pi /3} {{{8\sin x - 2x} \over x}dx} } $$</p> <p>$${\pi \over 2} > I > \int\limits_{\pi /4}^{\pi /3} {\left( {{{8\sin x} \over x} - 2} \right)dx} $$</p> <p>$${{\sin x} \over x}$$ is decreasing in $$\left( {{\pi \over 4},{\pi \over 3}} \right)$$ so it attains maximum at $$x = {\pi \over 4}$$</p> <p>$$I > \int\limits_{\pi /4}^{\pi /3} {\left( {{{8\sin x/3} \over {x/3}} - 2} \right)dx} $$</p> <p>$$I > \sqrt 3 - {\pi \over 6}$$</p>
mcq
jee-main-2022-online-27th-july-morning-shift
1l6jdqp3s
maths
definite-integration
properties-of-definite-integration
<p>Let a function $$f: \mathbb{R} \rightarrow \mathbb{R}$$ be defined as :</p> <p>$$f(x)= \begin{cases}\int\limits_{0}^{x}(5-|t-3|) d t, &amp; x&gt;4 \\ x^{2}+b x &amp; , x \leq 4\end{cases}$$</p> <p>where $$\mathrm{b} \in \mathbb{R}$$. If $$f$$ is continuous at $$x=4$$, then which of the following statements is NOT true?</p>
[{"identifier": "A", "content": "$$f$$ is not differentiable at $$x=4$$"}, {"identifier": "B", "content": "$$f^{\\prime}(3)+f^{\\prime}(5)=\\frac{35}{4}$$"}, {"identifier": "C", "content": "$$f$$ is increasing in $$\\left(-\\infty, \\frac{1}{8}\\right) \\cup(8, \\infty)$$"}, {"identifier": "D", "content": "$$f$$ has a local minima at $$x=\\frac{1}{8}$$"}]
["C"]
null
<p>$$\because$$ f(x) is continuous at x = 4</p> <p>$$ \Rightarrow f({4^ - }) = f({4^ + })$$</p> <p>$$ \Rightarrow 16 + 4b = \int\limits_0^4 {(5 - |t - 3|)dt} $$</p> <p>$$ = \int\limits_0^3 {(2 + t)dt + \int\limits_3^4 {(8 - t)dt} } $$</p> <p>$$ = \left. {2t + {{{t^2}} \over 2}} \right)_0^3 + \left. {8t - {{{t^2}} \over 3}} \right]_3^4$$</p> <p>$$ = 6 + {9 \over 2} - 0 + (32 - 8) - \left( {24 - {9 \over 2}} \right)$$</p> <p>$$16 + 4b = 15$$</p> <p>$$ \Rightarrow b = {{ - 1} \over 4}$$</p> <p>$$ \Rightarrow f(x) = \left\{ {\matrix{ {\int\limits_0^x {5 - |t - 3|\,dt} } & {x > 4} \cr {{x^2} - {x \over 4}} & {x \le 4} \cr } } \right.$$</p> <p>$$ \Rightarrow f'(x) = \left\{ {\matrix{ {5 - |x - 3|} & {x > 4} \cr {2x - {1 \over 4}} & {x \le 4} \cr } } \right.$$</p> <p>$$ \Rightarrow f'(x) = \left\{ {\matrix{ {8 - x} & {x > 4} \cr {2x - {1 \over 4}} & {x \le 4} \cr } } \right.$$</p> <p>$$f'(x) < 0 = x \in \left( { - \infty ,{1 \over 8}} \right) \cup (8,\infty )$$</p> <p>$$f'(3) + f'(5) = 6 - {1 \over 4} = {{35} \over 4}$$</p> <p>$$f'(x) = 0 \Rightarrow x = {1 \over 8}$$ have local minima</p> <p>$$\therefore$$ (C) is only incorrect option.</p>
mcq
jee-main-2022-online-27th-july-morning-shift
1l6kiq196
maths
definite-integration
properties-of-definite-integration
<p>Let $$f(x)=2+|x|-|x-1|+|x+1|, x \in \mathbf{R}$$.</p> <p>Consider</p> <p>$$(\mathrm{S} 1): f^{\prime}\left(-\frac{3}{2}\right)+f^{\prime}\left(-\frac{1}{2}\right)+f^{\prime}\left(\frac{1}{2}\right)+f^{\prime}\left(\frac{3}{2}\right)=2$$</p> <p>$$(\mathrm{S} 2): \int\limits_{-2}^{2} f(x) \mathrm{d} x=12$$</p> <p>Then,</p>
[{"identifier": "A", "content": "both (S1) and (S2) are correct"}, {"identifier": "B", "content": "both (S1) and (S2) are wrong"}, {"identifier": "C", "content": "only (S1) is correct"}, {"identifier": "D", "content": "only (S2) is correct"}]
["D"]
null
<p>$$f(x) = 2 + |x| - |x - 1| + |x + 1|,\,x \in R$$</p> <p>$$\therefore$$ $$f(x) = \left\{ {\matrix{ { - x} & , & {x < - 1} \cr {x + 2} & , & { - 1 \le x < 0} \cr {3x + 2} & , & {0 \le x < 1} \cr {x + 4} & , & {x \ge 1} \cr } } \right.$$</p> <p>$$\therefore$$ $$f'\left( { - {3 \over 2}} \right) + f'\left( { - {1 \over 2}} \right) + f'\left( {{1 \over 2}} \right) + f'\left( {{3 \over 2}} \right) = - 1 + 1 + 3 + 1 = 4$$</p> <p>and $$\int\limits_{ - 2}^2 {f(x)dx = \int\limits_{ - 2}^{ - 1} {f(x)dx + \int\limits_{ - 1}^0 {f(x)dx + \int\limits_0^1 {f(x)dx + \int\limits_1^2 {f(x)dx} } } } } $$</p> <p>$$ = \left[ { - {{{x^2}} \over 2}} \right]_2^{ - 1} + \left[ {{{{{(x + 2)}^2}} \over 2}} \right]_{ - 1}^0 + \left[ {{{{{(3x + 2)}^2}} \over 6}} \right]_0^1 + \left[ {{{{{(x + 4)}^2}} \over 2}} \right]_1^2$$</p> <p>$$ = {3 \over 2} + {3 \over 2} + {7 \over 2} + {{11} \over 2} = {{24} \over 2} = 12$$</p> <p>$$\therefore$$ Only (S2) is correct</p>
mcq
jee-main-2022-online-27th-july-evening-shift
1l6kjxlll
maths
definite-integration
properties-of-definite-integration
<p>$$\int\limits_{0}^{2}\left(\left|2 x^{2}-3 x\right|+\left[x-\frac{1}{2}\right]\right) \mathrm{d} x$$, where [t] is the greatest integer function, is equal to :</p>
[{"identifier": "A", "content": "$$\\frac{7}{6}$$"}, {"identifier": "B", "content": "$$\\frac{19}{12}$$"}, {"identifier": "C", "content": "$$\\frac{31}{12}$$"}, {"identifier": "D", "content": "$$\\frac{3}{2}$$"}]
["B"]
null
<p>$$\int\limits_0^2 {|2{x^2} - 3x|dx + \int\limits_0^2 {\left[ {x - {1 \over 2}} \right]dx} } $$</p> <p>$$ = \int\limits_0^{3/2} {(3x - 2{x^2})dx + \int\limits_{3/2}^2 {(2{x^2} - 3x)dx + \int\limits_0^{1/2} { - 1dx + \int\limits_{1/2}^{3/2} {0\,dx + \int\limits_{3/2}^2 {1dx} } } } } $$</p> <p>$$ = \left. {\left( {{{3{x^2}} \over 2} - {{2{x^3}} \over 3}} \right)} \right|_0^{3/2} + \left. {\left( {{{2{x^3}} \over 3} - {{3{x^2}} \over 2}} \right)} \right|_{3/2}^2 - {1 \over 2} + {1 \over 2}$$</p> <p>$$ = \left( {{{27} \over 8} - {{27} \over {12}}} \right) + \left( {{{16} \over 3} - 6 - {{27} \over {12}} + {{27} \over 8}} \right)$$</p> <p>$$ = {{19} \over {12}}$$</p>
mcq
jee-main-2022-online-27th-july-evening-shift
1l6klps4r
maths
definite-integration
properties-of-definite-integration
<p>Let $$f(x)=\min \{[x-1],[x-2], \ldots,[x-10]\}$$ where [t] denotes the greatest integer $$\leq \mathrm{t}$$. Then $$\int\limits_{0}^{10} f(x) \mathrm{d} x+\int\limits_{0}^{10}(f(x))^{2} \mathrm{~d} x+\int\limits_{0}^{10}|f(x)| \mathrm{d} x$$ is equal to ________________.</p>
[]
null
385
<p>$$\because$$ $$f(x) = \min \,\{ [x - 1],[x - 2],\,......,\,[x - 10]\} = [x - 10]$$</p> <p>Also $$|f(x)| = \left\{ {\matrix{ { - f(x),} & {if\,x \le 10} \cr {f(x),} & {if\,x \ge 10} \cr } } \right.$$</p> <p>$$\therefore$$ $$\int\limits_0^{10} {f(x)dx + \int\limits_0^{10} {{{(f(x))}^2}dx + \int\limits_0^{10} {( - f(x))dx} } } $$</p> <p>$$ = \int\limits_0^{10} {{{(f(x))}^2}dx} $$</p> <p>$$ = {10^2} + {9^2} + {8^2}\, + \,.....\, + \,{1^2}$$</p> <p>$$ = {{10 \times 11 \times 21} \over 6} = 385$$</p>
integer
jee-main-2022-online-27th-july-evening-shift
1l6m6kw3s
maths
definite-integration
properties-of-definite-integration
<p>If $$\int\limits_{0}^{\sqrt{3}} \frac{15 x^{3}}{\sqrt{1+x^{2}+\sqrt{\left(1+x^{2}\right)^{3}}}} \mathrm{~d} x=\alpha \sqrt{2}+\beta \sqrt{3}$$, where $$\alpha, \beta$$ are integers, then $$\alpha+\beta$$ is equal to __________.</p>
[]
null
10
<p>Put $$x = \tan \theta \Rightarrow dx = {\sec ^2}\theta \,d\theta $$</p> <p>$$ \Rightarrow I = \int\limits_0^{{\pi \over 3}} {{{15{{\tan }^3}\theta \,.\,{{\sec }^2}\theta \,d\theta } \over {\sqrt {1 + {{\tan }^2}\theta + \sqrt {{{\sec }^6}\theta } } }}} $$</p> <p>$$ \Rightarrow I = \int\limits_0^{{\pi \over 3}} {{{15{{\tan }^2}\theta {{\sec }^2}\theta \,d\theta } \over {\sec \theta \sqrt {1 + \sec \theta } }}} $$</p> <p>$$ \Rightarrow I = \int\limits_0^{{\pi \over 3}} {{{15({{\sec }^2}\theta - 1)\sec \theta \tan \theta \,d\theta } \over {\left( {\sqrt {1 + \sec \theta } } \right)}}} $$</p> <p>Now put $$1 + \sec \theta = {t^2}$$</p> <p>$$ \Rightarrow \sec \theta \tan \theta \,d\theta = 2tdt$$</p> <p>$$ \Rightarrow I = \int\limits_{\sqrt 2 }^{\sqrt 3 } {{{15\left( {{{({t^2} - 1)}^2} - 1} \right)2t\,dt} \over t}} $$</p> <p>$$ \Rightarrow I = 30\int\limits_{\sqrt 2 }^{\sqrt 3 } {({t^4} - 2{t^2} + 1 - 1)\,dt} $$</p> <p>$$ \Rightarrow I = 30\int\limits_{\sqrt 2 }^{\sqrt 3 } {({t^4} - 2{t^2})\,dt} $$</p> <p>$$ \Rightarrow I = \left. {30\left( {{{{t^5}} \over 5} - {{2{t^3}} \over 3}} \right)} \right|_{\sqrt 2 }^{\sqrt 3 }$$</p> <p>$$ = 30\left[ {\left( {{9 \over 5}\sqrt 3 - 2\sqrt 3 } \right) - \left( {{{4\sqrt 2 } \over 5} - {{4\sqrt 2 } \over 3}} \right)} \right]$$</p> <p>$$ = \left( {54\sqrt 3 - 60\sqrt 3 } \right) - \left( {24\sqrt 2 - 40\sqrt 2 } \right)$$</p> <p>$$ = 16\sqrt 2 - 6\sqrt 3 $$</p> <p>$$\therefore$$ $$\alpha = 16$$ and $$\beta = - 6$$</p> <p>$$\alpha + \beta = 10.$$</p>
integer
jee-main-2022-online-28th-july-morning-shift
1l6nm7c4a
maths
definite-integration
properties-of-definite-integration
<p>Let $$I_{n}(x)=\int_{0}^{x} \frac{1}{\left(t^{2}+5\right)^{n}} d t, n=1,2,3, \ldots .$$ Then :</p>
[{"identifier": "A", "content": "$$50 I_{6}-9 I_{5}=x I_{5}^{\\prime}$$"}, {"identifier": "B", "content": "$$50 I_{6}-11 I_{5}=x I_{5}^{\\prime}$$"}, {"identifier": "C", "content": "$$50 I_{6}-9 I_{5}=I_{5}^{\\prime}$$"}, {"identifier": "D", "content": "$$50 I_{6}-11 I_{5}=I_{5}^{\\prime}$$"}]
["A"]
null
<p>$${I_n}(x) = \int\limits_0^x {{1 \over {{{({t^2} + 5)}^n}}}dt} $$</p> <p>$$ = \int\limits_0^x {{1 \over {\underbrace {{{({t^2} + 5)}^n}}_I}} \times \mathop I\limits_{II} \,dt} $$</p> <p>$$ = \left. {{t \over {{{({t^2} + 5)}^n}}}} \right|_0^x - \int\limits_0^x {{{ - 2nt} \over {{{({t^2} + 5)}^{n + 1}}}} \times t\,dt} $$</p> <p>$$ = {x \over {{{({x^2} + 5)}^n}}} + \int\limits_0^x {2n\left( {{{{t^2} + 5 - 5} \over {{{({t^2} + 5)}^{n + 1}}}}} \right)dt} $$</p> <p>$${I_n}(x) = {x \over {{{({x^2} + 5)}^n}}} + 2n\,{I_n}(x) - 10n\,{I_{n + 1}}(x)$$</p> <p>$$10n\,{I_{n + 1}}(x) - (2n - 1)\,{I_n}(x) = xI{'_n}(x)$$</p> <p>For $$n = 5$$</p> <p>$$50{I_6}(x) - 9{I_5}(x) = xI{'_5}(x)$$</p>
mcq
jee-main-2022-online-28th-july-evening-shift
1l6npjdpk
maths
definite-integration
properties-of-definite-integration
<p>The value of the integral $$\int\limits_{0}^{\frac{\pi}{2}} 60 \frac{\sin (6 x)}{\sin x} d x$$ is equal to _________.</p>
[]
null
104
<p>$$I = \int\limits_0^{{\pi \over 2}} {60\,.\,{{\sin 6x} \over {\sin x}}dx} $$</p> <p>$$ = 60\,.\,2\int\limits_0^{{\pi \over 2}} {(3 - 4{{\sin }^2}x)(4{{\cos }^2}x - 3)\cos x\,dx} $$</p> <p>$$ = 120\int\limits_0^{{\pi \over 2}} {(3 - 4{{\sin }^2}x)(1 - 4{{\sin }^2}x)\cos x\,dx} $$</p> <p>Let $$\sin x = t \Rightarrow \cos xdx = dt$$</p> <p>$$ = 120\int\limits_0^1 {(3 - 4{t^2})(1 - 4{t^2})dt} $$</p> <p>$$ = 120\int\limits_0^1 {(3 - 16{t^2} + 16{t^4})dt} $$</p> <p>$$ = 120\left[ {3t - {{16{t^3}} \over 3} + {{16{t^5}} \over 5}} \right]_0^1$$</p> <p>$$ = 104$$</p>
integer
jee-main-2022-online-28th-july-evening-shift
1l6p1b4ew
maths
definite-integration
properties-of-definite-integration
<p>The integral $$\int\limits_{0}^{\frac{\pi}{2}} \frac{1}{3+2 \sin x+\cos x} \mathrm{~d} x$$ is equal to :</p>
[{"identifier": "A", "content": "$$\\tan ^{-1}(2)$$"}, {"identifier": "B", "content": "$$\\tan ^{-1}(2)-\\frac{\\pi}{4}$$"}, {"identifier": "C", "content": "$$\\frac{1}{2} \\tan ^{-1}(2)-\\frac{\\pi}{8}$$"}, {"identifier": "D", "content": "$$\\frac{1}{2}$$"}]
["B"]
null
<p>$$I = \int\limits_0^{\pi /2} {{1 \over {3 + 2\sin x + \cos x}}dx} $$</p> <p>$$ = \int\limits_0^{\pi /2} {{{(1 + {{\tan }^2}x/2)dx} \over {3(1 + {{\tan }^2}x/2) + 2(2\tan x/2) + (1 - {{\tan }^2}x/2)}}} $$</p> <p>Let $$\tan x/2 = t \Rightarrow {\sec ^2}x/2dx = 2dt$$</p> <p>$$I = \int\limits_0^1 {{{2dt} \over {4 + 2{t^2} + 4t}}} $$</p> <p>$$ = \int\limits_0^1 {{{dt} \over {{t^2} + 2t + 2}} = \int\limits_0^1 {{{dt} \over {{{(t + 1)}^2} + 1}}} } $$</p> <p>$$ = \left. {{{\tan }^{ - 1}}(t + 1)} \right|_0^1 = {\tan ^{ - 1}}2 - {\pi \over 4}$$</p>
mcq
jee-main-2022-online-29th-july-morning-shift
1l6p2ihmv
maths
definite-integration
properties-of-definite-integration
<p>If $$f(\alpha)=\int\limits_{1}^{\alpha} \frac{\log _{10} \mathrm{t}}{1+\mathrm{t}} \mathrm{dt}, \alpha&gt;0$$, then $$f\left(\mathrm{e}^{3}\right)+f\left(\mathrm{e}^{-3}\right)$$ is equal to :</p>
[{"identifier": "A", "content": "9"}, {"identifier": "B", "content": "$$\\frac{9}{2}$$"}, {"identifier": "C", "content": "$$\\frac{9}{\\log _{e}(10)}$$"}, {"identifier": "D", "content": "$$\\frac{9}{2 \\log _{e}(10)}$$"}]
["D"]
null
<p>$$f(\alpha ) = \int_1^\alpha {{{{{\log }_{10}}t} \over {1 + t}}dt} $$ ...... (i)</p> <p>$$f\left( {{1 \over \alpha }} \right) = \int_1^{{1 \over \alpha }} {{{{{\log }_{10}}t} \over {1 + t}}dt} $$</p> <p>Substituting $$t \to {1 \over p}$$</p> <p>$$f\left( {{1 \over \alpha }} \right) = \int_1^\alpha {{{{{\log }_{10}}\left( {{1 \over p}} \right)} \over {1 + {1 \over p}}}\left( {{{ - 1} \over {{p^2}}}} \right)dp} $$</p> <p>$$ = \int_1^\alpha {{{{{\log }_{10}}p} \over {p(p + 1)}}dp = \int_1^\alpha {\left( {{{{{\log }_{10}}t} \over t} - {{{{\log }_{10}}t} \over {t + 1}}} \right)dt} } $$ ....... (ii)</p> <p>By (i) + (ii)</p> <p>$$f(\alpha ) + f\left( {{1 \over \alpha }} \right) = \int_1^\alpha {{{{{\log }_{10}}t} \over t}dt = \int_1^\alpha {{{\ln t} \over t}\,.\,{{\log }_{10}}e\,dt} } $$</p> <p>$$ = {{{{(\ln \alpha )}^2}} \over {2{{\log }_e}10}}$$</p> <p>$$\alpha = {e^3} \Rightarrow f({e^3}) + f({e^{ - 3}}) = {9 \over {2{{\log }_e}10}}$$</p>
mcq
jee-main-2022-online-29th-july-morning-shift
1l6re2c2a
maths
definite-integration
properties-of-definite-integration
<p>If $$[t]$$ denotes the greatest integer $$\leq t$$, then the value of $$\int_{0}^{1}\left[2 x-\left|3 x^{2}-5 x+2\right|+1\right] \mathrm{d} x$$ is :</p>
[{"identifier": "A", "content": "$$\\frac{\\sqrt{37}+\\sqrt{13}-4}{6}$$"}, {"identifier": "B", "content": "$$\\frac{\\sqrt{37}-\\sqrt{13}-4}{6}$$"}, {"identifier": "C", "content": "$$\\frac{-\\sqrt{37}-\\sqrt{13}+4}{6}$$"}, {"identifier": "D", "content": "$$\\frac{-\\sqrt{37}+\\sqrt{13}+4}{6}$$"}]
["A"]
null
<p>$$\int_0^1 {\left[ {2x - |3{x^2} - 5x + 2| + 1} \right]dx} $$</p> <p>$$3{x^2} - 5x + 2 = 0$$</p> <p>$$ \Rightarrow 3{x^2} - 3x - 2x + 2 = 0$$</p> <p>$$ \Rightarrow 3x(x - 1) - 2(x - 1) = 0$$</p> <p>$$ \Rightarrow (x - 1)(3x - 2) = 0$$</p> <p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1l7e9s1mi/e836d5da-b39f-4776-82f3-0bfd2186d40f/58c699a0-2754-11ed-a077-1f1e3989e798/file-1l7e9s1mj.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1l7e9s1mi/e836d5da-b39f-4776-82f3-0bfd2186d40f/58c699a0-2754-11ed-a077-1f1e3989e798/file-1l7e9s1mj.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh;" alt="JEE Main 2022 (Online) 29th July Evening Shift Mathematics - Definite Integration Question 84 English Explanation 1"></p> <p>$$\therefore$$ In 0 to $${2 \over 3},\,|3{x^2} - 5x + 2| = 3{x^2} - 5x + 2$$</p> <p>And in $${2 \over 3}$$ to 1, $$|3{x^2} - 5x + 2| = - (3{x^2} - 5x + 2)$$</p> <p>$$\therefore$$ $$\int_0^{{2 \over 3}} {\left[ {2x - 3{x^2} + 5x - 2 + 1} \right]dx + \int_{{2 \over 3}}^1 {\left[ {2x + 3{x^2} - 5x + 2 + 1} \right]dx} } $$</p> <p>$$ = \int_0^{{2 \over 3}} {\left[ { - 3{x^2} + 7x - 1} \right]dx + \int_{{2 \over 3}}^1 {\left[ {3{x^2} - 3x + 3} \right]dx} } $$</p> <p>Now, let $$f(x) = - 3{x^2} + 7x - 1$$</p> <p>$$ \Rightarrow f'(x) = - 6x + 7$$</p> <p>$$ = - 6\left( {x - {7 \over 6}} \right)$$</p> <p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1l7e9ullv/94ab05fd-e1dc-4b97-860b-aead321779c9/9fd49a40-2754-11ed-a077-1f1e3989e798/file-1l7e9ullw.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1l7e9ullv/94ab05fd-e1dc-4b97-860b-aead321779c9/9fd49a40-2754-11ed-a077-1f1e3989e798/file-1l7e9ullw.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh;" alt="JEE Main 2022 (Online) 29th July Evening Shift Mathematics - Definite Integration Question 84 English Explanation 2"></p> <p>$$f(0) = - 1$$</p> <p>$$f\left( {{2 \over 3}} \right) = - 3 \times {4 \over 9} + {{14} \over 3} - 1$$</p> <p>$$ = {7 \over 3} = 2.33$$</p> <p>$$\therefore$$ Range of $$f(x) = \left[ { - 1,{7 \over 3}} \right]$$</p> <p>Integer value between $$ - 1$$ to $${7 \over 3} = - 1,0,1,2,{7 \over 3}$$</p> <p>When $$f(x) = - 1$$</p> <p>$$ \Rightarrow - 3{x^2} + 7x - 1 = - 1$$</p> <p>$$ \Rightarrow 3{x^2} - 7x = 0$$</p> <p>$$ \Rightarrow x(3x - 7) = 0$$</p> <p>$$ \Rightarrow x = 0,{7 \over 3}$$ (not possible as $${7 \over 3} \notin (0,2)$$)</p> <p>When $$f(x) = 0$$</p> <p>$$ \Rightarrow - 3{x^2} + 7x - 1 = 0$$</p> <p>$$ \Rightarrow 3{x^2} - 7x + 1 = 0$$</p> <p>$$ \Rightarrow x = {{7\, \pm \,\sqrt {49 - 12} } \over 6}$$</p> <p>$$ = {{7\, \pm \sqrt {37} } \over 6}$$</p> <p>$$\therefore$$ $$x = {{7 - \sqrt {37} } \over 6}$$</p> <p>When $$f(x) = 1$$</p> <p>$$ \Rightarrow - 3{x^2} + 7x - 1 = 1$$</p> <p>$$ \Rightarrow 3{x^2} - 7x + 2 = 0$$</p> <p>$$ \Rightarrow x = {{7\, \pm \,\sqrt {49 - 24} } \over 6}$$</p> <p>$$ = {{7\, \pm \,\sqrt {25} } \over 6}$$</p> <p>$$ = {{7\, \pm \,5} \over 6}$$</p> <p>$$ \Rightarrow x = 2,\,{1 \over 3}$$</p> <p>When $$f(x) = 2$$</p> <p>$$ \Rightarrow - 3{x^2} + 7x - 1 = 2$$</p> <p>$$ \Rightarrow 3{x^2} - 7x + 3 = 0$$</p> <p>$$ \Rightarrow x = {{7\, \pm \,\sqrt {49 - 36} } \over 6}$$</p> <p>$$ = {{7\, \pm \,\sqrt {13} } \over 6}$$</p> <p>$$\therefore$$ $$x = {{7\, - \sqrt {13} } \over 6}$$</p> <p>$$\therefore$$ Possible values of $$x = 0,\,{{7\, - \,\sqrt {37} } \over 6},{1 \over 3},{{7\, - \,\sqrt {13} } \over 6},{2 \over 3}$$</p> <p>$$\therefore$$ $$\int_0^{{2 \over 3}} {\left[ { - 3{x^2} + 7x - 1} \right]dx} $$</p> <p>$$ = \int_0^{{{7\, - \,\sqrt {37} } \over 6}} {( - 1)dx + \int_{{{7\, - \,\sqrt {37} } \over 6}}^{{1 \over 3}} {0\,dx + \int_{{1 \over 3}}^{{{7\, - \,\sqrt {13} } \over 6}} {(1)\,dx + \int_{{{7\, - \,\sqrt {13} } \over 6}}^{{2 \over 3}} {2\,dx} } } } $$</p> <p>$$ = {{ - 7\, + \,\sqrt {37} } \over 6} + 0 + {{7\, - \,\sqrt {13} } \over 6} - {1 \over 3} + 2\left[ {{2 \over 3} - {{7\, - \,\sqrt {13} } \over 6}} \right]$$</p> <p>$$ = {{ - 7 + \sqrt {37} + 7 - \sqrt {13} - 2 + 8 - 14 + 2\sqrt {13} } \over 6}$$</p> <p>$$ = {{\sqrt {37} + \sqrt {13} - 8} \over 6}$$</p> <p>Now, $$\int_{{2 \over 3}}^1 {\left[ {3{x^2} - 3x + 3} \right]dx} $$</p> <p>Let $$f(x) = 3{x^2} - 3x + 3$$</p> <p>$$f'(x) = 6x - 3 = 3(2x - 1)$$</p> <p>$$f'(x) = 0 \Rightarrow 2x - 1 = 0 \Rightarrow x = {1 \over 2}$$</p> <p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1l7e9vv1e/90dc8535-185a-41da-a8c1-52842238a21e/c2ecac20-2754-11ed-a077-1f1e3989e798/file-1l7e9vv1f.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1l7e9vv1e/90dc8535-185a-41da-a8c1-52842238a21e/c2ecac20-2754-11ed-a077-1f1e3989e798/file-1l7e9vv1f.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh;" alt="JEE Main 2022 (Online) 29th July Evening Shift Mathematics - Definite Integration Question 84 English Explanation 3"></p> <p>$$f\left( {{2 \over 3}} \right) = 3\left( {{4 \over 9} - {2 \over 3} + 1} \right)$$</p> <p>$$ = {7 \over 3} = 2.3$$</p> <p>$$f(1) = 3(1 - 1 + 1)$$</p> <p>$$ = 3$$</p> <p>No integer values present in between $${7 \over 3}$$ and 3.</p> <p>$$\therefore$$ Possible value of $$x = {2 \over 3},\,1$$</p> <p>So, integration don't break anywhere.</p> <p>$$\therefore$$ $$\int_{{2 \over 3}}^1 {\left[ {3{x^2} - 3x + 3} \right]dx} $$</p> <p>$$ = \int_{{2 \over 3}}^1 {\left[ {2.33} \right]\,dx} $$</p> <p>$$ = \int_{{2 \over 3}}^1 {2\,dx = 2\left( {1 - {2 \over 3}} \right) = {2 \over 3}} $$</p> <p>$$\therefore$$ Value of Integration</p> <p>$$ = {{\sqrt {37} + \sqrt {13} - 1} \over 6} + {2 \over 3}$$</p> <p>$$ = {{\sqrt {37} + \sqrt {13} - 8 + 4} \over 6}$$</p> <p>$$ = {{\sqrt {37} + \sqrt {13} - 4} \over 6}$$</p>
mcq
jee-main-2022-online-29th-july-evening-shift
1ldo61zd1
maths
definite-integration
properties-of-definite-integration
<p>The value of the integral <br/><br/>$$\int\limits_{ - {\pi \over 4}}^{{\pi \over 4}} {{{x + {\pi \over 4}} \over {2 - \cos 2x}}dx} $$ is :</p>
[{"identifier": "A", "content": "$${{{\\pi ^2}} \\over {6\\sqrt 3 }}$$"}, {"identifier": "B", "content": "$${{{\\pi ^2}} \\over 6}$$"}, {"identifier": "C", "content": "$${{{\\pi ^2}} \\over {3\\sqrt 3 }}$$"}, {"identifier": "D", "content": "$${{{\\pi ^2}} \\over {12\\sqrt 3 }}$$"}]
["A"]
null
$$ I=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{x+\frac{\pi}{4}}{(2-\cos 2 x)} d x $$ <br/><br/>Using $\int_a^b f(x) d x=\int_a^b f(a+b-x) d x$ <br/><br/>$$ I=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\left(\frac{-x+\frac{\pi}{4}}{2-\cos 2 x}\right) d x $$ <br/><br/>$\begin{aligned} & \therefore 2 I=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\pi d x}{2(2-\cos 2 x)} \\\\ & \Rightarrow I=\frac{2 \pi}{4} \int_0^{\frac{\pi}{4}}\left(\frac{d x}{\left.\frac{2-1-\tan ^2 x}{1+\tan ^2 x}\right)}\right. \\\\ & \Rightarrow I=\frac{\pi}{2} \int_0^{\frac{\pi}{4}}\left(\frac{1+\tan ^2 x}{1+3 \tan ^2 x}\right) d x\end{aligned}$ <br/><br/>Now, <br/><br/>$$ \begin{aligned} & \tan x=t \\\\ & =\frac{\pi}{2} \int_0^1 \frac{d t}{1+3 t^2} \\\\ & =\frac{\pi}{2}\left[\frac{\tan ^{-1}(\sqrt{3} t)}{\sqrt{3}}\right]_0^1 \\\\ & =\frac{\pi}{2 \sqrt{3}}\left(\frac{\pi}{3}\right)=\frac{\pi^2}{6 \sqrt{3}} \end{aligned} $$
mcq
jee-main-2023-online-1st-february-evening-shift
1ldo73jao
maths
definite-integration
properties-of-definite-integration
<p>If $$\int\limits_0^\pi {{{{5^{\cos x}}(1 + \cos x\cos 3x + {{\cos }^2}x + {{\cos }^3}x\cos 3x)dx} \over {1 + {5^{\cos x}}}} = {{k\pi } \over {16}}} $$, then k is equal to _____________.</p>
[]
null
13
$$ \begin{aligned} & \mathrm{I}=\int_0^\pi \frac{5^{\cos x}\left(1+\cos x \cos 3 x+\cos ^2 x+\cos ^3 x \cos 3 x\right)}{1+5^{\cos x}} d x \\\\ & I=\int_0^\pi \frac{5^{-\cos x}\left(1+\cos x \cos 3 x+\cos ^2 x+\cos ^3 x \cos 3 x\right)}{1+5^{-\cos x}} d x \\\\ & 2 \mathrm{I}=\int_0^\pi\left(1+\cos x \cos 3 x+\cos ^2 x+\cos ^3 x \cos 3 x\right) d x \\\\ & {2 I}={2} \int_0^{\frac{\pi}{2}}\left(1+\cos x \cos 3 x+\cos ^2 x+\cos ^3 x \cos 3 x\right) d x \end{aligned} $$ <br/><br/>$$ \begin{aligned} & I=\int_0^{\frac{\pi}{2}}\left(1+\sin x(-\sin 3 x)+\sin ^2 x-\sin ^3 x \sin 3 x\right) d x \\\\ & 2 I=\int_0^{\frac{\pi}{2}}\left(3+\cos 4 x+\cos ^3 x \cos 3 x-\sin ^3 x \sin 3 x\right) d x \\\\ & 2 I=\int_0^{\frac{\pi}{2}} 3+\cos 4 x+\left(\frac{\cos 3 x+3 \cos x}{4}\right) \cos 3 x-\sin 3 x\left(\frac{3 \sin x-\sin 3 x}{4}\right) d x \end{aligned} $$ <br/><br/>$$ \begin{aligned} & 2 \mathrm{I}=\int_0^{\frac{\pi}{2}}\left(3+\cos 4 \mathrm{x}+\frac{1}{4}+\frac{3}{4} \cos 4 \mathrm{x}\right) \mathrm{dx} \\\\ & 2 \mathrm{I}=\frac{13}{4} \times \frac{\pi}{2}+\frac{7}{4}\left(\frac{\sin 4 \mathrm{x}}{4}\right)_0^{\frac{\pi}{2}} \Rightarrow \mathrm{I}=\frac{13 \pi}{16} \end{aligned} $$
integer
jee-main-2023-online-1st-february-evening-shift
ldo82cg6
maths
definite-integration
properties-of-definite-integration
Let $\alpha&gt;0$. If $\int\limits_0^\alpha \frac{x}{\sqrt{x+\alpha}-\sqrt{x}} \mathrm{~d} x=\frac{16+20 \sqrt{2}}{15}$, then $\alpha$ is equal to :
[{"identifier": "A", "content": "4\n"}, {"identifier": "B", "content": "2"}, {"identifier": "C", "content": "$2 \\sqrt{2}$"}, {"identifier": "D", "content": "$\\sqrt{2}$"}]
["B"]
null
$I=\int\limits_{0}^{\alpha} \frac{x}{\sqrt{x+\alpha}-\sqrt{x}} d x, \alpha>0$ <br/><br/>$$ \begin{aligned} & =\frac{1}{\alpha} \int\limits_{0}^{\alpha} x(\sqrt{x+\alpha}+\sqrt{x}) d x \end{aligned} $$ <br/><br/>$$\eqalign{ & = {1 \over \alpha }\int\limits_0^\alpha {\left( {x\sqrt {x + \alpha } + x\sqrt x } \right)} dx \cr & = {1 \over \alpha }\int\limits_0^\alpha {\left[ {\left( {x + \alpha - \alpha } \right)\sqrt {x + \alpha } + {x^{{3 \over 2}}}} \right]} dx \cr} $$ <br/><br/>$$ \begin{aligned} & =\frac{1}{\alpha}\int\limits_0^\alpha \left[(x+\alpha)^{3 / 2}-\alpha(x+\alpha)^{1 / 2}+x^{3 / 2}\right] d x \\\\ & =\frac{1}{\alpha}\left[\frac{2}{5}(x+\alpha)^{5 / 2}-\alpha \frac{2}{3}(x+\alpha)^{3 / 2}+\frac{2}{5} x^{5 / 2}\right]_0^\alpha \\\\ & =\frac{1}{\alpha}\left(\frac{2}{5}(2 \alpha)^{5 / 2}-\frac{2 \alpha}{3}(2 \alpha)^{3 / 2}+\frac{2}{5} \alpha^{5 / 2}-\frac{2}{5} \alpha^{5 / 2}+\frac{2}{3} \alpha^{5 / 2}\right) \\\\ & =\frac{1}{\alpha}\left(\frac{2^{7 / 2} \alpha^{5 / 2}}{5}-\frac{2^{5 / 2} \alpha^{5 / 2}}{3}+\frac{2}{3} \alpha^{5 / 2}\right)=\alpha^{3 / 2}\left(\frac{2^{7 / 2}}{5}-\frac{2^{5 / 2}}{3}+\frac{2}{3}\right) \\\\ & =\frac{\alpha^{3 / 2}}{15}(24 \sqrt{2}-20 \sqrt{2}+10)=\frac{\alpha^{3 / 2}}{15}(4 \sqrt{2}+10) \end{aligned} $$ <br/><br/>Now, $\frac{\alpha^{3 / 2}}{15}(4 \sqrt{2}+10)=\frac{16+20 \sqrt{2}}{15}=\frac{2 \sqrt{2}(4 \sqrt{2}+10)}{15}$ <br/><br/>$$ \Rightarrow \alpha^{3 / 2}=2 \sqrt{2}=2^{3 / 2} $$ <br/><br/>$$\Rightarrow \alpha=2 $$
mcq
jee-main-2023-online-31st-january-evening-shift
1ldonnoj6
maths
definite-integration
properties-of-definite-integration
<p>If $$\int_\limits{0}^{1}\left(x^{21}+x^{14}+x^{7}\right)\left(2 x^{14}+3 x^{7}+6\right)^{1 / 7} d x=\frac{1}{l}(11)^{m / n}$$ where $$l, m, n \in \mathbb{N}, m$$ and $$n$$ are coprime then $$l+m+n$$ is equal to ____________.</p>
[]
null
63
$I=\int_{0}^{1}\left(x^{21}+x^{14}+x^{7}\right)\left(2 x^{14}+3 x^{7}+6\right)^{1 / 7} d x$ <br/><br/>$I=\int_{0}^{1}\left(x^{20}+x^{13}+x^{6}\right)\left(2 x^{21}+3 x^{14}+6 x^{7}\right)^{1 / 7} d x$ <br/><br/>Let $2 x^{21}+3 x^{14}+6 x^{7}=t$ <br/><br/>$\Rightarrow 42\left(x^{20}+x^{13}+x^{6}\right) d x=d t$ <br/><br/>$I=\frac{1}{42} \int_{0}^{11} t^{1 / 7} d t=\frac{1}{42} \frac{7}{8}\left[t^{8 / 7}\right]_{0}^{11}$ <br/><br/>$=\frac{1}{48} (11)^{8/7}$ <br/><br/>$\therefore \quad I=48, m=8, n=7$ <br/><br/>$\therefore \quad l+m+n=63$
integer
jee-main-2023-online-1st-february-morning-shift
1ldoo6cqc
maths
definite-integration
properties-of-definite-integration
<p>Let $$f: \mathbb{R} \rightarrow \mathbb{R}$$ be a differentiable function such that $$f^{\prime}(x)+f(x)=\int_\limits{0}^{2} f(t) d t$$. If $$f(0)=e^{-2}$$, then $$2 f(0)-f(2)$$ is equal to ____________.</p>
[]
null
1
$f^{\prime}(x)+f(x)=k$ <br/><br/>$$ \begin{aligned} & \Rightarrow e^{x} f(x)=k e^{x}+c \\\\ & f(x)=k+c e^{-x} \\\\ & k=\int_{0}^{2}\left(k+c e^{-t}\right) d t \\\\ & k=2 k+\left.c \cdot \frac{e^{-t}}{-1}\right|_{0} ^{2} \\\\ & k=2 k+c\left(\frac{e^{-2}}{-1}+1\right) \\\\ & -k=c\left(1-\frac{1}{e^{2}}\right) \\\\ & f(x)=c e^{-x}-c\left(1-\frac{1}{e^{2}}\right) \\\\ & f(0)=c-c+\frac{c}{e^{2}}=\frac{1}{e^{2}} \Rightarrow c=1 \\\\ & f(2)=e^{-2}-r\left(1-e^{-2}\right) \\\\ & =2 e^{-2}-1 \\\\ & 2f(0)-f(2)=1 \end{aligned} $$
integer
jee-main-2023-online-1st-february-morning-shift
1ldpsjlsl
maths
definite-integration
properties-of-definite-integration
<p>Let $$\alpha \in (0,1)$$ and $$\beta = {\log _e}(1 - \alpha )$$. Let $${P_n}(x) = x + {{{x^2}} \over 2} + {{{x^3}} \over 3}\, + \,...\, + \,{{{x^n}} \over n},x \in (0,1)$$. Then the integral $$\int\limits_0^\alpha {{{{t^{50}}} \over {1 - t}}dt} $$ is equal to</p>
[{"identifier": "A", "content": "$$ - \\left( {\\beta + {P_{50}}\\left( \\alpha \\right)} \\right)$$"}, {"identifier": "B", "content": "$$\\beta - {P_{50}}(\\alpha )$$"}, {"identifier": "C", "content": "$${P_{50}}(\\alpha ) - \\beta $$"}, {"identifier": "D", "content": "$$\\beta + {P_{50}} - (\\alpha )$$"}]
["A"]
null
$\int_{0}^{\alpha} \frac{t^{50}}{1-t} d t$ <br/><br/>$$ \begin{aligned} & = \int_{0}^{\alpha} \frac{t^{50}-1+1}{1-t}\\\\ & =-\int_{0}^{\alpha}\left(\frac{1-t^{50}}{1-t}-\frac{1}{1-t}\right) d t\\\\ & =-\int_{0}^{\alpha}\left(1+t+\ldots . .+t^{49}\right)+\int_{0}^{\alpha} \frac{1}{1-t} d t \end{aligned} $$ <br/><br/>$=-\left(\frac{\alpha^{50}}{50}+\frac{\alpha^{49}}{49}+\ldots . .+\frac{\alpha^{1}}{1}\right)+\left(\frac{\ln (1-\mathrm{f})}{-1}\right)_{0}^{\alpha}$ <br/><br/>$=-\mathrm{P}_{50}(\alpha)-\ln (1-\alpha)$ <br/><br/>$=-\mathrm{P}_{50}(\alpha)-\beta$
mcq
jee-main-2023-online-31st-january-morning-shift
1ldpt0own
maths
definite-integration
properties-of-definite-integration
<p>The value of $$\int_\limits{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{(2+3 \sin x)}{\sin x(1+\cos x)} d x$$ is equal to :</p>
[{"identifier": "A", "content": "$$\\frac{10}{3}-\\sqrt{3}+\\log _{e} \\sqrt{3}$$"}, {"identifier": "B", "content": "$$\\frac{7}{2}-\\sqrt{3}-\\log _{e} \\sqrt{3}$$"}, {"identifier": "C", "content": "$$\\frac{10}{3}-\\sqrt{3}-\\log _{e} \\sqrt{3}$$"}, {"identifier": "D", "content": "$$-2+3\\sqrt{3}+\\log _{e} \\sqrt{3}$$"}]
["A"]
null
Let I = $$\int_\limits{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{(2+3 \sin x)}{\sin x(1+\cos x)} d x$$ <br/><br/>$$ =\int\limits_{\pi / 3}^{\pi / 2} \frac{2}{\sin x(1+\cos x)} d x+\int\limits_{\pi / 3}^{\pi / 2} \frac{3}{1+\cos x} d x $$ <br/><br/>$$ \begin{aligned} =\int\limits_{\pi / 3}^{\pi / 2} \frac{2(1-\cos x)}{\sin x\left(1-\cos ^2 x\right)} & d x +\int\limits_{\pi / 3}^{\pi / 2} \frac{3}{1+\cos x} d x \end{aligned} $$ <br/><br/>$$ =\int\limits_{\pi / 3}^{\pi / 2} \frac{2(1-\cos x)}{\sin ^3 x} d x+\int\limits_{\pi / 3}^{\pi / 2} \frac{3}{2 \cos ^2 \frac{x}{2}} d x $$ <br/><br/>$$ \begin{array}{r} =\int\limits_{\pi / 3}^{\pi / 2} \frac{2}{\sin ^3 x} d x-\int\limits_{\pi / 3}^{\pi / 2} 2 \cot x \operatorname{cosec}^2 x d x +\int\limits_{\pi / 3}^{\pi / 2} \frac{3}{2} \sec ^2 \frac{x}{2} d x \end{array} $$ <br/><br/>$$ =2 I_1-2 I_2+\frac{3}{2} I_3 $$ <br/><br/>Now, <br/><br/>$$ \begin{aligned} I_1 & =\int\limits_{\pi / 3}^{\pi / 2} \operatorname{cosec}^3 x d x \\\\ & =\int\limits_{\pi / 3}^{\pi / 2} \sqrt{1+\cot ^2 x} \operatorname{cosec}^2 x d x \end{aligned} $$ <br/><br/>Put $\cot x=t \Rightarrow-\operatorname{cosec}^2 x d x=d t$ <br/><br/>When, $x=\frac{\pi}{3} \Rightarrow t=\frac{1}{\sqrt{3}} \text { and } x=\frac{\pi}{2} \Rightarrow t=0$ <br/><br/>$$ \begin{aligned} \therefore & I_1=-\int\limits_{\frac{1}{\sqrt{3}}}^0 \sqrt{1+t^2} d t \\\\ = & \int\limits_0^{\frac{1}{\sqrt{3}}} \sqrt{1+t^2} d t \\\\ = & {\left[\frac{t}{2} \sqrt{1+t^2}+\frac{1}{2} \log \left[t+\sqrt{1+t^2}\right]\right]_0^{\frac{1}{\sqrt{3}}} } \\\\ = & \frac{1}{3}+\frac{1}{2} \log \sqrt{3} \end{aligned} $$ <br/><br/>$$ I_2=\int\limits_{\pi / 3}^{\pi / 2} \cot x \operatorname{cosec}^2 x d x $$ <br/><br/>Put $\cot x=t \Rightarrow \operatorname{cosec}^2 x d x=-d t$ <br/><br/>When, $x=\frac{\pi}{3}$ $\Rightarrow t=\frac{1}{\sqrt{3}}$ and $x=\frac{\pi}{2} \Rightarrow t=0$ <br/><br/>$$ \therefore \begin{aligned} I_2 & =-\int\limits_{\frac{1}{\sqrt{3}}}^0 t d t \\\\ & =\int\limits_0^{\frac{1}{\sqrt{3}} t} t d t=\left[\frac{t^2}{2}\right]_0^{\frac{1}{\sqrt{3}}}=\frac{1}{6} \end{aligned} $$ <br/><br/>$$ \begin{aligned} & I_3=\int\limits_{\frac{\pi}{3}}^{\frac{\pi}{2}} \sec ^2 \frac{x}{2} d x \\\\ = & 2\left(\tan \frac{\pi}{4}-\tan \frac{\pi}{6}\right)=2\left(1-\frac{1}{\sqrt{3}}\right) \end{aligned} $$ <br/><br/>$$ \begin{aligned} & \therefore \quad I=2 I_1-2 I_2+\frac{3}{2} I_3 \\\\ & =2\left(\frac{1}{3}+\frac{1}{2} \log \sqrt{3}\right)-2\left(\frac{1}{6}\right) +\frac{3}{2}\left(2\left(1-\frac{1}{\sqrt{3}}\right)\right) \end{aligned} $$ <br/><br/>$$ \begin{aligned} & =\frac{2}{3}+\log \sqrt{3}-\frac{1}{3}+3-\sqrt{3} \\\\ & =\frac{10}{3}-\sqrt{3}+\log _e \sqrt{3} \end{aligned} $$
mcq
jee-main-2023-online-31st-january-morning-shift
1ldr6vx1p
maths
definite-integration
properties-of-definite-integration
<p>If [t] denotes the greatest integer $$\le \mathrm{t}$$, then the value of $${{3(e - 1)} \over e}\int\limits_1^2 {{x^2}{e^{[x] + [{x^3}]}}dx} $$ is :</p>
[{"identifier": "A", "content": "$$\\mathrm{e^8-e}$$"}, {"identifier": "B", "content": "$$\\mathrm{e^7-1}$$"}, {"identifier": "C", "content": "$$\\mathrm{e^9-e}$$"}, {"identifier": "D", "content": "$$\\mathrm{e^8-1}$$"}]
["A"]
null
<p>$$I = {{3(e - 1)} \over e}\int_1^2 {{x^2}{e^{[x] + [{x^3}]}}dx} $$</p> <p>$$ = {{3(e - 1)} \over e}\int_1^2 {{x^2}{e^{1 + [{x^3}]}}dx} $$ ($$\because$$ $$[x] = 1$$ when $$x \in (12)$$)</p> <p>$$ = 3(e - 1)\int_1^2 {{x^2}{e^{[{x^3}]}}dx} $$</p> <p>Let $${x^3} = t$$</p> <p>$$I = (e - 1)\int_1^8 {{e^{[t]}}dt} $$</p> <p>$$ = ({e^{ - 1}})({e^1} + {e^2} + {e^3}\, + \,...\, + \,{e^7})$$</p> <p>$$ = (e - 1)e{{({e^7} - 1)} \over {e - 1}}$$</p> <p>$$ = {e^8} - e$$</p>
mcq
jee-main-2023-online-30th-january-morning-shift
1ldsfe8t4
maths
definite-integration
properties-of-definite-integration
<p>The value of the integral $$\int_1^2 {\left( {{{{t^4} + 1} \over {{t^6} + 1}}} \right)dt} $$ is</p>
[{"identifier": "A", "content": "$${\\tan ^{ - 1}}{1 \\over 2} - {1 \\over 3}{\\tan ^{ - 1}}8 + {\\pi \\over 3}$$"}, {"identifier": "B", "content": "$${\\tan ^{ - 1}}2 - {1 \\over 3}{\\tan ^{ - 1}}8 + {\\pi \\over 3}$$"}, {"identifier": "C", "content": "$${\\tan ^{ - 1}}2 + {1 \\over 3}{\\tan ^{ - 1}}8 - {\\pi \\over 3}$$"}, {"identifier": "D", "content": "$${\\tan ^{ - 1}}{1 \\over 2} + {1 \\over 3}{\\tan ^{ - 1}}8 - {\\pi \\over 3}$$"}]
["C"]
null
<p>$$\int_1^2 {{{{t^4} + 1} \over {{t^6} + 1}}dt} $$</p> <p>$$ = \int_1^2 {{{{{({t^2} + 1)}^2}} \over {{t^6} + 1}}dt - 2\int_1^2 {{{{t^2}} \over {{t^6} + 1}}dt} } $$</p> <p>$$ = \int_1^2 {{{{t^2} + 1} \over {{t^4} - {t^2} + 1}}dt - 2\int_1^2 {{{{t^2}} \over {{{({t^3})}^2} + 1}}dt} } $$</p> <p>$$ = \left. {{{\tan }^{ - 1}}(2t + \sqrt 3 ) + {{\tan }^{ - 1}}(2t - \sqrt 3 )} \right|_1^2 - \left. {{2 \over 3}{{\tan }^{ - 1}}({t^3})} \right|_1^2$$</p> <p>$$ = {\tan ^{ - 1}}(4 + \sqrt 3 ) + {\tan ^{ - 1}}(4 - \sqrt 3 ) - {\tan ^{ - 1}}(2 + \sqrt 3 ) - {\tan ^{ - 1}}(2 + \sqrt 3 ) - {\tan ^{ - 1}}(2\sqrt 3 ) - {2 \over 3}({\tan ^{ - 1}}8 - {\tan ^{ - 1}}1)$$</p> <p>$$ = {\tan ^{ - 1}}2 + {1 \over 3}{\tan ^{ - 1}}8 - {\pi \over 3}$$</p>
mcq
jee-main-2023-online-29th-january-evening-shift
1ldsfpdr8
maths
definite-integration
properties-of-definite-integration
<p>The value of the integral $$\int\limits_{1/2}^2 {{{{{\tan }^{ - 1}}x} \over x}dx} $$ is equal to :</p>
[{"identifier": "A", "content": "$${\\pi \\over 2}{\\log _e}2$$"}, {"identifier": "B", "content": "$${\\pi \\over 4}{\\log _e}2$$"}, {"identifier": "C", "content": "$${1 \\over 2}{\\log _e}2$$"}, {"identifier": "D", "content": "$$\\pi {\\log _e}2$$"}]
["A"]
null
<p>$$I = \int\limits_{{1 \over 2}}^2 {{{{{\tan }^{ - 1}}x} \over x}dx} $$ ..... (i)</p> <p>$$x \to {1 \over x}$$</p> <p>$$I = \int\limits_{{1 \over 2}}^2 {{1 \over x}{{\tan }^{ - 1}}{1 \over x}dx} $$ ..... (ii)</p> <p>$$2I = \int\limits_{{1 \over 2}}^2 {{1 \over x}\,.\,{\pi \over 2}dx} $$</p> <p>$$ = \left. {{\pi \over 2}\ln x} \right|_{{1 \over 2}}^2 = \pi \ln 2$$</p> <p>$$ \Rightarrow I = {\pi \over 2}\ln 2$$</p>
mcq
jee-main-2023-online-29th-january-evening-shift
1ldsuma7b
maths
definite-integration
properties-of-definite-integration
<p>Let $$f(x) = x + {a \over {{\pi ^2} - 4}}\sin x + {b \over {{\pi ^2} - 4}}\cos x,x \in R$$ be a function which<br/><br/> satisfies $$f(x) = x + \int\limits_0^{\pi /2} {\sin (x + y)f(y)dy} $$. then $$(a+b)$$ is equal to</p>
[{"identifier": "A", "content": "$$ - 2\\pi (\\pi + 2)$$"}, {"identifier": "B", "content": "$$ - \\pi (\\pi - 2)$$"}, {"identifier": "C", "content": "$$ - \\pi (\\pi + 2)$$"}, {"identifier": "D", "content": "$$ - 2\\pi (\\pi - 2)$$"}]
["A"]
null
$f(x)=x+\int\limits_{0}^{\pi / 2}(\sin x \cos y+\cos x \sin y) f(y) d y$ <br/><br/> $f(x)=x+\int\limits_{0}^{\pi / 2}((\cos y f(y) d y) \sin x+(\sin y f(y) d y) \cos x)\quad....(1)$ <br/><br/> On comparing with <br/><br/> $f(x)=x+\frac{a}{\pi^{2}-4} \sin x+\frac{b}{\pi^{2}-4} \cos x, x \in \mathbb{R}$ then <br/><br/> $\Rightarrow \frac{a}{\pi^{2}-4}=\int_{0}^{\pi / 2} \cos y f(y) d y \quad....(2)$ <br/><br/> $\Rightarrow \frac{b}{\pi^{2}-4}=\int_{0}^{\pi / 2} \sin y f(y) d y \quad....(3)$ <br/><br/> <b>Add (2) and (3)</b> <br/><br/> $\frac{a+b}{\pi^{2}-4}=\int_{0}^{\pi / 2}(\sin y+\cos y) f(y) d y \quad....(4)$ <br/><br/> $\frac{a+b}{\pi^{2}-4}=\int_{0}^{\pi / 2}(\sin y+\cos y) f\left(\frac{\pi}{2}-y\right) d y\quad....(5)$ <br/><br/> <b>Add (4) and (5)</b> <br/><br/> $\frac{2(a+b)}{\pi^{2}-4}=\int_{0}^{\pi / 2}(\sin y+\cos y)\left(\frac{\pi}{2}+\frac{(a+b)}{\pi^{2}-4}(\sin y+\cos y)\right) d y$ <br/><br/> $=\pi+\frac{a+b}{\pi^{2}-4}\left(\frac{\pi}{2}+1\right)$ <br/><br/> $(a+b)=-2 \pi(\pi+2)$
mcq
jee-main-2023-online-29th-january-morning-shift
1ldu5exe2
maths
definite-integration
properties-of-definite-integration
<p>The integral $$16\int\limits_1^2 {{{dx} \over {{x^3}{{\left( {{x^2} + 2} \right)}^2}}}} $$ is equal to</p>
[{"identifier": "A", "content": "$${{11} \\over {12}} + {\\log _e}4$$"}, {"identifier": "B", "content": "$${{11} \\over 6} + {\\log _e}4$$"}, {"identifier": "C", "content": "$${{11} \\over {12}} - {\\log _e}4$$"}, {"identifier": "D", "content": "$${{11} \\over 6} - {\\log _e}4$$"}]
["D"]
null
$I=\int \frac{d x}{x^{3}\left(x^{2}+2\right)^{2}}$ <br/><br/>$=\frac{1}{4} \int \frac{x}{x^{2}+2} d x+\frac{1}{4} \int \frac{x}{\left(x^{2}+2\right)^{2}}-\frac{1}{4} \int \frac{d x}{x}+\frac{1}{4} \int \frac{d x}{x^{3}}$<br/><br/> $=\frac{1}{8} \ln \left(x^{2}+2\right)-\frac{\ln x}{4}-\frac{1}{8\left(x^{2}+2\right)}-\frac{1}{8 x^{3}}$ <br/><br/> Now, $16 \int_{1}^{2} \frac{d x}{x^{3}\left(x^{2}+2\right)^{2}}=2 \ln 6-2 \ln 3-4 \ln 2+\frac{11}{6}$ <br/><br/>$=\frac{11}{6}-\ln 4$
mcq
jee-main-2023-online-25th-january-evening-shift
1ldu6241m
maths
definite-integration
properties-of-definite-integration
<p>If $$\int\limits_{{1 \over 3}}^3 {|{{\log }_e}x|dx = {m \over n}{{\log }_e}\left( {{{{n^2}} \over e}} \right)} $$, where m and n are coprime natural numbers, then $${m^2} + {n^2} - 5$$ is equal to _____________.</p>
[]
null
20
$I=\int\limits_{\frac{1}{3}}^{3}|\ln x| d x=-\int\limits_{\frac{1}{3}}^{1} \ln x d x+\int\limits_{1}^{3} \ln x d x$ <br/><br/> $$ \begin{aligned} & \left.=-[x \ln x-x]_{\frac{1}{3}}^{1}+x \ln x-x\right]_{1}^{3} \\\\ & =-\left[(0-1)-\left(\frac{1}{3} \ln 3-\frac{1}{3}\right)\right]+[(3 \ln 3-3)-(0-1)] \\\\ & =\frac{2}{3}-\frac{1}{3} \ln 3+3 \ln 3-2 \end{aligned} $$<br/><br/> $$ \begin{aligned} & =\frac{8}{3} \ln 3-\frac{4}{3} \\\\ & =\frac{4}{3}(2 \ln 3-\ln e) \\\\ & =\frac{4}{3} \ln \left(\frac{3^{2}}{e}\right) \\\\ & m=4, m^{m}=3 \\\\ & m^{2}+n^{2}-5=20 \end{aligned} $$
integer
jee-main-2023-online-25th-january-evening-shift
1ldv16kbb
maths
definite-integration
properties-of-definite-integration
<p>The minimum value of the function $$f(x) = \int\limits_0^2 {{e^{|x - t|}}dt} $$ is :</p>
[{"identifier": "A", "content": "2"}, {"identifier": "B", "content": "$$2(e-1)$$"}, {"identifier": "C", "content": "$$e(e-1)$$"}, {"identifier": "D", "content": "$$2e-1$$"}]
["B"]
null
$$ f(x)=\int_0^2 e^{|x-t|} d t $$<br/><br/> For $x>2$<br/><br/> $$ f(x)=\int_0^2 e^{x-t} d t=e^x\left(1-e^{-2}\right) $$<br/><br/> For $x<0$<br/><br/> $$ f(x)=\int_0^2 e^{t-x} d t=e^{-x}\left(e^2-1\right) $$<br/><br/> For $x \in[0,2]$<br/><br/> $$ \begin{aligned} & f(x)=\int_0^x e^{x-t} d t + \int_x^2 e^{t-x} d t \\\\ & =e^{2-x}+e^x-2 \end{aligned} $$<br/><br/> For $x>2$<br/><br/> $$ \left.f(x)\right|_{\min =e^2-1} $$<br/><br/> For $\mathrm{x}<0$<br/><br/> $$ \left.f(x)\right|_{\min =e^2-1} $$<br/><br/> For $x \in[0,2]$<br/><br/> $$ \left.f(x)\right|_{\min }=2(e-1) $$
mcq
jee-main-2023-online-25th-january-morning-shift
1ldwx9a09
maths
definite-integration
properties-of-definite-integration
<p>$$\int\limits_{{{3\sqrt 2 } \over 4}}^{{{3\sqrt 3 } \over 4}} {{{48} \over {\sqrt {9 - 4{x^2}} }}dx} $$ is equal to :</p>
[{"identifier": "A", "content": "$${\\pi \\over 2}$$"}, {"identifier": "B", "content": "$${\\pi \\over 3}$$"}, {"identifier": "C", "content": "$${\\pi \\over 6}$$"}, {"identifier": "D", "content": "$$2\\pi $$"}]
["D"]
null
$$ \int_{\frac{3 \sqrt{2}}{4}}^{\frac{3 \sqrt{3}}{4}} \frac{48}{\sqrt{9-4 x^2}} d x $$<br/><br/> We have $\int \frac{d x}{\sqrt{a^2-x^2}}=\sin ^{-1} \frac{x}{a}+C$<br/><br/> Hence $\int_{\frac{3 \sqrt{2}}{4}}^{\frac{3 \sqrt{3}}{4}} \frac{48}{\sqrt{9-4 x^2}} d x=\frac{48}{2} \times\left[\sin ^{-1} \frac{2 x}{3}\right]_{\frac{3 \sqrt{2}}{4}}^{\frac{3 \sqrt{3}}{4}}$<br/><br/> $=24 \times\left[\sin ^{-1}\left(\frac{2}{3} \times \frac{3 \sqrt{3}}{4}\right)-\sin ^{-1}\left(\frac{2}{3} \times \frac{3 \sqrt{2}}{4}\right)\right]$ $=24 \times\left[\sin ^{-1} \frac{\sqrt{3}}{2}-\sin ^{-1} \frac{1}{\sqrt{2}}\right]$<br/><br/> $=24 \times\left(\frac{\pi}{3}-\frac{\pi}{4}\right)$<br/><br/> $=24 \times \frac{\pi}{12}=2 \pi$
mcq
jee-main-2023-online-24th-january-evening-shift
1ldyc3v3b
maths
definite-integration
properties-of-definite-integration
<p>The value of $$12\int\limits_0^3 {\left| {{x^2} - 3x + 2} \right|dx} $$ is ____________</p>
[]
null
22
<p>Let I = $$\int\limits_0^3 {|{x^2} - 3x + 2|dx} $$</p> <p>$$ = \int\limits_0^3 {|(x - 1)(x - 2)|dx} $$</p> <p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1le2gufhw/2197edc8-523a-4ea7-bfd4-68c608ff54fb/16df8b40-ab6c-11ed-b566-111c81fc645a/file-1le2gufhx.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1le2gufhw/2197edc8-523a-4ea7-bfd4-68c608ff54fb/16df8b40-ab6c-11ed-b566-111c81fc645a/file-1le2gufhx.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh;" alt="JEE Main 2023 (Online) 24th January Morning Shift Mathematics - Definite Integration Question 63 English Explanation"></p> <p>$$ = \int\limits_0^1 { + ({x^2} - 3x + 2)dx + \int\limits_1^2 { - ({x^2} - 3x + 2)dx + \int\limits_2^3 {({x^2} - 3x + 2)dx} } } $$</p> <p>$$ = \left[ {{{{x^3}} \over 3} - {{3{x^2}} \over 2} + 2x} \right]_0^1 - \left[ {{{{x^3}} \over 3} - {{3{x^2}} \over 2} + 2x} \right]_1^2 + \left[ {{{{x^3}} \over 3} - {{3{x^2}} \over 2} + 2x} \right]_2^3$$</p> <p>$$ = \left( {{1 \over 3} - {3 \over 2} + 2} \right) - \left[ {\left( {{8 \over 3} - 6 + 4} \right) - \left( {{1 \over 3} - {3 \over 2} + 2} \right)} \right] + \left[ {\left( {{{27} \over 3} - {{27} \over 2} + 6} \right) - \left( {{8 \over 3} - 6 + 4} \right)} \right]$$</p> <p>$$ = {5 \over 6} - \left( {{2 \over 3} - {5 \over 6}} \right) + \left( {{3 \over 2} - {2 \over 3}} \right)$$</p> <p>$$ = {5 \over 6} + {5 \over 6} - {2 \over 3} - {2 \over 3} + {3 \over 2}$$</p> <p>$$ = {{10} \over 6} - {4 \over 3} + {3 \over 2}$$</p> <p>$$ = {{10 - 8 + 9} \over 6} = {{11} \over 6}$$</p> <p>$$ \therefore $$ 12I = $$12 \times {{11} \over 6}$$ = 22</p>
integer
jee-main-2023-online-24th-january-morning-shift
1ldyc80xq
maths
definite-integration
properties-of-definite-integration
<p>The value of $${8 \over \pi }\int\limits_0^{{\pi \over 2}} {{{{{(\cos x)}^{2023}}} \over {{{(\sin x)}^{2023}} + {{(\cos x)}^{2023}}}}dx} $$ is ___________</p>
[]
null
2
<p>Let, $$I = {8 \over \pi }\int\limits_0^{{\pi \over 2}} {{{{{(\cos x)}^{2023}}} \over {{{(\sin x)}^{2023}} + {{(\cos x)}^{2023}}}}dx} $$ ..... (1)</p> <p>Using formula,</p> <p>$$\int\limits_a^b {f(x)dx = \int\limits_a^b {f(a + b - x)dx} } $$</p> <p>$$I = {8 \over \pi }\int\limits_0^{{\pi \over 2}} {{{{{\left[ {\cos \left( {{\pi \over 2} - x} \right)} \right]}^{2023}}} \over {{{\left[ {\sin \left( {{\pi \over 2} - x} \right)} \right]}^{2023}} + {{\left[ {\cos \left( {{\pi \over 2} - x} \right)} \right]}^{2023}}}}dx} $$</p> <p>$$ = {8 \over \pi }\int\limits_0^{{\pi \over 2}} {{{{{(\sin x)}^{2023}}} \over {{{(\cos x)}^{2023}} + {{(\sin x)}^{2023}}}}dx} $$ ..... (2)</p> <p>Adding equation (1) and (2), we get</p> <p>$$2I = {8 \over \pi }\int\limits_0^{{\pi \over 2}} {{{{{(\sin x)}^{2023}} + {{(\cos x)}^{2023}}} \over {{{(\sin x)}^{2023}} + {{(\cos x)}^{203}}}}dx} $$</p> <p>$$ \Rightarrow 2I = {8 \over \pi }\int\limits_0^{{\pi \over 2}} {dx} $$</p> <p>$$ \Rightarrow 2I = {8 \over \pi }\left[ x \right]_0^{{\pi \over 2}}$$</p> <p>$$ \Rightarrow 2I = {8 \over \pi } \times {\pi \over 2}$$</p> <p>$$ \Rightarrow 2I = 4$$</p> <p>$$ \Rightarrow I = 2$$</p>
integer
jee-main-2023-online-24th-january-morning-shift
lgnwfxh4
maths
definite-integration
properties-of-definite-integration
If $\int\limits_{0}^{1} \frac{1}{\left(5+2 x-2 x^{2}\right)\left(1+e^{(2-4 x)}\right)} d x=\frac{1}{\alpha} \log _{e}\left(\frac{\alpha+1}{\beta}\right), \alpha, \beta&gt;0$, then $\alpha^{4}-\beta^{4}$ is equal to :
[{"identifier": "A", "content": "-21"}, {"identifier": "B", "content": "21"}, {"identifier": "C", "content": "19"}, {"identifier": "D", "content": "0"}]
["B"]
null
<ol> <li>The given integral is:</li> </ol> <p>$$ I=\int_0^1 \frac{dx}{\left(5+2x-2x^2\right)\left(1+e^{2-4x}\right)} $$ .............(i)</p> <ol> <li>Perform a substitution, $x \rightarrow 1-x$. This gives:</li> </ol> <p>$$ I=\int_0^1 \frac{dx}{\left(5+2(1-x)-2(1-x)^2\right)\left(1+e^{2-4(1-x)}\right)} $$</p> <ol> <li>Simplify the expression inside the integral:</li> </ol> <p>$$ I=\int_0^1 \frac{dx}{\left(5+2-2x-2(1-2x+x^2)\right)\left(1+e^{4x -2}\right)} $$ ............(ii)</p> <ol> <li>Add the original integral (i) and the integral after substitution (ii):</li> </ol> <p>$$ 2I=\int_0^1 \frac{dx}{5+2x-2x^2} $$</p> <ol> <li>Factor the quadratic expression in the denominator:</li> </ol> <p>$$ 2I=\int_0^1 \frac{dx}{2\left(\frac{11}{4}-\left(x-\frac{1}{2}\right)^2\right)} $$</p> <ol> <li>To solve this integral, we can perform a change of variables using the substitution <br/><br/>$x-\frac{1}{2}= \frac{\sqrt{11}}{2}\tan{u}$, then $dx=\frac{\sqrt{11}}{2}\sec^2{u} du$:</li> </ol> <p>$$ I=\frac{1}{\sqrt{11}}\int \frac{\sec^2{u}}{1+\tan^2{u}}du $$</p> <ol> <li>Using the identity $\sec^2{u}=1+\tan^2{u}$:</li> </ol> <p>$$ I=\frac{1}{\sqrt{11}}\int du = \frac{1}{\sqrt{11}}(u+C) $$</p> <ol> <li>Now we need to find the limits of the integral after the substitution. If $x=0$, then $u=\tan^{-1}\left(-\frac{1}{\sqrt{11}}\right)$. If $x=1$, then $u=\tan^{-1}\left(\frac{1}{\sqrt{11}}\right)$. So, the integral becomes:</li> </ol> <p>$$ I=\frac{1}{\sqrt{11}}\left[\tan^{-1}\left(\frac{1}{\sqrt{11}}\right)-\tan^{-1}\left(-\frac{1}{\sqrt{11}}\right)\right] $$</p> <ol> <li>Using the properties of the arctangent function, we can rewrite the integral as:</li> </ol> <p>$$ I=\frac{1}{\sqrt{11}} \ln\left(\frac{\sqrt{11}+1}{\sqrt{10}}\right) $$</p> <ol> <li>From this result, we have $\alpha=\sqrt{11}$ and $\beta=\sqrt{10}$. Now, we can find $\alpha^4 - \beta^4$:</li> </ol> <p>$$ \alpha^4 - \beta^4 = (11)^2 - (10)^2 = 121 - 100 = 21 $$</p> <p>Thus, $\alpha^4 - \beta^4 = 21$.</p>
mcq
jee-main-2023-online-15th-april-morning-shift
1lgoxpnhf
maths
definite-integration
properties-of-definite-integration
<p>The value of $${{{e^{ - {\pi \over 4}}} + \int\limits_0^{{\pi \over 4}} {{e^{ - x}}{{\tan }^{50}}xdx} } \over {\int\limits_0^{{\pi \over 4}} {{e^{ - x}}({{\tan }^{49}}x + {{\tan }^{51}}x)dx} }}$$ is</p>
[{"identifier": "A", "content": "51"}, {"identifier": "B", "content": "50"}, {"identifier": "C", "content": "25"}, {"identifier": "D", "content": "49"}]
["B"]
null
<p>We&#39;re given the expression:</p> <p>$$\frac{e^{-\pi/4} + \int_0^{\pi / 4} e^{-x} \tan ^{50} x dx}{\int_0^{\pi / 4} e^{-x}(\tan x)^{49} dx + \int_0^{\pi / 4} e^{-x}(\tan x)^{51} dx}$$</p> <p>Notice that the integrals in the numerator and denominator have the same form. They both involve an integral of $e^{-x} \tan^n x$ from 0 to $\pi / 4$, where $n$ is an integer. Let&#39;s denote this integral as $I(n)$:</p> <p>$$I(n) = \int_0^{\pi / 4} e^{-x} \tan^n x dx$$</p> <p>We can then rewrite the original expression in terms of $I(n)$:</p> <p>$$\frac{e^{-\pi/4} + I(50)}{I(49) + I(51)}$$</p> <p>Now, we&#39;ll apply the method of integration by parts, which states that for two functions $u(x)$ and $v(x)$:</p> <p>$$\int u dv = uv - \int v du$$</p> <p>We&#39;ll choose:</p> <p>$$u = \tan^n x, \quad dv = e^{-x} dx$$</p> <p>Then we get:</p> <p>$$du = n \tan^{n-1} x \sec^2 x dx, \quad v = -e^{-x}$$</p> <p>Applying integration by parts, we have:</p> <p>$$I(n) = -e^{-x} \tan^n x \Bigg|_0^{\pi / 4} + n \int_0^{\pi / 4} e^{-x} \tan^{n-1} x \sec^2 x dx$$</p> <p>Since $\tan(\pi / 4) = 1$, the first term evaluates to:</p> <p>$$-e^{-\pi / 4}$$</p> <p>The second term becomes:</p> <p>$$n \int_0^{\pi / 4} e^{-x} \tan^{n-1} x (1 + \tan^2 x) dx = n \int_0^{\pi / 4} e^{-x} \tan^{n-1} x dx + n \int_0^{\pi / 4} e^{-x} \tan^{n+1} x dx$$</p> <p>This is equal to:</p> <p>$$n(I(n-1) + I(n+1))$$</p> <p>So we have:</p> <p>$$I(n) = -e^{-\pi / 4} + n(I(n-1) + I(n+1))$$</p> <p>Now we can substitute $n = 50$ into this equation:</p> <p>$$I(50) = -e^{-\pi / 4} + 50(I(49) + I(51))$$</p> <p>So the original expression becomes:</p> <p>$$\frac{e^{-\pi/4} + I(50)}{I(49) + I(51)} = \frac{e^{-\pi/4} - e^{-\pi / 4} + 50(I(49) + I(51))}{I(49) + I(51)} = 50$$</p>
mcq
jee-main-2023-online-13th-april-evening-shift
1lgoy1rhw
maths
definite-integration
properties-of-definite-integration
<p>Let $$f_{n}=\int_\limits{0}^{\frac{\pi}{2}}\left(\sum_\limits{k=1}^{n} \sin ^{k-1} x\right)\left(\sum_\limits{k=1}^{n}(2 k-1) \sin ^{k-1} x\right) \cos x d x, n \in \mathbb{N}$$. Then $$f_{21}-f_{20}$$ is equal to _________</p>
[]
null
41
Given, $$f_{n}=\int_\limits{0}^{\frac{\pi}{2}}\left(\sum_\limits{k=1}^{n} \sin ^{k-1} x\right)\left(\sum_\limits{k=1}^{n}(2 k-1) \sin ^{k-1} x\right) \cos x d x$$ <br/><br/>$$ \begin{aligned} & \text { Put } \sin x=t \\\\ & \cos x d x=d t \\\\ & f_n=\int_0^1\left(\sum_{k=1}^n(t)^{k-1}\right)\left(\sum_{k=1}^n(2 k-1)(t)^{k-1}\right) d t \end{aligned} $$ <br/><br/>$$ \therefore $$ $$ \begin{aligned} f_{21}=\int_0^1\left(\sum_{k=1}^{21}(t)^{20}\right)\left(\sum_{k=1}^{21}(2 k-1)(t)^{20}\right) d t \end{aligned} $$ <br/><br/>= $$\int\limits_0^1 {\left( {{t^0} + {t^1} + {t^2} + ...... + {t^{20}}} \right)\left( {1{t^0} + 3{t^1} + 5{t^2} + ...... + 41{t^{20}}} \right)} dt$$ <br/><br/>$$ \therefore $$ $$ \begin{aligned} f_{20}=\int_0^1\left(\sum_{k=1}^{20}(t)^{19}\right)\left(\sum_{k=1}^{20}(2 k-1)(t)^{19}\right) d t \end{aligned} $$ <br/><br/>= $$\int\limits_0^1 {\left( {{t^0} + {t^1} + {t^2} + ...... + {t^{19}}} \right)\left( {1{t^0} + 3{t^1} + 5{t^2} + ...... + 39{t^{19}}} \right)} dt$$ <br/><br/>Now, $$ f_{21}-f_{20} $$ <br/><br/>$$ \begin{aligned} =\int_0^1\left(1+t+t^2+\ldots .\right. & \left.+t^{19}\right)(41) t^{20} \\ & +\left(1+3 t+5 t^2+\ldots . .+41 t^{20}\right) t^{20} d t \end{aligned} $$ <br/><br/>$$ \begin{aligned} & =\left(\frac{1}{21}+\frac{1}{22}+\ldots+\frac{1}{40}\right) 41+\left(\frac{1}{21}+\frac{3}{22}+\ldots . .+\frac{39}{40}+\frac{41}{41}\right) \\\\ & =\left[\frac{42}{21}+\frac{44}{22}+\frac{46}{23}+\ldots .+\frac{80}{40}+\frac{41}{41}\right] \\\\ & =40+1=41 \end{aligned} $$
integer
jee-main-2023-online-13th-april-evening-shift
1lgpy0x97
maths
definite-integration
properties-of-definite-integration
<p>$$\int_\limits{0}^{\infty} \frac{6}{e^{3 x}+6 e^{2 x}+11 e^{x}+6} d x=$$</p>
[{"identifier": "A", "content": "$$\\log _{e}\\left(\\frac{256}{81}\\right)$$"}, {"identifier": "B", "content": "$$\\log _{e}\\left(\\frac{64}{27}\\right)$$"}, {"identifier": "C", "content": "$$\\log _{e}\\left(\\frac{32}{27}\\right)$$"}, {"identifier": "D", "content": "$$\\log _{e}\\left(\\frac{512}{81}\\right)$$"}]
["C"]
null
$$ \begin{aligned} & \mathrm{l}=\int_0^{\infty} \frac{6}{\left(\mathrm{e}^{\mathrm{x}}+1\right)\left(\mathrm{e}^{\mathrm{x}}+2\right)\left(\mathrm{e}^{\mathrm{x}}+3\right)} \mathrm{dx} \\\\ & =6 \int_0^{\infty}\left(\frac{\frac{1}{2}}{\mathrm{e}^{\mathrm{x}}+1}+\frac{-1}{\mathrm{e}^{\mathrm{x}}+2}+\frac{\frac{1}{2}}{\mathrm{e}^{\mathrm{x}}+3}\right) \mathrm{dx} \\\\ & =3 \int_0^{\infty} \frac{\mathrm{e}^{-\mathrm{x}}}{1+\mathrm{e}^{-\mathrm{x}}} \mathrm{dx}-6 \int_0^{\infty} \frac{\mathrm{e}^{-\mathrm{x}} \mathrm{dx}}{1+2 \mathrm{e}^{-\mathrm{x}}}+3 \int_0^{\infty} \frac{\mathrm{e}^{-\mathrm{x}}}{1+3 \mathrm{e}^{-\mathrm{x}}} \mathrm{dx} \\\\ & =3\left[-\ln \left(1+\mathrm{e}^{-\mathrm{x}}\right)\right]_0^{\infty}+6 \frac{1}{2}\left[\ln \left(1+2 \mathrm{e}^{-\mathrm{x}}\right)\right]_0^{\infty} -\frac{3}{3}\left[\ln \left(1+3 \mathrm{e}^{-\mathrm{x}}\right)\right]_0^{\infty} \\\\ & =3 \ln 2-3 \ln 3+\ln 4 \\\\ & =3 \ln \frac{2}{3}+\ln 4 \\\\ & =\ln \frac{32}{27} \end{aligned} $$
mcq
jee-main-2023-online-13th-april-morning-shift
1lgq0ygkp
maths
definite-integration
properties-of-definite-integration
<p>Let for $$x \in \mathbb{R}, S_{0}(x)=x, S_{k}(x)=C_{k} x+k \int_{0}^{x} S_{k-1}(t) d t$$, where <br/><br/>$$C_{0}=1, C_{k}=1-\int_{0}^{1} S_{k-1}(x) d x, k=1,2,3, \ldots$$ Then $$S_{2}(3)+6 C_{3}$$ is equal to ____________.</p>
[]
null
18
Given, <br/><br/>$$ S_k(x)=C_k x+k \int_0^x S_{k-1}(t) d t $$ <br/><br/>Put $\mathrm{k}=2$ and $\mathrm{x}=3$ <br/><br/>$$ \mathrm{S}_2(3)=\mathrm{C}_2(3)+2 \int_0^3 \mathrm{~S}_1(\mathrm{t}) \mathrm{dt} $$ .........(i) <br/><br/>Also, <br/><br/>$$ \begin{aligned} & S_1(x)=C_1(x)+\int_0^x S_0(t) d t \\\\ & =C_1 x+\frac{x^2}{2} \\\\ & S_2(3)=3 C_2+2 \int_0^3\left(C_1 t+\frac{t^2}{2}\right) d t \\\\ & =3 C_2+9 C_1+9 \end{aligned} $$ <br/><br/>Also, <br/><br/>$$ \begin{aligned} & \mathrm{C}_1=1-\int_0^1 \mathrm{~S}_0(\mathrm{x}) \mathrm{dx}=\frac{1}{2} \\\\ & \mathrm{C}_2=1-\int_0^1 \mathrm{~S}_1(\mathrm{x}) \mathrm{dx}=0 \\\\ & \mathrm{C}_3=1-\int_0^1 \mathrm{~S}_2(\mathrm{x}) \mathrm{dx} \\\\ & =1-\int_0^1\left(\mathrm{C}_2 \mathrm{x}+\mathrm{C}_1 \mathrm{x}^2+\frac{\mathrm{x}^3}{3}\right) \mathrm{dx} \\\\ & =\frac{3}{4} \end{aligned} $$ <br/><br/>$$ \begin{aligned} & S_2(x)=C_2 x+2 \int_0^x S_1(t) d t \\\\ &=C_2 x+C_1 x^2+\frac{x^3}{3} \\\\ & = S_2(3)+6 C_3=6 C_3+3 C_2+9 C_1+9 \\\\ &=18 \end{aligned} $$
integer
jee-main-2023-online-13th-april-morning-shift
1lgrgllfd
maths
definite-integration
properties-of-definite-integration
<p>If $$\int_\limits{-0.15}^{0.15}\left|100 x^{2}-1\right| d x=\frac{k}{3000}$$, then $$k$$ is equal to ___________.</p>
[]
null
575
$$ \int\limits_{-0.15}^{0.15}\left|100 x^2-1\right| d x=2 \int\limits_0^{0.15}\left|100 x^2-1\right| \mathrm{dx} $$ <br/><br/>$$ \text { Now } 100 x^2-1=0 \Rightarrow x^2=\frac{1}{100} \Rightarrow x=0.1 $$ <br/><br/>$$ I=2\left[\int_0^{0.1}\left(1-100 x^2\right) d x+\int_{0.1}^{0.15}\left(100 x^2-1\right) d x\right] $$ <br/><br/>$$ \begin{aligned} I & =2\left[x-\frac{100}{3} x^3\right]_0^{0.1}+2\left[\frac{100 x^3}{3}-x\right]_{0.1}^{0.15} \\\\ & =2\left[0.1-\frac{0.1}{3}\right]+2\left[\frac{0.3375}{3}-0.15-\frac{0.1}{3}+0.1\right] \\\\ & =2\left[0.2-\frac{0.2}{3}+0.1125-0.15\right] \\\\ & =2\left[\frac{5}{100}-\frac{2}{30}+\frac{1125}{10000}\right]=2\left(\frac{1500-2000+3375}{30000}\right) \\\\ & =\frac{575}{3000} \Rightarrow \mathrm{k}=575 \end{aligned} $$
integer
jee-main-2023-online-12th-april-morning-shift
1lgsvib75
maths
definite-integration
properties-of-definite-integration
<p>If $$f: \mathbb{R} \rightarrow \mathbb{R}$$ be a continuous function satisfying $$\int_\limits{0}^{\frac{\pi}{2}} f(\sin 2 x) \sin x d x+\alpha \int_\limits{0}^{\frac{\pi}{4}} f(\cos 2 x) \cos x d x=0$$, then the value of $$\alpha$$ is :</p>
[{"identifier": "A", "content": "$$-\\sqrt{3}$$"}, {"identifier": "B", "content": "$$\\sqrt{2}$$"}, {"identifier": "C", "content": "$$-\\sqrt{2}$$"}, {"identifier": "D", "content": "$$\\sqrt{3}$$"}]
["C"]
null
The integral equation is given by : <br/><br/>$$\int\limits_0^{\frac{\pi}{2}} f(\sin 2x) \sin x \, dx + \alpha \int\limits_0^{\frac{\pi}{4}} f(\cos 2x) \cos x \, dx = 0$$ <br/><br/>Step 1 : Break the first integral into two parts : <br/><br/>$$I = \int\limits_0^{\frac{\pi}{4}} f(\sin 2x) \sin x \, dx + \int\limits_{\frac{\pi}{4}}^{\frac{\pi}{2}} f(\sin 2x) \sin x \, dx + \alpha \int\limits_0^{\frac{\pi}{4}} f(\cos 2x) \cos x \, dx$$ <br/><br/>3. Apply the King's property, $\int\limits_a^b f(x) dx = \int\limits_a^b f(a+b-x) dx$, to the first integral and substitute $x - \frac{\pi}{4} = t$ in the second integral. <br/><br/>This gives : <br/><br/>$$ \int\limits_0^{\frac{\pi}{4}} f(\cos 2x) \sin(\frac{\pi}{4}-x) \, dx + \int\limits_0^{\frac{\pi}{4}} f(\cos 2t) \sin(\frac{\pi}{4}+t) \, dt + \alpha \int\limits_0^{\frac{\pi}{4}} f(\cos 2x) \cos x \, dx = 0 $$ <br/><br/>$$ \int\limits_0^{\frac{\pi}{4}} f(\cos 2x) [2 \sin \frac{\pi}{4} \cos x + \alpha \cos x] \, dx = 0 $$ <br/><br/>Then, noticing that $2 \sin \frac{\pi}{4} = \sqrt{2}$, you can factor out the term $\cos x$: <br/><br/>$$ = (\alpha + \sqrt{2}) \int\limits_0^{\frac{\pi}{4}} f(\cos 2x) \cos x \, dx = 0 $$ <br/><br/>In order for this equation to hold true, either the integral of the function is zero, or the term outside the integral is zero. Since we have no reason to assume that the integral of the function is zero, we set the term outside the integral to zero, yielding the solution: <br/><br/>$$ \alpha + \sqrt{2} = 0 \Rightarrow \alpha = -\sqrt{2} $$ <br/><br/>So, the correct answer to the original problem is $\alpha = -\sqrt{2}$, which corresponds to Option C.
mcq
jee-main-2023-online-11th-april-evening-shift
1lgsvsu3q
maths
definite-integration
properties-of-definite-integration
<p>Let the function $$f:[0,2] \rightarrow \mathbb{R}$$ be defined as</p> <p>$$f(x)= \begin{cases}e^{\min \left\{x^{2}, x-[x]\right\},} &amp; x \in[0,1) \\ e^{\left[x-\log _{e} x\right]}, &amp; x \in[1,2]\end{cases}$$</p> <p>where $$[t]$$ denotes the greatest integer less than or equal to $$t$$. Then the value of the integral $$\int_\limits{0}^{2} x f(x) d x$$ is :</p>
[{"identifier": "A", "content": "$$2 e-1$$"}, {"identifier": "B", "content": "$$2 e-\\frac{1}{2}$$"}, {"identifier": "C", "content": "$$1+\\frac{3 e}{2}$$"}, {"identifier": "D", "content": "$$(e-1)\\left(e^{2}+\\frac{1}{2}\\right)$$"}]
["B"]
null
$$ \begin{aligned} \operatorname{Minimum}\left\{\mathrm{x}^2,\{\mathrm{x}\}\right\} & =\mathrm{x}^2 ; \mathrm{x} \in[0,1) \\\\ {\left[\mathrm{x}-\log _{\mathrm{e}} \mathrm{x}\right] } & =1 ; \mathrm{x} \in[1,2) \end{aligned} $$ <br/><br/>$$ \therefore \mathrm{f}(\mathrm{x})=\left\{\begin{array}{l} \mathrm{e}^{\mathrm{x}^2} ; \mathrm{x} \in[0,1) \\\\ \mathrm{e} ; \mathrm{x} \in[1,2) \end{array}\right. $$ <br/><br/>$$ \begin{aligned} & \int\limits_0^2 x f(x)=\int\limits_0^1 x \cdot e^{x^2} d x+\int\limits_1^2 x \cdot e d x \\\\ & x^2=t \Rightarrow 2 x d x=d t \end{aligned} $$ <br/><br/>$$ =\frac{1}{2} \int\limits_0^1 e^t d t+\left.e \frac{x^2}{2}\right|_1 ^2 $$ <br/><br/>$$ \begin{aligned} & =\frac{1}{2}(\mathrm{e}-1)+\frac{1}{2}(4-1) \mathrm{e} \\\\ & =2 \mathrm{e}-\frac{1}{2} \end{aligned} $$
mcq
jee-main-2023-online-11th-april-evening-shift
1lguu4z56
maths
definite-integration
properties-of-definite-integration
<p>The value of the integral $$\int_\limits{-\log _{e} 2}^{\log _{e} 2} e^{x}\left(\log _{e}\left(e^{x}+\sqrt{1+e^{2 x}}\right)\right) d x$$ is equal to :</p>
[{"identifier": "A", "content": "$$\\log _{e}\\left(\\frac{(2+\\sqrt{5})^{2}}{\\sqrt{1+\\sqrt{5}}}\\right)+\\frac{\\sqrt{5}}{2}$$"}, {"identifier": "B", "content": "$$\\log _{e}\\left(\\frac{\\sqrt{2}(2+\\sqrt{5})^{2}}{\\sqrt{1+\\sqrt{5}}}\\right)-\\frac{\\sqrt{5}}{2}$$"}, {"identifier": "C", "content": "$$\\log _{e}\\left(\\frac{2(2+\\sqrt{5})}{\\sqrt{1+\\sqrt{5}}}\\right)-\\frac{\\sqrt{5}}{2}$$"}, {"identifier": "D", "content": "$$\\log _{e}\\left(\\frac{\\sqrt{2}(3-\\sqrt{5})^{2}}{\\sqrt{1+\\sqrt{5}}}\\right)+\\frac{\\sqrt{5}}{2}$$"}]
["B"]
null
$$\int_\limits{-\log _{e} 2}^{\log _{e} 2} e^{x}\left(\log _{e}\left(e^{x}+\sqrt{1+e^{2 x}}\right)\right) d x$$ <br/><br/>Let $e^x=t \Rightarrow e^x d x=d t$ <br/><br/>When, $x \rightarrow-\log _e 2$, then $t \rightarrow \frac{1}{2}$ <br/><br/>When, $x \rightarrow \log _e 2$, then $t \rightarrow 2$ <br/><br/>$$ I=\int_\limits{\frac{1}{2}}^2\left[\log _e\left(t+\sqrt{1+t^2}\right)\right] d t $$ ...........(i) <br/><br/>On applying integration by part method in Eq. (i), we get <br/><br/>$$ \begin{aligned} & I=\left[t \log _e\left(t+\sqrt{1+t^2}\right)\right]_{1 / 2}^2-\int_{1 / 2}^2 \frac{t}{t+\sqrt{1+t^2}}\left(1+\frac{2 t}{2 \sqrt{1+t^2}}\right) d t \\\\ & =2 \log _e(2+\sqrt{5})-\frac{1}{2} \log _e\left(\frac{1+\sqrt{5}}{2}\right)-\int_{1 / 2}^2 \frac{t}{\sqrt{1+t^2}} d t \end{aligned} $$ <br/><br/>$$ =\log _e\left(\frac{(2+\sqrt{5})^2}{\left(\frac{1+\sqrt{5}}{2}\right)^{1 / 2}}\right)-\frac{1}{2} \int_{1 / 2}^2 \frac{2 t}{\sqrt{1+t^2}} d t $$ .............(ii) <br/><br/>Let $\quad I_1=\int_{1 / 2}^2 \frac{2 t}{\sqrt{1+t^2}} d t$ <br/><br/>Let $1+t^2=w$ <br/><br/>$2 t d t=d w$ <br/><br/>When, $t \rightarrow \frac{1}{2}$, then $w=\frac{5}{4}$ <br/><br/>When, $t \rightarrow 2$, then $w=5$ <br/><br/>$$ \begin{aligned} I_1 & =\int_{5 / 4}^5 \frac{1}{\sqrt{w}} d w \\\\ & =[2 \sqrt{w}]_{5 / 4}^5 \\\\ & =2\left[\sqrt{5}-\frac{\sqrt{5}}{2}\right]=\sqrt{5} \end{aligned} $$ <br/><br/>On substitute value of $I_1$ in Eq. (ii), we get <br/><br/>$$ I=\log _e\left(\frac{\sqrt{2}(2+\sqrt{5})^2}{\sqrt{1+\sqrt{5}}}\right)-\frac{\sqrt{5}}{2} $$
mcq
jee-main-2023-online-11th-april-morning-shift
1lguwr95k
maths
definite-integration
properties-of-definite-integration
<p>For $$m, n &gt; 0$$, let $$\alpha(m, n)=\int_\limits{0}^{2} t^{m}(1+3 t)^{n} d t$$. If $$11 \alpha(10,6)+18 \alpha(11,5)=p(14)^{6}$$, then $$p$$ is equal to ___________.</p>
[]
null
32
We have, $\alpha(m, n)=\int\limits_0^2 t^m(1+3 t)^n d t$ <br/><br/>Also, $11 \alpha(10,6)+18 \alpha(11,5)=P(14)^6$ <br/><br/>$\Rightarrow 11 \int\limits_0^2 t^{10}(1+3 t)^6 d t+18 \int\limits_0^2 t^{11}(1+3 t)^5 d t=P(14)^6$ <br/><br/>Using integration by part for expression $t^{10}(1+3 t)^6$ <br/><br/>$$ \begin{array}{r} \left.\Rightarrow 11\left[(1+3 t)^6 \times \frac{t^{11}}{11}\right]_0^2-\int\limits_0^2 6(1+3 t)^5 \times 3 \times \frac{t^{11}}{11} d t\right] \\\\ +18 \int\limits_0^2 t^{11}(1+3 t)^5 d t=P(14)^6 \end{array} $$ <br/><br/>$$ \begin{aligned} & \Rightarrow 7^6 \times 2^{11}-18 \int\limits_0^2 t^{11}(1+3 t)^5 d t+18 \int\limits_0^2 t^{11}(1+3 t)^5 d t=P(14)^6 \\\\ & \Rightarrow 7^6 \times 2^{11}=P(14)^6 \Rightarrow(7 \times 2)^6 \times 2^5=P(14)^6 \\\\ & \Rightarrow P=2^5=32 \end{aligned} $$
integer
jee-main-2023-online-11th-april-morning-shift
1lgyoktep
maths
definite-integration
properties-of-definite-integration
<p>Let $$[t]$$ denote the greatest integer function. If $$\int_\limits{0}^{2.4}\left[x^{2}\right] d x=\alpha+\beta \sqrt{2}+\gamma \sqrt{3}+\delta \sqrt{5}$$, then $$\alpha+\beta+\gamma+\delta$$ is equal to __________.</p>
[]
null
6
$$ \begin{aligned} \int\limits_0^{2.4}\left[x^2\right] d x & =\int\limits_0^1\left[x^2\right] d x+\int\limits_1^{\sqrt{2}}\left[x^2\right] d x \\\\ & +\int\limits_{\sqrt{2}}^{\sqrt{3}}\left[x^2\right] d x+\int\limits_{\sqrt{3}}^2\left[x^2\right] d x+\int\limits_2^{\sqrt{5}}\left[x^2\right] d x+\int\limits_{\sqrt{5}}^{2.4}\left[x^2\right] d x \end{aligned} $$ <br/><br/>$$ \begin{aligned} & =\int_0 0 . d x+\int_1^{\sqrt{2}} 1 \cdot d x+\int_{\sqrt{2}}^{\sqrt{3}} 2 d x+\int_{\sqrt{3}}^2 3 d x+\int_2^{\sqrt{5}} 4 d x+\int_{\sqrt{5}}^{2.4} 5 d x \\\\ & = 0+[x]_1^{\sqrt{2}}+2[x]_{\sqrt{2}}^{\sqrt{3}}+3[x]_{\sqrt{3}}^2+4[x]_2^{\sqrt{5}}+5[x]_{\sqrt{5}}^{2.4} \\\\ & =\sqrt{2}-1+2 \sqrt{3}-2 \sqrt{2}+6-3 \sqrt{3}+4 \sqrt{5}-8+12-5 \sqrt{5} \\\\ & =-\sqrt{2}-\sqrt{3}-\sqrt{5}+9 \\\\ & \therefore \alpha=9, \beta=-1, \gamma=-1, \delta=-1 \\\\ & \text { So, } \alpha+\beta+\gamma+\delta=9-1-1-1=6 \end{aligned} $$
integer
jee-main-2023-online-8th-april-evening-shift
1lh0010vg
maths
definite-integration
properties-of-definite-integration
<p>Let $$[t]$$ denote the greatest integer $$\leq t$$. Then $$\frac{2}{\pi} \int_\limits{\pi / 6}^{5 \pi / 6}(8[\operatorname{cosec} x]-5[\cot x]) d x$$ is equal to __________.</p>
[]
null
14
$$ \begin{aligned} & \text { Let } \mathrm{I}=\frac{2}{\pi} \int\limits_{\frac{\pi}{6}}^{ \frac{5\pi}{6}}\{8[\operatorname{cosec} x]-5[\cot x]\} d x \\\\ & =\frac{2}{\pi}\left[8 \int\limits_{\frac{\pi}{6}}^{\frac{5 \pi}{6}}[\operatorname{cosec} x] d x-5 \int\limits_{\frac{\pi}{6}}^{\frac{5 \pi}{6}}[\cot x] d x\right] \end{aligned} $$ <br/><br/>$$ \left.\begin{array}{r} =\frac{2}{\pi}\left[8 \int\limits_{\pi / 6}^{5 \pi / 6} d x-5\left\{\int\limits_{\pi / 6}^{\pi / 4} d x+\int\limits_{\pi / 4}^{\pi / 2} 0 . d x+\int\limits_{\pi / 2}^{3 \pi / 4}(-1) d x+\right.\right. \left.\left.+\int\limits_{3 \pi / 4}^{5 \pi / 6}(-2) d x\right\}\right] \end{array}\right] $$ <br/><br/>$$ \begin{aligned} & =\frac{2}{\pi}\left[8 \times\left(\frac{5 \pi}{6} - \frac{\pi}{6}\right)-5\left\{\left(\frac{\pi}{4}-\frac{\pi}{6}\right)-\left(\frac{3 \pi}{4}-\frac{\pi}{2}\right)\right\}\right.\left.-2\left(\frac{5 \pi}{6}-\frac{3 \pi}{4}\right)\right] \\\\ & =\frac{2}{\pi}\left[\frac{16 \pi}{3}+\frac{5 \pi}{3}\right]=14 \end{aligned} $$
integer
jee-main-2023-online-8th-april-morning-shift
1lh21dq8w
maths
definite-integration
properties-of-definite-integration
<p>Let $$5 f(x)+4 f\left(\frac{1}{x}\right)=\frac{1}{x}+3, x &gt; 0$$. Then $$18 \int_\limits{1}^{2} f(x) d x$$ is equal to :</p>
[{"identifier": "A", "content": "$$10 \\log _{\\mathrm{e}} 2+6$$"}, {"identifier": "B", "content": "$$5 \\log _{e} 2-3$$"}, {"identifier": "C", "content": "$$10 \\log _{\\mathrm{e}} 2-6$$"}, {"identifier": "D", "content": "$$5 \\log _{\\mathrm{e}} 2+3$$"}]
["C"]
null
We have, <br/><br/>$$ 5 f(x)+4 f\left(\frac{1}{x}\right)=\frac{1}{x}+3, x>0 $$ ..........(i) <br/><br/>On replacing $x$ by $\frac{1}{x}$ in (i), we get <br/><br/>$$ 5 f\left(\frac{1}{x}\right)+4 f(x)=x+3 $$ ..........(ii) <br/><br/>Now, using Eq. (i) $\times 5-$ (ii) $\times 4$, we get <br/><br/>$$ \begin{aligned} & 25 f(x)-16 f(x) =\left(\frac{5}{x}+15\right)-(4 x+12) \\\\ &\Rightarrow 9 f(x) =\frac{5}{x}-4 x+3 \\\\ &\Rightarrow f(x) =\frac{1}{9}\left(\frac{5}{x}-4 x+3\right) ...........(iii) \end{aligned} $$ <br/><br/>$$ \begin{aligned} \therefore \quad & 18 \int_1^2 f(x) d x=18 \int_1^2 \frac{1}{9}\left(\frac{5}{x}-4 x+3\right) d x \text { [Using Eq. (iii)] }\\\\ = & 2 \int_1^2\left(\frac{5}{x}-4 x+3\right) d x \end{aligned} $$ <br/><br/>$$ \begin{aligned} & =2\left[5 \log _e x-4\left(\frac{x^2}{2}\right)+3 x\right]_1^2 \\\\ & =2\left[\left(5 \log _e 2-2(2)^2+3(2)\right)-\left(5 \log 1-2(1)^2+3(1)\right)\right] \\\\ & =2\left[5 \log _e 2-8+6+2-3\right] [\because \log 1=0]\\\\ & =10 \log _e 2-6 \end{aligned} $$
mcq
jee-main-2023-online-6th-april-morning-shift
1lh2y8vvh
maths
definite-integration
properties-of-definite-integration
<p>Let $$f(x)$$ be a function satisfying $$f(x)+f(\pi-x)=\pi^{2}, \forall x \in \mathbb{R}$$. Then $$\int_\limits{0}^{\pi} f(x) \sin x d x$$ is equal to :</p>
[{"identifier": "A", "content": "$$\\pi^{2}$$"}, {"identifier": "B", "content": "$$\\frac{\\pi^{2}}{2}$$"}, {"identifier": "C", "content": "$$2 \\pi^{2}$$"}, {"identifier": "D", "content": "$$\\frac{\\pi^{2}}{4}$$"}]
["A"]
null
Let $I=\int\limits_0^\pi f(x) \sin x d x$ ..........(i) <br/><br/>$$ \begin{aligned} & =\int\limits_0^\pi f(\pi-x) \sin (\pi-x) d x \\\\ & =\int\limits_0^\pi f(\pi-x) \sin x d x ........(ii) \end{aligned} $$ <br/><br/>On adding Equations (i) and (ii), we get <br/><br/>$$ \begin{aligned} & 2 I=\int\limits_0^\pi[f(x)+f(\pi-x)] \sin x d x \\\\ & \Rightarrow 2 I=\int\limits_0^\pi \pi^2 \sin x d x=\pi^2 \int\limits_0^\pi \sin x d x \\\\ & =\pi^2(-\cos x)_0^\pi=-\pi^2(-1-1)=2 \pi^2 \\\\ & \Rightarrow I=\pi^2 \end{aligned} $$
mcq
jee-main-2023-online-6th-april-evening-shift
lsam93zl
maths
definite-integration
properties-of-definite-integration
If $\int\limits_0^{\frac{\pi}{3}} \cos ^4 x \mathrm{~d} x=\mathrm{a} \pi+\mathrm{b} \sqrt{3}$, where $\mathrm{a}$ and $\mathrm{b}$ are rational numbers, then $9 \mathrm{a}+8 \mathrm{b}$ is equal to :
[{"identifier": "A", "content": "2"}, {"identifier": "B", "content": "1"}, {"identifier": "C", "content": "3"}, {"identifier": "D", "content": "$\\frac{3}{2}$"}]
["A"]
null
<p>To solve the given integral $\int\limits_0^{\frac{\pi}{3}} \cos ^4 x \mathrm{~d} x$, we&#39;ll apply a known power-reduction formula that allows us to express even powers of sine and cosine functions in terms of cosine of multiple angles. Specifically for $\cos^4 x$, we can write it in terms of double angles as:</p> <p>$$ \cos^4 x = \left(\frac{1 + \cos(2x)}{2}\right)^2 $$</p> <p>We can then expand and simplify the integral using this formula. Let&#39;s proceed with this:</p> <p>$$ \int\limits_0^{\frac{\pi}{3}} \cos^4 x \mathrm{~d}x = \int\limits_0^{\frac{\pi}{3}} \left(\frac{1 + \cos(2x)}{2}\right)^2 \mathrm{~d}x $$</p> <p>Now, let&#39;s expand the integrand and then integrate term by term:</p> <p>$$ = \int\limits_0^{\frac{\pi}{3}} \left(\frac{1}{4} + \frac{1}{2} \cos(2x) + \frac{1}{4} \cos^2(2x)\right)\mathrm{~d}x $$</p> <p>For the $\cos^2(2x)$ term, we again use the power reduction formula:</p> <p>$$ \cos^2(2x) = \frac{1 + \cos(4x)}{2} $$</p> <p>Let&#39;s substitute this into the integral and continue:</p> <p>$$ = \int\limits_0^{\frac{\pi}{3}} \left(\frac{1}{4} + \frac{1}{2} \cos(2x) + \frac{1}{4} \left(\frac{1 + \cos(4x)}{2}\right)\right)\mathrm{~d}x $$</p> <p>Simplify and integrate:</p> <p>$$ = \int\limits_0^{\frac{\pi}{3}} \left(\frac{1}{4} + \frac{1}{2} \cos(2x) + \frac{1}{8} + \frac{1}{8} \cos(4x)\right)\mathrm{~d}x $$</p> <p>$$ = \int\limits_0^{\frac{\pi}{3}} \left(\frac{3}{8} + \frac{1}{2} \cos(2x) + \frac{1}{8} \cos(4x)\right)\mathrm{~d}x $$</p> <p>$$ = \left. \left(\frac{3}{8} x + \frac{1}{4} \sin(2x) + \frac{1}{32} \sin(4x)\right) \right|_0^{\frac{\pi}{3}} $$</p> <p>Evaluating this from $0$ to $\frac{\pi}{3}$:</p> <p>$$ = \left(\frac{3}{8} \cdot \frac{\pi}{3} + \frac{1}{4} \sin\left(2 \cdot \frac{\pi}{3}\right) + \frac{1}{32} \sin\left(4 \cdot \frac{\pi}{3}\right)\right) - \left(\frac{3}{8} \cdot 0 + \frac{1}{4} \sin(0) + \frac{1}{32} \sin(0)\right) $$</p> <p>$$ = \frac{\pi}{8} + \frac{1}{4} \sin\left(\frac{2\pi}{3}\right) + \frac{1}{32} \sin\left(\frac{4\pi}{3}\right) $$</p> <p>$\sin\left(\frac{2\pi}{3}\right)$ is $\frac{\sqrt{3}}{2}$ and $\sin\left(\frac{4\pi}{3}\right)$ is $-\frac{\sqrt{3}}{2}$:</p> <p>$$ = \frac{\pi}{8} + \frac{1}{4} \cdot \frac{\sqrt{3}}{2} - \frac{1}{32} \cdot \frac{\sqrt{3}}{2} $$</p> <p>$$ = \frac{\pi}{8} + \frac{\sqrt{3}}{8} - \frac{\sqrt{3}}{64} $$</p> <p>Now, combining terms we get the final result:</p> <p>$$ = \frac{\pi}{8} + \frac{8\sqrt{3} - \sqrt{3}}{64} $$</p> <p>$$ = \frac{\pi}{8} + \frac{7\sqrt{3}}{64} $$</p> <p>Now, let&#39;s match this result to the form $\mathrm{a}\pi + \mathrm{b}\sqrt{3}$ and find $a$ and $b$:</p> <p>$$ a = \frac{1}{8}, \quad b = \frac{7}{64} $$</p> <p>Now we find $9a + 8b$:</p> <p>$$ 9a + 8b = 9 \cdot \frac{1}{8} + 8 \cdot \frac{7}{64} $$</p> <p>$$ = \frac{9}{8} + \frac{7}{8} $$</p> <p>$$ = \frac{16}{8} $$</p> <p>$$ = 2 $$</p> <p>Therefore, the value of $9a + 8b$ is 2, which correspond to Option A.</p>
mcq
jee-main-2024-online-1st-february-evening-shift
lsamq77b
maths
definite-integration
properties-of-definite-integration
The value of $\int\limits_0^1\left(2 x^3-3 x^2-x+1\right)^{\frac{1}{3}} \mathrm{~d} x$ is equal to :
[{"identifier": "A", "content": "-1"}, {"identifier": "B", "content": "2"}, {"identifier": "C", "content": "0"}, {"identifier": "D", "content": "1"}]
["C"]
null
$\begin{aligned} & I=\int_0^1\left(2 x^3-3 x^2-x+1\right)^{1 / 3} d x \\\\ & I=\int_0^1\left((2 x-1)\left(x^2-x-1\right)\right)^{1 / 3} d x \\\\ & I=\int_0^1\left[(2(1-x)-1)\left((1-x)^2-(1-x)-1\right)\right]^{1 / 3} d x \\\\ & I=\int_0^1\left((1-2 x)\left(x^2-x-1\right)\right)^{1 / 3} d x\end{aligned}$ <br/><br/>$\begin{aligned} & I=-\int_0^1\left((2 x-1)\left(x^2-x-1\right)\right)^{1 / 3} d x \\\\ & I=-I \\\\ & 2 I=0 \\\\ & I=0\end{aligned}$
mcq
jee-main-2024-online-1st-february-evening-shift
lsao9n4x
maths
definite-integration
properties-of-definite-integration
The value of the integral $\int\limits_0^{\pi / 4} \frac{x \mathrm{~d} x}{\sin ^4(2 x)+\cos ^4(2 x)}$ equals :
[{"identifier": "A", "content": "$\\frac{\\sqrt{2} \\pi^2}{8}$"}, {"identifier": "B", "content": "$\\frac{\\sqrt{2} \\pi^2}{16}$"}, {"identifier": "C", "content": "$\\frac{\\sqrt{2} \\pi^2}{32}$"}, {"identifier": "D", "content": "$\\frac{\\sqrt{2} \\pi^2}{64}$"}]
["C"]
null
Take $I=\int\limits_0^{\pi / 4} \frac{x d x}{\sin ^4(2 x)+\cos ^4(2 x)}$ <br/><br/>Let $2 x=t$ <br/><br/>$2 d x=d t$ <br/><br/>$d x=\frac{d t}{2}$ <br/><br/>$\begin{aligned} & I=\int\limits_0^{\pi / 2} \frac{t / 2 \cdot 1 / 2 d t}{\sin ^4 t+\cos ^4 t} \\\\ & I=\frac{1}{4} \int\limits_0^{\pi / 2} \frac{t d t}{\sin ^4 t+\cos ^4 t} \\\\ & =\frac{1}{4} \int\limits_0^{\pi / 2} \frac{\left(\frac{\pi}{2}-t\right) d t}{\sin ^4(\pi / 2-t)+\cos ^4(\pi / 2-t)} \\\\ & =\frac{1}{4} \int\limits_0^{\pi / 2} \frac{\left(\frac{\pi}{2}-t\right)}{\sin ^4 t+\cos ^4 t}\end{aligned}$ <br/><br/>$\begin{aligned} & 2 I=\frac{1}{4} \int\limits_0^{\pi / 2} \frac{\frac{\pi}{2}}{\sin ^4 t+\cos ^4 t} d t \\\\ & 2 I=\frac{\pi}{8} \int\limits_0^{\pi / 2} \frac{d t}{\sin ^4 t+\cos ^4 t} \\\\ & 2 I=\frac{\pi}{8} \int\limits_0^{\pi / 2} \frac{\sec ^4 t}{1+\tan ^4 t} d t\end{aligned}$ <br/><br/>$\begin{aligned} & \text { Put tant }=y \\\\ & \sec ^2 t d t=d y \\\\ & 2 I=\frac{\pi}{8} \int\limits_0^{\infty} \frac{\left(1+y^2\right) d y}{1+y^4} \\\\ & =\frac{\pi}{8} \int\limits_0^{\infty} \frac{1+\frac{1}{y^2}}{y^2+\frac{1}{y^2}-2+2} d y \\\\ & = \frac{\pi}{8} \int\limits_0^{\infty} \frac{\left(1+\frac{1}{y^2}\right) d y}{2+\left(y-\frac{1}{y}\right)^2}\end{aligned}$ <br/><br/>$\begin{aligned} & \text { Put, } y-\frac{1}{y}=4 \\\\ & 2 I=\frac{\pi}{8} \int\limits_{-\infty}^{\infty} \frac{d u}{2+u^2} \\\\ & =\frac{\pi}{8 \sqrt{2}}\left[\tan ^{-1} \frac{y}{\sqrt{2}}\right]_{-\infty}^{\infty} \\\\ & =\frac{\sqrt{2} \pi^2}{32}\end{aligned}$
mcq
jee-main-2024-online-1st-february-morning-shift
lsaq6l6n
maths
definite-integration
properties-of-definite-integration
If $\int\limits_{-\pi / 2}^{\pi / 2} \frac{8 \sqrt{2} \cos x \mathrm{~d} x}{\left(1+\mathrm{e}^{\sin x}\right)\left(1+\sin ^4 x\right)}=\alpha \pi+\beta \log _{\mathrm{e}}(3+2 \sqrt{2})$, where $\alpha, \beta$ are integers, then $\alpha^2+\beta^2$ equals :
[]
null
8
$$ I=\int\limits_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{8 \sqrt{2} \cos x}{\left(1+e^{\sin x}\right)\left(1+\sin ^4 x\right)} d x $$ ............(1) <br/><br/>Apply king's rule <br/><br/>$$ I=\int\limits_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{8 \sqrt{2} \cos x\left(e^{\sin x}\right)}{\left(1+e^{\sin x}\right)\left(1+\sin ^4 x\right)} d x $$ ..........(2) <br/><br/>Adding (1) and (2), we get <br/><br/>$$ \begin{aligned} & 2 I=\int\limits_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{8 \sqrt{2} \cos x}{1+\sin ^4 x} d x \\\\ & I=\int\limits_0^{\frac{\pi}{2}} \frac{8 \sqrt{2} \cos x}{1+\sin ^4 x} d x, \end{aligned} $$ <br/><br/>Let $\sin x=t$ <br/><br/>$$ \begin{aligned} & I=8 \sqrt{2} \int\limits_0^1 \frac{d t}{1+t^4} \\\\ & =4 \sqrt{2} \int\limits_0^1 \frac{\left(1+\frac{1}{t^2}\right)-\left(1-\frac{1}{t^2}\right)}{t^2+\frac{1}{t^2}} d t \end{aligned} $$ <br/><br/>$\begin{aligned} & =4 \sqrt{2} \int\limits_0^1 \frac{\left(1+\frac{1}{t^2}\right) d t}{\left(t-\frac{1}{t^2}\right)^2+2}-4 \sqrt{2} \int\limits_0^1 \frac{\left(1-\frac{1}{t^2}\right) d t}{\left(t+\frac{1}{t^2}\right)^2-2} \\\\ & =4 \sqrt{2} \cdot \frac{1}{\sqrt{2}}\left(\left.\tan ^{-1} \frac{t-\frac{1}{t}}{\sqrt{2}}\right|_0 ^1-4 \sqrt{2} \cdot \frac{1}{2 \sqrt{2}}\left[\log \left|\frac{t+\frac{1}{t}-\sqrt{2}}{t+\frac{1}{t}+\sqrt{2}}\right|\right]_0^1\right. \\\\ & =2 \pi-2 \log \left|\frac{2-\sqrt{2}}{2+\sqrt{2}}\right|\end{aligned}$ <br/><br/>$\begin{aligned} & =2 \pi+2 \log (3+2 \sqrt{2})=\alpha \pi+\beta \log _e(3+2 \sqrt{2}) \\\\ & \Rightarrow \alpha=2, \beta=2 \\\\ & \Rightarrow \alpha^2+\beta^2=8\end{aligned}$
integer
jee-main-2024-online-1st-february-morning-shift
lsbke98l
maths
definite-integration
properties-of-definite-integration
If $\int\limits_0^1 \frac{1}{\sqrt{3+x}+\sqrt{1+x}} \mathrm{~d} x=\mathrm{a}+\mathrm{b} \sqrt{2}+\mathrm{c} \sqrt{3}$, where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are rational numbers, then $2 \mathrm{a}+3 \mathrm{~b}-4 \mathrm{c}$ is equal to :
[{"identifier": "A", "content": "10"}, {"identifier": "B", "content": "7"}, {"identifier": "C", "content": "4"}, {"identifier": "D", "content": "8"}]
["D"]
null
<p>$$\begin{aligned} & \int_\limits0^1 \frac{1}{\sqrt{3+x}+\sqrt{1+x}} d x=\int_\limits0^1 \frac{\sqrt{3+x}-\sqrt{1+x}}{(3+x)-(1+x)} d x \\ & \frac{1}{2}\left[\int_\limits0^1 \sqrt{3+x} d x-\int_\limits0^1(\sqrt{1+x}) d x\right] \end{aligned}$$</p> <p>$$\begin{aligned} & \frac{1}{2}\left[2 \frac{(3+x)^{\frac{3}{2}}}{3}-\frac{2(1+x)^{\frac{3}{2}}}{3}\right]_0^1 \\ & \frac{1}{2}\left[\frac{2}{3}(8-3 \sqrt{3})-\frac{2}{3}\left(2^{\frac{3}{2}}-1\right)\right] \\ & \frac{1}{3}[8-3 \sqrt{3}-2 \sqrt{2}+1] \\ & =3-\sqrt{3}-\frac{2}{3} \sqrt{2}=a+b \sqrt{2}+c \sqrt{3} \\ & a=3, b=-\frac{2}{3}, c=-1 \\ & 2 a+3 b-4 c=6-2+4=8 \end{aligned}$$</p>
mcq
jee-main-2024-online-27th-january-morning-shift
lsbkjqqv
maths
definite-integration
properties-of-definite-integration
If $(a, b)$ be the orthocentre of the triangle whose vertices are $(1,2),(2,3)$ and $(3,1)$, and $\mathrm{I}_1=\int\limits_{\mathrm{a}}^{\mathrm{b}} x \sin \left(4 x-x^2\right) \mathrm{d} x, \mathrm{I}_2=\int\limits_{\mathrm{a}}^{\mathrm{b}} \sin \left(4 x-x^2\right) \mathrm{d} x$, then $36 \frac{\mathrm{I}_1}{\mathrm{I}_2}$ is equal to :
[{"identifier": "A", "content": "80"}, {"identifier": "B", "content": "72"}, {"identifier": "C", "content": "66"}, {"identifier": "D", "content": "88"}]
["B"]
null
<p>Equation of CE</p> <p>$$\begin{aligned} &amp; y-1=-(x-3) \\ &amp; x+y=4 \end{aligned}$$</p> <p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1lt1cekv6/bbd7771e-59aa-40fe-80f6-e5c8fe8d22a7/2f978020-d3c5-11ee-a50b-bb659a2e1d74/file-1lt1cekv7.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1lt1cekv6/bbd7771e-59aa-40fe-80f6-e5c8fe8d22a7/2f978020-d3c5-11ee-a50b-bb659a2e1d74/file-1lt1cekv7.png" loading="lazy" style="max-width: 100%;height: auto;display: block;margin: 0 auto;max-height: 40vh;vertical-align: baseline" alt="JEE Main 2024 (Online) 27th January Morning Shift Mathematics - Definite Integration Question 37 English Explanation"></p> <p>orthocentre lies on the line $$x+y=4$$</p> <p>so, $$a+b=4$$</p> <p>$$I_1=\int_\limits a^b x \sin (x(4-x)) d x\quad$$ ..... (i)</p> <p>Using king rule</p> <p>$$I_1=\int_\limits a^b(4-x) \sin (x(4-x)) d x\quad$$ .... (ii)</p> <p>$$\begin{aligned} &amp; \text { (i) }+ \text { (ii) } \\ &amp; 2 \mathrm{I}_1=\int_\limits{\mathrm{a}}^{\mathrm{b}} 4 \sin (\mathrm{x}(4-\mathrm{x})) \mathrm{dx} \\ &amp; 2 \mathrm{I}_1=4 \mathrm{I}_2 \\ &amp; \mathrm{I}_1=2 \mathrm{I}_2 \\ &amp; \frac{\mathrm{I}_1}{\mathrm{I}_2}=2 \\ &amp; \frac{36 \mathrm{I}_1}{\mathrm{I}_2}=72 \end{aligned}$$</p>
mcq
jee-main-2024-online-27th-january-morning-shift
jaoe38c1lscnv0ux
maths
definite-integration
properties-of-definite-integration
<p>For $$0 &lt; \mathrm{a} &lt; 1$$, the value of the integral $$\int_\limits0^\pi \frac{\mathrm{d} x}{1-2 \mathrm{a} \cos x+\mathrm{a}^2}$$ is :</p>
[{"identifier": "A", "content": "$$\\frac{\\pi^2}{\\pi+a^2}$$\n"}, {"identifier": "B", "content": "$$\\frac{\\pi^2}{\\pi-a^2}$$\n"}, {"identifier": "C", "content": "$$\\frac{\\pi}{1-\\mathrm{a}^2}$$\n"}, {"identifier": "D", "content": "$$\\frac{\\pi}{1+\\mathrm{a}^2}$$"}]
["C"]
null
<p>$$\begin{aligned} & I=\int_\limits0^\pi \frac{d x}{1-2 a \cos x+a^2} ; 0< a<1 \\ & I=\int_\limits0^\pi \frac{d x}{1+2 a \cos x+a^2} \\ & 2 I=2 \int_\limits0^{\pi / 2} \frac{2\left(1+a^2\right)}{\left(1+a^2\right)^2-4 a^2 \cos ^2 x} d x \\ & \Rightarrow I=\int_\limits0^{\pi / 2} \frac{2\left(1+a^2\right) \cdot \sec ^2 x}{\left(1+a^2\right)^2 \cdot \sec ^2 x-4 a^2} d x \\ & \Rightarrow I=\int_\limits0^{\pi / 2} \frac{2 \cdot\left(1+a^2\right) \cdot \sec ^2 x}{\left(1+a^2\right)^2 \cdot \tan ^2 x+\left(1-a^2\right)^2} d x \end{aligned}$$</p> <p>$$\begin{aligned} & \Rightarrow \mathrm{I}=\int_\limits0^{\pi / 2} \frac{\frac{2 \cdot \sec ^2 \mathrm{x}}{1+\mathrm{a}^2} \cdot \mathrm{dx}}{\tan ^2 \mathrm{x}+\left(\frac{1-\mathrm{a}^2}{1+\mathrm{a}^2}\right)^2} \\ & \Rightarrow \mathrm{I}=\frac{2}{\left(1-\mathrm{a}^2\right)}\left[\frac{\pi}{2}-0\right] \\ & \mathrm{I}=\frac{\pi}{1-\mathrm{a}^2} \end{aligned}$$</p>
mcq
jee-main-2024-online-27th-january-evening-shift
jaoe38c1lscoi3t2
maths
definite-integration
properties-of-definite-integration
<p>Let $$f(x)=\int_\limits0^x g(t) \log _{\mathrm{e}}\left(\frac{1-\mathrm{t}}{1+\mathrm{t}}\right) \mathrm{dt}$$, where $$g$$ is a continuous odd function. If $$\int_{-\pi / 2}^{\pi / 2}\left(f(x)+\frac{x^2 \cos x}{1+\mathrm{e}^x}\right) \mathrm{d} x=\left(\frac{\pi}{\alpha}\right)^2-\alpha$$, then $$\alpha$$ is equal to _________.</p>
[]
null
2
<p>$$f(x)=\int_\limits0^x g(t) \ln \left(\frac{1-t}{1+t}\right) d t$$</p> <p>$$f(-x)=\int_\limits0^{-x} g(t) \ln \left(\frac{1-t}{1+t}\right) d t$$</p> <p>$$f(-x)=-\int_\limits0^x g(-y) \ln \left(\frac{1+y}{1-y}\right) d y$$</p> <p>$$=-\int_\limits0^x g(y) \ln \left(\frac{1-y}{1+y}\right) d y$$ (g is odd)</p> <p>$$f(-x)=-f(x) \Rightarrow f$$ is also odd</p> <p>Now,</p> <p>$$\begin{aligned} & I=\int_\limits{-\pi / 2}^{\pi / 2}\left(f(x)+\frac{x^2 \cos x}{1+e^x}\right) d x \quad \text{... (1)}\\ & I=\int_\limits{-\pi / 2}^{\pi / 2}\left(f(-x)+\frac{x^2 e^x \cos x}{1+e^x}\right) d x \quad \text{... (2)}\\ & 2 I=\int_\limits{-\pi / 2}^{\pi / 2} x^2 \cos x d x=2 \int_0^{\pi / 2} x^2 \cos x d x \end{aligned}$$</p> <p>$$\begin{aligned} & I=\left(x^2 \sin x\right)_0^{\pi / 2}-\int_\limits0^{\pi / 2} 2 x \sin x d x \\ & =\frac{\pi^2}{4}-2\left(-x \cos x+\int \cos x d x\right)_0^{\pi / 2} \\ & =\frac{\pi^2}{4}-2(0+1)=\frac{\pi^2}{4}-2 \Rightarrow\left(\frac{\pi}{2}\right)^2-2 \\ & \therefore \alpha=2 \end{aligned}$$</p>
integer
jee-main-2024-online-27th-january-evening-shift
jaoe38c1lsd4i9ml
maths
definite-integration
properties-of-definite-integration
<p>Let $$f, g:(0, \infty) \rightarrow \mathbb{R}$$ be two functions defined by $$f(x)=\int\limits_{-x}^x\left(|t|-t^2\right) e^{-t^2} d t$$ and $$g(x)=\int\limits_0^{x^2} t^{1 / 2} e^{-t} d t$$. Then, the value of $$9\left(f\left(\sqrt{\log _e 9}\right)+g\left(\sqrt{\log _e 9}\right)\right)$$ is equal to :</p>
[{"identifier": "A", "content": "10"}, {"identifier": "B", "content": "9"}, {"identifier": "C", "content": "8"}, {"identifier": "D", "content": "6"}]
["C"]
null
<p>$$\begin{aligned} & \mathrm{f}(\mathrm{x})=\int_\limits{-\mathrm{x}}^{\mathrm{x}}\left(|\mathrm{t}|-\mathrm{t}^2\right) \mathrm{e}^{-\mathrm{t}^2} \mathrm{dt} \\ & \Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=2 \cdot\left(|\mathrm{x}|-\mathrm{x}^2\right) \mathrm{e}^{-\mathrm{x}^2} \ldots \ldots \ldots . .(1) \\ & \mathrm{g}(\mathrm{x})=\int_\limits0^{\mathrm{x}^2} \mathrm{t}^{\frac{1}{2}} \mathrm{e}^{-t} \mathrm{dt} \\ & \mathrm{g}^{\prime}(\mathrm{x})=\mathrm{xe}^{-\mathrm{x}^2}(2 \mathrm{x})-0 \\ & \mathrm{f}^{\prime}(\mathrm{x})+\mathrm{g}^{\prime}(\mathrm{x})=2 \mathrm{xe}^{-\mathrm{x}^2}-2 \mathrm{x}^2 \mathrm{e}^{-\mathrm{x}^2}+2 \mathrm{x}^2 \mathrm{e}^{-\mathrm{x}^2} \end{aligned}$$</p> <p>Integrating both sides w.r.t. $$\mathrm{x}$$</p> <p>$$\begin{aligned} & \mathrm{f}(\mathrm{x})+\mathrm{g}(\mathrm{x})=\int_\limits0^\alpha 2 \mathrm{xe}^{-\mathrm{x}^2} \mathrm{dx} \\ & \mathrm{x}^2=\mathrm{t} \\ & \Rightarrow \int_0^{\sqrt{\alpha}} \mathrm{e}^{-\mathrm{t}} \mathrm{dt}=\left[-\mathrm{e}^{-\mathrm{t}}\right]_0^{\sqrt{\alpha}} \\ & =-\mathrm{e}^{\left(\log _c(9)^{-1}\right)+1} \\ & \Rightarrow 9(\mathrm{f}(\mathrm{x})+\mathrm{g}(\mathrm{x}))=\left(1-\frac{1}{9}\right) 9=8 \end{aligned}$$</p>
mcq
jee-main-2024-online-31st-january-evening-shift
jaoe38c1lsd4ywg3
maths
definite-integration
properties-of-definite-integration
<p>$$\left|\frac{120}{\pi^3} \int_\limits0^\pi \frac{x^2 \sin x \cos x}{\sin ^4 x+\cos ^4 x} d x\right| \text { is equal to }$$ ________.</p>
[]
null
15
<p>$$\begin{aligned} & \int_\limits0^\pi \frac{x^2 \sin x \cdot \cos x}{\sin ^4 x+\cos ^4 x} d x \\ & =\int_\limits0^{\frac{\pi}{2}} \frac{\sin x \cdot \cos x}{\sin ^4 x+\cos ^4 x}\left(x^2-(\pi-x)^2\right) d x \\ & =\int_\limits0^{\frac{\pi}{2}} \frac{\sin x \cdot \cos x\left(2 \pi x-\pi^2\right)}{\sin ^4 x+\cos ^4 x} \\ & =2 \pi \int_\limits0^{\frac{\pi}{2}} \frac{x \sin x \cos x}{\sin ^4 x+\cos 4 x} d x-\pi^2 \int_\limits0^{\frac{\pi}{2}} \frac{\sin x \cos x}{\sin ^4 x+\cos 4 x} d x \\ & =2 \pi \cdot \frac{\pi}{4} \int_\limits0^{\frac{\pi}{2}} \frac{\sin x \cos ^4 x}{\sin ^4 x+\cos ^4 x} d x-\pi^2 \int_\limits0^{\frac{\pi}{2}} \frac{\sin x \cos ^4 x}{\sin ^4 x+\cos ^4 x} d x \end{aligned}$$</p> <p>$$\begin{aligned} & =-\frac{\pi^2}{2} \int_\limits0^{\frac{\pi}{2}} \frac{\sin x \cos x}{\sin ^4 x+\cos ^4 x} d x \\ & =-\frac{\pi^2}{2} \int_\limits0^{\frac{\pi}{2}} \frac{\sin x \cos x d x}{1-2 \sin ^2 x \times \cos ^2 x} \\ & =-\frac{\pi^2}{2} \int_\limits0^{\frac{\pi}{2}} \frac{\sin 2 x}{2-\sin ^2 2 x} d x \\ & =-\frac{\pi^2}{2} \int_\limits0^{\frac{\pi}{2}} \frac{\sin 2 x}{1+\cos ^2 2 x} d x \end{aligned}$$</p> <p>Let $$\cos 2 \mathrm{x}=\mathrm{t}$$</p>
integer
jee-main-2024-online-31st-january-evening-shift
jaoe38c1lse5tymd
maths
definite-integration
properties-of-definite-integration
<p>If the integral $$525 \int_\limits0^{\frac{\pi}{2}} \sin 2 x \cos ^{\frac{11}{2}} x\left(1+\operatorname{Cos}^{\frac{5}{2}} x\right)^{\frac{1}{2}} d x$$ is equal to $$(n \sqrt{2}-64)$$, then $$n$$ is equal to _________.</p>
[]
null
176
<p>$$I=\int_\limits0^{\frac{\pi}{2}} \sin 2 x \cdot(\cos x)^{\frac{11}{2}}\left(1+(\cos x)^{\frac{5}{2}}\right)^{\frac{1}{2}} d x$$</p> <p>Put $$\cos x=t^2 \Rightarrow \sin x d x=-2 t d t$$</p> <p>$$\begin{aligned} & \therefore \mathrm{I}=4 \int_\limits0^1 \mathrm{t}^2 \cdot \mathrm{t}^{11} \sqrt{\left(1+\mathrm{t}^5\right)}(\mathrm{t}) \mathrm{dt} \\ & \mathrm{I}=4 \int_\limits0^1 \mathrm{t}^{14} \sqrt{1+\mathrm{t}^5} \mathrm{dt} \end{aligned}$$</p> <p>Put $$1+\mathrm{t}^5=\mathrm{k}^2$$</p> <p>$$\Rightarrow 5 \mathrm{t}^4 \mathrm{dt}=2 \mathrm{k} \mathrm{dk}$$</p> <p>$$\therefore \mathrm{I}=4 \cdot \int_\limits1^{\sqrt{2}}\left(\mathrm{k}^2-1\right)^2 \cdot \mathrm{k} \frac{2 \mathrm{k}}{5} \mathrm{dk}$$</p> <p>$$\mathrm{I}=\frac{8}{5} \int_\limits1^{\sqrt{2}} \mathrm{k}^6-2 \mathrm{k}^4+\mathrm{k}^2 \mathrm{dk}$$</p> <p>$$\mathrm{I}=\frac{8}{5}\left[\frac{\mathrm{k}^7}{7}-\frac{2 \mathrm{k}^5}{5}+\frac{\mathrm{k}^3}{3}\right]_1^{\sqrt{2}}$$</p> <p>$$\mathrm{I}=\frac{8}{5}\left[\frac{8 \sqrt{2}}{7}-\frac{8 \sqrt{2}}{5}+\frac{2 \sqrt{2}}{3}-\frac{1}{7}+\frac{2}{5}-\frac{1}{3}\right]$$</p> <p>$$\begin{aligned} &\mathrm{I}=\frac{8}{5}\left[\frac{22 \sqrt{2}}{105}-\frac{8}{105}\right]\\ &\therefore 525 \cdot \mathrm{I}=176 \sqrt{2}-64 \end{aligned}$$</p>
integer
jee-main-2024-online-31st-january-morning-shift
jaoe38c1lse60n68
maths
definite-integration
properties-of-definite-integration
<p>Let $$f: \mathbb{R} \rightarrow \mathbb{R}$$ be a function defined by $$f(x)=\frac{4^x}{4^x+2}$$ and $$M=\int_\limits{f(a)}^{f(1-a)} x \sin ^4(x(1-x)) d x, N=\int_\limits{f(a)}^{f(1-a)} \sin ^4(x(1-x)) d x ; a \neq \frac{1}{2}$$. If $$\alpha M=\beta N, \alpha, \beta \in \mathbb{N}$$, then the least value of $$\alpha^2+\beta^2$$ is equal to __________.</p>
[]
null
5
<p>$$\mathrm{f}(\mathrm{a})+\mathrm{f}(1-\mathrm{a})=1$$</p> <p>$$M=\int_\limits{f(a)}^{f(1-a)}(1-x) \cdot \sin ^4 x(1-x) d x$$</p> <p>$$\mathrm{M}=\mathrm{N}-\mathrm{M} \qquad 2 \mathrm{M}=\mathrm{N}$$</p> <p>$$\alpha=2 ; \beta=1 \text {; }$$</p> <p>Ans. 5</p>
integer
jee-main-2024-online-31st-january-morning-shift
jaoe38c1lsf0gf9u
maths
definite-integration
properties-of-definite-integration
<p>If the value of the integral $$\int_\limits{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(\frac{x^2 \cos x}{1+\pi^x}+\frac{1+\sin ^2 x}{1+e^{\sin x^{2123}}}\right) d x=\frac{\pi}{4}(\pi+a)-2$$, then the value of $$a$$ is</p>
[{"identifier": "A", "content": "$$-\\frac{3}{2}$$\n"}, {"identifier": "B", "content": "3"}, {"identifier": "C", "content": "$$\\frac{3}{2}$$\n"}, {"identifier": "D", "content": "2"}]
["B"]
null
<p>$$\begin{aligned} & I=\int_\limits{-\pi / 2}^{\pi / 2}\left(\frac{x^2 \cos x}{1+\pi^x}+\frac{1+\sin ^2 x}{1+e^{\sin x^{2023}}}\right) d x \\ & I=\int_\limits{-\pi / 2}^{\pi / 2}\left(\frac{x^2 \cos x}{1+\pi^{-x}}+\frac{1+\sin ^2 x}{1+e^{\sin (-x)^{2023}}}\right) d x \end{aligned}$$</p> <p>On Adding, we get</p> <p>$$2 I=\int_\limits{-\pi / 2}^{\pi / 2}\left(x^2 \cos x+1+\sin ^2 x\right) d x$$</p> <p>On solving</p> <p>$$\begin{aligned} & \mathrm{I}=\frac{\pi^2}{4}+\frac{3 \pi}{4}-2 \\ & \mathrm{a}=3 \end{aligned}$$</p>
mcq
jee-main-2024-online-29th-january-morning-shift
jaoe38c1lsflco0v
maths
definite-integration
properties-of-definite-integration
<p>If $$\int_\limits{\frac{\pi}{6}}^{\frac{\pi}{3}} \sqrt{1-\sin 2 x} d x=\alpha+\beta \sqrt{2}+\gamma \sqrt{3}$$, where $$\alpha, \beta$$ and $$\gamma$$ are rational numbers, then $$3 \alpha+4 \beta-\gamma$$ is equal to _________.</p>
[]
null
6
<p>$$\begin{aligned} & =\int_\limits{\frac{\pi}{6}}^{\frac{\pi}{3}} \sqrt{1-\sin 2 x} d x \\ & =\int_\limits{\frac{\pi}{6}}^{\frac{\pi}{3}}|\sin x-\cos x| d x \\ & =\int_\limits{\frac{\pi}{6}}^{\frac{\pi}{4}}(\cos x-\sin x) d x+\int_\limits{\frac{\pi}{4}}^{\frac{\pi}{3}}(\sin x-\cos x) d x \\ & =-1+2 \sqrt{2}-\sqrt{3} \\ & =\alpha+\beta \sqrt{2}+\gamma \sqrt{3} \\ & \alpha=-1, \beta=2, \gamma=-1 \\ & 3 \alpha+4 \beta-\gamma=6 \end{aligned}$$</p>
integer
jee-main-2024-online-29th-january-evening-shift
1lsg3nvgv
maths
definite-integration
properties-of-definite-integration
<p>Let $$f: \mathbb{R} \rightarrow \mathbb{R}$$ be a function defined by $$f(x)=\frac{x}{\left(1+x^4\right)^{1 / 4}}$$, and $$g(x)=f(f(f(f(x))))$$. Then, $$18 \int_0^{\sqrt{2 \sqrt{5}}} x^2 g(x) d x$$ is equal to</p>
[{"identifier": "A", "content": "36"}, {"identifier": "B", "content": "33"}, {"identifier": "C", "content": "39"}, {"identifier": "D", "content": "42"}]
["C"]
null
<p>$$\begin{aligned} &f(x)=\frac{x}{\left(1+x^4\right)^{1 / 4}}\\ &f \circ f(x)=\frac{f(x)}{\left(1+f(x)^4\right)^{1 / 4}}=\frac{\frac{x}{\left(1+x^4\right)^{1 / 4}}}{\left(1+\frac{x^4}{1+x^4}\right)^{1 / 4}}=\frac{x}{\left(1+2 x^4\right)^{1 / 4}}\\ &f(f(f(f(x))))=\frac{x}{\left(1+4 x^4\right)^{1 / 4}} \end{aligned}$$</p> <p>$$18 \int_\limits0^{\sqrt{2 \sqrt{5}}} \frac{x^3}{\left(1+4 x^4\right)^{1 / 4}} d x$$</p> <p>$$\begin{aligned} & \text { Let } 1+4 \mathrm{x}^4=\mathrm{t}^4 \\ & 16 \mathrm{x}^3 \mathrm{dx}=4 \mathrm{t}^3 \mathrm{dt} \\ & \frac{18}{4} \int_\limits1^3 \frac{\mathrm{t}^3 \mathrm{dt}}{\mathrm{t}} \\ & =\frac{9}{2}\left(\frac{\mathrm{t}^3}{3}\right)_1^3 \\ & =\frac{3}{2}[26]=39 \end{aligned}$$</p>
mcq
jee-main-2024-online-30th-january-evening-shift
1lsg3stoy
maths
definite-integration
properties-of-definite-integration
<p>Let $$y=f(x)$$ be a thrice differentiable function in $$(-5,5)$$. Let the tangents to the curve $$y=f(x)$$ at $$(1, f(1))$$ and $$(3, f(3))$$ make angles $$\pi / 6$$ and $$\pi / 4$$, respectively with positive $$x$$-axis. If $$27 \int_\limits1^3\left(\left(f^{\prime}(t)\right)^2+1\right) f^{\prime \prime}(t) d t=\alpha+\beta \sqrt{3}$$ where $$\alpha, \beta$$ are integers, then the value of $$\alpha+\beta$$ equals</p>
[{"identifier": "A", "content": "26"}, {"identifier": "B", "content": "$$-$$16"}, {"identifier": "C", "content": "36"}, {"identifier": "D", "content": "$$-$$14"}]
["A"]
null
<p>$$\begin{aligned} & y=f(x) \Rightarrow \frac{d y}{d x}=f^{\prime}(x) \\ & \left.\frac{d y}{d x}\right)_{(1, f(1))}=f^{\prime}(1)=\tan \frac{\pi}{6}=\frac{1}{\sqrt{3}} \Rightarrow f^{\prime}(1)=\frac{1}{\sqrt{3}} \\ & \left.\frac{d y}{d x}\right)_{(3, f(3))}=f^{\prime}(3)=\tan \frac{\pi}{4}=1 \Rightarrow f^{\prime}(3)=1 \\ & 27 \int_\limits1^3\left(\left(f^{\prime}(t)\right)^2+1\right) f^{\prime \prime}(t) d t=\alpha+\beta \sqrt{3} \\ & I=\int_\limits1^3\left(\left(f^{\prime}(t)\right)^2+1\right) f^{\prime \prime}(t) d t \\ & f^{\prime}(t)=z \Rightarrow f^{\prime \prime}(t) d t=d z \\ & z=f^{\prime}(3)=1 \\ & z=f^{\prime}(1)=\frac{1}{\sqrt{3}} \end{aligned}$$</p> <p>$$\begin{aligned} & I=\int_\limits{1 / \sqrt{3}}^1\left(z^2+1\right) d z=\left(\frac{z^3}{3}+z\right)_{1 / \sqrt{3}}^1 \\ & =\left(\frac{1}{3}+1\right)-\left(\frac{1}{3} \cdot \frac{1}{3 \sqrt{3}}+\frac{1}{\sqrt{3}}\right) \\ & =\frac{4}{3}-\frac{10}{9 \sqrt{3}}=\frac{4}{3}-\frac{10}{27} \sqrt{3} \\ & \alpha+\beta \sqrt{3}=27\left(\frac{4}{3}-\frac{10}{27} \sqrt{3}\right)=36-10 \sqrt{3} \\ & \alpha=36, \beta=-10 \\ & \alpha+\beta=36-10=26 \end{aligned}$$</p>
mcq
jee-main-2024-online-30th-january-evening-shift
1lsg420oq
maths
definite-integration
properties-of-definite-integration
<p>Let $$a$$ and $$b$$ be real constants such that the function $$f$$ defined by $$f(x)=\left\{\begin{array}{ll}x^2+3 x+a &amp; , x \leq 1 \\ b x+2 &amp; , x&gt;1\end{array}\right.$$ be differentiable on $$\mathbb{R}$$. Then, the value of $$\int_\limits{-2}^2 f(x) d x$$ equals</p>
[{"identifier": "A", "content": "21"}, {"identifier": "B", "content": "19/6"}, {"identifier": "C", "content": "17"}, {"identifier": "D", "content": "15/6"}]
["C"]
null
<p>To determine the integral of the piecewise function <span class="math-container">$$f$$</span> over the interval <span class="math-container">$$[-2, 2]$$</span>, we first ensure that <span class="math-container">$$f$$</span> is differentiable on <span class="math-container">$$\mathbb{R}$$</span>, as given in the problem statement. Differentiability implies continuity, so <span class="math-container">$$f$$</span> must also be continuous at <span class="math-container">$$x=1$$</span>.</p> <p>The condition for continuity at <span class="math-container">$$x=1$$</span> is:</p> <p><span class="math-container">$$x^2 + 3x + a = bx + 2$$</span> at <span class="math-container">$$x=1$$</span>.</p> <p>This simplifies to:</p> <p><span class="math-container">$$1 + 3 + a = b(1) + 2$$</span></p> <p><span class="math-container">$$\Rightarrow a = b - 2$$</span></p> <p>The first derivative of <span class="math-container">$$f$$</span> gives us two different expressions depending on the value of <span class="math-container">$$x$$</span>:</p> <p>For <span class="math-container">$$x \leq 1$$</span>, <span class="math-container">$$f'(x) = 2x + 3$$</span>; and for <span class="math-container">$$x > 1$$</span>, <span class="math-container">$$f'(x) = b$$</span>.</p> <p>For <span class="math-container">$$f$$</span> to be differentiable at <span class="math-container">$$x=1$$</span>, these derivatives must be equal at that point. Setting <span class="math-container">$$f'(1)$$</span> from both expressions equal to each other gives <span class="math-container">$$2(1) + 3 = b$$</span>, thus <span class="math-container">$$b = 5$$</span>. And from <span class="math-container">$$a = b - 2$$</span>, we have <span class="math-container">$$a = 3$$</span>.</p> <p>Now, we can calculate the integral of <span class="math-container">$$f$$</span> over the specified interval:</p> <p><span class="math-container">$$\int\limits_{-2}^1 (x^2 + 3x + 3) \, dx + \int\limits_{1}^2 (5x + 2) \, dx$$</span></p> <p>$$\begin{aligned} & =\left[\frac{x^3}{3}+\frac{3 x^2}{2}+3 x\right]_{-2}^1+\left[\frac{5 x^2}{2}+2 x\right]_1^2 \\\\ & =\left(\frac{1}{3}+\frac{3}{2}+3\right)-\left(\frac{-8}{3}+6-6\right)+\left(10+4-\frac{5}{2}-2\right) \\\\ & =6+\frac{3}{2}+12-\frac{5}{2}=17 \end{aligned}$$</p>
mcq
jee-main-2024-online-30th-january-evening-shift
1lsga9myw
maths
definite-integration
properties-of-definite-integration
<p>Let $$f:\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow \mathbf{R}$$ be a differentiable function such that $$f(0)=\frac{1}{2}$$. If the $$\lim _\limits{x \rightarrow 0} \frac{x \int_0^x f(\mathrm{t}) \mathrm{dt}}{\mathrm{e}^{x^2}-1}=\alpha$$, then $$8 \alpha^2$$ is equal to :</p>
[{"identifier": "A", "content": "4"}, {"identifier": "B", "content": "2"}, {"identifier": "C", "content": "1"}, {"identifier": "D", "content": "16"}]
["B"]
null
<p>$$\begin{aligned} & \lim _{x \rightarrow 0} \frac{x \int_0^x f(t) d t}{\left(\frac{e^{x^2}-1}{x^2}\right) \times x^2} \\\\ & \lim _{x \rightarrow 0} \frac{\int_0^x f(t) d t}{x} \quad\left(\lim _{x \rightarrow 0} \frac{e^{x^2}-1}{x^2}=1\right) \\\\ & =\lim _{x \rightarrow 0} \frac{f(x)}{1} \text { (using L Hospital) } \\\\ & f(0)=\frac{1}{2} \\\\ & \alpha=\frac{1}{2} \\\\ & 8 \alpha^2=2 \end{aligned}$$</p>
mcq
jee-main-2024-online-30th-january-morning-shift
1lsgchdrl
maths
definite-integration
properties-of-definite-integration
<p>The value of $$9 \int_\limits0^9\left[\sqrt{\frac{10 x}{x+1}}\right] \mathrm{d} x$$, where $$[t]$$ denotes the greatest integer less than or equal to $$t$$, is</p>
[]
null
155
<p>$$\begin{array}{ll} \frac{10 x}{x+1}=1 & \Rightarrow x=\frac{1}{9} \\ \frac{10 x}{x+1}=4 & \Rightarrow x=\frac{2}{3} \\ \frac{10 x}{x+1}=9 & \Rightarrow x=9 \end{array}$$</p> <p>$$\begin{aligned} & \mathrm{I}=9\left(\int_\limits0^{1 / 9} 0 \mathrm{dx}+\int_\limits{1 / 9}^{2 / 3} 1\mathrm{d} x+\int_\limits{2 / 3}^9 2 \mathrm{dx}\right) \\ & =155 \end{aligned}$$</p>
integer
jee-main-2024-online-30th-january-morning-shift
luxwehsa
maths
definite-integration
properties-of-definite-integration
<p>The integral $$\int_\limits{1 / 4}^{3 / 4} \cos \left(2 \cot ^{-1} \sqrt{\frac{1-x}{1+x}}\right) d x$$ is equal to</p>
[{"identifier": "A", "content": "$$-1/2$$"}, {"identifier": "B", "content": "$$-1/4$$"}, {"identifier": "C", "content": "1/4"}, {"identifier": "D", "content": "1/2"}]
["B"]
null
<p>$$\begin{aligned} & \int_\limits{\frac{1}{4}}^{\frac{3}{4}} \cos \left(2 \cot ^{-1} \sqrt{\frac{1-x}{1+x}}\right) d x \\ & x=\cos 2 \theta \\ & \Rightarrow d x=(-2 \sin 2 \theta \mathrm{d} \theta) \end{aligned}$$</p> <p>Take limit as $$\alpha$$ and $$\beta$$</p> <p>$$\begin{aligned} & -2 \int_\limits\alpha^\beta \cos 2 \theta \cdot \sin 2 \theta d \theta \\ & =\int_\limits\alpha^\beta \sin 4 \theta d \theta \\ & =\left.\frac{-\cos 4 \theta}{4}\right|_\alpha ^\beta \\ & =-\left.\frac{1}{4}\left(2 \cdot\left(x^2\right)-1\right)\right|_{1 / 4} ^{3 / 4} \\ & =-\left.\frac{1}{4}\left(2 x^2-1\right)\right|_{1 / 4} ^{3 / 4} \\ & =-\frac{1}{4}\left(\frac{18}{16}-1-\frac{2}{16}+1\right) \\ & =-\frac{1}{4} \end{aligned}$$</p>
mcq
jee-main-2024-online-9th-april-evening-shift
luxwdx2t
maths
definite-integration
properties-of-definite-integration
<p>The value of the integral $$\int_\limits{-1}^2 \log _e\left(x+\sqrt{x^2+1}\right) d x$$ is</p>
[{"identifier": "A", "content": "$$\\sqrt{5}-\\sqrt{2}+\\log _e\\left(\\frac{7+4 \\sqrt{5}}{1+\\sqrt{2}}\\right)$$\n"}, {"identifier": "B", "content": "$$\\sqrt{2}-\\sqrt{5}+\\log _e\\left(\\frac{7+4 \\sqrt{5}}{1+\\sqrt{2}}\\right)$$\n"}, {"identifier": "C", "content": "$$\\sqrt{5}-\\sqrt{2}+\\log _e\\left(\\frac{9+4 \\sqrt{5}}{1+\\sqrt{2}}\\right)$$\n"}, {"identifier": "D", "content": "$$\\sqrt{2}-\\sqrt{5}+\\log _e\\left(\\frac{9+4 \\sqrt{5}}{1+\\sqrt{2}}\\right)$$"}]
["D"]
null
<p>$$\begin{aligned} & \int_\limits{-1}^2 \log _e\left(x+\sqrt{x^2+1}\right) d x \\ & =\left[x \log _e\left(x+\sqrt{x^2+1}\right)\right]_{-1}^2-\int_\limits{-1}^2 \frac{x}{\left(x+\sqrt{x^2+1}\right)}\left(1+\frac{x}{\sqrt{x^2+1}}\right) d x \\ & =2 \log _2(2+\sqrt{5})+\log _e(\sqrt{2}-1)-\int_\limits{-1}^2 \frac{x}{\sqrt{x^2+1}} d x \\ & =\log _e\left[(2+\sqrt{5})^2(\sqrt{2}-1)\right]-\left[\sqrt{x^2+1}\right]_{-1}^2 \\ & =\log _e\left[\frac{9+4 \sqrt{5}}{1+\sqrt{2}}\right]-\sqrt{5}+\sqrt{2} \\ & =\sqrt{2}-\sqrt{5}+\log _e\left[\frac{9+4 \sqrt{5}}{1+\sqrt{2}}\right] \end{aligned}$$</p>
mcq
jee-main-2024-online-9th-april-evening-shift
lv0vxbpa
maths
definite-integration
properties-of-definite-integration
<p>$$\text { Let } f(x)=\left\{\begin{array}{lr} -2, &amp; -2 \leq x \leq 0 \\ x-2, &amp; 0&lt; x \leq 2 \end{array} \text { and } \mathrm{h}(x)=f(|x|)+|f(x)| \text {. Then } \int_\limits{-2}^2 \mathrm{~h}(x) \mathrm{d} x\right. \text { is equal to: }$$</p>
[{"identifier": "A", "content": "2"}, {"identifier": "B", "content": "6"}, {"identifier": "C", "content": "4"}, {"identifier": "D", "content": "1"}]
["A"]
null
<p>$$f(x)=\left\{\begin{array}{cc} -2 &amp; -2 \leq x \leq 0 \\ x-2 &amp; 0&lt; x \leq 2 \end{array} h(x)=f|x|+|f(x)|\right.$$</p> <p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1lwk8ygqe/f2db7258-aa84-4e80-8605-2f6185c78c16/3e8a8d60-198f-11ef-b65b-abc5d1349d93/file-1lwk8ygqf.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1lwk8ygqe/f2db7258-aa84-4e80-8605-2f6185c78c16/3e8a8d60-198f-11ef-b65b-abc5d1349d93/file-1lwk8ygqf.png" loading="lazy" style="max-width: 100%;height: auto;display: block;margin: 0 auto;max-height: 40vh;vertical-align: baseline" alt="JEE Main 2024 (Online) 4th April Morning Shift Mathematics - Definite Integration Question 14 English Explanation"></p> <p>$$\begin{aligned} &amp; h(x)=\left\{\begin{array}{cc} -x-2+2=-x &amp; -2 \leq x \leq 0 \\ 0 &amp; 0&lt; x \leq 2 \end{array}\right. \\ &amp; \therefore \int_\limits{-2}^2 h(x) d x=\int_\limits{-2}^0-x d x+\int_\limits0^2 0 d x \\ &amp; \left.\frac{x^2}{2}\right|_{-2} ^0=\frac{4}{2}=2 \end{aligned}$$</p>
mcq
jee-main-2024-online-4th-april-morning-shift
lv0vxdgv
maths
definite-integration
properties-of-definite-integration
<p>If the shortest distance between the lines $$\frac{x+2}{2}=\frac{y+3}{3}=\frac{z-5}{4}$$ and $$\frac{x-3}{1}=\frac{y-2}{-3}=\frac{z+4}{2}$$ is $$\frac{38}{3 \sqrt{5}} \mathrm{k}$$, and $$\int_\limits 0^{\mathrm{k}}\left[x^2\right] \mathrm{d} x=\alpha-\sqrt{\alpha}$$, where $$[x]$$ denotes the greatest integer function, then $$6 \alpha^3$$ is equal to _________.</p>
[]
null
48
<p>$$L_1: \frac{x+2}{2}=\frac{y+3}{3}=\frac{z-5}{4}$$</p> <p>$$\begin{aligned} & \vec{b}_1=2 \hat{i}+3 \hat{j}+4 \hat{k} \\ & \vec{a}_1=-2 \hat{i}-3 \hat{j}+5 \hat{k} \end{aligned}$$</p> <p>$$L_2=\frac{x-3}{1}=\frac{y-2}{-3}=\frac{z+4}{2}$$</p> <p>$$\begin{aligned} & \vec{a}_2=3 \hat{i}+2 \hat{j}-4 \hat{k} \\ & \vec{b}_2=1 \hat{i}-3 \hat{j}+2 \hat{k} \end{aligned}$$</p> <p>$$d=\left|\frac{\left(\vec{a}_2-\vec{a}_1\right) \cdot\left(\vec{b}_1 \times \vec{b}_2\right)}{\left|\vec{b}_1 \times \vec{b}_2\right|}\right|$$</p> <p>$$\begin{gathered} d=\left|\frac{(5 \hat{i}+5 \hat{j}-9 \hat{k}) \cdot(18 \hat{i}-9 \hat{k})}{\sqrt{324+81}}\right| \\ \left|\vec{b}_1 \times \vec{b}\right|\left|\begin{array}{ccc} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 4 \\ 1 & -3 & 2 \end{array}\right| \\ \Rightarrow \hat{i}(6+12)-\hat{j}(4-4)+\hat{k}(-6-3) \\ \Rightarrow(18 \hat{i}-9 \hat{k}) \end{gathered}$$</p> <p>$$\begin{aligned} & d=\left|\frac{90+81}{9 \sqrt{5}}\right| \\ & d=\frac{171}{9 \sqrt{5}} \\ & \frac{38}{3 \sqrt{5}} k=\frac{171}{9 \sqrt{5}} \\ & \frac{38}{3 \sqrt{5}} k=\frac{57}{3 \sqrt{5}} \end{aligned}$$</p> <p>$$\begin{aligned} & {k=\frac{57}{38}}=\frac{3}{2} \\ & \int_\limits0^{\frac{3}{2}}\left[x^2\right] d x \\ & \int_\limits0^1 0 d x+\int_\limits0^{\sqrt{ }} 1 d x+\int_\limits{\sqrt{2}}^{\frac{3}{2}} 2 d x \\ & 0+(\sqrt{2}-1)+2\left(\frac{3}{2}-\sqrt{2}\right) \\ & \sqrt{2}-1+3-2 \sqrt{2} \\ & 2-\sqrt{2} \end{aligned}$$</p> <p>$$\begin{aligned} & \alpha=2 \\ & 6 \alpha^3=6(2)^3=48 \end{aligned}$$</p>
integer
jee-main-2024-online-4th-april-morning-shift
lv0vxdop
maths
definite-integration
properties-of-definite-integration
<p>If $$\int_0^{\frac{\pi}{4}} \frac{\sin ^2 x}{1+\sin x \cos x} \mathrm{~d} x=\frac{1}{\mathrm{a}} \log _{\mathrm{e}}\left(\frac{\mathrm{a}}{3}\right)+\frac{\pi}{\mathrm{b} \sqrt{3}}$$, where $$\mathrm{a}, \mathrm{b} \in \mathrm{N}$$, then $$\mathrm{a}+\mathrm{b}$$ is equal to _________.</p>
[]
null
8
<p>$$I=\int_\limits0^{\frac{\pi}{4}} \frac{\sin ^2 x}{1+\sin x \cos x} d x=\int_\limits0^{\frac{\pi}{4}} \frac{\sin ^2 x}{\sin ^2 x+\cos ^2 x+\sin x \cos x} d x$$ <p>$$I=\int_\limits0^{\frac{\pi}{4}} \frac{\tan ^2 x}{1+\tan x+\tan ^2 x} d x$$</p> <p>$$=\int_\limits0^{\frac{\pi}{4}} \frac{\tan x \cdot \sec ^2 x d x}{\left(1+\tan ^2 x\right)\left(1+\tan x+\tan ^2 x\right)}$$</p> <p>Let $$\tan x=t$$</p> <p>$$\begin{aligned} I & =\int_\limits0^1 \frac{t^2}{\left(1+t^2\right)\left(1+t+t^2\right)} d t \\ & =\int_\limits0^1\left(\frac{x}{1+x^2}-\frac{x}{1+x+x^2}\right) d x \end{aligned}$$</p> <p>$${1 \over 2}\int\limits_0^1 {{{2x} \over {1 + {x^2}}}dx - \int\limits_0^{} {{{{1 \over 2}(2x + 1) - {1 \over 2}} \over {1 + x + {x^2}}}dx} } $$</p> <p>$$\begin{aligned} & =\frac{1}{2} \ln 2-\frac{1}{2} \ln 3 \frac{1}{2} \int_\limits0^1 \frac{d x}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}} \\ & =\frac{1}{2} \ln \frac{2}{3}+\frac{1}{2} \cdot \frac{2}{\sqrt{3}}\left[\tan ^{-1} \frac{2 x+1}{\sqrt{3}}\right]_0^1 \\ & =\frac{1}{2} \ln \frac{2}{3}+\frac{1}{\sqrt{3}}\left(\frac{\pi}{3}-\frac{\pi}{6}\right) \\ & =\frac{1}{2} \ln \frac{2}{3}+\frac{1}{\sqrt{3}} \cdot \frac{\pi}{6} \\ & \therefore \quad a=2, b=6 \\ & \therefore \quad a+b=8 \end{aligned}$$</p>
integer
jee-main-2024-online-4th-april-morning-shift
lv2ers9h
maths
definite-integration
properties-of-definite-integration
<p>If the value of the integral $$\int\limits_{-1}^1 \frac{\cos \alpha x}{1+3^x} d x$$ is $$\frac{2}{\pi}$$.Then, a value of $$\alpha$$ is</p>
[{"identifier": "A", "content": "$$\\frac{\\pi}{2}$$\n"}, {"identifier": "B", "content": "$$\\frac{\\pi}{4}$$\n"}, {"identifier": "C", "content": "$$\\frac{\\pi}{3}$$\n"}, {"identifier": "D", "content": "$$\\frac{\\pi}{6}$$"}]
["A"]
null
<p>$$\begin{aligned} & \text { Given, } \int_\limits{-1}^1 \frac{\cos \alpha x}{1+3^x} d x=\frac{2}{\pi} \\ & \begin{aligned} I & =\int_\limits{-1}^1 \frac{\cos \alpha x}{1+3^x} d x \\ \Rightarrow I & =\int_\limits0^1\left(\frac{\cos \alpha x}{1+3^x}+\frac{\cos \alpha x}{1+3^{-x}}\right) d x \\ & =\int_\limits0^1 \cos \alpha x d x \\ & =\left(\frac{\sin \alpha x}{\alpha}\right)_0^1 \\ & =\frac{\sin \alpha}{\alpha} \\ \Rightarrow & \frac{\sin \alpha}{\alpha}=\frac{2}{\pi} \\ \Rightarrow & \alpha=\frac{\pi}{2} \end{aligned} \end{aligned}$$</p>
mcq
jee-main-2024-online-4th-april-evening-shift
lv3vefcu
maths
definite-integration
properties-of-definite-integration
<p>Let $$\int_\limits\alpha^{\log _e 4} \frac{\mathrm{d} x}{\sqrt{\mathrm{e}^x-1}}=\frac{\pi}{6}$$. Then $$\mathrm{e}^\alpha$$ and $$\mathrm{e}^{-\alpha}$$ are the roots of the equation :</p>
[{"identifier": "A", "content": "$$2 x^2-5 x+2=0$$\n"}, {"identifier": "B", "content": "$$x^2-2 x-8=0$$\n"}, {"identifier": "C", "content": "$$2 x^2-5 x-2=0$$\n"}, {"identifier": "D", "content": "$$x^2+2 x-8=0$$"}]
["A"]
null
<p>$$\begin{aligned} & \text { Let } \sqrt{e^x-1}=t \\ & e^x-1=t^2 \\ & e^x=1+t^2 \\ & e^x=0+2 t-\frac{d t}{d x} \\ & \frac{d t}{d x}=\frac{e^x}{2 t}=\frac{t^2+1}{2 t} \\ & I=\int \frac{2 t}{t\left(1+t^2\right)} d t=2 \tan ^{-1} t \\ & \Rightarrow \quad I=\int_\limits\alpha^{\log ^4} \frac{d x}{\sqrt{e^x-1}} \\ & I=\left.2 \tan ^{-1} \sqrt{e^x-1}\right|_\alpha ^{\log 4} \\ & =2\left(\tan ^{-1} \sqrt{3}-\tan ^{-1} \sqrt{e^\alpha-1}\right)=\frac{\pi}{6} \\ & \Rightarrow \frac{\pi}{3}-\tan ^{-1}\left(\sqrt{e^\alpha-1}\right)=\frac{\pi}{12} \\ & \tan ^{-1}\left(\sqrt{e^\alpha-1}\right)=\frac{\pi}{4} \\ & \Rightarrow e^\alpha-1=1 \\ & e^\alpha=2 \Rightarrow e^{-\alpha}=\frac{1}{2} \end{aligned}$$</p> <p>$$\therefore \quad$$ Quadratic equation whose roots are $$e^a$$ & $$e^{-\alpha}$$ is</p> <p>$$\begin{aligned} & x^2-\left(e^\alpha+e^{-\alpha}\right) x+e^\alpha \times e^{-\alpha}=0 \\ & x^2-\left(2+\frac{1}{2}\right) x+1=0 \\ & 2 x^2-5 x+2=0 \end{aligned}$$</p>
mcq
jee-main-2024-online-8th-april-evening-shift
lv5grw2g
maths
definite-integration
properties-of-definite-integration
<p>The value of $$k \in \mathbb{N}$$ for which the integral $$I_n=\int_0^1\left(1-x^k\right)^n d x, n \in \mathbb{N}$$, satisfies $$147 I_{20}=148 I_{21}$$ is</p>
[{"identifier": "A", "content": "8"}, {"identifier": "B", "content": "14"}, {"identifier": "C", "content": "7"}, {"identifier": "D", "content": "10"}]
["C"]
null
<p>$$\begin{aligned} &amp; I(21)=\int_\limits0^1\left(1-x^k\right)^{21} d x \\ &amp; =\int_\limits0^1\left(1-x^k\right)\left(1-x^k\right)^{20} d x \\ &amp; =\int_\limits0^1\left(1-x^k\right)^{20} d x-\int_0 x^k\left(1-x^k\right)^{20} d x \\ &amp; I(21)=I(20)-\int_\limits0^1 x^k\left(1-x^k\right)^{20} d x \end{aligned}$$</p> <p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1lw8swbwa/de26032d-c065-4f0a-b1b3-032767344a76/d1fa19a0-1343-11ef-9cb4-095599b9956f/file-1lw8swbwb.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1lw8swbwa/de26032d-c065-4f0a-b1b3-032767344a76/d1fa19a0-1343-11ef-9cb4-095599b9956f/file-1lw8swbwb.png" loading="lazy" style="max-width: 100%;height: auto;display: block;margin: 0 auto;max-height: 40vh;vertical-align: baseline" alt="JEE Main 2024 (Online) 8th April Morning Shift Mathematics - Definite Integration Question 8 English Explanation"></p> <p>$$I(21)=I(20)-\left\lfloor\frac{\left(1-x^k\right)^{21}}{-21 k} x-\int_\limits0^1 \frac{(1-x^k)^{21}}{-21 k} d x\right\rfloor$$</p> <p>$$\begin{aligned} &amp; I(21)=I(20)-\frac{1}{21 k} I(20) \\ &amp; \Rightarrow[I(21)](21 k+1)=21 K I(20) \\ &amp; \Rightarrow 21 K=147 \Rightarrow K=7 \end{aligned}$$</p>
mcq
jee-main-2024-online-8th-april-morning-shift
lv7v4o3r
maths
definite-integration
properties-of-definite-integration
<p>The integral $$\int_\limits0^{\pi / 4} \frac{136 \sin x}{3 \sin x+5 \cos x} \mathrm{~d} x$$ is equal to :</p>
[{"identifier": "A", "content": "$$3 \\pi-50 \\log _e 2+20 \\log _e 5$$\n"}, {"identifier": "B", "content": "$$3 \\pi-25 \\log _e 2+10 \\log _e 5$$\n"}, {"identifier": "C", "content": "$$3 \\pi-10 \\log _{\\mathrm{e}}(2 \\sqrt{2})+10 \\log _{\\mathrm{e}} 5$$\n"}, {"identifier": "D", "content": "$$3 \\pi-30 \\log _e 2+20 \\log _e 5$$"}]
["A"]
null
<p>$$\int_0^{\pi / 4} \frac{136 \sin x}{3 \sin x+5 \cos x} d x$$</p> <p>$$\begin{aligned} & \sin x=A(3 \sin x+5 \cos x)+B(3 \cos x-5 \sin x) \\ & \begin{array}{l} 3 A-5 B=1 \\ 5 A+3 B=0 \end{array}>A=\frac{3}{34} \quad B=\frac{-5}{34} \end{aligned}$$</p> <p>$$\begin{aligned} & \int_0^{\pi / 4} \frac{136\left[\frac{3}{34}(3 \sin x+5 \cos x)-\frac{5}{34}(3 \cos x-5 \sin x)\right]}{3 \sin x+5 \cos x} d x \\ & \int_0^{\pi / 4} 12 d x-20 \int_0^{\pi / 4} \frac{3 \cos x-5 \sin x}{3 \sin x+5 \cos x} d x \\ & 12 \times \frac{\pi}{4}-20\left[\ln \left|\frac{3}{\sqrt{2}}+\frac{5}{\sqrt{2}}\right|-\ln 5\right] \\ & 3 \pi-20 \ln 2^{5 / 2}+20 \ln 5 \\ & \Rightarrow 3 \pi-50 \ln 2+20 \ln 5 \end{aligned}$$</p>
mcq
jee-main-2024-online-5th-april-morning-shift
lv7v3ka9
maths
definite-integration
properties-of-definite-integration
<p>The value of $$\int_\limits{-\pi}^\pi \frac{2 y(1+\sin y)}{1+\cos ^2 y} d y$$ is :</p>
[{"identifier": "A", "content": "$$\\frac{\\pi}{2}$$\n"}, {"identifier": "B", "content": "$$\\pi^2$$\n"}, {"identifier": "C", "content": "$$\\frac{\\pi^2}{2}$$\n"}, {"identifier": "D", "content": "$$2 \\pi^2$$"}]
["B"]
null
<p>$$\begin{aligned} & I=\int_\limits{-\pi}^\pi \frac{2 y(1+\sin y)}{1+\cos ^2 y} d y \\ & =\int_\limits0^\pi\left(\frac{2 y(1+\sin y)}{1+\cos ^2 y}+\frac{-2 y(1-\sin y)}{1+\cos ^2 y}\right) d y \\ & =\int_\limits0^\pi\left(\frac{2 y+2 y \sin y-2 y+2 y \sin y}{1+\cos ^2 y}\right) d y \end{aligned}$$</p> <p>$$I=4 \int_0^\pi\left(\frac{y \sin }{1+\cos ^2 y}\right) d y \quad \text{... (1)}$$</p> <p>$$\begin{aligned} & I=4 \int_\limits0^\pi\left(\frac{(\pi-y) \sin (\pi-)}{1+\cos ^2(\pi-y)}\right) d y \\ & I=4\left\lfloor\int_\limits0\left(\frac{\pi \sin y}{1+\cos ^2 y}\right) d y-\int_\limits0^\pi \frac{y \sin y}{1+\cos ^2 y} d y\right\rfloor \quad \text{... (2)} \end{aligned}$$</p> <p>Adding equation (1) and (2)</p> <p>$$\begin{aligned} & 2 I=4 \int_\limits0^\pi\left(\frac{\pi \sin y}{1+\cos ^2 y}\right) d y \\ & I=2 \pi \int_\limits0^\pi \frac{\sin y}{1+\cos ^2 y} d y \\ & =2 \pi \times \frac{\pi}{2} \\ & =\pi^2 \end{aligned}$$</p>
mcq
jee-main-2024-online-5th-april-morning-shift
lv9s205z
maths
definite-integration
properties-of-definite-integration
<p>Let $$\beta(\mathrm{m}, \mathrm{n})=\int_\limits0^1 x^{\mathrm{m}-1}(1-x)^{\mathrm{n}-1} \mathrm{~d} x, \mathrm{~m}, \mathrm{n}&gt;0$$. If $$\int_\limits0^1\left(1-x^{10}\right)^{20} \mathrm{~d} x=\mathrm{a} \times \beta(\mathrm{b}, \mathrm{c})$$, then $$100(\mathrm{a}+\mathrm{b}+\mathrm{c})$$ equals _________.</p>
[{"identifier": "A", "content": "2012"}, {"identifier": "B", "content": "1021"}, {"identifier": "C", "content": "1120"}, {"identifier": "D", "content": "2120"}]
["D"]
null
<p>First, let's rewrite the given integral using the given form of the Beta function. The given integral is:</p> <p> <p>$$\int_\limits0^1\left(1-x^{10}\right)^{20} \mathrm{~d} x$$</p> </p> <p>To use the Beta function, let us make a substitution. Let $ x^{10} = t $. Then, $ dx = \frac{1}{10}t^{-\frac{9}{10}} dt $ or $ dx = \frac{1}{10} t^{-\frac{9}{10}} dt $. The limits of integration change as follows: when $ x = 0 $, $ t = 0 $, and when $ x = 1 $, $ t = 1 $.</p> <p>Substituting these into the integral, we have:</p> <p> <p>$$\int_\limits0^1 (1 - t)^{20} \cdot \frac{1}{10} t^{-\frac{9}{10}} dt$$</p> </p> <p>which simplifies to:</p> <p> <p>$$\frac{1}{10} \int_\limits0^1 (1 - t)^{20} t^{-\frac{9}{10}} dt$$</p> </p> <p>We recognize this integral as a Beta function $ \beta(m, n) $ where $ m = 1 - \frac{9}{10} = \frac{1}{10} $ and $ n = 20 + 1 = 21 $.</p> <p>Therefore, we can write this as:</p> <p> <p>$$\frac{1}{10} \beta \left( \frac{1}{10}, 21 \right)$$</p> </p> <p>Comparing this to $ a \times \beta(b, c) $, we have $ a = \frac{1}{10} $, $ b = \frac{1}{10} $, and $ c = 21 $.</p> <p>Now we calculate $ 100(a + b + c) $:</p> <p> <p>$$100 \left( \frac{1}{10} + \frac{1}{10} + 21 \right) = 100 \left( \frac{1}{10} + \frac{1}{10} + 21 \right) = 100 \left( \frac{1}{5} + 21 \right) = 100 \left( \frac{1}{5} + \frac{105}{5} \right) = 100 \left( \frac{106}{5} \right) = 100 \times 21.2 = 2120$$</p> </p> <p>So, the answer is Option D, 2120.</p>
mcq
jee-main-2024-online-5th-april-evening-shift
lv9s20mx
maths
definite-integration
properties-of-definite-integration
<p>If $$f(t)=\int_\limits0^\pi \frac{2 x \mathrm{~d} x}{1-\cos ^2 \mathrm{t} \sin ^2 x}, 0&lt;\mathrm{t}&lt;\pi$$, then the value of $$\int_\limits0^{\frac{\pi}{2}} \frac{\pi^2 \mathrm{dt}}{f(\mathrm{t})}$$ equals __________.</p>
[]
null
1
<p>$$\begin{aligned} & f(t)=\int_\limits0^\pi \frac{2 x d x}{1-\cos ^2 t \sin ^2 x} \\ & x \rightarrow \pi-x \end{aligned}$$</p> <p>$$\begin{aligned} & f(t)=\int_\limits0^\pi \frac{2(\pi-x) d x}{1-\cos ^2 t \sin ^2 x}=2 \pi \int_\limits0^\pi \frac{d x}{1-\cos ^2 t \sin ^2 x}-f(t) \\ & \Rightarrow f(t)=\pi \int_\limits0^\pi \frac{d x}{1-\cos ^2 t \sin ^2 x} \\ & =2 \pi \int_\limits0^{\frac{\pi}{2}} \frac{d x}{1-\cos ^2 t \sin ^2 x} \\ & f(t)=2 \pi \int_\limits0^{\frac{\pi}{2}} \frac{\sec ^2 x d x}{\sec ^2 x-\cos ^2 t \tan ^2 x} \\ & I_1=\int \frac{\sec ^2 x d x}{\sec ^2 x-\cos ^2 t \tan ^2 x} \\ & \text { Put } \cos t \tan x=\lambda \Rightarrow \cos t \sec ^2 x d x=d \lambda \\ & I_1=\int \frac{d \lambda}{\cos t \cdot\left(1+\lambda^2 \sec ^2 t-\lambda^2\right)}=\int \frac{d \lambda}{\cos t\left(1+\lambda^2 \tan ^2 t\right)} \\ \end{aligned}$$</p> <p>$$\begin{aligned} =\frac{1}{\cos t \cdot \tan ^2 t} \cdot \int \frac{d \lambda}{\lambda^2+\cos ^2 t}= & \frac{1}{\cos t \tan ^2 t} \\ & \times \frac{1}{\cos t} \tan ^{-1}(\lambda \tan t) \end{aligned}$$</p> <p>$$\begin{aligned} & =\frac{1}{\sin t} \tan ^{-1}(\sin t \tan x) \\ \Rightarrow & \left.f(t)=\frac{2 \pi}{\sin t} \tan ^{-1}(\sin t \tan x)\right]_0^{\frac{\pi}{2}}=\frac{\pi^2}{\sin t} \\ \Rightarrow & \int_\limits0^{\frac{\pi}{2}} \frac{\pi^2 d t}{f(t)}=\int_\limits0^{\frac{\pi}{2}} \sin t d t=1 \end{aligned}$$</p>
integer
jee-main-2024-online-5th-april-evening-shift
lvb294zl
maths
definite-integration
properties-of-definite-integration
<p>Let $$[t]$$ denote the largest integer less than or equal to $$t$$. If $$\int_\limits0^3\left(\left[x^2\right]+\left[\frac{x^2}{2}\right]\right) \mathrm{d} x=\mathrm{a}+\mathrm{b} \sqrt{2}-\sqrt{3}-\sqrt{5}+\mathrm{c} \sqrt{6}-\sqrt{7}$$, where $$\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathbf{Z}$$, then $$\mathrm{a}+\mathrm{b}+\mathrm{c}$$ is equal to __________.</p>
[]
null
23
<p>$$\int_\limits0^3\left(\left[x^2\right]+\left[\frac{x^2}{2}\right]\right) d x \quad=\int_\limits0^1 0 d x+\int_1^{\sqrt{2}} 1 d x+\int_\limits{\sqrt{2}}^{\sqrt{3}} 3 d x+$$</p> <p>$$ \begin{aligned} & \int_\limits{\sqrt{3}}^2 4 d x+\int_\limits2^{\sqrt{5}} 6 d x+\int_\limits{\sqrt{5}}^{\sqrt{6}} 7 d x+\int_\limits{\sqrt{6}}^{\sqrt{7}} 9 d x+\int_\limits{\sqrt{7}}^{\sqrt{8}} 10 d x+\int_\limits{\sqrt{8}}^3 12 d x \\ & =31-6 \sqrt{2}-\sqrt{3}-\sqrt{5}-\sqrt{7}-2 \sqrt{6} \\ & \Rightarrow a=31, b=-6, c=-2 \\ & \Rightarrow a+b+c=23 \end{aligned}$$</p>
integer
jee-main-2024-online-6th-april-evening-shift
lvc57ayt
maths
definite-integration
properties-of-definite-integration
<p>$$\int_\limits0^{\pi / 4} \frac{\cos ^2 x \sin ^2 x}{\left(\cos ^3 x+\sin ^3 x\right)^2} d x \text { is equal to }$$</p>
[{"identifier": "A", "content": "1/9"}, {"identifier": "B", "content": "1/6"}, {"identifier": "C", "content": "1/3"}, {"identifier": "D", "content": "1/12"}]
["B"]
null
<p>$$\begin{aligned} & \int_\limits0^{\pi / 4} \frac{\cos ^2 x \cdot \sin ^2 x}{\left(\cos ^3 x+\sin ^3 x\right)^2} d x \\ & =\int_\limits0^{\pi / 4} \frac{\tan ^2 x \cdot \sec ^2 x}{\left(1+\tan ^3 x\right)^2} d x \end{aligned}$$</p> <p>Let $$\tan x=t$$</p> <p>$$\int_\limits0^1 \frac{t^2 d t}{\left(1+t^3\right)^2}$$</p> <p>Let $$1+t^3=\mathrm{z}$$</p> <p>$$\begin{gathered} 3 t^2 d t=d z \\ \frac{1}{3} \int_\limits1^2 \frac{d z}{z^2}=\left.\frac{1}{3}\left(-\frac{1}{z}\right)\right|_1 ^2 \\ =-\frac{1}{3}\left(\frac{1}{2}-1\right)=\frac{1}{6}\end{gathered}$$</p>
mcq
jee-main-2024-online-6th-april-morning-shift
lvc58e3u
maths
definite-integration
properties-of-definite-integration
<p>Let $$r_k=\frac{\int_0^1\left(1-x^7\right)^k d x}{\int_0^1\left(1-x^7\right)^{k+1} d x}, k \in \mathbb{N}$$. Then the value of $$\sum_\limits{k=1}^{10} \frac{1}{7\left(r_k-1\right)}$$ is equal to _________.</p>
[]
null
65
<p>$$r_k=\frac{I_a}{I_b} \text {, where } I_a=\int_0^1\left(1-x^7\right)^k d x$$</p> <p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1lwd3wwxo/4611eb8f-9da2-472d-abed-83945d5d0d49/093f3fc0-15a2-11ef-9ea4-3bb319c2f90f/file-1lwd3wwxp.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1lwd3wwxo/4611eb8f-9da2-472d-abed-83945d5d0d49/093f3fc0-15a2-11ef-9ea4-3bb319c2f90f/file-1lwd3wwxp.png" loading="lazy" style="max-width: 100%;height: auto;display: block;margin: 0 auto;max-height: 40vh;vertical-align: baseline" alt="JEE Main 2024 (Online) 6th April Morning Shift Mathematics - Definite Integration Question 1 English Explanation"></p> <p>$$\begin{aligned} &amp; \left.=\left(1-x^7\right)^{k+1} \cdot x\right]_0^1-\int_0^1(k+1)\left(1-x^7\right)^k\left(-7 x^6\right) \cdot x d x \\ &amp; =-7(k+1) \int_0^1\left(1-x^7\right)^k\left(-1+1-x^7\right) \\ &amp; I_b=-7(k+1)\left[-l_a+l_b\right] \\ &amp; \Rightarrow r_k=\frac{l_a}{I_b}=\frac{7 k+8}{7 k+7}=1+\frac{1}{7(k+1)} \\ &amp; \frac{1}{7\left(r_k-1\right)}=(k+1) \\ &amp; \Rightarrow \sum_{r=-1}^{10} \frac{1}{7\left(r_K-1\right)}=\sum_{r=1}^{10}(k+1)=\frac{11.12}{2}-1=65 \end{aligned}$$</p>
integer
jee-main-2024-online-6th-april-morning-shift
fRLdYJcHGpcbyscR
maths
differential-equations
formation-of-differential-equations
The differential equation for the family of circle $${x^2} + {y^2} - 2ay = 0,$$ where a is an arbitrary constant is :
[{"identifier": "A", "content": "$$\\left( {{x^2} + {y^2}} \\right)y' = 2xy$$ "}, {"identifier": "B", "content": "$$2\\left( {{x^2} + {y^2}} \\right)y' = xy$$"}, {"identifier": "C", "content": "$$\\left( {{x^2} - {y^2}} \\right)y' =2 xy$$"}, {"identifier": "D", "content": "$$2\\left( {{x^2} - {y^2}} \\right)y' = xy$$"}]
["C"]
null
$${x^2} + {y^2} - 2ay = 0\,\,\,\,\,\,\,\,\,\,\,...\left( 1 \right)$$ <br><br>Differentiate, <br><br>$$2x + 2y{{dy} \over {dx}} - 2a{{dy} \over {dx}} = 0$$ <br><br>$$\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Rightarrow a = {{x + yy'} \over {y'}}$$ <br><br>Put in $$(1),$$ $${x^2} + {y^2} - 2\left( {{{x + yy'} \over {y'}}} \right) = y = 0$$ <br><br>$$ \Rightarrow \left( {{x^2} + {y^2}} \right)y' - 2xy - 2{y^2}y' = 0$$ <br><br>$$ \Rightarrow \left( {{x^2} - {y^2}} \right)y' = 2xy$$
mcq
aieee-2004
Po1lw9JbsWomUyZs
maths
differential-equations
formation-of-differential-equations
The differential equation of all circles passing through the origin and having their centres on the $$x$$-axis is :
[{"identifier": "A", "content": "$${y^2} = {x^2} + 2xy{{dy} \\over {dx}}$$ "}, {"identifier": "B", "content": "$${y^2} = {x^2} - 2xy{{dy} \\over {dx}}$$ "}, {"identifier": "C", "content": "$${x^2} = {y^2} + xy{{dy} \\over {dx}}$$"}, {"identifier": "D", "content": "$${x^2} = {y^2} + 3xy{{dy} \\over {dx}}$$"}]
["A"]
null
General equation of circles passing through origin <br><br>and having their centres on the $$x$$-axis is <br><br>$${x^2} + {y^2} + 2gx = 0\,\,\,\,....\left( i \right)$$ <br><br>On differentiating $$w.r.t.x,$$ we get <br><br>$$2x + 2y.{{dy} \over {dx}} + 2g = 0$$ <br><br>$$ \Rightarrow g = - \left( {x + y{{dy} \over {dx}}} \right)$$ <br><br>$$\therefore$$ equation $$(i)$$ be <br><br>$${x^2} + {y^2} + 2\left\{ { - \left( {x + y{{dy} \over {dx}}} \right)} \right\}x = 0$$ <br><br>$$ \Rightarrow {x^2} + {y^2} - 2{x^2} - 2x{{dy} \over {dx}}.y = 0$$ <br><br>$$ \Rightarrow {y^2} = {x^2} + 2xy{{dy} \over {dx}}$$
mcq
aieee-2007
YmDJDelJwPq7xlxD
maths
differential-equations
formation-of-differential-equations
The differential equation which represents the family of curves $$y = {c_1}{e^{{c_2}x}},$$ where $${c_1}$$ , and $${c_2}$$ are arbitrary constants, is
[{"identifier": "A", "content": "$$y'' = y'y$$ "}, {"identifier": "B", "content": "$$yy'' = y'$$ "}, {"identifier": "C", "content": "$$yy'' = {\\left( {y'} \\right)^2}$$ "}, {"identifier": "D", "content": "$$y' = {y^2}$$ "}]
["C"]
null
We have $$y = {c_1}{e^{{c_2}x}}$$ <br><br>$$ \Rightarrow y' = {c_1}{c_2}{e^{{c_2}x}} = {c_2}y$$ <br><br>$$ \Rightarrow {{y'} \over y} = {c_2}$$ <br><br>$$ \Rightarrow {{y''y\left( {y'} \right){}^2} \over {{y^2}}} = 0$$ <br><br>$$ \Rightarrow y''y = {\left( {y'} \right)^2}$$
mcq
aieee-2009
9MRXujl4STa4xPl5c4rEH
maths
differential-equations
formation-of-differential-equations
The differential equation representing the family of ellipse having foci eith on the x-axis or on the $$y$$-axis, center at the origin and passing through the point (0, 3) is :
[{"identifier": "A", "content": "xy y'' + x (y')<sup>2</sup> $$-$$ y y' = 0"}, {"identifier": "B", "content": "x + y y'' = 0"}, {"identifier": "C", "content": "xy y'+ y<sup>2</sup> $$-$$ 9 = 0"}, {"identifier": "D", "content": "xy y' $$-$$ y<sup>2</sup> + 9 = 0"}]
["D"]
null
Equation of ellipse, <br><br>$${{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1$$ <br><br>As ellipse passes through (0, 3) <br><br>$$\therefore\,\,\,$$ $${{{0^2}} \over {{a^2}}} + {{{3^2}} \over {{b^2}}} = 1$$ <br><br>$$ \Rightarrow $$ &nbsp;&nbsp; b<sup>2</sup> = 9 <br><br>$$\therefore\,\,\,$$ Equation of ellipse becomes, <br><br>$${{{x^2}} \over {{a^2}}} + {{{y^2}} \over 9} = 1$$ <br><br>Differentiating w.r.t &nbsp;&nbsp; x, we get, <br><br>$${{2x} \over {a{}^2}}$$ + $${{2y} \over 9}$$ . $${{dy} \over {dx}} = 0$$ <br><br>$$ \Rightarrow $$ &nbsp;&nbsp; $${x \over {{a^2}}}$$ = $$-$$ $${y \over 9}.{{dy} \over {da}}$$ <br><br>$$ \Rightarrow $$ &nbsp;&nbsp; $${x \over {{a^2}}} = - {y \over 9}.y'......$$ (1) <br><br>We got earlier, <br><br>$${{{x^2}} \over {{a^2}}} + {{{y^2}} \over 9}$$ = 1 <br><br>$$ \Rightarrow $$&nbsp;&nbsp; $${x \over {{a^2}}}.x + {{{y^2}} \over 9} = 1$$ <br><br>putting value of equation (1) here, <br><br>$$ {-{y\,y'} \over 9}.x + {{{y^2}} \over 9} = 1$$ <br><br>$$ \Rightarrow $$ &nbsp;&nbsp; $$-$$ xyy' + y<sup>2</sup> = 9 <br><br>$$ \Rightarrow $$&nbsp;&nbsp; xyy' $$-$$ y<sup>2</sup> + 9 = 0
mcq
jee-main-2018-online-16th-april-morning-slot
Wv8Zsmh00NPdsxTb9E7k9k2k5hk6uoo
maths
differential-equations
formation-of-differential-equations
The differential equation of the family of curves, x<sup>2</sup> = 4b(y + b), b $$ \in $$ R, is :
[{"identifier": "A", "content": "x(y')<sup>2</sup> = x \u2013 2yy'"}, {"identifier": "B", "content": "x(y')<sup>2</sup> = 2yy' \u2013 x"}, {"identifier": "C", "content": "xy\" = y'"}, {"identifier": "D", "content": "x(y')<sup>2</sup> = x + 2yy'"}]
["D"]
null
x<sup>2</sup> = 4b(y + b) <br><br>$$ \Rightarrow $$ 2x = 4by' <br><br>$$ \Rightarrow $$ b = $${x \over {2y'}}$$ <br><br>$$ \therefore $$ differential equation is <br><br>x<sup>2</sup> = 4.y.$${x \over {2y'}}$$ + 4$${\left( {{x \over {2y'}}} \right)^2}$$ <br><br>$$ \Rightarrow $$ x<sup>2</sup> = $${{2xy} \over {y'}}$$ + $${{{x^2}} \over {{{\left( {y'} \right)}^2}}}$$ <br><br>$$ \Rightarrow $$ x = $${{2y} \over {y'}}$$ + $${x \over {{{\left( {y'} \right)}^2}}}$$ <br><br>$$ \Rightarrow $$ x(y')<sup>2</sup> = x + 2yy'
mcq
jee-main-2020-online-8th-january-evening-slot
FT0YVlJ8yJJqRUDqM9jgy2xukg0c7il3
maths
differential-equations
formation-of-differential-equations
If $$y = \left( {{2 \over \pi }x - 1} \right) cosec\,x$$ is the solution of the differential equation, <br/><br>$${{dy} \over {dx}} + p\left( x \right)y = {2 \over \pi } cosec\,x$$,<br/><br/> $$0 &lt; x &lt; {\pi \over 2}$$, then the function p(x) is equal to :</br>
[{"identifier": "A", "content": "cot x"}, {"identifier": "B", "content": "sec x"}, {"identifier": "C", "content": "tan x"}, {"identifier": "D", "content": "cosec x"}]
["A"]
null
$$y = \left( {{2 \over \pi }x - 1} \right) cosec\,x$$ <br>Differentiate w.r.t x <br><br>$${{dy} \over {dx}} = {2 \over \pi }$$cosec x - $$\left( {{2 \over \pi }x - 1} \right)$$cosec x.cot x <br><br>$$ \Rightarrow $$ $${{dy} \over {dx}}$$ + $$\left( {{2 \over \pi }x - 1} \right)$$cosec x.cot x = $${2 \over \pi }$$cosec x <br><br>$$ \Rightarrow $$ $${{dy} \over {dx}}$$ + ycot x = $${2 \over \pi }$$cosec x <br><br>Compare this differential equation with given differential equation, we get <br><br>p(x) = cot x
mcq
jee-main-2020-online-6th-september-evening-slot
Fh1ueAAgvs7uHquWTM1klrk5zd2
maths
differential-equations
formation-of-differential-equations
If a curve y = f(x) passes through the point (1, 2) and satisfies $$x {{dy} \over {dx}} + y = b{x^4}$$, then for what value of b, $$\int\limits_1^2 {f(x)dx = {{62} \over 5}} $$?
[{"identifier": "A", "content": "$${{31} \\over 5}$$"}, {"identifier": "B", "content": "10"}, {"identifier": "C", "content": "5"}, {"identifier": "D", "content": "$${{62} \\over 5}$$"}]
["B"]
null
$${{dy} \over {dx}} + {y \over x} = b{x^3}$$, $$I.F. = {e^{\int {{{dx} \over x}} }} = x$$<br><br>$$ \therefore $$ $$yx = \int {b{x^4}dx} = {{b{x^5}} \over 5} + C$$<br><br>Passes through (1, 2), we get<br><br>$$2 = {b \over 5} + C$$ ........ (i)<br><br>Also, $$\int\limits_1^2 {\left( {{{b{x^4}} \over 5} + {c \over x}} \right)dx = {{62} \over 5}} $$<br><br>$$ \Rightarrow {b \over {25}} \times 32 + C\ln 2 - {b \over {25}} = {{62} \over 5} \Rightarrow C = 0$$ &amp; $$b = 10$$
mcq
jee-main-2021-online-24th-february-evening-slot
9Fv9AhxXoba7dLVrr21kmlhwgmb
maths
differential-equations
formation-of-differential-equations
The differential equation satisfied by the system of parabolas <br/><br/>y<sup>2</sup> = 4a(x + a) is :
[{"identifier": "A", "content": "$$y{\\left( {{{dy} \\over {dx}}} \\right)^2} - 2x\\left( {{{dy} \\over {dx}}} \\right) - y = 0$$"}, {"identifier": "B", "content": "$$y{\\left( {{{dy} \\over {dx}}} \\right)^2} - 2x\\left( {{{dy} \\over {dx}}} \\right) + y = 0$$"}, {"identifier": "C", "content": "$$y{\\left( {{{dy} \\over {dx}}} \\right)^2} + 2x\\left( {{{dy} \\over {dx}}} \\right) - y = 0$$"}, {"identifier": "D", "content": "$$y\\left( {{{dy} \\over {dx}}} \\right) + 2x\\left( {{{dy} \\over {dx}}} \\right) - y = 0$$"}]
["C"]
null
$${y^2} = 4ax + 4{a^2}$$<br><br>differentiate with respect to x<br><br>$$ \Rightarrow 2y{{dy} \over {dx}} = 4a$$<br><br>$$ \Rightarrow a = \left( {{y \over 2}{{dy} \over {dx}}} \right)$$<br><br>So, required differential equation is <br><br>$${y^2} = \left( {4 \times {y \over 2}{{dy} \over {dx}}} \right)x + 4{\left( {{y \over 2}{{dy} \over {dx}}} \right)^2}$$<br><br>$$ \Rightarrow {y^2}{\left( {{{dy} \over {dx}}} \right)^2} + 2xy\left( {{{dy} \over {dx}}} \right) - {y^2} = 0$$<br><br>$$ \Rightarrow y{\left( {{{dy} \over {dx}}} \right)^2} + 2x\left( {{{dy} \over {dx}}} \right) - y = 0$$
mcq
jee-main-2021-online-18th-march-morning-shift
1krzrdrnv
maths
differential-equations
formation-of-differential-equations
Let a curve y = f(x) pass through the point (2, (log<sub>e</sub>2)<sup>2</sup>) and have slope $${{2y} \over {x{{\log }_e}x}}$$ for all positive real value of x. Then the value of f(e) is equal to ______________.
[]
null
1
$$y' = {{2y} \over {x\ln x}}$$<br><br>$$ \Rightarrow {{dy} \over y} = {{2dx} \over {x\ln x}}$$<br><br>$$ \Rightarrow \ln |y| = 2\ln |\ln x| + C$$<br><br>put x = 2, y = (ln2)<sup>2</sup><br><br>$$\Rightarrow$$ c = 0<br><br>$$\Rightarrow$$ y = (lnx)<sup>2</sup><br><br>$$\Rightarrow$$ f(e) = 1
integer
jee-main-2021-online-25th-july-evening-shift
1ktepvi10
maths
differential-equations
formation-of-differential-equations
If $${y^{1/4}} + {y^{ - 1/4}} = 2x$$, and <br/><br/>$$({x^2} - 1){{{d^2}y} \over {d{x^2}}} + \alpha x{{dy} \over {dx}} + \beta y = 0$$, then | $$\alpha$$ $$-$$ $$\beta$$ | is equal to __________.
[]
null
17
$${y^{{1 \over 4}}} + {1 \over {{y^{{1 \over 4}}}}} = 2x$$<br><br>$$ \Rightarrow {\left( {{y^{{1 \over 4}}}} \right)^2} - 2x{y^{\left( {{1 \over 4}} \right)}} + 1 = 0$$<br><br>$$ \Rightarrow {y^{{1 \over 4}}} = x + \sqrt {{x^2} - 1} $$ or $$x - \sqrt {{x^2} - 1} $$<br><br>So, $${1 \over 4}{1 \over {{y^{{3 \over 4}}}}}{{dy} \over {dx}} = 1 + {x \over {\sqrt {{x^2} - 1} }}$$<br><br>$$ \Rightarrow {1 \over 4}{1 \over {{y^{{3 \over 4}}}}}{{dy} \over {dx}} = {{{y^{{1 \over 4}}}} \over {\sqrt {{x^2} - 1} }}$$<br><br>$$ \Rightarrow {{dy} \over {dx}} = {{4y} \over {\sqrt {{x^2} - 1} }}$$ .... (1)<br><br>Hence, $${{{d^2}y} \over {d{x^2}}} = 4{{\left( {\sqrt {{x^2} - 1} } \right)y' - {{yx} \over {\sqrt {{x^2} - 1} }}} \over {{x^2} - 1}}$$<br><br>$$ \Rightarrow ({x^2} - 1)y'' = 4{{({x^2} - 1)y' - xy} \over {\sqrt {{x^2} - 1} }}$$<br><br>$$ \Rightarrow ({x^2} - 1)y'' = 4\left( {\sqrt {{x^2} - 1} y' - {{xy} \over {\sqrt {{x^2} - 1} }}} \right)$$<br><br>$$ \Rightarrow ({x^2} - 1)y'' = 4\left( {4y - {{xy'} \over 4}} \right)$$ (from I)<br><br>$$ \Rightarrow ({x^2} - 1)y'' + xy' - 16y = 0$$<br><br>So, | $$\alpha$$ $$-$$ $$\beta$$ | = 17
integer
jee-main-2021-online-27th-august-morning-shift
1ktfzg9uq
maths
differential-equations
formation-of-differential-equations
A differential equation representing the family of parabolas with axis parallel to y-axis and whose length of latus rectum is the distance of the point (2, $$-$$3) from the line 3x + 4y = 5, is given by :
[{"identifier": "A", "content": "$$10{{{d^2}y} \\over {d{x^2}}} = 11$$"}, {"identifier": "B", "content": "$$11{{{d^2}x} \\over {d{y^2}}} = 10$$"}, {"identifier": "C", "content": "$$10{{{d^2}x} \\over {d{y^2}}} = 11$$"}, {"identifier": "D", "content": "$$11{{{d^2}y} \\over {d{x^2}}} = 10$$"}]
["D"]
null
Length of latus rectum<br><br>$$= {{|3(2) + 4( - 3) - 5|} \over 5} = {{11} \over 5}$$<br><br>$${(x - h)^2} = {{11} \over 5}(y - k)$$<br><br>differentiate w.r.t. 'x' :-<br><br>$$2(x - h) = {{11} \over 5}{{dy} \over {dx}}$$<br><br>again differentiate<br><br>$$2 = {{11} \over 5}{{{d^2}y} \over {d{x^2}}}$$<br><br>$${{11{d^2}y} \over {d{x^2}}} = 10$$
mcq
jee-main-2021-online-27th-august-evening-shift
1l57o2hul
maths
differential-equations
formation-of-differential-equations
<p>Let $${{dy} \over {dx}} = {{ax - by + a} \over {bx + cy + a}}$$, where a, b, c are constants, represent a circle passing through the point (2, 5). Then the shortest distance of the point (11, 6) from this circle is :</p>
[{"identifier": "A", "content": "10"}, {"identifier": "B", "content": "8"}, {"identifier": "C", "content": "7"}, {"identifier": "D", "content": "5"}]
["B"]
null
<p>$${{dy} \over {dx}} = {{ax - by + a} \over {bx + cy + a}}$$</p> <p>$$ = bx\,dy + cy\,dy + a\,dy = ax\,dx - by\,dx + a\,dx$$</p> <p>$$ = cy\,dy + a\,dy - ax\,dx - a\,dx + b(x\,dy + y\,dx) = 0$$</p> <p>$$ = c\int {y\,dy + a\int {x\,dx - a\int {dx + b\int {d(xy) = 0} } } } $$</p> <p>$$ = {{c{y^2}} \over 2} + ay - {{a{x^2}} \over 2} - ax + bxy = k$$</p> <p>$$ = a{x^2} - c{y^2} + 2ax - 2ay - 2bxy = k$$</p> <p>Above equation is circle</p> <p>$$\Rightarrow$$ a = $$-$$ c and b = 0</p> <p>$$a{x^2} + a{y^2} + 2ax - 2ay = k$$</p> <p>$$ \Rightarrow {x^2} + {y^2} + 2x - 2y = \lambda \,\,\,\,\,\,\,\left[ {\lambda = {k \over a}} \right]$$</p> <p>Passes through (2, 5)</p> <p>$$4 + 25 + 4 - 10 = \lambda \Rightarrow \lambda = 23$$</p> <p>Circle $$ \equiv {x^2} + {y^2} + 2x - 2y - 23 = 0$$</p> <p>Centre ($$-$$1, 1) $$r = \sqrt {{{( - 1)}^2} + {1^2} + 23} = 5$$</p> <p>Shortest distance of $$(11,6) = \sqrt {{{12}^2} + {5^2}} - 5$$</p> <p>$$ = 13 - 5$$</p> <p>$$ = 8$$</p>
mcq
jee-main-2022-online-27th-june-morning-shift
1l5vzx4yi
maths
differential-equations
formation-of-differential-equations
<p>Let $${{dy} \over {dx}} = {{ax - by + a} \over {bx + cy + a}},\,a,b,c \in R$$, represents a circle with center ($$\alpha$$, $$\beta$$). Then, $$\alpha$$ + 2$$\beta$$ is equal to :</p>
[{"identifier": "A", "content": "$$-$$1"}, {"identifier": "B", "content": "0"}, {"identifier": "C", "content": "1"}, {"identifier": "D", "content": "2"}]
["C"]
null
<p>Given,</p> <p>$${{dy} \over {dx}} = {{ax - by + a} \over {bx + cy + a}}$$</p> <p>$$ \Rightarrow bxdy + cydy + ady = axdx - bydx + adx$$</p> <p>$$ \Rightarrow bxdy + bydx + (cy + a)dy = (ax + a)dx$$</p> <p>$$ \Rightarrow b(xdy + ydx) + (cy + a)dy = (ax + a)dx$$</p> <p>$$ \Rightarrow bd(xy) + (cy + a)dy = (ax + a)dx$$</p> <p>Integrating both sides, we get</p> <p>$$ \Rightarrow b\int {d(xy) + \int {(cy + a)dy = \int {(ax + a)dx} } } $$</p> <p>$$ \Rightarrow b\,.\,xy + c\,.\,{{{y^2}} \over 2} + ay = {{a{x^2}} \over 2} + ax + k$$</p> <p>$$ \Rightarrow {{a{x^2}} \over 2} - {{c{y^2}} \over 2} - bxy + ax - ay + k = 0$$</p> <p>For equation of circle,</p> <p>Coefficient of x<sup>2</sup> = Coefficient of y<sup>2</sup></p> <p>$$\therefore$$ $${a \over 2} = - {c \over 2}$$</p> <p>$$ \Rightarrow a = - c$$</p> <p>And coefficient of $$xy = 0$$</p> <p>$$\therefore$$ $$ - b = 0$$</p> <p>$$ \Rightarrow b = 0$$</p> <p>$$\therefore$$ Circle equation becomes,</p> <p>$${{a{x^2}} \over 2} + {{a{y^2}} \over 2} + ax - ay + k = 0$$</p> <p>$$ \Rightarrow {x^2} + {y^2} + 2x - 2y + {{2k} \over a} = 0$$</p> <p>$$\therefore$$ Center $$ = ( - g, - f) = ( - 1,1) = (\alpha ,\beta )$$</p> <p>$$\therefore$$ $$\alpha = - 1$$ and $$\beta = 1$$</p> <p>$$\therefore$$ $$\alpha + 2\beta = - 1 + 2 \times (1) = 1$$</p>
mcq
jee-main-2022-online-30th-june-morning-shift
1l6f1ihu7
maths
differential-equations
formation-of-differential-equations
<p>Let a smooth curve $$y=f(x)$$ be such that the slope of the tangent at any point $$(x, y)$$ on it is directly proportional to $$\left(\frac{-y}{x}\right)$$. If the curve passes through the points $$(1,2)$$ and $$(8,1)$$, then $$\left|y\left(\frac{1}{8}\right)\right|$$ is equal to</p>
[{"identifier": "A", "content": "$$2 \\log _{e} 2$$"}, {"identifier": "B", "content": "4"}, {"identifier": "C", "content": "1"}, {"identifier": "D", "content": "$$4 \\log _{e} 2$$"}]
["B"]
null
<p>$${{dy} \over {dx}} \propto {{ - y} \over x}$$</p> <p>$${{dy} \over {dx}} = {{ - ky} \over x} \Rightarrow \int {{{dy} \over y} = - K\int {{{dx} \over x}} } $$</p> <p>$$\ln |y| = - K\ln |x| + C$$</p> <p>If the above equation satisfy (1, 2) and (8, 1)</p> <p>$$\ln 2 = - K \times 0 + C \Rightarrow C = \ln 2$$</p> <p>$$\ln 1 = - K\ln 8 + \ln 2 \Rightarrow K = {1 \over 3}$$</p> <p>So, at $$x = {1 \over 8}$$</p> <p>$$\ln |y| = - {1 \over 3}\ln \left( {{1 \over 8}} \right) + \ln 2 = 2\ln 2$$</p> <p>$$|y| = 4$$</p>
mcq
jee-main-2022-online-25th-july-evening-shift
1l6gjjaoy
maths
differential-equations
formation-of-differential-equations
<p>Let a curve $$y=y(x)$$ pass through the point $$(3,3)$$ and the area of the region under this curve, above the $$x$$-axis and between the abscissae 3 and $$x(&gt;3)$$ be $$\left(\frac{y}{x}\right)^{3}$$. If this curve also passes through the point $$(\alpha, 6 \sqrt{10})$$ in the first quadrant, then $$\alpha$$ is equal to ___________.</p>
[]
null
6
<p>$$\int\limits_3^x {f(x)dx = {{\left( {{{f(x)} \over x}} \right)}^3}} $$</p> <p>$${x^3}\,.\,\int\limits_3^x {f(x)dx = {f^3}(x)} $$</p> <p>Differentiate w.r.t. x</p> <p>$${x^3}f(x) + 3{x^2}\,.\,{{{f^3}(x)} \over {{x^3}}} = 3{f^2}(x)f'(x)$$</p> <p>$$ \Rightarrow 3{y^2}{{dy} \over {dx}} = {x^3}y + {{3{y^3}} \over x}$$</p> <p>$$3xy{{dy} \over {dx}} = {x^4} + 3{y^2}$$</p> <p>Let $${y^2} = t$$</p> <p>$${3 \over 2}{{dt} \over {dx}} = {x^3} + {{3t} \over x}$$</p> <p>$${{dt} \over {dx}} - {{2t} \over x} = {{2{x^3}} \over 3}$$</p> <p>$$I.F. = \,.\,{e^{\int { - {2 \over x}dx} }} = {1 \over {{x^2}}}$$</p> <p>Solution of differential equation</p> <p>$$t\,.\,{1 \over {{x^2}}} = \int {{2 \over 3}x\,dx} $$</p> <p>$${{{y^2}} \over {{x^2}}} = {{{x^2}} \over 3} + C$$</p> <p>$${y^2} = {{{x^4}} \over 3} + C{x^2}$$</p> <p>Curve passes through $$(3,3) \Rightarrow C = - 2$$</p> <p>$${y^2} = {{{x^4}} \over 3} - 2{x^2}$$</p> <p>Which passes through $$\left( {\alpha ,6\sqrt {10} } \right)$$</p> <p>$${{{\alpha ^4} - 6{\alpha ^2}} \over 3} = 360$$</p> <p>$${\alpha ^4} - 6{\alpha ^2} - 1080 = 0$$</p> <p>$$\alpha = 6$$</p>
integer
jee-main-2022-online-26th-july-morning-shift
1l6nn544i
maths
differential-equations
formation-of-differential-equations
<p>The differential equation of the family of circles passing through the points $$(0,2)$$ and $$(0,-2)$$ is :</p>
[{"identifier": "A", "content": "$$2 x y \\frac{d y}{d x}+\\left(x^{2}-y^{2}+4\\right)=0$$"}, {"identifier": "B", "content": "$$2 x y \\frac{d y}{d x}+\\left(x^{2}+y^{2}-4\\right)=0$$"}, {"identifier": "C", "content": "$$2 x y \\frac{d y}{d x}+\\left(y^{2}-x^{2}+4\\right)=0$$"}, {"identifier": "D", "content": "$$2 x y \\frac{d y}{d x}-\\left(x^{2}-y^{2}+4\\right)=0$$"}]
["A"]
null
<p>Family of circles passing through the points (0, 2) and (0, $$-$$2)</p> <p>$${x^2} + (y - 2)(y + 2) + \lambda x = 0,\,\lambda \in R$$</p> <p>$${x^2} + {y^2} + \lambda x - 4 = 0$$ ...... (1)</p> <p>Differentiate w.r.t x</p> <p>$$2x + 2y{{dy} \over {dx}} + \lambda = 0$$ ....... (2)</p> <p>Using (1) and (2), eliminate $$\lambda$$</p> <p>$${x^2} + {y^2} - \left( {2x + 2y{{dy} \over {dx}}} \right)x - 4 = 0$$</p> <p>$$2xy{{dy} \over {dx}} + {x^2} - {y^2} + 4 = 0$$</p>
mcq
jee-main-2022-online-28th-july-evening-shift