question_id
stringlengths
8
35
subject
stringclasses
1 value
chapter
stringclasses
32 values
topic
stringclasses
178 values
question
stringlengths
26
9.64k
options
stringlengths
2
1.63k
correct_option
stringclasses
5 values
answer
stringclasses
293 values
explanation
stringlengths
13
9.38k
question_type
stringclasses
3 values
paper_id
stringclasses
149 values
GEjRKxAiRms6EYbD
maths
differentiation
differentiation-of-implicit-function
Let $$f\left( x \right)$$ be a polynomial function of second degree. If $$f\left( 1 \right) = f\left( { - 1} \right)$$ and $$a,b,c$$ are in $$A.P, $$ then $$f'\left( a \right),f'\left( b \right),f'\left( c \right)$$ are in
[{"identifier": "A", "content": "Arithmetic -Geometric Progression "}, {"identifier": "B", "content": "$$A.P$$"}, {"identifier": "C", "content": "$$G.P$$"}, {"identifier": "D", "content": "$$H.P$$ "}]
["B"]
null
$$f\left( x \right) = a{x^2} + bx + c$$ <br><br>$$f\left( 1 \right) = f\left( { - 1} \right)$$ <br><br>$$ \Rightarrow a + b + c = a - b + c$$ <br><br>or $$b = 0$$ <br><br>$$\therefore$$ $$f\left( x \right) = a{x^2} + c$$ <br><br>or $$f'\left( x \right) = 2ax$$ <br><br>Now $$f'\left( a \right);f'\left( b \right);$$ <br><br>and $$f'\left( c \right)$$ are $$2a\left( a \right);2a\left( b \right);2a\left( c \right)$$ <br><br>i.e.$$\,2{a^2},\,2ab,\,2ac.$$ <br><br>$$ \Rightarrow $$ If $$a,b,c$$ are in $$A.P.$$ then <br><br>$$f'\left( a \right);f'\left( b \right)$$ and <br><br>$$f'\left( c \right)$$ are also in $$A.P.$$
mcq
aieee-2003
lYKxaNHOCAaR6Yxj
maths
differentiation
differentiation-of-implicit-function
Let $$y$$ be an implicit function of $$x$$ defined by $${x^{2x}} - 2{x^x}\cot \,y - 1 = 0$$. Then $$y'(1)$$ equals
[{"identifier": "A", "content": "$$1$$ "}, {"identifier": "B", "content": "$$\\log \\,2$$"}, {"identifier": "C", "content": "$$-\\log \\,2$$ "}, {"identifier": "D", "content": "$$-1$$"}]
["D"]
null
$${x^{2x}} - 2{x^x}\,\cot \,y - 1 = 0$$ <br><br>$$ \Rightarrow 2\,\cot \,y = {x^x} - {x^{ - x}}$$ <br><br>$$ \Rightarrow 2\,\cot \,y\, = u - {1 \over u}$$ <br><br>where $$u = {x^x}$$ <br><br>Differentiating both sides with respect to $$x,$$ <br><br>we get $$ \Rightarrow - 2\cos e{c^2}y{{dy} \over {dx}}$$ <br><br>$$ = \left( {1 + {1 \over {{u^2}}}} \right){{du} \over {dx}}$$ <br><br>where $$u = {x^x} \Rightarrow \log \,u = x\,\log \,x$$ <br><br>$$ \Rightarrow {1 \over u}{{du} \over {dx}} = 1 + \log \,x$$ <br><br>$$ \Rightarrow {{du} \over {dx}} = {x^x}\left( {1 + \log \,x} \right)$$ <br><br>$$\therefore$$ We get $$ - 2\cos e{c^2}y{{dy} \over {dx}}$$ <br><br>$$ = \left( {1 + {x^{ - 2x}}} \right){x^x}\left( {1 + \log \,x} \right)$$ <br><br>$$ \Rightarrow {{dy} \over {dx}} = {{\left( {{x^x} + {x^{ - x}}} \right)\left( {1 + \log x} \right)} \over { - 2\left( {1 + {{\cot }^2}y} \right)}}\,\,\,\,\,\,...\left( i \right)$$ <br><br>Now when <br><br>$$x=1,$$ $${x^{2x}} - 2{x^x}\,\cot \,y - 1 = 0,$$ <br><br>gives $$1 - 2\,\cot y - 1 = 0$$ <br><br>$$ \Rightarrow \,\,\cot y\, = 0$$ <br><br>$$\therefore$$ From equation $$(i),$$ at $$x=1$$ <br><br>and $$\cot \,y = 0,$$ we get <br><br>$$y'\left( 1 \right) = {{\left( {1 + 1} \right)\left( {1 + 0} \right)} \over { - 2\left( {1 + 0} \right)}} = - 1$$
mcq
aieee-2009
a7PCNBHZY1NukfT9vwNCx
maths
differentiation
differentiation-of-implicit-function
If y = $${\left[ {x + \sqrt {{x^2} - 1} } \right]^{15}} + {\left[ {x - \sqrt {{x^2} - 1} } \right]^{15}},$$ <br/><br/> then (x<sup>2</sup> $$-$$ 1) $${{{d^2}y} \over {d{x^2}}} + x{{dy} \over {dx}}$$ is equal to :
[{"identifier": "A", "content": "125 y"}, {"identifier": "B", "content": "124 y<sup>2</sup>"}, {"identifier": "C", "content": "225 y<sup>2</sup>"}, {"identifier": "D", "content": "225 y"}]
["D"]
null
<p>The given equation is</p> <p>$$y = {({x^2} + \sqrt {{x^2} - 1} )^{15}} + {(x - \sqrt {{x^2} - 1} )^{15}}$$</p> <p>Differentiating w.r.t. x, we get</p> <p>$${{dy} \over {dx}} = 15{(x + \sqrt {{x^2} - 1} )^{14}}\left( {1 + {{1(2x)} \over {2\sqrt {{x^2} - 1} }}} \right) + 15{(x - \sqrt {{x^2} - 1} )^{14}}\left( {1 - {{1(2x)} \over {2\sqrt {{x^2} - 1} }}} \right)$$</p> <p>Here, we have used the standard differentiatials</p> <p>$${d \over {dx}}{x^n} = n\,{x^{n - 1}}$$</p> <p>That is, $${d \over {dx}}(\sqrt {f(x)} ) = {1 \over {2\sqrt {f(x)} }} \times {d \over {dx}}(f(x))$$</p> <p>Therefore</p> <p>$${{dy} \over {dx}} = {{15{{(x + \sqrt {{x^2} - 1} )}^{14}}(\sqrt {{x^2} - 1} + x)} \over {\sqrt {{x^2} - 1} }} + {{15{{(x - \sqrt {{x^2} - 1} )}^{14}}(\sqrt {{x^2} - 1} - x)} \over {\sqrt {{x^2} - 1} }}$$</p> <p>$$ \Rightarrow \sqrt {{x^2} - 1} {{dy} \over {dx}} = 15{(x + \sqrt {{x^2} - 1} )^{15}} - 15{(x - \sqrt {{x^2} - 1} )^{15}}$$</p> <p>Differentiating w.r.t. x, we get</p> <p>$${{1(2x)} \over {2\sqrt {{x^2} + 1} }}{{dy} \over {dx}} + \sqrt {{x^2} - 1} {{{d^2}y} \over {d{x^2}}} = 15 \times 15{(x + \sqrt {{x^2} - 1} )^{14}}\left( {1 + {{1(2x)} \over {2\sqrt {{x^2} - 1} }}} \right) - 15 \times 15{(x - \sqrt {{x^2} - 1} )^{14}}\left( {{{1 - 1(2x)} \over {2\sqrt {{x^2} - 1} }}} \right)$$</p> <p>$$ \Rightarrow {x \over {\sqrt {{x^2} - 1} }}{{dy} \over {dx}} + \sqrt {{x^2} - 1} {{{d^2}y} \over {d{x^2}}} = 225{(x + \sqrt {{x^2} - 1} )^{14}}{{(\sqrt {{x^2} - 1} + x)} \over {\sqrt {{x^2} - 1} }} - {{225{{(x - \sqrt {{x^2} - 1} )}^{14}}(\sqrt {{x^2} - 1} - x)} \over {\sqrt {{x^2} - 1} }}$$</p> <p>$$ \Rightarrow \sqrt {{x^2} - 1} \left[ {{x \over {\sqrt {{x^2} - 1} }}{{dy} \over {dx}} + \sqrt {{x^2} - 1} {{{d^2}y} \over {d{x^2}}}} \right] = 225{(x + \sqrt {{x^2} - 1} )^{15}} + 225{(x - \sqrt {{x^2} - 1} )^{15}}$$</p> <p>$$ \Rightarrow x{{dy} \over {dx}} + ({x^2} - 1){{{d^2}y} \over {d{x^2}}} = 225\left[ {{{(x + \sqrt {{x^2} - 1} )}^{15}} + {{(x - \sqrt {{x^2} - 1} )}^{15}}} \right]$$</p> <p>Substituting $${(x + \sqrt {{x^2} - 1} )^{15}} + {(x - \sqrt {{x^2} - 1} )^{15}} = y$$, we get</p> <p>$$({x^2} - 1){{{d^2}y} \over {d{x^2}}} + {{x\,dy} \over {dx}} = 225y$$</p>
mcq
jee-main-2017-online-8th-april-morning-slot
DhiE82brjsITwGqGoJmYl
maths
differentiation
differentiation-of-implicit-function
If $$f\left( x \right) = \left| {\matrix{ {\cos x} &amp; x &amp; 1 \cr {2\sin x} &amp; {{x^2}} &amp; {2x} \cr {\tan x} &amp; x &amp; 1 \cr } } \right|,$$ then $$\mathop {\lim }\limits_{x \to 0} {{f'\left( x \right)} \over x}$$
[{"identifier": "A", "content": "does not exist. "}, {"identifier": "B", "content": "exists and is equal to 2. "}, {"identifier": "C", "content": "existsand is equal to 0."}, {"identifier": "D", "content": "exists and is equal to $$-$$ 2."}]
["D"]
null
Given,<br><br> $$f\left( x \right) = \left| {\matrix{ {\cos x} &amp; x &amp; 1 \cr {2\sin x} &amp; {{x^2}} &amp; {2x} \cr {\tan x} &amp; x &amp; 1 \cr } } \right|$$<br><br> = cosx(x<sup>2</sup> - 2x<sup>2</sup>) - x(2 sinx - 2x tanx) + (2x sinx - x<sup>2</sup> tanx)<br> = x<sup>2</sup> (tanx - cosx)<br> $$ \therefore $$ $${f^{'}}(x)$$ = 2x (tanx - cosx) + x<sup>2</sup>(sec<sup>2</sup>x + sinx)<br><br> $$ \therefore $$ $$\mathop {\lim }\limits_{x \to 0} {{f'\left( x \right)} \over x}$$<br><br> = $$\mathop {\lim }\limits_{x \to o} {{2x(\tan x - \cos x) + {x^2}({{\sec }^2}x + \sin x)} \over x}$$<br><br> = $$\mathop {\lim }\limits_{x \to o} \,\,2(\tan x - \cos x) + x({\sec ^2}x + \sin x)$$<br><br> = 2 (0-1) + 0<br><br> = -2
mcq
jee-main-2018-online-15th-april-morning-slot
C8sdKeF0ryQ9Msh5eBUCc
maths
differentiation
differentiation-of-implicit-function
If   x<sup>2</sup> + y<sup>2</sup> + sin y = 4, then the value of $${{{d^2}y} \over {d{x^2}}}$$ at the point ($$-$$2,0) is :
[{"identifier": "A", "content": "$$-$$ 34"}, {"identifier": "B", "content": "$$-$$ 32"}, {"identifier": "C", "content": "4"}, {"identifier": "D", "content": "$$-$$ 2"}]
["A"]
null
Given, x<sup>2</sup> + y<sup>2</sup> + sin y = 4 <br><br>After differentiating the above equation &nbsp;w.r.t.x &nbsp;we get <br><br>2x + 2y $${{dy} \over {dx}}$$ + cos y $${{dy} \over {dx}}$$ = 0 &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; . . . . (1) <br><br>$$ \Rightarrow $$&nbsp;&nbsp;2x + (2y + cos y) $${{dy} \over {dx}}$$ = 0 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;$${{dy} \over {dx}}$$ = $${{ - 2x} \over {2y + \cos y}}$$ <br><br>At ($$-$$ 2, 0), $${\left( {{{dy} \over {dx}}} \right)_{\left( { - 2,0} \right)}}$$ = $${{ - 2x - 2} \over {2 \times 0 + \cos 0}}$$ <br><br>$$ \Rightarrow $$&nbsp;&nbsp;$${\left( {{{dy} \over {dx}}} \right)_{\left( { - 2,0} \right)}}$$ = $${4 \over {0 + 1}}$$ <br><br>$$ \Rightarrow $$ &nbsp;&nbsp;$${\left( {{{dy} \over {dx}}} \right)_{\left( { - 2,0} \right)}}$$ = 4 &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; . . . . .(2) <br><br>Again differentiating equation (1) w.r.t&nbsp;&nbsp;to&nbsp;&nbsp;x, we get <br><br>2 + 2 $${\left( {{{dy} \over {dx}}} \right)^2}$$ + 2y$${{{d^2}y} \over {d{x^2}}}$$ $$-$$ sin y $${\left( {{{dy} \over {dx}}} \right)^2}$$ + cos y $${{{d^2}y} \over {d{x^2}}}$$ = 0 <br><br>$$ \Rightarrow $$&nbsp;&nbsp; 2 + (2 $$-$$ sin y) $${\left( {{{dy} \over {dx}}} \right)^2}$$ + (2y + cos y)$${{{d^2}y} \over {d{x^2}}}$$ = 0 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;(2y + cos y) $${{{d^2}y} \over {d{x^2}}}$$ = $$-$$ 2 $$-$$ (2 $$-$$ sin y)$${\left( {{{dy} \over {dx}}} \right)^2}$$ <br><br>$$ \Rightarrow $$&nbsp;&nbsp; $${{{d^2}y} \over {d{x^2}}}$$ = $${{ - 2 - \left( {2 - \sin y} \right){{\left( {{{dy} \over {dx}}} \right)}^2}} \over {2y + \cos y}}$$ <br><br>So, at ($$-$$ 2, 0), <br><br>$${{{d^2}y} \over {d{x^2}}}$$ = $${{ - 2 - \left( {2 - 0} \right) \times {4^2}} \over {2 \times 0 + 1}}$$ <br><br>$$ \Rightarrow $$&nbsp;&nbsp;$${{{d^2}y} \over {d{x^2}}}$$ = $${{ - 2 - 2 \times 16} \over 1}$$ <br><br>$$ \Rightarrow $$$$\,\,\,$$ $${{{d^2}y} \over {d{x^2}}}$$ = $$-$$ 34
mcq
jee-main-2018-online-15th-april-morning-slot
Ne604P2uiWuSdG4XwJ3rsa0w2w9jx5deh3j
maths
differentiation
differentiation-of-implicit-function
If e<sup>y</sup> + xy = e, the ordered pair $$\left( {{{dy} \over {dx}},{{{d^2}y} \over {d{x^2}}}} \right)$$ at x = 0 is equal to :
[{"identifier": "A", "content": "$$\\left( {{1 \\over e}, - {1 \\over {{e^2}}}} \\right)$$"}, {"identifier": "B", "content": "$$\\left( { - {1 \\over e},{1 \\over {{e^2}}}} \\right)$$"}, {"identifier": "C", "content": "$$\\left( { - {1 \\over e}, - {1 \\over {{e^2}}}} \\right)$$"}, {"identifier": "D", "content": "$$\\left( {{1 \\over e},{1 \\over {{e^2}}}} \\right)$$"}]
["B"]
null
y = 1 $$ \Rightarrow $$ x = 0<br><br> $${e^y}{{dy} \over {dx}} + x{{dy} \over {dx}} + y = 0$$<br><br> $$ \Rightarrow e{{dy} \over {dx}} + 1 = 0 \Rightarrow {{dy} \over {dx}} = - {1 \over e}$$<br><br> $$ \Rightarrow {e^y}{{{d^2}y} \over {d{x^2}}} + {e^y}{\left( {{{dy} \over {dx}}} \right)^2} + x{{{d^2}y} \over {d{x^2}}} + 2{{dy} \over {dx}} = 0$$<br><br> x = 0, y = 1<br><br> $$ \Rightarrow e{{{d^2}y} \over {d{x^2}}} + e{\left( { - {1 \over e}} \right)^2} + 0 + 2\left( { - {1 \over e}} \right) = 0$$<br><br> $$ \Rightarrow {{{d^2}y} \over {d{x^2}}} = {1 \over {{e^2}}}$$
mcq
jee-main-2019-online-12th-april-morning-slot
fd5wbl11yciwuHmLja7k9k2k5e29bcc
maths
differentiation
differentiation-of-implicit-function
Let x<sup>k</sup> + y<sup>k</sup> = a<sup>k</sup>, (a, k &gt; 0 ) and $${{dy} \over {dx}} + {\left( {{y \over x}} \right)^{{1 \over 3}}} = 0$$, then k is:
[{"identifier": "A", "content": "$${1 \\over 3}$$"}, {"identifier": "B", "content": "$${2 \\over 3}$$"}, {"identifier": "C", "content": "$${4 \\over 3}$$"}, {"identifier": "D", "content": "$${3 \\over 2}$$"}]
["B"]
null
x<sup>k</sup> + y<sup>k</sup> = a<sup>k</sup> <br><br>$$ \Rightarrow $$ kx<sup>k - 1</sup> + ky<sup>k - 1</sup>$${{{dy} \over {dx}}}$$ = 0 <br><br>$$ \Rightarrow $$ $${{{dy} \over {dx}} + {{\left( {{x \over y}} \right)}^{k - 1}}}$$ = 0 ...(1) <br><br>Given $${{dy} \over {dx}} + {\left( {{y \over x}} \right)^{{1 \over 3}}} = 0$$ ...(2) <br><br>Comparing (1) and (2), we get <br><br>k - 1 = $$ - {1 \over 3}$$ <br><br>$$ \Rightarrow $$ k = $${2 \over 3}$$
mcq
jee-main-2020-online-7th-january-morning-slot
kPxln5RHIGisQJ1WD17k9k2k5e4fsyg
maths
differentiation
differentiation-of-implicit-function
If $$y\left( \alpha \right) = \sqrt {2\left( {{{\tan \alpha + \cot \alpha } \over {1 + {{\tan }^2}\alpha }}} \right) + {1 \over {{{\sin }^2}\alpha }}} ,\alpha \in \left( {{{3\pi } \over 4},\pi } \right)$$<br/><br/> $${{dy} \over {d\alpha }}\,\,at\,\alpha = {{5\pi } \over 6}is$$ :
[{"identifier": "A", "content": "4"}, {"identifier": "B", "content": "-4"}, {"identifier": "C", "content": "$${4 \\over 3}$$"}, {"identifier": "D", "content": "-$${1 \\over 4}$$"}]
["A"]
null
$$y\left( \alpha \right) = \sqrt {2\left( {{{\tan \alpha + \cot \alpha } \over {1 + {{\tan }^2}\alpha }}} \right) + {1 \over {{{\sin }^2}\alpha }}}$$ <br><br>= $$\sqrt {2\left( {{{1 + {{\tan }^2}\alpha } \over {\tan \alpha \left( {1 + {{\tan }^2}\alpha } \right)}}} \right) + {1 \over {{{\sin }^2}\alpha }}} $$ <br><br>= $$\sqrt {2\left( {{{\cos \alpha } \over {\sin \alpha }}} \right) + {1 \over {{{\sin }^2}\alpha }}} $$ <br><br>= $$\sqrt {{{\sin 2\alpha + 1} \over {{{\sin }^2}\alpha }}} $$ <br><br>= $${{\left| {\sin \alpha + \cos \alpha } \right|} \over {\left| {\sin \alpha } \right|}}$$ <br><br>At $$\alpha $$ = $${{5\pi } \over 6}$$ <br><br>$${\left| {\sin \alpha + \cos \alpha } \right|}$$ = -(sin$$\alpha $$ + cos$$\alpha $$) <br><br>and |sin$$\alpha $$| = sin$$\alpha $$ <br><br>$$ \therefore $$ y($$\alpha $$) = $${{ - \left( {\sin \alpha + \cos \alpha } \right)} \over {\sin \alpha }}$$ <br><br>= -1 - cot$$\alpha $$ <br><br>$$ \therefore $$ $${{dy} \over {d\alpha }}$$ = cosec<sup>2</sup>$$\alpha $$ <br><br>So $${{{dy} \over {d\alpha }}}$$ at $$\alpha $$ = $${{5\pi } \over 6}$$, <br><br>= cosec<sup>2</sup>$${{5\pi } \over 6}$$ = 4
mcq
jee-main-2020-online-7th-january-morning-slot
jKg7va9mIxQ9FIreIH7k9k2k5fnompn
maths
differentiation
differentiation-of-implicit-function
Let y = y(x) be a function of x satisfying <br/><br>$$y\sqrt {1 - {x^2}} = k - x\sqrt {1 - {y^2}} $$ where k is a constant and <br/><br>$$y\left( {{1 \over 2}} \right) = - {1 \over 4}$$. Then $${{dy} \over {dx}}$$ at x = $${1 \over 2}$$, is equal to :</br></br>
[{"identifier": "A", "content": "$${2 \\over {\\sqrt 5 }}$$"}, {"identifier": "B", "content": "$$ - {{\\sqrt 5 } \\over 2}$$"}, {"identifier": "C", "content": "$${{\\sqrt 5 } \\over 2}$$"}, {"identifier": "D", "content": "$$ - {{\\sqrt 5 } \\over 4}$$"}]
["B"]
null
$$y\sqrt {1 - {x^2}} = k - x\sqrt {1 - {y^2}} $$ ....(1) <br><br>On differentiating both side of eq. (1) w.r.t. x we get, <br><br>$${{dy} \over {dx}}\sqrt {1 - {x^2}} - y{{2x} \over {2\sqrt {1 - {x^2}} }}$$ <br><br>= 0 - $$\sqrt {1 - {y^2}} + {{xy} \over {\sqrt {1 - {y^2}} }}{{dy} \over {dx}}$$ <br><br>Put x = $${1 \over 2}$$ and y = $$ - {1 \over 4}$$, we get <br><br>$${{dy} \over {dx}}{{\sqrt 3 } \over 2} - \left( { - {1 \over 4}} \right){{{1 \over 2}} \over {{{\sqrt 3 } \over 2}}}$$ <br><br>= $$ - {{\sqrt {15} } \over 4} + {{ - {1 \over 8}} \over {{{\sqrt {15} } \over 4}}}.{{dy} \over {dx}}$$ <br><br>$$ \therefore $$ $${{dy} \over {dx}} = - {{\sqrt 5 } \over 2}$$
mcq
jee-main-2020-online-7th-january-evening-slot
Dv3KDCMR2csVxH0QHWjgy2xukf8zrqqn
maths
differentiation
differentiation-of-implicit-function
If $$\left( {a + \sqrt 2 b\cos x} \right)\left( {a - \sqrt 2 b\cos y} \right) = {a^2} - {b^2}$$<br/><br/> where a &gt; b &gt; 0, then $${{dx} \over {dy}}\,\,at\left( {{\pi \over 4},{\pi \over 4}} \right)$$ is :
[{"identifier": "A", "content": "$${{a - 2b} \\over {a + 2b}}$$"}, {"identifier": "B", "content": "$${{a - b} \\over {a + b}}$$"}, {"identifier": "C", "content": "$${{a + b} \\over {a - b}}$$"}, {"identifier": "D", "content": "$${{2a + b} \\over {2a - b}}$$"}]
["C"]
null
$$(a + \sqrt 2 b\cos x)(a - \sqrt 2 b\cos y) = {a^2} - {b^2}$$<br><br>$$ \Rightarrow {a^2} - \sqrt 2 ab\cos y + \sqrt 2 ab\cos x - 2{b^2}\cos x\cos y = {a^2} - {b^2}$$<br><br>Differentiating both sides :<br><br>$$0 - \sqrt 2 ab\left( { - \sin y{{dy} \over {dx}}} \right) + \sqrt 2 ab( - \sin x)$$<br><br>$$ - 2{b^2}\left[ {\cos x\left( { - \sin y{{dy} \over {dx}}} \right) + \cos y( - \sin x)} \right] = 0$$<br><br>At $$\left( {{\pi \over 4},{\pi \over 4}} \right)$$ :<br><br>$$ab{{dy} \over {dx}} - ab - 2{b^2}\left( { - {1 \over 2}{{dy} \over {dx}} - {1 \over 2}} \right) = 0$$<br><br>$$ \Rightarrow {{dx} \over {dy}} = {{ab + {b^2}} \over {ab - {b^2}}} = {{a + b} \over {a - b}}$$; a, b &gt; 0
mcq
jee-main-2020-online-4th-september-morning-slot
1ldpt5swb
maths
differentiation
differentiation-of-implicit-function
<p>Let $$y=f(x)=\sin ^{3}\left(\frac{\pi}{3}\left(\cos \left(\frac{\pi}{3 \sqrt{2}}\left(-4 x^{3}+5 x^{2}+1\right)^{\frac{3}{2}}\right)\right)\right)$$. Then, at x = 1,</p>
[{"identifier": "A", "content": "$$2 y^{\\prime}+\\sqrt{3} \\pi^{2} y=0$$"}, {"identifier": "B", "content": "$$y^{\\prime}+3 \\pi^{2} y=0$$"}, {"identifier": "C", "content": "$$\\sqrt{2} y^{\\prime}-3 \\pi^{2} y=0$$"}, {"identifier": "D", "content": "$$2 y^{\\prime}+3 \\pi^{2} y=0$$"}]
["D"]
null
$f(x)=\sin ^{3}\left(\frac{\pi}{3} \cos \left(\frac{\pi}{3 \sqrt{2}}\left(-4 x^{3}+5 x^{2}+1\right)^{3 / 2}\right)\right)$ <br/><br/>$$ \begin{aligned} & f^{\prime}(x)=3 \sin ^{2}\left(\frac{\pi}{3} \cos \left(\frac{\pi}{3 \sqrt{2}}\left(-4 x^{3}+5 x^{2}+1\right)^{3 / 2}\right)\right) \\\\ & \cos \left(\frac{\pi}{3} \cos \left(\frac{\pi}{3 \sqrt{2}}\left(-4 x^{3}+5 x^{2}+1\right)^{3 / 2}\right)\right) \\\\ & \frac{\pi}{3}\left(-\sin \left(\frac{\pi}{3 \sqrt{2}}\left(-4 x^{3}+5 x^{2}+1\right)^{3 / 2}\right)\right) \\\\ & \frac{\pi}{3 \sqrt{2}} \frac{3}{2}\left(-4 x^{3}+5 x^{3}+1\right)^{1 / 2}\left(-12 x^{2}+10 x\right) \end{aligned} $$ <br/><br/>$f^{\prime}(1)=\frac{3 \pi^{2}}{16}$ <br/><br/>$$ \begin{aligned} & f(1)=\sin ^{3}\left(\frac{\pi}{3} \cos \left(\frac{\pi}{3 \sqrt{2}} 2 \sqrt{2}\right)\right) \\\\ &=\sin ^{3}\left(-\frac{\pi}{6}\right)=\frac{-1}{8} \\\\ & \therefore 2 f^{\prime}(1)+3 \pi^{2} f(1)=0 \end{aligned} $$
mcq
jee-main-2023-online-31st-january-morning-shift
1lgoy3hxl
maths
differentiation
differentiation-of-implicit-function
<p>Let $$f(x)=\sum_\limits{k=1}^{10} k x^{k}, x \in \mathbb{R}$$. If $$2 f(2)+f^{\prime}(2)=119(2)^{\mathrm{n}}+1$$ then $$\mathrm{n}$$ is equal to ___________</p>
[]
null
10
Given, $f(x)=\sum_\limits{k=1}^{10} k x^{k}$ <br/><br/>$$ \begin{aligned} & f(x)=x+2 x^2+\ldots \ldots \ldots+10 x^{10} \\\\ & f(x) . x=x^2+2 x^3+\ldots \ldots \ldots+9 x^{10}+10 x^{11} \\\\ & f(x)(1-x)=x+x^2+x^3+\ldots \ldots \ldots+x^{10}-10 x^{11} \\\\ & \therefore f(x)=\frac{x\left(1-x^{10}\right)}{(1-x)^2}-\frac{10 x^{11}}{(1-x)} \end{aligned} $$ <br/><br/>$$ \Rightarrow $$ $$ f(x)=\frac{x-x^{11}-10 x^{11}+10 x^{12}}{(1-x)^2} = \frac{10 x^{12}-11 x^{11}+x}{(1-x)^2} $$ <br/><br/>So, <br/><br/>$$ \begin{aligned} & f(2)=2\left(1-2^{10}\right)+10 \cdot 2^{11} \\\\ & =2+18 \cdot 2^{10} \end{aligned} $$ <br/><br/>$$f'\left( x \right) = {{{{\left( {1 - x} \right)}^2}\left( {120{x^{11}} - 121{x^{10}} + 1} \right) + 2\left( {1 - x} \right)\left( {10{x^{12}} - {{11.x}^{11}} + 2} \right)} \over {{{\left( {1 - x} \right)}^4}}}$$ <br/><br/>So, <br/><br/>$$f'\left( x \right) = {{1\left( {{{120.2}^{11}} - {{121.2}^{10}} + 1} \right) + 2\left( { - 1} \right)\left( {{{10.2}^{12}} - {{11.2}^{11}} + 2} \right)} \over {{{\left( { - 1} \right)}^4}}}$$ <br/><br/>= $${2^{10}}\left( {83} \right) - 3$$ <br/><br/>Hence $2 f(2)+f^{\prime}(2)=119.2^{10}+1$ <br/><br/>$$ \Rightarrow \text { So, } \mathrm{n}=10 $$
integer
jee-main-2023-online-13th-april-evening-shift
1lgzxhecr
maths
differentiation
differentiation-of-implicit-function
<p>Let $$f(x)=\frac{\sin x+\cos x-\sqrt{2}}{\sin x-\cos x}, x \in[0, \pi]-\left\{\frac{\pi}{4}\right\}$$. Then $$f\left(\frac{7 \pi}{12}\right) f^{\prime \prime}\left(\frac{7 \pi}{12}\right)$$ is equal to</p>
[{"identifier": "A", "content": "$$\\frac{2}{3 \\sqrt{3}}$$"}, {"identifier": "B", "content": "$$\\frac{2}{9}$$"}, {"identifier": "C", "content": "$$\\frac{-1}{3 \\sqrt{3}}$$"}, {"identifier": "D", "content": "$$\\frac{-2}{3}$$"}]
["B"]
null
$$f(x)=\frac{\sin x+\cos x-\sqrt{2}}{\sin x-\cos x}$$ <br/><br/>$$ \begin{aligned} & =\frac{\frac{1}{\sqrt{2}} \sin x+\frac{1}{\sqrt{2}} \cos x-1}{\frac{1}{\sqrt{2}} \sin x-\frac{1}{\sqrt{2}} \cos x} \\\\ & =\frac{\cos \left(x-\frac{\pi}{4}\right)-1}{\sin \left(x-\frac{\pi}{4}\right)} \\\\ & =\frac{-2 \sin ^2\left(\frac{x}{2}-\frac{\pi}{8}\right)}{2 \sin \left(\frac{x}{2}-\frac{\pi}{8}\right) \cos \left(\frac{x}{2}-\frac{\pi}{8}\right)} \end{aligned} $$ <br/><br/>$$ \begin{aligned} & \Rightarrow f(x)=-\tan \left(\frac{x}{2}-\frac{\pi}{8}\right) \\\\ & \Rightarrow f^{\prime}(x)=-\frac{1}{2} \sec ^2\left(\frac{x}{2}-\frac{\pi}{8}\right) \end{aligned} $$ <br/><br/>$$ \begin{aligned} & \Rightarrow f^{\prime \prime}(x)=-\frac{1}{2} \cdot 2 \sec \left(\frac{x}{2}-\frac{\pi}{8}\right) \cdot \sec \left(\frac{x}{2}-\frac{\pi}{8}\right)\tan \left(\frac{x}{2}-\frac{\pi}{8}\right) \times \frac{1}{2} \\\\ & =-\frac{1}{2} \sec ^2\left(\frac{x}{2}-\frac{\pi}{8}\right) \cdot \tan \left(\frac{x}{2}-\frac{\pi}{8}\right) \end{aligned} $$ <br/><br/>$$ \begin{aligned} & \text { Now, } f\left(\frac{7 \pi}{12}\right) f^{\prime \prime}\left(\frac{7 \pi}{12}\right) \\\\ & =-\tan \left(\frac{7 \pi}{24}-\frac{\pi}{8}\right) \times \frac{-1}{2} \sec ^2\left(\frac{7 \pi}{24}-\frac{\pi}{8}\right) \times \tan \left(\frac{7 \pi}{24}-\frac{\pi}{8}\right) \\\\ & =\frac{1}{2} \tan ^2\left(\frac{\pi}{6}\right) \times \sec ^2 \frac{\pi}{6} \\\\ & =\frac{1}{2} \times \frac{1}{3} \times \frac{4}{3}=\frac{2}{9} \end{aligned} $$
mcq
jee-main-2023-online-8th-april-morning-shift
cOntCBTD82jRclEC
maths
differentiation
differentiation-of-inverse-trigonometric-function
If $$y = \sec \left( {{{\tan }^{ - 1}}x} \right),$$ then $${{{dy} \over {dx}}}$$ at $$x=1$$ is equal to :
[{"identifier": "A", "content": "$${1 \\over {\\sqrt 2 }}$$ "}, {"identifier": "B", "content": "$${1 \\over 2}$$ "}, {"identifier": "C", "content": "$$1$$ "}, {"identifier": "D", "content": "$$\\sqrt 2 $$ "}]
["A"]
null
Let $$y = \sec \left( {{{\tan }^{ - 1}}x} \right)$$ <br><br>and $${\tan ^{ - 1}}\,\,x = \theta .$$ <br><br>$$ \Rightarrow x = \tan \theta $$ <br><br><img class="question-image" src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734267182/exam_images/gheykswaxc1dfck1kir0.webp" loading="lazy" alt="JEE Main 2013 (Offline) Mathematics - Differentiation Question 69 English Explanation"> <br><br>Thus, we have $$y = \sec \,\theta $$ <br><br>$$ \Rightarrow y = \sqrt {1 + {x^2}} $$ <br><br>$$\left( {\,\,} \right.$$ As $$\,\,\,\,\,\,{\sec ^2}\theta = 1 + {\tan ^2}\theta $$ $$\left. {\,\,} \right)$$ <br><br>$$ \Rightarrow {{dy} \over {dx}} = {1 \over {2\sqrt {1 + {x^2}} }}.2x$$ <br><br>At $$x = 1,\,\,{{dy} \over {dx}} = {1 \over {\sqrt 2 }}.$$
mcq
jee-main-2013-offline
yy401t5DTBxS3W73
maths
differentiation
differentiation-of-inverse-trigonometric-function
If for $$x \in \left( {0,{1 \over 4}} \right)$$, the derivatives of <br/><br/>$${\tan ^{ - 1}}\left( {{{6x\sqrt x } \over {1 - 9{x^3}}}} \right)$$ is $$\sqrt x .g\left( x \right)$$, then $$g\left( x \right)$$ equals
[{"identifier": "A", "content": "$${{{3x\\sqrt x } \\over {1 - 9{x^3}}}}$$"}, {"identifier": "B", "content": "$${{{3x} \\over {1 - 9{x^3}}}}$$"}, {"identifier": "C", "content": "$${{3 \\over {1 + 9{x^3}}}}$$"}, {"identifier": "D", "content": "$${{9 \\over {1 + 9{x^3}}}}$$"}]
["D"]
null
Let y = $${\tan ^{ - 1}}\left( {{{6x\sqrt x } \over {1 - 9{x^3}}}} \right)$$ <br><br>= $${\tan ^{ - 1}}\left[ {{{2.\left( {3{x^{{3 \over 2}}}} \right)} \over {1 - {{\left( {3{x^{{3 \over 2}}}} \right)}^2}}}} \right]$$ <br><br>= 2$${\tan ^{ - 1}}\left( {3{x^{{3 \over 2}}}} \right)$$ <br><br>$$ \therefore $$ $${{dy} \over {dx}} = 2.{1 \over {1 + {{\left( {3{x^{{3 \over 2}}}} \right)}^2}}}.3 \times {3 \over 2}{\left( x \right)^{{1 \over 2}}}$$ <br><br>= $${9 \over {1 + 9{x^3}}}.\sqrt x $$ <br><br>$$ \therefore $$ g(x) = $${9 \over {1 + 9{x^3}}}$$
mcq
jee-main-2017-offline
WaMVJei76O03McRXFgNSd
maths
differentiation
differentiation-of-inverse-trigonometric-function
If    f(x) = sin<sup>-1</sup> $$\left( {{{2 \times {3^x}} \over {1 + {9^x}}}} \right),$$ then f'$$\left( { - {1 \over 2}} \right)$$ equals :
[{"identifier": "A", "content": "$$ - \\sqrt 3 {\\log _e}\\sqrt 3 $$"}, {"identifier": "B", "content": "$$ \\sqrt 3 {\\log _e}\\sqrt 3 $$"}, {"identifier": "C", "content": "$$ - \\sqrt 3 {\\log _e}\\, 3 $$"}, {"identifier": "D", "content": "$$ \\sqrt 3 {\\log _e}\\, 3 $$"}]
["B"]
null
Since f(x) = sin$$\left( {{{2 \times {3^x}} \over {1 + {9^x}}}} \right)$$ <br><br>Suppose 3<sup>x</sup> = tan t <br><br> $$ \Rightarrow $$&nbsp;&nbsp; f(x) = sin<sup>$$-$$1</sup> $$\left( {{{2\tan t} \over {1 + {{\tan }^2}t}}} \right)$$ = sin<sup>$$-$$1</sup> (sin2t) = 2t <br><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;= 2tan<sup>$$-$$1</sup> (3x) <br><br>So, f'(x) = $${2 \over {1 + {{\left( {{3^x}} \right)}^2}}} \times {3^x}.{\log _e}3$$ <br><br>$$ \therefore $$&nbsp;&nbsp; f '$$\left( { - {1 \over 2}} \right)$$ = $${2 \over {1 + {{\left( {{3^{ - {1 \over 2}}}} \right)}^2}}} \times {3^{ - {1 \over 2}}}$$ . log<sub>e</sub> 3 <br><br>=&nbsp;&nbsp;$${1 \over 2} \times \sqrt 3 \times {\log _e}3$$ &nbsp;&nbsp;=&nbsp;&nbsp;$$\sqrt 3 \times {\log _e}\sqrt 3 $$
mcq
jee-main-2018-online-15th-april-evening-slot
9onUmZNU2npIbQ1VhNA44
maths
differentiation
differentiation-of-inverse-trigonometric-function
If $$2y = {\left( {{{\cot }^{ - 1}}\left( {{{\sqrt 3 \cos x + \sin x} \over {\cos x - \sqrt 3 \sin x}}} \right)} \right)^2}$$, <br/><br/>x $$ \in $$ $$\left( {0,{\pi \over 2}} \right)$$ then $$dy \over dx$$ is equal to:
[{"identifier": "A", "content": "$$2x - {\\pi \\over 3}$$"}, {"identifier": "B", "content": "$${\\pi \\over 6} - x$$"}, {"identifier": "C", "content": "$${\\pi \\over 3} - x$$"}, {"identifier": "D", "content": "$$x - {\\pi \\over 6}$$"}]
["D"]
null
$$2y = {\left( {{{\cot }^{ - 1}}\left( {{{\sqrt 3 \cos x + \sin x} \over {\cos x - \sqrt 3 \sin x}}} \right)} \right)^2}$$ <br><br>$$ \Rightarrow $$ 2y = $${\left( {{{\cot }^{ - 1}}\left( {{{\sqrt 3 + \tan x} \over {1 - \sqrt 3 \tan x}}} \right)} \right)^2}$$ <br><br>$$ \Rightarrow $$ 2y = $${\left( {{{\cot }^{ - 1}}\left( {{{\tan {\pi \over 3} + \tan x} \over {1 - \tan {\pi \over 3}\tan x}}} \right)} \right)^2}$$ <br><br>$$ \Rightarrow $$ 2y = $${\left( {{{\cot }^{ - 1}}\tan \left( {{\pi \over 3} + x} \right)} \right)^2}$$ <br><br>$$ \Rightarrow $$ 2y = $${\left( {{\pi \over 2} - {{\tan }^{ - 1}}\tan \left( {{\pi \over 3} + x} \right)} \right)^2}$$ <br><br>As x $$ \in $$ $$\left( {0,{\pi \over 2}} \right)$$ then <br><br>$${{{\tan }^{ - 1}}\tan \left( {{\pi \over 3} + x} \right)}$$ = $${\left( {{\pi \over 3} + x} \right)}$$ <br><br>$$ \Rightarrow $$ 2y = $${\left( {{\pi \over 2} - \left( {{\pi \over 3} + x} \right)} \right)^2}$$ <br><br>$$ \Rightarrow $$ 2y = $${\left( {{\pi \over 6} - x} \right)^2}$$ <br><br>$$ \therefore $$ $$2{{dy} \over {dx}} = 2\left( {{\pi \over 6} - x} \right)\left( { - 1} \right)$$ <br><br>$$ \Rightarrow $$ $${{dy} \over {dx}} = \left( {x - {\pi \over 6}} \right)$$
mcq
jee-main-2019-online-8th-april-morning-slot
9rwVQ5XrboppQiu5tE7k9k2k5gqvdkp
maths
differentiation
differentiation-of-inverse-trigonometric-function
Let ƒ(x) = (sin(tan<sup>–1</sup>x) + sin(cot<sup>–1</sup>x))<sup>2</sup> – 1, |x| &gt; 1. <br/>If $${{dy} \over {dx}} = {1 \over 2}{d \over {dx}}\left( {{{\sin }^{ - 1}}\left( {f\left( x \right)} \right)} \right)$$ and $$y\left( {\sqrt 3 } \right) = {\pi \over 6}$$, then y($${ - \sqrt 3 }$$) is equal to :
[{"identifier": "A", "content": "$${{5\\pi } \\over 6}$$"}, {"identifier": "B", "content": "$$ - {\\pi \\over 6}$$"}, {"identifier": "C", "content": "$${\\pi \\over 3}$$"}, {"identifier": "D", "content": "$${{2\\pi } \\over 3}$$"}]
["B"]
null
Given ƒ(x) = (sin(tan<sup>–1</sup>x) + sin(cot<sup>–1</sup>x))<sup>2</sup> – 1 <br><br> = (sin(tan<sup>–1</sup>x) + sin($${\pi \over 2}$$ - tan<sup>–1</sup>x))<sup>2</sup> – 1 <br><br> = (sin(tan<sup>–1</sup>x) + cos(tan<sup>–1</sup>x))<sup>2</sup> – 1 <br><br>= sin<sup>2</sup>(tan<sup>–1</sup>x) + cos<sup>2</sup>(tan<sup>–1</sup>x) + 2sin(tan<sup>–1</sup>x)cos(tan<sup>–1</sup>x) + 1 <br><br>= 1 + sin(2tan<sup>–1</sup>x) - 1 <br><br>= sin(2tan<sup>–1</sup>x) <br><br>Also given $${{dy} \over {dx}} = {1 \over 2}{d \over {dx}}\left( {{{\sin }^{ - 1}}\left( {f\left( x \right)} \right)} \right)$$ <br><br> Integrating both sides we get <br><br>y = $${1 \over 2}$$ sin<sup>-1</sup> (f(x)) + C <br><br>= $${1 \over 2}$$ sin<sup>-1</sup> (sin(2tan<sup>–1</sup>x)) + C <br><br>Given $$y\left( {\sqrt 3 } \right) = {\pi \over 6}$$ mean x = $$\sqrt 3 $$ and y = $${\pi \over 6}$$ <br><br>$$ \therefore $$ $${\pi \over 6}$$ = $${1 \over 2}$$ sin<sup>-1</sup> (sin(2tan<sup>–1</sup>$$\sqrt 3 $$)) + C <br><br>$$ \Rightarrow $$ $${\pi \over 6}$$ = $${1 \over 2}$$ sin<sup>-1</sup> (sin(2$$ \times $$$${\pi \over 3}$$)) + C <br><br>$$ \Rightarrow $$ $${\pi \over 6}$$ = $${1 \over 2}$$ sin<sup>-1</sup> ($${{\sqrt 3 } \over 2}$$) + C <br><br>$$ \Rightarrow $$ $${\pi \over 6}$$ = $${1 \over 2}$$ $$ \times $$ $${\pi \over 3}$$ + C <br><br>$$ \Rightarrow $$ C = 0 <br><br>Now y($${ - \sqrt 3 }$$) means when x = $${ - \sqrt 3 }$$ then find y. <br><br>y = $${1 \over 2}$$ sin<sup>-1</sup> (sin(2tan<sup>–1</sup>x)) <br><br>= $${1 \over 2}$$ sin<sup>-1</sup> (sin(2tan<sup>–1</sup>($${ - \sqrt 3 }$$))) <br><br>= $${1 \over 2}$$ sin<sup>-1</sup> (sin(-2tan<sup>–1</sup>($${ \sqrt 3 }$$))) <br><br>= $${1 \over 2}$$ sin<sup>-1</sup> (sin(-2$$ \times $$$${\pi \over 3}$$)) <br><br>= $${1 \over 2}$$ sin<sup>-1</sup> (-sin(2$$ \times $$$${\pi \over 3}$$)) <br><br>= $${1 \over 2}$$ sin<sup>-1</sup> (-$${{\sqrt 3 } \over 2}$$) <br><br>= $${1 \over 2}$$ $$ \times $$ -sin<sup>-1</sup> ($${{\sqrt 3 } \over 2}$$) <br><br>= $${1 \over 2}$$ $$ \times $$ -$${\pi \over 3}$$ <br><br>= -$${\pi \over 6}$$
mcq
jee-main-2020-online-8th-january-morning-slot
o7hlhlRCMBt3fIKQdBjgy2xukezff9hs
maths
differentiation
differentiation-of-inverse-trigonometric-function
If y = $$\sum\limits_{k = 1}^6 {k{{\cos }^{ - 1}}\left\{ {{3 \over 5}\cos kx - {4 \over 5}\sin kx} \right\}} $$, <br/><br/>then $${{dy} \over {dx}}$$ at x = 0 is _______.
[]
null
91
Put, $$\cos \alpha = {3 \over 5},\sin \alpha = {4 \over 5}$$<br><br> $$ \therefore {3 \over 5}\cos kx - {4 \over 5}\sin \,kx$$<br><br> $$ = \cos \alpha .\cos kx - \sin \alpha .\sin kx$$<br><br> $$ = \cos \left( {\alpha + kx} \right)$$<br><br> So, $$y = \sum\limits_{k = 1}^6 {k{{\cos }^{ - 1}}\left( {\cos \left( {\alpha + kx} \right)} \right)} $$<br><br> $$ = \sum\limits_{k = 1}^6 {\left( {{k^2}x + kx} \right)} $$<br><br> $$ \Rightarrow {{dy} \over {dx}} = \sum\limits_{k = 1}^6 {{k^2}} $$<br><br> $$ = {{6 \times 7 \times 13} \over 6} = 91$$
integer
jee-main-2020-online-2nd-september-evening-slot
D1eT2RJT4etOfyTR0y1kmjcgbe6
maths
differentiation
differentiation-of-inverse-trigonometric-function
If $$f(x) = \sin \left( {{{\cos }^{ - 1}}\left( {{{1 - {2^{2x}}} \over {1 + {2^{2x}}}}} \right)} \right)$$ and its first derivative with respect to x is $$ - {b \over a}{\log _e}2$$ when x = 1, where a and b are integers, then the minimum value of | a<sup>2</sup> $$-$$ b<sup>2</sup> | is ____________ .
[]
null
481
$$f(x) = \sin {\cos ^{ - 1}}\left( {{{1 - {{({2^x})}^2}} \over {1 + {{({2^x})}^2}}}} \right)$$<br><br>$$ = \sin (2{\tan ^{ - 1}}{2^x})$$<br><br>$$f'(x) = \cos (2{\tan ^{ - 1}}{2^x}).2.{1 \over {1 + {{({2^x})}^2}}} \times {2^x}.{\log _e}2$$<br><br>$$ \therefore $$ $$f'(1) = \cos (2{\tan ^{ - 1}}2).{2 \over {1 + 4}} \times 2 \times {\log _e}2$$<br><br>$$ \Rightarrow f'(1) = \cos {\cos ^{ - 1}}\left( {{{1 - {2^2}} \over {1 + {2^2}}}} \right).{4 \over 5}{\log _e}2$$<br><br>$$ = - {{12} \over {25}}{\log _e}2$$<br><br>$$ \Rightarrow a = 25,b = 12$$<br><br>$$|{a^2} - {b^2}| = |625 - 144| = 481$$
integer
jee-main-2021-online-17th-march-morning-shift
1ktbc8v27
maths
differentiation
differentiation-of-inverse-trigonometric-function
Let $$f(x) = \cos \left( {2{{\tan }^{ - 1}}\sin \left( {{{\cot }^{ - 1}}\sqrt {{{1 - x} \over x}} } \right)} \right)$$, 0 &lt; x &lt; 1. Then :
[{"identifier": "A", "content": "$${(1 - x)^2}f'(x) - 2{(f(x))^2} = 0$$"}, {"identifier": "B", "content": "$${(1 + x)^2}f'(x) + 2{(f(x))^2} = 0$$"}, {"identifier": "C", "content": "$${(1 - x)^2}f'(x) + 2{(f(x))^2} = 0$$"}, {"identifier": "D", "content": "$${(1 + x)^2}f'(x) - 2{(f(x))^2} = 0$$"}]
["C"]
null
$$f(x) = \cos \left( {2{{\tan }^{ - 1}}\sin \left( {{{\cot }^{ - 1}}\sqrt {{{1 - x} \over x}} } \right)} \right)$$<br><br>$${\cot ^{ - 1}}\sqrt {{{1 - x} \over x}} = {\sin ^{ - 1}}\sqrt x $$<br><br>or $$f(x) = \cos (2{\tan ^{ - 1}}\sqrt x )$$<br><br>$$ = \cos {\tan ^{ - 1}}\left( {{{2\sqrt x } \over {1 - x}}} \right)$$<br><br>$$f(x) = {{1 - x} \over {1 + x}}$$<br><br>Now, $$f'(x) = {{ - 2} \over {{{(1 + x)}^2}}}$$<br><br>or $$f'(x){(1 - x)^2} = - 2{\left( {{{1 - x} \over {1 + x}}} \right)^2}$$<br><br>or $${(1 - x)^2}f'(x) + 2{(f(x))^2} = 0$$.
mcq
jee-main-2021-online-26th-august-morning-shift
1ktg2zxf8
maths
differentiation
differentiation-of-inverse-trigonometric-function
If $$y(x) = {\cot ^{ - 1}}\left( {{{\sqrt {1 + \sin x} + \sqrt {1 - \sin x} } \over {\sqrt {1 + \sin x} - \sqrt {1 - \sin x} }}} \right),x \in \left( {{\pi \over 2},\pi } \right)$$, then $${{dy} \over {dx}}$$ at $$x = {{5\pi } \over 6}$$ is :
[{"identifier": "A", "content": "$$ - {1 \\over 2}$$"}, {"identifier": "B", "content": "$$-$$1"}, {"identifier": "C", "content": "$${1 \\over 2}$$"}, {"identifier": "D", "content": "0"}]
["A"]
null
We have, <br/><br/>$$ y(x)=\cot ^{-1}\left(\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right) $$ <br/><br/>$$ =\cot ^{-1} \frac{\left|\cos \frac{x}{2}+\sin \frac{x}{2}\right|+\left|\cos \frac{x}{2}-\sin \frac{x}{2}\right|}{\left|\cos \frac{x}{2}+\sin \frac{x}{2}\right|-\left|\cos \frac{x}{2}-\sin \frac{x}{2}\right|} $$ <br/><br/>$$ \left[\text { as } \cos ^2 \frac{x}{2}+\sin ^2 \frac{x}{2}=1\right. $$ <br/><br/>and $\left.\sin x=2 \sin \frac{x}{2} \cos \frac{x}{2}\right]$ <br/><br/>$$ \begin{aligned} & =\cot ^{-1}\left(\frac{\cos \frac{x}{2}+\sin \frac{x}{2}+\sin \frac{x}{2}-\cos \frac{x}{2}}{\cos \frac{x}{2}+\sin \frac{x}{2}-\sin \frac{x}{2}+\cos \frac{x}{2}}\right) \forall x \in\left(\frac{\pi}{2}, \pi\right) \\ & \end{aligned} $$ <br/><br/>$$ =\cot ^{-1}\left(\frac{\sin \frac{x}{2}}{\cos \frac{x}{2}}\right)=\cot ^{-1}\left(\tan \frac{x}{2}\right) $$ <br/><br/>$$ =\frac{\pi}{2}-\tan ^{-1}\left(\tan \frac{x}{2}\right) $$ <br/><br/>$$ \begin{aligned} & \therefore y^{\prime}(x)=\frac{\pi}{2}-\frac{x}{2} \\\\ & \Rightarrow \frac{d y}{d x}=y^{\prime}(x)=-\frac{1}{2}=y^{\prime}\left(\frac{5 \pi}{6}\right) \end{aligned} $$
mcq
jee-main-2021-online-27th-august-evening-shift
1l5banuqb
maths
differentiation
differentiation-of-inverse-trigonometric-function
<p>If $$y = {\tan ^{ - 1}}\left( {\sec {x^3} - \tan {x^3}} \right),{\pi \over 2} &lt; {x^3} &lt; {{3\pi } \over 2}$$, then</p>
[{"identifier": "A", "content": "$$xy'' + 2y' = 0$$"}, {"identifier": "B", "content": "$${x^2}y'' - 6y + {{3\\pi } \\over 2} = 0$$"}, {"identifier": "C", "content": "$${x^2}y'' - 6y + 3\\pi = 0$$"}, {"identifier": "D", "content": "$$xy'' - 4y' = 0$$"}]
["B"]
null
<p>Let $${x^3} = \theta \Rightarrow {\theta \over 2} \in \left( {{\pi \over 4},\,{{3\pi } \over 4}} \right)$$</p> <p>$$\therefore$$ $$y = {\tan ^{ - 1}}(\sec \theta - \tan \theta )$$</p> <p>$$ = {\tan ^{ - 1}}\left( {{{1 - \sin \theta } \over {\cos \theta }}} \right)$$</p> <p>$$\therefore$$ $$y = {\pi \over 4} - {\theta \over 2}$$</p> <p>$$y = {\pi \over 4} - {{{x^3}} \over 2}$$</p> <p>$$\therefore$$ $$y' = {{ - 3{x^2}} \over 2}$$</p> <p>$$y'' = - 3x$$</p> <p>$$\therefore$$ $${x^2}y'' - 6y + {{3\pi } \over 2} = 0$$</p>
mcq
jee-main-2022-online-24th-june-evening-shift
luxwdj6m
maths
differentiation
differentiation-of-inverse-trigonometric-function
<p>If $$\log _e y=3 \sin ^{-1} x$$, then $$(1-x^2) y^{\prime \prime}-x y^{\prime}$$ at $$x=\frac{1}{2}$$ is equal to</p>
[{"identifier": "A", "content": "$$9 e^{\\pi / 2}$$\n"}, {"identifier": "B", "content": "$$9 e^{\\pi / 6}$$\n"}, {"identifier": "C", "content": "$$3 e^{\\pi / 2}$$\n"}, {"identifier": "D", "content": "$$3 e^{\\pi / 6}$$"}]
["A"]
null
<p>$$\begin{aligned} &\log _e y=3 \sin ^{-1} x\\ &\begin{aligned} & y=e^{3 \sin ^{-1} x} \\ & \frac{d y}{d x}=e^{3 \sin ^{-1} x} \cdot \frac{3}{\sqrt{1-x^2}} \end{aligned} \end{aligned}$$</p> <p>$$\sqrt{1-x^2} \frac{d y}{d x}=3 y$$</p> <p>Again differentiate</p> <p>$$\begin{aligned} & \sqrt{1-x^2} \cdot y^{\prime \prime}-\frac{2 x}{2 \sqrt{1-x^2}} y^{\prime}=3 y^{\prime} \\ & (1-x)^2 y^{\prime \prime}-x y^{\prime}=3 y^{\prime}\left(\sqrt{1-x^2}\right) \end{aligned}$$</p> <p>So value of $$3 y^{\prime}\left(\sqrt{1-x^2}\right)$$ at $$x=\frac{1}{2}$$</p> <p>$$\begin{aligned} & 3 \cdot \frac{3}{\sqrt{1-x^2}} e^{\sin ^{-1} x}\left(\sqrt{1-x^2}\right) \\ & =9 e^{3 \frac{\pi}{6}}=9 e^{\frac{\pi}{2}} \end{aligned}$$</p>
mcq
jee-main-2024-online-9th-april-evening-shift
lvc57bcq
maths
differentiation
differentiation-of-inverse-trigonometric-function
<p>Let $$f:(-\infty, \infty)-\{0\} \rightarrow \mathbb{R}$$ be a differentiable function such that $$f^{\prime}(1)=\lim _\limits{a \rightarrow \infty} a^2 f\left(\frac{1}{a}\right)$$. Then $$\lim _\limits{a \rightarrow \infty} \frac{a(a+1)}{2} \tan ^{-1}\left(\frac{1}{a}\right)+a^2-2 \log _e a$$ is equal to</p>
[{"identifier": "A", "content": "$$\\frac{5}{2}+\\frac{\\pi}{8}$$\n"}, {"identifier": "B", "content": "$$\\frac{3}{8}+\\frac{\\pi}{4}$$\n"}, {"identifier": "C", "content": "$$\\frac{3}{4}+\\frac{\\pi}{8}$$\n"}, {"identifier": "D", "content": "$$\\frac{3}{2}+\\frac{\\pi}{4}$$"}]
["A"]
null
<p>Let $$f^{\prime}(1)=k$$</p> <p>$$\Rightarrow \quad \lim _\limits{x \rightarrow 0} \frac{f(x)}{x^2}=k \quad\left(\frac{0}{0}\right)$$</p> <p>$$\begin{aligned} & \lim _\limits{x \rightarrow 0} \frac{f^{\prime}(x)}{2 x}=\lim _{x \rightarrow 0} \frac{f^{\prime \prime}(x)}{2}=k \\ \Rightarrow & f^{\prime \prime}(0)=2 k \end{aligned}$$</p> <p>Given information is not complete.</p>
mcq
jee-main-2024-online-6th-april-morning-shift
3BblMHpmENyy47EL
maths
differentiation
differentiation-of-logarithmic-function
If $$x = {e^{y + {e^y} + {e^{y + .....\infty }}}}$$ , $$x &gt; 0,$$ then $${{{dy} \over {dx}}}$$ is
[{"identifier": "A", "content": "$${{1 + x} \\over x}$$ "}, {"identifier": "B", "content": "$${1 \\over x}$$ "}, {"identifier": "C", "content": "$${{1 - x} \\over x}$$"}, {"identifier": "D", "content": "$${x \\over {1 + x}}$$ "}]
["C"]
null
$$x = {e^{y + {e^{y + .....\infty }}}}\,\, \Rightarrow x = {e^{y + x}}.$$ <br><br>Taking log. <br><br>$$\log \,\,x = y + x$$ <br><br>$$ \Rightarrow {1 \over x} = {{dy} \over {dx}} + 1$$ <br><br>$$ \Rightarrow {{dy} \over {dx}} = {1 \over x} - 1 = {{1 - x} \over x}$$
mcq
aieee-2004
jmcGBPjprXE1bdtL
maths
differentiation
differentiation-of-logarithmic-function
If $${x^m}.{y^n} = {\left( {x + y} \right)^{m + n}},$$ then $${{{dy} \over {dx}}}$$ is
[{"identifier": "A", "content": "$${y \\over x}$$ "}, {"identifier": "B", "content": "$${{x + y} \\over {xy}}$$ "}, {"identifier": "C", "content": "$$xy$$ "}, {"identifier": "D", "content": "$${x \\over y}$$"}]
["A"]
null
$${x^m}.{y^n} = {\left( {x + y} \right)^{m + n}}$$ <br><br>$$ \Rightarrow m\ln x + n\ln y = \left( {m + n} \right)\ln \left( {x + y} \right)$$ <br><br>Differentiating both sides. <br><br>$$\therefore$$ $${m \over x} + {n \over y}{{dy} \over {dx}} = {{m + n} \over {x + y}}\left( {1 + {{dy} \over {dx}}} \right)$$ <br><br>$$ \Rightarrow \left( {{m \over x} - {{m + n} \over {x + y}}} \right) = \left( {{{m + n} \over {x + y}} - {n \over y}} \right){{dy} \over {dx}}$$ <br><br>$$ \Rightarrow {{my - nx} \over {x\left( {x + y} \right)}} = \left( {{{my - nx} \over {y\left( {x + y} \right)}}} \right){{dy} \over {dx}}$$ <br><br>$$ \Rightarrow {{dy} \over {dx}} = {y \over x}$$
mcq
aieee-2006
oMWsMZ2BcQMVesDBdN3ng
maths
differentiation
differentiation-of-logarithmic-function
If  xlog<sub>e</sub>(log<sub>e</sub>x) $$-$$ x<sup>2</sup> + y<sup>2</sup> = 4(y &gt; 0), then $${{dy} \over {dx}}$$ at x = e is equal to :
[{"identifier": "A", "content": "$${{\\left( {1 + 2e} \\right)} \\over {2\\sqrt {4 + {e^2}} }}$$"}, {"identifier": "B", "content": "$${{\\left( {1 + 2e} \\right)} \\over {\\sqrt {4 + {e^2}} }}$$"}, {"identifier": "C", "content": "$${{\\left( {2e - 1} \\right)} \\over {2\\sqrt {4 + {e^2}} }}$$"}, {"identifier": "D", "content": "$${e \\over {\\sqrt {4 + {e^2}} }}$$"}]
["C"]
null
Differentiating with respect to x, <br><br>$$x.{1 \over {\ell nx}}.{1 \over x} + \ell n(\ell nx) - 2x + 2y.{{dy} \over {dx}} = 0$$ <br><br>at&nbsp;&nbsp;&nbsp;$$x = e$$&nbsp;&nbsp;we get <br><br>$$1 - 2e + 2y{{dy} \over {dx}} = 0 \Rightarrow {{dy} \over {dx}} = {{2e - 1} \over {2y}}$$ <br><br>$$ \Rightarrow {{dy} \over {dx}} = {{2e - 1} \over {2\sqrt {4 + {e^2}} }}\,\,$$ <br><br>as&nbsp;&nbsp;&nbsp;$$y(e) = \sqrt {4 + {e^2}} $$
mcq
jee-main-2019-online-11th-january-morning-slot
ltTrASebDziGIvmUP3p9h
maths
differentiation
differentiation-of-logarithmic-function
For x &gt; 1, if (2x)<sup>2y</sup> = 4e<sup>2x$$-$$2y</sup>, <br/><br/>then (1 + log<sub>e</sub> 2x)<sup>2</sup> $${{dy} \over {dx}}$$ is equal to :
[{"identifier": "A", "content": "$${{x\\,{{\\log }_e}2x - {{\\log }_e}2} \\over x}$$"}, {"identifier": "B", "content": "log<sub>e</sub> 2x"}, {"identifier": "C", "content": "x log<sub>e</sub> 2x"}, {"identifier": "D", "content": "$${{x\\,{{\\log }_e}2x + {{\\log }_e}2} \\over x}$$"}]
["A"]
null
(2x)<sup>2y</sup> = 4e<sup>2x-2y</sup> <br><br>2y$$\ell $$n2x = $$\ell $$n4 + 2x $$-$$ 2y <br><br>y = $${{x + \ell n2} \over {1 + \ell n2x}}$$ <br><br>y ' = $${{\left( {1 + \ell n2x} \right) - \left( {x + \ell n2} \right){1 \over x}} \over {{{\left( {1 + \ell n2x} \right)}^2}}}$$ <br><br>y '$${\left( {1 + \ell n2x} \right)^2} = \left[ {{{x\ell n2x - \ell n2} \over x}} \right]$$
mcq
jee-main-2019-online-12th-january-morning-slot
1ktbitz1b
maths
differentiation
differentiation-of-logarithmic-function
If y = y(x) is an implicit function of x such that log<sub>e</sub>(x + y) = 4xy, then $${{{d^2}y} \over {d{x^2}}}$$ at x = 0 is equal to ___________.
[]
null
40
ln(x + y) = 4xy (At x = 0, y = 1)<br><br>x + y = e<sup>4xy</sup><br><br>$$ \Rightarrow 1 + {{dy} \over {dx}} = {e^{4xy}}\left( {4x{{dy} \over {dx}} + 4y} \right)$$<br><br>At x = 0 <br><br>$${{dy} \over {dx}} = 3$$<br><br>$${{{d^2}y} \over {d{x^2}}} = {e^{4xy}}{\left( {4x{{dy} \over {dx}} + 4y} \right)^2} + {e^{4xy}}\left( {4x{{{d^2}y} \over {d{x^2}}} + 4y} \right)$$<br><br>At x = 0, $${{{d^2}y} \over {d{x^2}}} = {e^0}{(4)^2} + {e^0}(24)$$<br><br>$$ \Rightarrow {{{d^2}y} \over {d{x^2}}} = 40$$
integer
jee-main-2021-online-26th-august-morning-shift
1l57o8xuz
maths
differentiation
differentiation-of-logarithmic-function
<p>If $${\cos ^{ - 1}}\left( {{y \over 2}} \right) = {\log _e}{\left( {{x \over 5}} \right)^5},\,|y| &lt; 2$$, then :</p>
[{"identifier": "A", "content": "$${x^2}y'' + xy' - 25y = 0$$"}, {"identifier": "B", "content": "$${x^2}y'' - xy' - 25y = 0$$"}, {"identifier": "C", "content": "$${x^2}y'' - xy' + 25y = 0$$"}, {"identifier": "D", "content": "$${x^2}y'' + xy' + 25y = 0$$"}]
["D"]
null
<p>$${\cos ^{ - 1}}\left( {{y \over 2}} \right) = {\log _e}{\left( {{x \over 5}} \right)^5}\,\,\,\,\,\,\,\,\,|y| < 2$$</p> <p>Differentiating on both side</p> <p>$$ - {1 \over {\sqrt {1 - {{\left( {{y \over 2}} \right)}^2}} }} \times {{y'} \over 2} = {5 \over {{x \over 5}}} \times {1 \over 5}$$</p> <p>$${{ - xy'} \over 2} = 5\sqrt {1 - {{\left( {{y \over 2}} \right)}^2}} $$</p> <p>Square on both side</p> <p>$${{{x^2}y{'^2}} \over 4} = 25\left( {{{4 - {y^2}} \over 4}} \right)$$</p> <p>Diff on both side</p> <p>$$2xy{'^2} + 2y'y''{x^2} = - 25 \times 2yy'$$</p> <p>$$xy' + y''{x^2} + 25y = 0$$</p>
mcq
jee-main-2022-online-27th-june-morning-shift
1l58gt0p9
maths
differentiation
differentiation-of-logarithmic-function
<p>Let f : R $$\to$$ R satisfy $$f(x + y) = {2^x}f(y) + {4^y}f(x)$$, $$\forall$$x, y $$\in$$ R. If f(2) = 3, then $$14.\,{{f'(4)} \over {f'(2)}}$$ is equal to ____________.</p>
[]
null
248
<p>$$\because$$ $$f(x + y) = {2^x}f(y) + {4^y}f(x)$$ ....... (1)</p> <p>Now, $$f(y + x){2^y}f(x) + {4^x}f(y)$$ ...... (2)</p> <p>$$\therefore$$ $${2^x}f(y) + {4^y}f(x) = {2^y}f(x) + {4^x}f(y)$$</p> <p>$$({4^y} - {2^y})f(x) = ({4^x} - {2^x})f(y)$$</p> <p>$${{f(x)} \over {{4^x} - {2^x}}} = {{f(y)} \over {{4^y} - {2^y}}} = k$$</p> <p>$$\therefore$$ $$f(x) = k({4^x} - {2^x})$$</p> <p>$$\because$$ $$f(2) = 3$$ then $$k = {1 \over 4}$$</p> <p>$$\therefore$$ $$f(x) = {{{4^x} - {2^x}} \over 4}$$</p> <p>$$\therefore$$ $$f'(x) = {{{4^x}\ln 4 - {2^x}\ln 2} \over 4}$$</p> <p>$$f'(x) = {{({{2.4}^x} - {2^x})ln2} \over 4}$$</p> <p>$$\therefore$$ $${{f'(4)} \over {f'(2)}} = {{2.256 - 16} \over {2.16 - 4}}$$</p> <p>$$\therefore$$ $$14{{f'(4)} \over {f'(2)}} = 248$$</p>
integer
jee-main-2022-online-26th-june-evening-shift
1l6hy9kbq
maths
differentiation
differentiation-of-logarithmic-function
<p>The value of $$\log _{e} 2 \frac{d}{d x}\left(\log _{\cos x} \operatorname{cosec} x\right)$$ at $$x=\frac{\pi}{4}$$ is</p>
[{"identifier": "A", "content": "$$-2 \\sqrt{2}$$"}, {"identifier": "B", "content": "$$2 \\sqrt{2}$$"}, {"identifier": "C", "content": "$$-4$$"}, {"identifier": "D", "content": "4"}]
["D"]
null
<p>Let $$f(x) = {\log _{\cos x}}\cos ec\,x$$</p> <p>$$ = {{\log \cos ec\,x} \over {\log \cos x}}$$</p> <p>$$ \Rightarrow f'(x) = {{\log \cos x\,.\,\sin x\,.\,\left( { - \cos ec\,x\cot x - \log \cos ec\,x\,.\,{1 \over {\cos x}}\,.\, - \sin x} \right)} \over {{{(\log \cos x)}^2}}}$$</p> <p>at $$x = {\pi \over 4}$$</p> <p>$$f'\left( {{\pi \over 4}} \right) = {{ - \log \left( {{1 \over {\sqrt 2 }}} \right) + \log \sqrt 2 } \over {{{\left( {\log {1 \over {\sqrt 2 }}} \right)}^2}}} = {2 \over {\log \sqrt 2 }}$$</p> <p>$$\therefore$$ $${\log _e}2f'(x)$$ at $$x = {\pi \over 4} = 4$$</p>
mcq
jee-main-2022-online-26th-july-evening-shift
1ldo5zk2p
maths
differentiation
differentiation-of-logarithmic-function
<p>If $$y(x)=x^{x},x &gt; 0$$, then $$y''(2)-2y'(2)$$ is equal to</p>
[{"identifier": "A", "content": "$$4(\\log_{e}2)^{2}+2$$"}, {"identifier": "B", "content": "$$8\\log_{e}2-2$$"}, {"identifier": "C", "content": "$$4\\log_{e}2+2$$"}, {"identifier": "D", "content": "$$4(\\log_{e}2)^{2}-2$$"}]
["D"]
null
$\begin{aligned} & y=x^x \\\\ & y^{\prime}=x^x(1+\ln x) \\\\ & y^{\prime \prime}=x^x(1+\ln x)^2+\frac{x^x}{x} \\\\ & f^{\prime \prime}(2)-2 f^{\prime}(2)=\left(4(1+\ln 2)^2+2\right)-(2)(4(1+\ln 2)) \\\\ & =4\left(1+(\ln 2)^2\right)+2-8 \\\\ & =4(\ln 2)^2-2 \\\\ & \end{aligned}$
mcq
jee-main-2023-online-1st-february-evening-shift
1lh23oisg
maths
differentiation
differentiation-of-logarithmic-function
<p>If $$2 x^{y}+3 y^{x}=20$$, then $$\frac{d y}{d x}$$ at $$(2,2)$$ is equal to :</p>
[{"identifier": "A", "content": "$$-\\left(\\frac{3+\\log _{e} 16}{4+\\log _{e} 8}\\right)$$"}, {"identifier": "B", "content": "$$-\\left(\\frac{2+\\log _{e} 8}{3+\\log _{e} 4}\\right)$$"}, {"identifier": "C", "content": "$$-\\left(\\frac{3+\\log _{e} 8}{2+\\log _{e} 4}\\right)$$"}, {"identifier": "D", "content": "$$-\\left(\\frac{3+\\log _{e} 4}{2+\\log _{e} 8}\\right)$$"}]
["B"]
null
Given, $2 x^y+3 y^x=20$ ..........(i) <br/><br/>Let $u=x^y$ <br/><br/>On taking log both sides, we get <br/><br/>$\log u=y \log x$ <br/><br/>On differentiating both sides with respect to $x$, we get <br/><br/>$$ \begin{array}{rlrl} & \frac{1}{u} \frac{d u}{d x} =y \frac{1}{x}+\log x \frac{d y}{d x} \\\\ & \Rightarrow \frac{d u}{d x} =u\left(\frac{y}{x}+\log x \frac{d y}{d x}\right) \\\\ & \Rightarrow \frac{d u}{d x} =x^y\left(\frac{y}{x}+\log x \frac{d y}{d x}\right) .........(ii) \end{array} $$ <br/><br/>Also, let $v=y^x$ <br/><br/>On taking log both sides, we get <br/><br/>$\log v=x \log y$ <br/><br/>On differentiating both sides, we get <br/><br/>$$ \begin{array}{rlrl} & \frac{1}{v} \frac{d v}{d x} =x \frac{1}{y} \frac{d y}{d x}+\log y \cdot 1 \\\\ &\Rightarrow \frac{d v}{d x} =v\left(\frac{x}{y} \frac{d y}{d x}+\log y\right) \\\\ &\Rightarrow \frac{d v}{d x} =y^x\left(\frac{x}{y} \frac{d y}{d x}+\log y\right) ..........(iii) \end{array} $$ <br/><br/>Now, from Equation (i), $2 u+3 v=20$ <br/><br/>$$ \begin{aligned} & \Rightarrow 2 \frac{d u}{d x}+3 \frac{d v}{d x}=0 \\\\ & \Rightarrow 2 x^y\left(\frac{y}{x}+\log x \frac{d y}{d x}\right)+3 y^x\left(\frac{x}{y} \frac{d y}{d x}+\log y\right)=0 \text { [Using Eqs. (ii) and (iii)] } \end{aligned} $$ <br/><br/>On putting $x=2$ and $y=2$, we get <br/><br/>$$ \begin{aligned} & 2(4)\left(1+\log 2 \frac{d y}{d x}\right)+3(4)\left(\frac{d y}{d x}+\log 2\right)=0 \\\\ & \Rightarrow \frac{d y}{d x}(8 \log 2+12)+(8+12 \log 2)=0 \\\\ & \Rightarrow \frac{d y}{d x}=-\left(\frac{2+3 \log 2}{3+2 \log 2}\right) \\\\ & \Rightarrow \frac{d y}{d x}=-\left(\frac{2+\log 8}{3+\log 4}\right) \end{aligned} $$
mcq
jee-main-2023-online-6th-april-morning-shift
jaoe38c1lsfkl66w
maths
differentiation
differentiation-of-logarithmic-function
<p>$$\text { Let } y=\log _e\left(\frac{1-x^2}{1+x^2}\right),-1 &lt; x&lt;1 \text {. Then at } x=\frac{1}{2} \text {, the value of } 225\left(y^{\prime}-y^{\prime \prime}\right) \text { is equal to }$$</p>
[{"identifier": "A", "content": "732"}, {"identifier": "B", "content": "736"}, {"identifier": "C", "content": "742"}, {"identifier": "D", "content": "746"}]
["B"]
null
<p>$$\begin{aligned} & y=\log _e\left(\frac{1-x^2}{1+x^2}\right) \\ & \frac{d y}{d x}=y^{\prime}=\frac{-4 x}{1-x^4} \end{aligned}$$</p> <p>Again,</p> <p>$$\frac{d^2 y}{d x^2}=y^{\prime \prime}=\frac{-4\left(1+3 x^4\right)}{\left(1-x^4\right)^2}$$</p> <p>Again</p> <p>$$y^{\prime}-y^{\prime \prime}=\frac{-4 x}{1-x^4}+\frac{4\left(1+3 x^4\right)}{\left(1-x^4\right)^2}$$</p> <p>at $$\mathrm{x}=\frac{1}{2}$$,</p> <p>$$y^{\prime}-y^{\prime \prime}=\frac{736}{225}$$</p> <p>Thus $$225\left(y^{\prime}-y^{\prime \prime}\right)=225 \times \frac{736}{225}=736$$</p>
mcq
jee-main-2024-online-29th-january-evening-shift
ghiwTEg0WvaIpfIxQkmJb
maths
differentiation
differentiation-of-parametric-function
If   x $$=$$ 3 tan t and y $$=$$ 3 sec t, then the value of $${{{d^2}y} \over {d{x^2}}}$$ at t $$ = {\pi \over 4},$$ is :
[{"identifier": "A", "content": "$${1 \\over {3\\sqrt 2 }}$$"}, {"identifier": "B", "content": "$${1 \\over {6\\sqrt 2 }}$$"}, {"identifier": "C", "content": "$${3 \\over {2\\sqrt 2 }}$$"}, {"identifier": "D", "content": "$${1 \\over 6}$$"}]
["B"]
null
x = 3 tan t and y = 3 sec t <br><br>So that $${{dx} \over {dt}}$$ = 3sec<sup>2</sup>t and $${{dy} \over {dt}}$$ = 3 sec t tan t <br><br>$${{dy} \over {dx}}$$ = $${{dy/dt} \over {dx/dt}}$$ = sin t <br><br>$${{{d^2}y} \over {d{x^2}}}$$ = (cos t)$$.{{dt} \over {dx}}$$ <br><br>$${{{d^2}y} \over {d{x^2}}} = \left( {\cos t} \right).{1 \over {3{{\sec }^2}t}}$$ <br><br>$${{{d^2}y} \over {d{x^2}}}$$ = $${1 \over 3}$$(cos<sup>3</sup> t) <br><br>$${\left( {{{{d^2}y} \over {d{x^2}}}} \right)_{t = \pi /4}}$$ = $${1 \over 3} \times {\left( {{1 \over {\sqrt 2 }}} \right)^3} = {1 \over {6\sqrt 2 }}$$
mcq
jee-main-2019-online-9th-january-evening-slot
JDlJzbuL7enwokKQJU7k9k2k5k6v2n8
maths
differentiation
differentiation-of-parametric-function
If $$x = 2\sin \theta - \sin 2\theta $$ and $$y = 2\cos \theta - \cos 2\theta $$,<br/> $$\theta \in \left[ {0,2\pi } \right]$$, then $${{{d^2}y} \over {d{x^2}}}$$ at $$\theta $$ = $$\pi $$ is :
[{"identifier": "A", "content": "$${3 \\over 8}$$"}, {"identifier": "B", "content": "$${3 \\over 2}$$"}, {"identifier": "C", "content": "$${3 \\over 4}$$"}, {"identifier": "D", "content": "-$${3 \\over 4}$$"}]
["A"]
null
$$x = 2\sin \theta - \sin 2\theta $$ <br><br>$$ \Rightarrow $$ $${{dx} \over {d\theta }}$$ = $$2\cos \theta - 2\cos 2\theta $$ <br><br>$$y = 2\cos \theta - \cos 2\theta $$ <br><br>$$ \Rightarrow $$ $${{dy} \over {d\theta }}$$ = –2sin$$\theta $$ + 2sin2$$\theta $$ <br><br>$${{dy} \over {dx}} = {{{{dy} \over {d\theta }}} \over {{{dx} \over {d\theta }}}}$$ = $${{\sin 2\theta - \sin \theta } \over {\cos \theta - \cos 2\theta }}$$ <br/><br/>This expression is simplified by recognizing that $\sin 2 \theta = 2\sin \theta \cos \theta$ and $\cos 2 \theta = 2\cos^2 \theta -1$, leading to the expression: <br/><br/>$$ \frac{dy}{dx} = \frac{2 \sin \frac{\theta}{2} \cdot \cos \frac{3 \theta}{2}}{2 \sin \frac{\theta}{2} \cdot \sin \frac{3 \theta}{2}}=\cot \frac{3 \theta}{2}$$ <br/><br/>This is the rate of change of y with respect to x, as a function of θ. <br/><br/>Next, we differentiate this function with respect to θ to find $\frac{d^2 y}{dx^2}$, yielding : <br/><br/>$$ \frac{d^2 y}{dx^2}=\frac{d}{d \theta}\left(\frac{d y}{d x}\right) \frac{d \theta}{d x}=-\frac{3}{2} \operatorname{cosec}^2 \frac{3 \theta}{2} \cdot \frac{d \theta}{d x}$$ <br/><br/>Here, $\frac{d \theta}{d x}$ is the reciprocal of $\frac{dx}{d\theta}$, so the equation becomes : <br/><br/>$$ \frac{d^2 y}{dx^2}=\frac{-\frac{3}{2} \operatorname{cosec}^2 \frac{3 \theta}{2}}{2\left(\cos \theta-\cos2 \theta\right)}$$ <br/><br/>Finally, we evaluate this expression at $\theta = \pi$, yielding : <br/><br/>$$ \frac{d^2 y}{dx^2}(\pi)=\frac{-3}{4(-1-1)}=\frac{3}{8}$$ <br/><br/>Therefore, the correct answer is (A) $\frac{3}{8}$. <br/><br/><b>Alternate Method :</b> <br/><br/>First, let's find the derivatives of x and y with respect to θ : <br/><br/>1) $$ \frac{dx}{d\theta} = 2\cos \theta - 2\cos 2\theta $$ <br/><br/>2) $$ \frac{dy}{d\theta} = -2\sin \theta + 2\sin 2\theta $$ <br/><br/>We know that $$ \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} $$ <br/><br/>So, we substitute 1) and 2) into this equation : <br/><br/>We have <br/><br/>$$\frac{dy}{dx} = \frac{-2\sin \theta + 2\sin 2\theta}{2\cos \theta - 2\cos 2\theta} = \frac{\sin 2\theta - \sin \theta}{\cos \theta - \cos 2\theta}$$ <br/><br/>For simplification, let's denote the numerator as $$N = \sin 2\theta - \sin \theta$$ and the denominator as $$D = \cos \theta - \cos 2\theta$$. <br/><br/>We have to compute $$\frac{d}{d\theta}(\frac{dy}{dx})$$ which is $$\frac{d}{d\theta}(\frac{N}{D})$$. <br/><br/>We can use the quotient rule for differentiation, which states that if we have a function of the form $$\frac{u}{v}$$, then its derivative is given by $$\frac{vu' - uv'}{v^2}$$. <br/><br/>So here, $$N' = 2\cos 2\theta - \cos \theta$$ and $$D' = -\sin \theta + 2\sin 2\theta$$. <br/><br/>Applying the quotient rule : <br/><br/>$$\frac{d}{d\theta}(\frac{dy}{dx}) = \frac{D N' - N D'}{D^2}$$ <br/><br/>Substituting the expressions for $$N'$$, $$D'$$, $$N$$, and $$D$$ we get : <br/><br/>$$\frac{d}{d\theta}(\frac{dy}{dx}) = \frac{(\cos \theta - \cos 2\theta)(2\cos 2\theta - \cos \theta) - (\sin 2\theta - \sin \theta)(-\sin \theta + 2\sin 2\theta)}{(\cos \theta - \cos 2\theta)^2}$$ <br/><br/>Now $$ \frac{d^2 y}{d x^2}=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d}{d \theta}\left(\frac{d y}{d x}\right) \times \frac{d \theta}{d x} $$ <br/><br/>= $$\frac{(\cos \theta - \cos 2\theta)(2\cos 2\theta - \cos \theta) - (\sin 2\theta - \sin \theta)(-\sin \theta + 2\sin 2\theta)}{(\cos \theta - \cos 2\theta)^2}$$$$ \times \frac{1}{(2 \cos \theta-2 \cos 2 \theta)} $$ <br/><br/>$$ \begin{aligned} \left.\therefore \frac{d^2 y}{d x^2}\right|_{\theta=\pi} & =\frac{(-1-1)(2+1)-(0-0)(-0+0)}{2(-1-1)^3} \\\\ & =\frac{-2 \times 3}{-2 \times 8}=\frac{3}{8} \end{aligned} $$
mcq
jee-main-2020-online-9th-january-evening-slot
1l6nm5311
maths
differentiation
differentiation-of-parametric-function
<p>Let $$x(t)=2 \sqrt{2} \cos t \sqrt{\sin 2 t}$$ and <br/><br/>$$y(t)=2 \sqrt{2} \sin t \sqrt{\sin 2 t}, t \in\left(0, \frac{\pi}{2}\right)$$. <br/><br/>Then $$\frac{1+\left(\frac{d y}{d x}\right)^{2}}{\frac{d^{2} y}{d x^{2}}}$$ at $$t=\frac{\pi}{4}$$ is equal to :</p>
[{"identifier": "A", "content": "$$\\frac{-2 \\sqrt{2}}{3}$$"}, {"identifier": "B", "content": "$$\\frac{2}{3}$$"}, {"identifier": "C", "content": "$$\\frac{1}{3}$$"}, {"identifier": "D", "content": "$$ \\frac{-2}{3}$$"}]
["D"]
null
<p>$$x = 2\sqrt 2 \cos t\sqrt {\sin 2t} ,\,y = 2\sqrt 2 \sin t\sqrt {\sin 2t} $$</p> <p>$$\therefore$$ $${{dx} \over {dt}} = {{2\sqrt 2 \cos 3t} \over {\sqrt {\sin 2t} }},\,{{dy} \over {dt}} = {{2\sqrt 2 \sin 3t} \over {\sqrt {\sin 2t} }}$$</p> <p>$$\therefore$$ $${{dy} \over {dx}} = \tan 3t,\,\left( {\mathrm{at}\,t = {\pi \over 4},\,{{dy} \over {dx}} = - 1} \right)$$</p> <p>and $${{{d^2}y} \over {d{x^2}}} = 3{\sec ^2}3t\,.\,{{dt} \over {dx}} = {{3{{\sec }^2}3t\,.\,\sqrt {\sin 2t} } \over {2\sqrt 2 \cos 3t}}$$</p> <p>$$\left( {\mathrm{At}\,t = {\pi \over 4},\,{{{d^2}y} \over {d{x^2}}} = - 3} \right)$$</p> <p>$$\therefore$$ $${{1 + {{\left( {{{dy} \over {dx}}} \right)}^2}} \over {{{{d^2}y} \over {d{x^2}}}}} = {2 \over { - 3}} = {{ - 2} \over 3}$$</p>
mcq
jee-main-2022-online-28th-july-evening-shift
lmUN4HWdFdPr7roD
maths
differentiation
methods-of-differentiation
$${{{d^2}x} \over {d{y^2}}}$$ equals:
[{"identifier": "A", "content": "$$ - {\\left( {{{{d^2}y} \\over {d{x^2}}}} \\right)^{ - 1}}{\\left( {{{dy} \\over {dx}}} \\right)^{ - 3}}$$ "}, {"identifier": "B", "content": "$${\\left( {{{{d^2}y} \\over {d{x^2}}}} \\right)^{}}{\\left( {{{dy} \\over {dx}}} \\right)^{ - 2}}$$ "}, {"identifier": "C", "content": "$$ - \\left( {{{{d^2}y} \\over {d{x^2}}}} \\right){\\left( {{{dy} \\over {dx}}} \\right)^{ - 3}}$$ "}, {"identifier": "D", "content": "$${\\left( {{{{d^2}y} \\over {d{x^2}}}} \\right)^{ - 1}}$$ "}]
["C"]
null
$${{{d^2}x} \over {d{y^2}}} = {d \over {dy}}\left( {{{dx} \over {dy}}} \right)$$ <br><br>$$ = {d \over {dx}}\left( {{{dx} \over {dy}}} \right){{dx} \over {dy}}$$ <br><br>$$ = {d \over {dx}}\left( {{1 \over {dy/dx}}} \right){{dx} \over {dy}}$$ <br><br>$$ = - {1 \over {{{\left( {{{dy} \over {dx}}} \right)}^2}}}.{{{d^2}y} \over {d{x^2}}}.{1 \over {{{dy} \over {dx}}}}$$ <br><br>$$ = - {1 \over {{{\left( {{{dy} \over {dx}}} \right)}^3}}}{{{d^2}y} \over {d{x^2}}}$$
mcq
aieee-2011
DdF7R8tTzx4Kv40prc7k9k2k5khz7tx
maths
differentiation
methods-of-differentiation
Let ƒ and g be differentiable functions on R such that fog is the identity function. If for some a, b $$ \in $$ R, g'(a) = 5 and g(a) = b, then ƒ'(b) is equal to :
[{"identifier": "A", "content": "1"}, {"identifier": "B", "content": "5"}, {"identifier": "C", "content": "$${2 \\over 5}$$"}, {"identifier": "D", "content": "$${1 \\over 5}$$"}]
["D"]
null
Given the function composition f(g(x)) is the identity function, it means f(g(x)) = x for all x. <br><br>$$ \Rightarrow $$ ƒ'(g(x)) g'(x) = 1 <br><br>put x = a <br><br>$$ \Rightarrow $$ ƒ'(b) g'(a) = 1 <br><br>$$ \Rightarrow $$ ƒ'(b) = $${1 \over 5}$$
mcq
jee-main-2020-online-9th-january-evening-slot
1l54ubqt9
maths
differentiation
methods-of-differentiation
<p>Let f and g be twice differentiable even functions on ($$-$$2, 2) such that $$f\left( {{1 \over 4}} \right) = 0$$, $$f\left( {{1 \over 2}} \right) = 0$$, $$f(1) = 1$$ and $$g\left( {{3 \over 4}} \right) = 0$$, $$g(1) = 2$$. Then, the minimum number of solutions of $$f(x)g''(x) + f'(x)g'(x) = 0$$ in $$( - 2,2)$$ is equal to ________.</p>
[]
null
4
Let $h(x)=f(x) \cdot g^{\prime}(x)$ <br/><br/> As $f(x)$ is even $f\left(\frac{1}{2}\right)=\left(\frac{1}{4}\right)=0$ <br/><br/> $\Rightarrow f\left(-\frac{1}{2}\right)=f\left(-\frac{1}{4}\right)=0$ <br/><br/> and $g(x)$ is even $\Rightarrow g^{\prime}(x)$ is odd <br/><br/> and $g(1)=2$ ensures one root of $g^{\prime}(x)$ is 0 . <br/><br/> So, $h(x)=f(x) \cdot g^{\prime}(x)$ has minimum five zeroes <br/><br/> $\therefore h^{\prime}(x)=f^{\prime}(x) \cdot g^{\prime}(x)+f(x) \cdot g^{\prime \prime}(x)=0$, <br/><br/> has minimum 4 zeroes
integer
jee-main-2022-online-29th-june-evening-shift
1ldswyfk5
maths
differentiation
methods-of-differentiation
<p>Let $$f:\mathbb{R}\to\mathbb{R}$$ be a differentiable function that satisfies the relation $$f(x+y)=f(x)+f(y)-1,\forall x,y\in\mathbb{R}$$. If $$f'(0)=2$$, then $$|f(-2)|$$ is equal to ___________.</p>
[]
null
3
$f(x+y)=f(x)+f(y)-1$ <br/><br/> $$ \begin{aligned} & f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\\\ & f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}=f^{\prime}(0)=2 \\\\ & f^{\prime}(x)=2 \Rightarrow d y=2 d x \\\\ & y=2 x+C \\\\ & \mathrm{x}=0, \mathrm{y}=1, \mathrm{c}=1 \\\\ & \mathrm{y}=2 \mathrm{x}+1 \\\\ & |f(-2)|=|-4+1|=|-3|=3 \end{aligned} $$
integer
jee-main-2023-online-29th-january-morning-shift
1lgq0jgd2
maths
differentiation
methods-of-differentiation
<p>For the differentiable function $$f: \mathbb{R}-\{0\} \rightarrow \mathbb{R}$$, let $$3 f(x)+2 f\left(\frac{1}{x}\right)=\frac{1}{x}-10$$, then $$\left|f(3)+f^{\prime}\left(\frac{1}{4}\right)\right|$$ is equal to</p>
[{"identifier": "A", "content": "13"}, {"identifier": "B", "content": "$$\\frac{29}{5}$$"}, {"identifier": "C", "content": "$$\\frac{33}{5}$$"}, {"identifier": "D", "content": "7"}]
["A"]
null
<ol> <li><p>Given the equation: $$3f(x) + 2f\left(\frac{1}{x}\right) = \frac{1}{x} - 10$$</p> </li> <li><p>Replace $$x$$ with $$\frac{1}{x}$$ in the original equation: <br/>$$3f\left(\frac{1}{x}\right) + 2f(x) = x - 10$$</p> </li> <li><p>Now, we have two equations:</p> </li> </ol> <p>$$3f(x) + 2f\left(\frac{1}{x}\right) = \frac{1}{x} - 10$$ <br/><br/>$$3f\left(\frac{1}{x}\right) + 2f(x) = x - 10$$</p> <ol> <li>By adding the two equations, we can find $$f(x)$$:</li> </ol> <p>$$5f(x) = \frac{3}{x} - 2x - 10$$</p> <ol> <li>Now, let&#39;s differentiate both sides with respect to $$x$$:</li> </ol> <p>$$5f&#39;(x) = -\frac{3}{x^2} - 2$$</p> <ol> <li>Now, we can find the values for $$f(3)$$ and $$f&#39;\left(\frac{1}{4}\right)$$:</li> </ol> <p>$$f(3) = \frac{1}{5}(1 - 6 - 10) = -3$$ <br/><br/>$$f&#39;\left(\frac{1}{4}\right) = \frac{1}{5}(-48 - 2) = -10$$</p> <ol> <li>Finally, calculate the expression we are interested in :</li> </ol> <p>$$\left|f(3) + f&#39;\left(\frac{1}{4}\right)\right| = \left|-3 - 10\right| = 13$$</p>
mcq
jee-main-2023-online-13th-april-morning-shift
lsan2rgn
maths
differentiation
methods-of-differentiation
If $y=\frac{(\sqrt{x}+1)\left(x^2-\sqrt{x}\right)}{x \sqrt{x}+x+\sqrt{x}}+\frac{1}{15}\left(3 \cos ^2 x-5\right) \cos ^3 x$, then $96 y^{\prime}\left(\frac{\pi}{6}\right)$ is equal to :
[]
null
105
$\begin{aligned} & y=\frac{(\sqrt{x}+1)\left(x^2-\sqrt{x}\right)}{x \sqrt{x}+x+\sqrt{x}}+\frac{1}{15}\left(3 \cos ^2 x-5\right) \cos ^3 x \\\\ & y=\frac{(\sqrt{x}+1)(\sqrt{x})\left((\sqrt{x})^3-1\right)}{(\sqrt{x})\left((\sqrt{x})^2+(\sqrt{x})+1\right)}+\frac{1}{5} \cos ^5 x-\frac{1}{3} \cos ^3 x \\\\ & y=(\sqrt{x}+1)(\sqrt{x}-1)+\frac{1}{5} \cos ^5 x-\frac{1}{3} \cos ^3 x\end{aligned}$ <br/><br/>$\begin{aligned} & y^{\prime}=1-\cos ^4 x \cdot(\sin x)+\cos ^2 x(\sin x \\\\ & y^{\prime}\left(\frac{\pi}{6}\right)=1-\frac{9}{16} \times \frac{1}{2}+\frac{3}{4} \times \frac{1}{2} \\\\ & =\frac{32-9+12}{32}=\frac{35}{32} \\\\ & \therefore 96 y^{\prime}\left(\frac{\pi}{6}\right)=105\end{aligned}$
integer
jee-main-2024-online-1st-february-evening-shift
jaoe38c1lsey8r3c
maths
differentiation
methods-of-differentiation
<p>Suppose $$f(x)=\frac{\left(2^x+2^{-x}\right) \tan x \sqrt{\tan ^{-1}\left(x^2-x+1\right)}}{\left(7 x^2+3 x+1\right)^3}$$. Then the value of $$f^{\prime}(0)$$ is equal to</p>
[{"identifier": "A", "content": "$$\\pi$$\n"}, {"identifier": "B", "content": "$$\\sqrt{\\pi}$$\n"}, {"identifier": "C", "content": "0"}, {"identifier": "D", "content": "$$\\frac{\\pi}{2}$$"}]
["B"]
null
<p>$$\begin{aligned} & f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h} \\ & =\lim _{h \rightarrow 0} \frac{\left(2^h+2^{-h}\right) \tan h \sqrt{\tan ^{-1}\left(h^2-h+1\right)}-0}{\left(7 h^2+3 h+1\right)^3 h} \\ & =\sqrt{\pi} \end{aligned}$$</p>
mcq
jee-main-2024-online-29th-january-morning-shift
1lsg3xnzo
maths
differentiation
methods-of-differentiation
<p>Let $$f: \mathbb{R}-\{0\} \rightarrow \mathbb{R}$$ be a function satisfying $$f\left(\frac{x}{y}\right)=\frac{f(x)}{f(y)}$$ for all $$x, y, f(y) \neq 0$$. If $$f^{\prime}(1)=2024$$, then</p>
[{"identifier": "A", "content": "$$x f^{\\prime}(x)+2024 f(x)=0$$\n"}, {"identifier": "B", "content": "$$x f^{\\prime}(x)-2023 f(x)=0$$\n"}, {"identifier": "C", "content": "$$x f^{\\prime}(x)-2024 f(x)=0$$\n"}, {"identifier": "D", "content": "$$x f^{\\prime}(x)+f(x)=2024$$"}]
["C"]
null
<p>$$f\left(\frac{x}{y}\right)=\frac{f(x)}{f(y)}$$</p> <p>$$\begin{aligned} & \mathrm{f}^{\prime}(1)=2024 \\ & \mathrm{f}(1)=1 \end{aligned}$$</p> <p>Partially differentiating w. r. t. x</p> <p>$$\begin{aligned} & \mathrm{f}^{\prime}\left(\frac{\mathrm{x}}{\mathrm{y}}\right) \cdot \frac{1}{\mathrm{y}}=\frac{1}{\mathrm{f}(\mathrm{y})} \mathrm{f}^{\prime}(\mathrm{x}) \\ & \mathrm{y} \rightarrow \mathrm{x} \\ & \mathrm{f}^{\prime}(1) \cdot \frac{1}{\mathrm{x}}=\frac{\mathrm{f}^{\prime}(\mathrm{x})}{\mathrm{f}(\mathrm{x})} \\ & 2024 \mathrm{f}(\mathrm{x})=\mathrm{xf}^{\prime}(\mathrm{x}) \Rightarrow \mathrm{xf}^{\prime}(\mathrm{x})-2024 \mathrm{~f}(\mathrm{x})=0 \end{aligned}$$</p>
mcq
jee-main-2024-online-30th-january-evening-shift
1lsg8vyuz
maths
differentiation
methods-of-differentiation
<p>Let $$g: \mathbf{R} \rightarrow \mathbf{R}$$ be a non constant twice differentiable function such that $$\mathrm{g}^{\prime}\left(\frac{1}{2}\right)=\mathrm{g}^{\prime}\left(\frac{3}{2}\right)$$. If a real valued function $$f$$ is defined as $$f(x)=\frac{1}{2}[g(x)+g(2-x)]$$, then</p>
[{"identifier": "A", "content": "$$f^{\\prime \\prime}(x)=0$$ for atleast two $$x$$ in $$(0,2)$$\n"}, {"identifier": "B", "content": "$$f^{\\prime}\\left(\\frac{3}{2}\\right)+f^{\\prime}\\left(\\frac{1}{2}\\right)=1$$\n"}, {"identifier": "C", "content": "$$f^{\\prime \\prime}(x)=0$$ for no $$x$$ in $$(0,1)$$\n"}, {"identifier": "D", "content": "$$f^{\\prime \\prime}(x)=0$$ for exactly one $$x$$ in $$(0,1)$$"}]
["A"]
null
<p>$$f^{\prime}(x)=\frac{g^{\prime}(x)-g^{\prime}(2-x)}{2}, f^{\prime}\left(\frac{3}{2}\right)=\frac{g^{\prime}\left(\frac{3}{2}\right)-g^{\prime}\left(\frac{1}{2}\right)}{2}=0$$</p> <p>Also $$\mathrm{f}^{\prime}\left(\frac{1}{2}\right)=\frac{\mathrm{g}^{\prime}\left(\frac{1}{2}\right)-\mathrm{g}^{\prime}\left(\frac{3}{2}\right)}{2}=0, \mathrm{f}^{\prime}\left(\frac{1}{2}\right)=0$$</p> <p>$$\Rightarrow \mathrm{f}^{\prime}\left(\frac{3}{2}\right)=\mathrm{f}^{\prime}\left(\frac{1}{2}\right)=0$$</p> <p>$$\Rightarrow \operatorname{rootsin}\left(\frac{1}{2}, 1\right)$$ and $$\left(1, \frac{3}{2}\right)$$</p> <p>$$\Rightarrow \mathrm{f}^{\prime \prime}(\mathrm{x})$$ is zero at least twice in $$\left(\frac{1}{2}, \frac{3}{2}\right)$$</p>
mcq
jee-main-2024-online-30th-january-morning-shift
luy6z53a
maths
differentiation
methods-of-differentiation
<p>Let $$f(x)=a x^3+b x^2+c x+41$$ be such that $$f(1)=40, f^{\prime}(1)=2$$ and $$f^{\prime \prime}(1)=4$$. Then $$a^2+b^2+c^2$$ is equal to:</p>
[{"identifier": "A", "content": "54"}, {"identifier": "B", "content": "51"}, {"identifier": "C", "content": "73"}, {"identifier": "D", "content": "62"}]
["B"]
null
<p>Given the polynomial function:</p> <p>$$f(x) = ax^3 + bx^2 + cx + 41$$</p> <p>We are provided the following conditions from the problem:</p> <p>1. $$f(1) = 40$$</p> <p>2. $$f^{\prime}(1) = 2$$</p> <p>3. $$f^{\prime \prime}(1) = 4$$</p> <p>First, calculate $f(1)$:</p> <p>$$f(1) = a(1)^3 + b(1)^2 + c(1) + 41 = 40$$</p> <p>Simplifying, we get:</p> <p>$$a + b + c + 41 = 40$$</p> <p>Therefore:</p> <p>$$a + b + c = -1$$</p> <p>Next, calculate the first derivative $f^{\prime}(x)$:</p> <p>$$f^{\prime}(x) = 3ax^2 + 2bx + c$$</p> <p>Given $f^{\prime}(1) = 2$:</p> <p>$$f^{\prime}(1) = 3a(1)^2 + 2b(1) + c = 2$$</p> <p>Simplifying, we get:</p> <p>$$3a + 2b + c = 2$$</p> <p>Next, calculate the second derivative $f^{\prime \prime}(x)$:</p> <p>$$f^{\prime \prime}(x) = 6ax + 2b$$</p> <p>Given $f^{\prime \prime}(1) = 4$:</p> <p>$$f^{\prime \prime}(1) = 6a(1) + 2b = 4$$</p> <p>Simplifying, we get:</p> <p>$$6a + 2b = 4$$</p> <p>Dividing the entire equation by 2:</p> <p>$$3a + b = 2$$</p> <p>We now have three equations:</p> <p>1. $$a + b + c = -1$$</p> <p>2. $$3a + 2b + c = 2$$</p> <p>3. $$3a + b = 2$$</p> <p>To solve for $a$, $b$, and $c$, follow these steps:</p> <p>First, subtract the third equation from the second equation:</p> <p>$$(3a + 2b + c) - (3a + b) = 2 - 2$$</p> <p>Which simplifies to:</p> <p>$$b + c = 0$$</p> <p>So,</p> <p>$$c = -b$$</p> <p>Substitute $c = -b$ into the first equation:</p> <p>$$(a + b - b = -1)$$</p> <p>Simplifying, we get:</p> <p>$$a = -1$$</p> <p>Now substitute $a = -1$ into the third equation:</p> <p>$$3(-1) + b = 2$$</p> <p>Which simplifies to:</p> <p>$$-3 + b = 2$$</p> <p>Therefore:</p> <p>$$b = 5$$</p> <p>Next, since $c = -b$:</p> <p>$$c = -5$$</p> <p>Finally, we need to find $a^2 + b^2 + c^2$:</p> <p>$$a^2 + b^2 + c^2 = (-1)^2 + 5^2 + (-5)^2$$</p> <p>Simplifying, we get:</p> <p>$$1 + 25 + 25 = 51$$</p> <p>Therefore, the answer is:</p> <p><strong>Option B: 51</strong></p>
mcq
jee-main-2024-online-9th-april-morning-shift
aLwt0WnHgsFA2mmz
maths
differentiation
successive-differentiation
If $$f\left( x \right) = {x^n},$$ then the value of <p>$$f\left( 1 \right) - {{f'\left( 1 \right)} \over {1!}} + {{f''\left( 1 \right)} \over {2!}} - {{f'''\left( 1 \right)} \over {3!}} + ..........{{{{\left( { - 1} \right)}^n}{f^n}\left( 1 \right)} \over {n!}}$$ is</p>
[{"identifier": "A", "content": "$$1$$"}, {"identifier": "B", "content": "$${{2^n}}$$ "}, {"identifier": "C", "content": "$${{2^n} - 1}$$ "}, {"identifier": "D", "content": "$$0$$"}]
["D"]
null
$$f\left( x \right) = {x^n} \Rightarrow f\left( 1 \right) = 1$$ <br><br>$$f'\left( x \right) = n{x^{n - 1}} \Rightarrow f'\left( 1 \right) = n$$ <br><br>$$f''\left( x \right) = n\left( {n - 1} \right){x^{n - 2}}$$ <br><br>$$ \Rightarrow f''\left( 1 \right) = n\left( {n - 1} \right)$$ <br><br>$$\therefore$$ $${f^n}\left( x \right) = n!$$ <br><br>$$ \Rightarrow {f^n}\left( 1 \right) = n!$$ <br><br>$$ = 1 - {n \over {1!}} + {{n\left( {n - 1} \right)} \over {2!}}{{n\left( {n - 1} \right)\left( {n - 2} \right)} \over {3!}}$$ <br><br>$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + .... + {\left( { - 1} \right)^n}{{n!} \over {n!}}$$ <br><br>$$ = {}^n\,{C_0} - {}^n\,{C_1} + {}^n\,{C_2} - {}^n\,{C_3}$$ <br><br>$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + ...... + {\left( { - 1} \right)^n}\,{}^n{C_n} = 0$$
mcq
aieee-2003
oPx9mrcOVu1a3ZqfY3d42
maths
differentiation
successive-differentiation
Let f be a polynomial function such that <br/><br/>f (3x) = f ' (x) . f '' (x), for all x $$ \in $$ <b>R</b>. Then :
[{"identifier": "A", "content": "f (2) + f ' (2) = 28"}, {"identifier": "B", "content": "f '' (2) $$-$$ f ' (2) = 0"}, {"identifier": "C", "content": "f '' (2) $$-$$ f (2) = 4"}, {"identifier": "D", "content": "f (2) $$-$$ f ' (2) + f '' (2) = 10"}]
["B"]
null
<p>Let $$f(x) = {a_0}{x^n} + {a_1}{x^{n - 1}} + {a_2}{x^{n - 1}} + \,\,....\,\, + {a_{n - 1}}x + {a_n}$$</p> <p>$$f'(x) = {a_0}n{x^{n - 1}} + {a_1}(n - 1){x^{n - 2}} + \,\,.....\,\, + {a_{n - 1}}$$</p> <p>$$f''(x) = {a_0}n(n - 1){x^{n - 2}} + {a_1}(n - 1)(n - 2){x^{n - 3}} + \,\,....\,\, + {a_{n - 2}}$$</p> <p>Now,</p> <p>$$f(3x) = {3^n}{a_0}{x^n} + {3^{n - 1}}{a_1}{x^{n - 1}} + {3^{n - 2}}{a_2}{x^{n - 2}} + \,\,....\,\, + 3{a_{n - 1}} + {a_n}$$</p> <p>$$f'(x)\,.\,f''(x) = [{a_0}n{x^{n - 1}} + {a_1}(n - 1){x^{n - 2}} + \,\,....\,\, + {a_{n - 1}}]$$</p> <p>$$[{a_0}n(n - 1){x^{n - 2}} + {a_1}(n - 1)(n - 2){x^{n - 3}} + \,\,....\,\, + {a_{n - 2}}]$$</p> <p>Comparing highest powers of x, we get</p> <p>$${3^n}{a_0}{x_n} = a_0^2(n - 1){x^{n - 1 + n - 2}} = a_0^2{n^2}(n - 1){x^{2n - 3}}$$</p> <p>Therefore, $$2n - 3 = n$$</p> <p>$$\Rightarrow$$ n = 3 and $${3^n}{a_0} = a_0^2{n^2}(n - 1)$$</p> <p>$$ \Rightarrow {a_0} = 27 = {3 \over 2}$$</p> <p>Therefore, $$f(x) = {3 \over 2}{x^3} + {a_1}{x^2} + {a_2}x + {a_3}$$</p> <p>$$f'(x) = {9 \over 2}{x^2} + 2{a_1}x + {a_2}$$</p> <p>$$f''(x) = 9x + 2{a_1}$$</p> <p>$$f(3x) = {{81} \over 2}{x^3} + 9{a_1}{x^2} + 3{a_2}x + {a_3}$$</p> <p>Now, $$f(3x) = f'(x)\,.\,f''(x)$$</p> <p>$$ \Rightarrow {{81} \over 2}{x^3} + 9{a_1}{x^2} + 3{a_2}x + {a_3}$$</p> <p>$$ \Rightarrow \left( {{9 \over 2}{x^2} + 2{a_1}x + {a_2}} \right)(9x + 2{a_1})$$</p> <p>$$ \Rightarrow {{81} \over 2}{x^3} + 9{a_1}{x^2} + 3{a_2}x + {a_3} = {{81} \over 2}{x^3} + [9{a_1} + 18{a_1}]{x^2} + [4a_1^2 + 9{a_2}]x + 2{a_1}{a_2}$$</p> <p>Comparing the coefficients, we get</p> <p>$$9{a_1} = 27{a_1}$$</p> <p>$$ \Rightarrow {a_1} = 0,\,3{a_2} = 4a_1^2 + 9{a_2} = 9{a_2}$$</p> <p>$$ \Rightarrow {a_2} = 0$$</p> <p>Therefore, $$f(x) = {3 \over 2}{x^3}$$</p> <p>$$f'(x) = {9 \over 2}{x^2}$$</p> <p>$$f''(x) = 9x$$</p> <p>Hence, $$f''(2) - f'(x) = 18 - 18 = 0$$</p>
mcq
jee-main-2017-online-9th-april-morning-slot
7QKM8xqcNeiQvnGv4PFtQ
maths
differentiation
successive-differentiation
Let f : R $$ \to $$ R be a function such that f(x) = x<sup>3</sup> + x<sup>2</sup>f'(1) + xf''(2) + f'''(3), x $$ \in $$ R. Then f(2) equals -
[{"identifier": "A", "content": "30"}, {"identifier": "B", "content": "$$-$$ 2"}, {"identifier": "C", "content": "$$-$$ 4"}, {"identifier": "D", "content": "8"}]
["B"]
null
f(x) = x<sup>3</sup> + x<sup>2</sup>f '(1) + xf ''(2) + f '''(3) <br><br>$$ \Rightarrow $$&nbsp;&nbsp;f '(x) = 3x<sup>2</sup> + 2xf '(1) + f ''(x)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;. . . . . (1) <br><br>$$ \Rightarrow $$&nbsp;&nbsp;f ''(x) = 6x + 2f '(1)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;. . . . . . (2) <br><br>$$ \Rightarrow $$&nbsp;&nbsp;f '''(x) = 6 &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;. . . . . .(3) <br><br>put x = 1 in equation (1) : <br><br>f '(1) = 3 + 2f '(1) + f ''(2)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;. . . . .(4) <br><br>put x = 2 in equation (2) : <br><br>f ''(2) = 12 + 2f '(1)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;. . . . .(5) <br><br>from equation (4) &amp; (5) : <br><br>$$-$$3 $$-$$ f '(1) = 12 + 2f'(1) <br><br>$$ \Rightarrow $$&nbsp;&nbsp;3f '(1) = $$-$$ 15 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;f '(1) = $$-$$ 5 $$ \Rightarrow $$&nbsp;&nbsp;f ''(2) = 2 &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;. . . . .(2) <br><br>put x = 3 in equation (3) : <br><br>f ''' (3) = 6 <br><br>$$ \therefore $$&nbsp;&nbsp;f(x) = x<sup>3</sup> $$-$$ 5x<sup>2</sup> + 2x + 6 <br><br>f(2) = 8 $$-$$ 20 + 4 + 6 = $$-$$ 2
mcq
jee-main-2019-online-10th-january-morning-slot
xrX2b9GpaeqoQ7utJtjgy2xukf0qq2t5
maths
differentiation
successive-differentiation
If y<sup>2</sup> + log<sub>e</sub> (cos<sup>2</sup>x) = y, <br/>$$x \in \left( { - {\pi \over 2},{\pi \over 2}} \right)$$, then :
[{"identifier": "A", "content": "|y''(0)| = 2"}, {"identifier": "B", "content": "|y'(0)| + |y''(0)| = 3"}, {"identifier": "C", "content": "y''(0) = 0"}, {"identifier": "D", "content": "|y'(0)| + |y\"(0)| = 1"}]
["A"]
null
Given y<sup>2</sup> + log<sub>e</sub> (cos<sup>2</sup>x) = y .....(1) <br><br>Put x = 0, we get <br><br>y<sup>2</sup> + log<sub>e</sub> (1) = y <br><br>$$ \Rightarrow $$ y<sup>2</sup> = y <br><br>$$ \Rightarrow $$ y = 0, 1 <br><br>Differentiating (1) we get <br><br>2yy' + $${1 \over {\cos x}}\left( { - \sin x} \right)$$ = y' <br><br>$$ \Rightarrow $$ 2yy' - 2tanx = y' ....(2) <br><br>From (2) when x = 0, y = 0 then y'(0) = 0 <br><br>From (2) when x = 0, y = 1 then <br><br>2y' = y' <br><br>$$ \Rightarrow $$ y'(0) = 0 <br><br>Again differentiating (2) we get <br><br>2(y')<sup>2</sup> + 2yy'' – 2sec<sup>2</sup>x = y'' <br><br>from (2) when x = 0, y = 0, y’(0) = 0 then <br><br>y”(0) = -2 <br><br>Also from (2) when x = 0, y = 1, y’(0) = 0 then <br><br>y”(0) = 2 <br><br>$$ \therefore $$ |y''(0)| = 2
mcq
jee-main-2020-online-3rd-september-morning-slot
1l56u56af
maths
differentiation
successive-differentiation
<p>If $$y(x) = {\left( {{x^x}} \right)^x},\,x &gt; 0$$, then $${{{d^2}x} \over {d{y^2}}} + 20$$ at x = 1 is equal to ____________.</p>
[]
null
16
<p>$$\because$$ $$y(x) = {\left( {{x^x}} \right)^x}$$</p> <p>$$\therefore$$ $$y = {x^{{x^2}}}$$</p> <p>$$\therefore$$ $${{dy} \over {dx}} = {x^2}\,.\,{x^{{x^2} - 1}} + {x^{{x^2}}}\ln x\,.\,2x$$</p> <p>$$\therefore$$ $${{dx} \over {dy}} = {1 \over {{x^{{x^2} + 1}}(1 + 2\ln x)}}$$ ..... (i)</p> <p>Now, $${{{d^2}x} \over {dx^2}} = {d \over {dx}}\left( {{{\left( {{x^{{x^2} + 1}}(1 + 2\ln x)} \right)}^{ - 1}}} \right)\,.\,{{dx} \over {dy}}$$</p> <p>$$ = {{ - x{{\left( {{x^{{x^2} + 1}}(1 + 2\ln x)} \right)}^{ - 2}}\,.\,{x^{{x^2}}}(1 + 2\ln x)({x^2} + 2{x^2}\ln x + 3)} \over {{x^{{x^2}}}(1 + 2\ln x)}}$$</p> <p>$$ = {{ - {x^{{x^2}}}(1 + 2\ln x)({x^3} + 3 + 2{x^2}\ln x)} \over {{{\left( {{x^{{x^2}}}(1 + 2\ln x)} \right)}^3}}}$$</p> <p>$${{{d^2}x} \over {d{y^2}(at\,x = 1)}} = - 4$$</p> <p>$$\therefore$$ $${{{d^2}x} \over {d{y^2}(at\,x = 1)}} + 20 = 16$$</p>
integer
jee-main-2022-online-27th-june-evening-shift
1l6klla1m
maths
differentiation
successive-differentiation
<p>For the curve $$C:\left(x^{2}+y^{2}-3\right)+\left(x^{2}-y^{2}-1\right)^{5}=0$$, the value of $$3 y^{\prime}-y^{3} y^{\prime \prime}$$, at the point $$(\alpha, \alpha)$$, $$\alpha&gt;0$$, on C, is equal to ____________.</p>
[]
null
16
<p>$$\because$$ $$C:({x^2} + {y^2} - 3) + {({x^2} - {y^2} - 1)^5} = 0$$ for point ($$\alpha$$, $$\alpha$$)</p> <p>$${\alpha ^2} + {\alpha ^2} - 3 + {({\alpha ^2} - {\alpha ^2} - 1)^5} = 0$$</p> <p>$$\therefore$$ $$\alpha = \sqrt 2 $$</p> <p>On differentiating $$({x^2} + {y^2} - 3) + {({x^2} - {y^2} - 1)^5} = 0$$ we get</p> <p>$$x + yy' + 5{({x^2} - {y^2} - 1)^4}(x - yy') = 0$$ ...... (i)</p> <p>When $$x = y = \sqrt 2 $$ then $$y' = {3 \over 2}$$</p> <p>Again on differentiating eq. (i) we get :</p> <p>$$1 + {(y')^2} + yy'' + 20({x^2} - {y^2} - 1)(2x - 2yy')(x - y'y) + 5{({x^2} - {y^2} - 1)^4}(1 - y{'^2} - yy'') = 0$$</p> <p>For $$x = y = \sqrt 2 $$ and $$y' = {3 \over 2}$$ we get $$y'' = - {{23} \over {4\sqrt 2 }}$$</p> <p>$$\therefore$$ $$3y' - {y^3}y'' = 3\,.\,{3 \over 2} - {\left( {\sqrt 2 } \right)^3}\,.\,\left( { - {{23} \over {4\sqrt 2 }}} \right) = 16$$</p>
integer
jee-main-2022-online-27th-july-evening-shift
1ldon088o
maths
differentiation
successive-differentiation
<p>Let $$f(x) = 2x + {\tan ^{ - 1}}x$$ and $$g(x) = {\log _e}(\sqrt {1 + {x^2}} + x),x \in [0,3]$$. Then</p>
[{"identifier": "A", "content": "there exists $$\\widehat x \\in [0,3]$$ such that $$f'(\\widehat x) < g'(\\widehat x)$$"}, {"identifier": "B", "content": "there exist $$0 < {x_1} < {x_2} < 3$$ such that $$f(x) < g(x),\\forall x \\in ({x_1},{x_2})$$"}, {"identifier": "C", "content": "$$\\min f'(x) = 1 + \\max g'(x)$$"}, {"identifier": "D", "content": "$$\\max f(x) > \\max g(x)$$"}]
["D"]
null
$$ \begin{aligned} & f^{\prime}(x)=2+\frac{1}{1+x^2}, g^{\prime}(x)=\frac{1}{\sqrt{x^2+1}} \\\\ & f^{\prime \prime}(x)=-\frac{2 x}{\left(1+x^2\right)^2}<0 \\\\ & g^{\prime \prime}(x)=-\frac{1}{2}\left(x^2+1\right)^{-3 / 2} \cdot 2 x<0 \\\\ & \left.f^{\prime}(x)\right|_{\min }=f^{\prime}(3)=2+\frac{1}{10}=\frac{21}{10} \\\\ & \left.g^{\prime}(x)\right|_{\max }=g^{\prime}(0)=1 \\\\ & \left.f^{\prime}(x)\right|_{\max }=f(3)=2+\tan ^{-1} 3 \\\\ & \left.g(x)\right|_{\max }=g(3)=\ln (3+\sqrt{10})<\ln <7<2 \end{aligned} $$
mcq
jee-main-2023-online-1st-february-morning-shift
1ldoofa8p
maths
differentiation
successive-differentiation
<p>If $$f(x)=x^{2}+g^{\prime}(1) x+g^{\prime \prime}(2)$$ and $$g(x)=f(1) x^{2}+x f^{\prime}(x)+f^{\prime \prime}(x)$$, then the value of $$f(4)-g(4)$$ is equal to ____________.</p>
[]
null
14
Let $g^{\prime}(1)=a$ and $g^{\prime \prime}(2)=b$ <br/><br/>$\Rightarrow f(x)=x^{2}+a x+b$ <br/><br/>Now, $f(1)=1+a+b ; f^{\prime}(x)=2 x+a ; f^{\prime \prime}(x)=2$ <br/><br/>$g(x)=(1+a+b) x^{2}+x(2 x+a)+2$ <br/><br/>$\Rightarrow g(x)=(a+b+3) x^{2}+a x+2$ <br/><br/>$\Rightarrow g^{\prime}(x)=2 x(a+b+3)+a \Rightarrow g^{\prime}(1)=2(a+b+3)$$+a=a$ <br/><br/>$\Rightarrow a+b+3=0$ .......(1) <br/><br/>$g^{\prime \prime}(x)=2(a+b+3)=b$ <br/><br/>$\Rightarrow 2 a+b+6=0$ ........(2) <br/><br/>Solving (i) and (ii), we get <br/><br/>$a=-3$ and $b=0$ <br/><br/>$f(x)=x^{2}-3 x$ and $g(x)=-3 x+2$ <br/><br/>$f(4)=4$ and $g(4)=-12+2=-10$ <br/><br/>$\Rightarrow f(4)-g(4)=16-2=14$
integer
jee-main-2023-online-1st-february-morning-shift
1ldsfuib3
maths
differentiation
successive-differentiation
<p>Let $$f$$ and $$g$$ be the twice differentiable functions on $$\mathbb{R}$$ such that</p> <p>$$f''(x)=g''(x)+6x$$</p> <p>$$f'(1)=4g'(1)-3=9$$</p> <p>$$f(2)=3g(2)=12$$.</p> <p>Then which of the following is NOT true?</p>
[{"identifier": "A", "content": "$$g(-2)-f(-2)=20$$"}, {"identifier": "B", "content": "There exists $$x_0\\in(1,3/2)$$ such that $$f(x_0)=g(x_0)$$"}, {"identifier": "C", "content": "$$|f'(x)-g'(x)| < 6\\Rightarrow -1 < x < 1$$"}, {"identifier": "D", "content": "If $$-1 < x < 2$$, then $$|f(x)-g(x)| < 8$$"}]
["D"]
null
<p>$$f''(x) = g''(x) + 6x$$</p> <p>$$ \Rightarrow f'(x) = g'(x) + 3{x^2} + C$$</p> <p>$$f'(1) = g'(1) + 3 + C$$</p> <p>$$ \Rightarrow g = 3 + 3 + C \Rightarrow C = 3$$</p> <p>$$ \Rightarrow f'(x) = g'(x) + 3{x^2} + 3$$</p> <p>$$ \Rightarrow f(x) = g(x) + {x^2} + 3x + C'$$</p> <p>$$x = 2$$</p> <p>$$f(2) = g(2) + 14 + C'$$</p> <p>$$12 = 4 + 14 + C'$$</p> <p>$$ \Rightarrow C' = - 6$$</p> <p>$$ \Rightarrow f(x) = g(2) + {x^3} + 3x - 6$$</p> <p>$$f( - 2) = g( - 2) - 8 - 6 - 6$$</p> <p>$$g( - 2) - f( - 2) = 20$$</p> <p>$$f'(x) - g'(x) = 3{x^2} + 3$$</p> <p>$$x \in ( - 1,1)$$</p> <p>$$3{x^2} + 3 \in (0,6)$$</p> <p>$$ \Rightarrow f'(x) - g'(x) \in (0,6)$$<?p> <p>$$f(x) - g(x) = {x^3} + 3x - 6$$</p> <p>At $$x = - 1$$</p> <p>$$|f( - 1) - g( - 1)| = 10$$</p> <p>$$\therefore$$ Option (4) is false.</p>
mcq
jee-main-2023-online-29th-january-evening-shift
1ldv1t76j
maths
differentiation
successive-differentiation
<p>Let $$y(x) = (1 + x)(1 + {x^2})(1 + {x^4})(1 + {x^8})(1 + {x^{16}})$$. Then $$y' - y''$$ at $$x = - 1$$ is equal to</p>
[{"identifier": "A", "content": "496"}, {"identifier": "B", "content": "976"}, {"identifier": "C", "content": "464"}, {"identifier": "D", "content": "944"}]
["A"]
null
$$ \begin{aligned} & y=\frac{1-x^{32}}{1-x}=1+x+x^2+x^3+\ldots+x^{31} \\\\ & y^{\prime}=1+2 x+3 x^2+\ldots+31 x^{30} \\\\ & y^{\prime}(-1)=1-2+3-4+\ldots+31=16 \\\\ & y^{\prime \prime}(x)=2+6 x+12 x^2+\ldots+31.30 x^{29} \\\\ & y^{\prime \prime}(-1)=2-6+12 \ldots 31.30=480 \\\\ & y^{\prime \prime}(-1)-y^{\prime}(-1)=-496 \end{aligned} $$
mcq
jee-main-2023-online-25th-january-morning-shift
1ldwx6r58
maths
differentiation
successive-differentiation
<p>If $$f(x) = {x^3} - {x^2}f'(1) + xf''(2) - f'''(3),x \in \mathbb{R}$$, then</p>
[{"identifier": "A", "content": "$$2f(0) - f(1) + f(3) = f(2)$$"}, {"identifier": "B", "content": "$$f(1) + f(2) + f(3) = f(0)$$"}, {"identifier": "C", "content": "$$f(3) - f(2) = f(1)$$"}, {"identifier": "D", "content": "$$3f(1) + f(2) = f(3)$$"}]
["A"]
null
$$ f(x)=x^3-x^2 f^{\prime}(1)+x f^{\prime \prime}(2)-f^{\prime \prime \prime}(3), x \in R $$<br/><br/> Let $\mathrm{f}^{\prime}(1)=\mathrm{a}, \mathrm{f}^{\prime \prime}(2)=\mathrm{b}, \mathrm{f}^{\prime \prime \prime}(3)=\mathrm{c}$<br/><br/> $$ \begin{aligned} & f(x)=x^3-a x^2+b x-c \\\\ & f^{\prime}(x)=3 x^2-2 a x+b \\\\ & f^{\prime \prime}(x)=6 x-2 a \\\\ & f^{\prime \prime \prime}(x)=6 \\\\ & c=6, a=3, b=6 \\\\ & f(x)=x^3-3 x^2+6 x-6 \\\\ & f(1)=-2, f(2)=2, f(3)=12, f(0)=-6 \\\\ & 2 f(0)-f(1)+f(3)=2=f(2) \end{aligned} $$
mcq
jee-main-2023-online-24th-january-evening-shift
lsble0m7
maths
differentiation
successive-differentiation
Let $f(x)=x^3+x^2 f^{\prime}(1)+x f^{\prime \prime}(2)+f^{\prime \prime \prime}(3), x \in \mathbf{R}$. Then $f^{\prime}(10)$ is equal to ____________.
[]
null
202
<p>$$\begin{aligned} & f(x)=x^3+x^2 \cdot f^{\prime}(1)+x \cdot f^{\prime \prime}(2)+f^{\prime \prime \prime}(3) \\ & f^{\prime}(x)=3 x^2+2 x f^{\prime}(1)+f^{\prime \prime}(2) \\ & f^{\prime \prime}(x)=6 x+2 f^{\prime}(1) \\ & f^{\prime \prime \prime}(x)=6 \\ & f^{\prime}(1)=-5, f^{\prime \prime}(2)=2, f^{\prime \prime \prime}(3)=6 \\ & f(x)=x^3+x^2 \cdot(-5)+x \cdot(2)+6 \\ & f^{\prime}(x)=3 x^2-10 x+2 \\ & f^{\prime}(10)=300-100+2=202 \end{aligned}$$</p>
integer
jee-main-2024-online-27th-january-morning-shift
1lsg94q54
maths
differentiation
successive-differentiation
<p>If $$f(x)=\left|\begin{array}{ccc} 2 \cos ^4 x &amp; 2 \sin ^4 x &amp; 3+\sin ^2 2 x \\ 3+2 \cos ^4 x &amp; 2 \sin ^4 x &amp; \sin ^2 2 x \\ 2 \cos ^4 x &amp; 3+2 \sin ^4 x &amp; \sin ^2 2 x \end{array}\right|,$$ then $$\frac{1}{5} f^{\prime}(0)=$$ is equal to :</p>
[{"identifier": "A", "content": "2"}, {"identifier": "B", "content": "1"}, {"identifier": "C", "content": "0"}, {"identifier": "D", "content": "6"}]
["C"]
null
<p>$$\begin{aligned} & \left|\begin{array}{ccc} 2 \cos ^4 x & 2 \sin ^4 x & 3+\sin ^2 2 x \\ 3+2 \cos ^4 x & 2 \sin ^4 x & \sin ^2 2 x \\ 2 \cos ^4 x & 3+2 \sin ^2 4 x & \sin ^2 2 x \end{array}\right| \\ & \mathrm{R}_2 \rightarrow \mathrm{R}_2-\mathrm{R}_1, \mathrm{R}_3 \rightarrow \mathrm{R}_3-\mathrm{R}_1 \\ & \left|\begin{array}{ccc} 2 \cos ^4 x & 2 \sin ^4 x & 3+\sin ^2 2 x \\ 3 & 0 & -3 \\ 0 & 3 & -3 \end{array}\right| \\ & \mathrm{f}(\mathrm{x})=45 \\ & \mathrm{f}^{\prime}(\mathrm{x})=0 \\ & \end{aligned}$$</p>
mcq
jee-main-2024-online-30th-january-morning-shift
lv2er9ry
maths
differentiation
successive-differentiation
<p>Let $$f: \mathbb{R} \rightarrow \mathbb{R}$$ be a thrice differentiable function such that $$f(0)=0, f(1)=1, f(2)=-1, f(3)=2$$ and $$f(4)=-2$$. Then, the minimum number of zeros of $$\left(3 f^{\prime} f^{\prime \prime}+f f^{\prime \prime \prime}\right)(x)$$ is __________.</p>
[]
null
5
<p>$$\because f: R \rightarrow R \text { and } f(0)=0, f(1)=1, f(2)=-1 \text {, }$$</p> <p>$$f(3)=2$$ and $$f(4)=-2$$ then</p> <p>$$f(x)$$ has atleast 4 real roots.</p> <p>Then $$f(x)$$ has atleast 3 real roots and $$f^{\prime}(x)$$ has atleast 2 real roots.</p> <p>Now we know that</p> <p>$$\begin{aligned} \frac{d}{d x}\left(f^3 \cdot f^{\prime \prime}\right) & =3 f^2 \cdot f^{\prime} \cdot f^{\prime \prime}+f^3 \cdot f^{\prime \prime \prime} \\ & =f^2\left(3 f^{\prime} \cdot f^{\prime}+f \cdot f^{\prime \prime}\right) \end{aligned}$$</p> <p>Here $$f^3 \cdot f'$$ has atleast 6 roots.</p> <p>Then its differentiation has atleast 5 distinct roots.</p>
integer
jee-main-2024-online-4th-april-evening-shift
lv9s204y
maths
differentiation
successive-differentiation
<p>If $$y(\theta)=\frac{2 \cos \theta+\cos 2 \theta}{\cos 3 \theta+4 \cos 2 \theta+5 \cos \theta+2}$$, then at $$\theta=\frac{\pi}{2}, y^{\prime \prime}+y^{\prime}+y$$ is equal to :</p>
[{"identifier": "A", "content": "$$\\frac{1}{2}$$"}, {"identifier": "B", "content": "1"}, {"identifier": "C", "content": "$$\\frac{3}{2}$$"}, {"identifier": "D", "content": "2"}]
["D"]
null
<p>$$\begin{aligned} & y(\theta)=\frac{2 \cos \theta+\cos 2 \theta}{\cos 3 \theta+4 \cos 2 \theta+5 \cos \theta+2} \\ & =\frac{2 \cos ^2 \theta+2 \cos \theta-1}{4 \cos ^3 \theta+8 \cos ^2 \theta+2 \cos \theta-2} \\ & =\frac{2 \cos ^2 \theta+2 \cos \theta-1}{\left(2 \cos ^2 \theta+2 \cos \theta-1\right)(2 \cos \theta+2)} \\ & =\frac{1}{2(1+\cos \theta)}=\frac{1}{4 \cos ^2 \theta / 2}=\frac{\sec ^2 \theta / 2}{4} \\ & y^{\prime}(\theta)=\frac{1}{4}\left(2 \sec \frac{\theta}{2} \cdot \sec \frac{\theta}{2} \cdot \tan \frac{\theta}{2} \cdot \frac{1}{2}\right) \\ & =\frac{1}{4} \sec ^2 \frac{\theta}{2} \cdot \tan \frac{\theta}{2} \end{aligned}$$</p> <p>$$y^{\prime \prime}(\theta)=\frac{1}{4}\left(\tan \frac{\theta}{2}\right)\left(\sec ^2 \frac{\theta}{2} \cdot \tan \frac{\theta}{2}\right) +\frac{1}{4} \sec ^2 \frac{\theta}{2} \cdot \sec ^2 \frac{\theta}{2} \cdot \frac{1}{2}$$</p> <p>$$\begin{aligned} & \text { at } \theta=\frac{\pi}{2}, y(\theta)=\frac{1}{2}, y^{\prime}(\theta)=\frac{1}{2}, y^{\prime \prime}(\theta)=1 \\ & \therefore \quad y+y^{\prime}+y^{\prime \prime}=2 \end{aligned}$$</p>
mcq
jee-main-2024-online-5th-april-evening-shift
lvc57b43
maths
differentiation
successive-differentiation
<p>$$\text { If } f(x)=\left\{\begin{array}{ll} x^3 \sin \left(\frac{1}{x}\right), &amp; x \neq 0 \\ 0 &amp; , x=0 \end{array}\right. \text {, then }$$</p>
[{"identifier": "A", "content": "$$f^{\\prime \\prime}(0)=0$$\n"}, {"identifier": "B", "content": "$$f^{\\prime \\prime}(0)=1$$\n"}, {"identifier": "C", "content": "$$f^{\\prime \\prime}\\left(\\frac{2}{\\pi}\\right)=\\frac{24-\\pi^2}{2 \\pi}$$\n"}, {"identifier": "D", "content": "$$f^{\\prime \\prime}\\left(\\frac{2}{\\pi}\\right)=\\frac{12-\\pi^2}{2 \\pi}$$"}]
["C"]
null
<p>Given the function:</p> <p>$ f(x)=\left\{\begin{array}{ll} x^3 \sin \left(\frac{1}{x}\right), & x \neq 0 \\ 0, & x=0 \end{array}\right. $</p> <p>we need to find its second derivative at specific points.</p> <p>First, let’s compute the first derivative $ f^{\prime}(x) $:</p> <p>$ f^{\prime}(x) = 3x^2 \sin \left( \frac{1}{x} \right) - x \cos \left( \frac{1}{x} \right) $</p> <p>Next, the second derivative $ f^{\prime \prime}(x) $ is:</p> <p>$ f^{\prime \prime}(x) = 6x \sin \left(\frac{1}{x}\right) - 3x \cos \left(\frac{1}{x}\right) - \cos \left(\frac{1}{x}\right) - \frac{1}{x} \sin \left(\frac{1}{x}\right) $</p> <p>Therefore, evaluating the second derivative at $ x = \frac{2}{\pi} $:</p> <p>$ f^{\prime \prime} \left(\frac{2}{\pi}\right) = 6 \left( \frac{2}{\pi} \right) \sin \left(\frac{\pi}{2}\right) - 3 \left( \frac{2}{\pi} \right) \cos \left(\frac{\pi}{2}\right) - \cos \left( \frac{\pi}{2} \right) - \frac{\pi}{2} \sin \left( \frac{\pi}{2} \right) $</p> <p>Since $\sin(\frac{\pi}{2}) = 1$ and $\cos(\frac{\pi}{2}) = 0$, this simplifies to:</p> <p>$ f^{\prime \prime} \left( \frac{2}{\pi} \right) = \frac{12}{\pi} - \frac{\pi}{2} = \frac{24 - \pi^2}{2\pi} $</p> <p>Finally, note that $ f^{\prime}(0) $ is not defined, as it involves terms like $\frac{1}{x}$ when $ x = 0 $.</p>
mcq
jee-main-2024-online-6th-april-morning-shift
1krw1fh1n
maths
ellipse
chord-of-ellipse
Let an ellipse $$E:{{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1$$, $${a^2} &gt; {b^2}$$, passes through $$\left( {\sqrt {{3 \over 2}} ,1} \right)$$ and has eccentricity $${1 \over {\sqrt 3 }}$$. If a circle, centered at focus F($$\alpha$$, 0), $$\alpha$$ &gt; 0, of E and radius $${2 \over {\sqrt 3 }}$$, intersects E at two points P and Q, then PQ<sup>2</sup> is equal to :
[{"identifier": "A", "content": "$${8 \\over 3}$$"}, {"identifier": "B", "content": "$${4 \\over 3}$$"}, {"identifier": "C", "content": "$${{16} \\over 3}$$"}, {"identifier": "D", "content": "3"}]
["C"]
null
$${3 \over {2{a^2}}} + {1 \over {{b^2}}} = 1$$ and $$1 - {{{b^2}} \over {{a^2}}} = {1 \over 3}$$<br><br>$$ \Rightarrow {a^2} = 3{b^2} = 3$$ <br><br>$$ \Rightarrow {{{x^2}} \over 3} + {{{y^2}} \over 2} = 1$$ ...... (i)<br><br>Its focus is (1, 0)<br><br>Now, equation of circle is <br><br>$${(x - 1)^2} + {y^2} = {4 \over 3}$$ ..... (ii)<br><br>Solving (i) and (ii) we get<br><br>$$y = \pm {2 \over {\sqrt 3 }},x = 1$$<br><br>$$ \Rightarrow P{Q^2} = {\left( {{4 \over {\sqrt 3 }}} \right)^2} = {{16} \over 3}$$
mcq
jee-main-2021-online-25th-july-morning-shift
1l59l0lop
maths
ellipse
chord-of-ellipse
<p>The line y = x + 1 meets the ellipse $${{{x^2}} \over 4} + {{{y^2}} \over 2} = 1$$ at two points P and Q. If r is the radius of the circle with PQ as diameter then (3r)<sup>2</sup> is equal to :</p>
[{"identifier": "A", "content": "20"}, {"identifier": "B", "content": "12"}, {"identifier": "C", "content": "11"}, {"identifier": "D", "content": "8"}]
["A"]
null
<p>Let point (a, a + 1) as the point of intersection of line and ellipse.</p> <p>So, $${{{a^2}} \over 4} + {{{{(a + 1)}^2}} \over 2} = 1 \Rightarrow {a^2} + 2({a^2} + 2a + 1) = 4$$</p> <p>$$ \Rightarrow 3{a^2} + 4a - 2 = 0$$</p> <p>If roots of this equation are $$\alpha$$ and $$\beta$$.</p> <p>So, $$P(\alpha ,\,\alpha + 1)$$ and $$Q(\beta ,\,\beta + 1)$$</p> <p>$$PQ = 4{r^2} = {(\alpha - \beta )^2} + {(\alpha - \beta )^2}$$</p> <p>$$ \Rightarrow 9{r^2} = {9 \over 4}(2{(\alpha - \beta )^2})$$</p> <p>$$ = {9 \over 2}\left[ {{{(\alpha + \beta )}^2} - 4\alpha \beta } \right]$$</p> <p>$$ = {9 \over 2}\left[ {{{\left( { - {4 \over 3}} \right)}^2} + {8 \over 3}} \right]$$</p> <p>$$ = {1 \over 2}[16 + 24] = 20$$</p>
mcq
jee-main-2022-online-25th-june-evening-shift
1lguvb7is
maths
ellipse
chord-of-ellipse
<p>Consider ellipses $$\mathrm{E}_{k}: k x^{2}+k^{2} y^{2}=1, k=1,2, \ldots, 20$$. Let $$\mathrm{C}_{k}$$ be the circle which touches the four chords joining the end points (one on minor axis and another on major axis) of the ellipse $$\mathrm{E}_{k}$$. If $$r_{k}$$ is the radius of the circle $$\mathrm{C}_{k}$$, then the value of $$\sum_\limits{k=1}^{20} \frac{1}{r_{k}^{2}}$$ is :</p>
[{"identifier": "A", "content": "2870"}, {"identifier": "B", "content": "3210"}, {"identifier": "C", "content": "3320"}, {"identifier": "D", "content": "3080"}]
["D"]
null
We have, $E_K=K x^2+K^2 y^2=1, K=1,2, \ldots 20$ <br><br>$\Rightarrow \frac{x^2}{\frac{1}{K}}+\frac{y^2}{\frac{1}{K^2}}=1$ <br><br><img src="https://app-content.cdn.examgoal.net/fly/@width/image/6y3zli1ln5ufvyu/8420caac-c5f0-403f-a175-e82f7eb8d93d/8ea00c50-5f75-11ee-8999-67742721d03c/file-6y3zli1ln5ufvyv.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/6y3zli1ln5ufvyu/8420caac-c5f0-403f-a175-e82f7eb8d93d/8ea00c50-5f75-11ee-8999-67742721d03c/file-6y3zli1ln5ufvyv.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh; vertical-align: baseline;" alt="JEE Main 2023 (Online) 11th April Morning Shift Mathematics - Ellipse Question 12 English Explanation"> <br><br>Equation of $A B$ is $\frac{x}{\frac{1}{\sqrt{K}}}+\frac{y}{\frac{1}{K}}=1$ <br><br> or $ \sqrt{K} x+K y=1$ <br><br>$r_K$ is the radius of circle $C_K$, <br><br>So, $r_K=$ perpendicular distance from $(0,0)$ to $\mathrm{AB}$ <br><br>$$ \begin{aligned} r_K &amp; =\frac{|0+0-1|}{\sqrt{(\sqrt{K})^2+K^2}} \\\\ &amp; =\frac{1}{\sqrt{K+K^2}} \\\\ \frac{1}{r_K^2} &amp; =K+K^2 \end{aligned} $$ <br><br>$$ \begin{aligned} \sum_{K=1}^{20} \frac{1}{r_K^2} &amp; =\sum_{K=1}^{20} K+\sum_{K=1}^{20} K^2 \\\\ &amp; =\frac{20 \times 21}{2}+\frac{20 \times 21 \times 41}{6} \\\\ &amp; =210+2870=3080 \end{aligned} $$
mcq
jee-main-2023-online-11th-april-morning-shift
lsbkn1ul
maths
ellipse
chord-of-ellipse
The length of the chord of the ellipse $\frac{x^2}{25}+\frac{y^2}{16}=1$, whose mid point is $\left(1, \frac{2}{5}\right)$, is equal to :
[{"identifier": "A", "content": "$\\frac{\\sqrt{1691}}{5}$"}, {"identifier": "B", "content": "$\\frac{\\sqrt{2009}}{5}$"}, {"identifier": "C", "content": "$\\frac{\\sqrt{1541}}{5}$"}, {"identifier": "D", "content": "$\\frac{\\sqrt{1741}}{5}$"}]
["A"]
null
<p>Equation of chord with given middle point.</p> <p>$$\begin{aligned} & T=S_1 \\ & \frac{x}{25}+\frac{y}{40}=\frac{1}{25}+\frac{1}{100} \\ & \frac{8 x+5 y}{200}=\frac{8+2}{200} \\ & y=\frac{10-8 x}{5} \quad \text{.... (i)} \end{aligned}$$</p> <p>$$\frac{x^2}{25}+\frac{(10-8 x)^2}{400}=1$$ (put in original equation)</p> <p>$$\begin{aligned} & \frac{16 x^2+100+64 x^2-160 x}{400}=1 \\ & 4 x^2-8 x-15=0 \\ & x=\frac{8 \pm \sqrt{304}}{8} \\ & x_1=\frac{8+\sqrt{304}}{8} ; x_2=\frac{8-\sqrt{304}}{8} \end{aligned}$$</p> <p>Similarly, $$y=\frac{10-18 \pm \sqrt{304}}{5}=\frac{2 \pm \sqrt{304}}{5}$$</p> <p>$$\begin{aligned} & \mathrm{y}_1=\frac{2-\sqrt{304}}{5} ; \mathrm{y}_2=\frac{2+\sqrt{304}}{5} \\ & \text { Distance }=\sqrt{\left(\mathrm{x}_1-\mathrm{x}_2\right)^2+\left(\mathrm{y}_1-\mathrm{y}_2\right)^2} \\ & =\sqrt{\frac{4 \times 304}{64}+\frac{4 \times 304}{25}}=\frac{\sqrt{1691}}{5} \\ \end{aligned}$$</p>
mcq
jee-main-2024-online-27th-january-morning-shift
EvZIdx6Rf9PPNIN0
maths
ellipse
common-tangent
<b>STATEMENT-1 :</b> An equation of a common tangent to the parabola $${y^2} = 16\sqrt 3 x$$ and the ellipse $$2{x^2} + {y^2} = 4$$ is $$y = 2x + 2\sqrt 3 $$ <p><b>STATEMENT-2 :</b>If line $$y = mx + {{4\sqrt 3 } \over m},\left( {m \ne 0} \right)$$ is a common tangent to the parabola $${y^2} = 16\sqrt {3x} $$and the ellipse $$2{x^2} + {y^2} = 4$$, then $$m$$ satisfies $${m^4} + 2{m^2} = 24$$</p>
[{"identifier": "A", "content": "Statement-1 is false, Statement-2 is true."}, {"identifier": "B", "content": "Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1."}, {"identifier": "C", "content": "Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1."}, {"identifier": "D", "content": "Statement-1 is true, Statement-2 is false."}]
["B"]
null
Given equation of ellipse is $$2{x^2} + {y^2} = 4$$ <br><br>$$ \Rightarrow {{2{x^2}} \over 4} + {{{y^2}} \over 4} = 1 \Rightarrow {{{x_2}} \over 2} + {{{y^2}} \over 4} = 1$$ <br><br>Equation of tangent to the ellipse $${{{x^2}} \over 2} + {{{y^2}} \over 4} = 1$$ is <br><br>$$y = mx \pm \sqrt {2{m^2} + 4} \,\,\,\,\,\,\,\,\,\,...\left( 1 \right)$$ <br><br>( as equation of tangent to the ellipse $${{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1$$ <br><br>is $$y=mx+c$$ where $$c = \pm \sqrt {{a^2}{m^2} + {b^2}} $$ ) <br><br>Now, Equation of tangent to the parabola <br><br>$${y^2} = 16\sqrt 3 x$$ is $$y = mx + {{4\sqrt 3 } \over m}\,\,\,\,\,\,\,\,...\left( 2 \right)$$ <br><br> ( as equation of tangent to the parabola <br><br>$${y^2} = 4ax$$ is $$y = mx + {a \over m}$$ ) <br><br>On comparing $$(1)$$ and $$(2),$$ we get <br><br>$${{4\sqrt 3 } \over m} = \pm \sqrt {2{m^2} + 4} $$ <br><br>Squaring on both the sides, we get <br><br>$$16\left( 3 \right) = \left( {2{m^2} + 4} \right){m^2}$$ <br><br>$$ \Rightarrow 48 = {m^2}\left( {2{m^2} + 4} \right) \Rightarrow 2{m^4} + 4{m^2} - 48 = 0$$ <br><br>$$ \Rightarrow {m^4} + 2{m^2} - 24 = 0 \Rightarrow \left( {{m^2} + 6} \right)\left( {{m^2} - 4} \right) = 0$$ <br><br>$$ \Rightarrow {m^2} = 4$$ ( as $${m^2} \ne - 6$$ ) $$ \Rightarrow m = \pm 2$$ <br><br>$$ \Rightarrow $$ Equation of common tangents are $$y = \pm 2x \pm 2\sqrt 3 $$ <br><br>Thus, statement - $$1$$ is true. <br><br>Statement - $$2$$ is obviously true.
mcq
aieee-2012
1uvsN9WuUVTtVaGYvw18hoxe66ijvwq7lwv
maths
ellipse
common-tangent
If the tangent to the parabola y<sup>2</sup> = x at a point ($$\alpha $$, $$\beta $$), ($$\beta $$ &gt; 0) is also a tangent to the ellipse, x<sup>2</sup> + 2y<sup>2</sup> = 1, then $$\alpha $$ is equal to :
[{"identifier": "A", "content": "$$\\sqrt 2 + 1$$"}, {"identifier": "B", "content": "$$\\sqrt 2 - 1$$"}, {"identifier": "C", "content": "$$2\\sqrt 2 + 1$$"}, {"identifier": "D", "content": "$$2\\sqrt 2 - 1$$"}]
["A"]
null
Point P($$\alpha $$, $$\beta $$) is on the parabola y<sup>2</sup> = x <br><br>$$ \therefore $$ $${\beta ^2} = \alpha $$ ...........(1) <br><br>Equation of tangent to the parabola y<sup>2</sup> = x <br><br>at ($$\alpha $$, $$\beta $$) is T = 0 <br><br>$$\beta y = {{x + \alpha } \over 2}$$ <br><br>$$ \Rightarrow $$ $$2\beta y = x + \alpha $$ <br><br>$$ \Rightarrow $$ $$y = {1 \over {2\beta }}x + {\alpha \over {2\beta }}$$ <br><br>For this straight line, m = $${1 \over {2\beta }}$$ and c = $${\alpha \over {2\beta }}$$ <br><br>This tangent is also a tangent to ellipse x<sup>2</sup> + 2y<sup>2</sup> = 1. <br><br>$$ \Rightarrow $$ $${{{x^2}} \over 1} + {{{y^2}} \over {{1 \over 2}}} = 1$$ <br><br>$$ \therefore $$ $${a^2} = 1$$ and $${b^2} = {1 \over 2}$$. <br><br>We know the condition of tangency on ellipse is <br><br>$${c^2} = {a^2}{m^2} + {b^2}$$ <br><br>$$ \Rightarrow $$ $${\left( {{\alpha \over {2\beta }}} \right)^2} = 1{\left( {{1 \over {2\beta }}} \right)^2} + {1 \over 2}$$ <br><br>$$ \Rightarrow $$ $${{{\alpha ^2}} \over {4{\beta ^2}}} = {1 \over {4{\beta ^2}}} + {1 \over 2}$$ <br><br>$$ \Rightarrow $$ $${\alpha ^2} = 1 + 2{\beta ^2}$$ <br><br>$$ \Rightarrow $$ $${\alpha ^2} = 1 + 2\alpha $$ <br><br>$$ \Rightarrow $$ $${\alpha ^2} - 2\alpha - 1 = 0$$ <br><br>$$ \Rightarrow $$ $$\alpha = 1 + \sqrt 2 $$ and $$\alpha = 1 - \sqrt 2 $$
mcq
jee-main-2019-online-9th-april-evening-slot
xtgmJdXktn5EUKYs6j1kluz2mfj
maths
ellipse
common-tangent
Let L be a common tangent line to the curves <br/><br/>4x<sup>2</sup> + 9y<sup>2</sup> = 36 and (2x)<sup>2</sup> + (2y)<sup>2</sup> = 31. Then the <br/><br/>square of the slope of the line L is __________.
[]
null
3
Tangent to the curve $${{{x^2}} \over 9} + {{{y^2}} \over {14}} = 1$$ is <br><br>$$y = mx + \sqrt {9{m^2} + 4} $$<br><br>and equation of tangent to the curve $${x^2} + {y^2} = {{31} \over 4}$$ is<br><br>$$y = mx + \sqrt {{{31} \over 4}{{(1 + m)}^2}} $$<br><br>for common tangent $$9{m^2} + 4 = {{31} \over 4} + {{31} \over 4}{m^2}$$<br><br>$$ \Rightarrow {5 \over 4}{m^2} = {{15} \over 4}$$<br><br>$$ \Rightarrow {m^2} = 3$$
integer
jee-main-2021-online-26th-february-evening-slot
1l58fgd83
maths
ellipse
common-tangent
<p>If m is the slope of a common tangent to the curves $${{{x^2}} \over {16}} + {{{y^2}} \over 9} = 1$$ and $${x^2} + {y^2} = 12$$, then $$12{m^2}$$ is equal to :</p>
[{"identifier": "A", "content": "6"}, {"identifier": "B", "content": "9"}, {"identifier": "C", "content": "10"}, {"identifier": "D", "content": "12"}]
["B"]
null
<p>$${C_1}:{{{x^2}} \over {16}} + {{{y^2}} \over 9} = 1$$ and $${C_2}:{x^2} + {y^2} = 12$$</p> <p>Let $$y = mx \pm \,\sqrt {16{m^2} + 9} $$ be any tangent to C<sub>1</sub> and if this is also tangent to C<sub>2</sub> then</p> <p>$$\left| {{{\sqrt {16{m^2} + 9} } \over {\sqrt {{m^2} + 1} }}} \right| = \sqrt {12} $$</p> <p>$$ \Rightarrow 16{m^2} + 9 = 12{m^2} + 12$$</p> <p>$$ \Rightarrow 4{m^2} = 3 \Rightarrow 12{m^2} = 9$$</p>
mcq
jee-main-2022-online-26th-june-evening-shift
1lgvqbyet
maths
ellipse
common-tangent
<p>Let a circle of radius 4 be concentric to the ellipse $$15 x^{2}+19 y^{2}=285$$. Then the common tangents are inclined to the minor axis of the ellipse at the angle :</p>
[{"identifier": "A", "content": "$$\\frac{\\pi}{4}$$"}, {"identifier": "B", "content": "$$\\frac{\\pi}{3}$$"}, {"identifier": "C", "content": "$$\\frac{\\pi}{6}$$"}, {"identifier": "D", "content": "$$\\frac{\\pi}{12}$$"}]
["B"]
null
We have, equation of ellipse : $15 x^2+19 y^2=285$ <br/><br/>or $ \frac{x^2}{19}+\frac{y^2}{15}=1$ <br/><br/>Let the coordinate of center of circle be $(0,0)$. <br/><br/>Equation of circle is $x^2+y^2=16$ <br/><br/>Equation of tangent of ellipse is <br/><br/>$$ \begin{gathered} y=m x \pm \sqrt{19 m^2+15} \text { or } \\\\ m x-y \pm \sqrt{19 m^2+15}=0 \end{gathered} $$ <br/><br/>It is also tangent to the circle $x^2+y^2=16$ <br/><br/>Perpendicular distance from center of circle to tangent $=4$ <br/><br/>$$ \frac{\left|0-0 \pm \sqrt{19 m^2+15}\right|}{\sqrt{m^2+1}}=4 $$ <br/><br/>On squaring both side, we get <br/><br/>$$ \begin{gathered} 19 m^2+15=16 m^2+16 \\\\ 3 m^2=1 \\\\ m^2=\frac{1}{3} \\\\ m= \pm \frac{1}{\sqrt{3}} \end{gathered} $$ <br/><br/>$$ \tan \theta=\frac{1}{\sqrt{3}} \Rightarrow \theta=\frac{\pi}{6} \text { with } X \text {-axis or } $$$\frac{\pi}{3}$ with $Y$-axis <br/><br/>Hence, the common tangents are inclined to the minor axis of the ellipse at an angle of $\frac{\pi}{3}$.
mcq
jee-main-2023-online-10th-april-evening-shift
lhi1qU8ZF8dwtl0X
maths
ellipse
locus
The locus of the foot of perpendicular drawn from the centre of the ellipse $${x^2} + 3{y^2} = 6$$ on any tangent to it is :
[{"identifier": "A", "content": "$$\\left( {{x^2} + {y^2}} \\right) ^2 = 6{x^2} + 2{y^2}$$ "}, {"identifier": "B", "content": "$$\\left( {{x^2} + {y^2}} \\right) ^2 = 6{x^2} - 2{y^2}$$"}, {"identifier": "C", "content": "$$\\left( {{x^2} - {y^2}} \\right) ^2 = 6{x^2} + 2{y^2}$$ "}, {"identifier": "D", "content": "$$\\left( {{x^2} - {y^2}} \\right) ^2 = 6{x^2} - 2{y^2}$$ "}]
["A"]
null
Given $$e{q^n}$$ of ellipse can be written as <br><br>$${{{x^2}} \over 6} + {{{y^2}} \over 2} = 1 \Rightarrow {a^2} = 6,{b^2} = 2$$ <br><br>Now, equation of any variable tangent is <br><br>$$y = mx \pm \sqrt {{a^2}{m^2} + {b^2}} ....\left( i \right)$$ <br><br>where $$m$$ is slope of the tangent <br><br>So, equation of perpendicular line drawn- <br><br>from center to tangent is <br><br>$$y = {{ - x} \over m}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,...\left( {ii} \right)$$ <br><br>Eliminating $$m,$$ we get <br><br>$$\left( {{x^4} + {y^4} + 2{x^2}{y^2}} \right) = {a^2}{x^2} + {b^2}{y^2}$$ <br><br>$$ \Rightarrow {\left( {{x^2} + {y^2}} \right)^2} = {a^2}{x^2} + {b^2}{y^2}$$ <br><br>$$ \Rightarrow {\left( {{x^2} + {y^2}} \right)^2} = 6{x^2} + 2{y^2}$$
mcq
jee-main-2014-offline
1ktk74324
maths
ellipse
locus
The locus of mid-points of the line segments joining ($$-$$3, $$-$$5) and the points on the ellipse $${{{x^2}} \over 4} + {{{y^2}} \over 9} = 1$$ is :
[{"identifier": "A", "content": "$$9{x^2} + 4{y^2} + 18x + 8y + 145 = 0$$"}, {"identifier": "B", "content": "$$36{x^2} + 16{y^2} + 90x + 56y + 145 = 0$$"}, {"identifier": "C", "content": "$$36{x^2} + 16{y^2} + 108x + 80y + 145 = 0$$"}, {"identifier": "D", "content": "$$36{x^2} + 16{y^2} + 72x + 32y + 145 = 0$$"}]
["C"]
null
General point on $${{{x^2}} \over 4} + {{{y^2}} \over 9} = 1$$ is A(2cos$$\theta$$, 3sin$$\theta$$)<br><br>given B($$-$$3, $$-$$5)<br><br>midpoint $$C\left( {{{2\cos \theta - 3} \over 2},{{3\sin \theta - 5} \over 2}} \right)$$<br><br>$$h = {{2\cos \theta - 3} \over 2};k = {{3\sin \theta - 5} \over 2}$$<br><br>$$ \Rightarrow {\left( {{{2h + 3} \over 2}} \right)^2} + {\left( {{{2k + 5} \over 3}} \right)^2} = 1$$<br><br>$$ \Rightarrow 36{x^2} + 16{y^2} + 108x + 80y + 145 = 0$$
mcq
jee-main-2021-online-31st-august-evening-shift
1l58g1v33
maths
ellipse
locus
<p>The locus of the mid point of the line segment joining the point (4, 3) and the points on the ellipse $${x^2} + 2{y^2} = 4$$ is an ellipse with eccentricity :</p>
[{"identifier": "A", "content": "$${{\\sqrt 3 } \\over 2}$$"}, {"identifier": "B", "content": "$${1 \\over {2\\sqrt 2 }}$$"}, {"identifier": "C", "content": "$${1 \\over {\\sqrt 2 }}$$"}, {"identifier": "D", "content": "$${1 \\over 2}$$"}]
["C"]
null
<p>Let $$P(2\cos \theta ,\,\sqrt 2 \sin \theta )$$ be any point on ellipse $${{{x^2}} \over 4} + {{{y^2}} \over 2} = 1$$ and Q(4, 3) and let (h, k) be the mid point of PQ</p> <p>then $$h = {{2\cos \theta + 4} \over 2},\,k = {{\sqrt 2 \sin \theta + 3} \over 2}$$</p> <p>$$\therefore$$ $$\cos \theta = h - 2,\,\sin \theta = {{2k - 3} \over {\sqrt 2 }}$$</p> <p>$$\therefore$$ $${(h - 2)^2} + {\left( {{{2k - 3} \over {\sqrt 2 }}} \right)^2} = 1$$</p> <p>$$ \Rightarrow {{{{(x - 2)}^2}} \over 1} + {{{{\left( {y - {3 \over 2}} \right)}^2}} \over {{1 \over 2}}} = 1$$</p> <p>$$\therefore$$ $$e = \sqrt {1 - {1 \over 2}} = {1 \over {\sqrt 2 }}$$</p>
mcq
jee-main-2022-online-26th-june-evening-shift
lsamf0th
maths
ellipse
locus
Let $\mathrm{P}$ be a point on the ellipse $\frac{x^2}{9}+\frac{y^2}{4}=1$. Let the line passing through $\mathrm{P}$ and parallel to $y$-axis meet the circle $x^2+y^2=9$ at point $\mathrm{Q}$ such that $\mathrm{P}$ and $\mathrm{Q}$ are on the same side of the $x$-axis. Then, the eccentricity of the locus of the point $R$ on $P Q$ such that $P R: R Q=4: 3$ as $P$ moves on the ellipse, is :
[{"identifier": "A", "content": "$\\frac{13}{21}$"}, {"identifier": "B", "content": "$\\frac{\\sqrt{139}}{23}$"}, {"identifier": "C", "content": "$\\frac{\\sqrt{13}}{7}$"}, {"identifier": "D", "content": "$\\frac{11}{19}$"}]
["C"]
null
<img src="https://app-content.cdn.examgoal.net/fly/@width/image/6y3zli1lsqdjrqo/772aa650-3e8c-46a8-adce-0608922ed01d/09ef1300-cdbd-11ee-a926-9fabe9a328d8/file-6y3zli1lsqdjrqp.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/6y3zli1lsqdjrqo/772aa650-3e8c-46a8-adce-0608922ed01d/09ef1300-cdbd-11ee-a926-9fabe9a328d8/file-6y3zli1lsqdjrqp.png" loading="lazy" style="max-width: 100%;height: auto;display: block;margin: 0 auto;max-height: 40vh;vertical-align: baseline" alt="JEE Main 2024 (Online) 1st February Evening Shift Mathematics - Ellipse Question 8 English Explanation 1"> <img src="https://app-content.cdn.examgoal.net/fly/@width/image/6y3zli1lsqdl51c/d5a5c6d5-b0af-43b9-b7e2-7efa69d9eeff/30039c00-cdbd-11ee-a926-9fabe9a328d8/file-6y3zli1lsqdl51d.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/6y3zli1lsqdl51c/d5a5c6d5-b0af-43b9-b7e2-7efa69d9eeff/30039c00-cdbd-11ee-a926-9fabe9a328d8/file-6y3zli1lsqdl51d.png" loading="lazy" style="max-width: 100%;height: auto;display: block;margin: 0 auto;max-height: 40vh;vertical-align: baseline" alt="JEE Main 2024 (Online) 1st February Evening Shift Mathematics - Ellipse Question 8 English Explanation 2"> <br>$\begin{aligned} &amp; \mathrm{h}=3 \cos \theta \\\\ &amp; \mathrm{k}=\frac{18}{7} \sin \theta\end{aligned}$ <br><br>$\begin{aligned} &amp; \therefore \text { locus }=\frac{\mathrm{x}^2}{9}+\frac{49 \mathrm{y}^2}{324}=1 \\\\ &amp; \mathrm{e}=\sqrt{1-\frac{324}{49 \times 9}}=\frac{\sqrt{117}}{21}=\frac{\sqrt{13}}{7}\end{aligned}$
mcq
jee-main-2024-online-1st-february-evening-shift
Fdaip3SiqPfH8cxI
maths
ellipse
normal-to-ellipse
The eccentricity of an ellipse whose centre is at the origin is $${1 \over 2}$$. If one of its directrices is x = – 4, then the equation of the normal to it at $$\left( {1,{3 \over 2}} \right)$$ is :
[{"identifier": "A", "content": "2y \u2013 x = 2"}, {"identifier": "B", "content": "4x \u2013 2y = 1"}, {"identifier": "C", "content": "4x + 2y = 7"}, {"identifier": "D", "content": "x + 2y = 4"}]
["B"]
null
Given e = $${1 \over 2}$$ and $${a \over e}$$ = 4 <br><br>$$ \therefore $$ $$a$$ = 2 <br><br>We have b<sup>2</sup> = $$a$$<sup>2</sup> (1 – e<sup>2</sup>) = $$4\left( {1 - {1 \over 4}} \right)$$ = 3 <br><br>$$ \therefore $$ Equation of ellipse is <br><br>$${{{x^2}} \over 4} + {{{y^2}} \over 3} = 1$$ <br><br>Now, the equation of normal at $$\left( {1,{3 \over 2}} \right)$$ is <br><br>$${{{a^2}x} \over {{x_1}}} - {{{b^2}y} \over {{y_1}}} = {a^2} - {b^2}$$ <br><br>$$ \Rightarrow $$ $${{4x} \over 1} - {{3y} \over {{3 \over 2}}} = 4 - 3$$ <br><br>$$ \Rightarrow $$ 4x – 2y = 1
mcq
jee-main-2017-offline
5Xy9INkIXJfGIM8vGg3rsa0w2w9jx2eobip
maths
ellipse
normal-to-ellipse
The tangent and normal to the ellipse 3x<sup>2</sup> + 5y<sup>2</sup> = 32 at the point P(2, 2) meet the x-axis at Q and R, respectively. Then the area (in sq. units) of the triangle PQR is :
[{"identifier": "A", "content": "$${{14} \\over 3}$$"}, {"identifier": "B", "content": "$${{16} \\over 3}$$"}, {"identifier": "C", "content": "$${{68} \\over {15}}$$"}, {"identifier": "D", "content": "$${{34} \\over {15}}$$"}]
["C"]
null
$$3{x^2} + 5{y^2} = 32$$<br><br> 6x + 10yy' = 0<br><br> $$ \Rightarrow y' = {{ - 3x} \over {5y}}$$<br><br> $$ \Rightarrow y{'_{(2,2)}} = - {3 \over 5}$$<br><br> Tangent $$(y - 2) = - {3 \over 5}(x - 2) \Rightarrow Q\left( {{{16} \over 3},0} \right)$$<br><br> Normal $$(y - 2) = {5 \over 3}(x - 2) \Rightarrow R\left( {{{4} \over 5},0} \right)$$<br><br> $$ \therefore $$ Area = $${1 \over 2}(QR) \times 2 = QR = {{68} \over {15}}$$
mcq
jee-main-2019-online-10th-april-evening-slot
ABobMP93kuwLqACJVx3rsa0w2w9jx65dnxr
maths
ellipse
normal-to-ellipse
If the normal to the ellipse 3x<sup>2</sup> + 4y<sup>2</sup> = 12 at a point P on it is parallel to the line, 2x + y = 4 and the tangent to the ellipse at P passes through Q(4,4) then PQ is equal to :
[{"identifier": "A", "content": "$${{\\sqrt {61} } \\over 2}$$"}, {"identifier": "B", "content": "$${{\\sqrt {221} } \\over 2}$$"}, {"identifier": "C", "content": "$${{\\sqrt {157} } \\over 2}$$"}, {"identifier": "D", "content": "$${{5\\sqrt 5 } \\over 2}$$"}]
["D"]
null
Equation of ellipse is $${{{x^2}} \over 4} + {{{y^2}} \over 3} = 1$$<br><br> Normal at P(2 cos $$\theta $$, $$\sqrt 3 \sin \theta $$) is 2x sin$$\theta $$ - $$\sqrt 3 y\,cos\theta $$ = sin $$\theta $$ cos $$\theta $$ as the normal is parallel to 2x + y = 4<br><br> $$ \Rightarrow $$ $${2 \over {\sqrt 3 }}\tan \theta = - 2$$<br><br> $$ \Rightarrow \tan \theta = - \sqrt 3 \,\,......\,(i)$$<br><br> tangent at P(2 cos $$\theta $$, $$\sqrt 3 \sin \theta $$) is <br><br> $$\sqrt 3 $$ x cos $$\theta $$ + 2y sin $$\theta $$ = 2 $$\sqrt 3 $$<br><br> Passes through (4, 4)<br><br> $$ \Rightarrow $$ 4$$\sqrt 3 $$ cos $$\theta $$ + 8 sin $$\theta $$ = 2$$\sqrt 3 $$ ....... (ii)<br><br> From (i) and (ii) <br><br> $$ \Rightarrow P\left( { - 1,{3 \over 2}} \right)\,\&amp; \,Q(4,4)$$<br><br> $$ \Rightarrow PQ = \sqrt {25 + {{25} \over 4}} = {{5\sqrt 5 } \over 2}$$
mcq
jee-main-2019-online-12th-april-morning-slot
7U4w1GA7rQRFV2KmmT7k9k2k5gjiucr
maths
ellipse
normal-to-ellipse
Let the line y = mx and the ellipse 2x<sup>2</sup> + y<sup>2</sup> = 1 intersect at a ponit P in the first quadrant. If the normal to this ellipse at P meets the co-ordinate axes at $$\left( { - {1 \over {3\sqrt 2 }},0} \right)$$ and (0, $$\beta $$), then $$\beta $$ is equal to :
[{"identifier": "A", "content": "$${{\\sqrt 2 } \\over 3}$$"}, {"identifier": "B", "content": "$${2 \\over 3}$$"}, {"identifier": "C", "content": "$${{2\\sqrt 2 } \\over 3}$$"}, {"identifier": "D", "content": "$${2 \\over {\\sqrt 3 }}$$"}]
["A"]
null
Let P be (x<sub>1</sub> , y<sub>1</sub>) <br><br>Equation of normal at P is $${x \over {2{x_1}}} - {y \over {{y_1}}} = {1 \over 2} - 1$$ <br><br>It passes through $$\left( { - {1 \over {3\sqrt 2 }},0} \right)$$ <br><br>$$ \therefore $$ $${{ - 1} \over {6\sqrt 2 {x_1}}} = - {1 \over 2}$$ <br><br>$$ \Rightarrow $$ x<sub>1</sub> = $${1 \over {3\sqrt 2 }}$$ <br><br>Also using 2$$x_1^2$$ + $$y_1^2$$ = 1 <br><br>$$ \Rightarrow $$ $$y_1^2$$ = 1 - $${2 \over {18}}$$ <br><br>$$ \Rightarrow $$ y<sub>1</sub> = $${{2\sqrt 2 } \over 3}$$ <br><br>(0, $$\beta $$) is on the normal. <br><br>So 0 - $${\beta \over {{{2\sqrt 2 } \over 3}}}$$ = $$ - {1 \over 2}$$ <br><br>$$ \Rightarrow $$ $$\beta $$ = $${{\sqrt 2 } \over 3}$$
mcq
jee-main-2020-online-8th-january-morning-slot
1EvusdwISdLMDs07h4jgy2xukfakgvy9
maths
ellipse
normal-to-ellipse
Let x = 4 be a directrix to an ellipse whose centre is at the origin and its eccentricity is $${1 \over 2}$$. If P(1, $$\beta $$), $$\beta $$ &gt; 0 is a point on this ellipse, then the equation of the normal to it at P is :
[{"identifier": "A", "content": "4x \u2013 3y = 2\n"}, {"identifier": "B", "content": "8x \u2013 2y = 5"}, {"identifier": "C", "content": "7x \u2013 4y = 1 "}, {"identifier": "D", "content": "4x \u2013 2y = 1"}]
["D"]
null
$$e = {1 \over 2}$$ <br><br>$$x = {a \over e} = 4$$<br><br>$$ \Rightarrow $$ a = 2<br><br>$${e^2} = 1 - {{{b^2}} \over {{a^2}}} $$ <br><br>$$\Rightarrow {1 \over 4} = 1 - {{{b^2}} \over 4}$$<br><br>$${{{b^2}} \over 4} = {3 \over 4} \Rightarrow {b^2} = 3$$<br><br>$$ \therefore $$ Ellipse $${{{x^2}} \over 4} + {{{y^2}} \over 3} = 1$$<br><br>P(1, $$\beta $$) is on the ellipse<br><br> $${1 \over 4} + {{{\beta ^2}} \over 3} = 1$$<br><br>$${{{\beta ^2}} \over 3} = {3 \over 4} \Rightarrow \beta = {3 \over 2}$$<br><br>$$ \Rightarrow P\left( {1,{3 \over 2}} \right)$$<br><br>Equation of normal $${{{a^2}x} \over {{x_1}}} - {{{b^2}y} \over {{y_1}}} = {a^2} - {b^2}$$<br><br>$$ \Rightarrow $$ $${{4x} \over 1} - {{3y} \over {{3 \over 2}}} = 4 - 3$$<br><br>$$ \Rightarrow $$ $$4x - 2y = 1$$
mcq
jee-main-2020-online-4th-september-evening-slot
N3TmnUyC4v34yUj1Gpjgy2xukg0cqp9y
maths
ellipse
normal-to-ellipse
If the normal at an end of a latus rectum of an ellipse passes through an extremity of the minor axis, then the eccentricity e of the ellipse satisfies :
[{"identifier": "A", "content": "e<sup>4</sup> + 2e<sup>2</sup> \u2013 1 = 0"}, {"identifier": "B", "content": "e<sup>4</sup> + e<sup>2</sup> \u2013 1 = 0"}, {"identifier": "C", "content": "e<sup>2</sup> + 2e \u2013 1 = 0"}, {"identifier": "D", "content": "e<sup>2</sup> + e \u2013 1 = 0"}]
["B"]
null
Equation of normal at $$\left( {ae,{{{b^2}} \over a}} \right)$$ <br><br>$${{{a^2}x} \over {ae}} - {{{b^2}y} \over {{{{b^2}} \over a}}} = {a^2} - {b^2}$$ <br><br>It passes through (0,–b) <br><br>$$ \therefore $$ $$0 - {{{b^2}\left( { - b} \right)} \over {{{{b^2}} \over a}}} = {a^2} - {b^2}$$ <br><br>$$ \Rightarrow $$ $$a$$b = $${a^2} - {b^2}$$ <br><br>$$ \Rightarrow $$ $$a$$b = $${a^2}{e^2}$$ [as b<sup>2</sup> = $${a^2}\left( {1 - {e^2}} \right)$$] <br><br>$$ \Rightarrow $$ $$a$$<sup>2</sup>b<sup>2</sup> = $${a^4}{e^4}$$ <br><br>$$ \Rightarrow $$ $${{{{b^2}} \over {{a^2}}}}$$ = e<sup>4</sup> <br><br>$$ \Rightarrow $$ $${1 - {e^2}}$$ = e<sup>4</sup> <br><br>$$ \Rightarrow $$ e<sup>4</sup> + e<sup>2</sup> – 1 = 0
mcq
jee-main-2020-online-6th-september-evening-slot
1ldpt2o9m
maths
ellipse
normal-to-ellipse
<p>If the maximum distance of normal to the ellipse $$\frac{x^{2}}{4}+\frac{y^{2}}{b^{2}}=1, b &lt; 2$$, from the origin is 1, then the eccentricity of the ellipse is :</p>
[{"identifier": "A", "content": "$$\\frac{\\sqrt{3}}{4}$$"}, {"identifier": "B", "content": "$$\\frac{1}{2}$$"}, {"identifier": "C", "content": "$$\\frac{1}{\\sqrt{2}}$$"}, {"identifier": "D", "content": "$$\\frac{\\sqrt{3}}{2}$$"}]
["D"]
null
Equation of normal is <br/><br/>$2 x \sec \theta-b y \operatorname{cosec} \theta=4-b^{2}$ <br/><br/>Distance from $(0,0)=\frac{4-b^{2}}{\sqrt{4 \sec ^{2} \theta+b^{2} \operatorname{cosec}^{2} \theta}}$ <br/><br/>Distance is maximum if <br/><br/>$4 \sec ^{2} \theta+b^{2} \operatorname{cosec}^{2} \theta$ is minimum <br/><br/>$\Rightarrow \tan ^{2} \theta=\frac{\mathrm{b}}{2}$ <br/><br/>$\Rightarrow \frac{4-b^{2}}{\sqrt{4 \cdot \frac{b+2}{2}+b^{2} \cdot \frac{b+2}{b}}}=1$ <br/><br/>$\Rightarrow 4-b^{2}=(b+2) \Rightarrow b^{2}+b-2=0$ <br/><br/>$\Rightarrow(b+2)(b-1)=0$ <br/><br/>$\Rightarrow b=1$ <br/><br/>$\therefore e=\sqrt{1-\frac{1}{4}}=\frac{\sqrt{3}}{2}$
mcq
jee-main-2023-online-31st-january-morning-shift
1lgpy8jfv
maths
ellipse
normal-to-ellipse
<p>Let the tangent and normal at the point $$(3 \sqrt{3}, 1)$$ on the ellipse $$\frac{x^{2}}{36}+\frac{y^{2}}{4}=1$$ meet the $$y$$-axis at the points $$A$$ and $$B$$ respectively. Let the circle $$C$$ be drawn taking $$A B$$ as a diameter and the line $$x=2 \sqrt{5}$$ intersect $$C$$ at the points $$P$$ and $$Q$$. If the tangents at the points $$P$$ and $$Q$$ on the circle intersect at the point $$(\alpha, \beta)$$, then $$\alpha^{2}-\beta^{2}$$ is equal to :</p>
[{"identifier": "A", "content": "61"}, {"identifier": "B", "content": "$$\\frac{304}{5}\n$$"}, {"identifier": "C", "content": "60"}, {"identifier": "D", "content": "$$\\frac{314}{5}\n$$"}]
["B"]
null
$$ \begin{aligned} & \frac{x^2}{36}+\frac{y^2}{4}=1 \\\\ & T: \frac{3 \sqrt{3} x}{36}+\frac{y}{4}=1 \\\\ & T: \frac{\sqrt{3} x}{12}+\frac{y}{4}=1 \\\\ & N: \frac{x-3 \sqrt{3}}{\frac{3 \sqrt{3}}{36}}=\frac{y-1}{\frac{1}{4}} \end{aligned} $$ <br/><br/>$$ \begin{aligned} & \frac{12 x-36 \sqrt{3}}{\sqrt{3}}=4 y-4 \\\\ & 3 x-9 \sqrt{3}=\sqrt{3} y-\sqrt{3} \\\\ & N: 3 x-\sqrt{3} y=8 \sqrt{3} \\\\ & A(0,4) \quad B(0,-8) \\\\ & \text { C: } x^2+(y-4)(y+8)=0 \\\\ & \text { Line } x=2 \sqrt{5} \\\\ & 20+y^2+4 y-32=0 \\\\ & y^2+4 y-12=0 \\\\ & (y+6)(y-2)=0 \end{aligned} $$ <br/><br/>$$ \begin{aligned} & P(2 \sqrt{5},-6) \quad Q(2 \sqrt{5}, 2) \\\\ & C: x^2+y^2+4 y-32=0 \\\\ & P(2 \sqrt{5},-6) \quad Q(2 \sqrt{5}, 2) \\\\ & T: x x_1+y y_1+2 y+2 y_1-32=0 \\\\ & T_1: 2 \sqrt{5} x-6 y+2 y-12-32=0 \\\\ & \quad 2 \sqrt{5} x-4 y=44 \\\\ & T_1: \sqrt{5} x-2 y=22 .......(i) \\\\ & T_2: 2 \sqrt{5} x+2 y+2 y+4-32=0 \\\\ & 2 \sqrt{5} x+4 y=28 \\\\ & T_2: \sqrt{5} x+2 y=14 .......(ii) \end{aligned} $$ <br/><br/>From (i) and (ii), we get <br/><br/>$$ \begin{aligned} & \alpha=\frac{18}{\sqrt{5}} \quad \beta=-2 \\\\ & \alpha^2-\beta^2=\frac{304}{5} \end{aligned} $$
mcq
jee-main-2023-online-13th-april-morning-shift
rlmIdLEuDAejugVr
maths
ellipse
position-of-point-and-chord-joining-of-two-points
The equation of the circle passing through the foci of the ellipse $${{{x^2}} \over {16}} + {{{y^2}} \over 9} = 1$$, and having centre at $$(0,3)$$ is :
[{"identifier": "A", "content": "$${x^2} + {y^2} - 6y - 7 = 0$$ "}, {"identifier": "B", "content": "$${x^2} + {y^2} - 6y + 7 = 0$$"}, {"identifier": "C", "content": "$${x^2} + {y^2} - 6y - 5 = 0$$"}, {"identifier": "D", "content": "$${x^2} + {y^2} - 6y + 5 = 0$$"}]
["A"]
null
<img class="question-image" src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734263921/exam_images/s76qynlxlel1kkck45r2.webp" loading="lazy" alt="JEE Main 2013 (Offline) Mathematics - Ellipse Question 76 English Explanation"> <br><br>From the given equation of ellipse, we have <br><br>$$a = 4,b = 3,e = \sqrt {1 - {9 \over {16}}} $$ <br><br>$$ \Rightarrow e = {{\sqrt 7 } \over 4}$$ <br><br>Now, radius of this circle $$ = {a^2} = 16$$ <br><br>$$ \Rightarrow Focii = \left( { \pm \sqrt 7 ,0} \right)$$ <br><br>Now equation of circle is <br><br>$${\left( {x - 0} \right)^2} + {\left( {y - 3} \right)^2} = 16$$ <br><br>$${x^2} + y{}^2 - 6y - 7 = 0$$
mcq
jee-main-2013-offline
2oTqNMY0qPaZCT9gEHjgy2xukfjjqpjo
maths
ellipse
position-of-point-and-chord-joining-of-two-points
If the co-ordinates of two points A and B <br/>are $$\left( {\sqrt 7 ,0} \right)$$ and $$\left( { - \sqrt 7 ,0} \right)$$ respectively and<br/> P is any point on the conic, 9x<sup>2</sup> + 16y<sup>2</sup> = 144, then PA + PB is equal to :
[{"identifier": "A", "content": "8"}, {"identifier": "B", "content": "9"}, {"identifier": "C", "content": "16"}, {"identifier": "D", "content": "6"}]
["A"]
null
9x<sup>2</sup> + 16y<sup>2</sup> = 144 <br><br>$$ \Rightarrow $$ $${{{x^2}} \over {16}} + {{{y^2}} \over 9} = 1$$ <br><br>$$ \therefore $$ a = 4; b = 3; <br><br>Now e = $$\sqrt {1 - {9 \over {16}}} = {{\sqrt 7 } \over 4}$$ <br><br>A and B are foci <br><br>PA + PB = 2a = 2 × 4 = 8
mcq
jee-main-2020-online-5th-september-morning-slot
BcheBfrZmexesZ4Um71klt9cr9j
maths
ellipse
position-of-point-and-chord-joining-of-two-points
If the curve x<sup>2</sup> + 2y<sup>2</sup> = 2 intersects the line x + y = 1 at two points P and Q, then the angle subtended by the line segment PQ at the origin is :
[{"identifier": "A", "content": "$${\\pi \\over 2} - {\\tan ^{ - 1}}\\left( {{1 \\over 4}} \\right)$$"}, {"identifier": "B", "content": "$${\\pi \\over 2} + {\\tan ^{ - 1}}\\left( {{1 \\over 3}} \\right)$$"}, {"identifier": "C", "content": "$${\\pi \\over 2} - {\\tan ^{ - 1}}\\left( {{1 \\over 3}} \\right)$$"}, {"identifier": "D", "content": "$${\\pi \\over 2} + {\\tan ^{ - 1}}\\left( {{1 \\over 4}} \\right)$$"}]
["D"]
null
Ellipse : $${x \over 2} + {y \over 1} = 1$$<br><br>Line : $$x + y = 1$$<br><br><img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734267198/exam_images/lmh3h5mktsgvuq0vvk3v.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2021 (Online) 25th February Evening Shift Mathematics - Ellipse Question 48 English Explanation"><br><br>Using homogenisation<br><br>$${x^2} + 2{y^2} = 2{(1)^2}$$<br><br>$${x^2} + 2{y^2} = 2{(x + y)^2}$$<br><br>$${x^2} + 2{y^2} = 2{x^2} + 2{y^2} + 4xy$$<br><br>$${x^2} + 4xy = 0$$<br><br>for $$a{x^2} + 2hxy + b{y^2} = 0$$<br><br>$$\tan \theta = \left| {{{2\sqrt {{h^2} - ab} } \over {a + b}}} \right|$$<br><br>$$\tan \theta = \left| {{{2\sqrt {{{(2)}^2} - 0} } \over {1 + 0}}} \right|$$<br><br>$$\tan \theta = - 4$$<br><br>$$\cot \theta = - {1 \over 4}$$<br><br>$$\theta = {\cot ^{ - 1}}\left( { - {1 \over 4}} \right)$$<br><br>$$\theta = \pi - {\cot ^{ - 1}}\left( {{1 \over 4}} \right)$$<br><br>$$\theta = \pi - \left( {{\pi \over 2} - {{\tan }^{ - 1}}\left( {{1 \over 4}} \right)} \right)$$<br><br>$$\theta = {\pi \over 2} + {\tan ^{ - 1}}\left( {{1 \over 4}} \right)$$
mcq
jee-main-2021-online-25th-february-evening-slot
1lgrg5nwu
maths
ellipse
position-of-point-and-chord-joining-of-two-points
<p>Let $$\mathrm{P}\left(\frac{2 \sqrt{3}}{\sqrt{7}}, \frac{6}{\sqrt{7}}\right), \mathrm{Q}, \mathrm{R}$$ and $$\mathrm{S}$$ be four points on the ellipse $$9 x^{2}+4 y^{2}=36$$. Let $$\mathrm{PQ}$$ and $$\mathrm{RS}$$ be mutually perpendicular and pass through the origin. If $$\frac{1}{(P Q)^{2}}+\frac{1}{(R S)^{2}}=\frac{p}{q}$$, where $$p$$ and $$q$$ are coprime, then $$p+q$$ is equal to :</p>
[{"identifier": "A", "content": "143"}, {"identifier": "B", "content": "147"}, {"identifier": "C", "content": "137"}, {"identifier": "D", "content": "157"}]
["D"]
null
Given, points $P$ and $R$ are on the ellipse defined by $9x^2+4y^2=36$ which simplifies to $\frac{x^2}{4} + \frac{y^2}{9} = 1$. This is the standard form of the equation of an ellipse centered at the origin, with semi-major axis $a=3$ along the $y$-axis and semi-minor axis $b=2$ along the $x$-axis. <br/><br/>OP is the distance from origin O to point P, which is given by : <br/><br/>$$OP =r_1 = \sqrt{\left(\frac{2\sqrt{3}}{\sqrt{7}}\right)^2 + \left(\frac{6}{\sqrt{7}}\right)^2} = \sqrt{\frac{12}{7} + \frac{36}{7}} = \sqrt{\frac{48}{7}} = 2\sqrt{\frac{12}{7}}.$$ <br/><br/>1. Let's represent the given point $P\left(\frac{2 \sqrt{3}}{\sqrt{7}}, \frac{6}{\sqrt{7}}\right)$ in polar coordinates. We can write $P$ as $(r_1 \cos \theta, r_1 \sin \theta)$. Since $P$ lies on the ellipse, it must satisfy the equation of the ellipse. Substituting $x=r_1 \cos \theta$ and $y=r_1 \sin \theta$ into the equation of the ellipse gives us : <br/><br/> $$\frac{r_1^2 \cos ^2 \theta}{4}+\frac{r_1^2 \sin ^2 \theta}{9}=1$$ <br/><br/> Simplifying this, we obtain : <br/><br/> $$\frac{\cos ^2 \theta}{4}+\frac{\sin ^2 \theta}{9}=\frac{7}{48} \quad \text{--- (equation 1)}$$ <br/><br/>2. Similarly, if we represent the point $R$ as $(-r_2 \sin \theta, r_2 \cos \theta)$, (the negative sign is due to the fact that line RS is perpendicular to line PQ. Since they are perpendicular, the angle between them is 90 degrees or $\pi/2$ radians. In terms of sin and cos, $\sin(\theta + \pi/2) = \cos(\theta)$ and $\cos(\theta + \pi/2) = -\sin(\theta)$.) it too should satisfy the equation of the ellipse. We have : <br/><br/> $$\frac{r_2^2 \sin ^2 \theta}{4}+\frac{r_2^2 \cos ^2 \theta}{9}=1$$ <br/><br/> Simplifying this, we obtain : <br/><br/> $$\frac{\sin ^2 \theta}{4}+\frac{\cos ^2 \theta}{9}=\frac{1}{r_2^2} \quad \text{--- (equation 2)}$$ <br/><br/>3. From equations (1) and (2), we have : <br/><br/> $$\frac{1}{r_2^2}=\frac{1}{4}+\frac{1}{9}-\frac{7}{48}=\frac{31}{144}$$ <br/><br/>4. Now, note that lines $PQ$ and $RS$ are perpendicular and pass through the origin, so $PQ = 2OP$ and $RS = 2OR$. Thus, <br/><br/> $$\frac{1}{PQ^2} + \frac{1}{RS^2} = \frac{1}{4} \left(\frac{1}{r_1^2} + \frac{1}{r_2^2} \right)$$ <br/><br/>5. Substituting the values of $r_1$ and $r_2$, we obtain : <br/><br/> $$\frac{1}{PQ^2} + \frac{1}{RS^2} = \frac{1}{4}\left(\frac{7}{48}+\frac{31}{144}\right)=\frac{13}{144} = \frac{p}{q}$$ <br/><br/>6. Hence, $p = 13$ and $q = 144$. <br/><br/>7. So, the final answer $p+q = 13 + 144 = 157$.
mcq
jee-main-2023-online-12th-april-morning-shift
lv7v4g1l
maths
ellipse
position-of-point-and-chord-joining-of-two-points
<p>Let the line $$2 x+3 y-\mathrm{k}=0, \mathrm{k}&gt;0$$, intersect the $$x$$-axis and $$y$$-axis at the points $$\mathrm{A}$$ and $$\mathrm{B}$$, respectively. If the equation of the circle having the line segment $$A B$$ as a diameter is $$x^2+y^2-3 x-2 y=0$$ and the length of the latus rectum of the ellipse $$x^2+9 y^2=k^2$$ is $$\frac{m}{n}$$, where $$m$$ and $$n$$ are coprime, then $$2 \mathrm{~m}+\mathrm{n}$$ is equal to</p>
[{"identifier": "A", "content": "12"}, {"identifier": "B", "content": "13"}, {"identifier": "C", "content": "11"}, {"identifier": "D", "content": "10"}]
["C"]
null
<p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1lwgi30yz/efd8a8c4-b19c-464d-9aab-50da9ed84968/ccf9e7b0-177f-11ef-97dc-2d80937d5077/file-1lwgi30z0.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1lwgi30yz/efd8a8c4-b19c-464d-9aab-50da9ed84968/ccf9e7b0-177f-11ef-97dc-2d80937d5077/file-1lwgi30z0.png" loading="lazy" style="max-width: 100%;height: auto;display: block;margin: 0 auto;max-height: 40vh;vertical-align: baseline" alt="JEE Main 2024 (Online) 5th April Morning Shift Mathematics - Ellipse Question 1 English Explanation"></p> <p>Equation of circle with $$A B$$ as diameter</p> <p>$$\begin{aligned} &amp; \left(x-\frac{k}{2}\right) x+y\left(y-\frac{k}{3}\right)=0 \\ &amp; \Rightarrow x^2+y^2-\frac{k x}{2}-\frac{k y}{3}=0 \end{aligned}$$</p> <p>Comparing, $$k=6$$</p> <p>Latus rectum of ellipse</p> <p>$$\begin{aligned} &amp; x^2+9 y^2=k^2=6^2 \\ &amp; \Rightarrow \frac{x^2}{6^2}+\frac{y^2}{2^2}=1 \\ &amp; \text { L.R }=\frac{2 b^2}{a}=\frac{2 \times 4}{6}=\frac{4}{3} \\ &amp; m=4 \\ &amp; n=3 \\ &amp; 2 m+n=8+3=11 \end{aligned}$$</p>
mcq
jee-main-2024-online-5th-april-morning-shift
UpdYGwyWWDYrcvXF
maths
ellipse
question-based-on-basic-definition-and-parametric-representation
The eccentricity of an ellipse, with its centre at the origin, is $${1 \over 2}$$. If one of the directrices is $$x=4$$, then the equation of the ellipse is :
[{"identifier": "A", "content": "$$4{x^2} + 3{y^2} = 1$$ "}, {"identifier": "B", "content": "$$3{x^2} + 4{y^2} = 12$$"}, {"identifier": "C", "content": "$$4{x^2} + 3{y^2} = 12$$"}, {"identifier": "D", "content": "$$3{x^2} + 4{y^2} = 1$$"}]
["B"]
null
$$e = {1 \over 2}.\,\,$$ Directrix, $$x = {a \over e} = 4$$ <br><br>$$\therefore$$ $$a = 4 \times {1 \over 2} = 2$$ <br><br>$$\therefore$$ $$b = 2\sqrt {1 - {1 \over 4}} = \sqrt 3 $$ <br><br>Equation of elhipe is <br><br>$${{{x^2}} \over 4} + {{{y^2}} \over 3} = 1 \Rightarrow 3{x^2} + 4{y^2} = 12$$
mcq
aieee-2004
fqgR73iD6te7y31I
maths
ellipse
question-based-on-basic-definition-and-parametric-representation
An ellipse has $$OB$$ as semi minor axis, $$F$$ and $$F$$' its focii and theangle $$FBF$$' is a right angle. Then the eccentricity of the ellipse is :
[{"identifier": "A", "content": "$${1 \\over {\\sqrt 2 }}$$ "}, {"identifier": "B", "content": "$${1 \\over 2}$$"}, {"identifier": "C", "content": "$${1 \\over 4}$$"}, {"identifier": "D", "content": "$${1 \\over {\\sqrt 3 }}$$"}]
["A"]
null
as $$\angle FBF' = {90^ \circ }$$ <br><br>$$ \Rightarrow F{B^2} + F'{B^2} = FF{'^2}$$ <br><br>$$\therefore$$ $${\left( {\sqrt {{a^2}{e^2} + {b^2}} } \right)^2} + \left( {\sqrt {{a^2}{e^2} + {b^2}} } \right) = {\left( {2ae} \right)^2}$$ <br><br>$$ \Rightarrow 2\left( {{a^2}{e^2} + {b^2}} \right) = 4{a^2}{e^2}$$ <br><br>$$ \Rightarrow {e^2} = {{{b^2}} \over {{a^2}}}$$ <br><br><img class="question-image" src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734263637/exam_images/evoxpwc1lpvv4diyvenq.webp" loading="lazy" alt="AIEEE 2005 Mathematics - Ellipse Question 84 English Explanation"> <br><br>Also $${e^2} = 1 - {b^2}/{a^2} = 1 - {e^2}$$ <br><br>$$ \Rightarrow 2{e^2} = 1,\,\,e = {1 \over {\sqrt 2 }}$$
mcq
aieee-2005
h1jmOU3BvKJGrV5A
maths
ellipse
question-based-on-basic-definition-and-parametric-representation
In the ellipse, the distance between its foci is $$6$$ and minor axis is $$8$$. Then its eccentricity is :
[{"identifier": "A", "content": "$${3 \\over 5}$$"}, {"identifier": "B", "content": "$${1 \\over 2}$$"}, {"identifier": "C", "content": "$${4 \\over 5}$$"}, {"identifier": "D", "content": "$${1 \\over {\\sqrt 5 }}$$"}]
["A"]
null
$$2ae = 6 \Rightarrow ae = 3;\,\,2b = 8 \Rightarrow b = 4$$ <br><br>$${b^2} = {a^2}\left( {1 - {e^2}} \right);16 = {a^2} - {a^2}{e^2}$$ <br><br>$$ \Rightarrow a{}^2 = 16 + 9 = 25$$ <br><br>$$ \Rightarrow a = 5$$ <br><br>$$\therefore$$ $$e = {3 \over a} = {3 \over 5}$$
mcq
aieee-2006
YPUS6uIIDYQa7Fw1
maths
ellipse
question-based-on-basic-definition-and-parametric-representation
A focus of an ellipse is at the origin. The directrix is the line $$x=4$$ and the eccentricity is $${{1 \over 2}}$$. Then the length of the semi-major axis is :
[{"identifier": "A", "content": "$${{8 \\over 3}}$$"}, {"identifier": "B", "content": "$${{2 \\over 3}}$$"}, {"identifier": "C", "content": "$${{4 \\over 3}}$$"}, {"identifier": "D", "content": "$${{5 \\over 3}}$$"}]
["A"]
null
<img class="question-image" src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734264328/exam_images/fxzt3slso48o3sotippm.webp" loading="lazy" alt="AIEEE 2008 Mathematics - Ellipse Question 81 English Explanation"> <br><br>Perpendicular distance of directrix from focus <br><br>$$ = {a \over e} - ae = 4$$ <br><br>$$ \Rightarrow a\left( {2 - {1 \over 2}} \right) = 4$$ <br><br>$$ \Rightarrow a = {8 \over 3}$$ <br><br>$$\therefore$$ Semi major axis $$=8/3$$
mcq
aieee-2008
8BGB4L5m1YJ9F01b
maths
ellipse
question-based-on-basic-definition-and-parametric-representation
The ellipse $${x^2} + 4{y^2} = 4$$ is inscribed in a rectangle aligned with the coordinate axex, which in turn is inscribed in another ellipse that passes through the point $$(4,0)$$. Then the equation of the ellipse is :
[{"identifier": "A", "content": "$${x^2} + 12{y^2} = 16$$ "}, {"identifier": "B", "content": "$$4{x^2} + 48{y^2} = 48$$ "}, {"identifier": "C", "content": "$$4{x^2} + 64{y^2} = 48$$ "}, {"identifier": "D", "content": "$${x^2} + 16{y^2} = 16$$ "}]
["A"]
null
<img class="question-image" src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734265178/exam_images/ymnjbdlge7ihvtgsvwzr.webp" loading="lazy" alt="AIEEE 2009 Mathematics - Ellipse Question 80 English Explanation"> <br><br>The given ellipse is $${{{x^2}} \over 4} + {{{y^2}} \over 1} = 1$$ <br><br>So $$A=(2,0)$$ and $$B = \left( {0,1} \right)$$ <br><br>If $$PQRS$$ is the rectangular in which it is inscribed, then <br><br>$$P = \left( {2,1} \right).$$ <br><br>Let $${{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1$$ <br><br>be the ellipse circumscribing the rectangular $$PQRS$$. <br><br>Then it passes through $$P\,\,(2,1)$$ <br><br>$$\therefore$$ $${4 \over {a{}^2}} + {1 \over {{b^2}}} = 1\,\,\,\,\,\,...\left( a \right)$$ <br><br>Also, given that, it passes through $$(4,0)$$ <br><br>$$\therefore$$ $${{16} \over {{a^2}}} + 0 = 1 \Rightarrow {a^2} = 16$$ <br><br>$$ \Rightarrow {b^2} = 4/3$$ $$\left[ {\,\,} \right.$$ substituting $${{a^2} = 16\,\,}$$ in $$\left. {e{q^n}\left( a \right)\,\,} \right]$$ <br><br>$$\therefore$$ The required ellipse is $${{{x^2}} \over {16}} + {{{y^2}} \over {4/3}} = 1$$ <br><br>or $${x^2} + 12y{}^2 = 16$$
mcq
aieee-2009
e0Okjyna0slrDuAf
maths
ellipse
question-based-on-basic-definition-and-parametric-representation
Equation of the ellipse whose axes of coordinates and which passes through the point $$(-3,1)$$ and has eccentricity $$\sqrt {{2 \over 5}} $$ is :
[{"identifier": "A", "content": "$$5{x^2} + 3{y^2} - 48 = 0$$ "}, {"identifier": "B", "content": "$$3{x^2} + 5{y^2} - 15 = 0$$"}, {"identifier": "C", "content": "$$5{x^2} + 3{y^2} - 32 = 0$$"}, {"identifier": "D", "content": "$$3{x^2} + 5{y^2} - 32 = 0$$"}]
["D"]
null
Let the ellipse be $${{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1$$ <br><br>It press through $$(-3, 1)$$ so $${9 \over {{a^2}}} + {1 \over {{b^2}}} = 1\,\,\,\,\,\,...\left( i \right)$$ <br><br>Also, $${b^2} = {a^2}\left( {1 - 2/5} \right)$$ <br><br>$$ \Rightarrow 5{b^2} = 3{a^2}\,\,\,\,\,\,\,\,\,...\left( {ii} \right)$$ <br><br>Solving $$(i)$$ and $$(ii)$$ we get $${a^2} = {{32} \over 3},{b^2} = {{32} \over 5}$$ <br><br>So, the equation of the ellipse is $$3{x^2} + 5{y^2} = 32$$
mcq
aieee-2011
nDHwUJAI71QHUK6u
maths
ellipse
question-based-on-basic-definition-and-parametric-representation
An ellipse is drawn by taking a diameter of thec circle $${\left( {x - 1} \right)^2} + {y^2} = 1$$ as its semi-minor axis and a diameter of the circle $${x^2} + {\left( {y - 2} \right)^2} = 4$$ is semi-major axis. If the centre of the ellipse is at the origin and its axes are the coordinate axes, then the equation of the ellipse is :
[{"identifier": "A", "content": "$$4{x^2} + {y^2} = 4$$ "}, {"identifier": "B", "content": "$${x^2} + 4{y^2} = 8$$"}, {"identifier": "C", "content": "$$4{x^2} + {y^2} = 8$$"}, {"identifier": "D", "content": "$${x^2} + 4{y^2} = 16$$"}]
["D"]
null
Equation of circle is $${\left( {x - 1} \right)^2} + {y^2} = 1$$ <br><br>$$ \Rightarrow $$ radius $$=1$$ and diameter $$=2$$ <br><br>$$\therefore$$ Length of semi-minor axis is $$2.$$ <br><br>Equation of circle is $${x^2} + {\left( {y - 2} \right)^2} = 4 = {\left( 2 \right)^2}$$ <br><br>$$ \Rightarrow $$ radius $$=2$$ and diameter $$=4$$ <br><br>$$\therefore$$ Length of semi major axis is $$4$$ <br><br>We know, equation of ellipse is given by <br><br>$${{{x^2}} \over {\left( {Major\,\,\,axi{s^{\,\,2}}} \right)}} + {{{y^2}} \over {\left( {Minor\,\,\,axi{s^{\,\,2}}} \right)}} = 1$$ <br><br>$$ \Rightarrow {{{x^2}} \over {{{\left( 4 \right)}^2}}} + {{{y^2}} \over {{{\left( 2 \right)}^2}}} = 1$$ <br><br>$$ \Rightarrow {{{x^2}} \over {16}} + {{{y^2}} \over 4} = 1$$ <br><br>$$ \Rightarrow {x^2} + 4{y^2} = 16$$
mcq
aieee-2012
3EgKRF0Qam0Y2DwppaMvV
maths
ellipse
question-based-on-basic-definition-and-parametric-representation
Consider an ellipse, whose center is at the origin and its major axis is along the x-axis. If its eccentricity is $${3 \over 5}$$ and the distance between its foci is 6, then the area (in sq. units) of the quadrilatateral inscribed in the ellipse, with the vertices as the vertices of the ellipse, is :
[{"identifier": "A", "content": "8"}, {"identifier": "B", "content": "32"}, {"identifier": "C", "content": "80"}, {"identifier": "D", "content": "40"}]
["D"]
null
e = 3/5 &amp; 2ae = 6&nbsp;&nbsp;$$ \Rightarrow $$&nbsp;&nbsp; a = 5 <br><br>$$ \because $$&nbsp;&nbsp;&nbsp;b<sup>2</sup> = a<sup>2</sup> (1 $$-$$ e<sup>2</sup>) <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;b<sup>2</sup> = 25(1 $$-$$ 9/25) <br><br><img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734265271/exam_images/qlwwjazgwqnl9oqbsmlw.webp" style="max-width: 100%; height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2017 (Online) 8th April Morning Slot Mathematics - Ellipse Question 71 English Explanation"> <br>$$ \Rightarrow $$ b = 4 <br><br>$$ \therefore $$ Area of required quadrilateral <br><br>= 4(1/2 ab) = 2ab = 40
mcq
jee-main-2017-online-8th-april-morning-slot
pH7BEcGlUt4jdIi97WFap
maths
ellipse
question-based-on-basic-definition-and-parametric-representation
The eccentricity of an ellipse having centre at the origin, axes along the co-ordinate axes and passing through the points (4, −1) and (−2, 2) is :
[{"identifier": "A", "content": "$${1 \\over 2}$$"}, {"identifier": "B", "content": "$${2 \\over {\\sqrt 5 }}$$ "}, {"identifier": "C", "content": "$${{\\sqrt 3 } \\over 2}$$"}, {"identifier": "D", "content": "$${{\\sqrt 3 } \\over 4}$$ "}]
["C"]
null
Centre at (0, 0) <br><br>$${{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}}$$ = 1 <br><br>at point (4, $$-$$ 1) <br><br>$${{16} \over {{a^2}}} + {1 \over {{b^2}}}$$ = 1 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;16b<sup>2</sup> + a<sup>2</sup> = a<sup>2</sup>b<sup>2</sup> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;. . . .(i) <br><br>at point ($$-$$ 2, 2) <br><br>$${4 \over {{a^2}}} + {4 \over {{b^2}}} = 1$$ <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;4b<sup>2</sup> + 4a<sup>2</sup> = a<sup>2</sup>b<sup>2</sup> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;. . . .(ii) <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;16b<sup>2</sup> + a<sup>2</sup> = 4a<sup>2</sup> + 4b<sup>2</sup> <br><br>From equations (i) and (ii) <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;3a<sup>2</sup> = 12b<sup>2</sup> <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;<b>a<sup>2</sup> = 4b<sup>2</sup></b> <br><br>b<sup>2</sup> = a<sup>2</sup>(1 $$-$$ e<sup>2</sup>) <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;e<sup>2</sup> = $${3 \over 4}$$ <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;e = $${{\sqrt 3 } \over 2}$$
mcq
jee-main-2017-online-9th-april-morning-slot