question_id
stringlengths
8
35
subject
stringclasses
1 value
chapter
stringclasses
32 values
topic
stringclasses
178 values
question
stringlengths
26
9.64k
options
stringlengths
2
1.63k
correct_option
stringclasses
5 values
answer
stringclasses
293 values
explanation
stringlengths
13
9.38k
question_type
stringclasses
3 values
paper_id
stringclasses
149 values
1l6rdzvet
maths
limits-continuity-and-differentiability
continuity
<p>$$ \text { Let the function } f(x)=\left\{\begin{array}{cl} \frac{\log _{e}(1+5 x)-\log _{e}(1+\alpha x)}{x} &amp; ;\text { if } x \neq 0 \\ 10 &amp; ; \text { if } x=0 \end{array} \text { be continuous at } x=0 .\right. $$</p> <p>Then $$\alpha$$ is equal to</p>
[{"identifier": "A", "content": "10"}, {"identifier": "B", "content": "$$-$$10"}, {"identifier": "C", "content": "5"}, {"identifier": "D", "content": "$$-$$5"}]
["D"]
null
<p>$$f(x)$$ is continuous at $$x = 0$$</p> <p>$$\therefore$$ $$f(0) = \mathop {\lim }\limits_{x \to 0} f(x)$$</p> <p>$$ \Rightarrow 10 = \mathop {\lim }\limits_{x \to 0} {{{{\log }_e}(1 + 5x) - {{\log }_e}(1 + \alpha x)} \over x}$$</p> <p>$$ = \mathop {\lim }\limits_{x \to 0} {{\log (1 + 5x)} \over {5x}} \times 5 - {{{{\log }_e}(1 + \alpha x)} \over {\alpha x}} \times \alpha $$</p> <p>$$ = 1 \times 5 - \alpha $$</p> <p>$$ \Rightarrow \alpha = 5 - 10 = - 5$$</p>
mcq
jee-main-2022-online-29th-july-evening-shift
1ldu4jonv
maths
limits-continuity-and-differentiability
continuity
<p>If the function $$f(x) = \left\{ {\matrix{ {(1 + |\cos x|)^{\lambda \over {|\cos x|}}} &amp; , &amp; {0 &lt; x &lt; {\pi \over 2}} \cr \mu &amp; , &amp; {x = {\pi \over 2}} \cr e^{{{\cot 6x} \over {{}\cot 4x}}} &amp; , &amp; {{\pi \over 2} &lt; x &lt; \pi } \cr } } \right.$$</p> <p>is continuous at $$x = {\pi \over 2}$$, then $$9\lambda + 6{\log _e}\mu + {\mu ^6} - {e^{6\lambda }}$$ is equal to</p>
[{"identifier": "A", "content": "11"}, {"identifier": "B", "content": "10"}, {"identifier": "C", "content": "8"}, {"identifier": "D", "content": "2e$$^4$$ + 8"}]
["B"]
null
$$ \mathop {\lim }\limits_{x \rightarrow \frac{\pi^{-}}{2}}(1+|\cos x|)^ \frac{\lambda}{|\cos x|}=e^\lambda $$ <br/><br/> And, <br/><br/>$$ \begin{aligned} &\mathop {\lim }\limits_{x \rightarrow \frac{\pi^{+}}{2}} e^{\frac{\cot 6 x}{\cot 4 x}}\\\\ &= \mathop {\lim }\limits_{x \to {{{\pi ^ + }} \over 2}} {e^{{{\sin 4x.\cos 6x} \over {\sin 6x.\cos 4x}}}} \\\\ & =e^{\frac{2}{3}} \end{aligned} $$ <br/><br/> Also, $$ f(\pi / 2)=\mu $$ <br/><br/>For continuous function, <br/><br/>$ \mathrm{e}^{2 / 3}=\mathrm{e}^\lambda=\mu$ <br/><br/>$$ \lambda=\frac{2}{3}, \mu=\mathrm{e}^{2 / 3} $$ <br/><br/> $$ \therefore $$ $9 \lambda+6 \ln \mu+\mu^{6}-e^{6 \lambda}$ <br/><br/> $=6+4+e^{4}-e^{4}=10$
mcq
jee-main-2023-online-25th-january-evening-shift
1lgrgpa4y
maths
limits-continuity-and-differentiability
continuity
<p>Let $$[x]$$ be the greatest integer $$\leq x$$. Then the number of points in the interval $$(-2,1)$$, where the function $$f(x)=|[x]|+\sqrt{x-[x]}$$ is discontinuous, is ___________.</p>
[]
null
2
The function $f(x) = |[x]| + \sqrt{x-[x]}$ is composed of two parts : the greatest integer function $[x]$, and the fractional part function $x-[x]$. <br/><br/>1. The greatest integer function $[x]$ is discontinuous at every integer, since it jumps from one integer to the next without taking any values in between. The absolute value does not affect where this function is continuous or discontinuous. So within the interval $(-2,1)$, $[x]$ is discontinuous at $-2, -1, 0$ and $1$. However, because the interval is open $(-2,1)$, the endpoints $-2$ and $1$ are not included. <br/><br/>2. The function $\sqrt{x-[x]}$ is the square root of the fractional part of $x$. The fractional part function $x-[x]$ is continuous everywhere, as it always takes a value between $0$ and $1$ (inclusive of $0$, exclusive of $1$). However, the square root function $\sqrt{x}$ is only defined for $x \geq 0$, and so $\sqrt{x-[x]}$ is discontinuous wherever $x-[x] < 0$. This happens exactly at the points where $x$ is a negative integer, as the fractional part of a negative integer is $1$ (considering that the "fractional part" is defined as the part of the number to the right of the decimal point, which for negative numbers works a bit differently). Within the interval $(-2,1)$, this is the case for $-2$ and $-1$. However, since the interval is open $(-2,1)$, the endpoint $-2$ is not included. <br/><br/>Now, let's analyze the discontinuities within the given interval $(-2,1)$: <br/><br/>At $x=-1$: $f(-1^{+})=1+0=1$ and $f(-1^{-})=2+1=3$. Since these two values are different, $f(x)$ is discontinuous at $x=-1$. <br/><br/>At $x=0$: $f(0^{+})=0+0=0$ and $f(0^{-})=1+1=2$. Again, these two values are different, so $f(x)$ is discontinuous at $x=0$. <br/><br/>At $x=1$: $f(1^{+})=1+0=1$ and $f(1^{-})=0+1=1$. These two values are the same, so $f(x)$ is continuous at $x=1$. However, this point is not within the open interval $(-2,1)$. <br/><br/>So within the interval $(-2,1)$, the function $f(x) = |[x]| + \sqrt{x-[x]}$ is discontinuous at the points $-1$ and $0$ (2 points in total).
integer
jee-main-2023-online-12th-april-morning-shift
1lguuf2hr
maths
limits-continuity-and-differentiability
continuity
<p>Let $$f(x)=\left[x^{2}-x\right]+|-x+[x]|$$, where $$x \in \mathbb{R}$$ and $$[t]$$ denotes the greatest integer less than or equal to $$t$$. Then, $$f$$ is :</p>
[{"identifier": "A", "content": "continuous at $$x=0$$, but not continuous at $$x=1$$"}, {"identifier": "B", "content": "continuous at $$x=0$$ and $$x=1$$"}, {"identifier": "C", "content": "continuous at $$x=1$$, but not continuous at $$x=0$$"}, {"identifier": "D", "content": "not continuous at $$x=0$$ and $$x=1$$"}]
["C"]
null
We have, <br/><br/>$$\begin{aligned} f(x) & =\left[x^2-x\right]+|-x+[x]| \\\\ & =[x(x-1)]+\{x\} \end{aligned} $$ <br/><br/>$$ f(x)=\left\{\begin{array}{ccc} x+1 & ; & -0.5 < x < 0 \\ 0 & ; & x=0 \\ -1+x & ; & 0 < x <1 \\ 0 & ; & x=1 \\ x-1 & ; & 1 < x < 1.5 \end{array}\right. $$ <br/><br/>At $x=0$, <br/><br/>$$ \begin{array}{r} \text { LHL }=\lim\limits_{x \rightarrow 0^{-}} f(x)=1 \\\\ \text { RHL } \lim\limits_{x \rightarrow 0^{+}} f(x)=-1 \\\\ f(0)=0 \end{array} $$ <br/><br/>$\therefore f(x)$ is not continuous at $x=0$ <br/><br/>At $x=1$ <br/><br/>$$ \begin{aligned} \mathrm{LHL} & =\lim _{x \rightarrow 1^{-}} f(x)=-1+1=0 \\\\ \mathrm{RHL} & =\lim _{x \rightarrow 1^{+}} f(x)=1-1=0 \\\\ f(1) & =0 \end{aligned} $$ <br/><br/>$\therefore f(x)$ is continuous at $x=1$ <br/><br/>Hence, $f(x)$ is continuous at $x=1$, but not continuous at $x=0$.
mcq
jee-main-2023-online-11th-april-morning-shift
lsbkoryy
maths
limits-continuity-and-differentiability
continuity
Consider the function. <br/><br/>$$ f(x)=\left\{\begin{array}{cc} \frac{\mathrm{a}\left(7 x-12-x^2\right)}{\mathrm{b}\left|x^2-7 x+12\right|} &amp; , x&lt;3 \\\\ 2^{\frac{\sin (x-3)}{x-[x]}} &amp; , x&gt;3 \\\\ \mathrm{~b} &amp; , x=3, \end{array}\right. $$ <br/><br/>where $[x]$ denotes the greatest integer less than or equal to $x$. If $\mathrm{S}$ denotes the set of all ordered pairs (a, b) such that $f(x)$ is continuous at $x=3$, then the number of elements in $\mathrm{S}$ is :
[{"identifier": "A", "content": "Infinitely many"}, {"identifier": "B", "content": "4"}, {"identifier": "C", "content": "2"}, {"identifier": "D", "content": "1"}]
["D"]
null
<p>$$f\left(3^{-}\right)=\frac{a}{b} \frac{\left(7 x-12-x^2\right)}{\left|x^2-7 x+12\right|} \quad$$ (for $$f(x)$$ to be cont.)</p> <p>$$\Rightarrow \mathrm{f}\left(3^{-}\right)=\frac{-\mathrm{a}}{\mathrm{b}} \frac{(\mathrm{x}-3)(\mathrm{x}-4)}{(\mathrm{x}-3)(\mathrm{x}-4)} ; \mathrm{x}<3 \Rightarrow \frac{-\mathrm{a}}{\mathrm{b}}$$</p> <p>Hence $$f\left(3^{-}\right)=\frac{-a}{b}$$</p> <p>Then $$f\left(3^{+}\right)=2^{\lim _\limits{x \rightarrow 3^{+}}\left(\frac{\sin (x-3)}{x-3}\right)}=2$$ and $$f(3)=b$$.</p> <p>Hence $$\mathrm{f}(3)=\mathrm{f}\left(3^{+}\right)=\mathrm{f}\left(3^{-}\right)$$</p> <p>$$\begin{aligned} & \Rightarrow \mathrm{b}=2=-\frac{\mathrm{a}}{\mathrm{b}} \\ & \mathrm{b}=2, \mathrm{a}=-4 \end{aligned}$$</p> <p>Hence only 1 ordered pair $$(-4,2)$$.</p>
mcq
jee-main-2024-online-27th-january-morning-shift
jaoe38c1lse5crz0
maths
limits-continuity-and-differentiability
continuity
<p>Let $$g(x)$$ be a linear function and $$f(x)=\left\{\begin{array}{cl}g(x) &amp; , x \leq 0 \\ \left(\frac{1+x}{2+x}\right)^{\frac{1}{x}} &amp; , x&gt;0\end{array}\right.$$, is continuous at $$x=0$$. If $$f^{\prime}(1)=f(-1)$$, then the value $$g(3)$$ is</p>
[{"identifier": "A", "content": "$$\\log _e\\left(\\frac{4}{9}\\right)-1$$\n"}, {"identifier": "B", "content": "$$\\frac{1}{3} \\log _e\\left(\\frac{4}{9 e^{1 / 3}}\\right)$$\n"}, {"identifier": "C", "content": "$$\\log _e\\left(\\frac{4}{9 e^{1 / 3}}\\right)$$\n"}, {"identifier": "D", "content": "$$\\frac{1}{3} \\log _e\\left(\\frac{4}{9}\\right)+1$$"}]
["C"]
null
<p>Let $$g(x)=a x+b$$</p> <p>Now function $$\mathrm{f}(\mathrm{x})$$ in continuous at $$\mathrm{x}=0$$</p> <p>$$\begin{aligned} & \therefore \lim _\limits{\mathrm{x} \rightarrow 0^{+}} \mathrm{f}(\mathrm{x})=\mathrm{f}(0) \\ & \Rightarrow \lim _\limits{\mathrm{x} \rightarrow 0}\left(\frac{1+\mathrm{x}}{2+\mathrm{x}}\right)^{\frac{1}{\mathrm{x}}}=\mathrm{b} \\ & \Rightarrow 0=\mathrm{b} \\ & \therefore \mathrm{g}(\mathrm{x})=\mathrm{ax} \end{aligned}$$</p> <p>Now, for $$\mathrm{x}>0$$</p> <p>$$\begin{aligned} & \mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{\mathrm{x}} \cdot\left(\frac{1+\mathrm{x}}{2+\mathrm{x}}\right)^{\frac{1}{\mathrm{x}}-1} \cdot \frac{1}{(2+\mathrm{x})^2} \\ & +\left(\frac{1+\mathrm{x}}{2+\mathrm{x}}\right)^{\frac{1}{\mathrm{x}}} \cdot \ln \left(\frac{1+\mathrm{x}}{2+\mathrm{x}}\right) \cdot\left(-\frac{1}{\mathrm{x}^2}\right) \\ & \therefore \mathrm{f}^{\prime}(1)=\frac{1}{9}-\frac{2}{3} \cdot \ln \left(\frac{2}{3}\right) \\ & \text { And } \mathrm{f}(-1)=\mathrm{g}(-1)=-\mathrm{a} \\ & \therefore \mathrm{a}=\frac{2}{3} \ln \left(\frac{2}{3}\right)-\frac{1}{9} \\ & \therefore \mathrm{g}(3)=2 \ln \left(\frac{2}{3}\right)-\frac{1}{3} \\ & =\ln \left(\frac{4}{9 \cdot \mathrm{e}^{1 / 3}}\right) \end{aligned}$$</p>
mcq
jee-main-2024-online-31st-january-morning-shift
luy9clcn
maths
limits-continuity-and-differentiability
continuity
<p>Let $$f:(0, \pi) \rightarrow \mathbf{R}$$ be a function given by $$f(x)=\left\{\begin{array}{cc}\left(\frac{8}{7}\right)^{\frac{\tan 8 x}{\tan 7 x}}, &amp; 0&lt; x&lt;\frac{\pi}{2} \\ \mathrm{a}-8, &amp; x=\frac{\pi}{2} \\ (1+\mid \cot x)^{\frac{\mathrm{b}}{\mathrm{a}}|\tan x|}, &amp; \frac{\pi}{2} &lt; x &lt; \pi\end{array}\right.$$</p> <p>where $$\mathrm{a}, \mathrm{b} \in \mathbf{Z}$$. If $$f$$ is continuous at $$x=\frac{\pi}{2}$$, then $$\mathrm{a}^2+\mathrm{b}^2$$ is equal to _________.</p>
[]
null
81
<p>$$\lim _\limits{x \rightarrow \frac{\pi^{-}}{2}} f(x)=f\left(\frac{\pi}{2}\right)=\lim _\limits{x \rightarrow \frac{\pi^{+}}{2}} f(x) \text { for continuity at } x=\frac{\pi}{2}$$</p> <p>$$\begin{aligned} & \Rightarrow \quad \lim _{x \rightarrow \frac{\pi^{-}}{2}}\left(\frac{8}{7}\right)^{\left(\frac{\tan 8 x}{\tan 7 x}\right)} \quad \text { Let } x=\frac{\pi}{2}-h \\ & \Rightarrow \quad \lim _{h \rightarrow 0}\left(\frac{8}{7}\right)^{\frac{\tan (4 \pi-8 h)}{\tan \left(3 \pi+\frac{\pi}{2}-7 h\right)}}=\lim _{h \rightarrow 0}\left(\frac{8}{7}\right)^{\frac{\tan (-8 h)}{\cot (7 h)}}=\left(\frac{8}{7}\right)^0=1 \\ & \Rightarrow \quad a-8=1 \Rightarrow a=9 \end{aligned}$$</p> <p>$$\lim _\limits{x \rightarrow \frac{\pi^{+}}{2}}(1+|\cot x|)^{\frac{b}{a}|\tan x|}, x=\frac{\pi}{2}+h$$</p> <p>$$\lim _\limits{h \rightarrow 0}(1-\tan h)^{-\frac{b}{9} \cot h}=\lim _\limits{h \rightarrow 0}(1-\tan h)^{-\frac{b}{9} \cot h}$$</p> <p>$$\begin{aligned} & =\lim _\limits{h \rightarrow 0}(1-\tan h)^{\left(\frac{-1}{\tan h}\right) \cdot(-\tan h) \cdot\left(\frac{-b}{9} \cot h\right)} \\ & =e^{\frac{b}{9}}=1 \quad \Rightarrow b=0 \\ & \Rightarrow a^2+b^2=81+0=81 \end{aligned}$$</p>
integer
jee-main-2024-online-9th-april-morning-shift
lv0vxdd3
maths
limits-continuity-and-differentiability
continuity
<p>Let $$f: \mathbf{R} \rightarrow \mathbf{R}$$ be a function given by</p> <p>$$f(x)= \begin{cases}\frac{1-\cos 2 x}{x^2}, &amp; x &lt; 0 \\ \alpha, &amp; x=0, \\ \frac{\beta \sqrt{1-\cos x}}{x}, &amp; x&gt;0\end{cases}$$</p> <p>where $$\alpha, \beta \in \mathbf{R}$$. If $$f$$ is continuous at $$x=0$$, then $$\alpha^2+\beta^2$$ is equal to :</p>
[{"identifier": "A", "content": "48"}, {"identifier": "B", "content": "6"}, {"identifier": "C", "content": "3"}, {"identifier": "D", "content": "12"}]
["D"]
null
<p>$$f(x)=\left\{\begin{array}{cl} \frac{1-\cos 2 x}{x^2}, & x< \\ \alpha, & x=0 \\ \frac{\beta \sqrt{1-\cos x}}{x}, & x>0 \end{array}\right.$$</p> <p>$$f(x)$$ is continuous at $$x=0$$</p> <p>$$\Rightarrow f(0)=\lim _\limits{x \rightarrow 0^{-}} f(x)=\lim _\limits{x \rightarrow 0^{+}} f(x)$$</p> <p>$$\begin{aligned} &\begin{aligned} & \lim _{x \rightarrow 0^{-}} f(x)=\alpha \\ & \lim _{x \rightarrow 0^{-}}\left(\frac{1-\cos 2 x}{x^2}\right)=\alpha \\ & \Rightarrow \lim _{x \rightarrow 0^{-}} \frac{2 \sin ^2 h}{x^2}=\alpha \\ & \Rightarrow \lim _{h \rightarrow 0} \frac{2 \sin ^2}{h^2} h=\alpha \\ & \Rightarrow \alpha=2 \\ & \end{aligned}\\ &\begin{aligned} & \text { Also, } \lim _{x \rightarrow 0^{+}} f(x)=f(0) \\ & \Rightarrow \quad \lim _{x \rightarrow 0^{+}} \frac{\beta \sqrt{1-\cos x}}{x}=2 \end{aligned} \end{aligned}$$</p> <p>$$\Rightarrow \lim _\limits{h \rightarrow 0} \frac{\beta \sqrt{\frac{1-\cos h}{h^2}} h^2}{h}=2$$</p> <p>$$\begin{aligned} & \Rightarrow \quad \frac{\beta}{\sqrt{2}}=2 \\ & \Rightarrow \quad \beta=2 \sqrt{2} \\ & \Rightarrow \quad \alpha^2+\beta^2=4+8 \\ & \quad=12 \end{aligned}$$</p> <p>$$\therefore$$ Option (1) is correct</p>
mcq
jee-main-2024-online-4th-april-morning-shift
lv2eqvf0
maths
limits-continuity-and-differentiability
continuity
<p>If the function</p> <p>$$f(x)= \begin{cases}\frac{72^x-9^x-8^x+1}{\sqrt{2}-\sqrt{1+\cos x}}, &amp; x \neq 0 \\ a \log _e 2 \log _e 3 &amp; , x=0\end{cases}$$</p> <p>is continuous at $$x=0$$, then the value of $$a^2$$ is equal to</p>
[{"identifier": "A", "content": "968"}, {"identifier": "B", "content": "1250"}, {"identifier": "C", "content": "1152"}, {"identifier": "D", "content": "746"}]
["C"]
null
<p>$$f(x) = \left\{ \matrix{ {{{{72}^x} - {9^x} - {8^x} + 1} \over {\sqrt 2 - \sqrt {1 + \cos x} }},\,x \ne 0 \hfill \cr a{\log _e}2{\log _e}3\,\,\,\,\,\,,\,\,x = 0 \hfill \cr} \right.$$</p> <p>$$\because f(x)$$ is continuous at $$x=0$$</p> <p>$$\begin{aligned} & \Rightarrow \lim _{x \rightarrow 0} \frac{72^x-9^x-8^x+1}{\sqrt{2}-\sqrt{1+\cos x}} \\ & \lim _{x \rightarrow 0} \frac{\left(9^x-1\right)\left(8^x-1\right)(\sqrt{2}+\sqrt{1+\cos x})}{\frac{(1-\cos x)}{x^2} \times x^2} \\ & =(\ln 9 \cdot \ln 8)(2 \sqrt{2}) \times 2 \\ & =4 \sqrt{2} \times 2 \times 3 \ln 2 \cdot \ln 3 \\ & 24 \sqrt{2} \cdot \ln 2 \cdot \ln 3 \\ & \Rightarrow \quad a=24 \sqrt{2} \\ & \quad a^2=1152 \end{aligned}$$</p>
mcq
jee-main-2024-online-4th-april-evening-shift
lv3ve5z1
maths
limits-continuity-and-differentiability
continuity
<p>For $$\mathrm{a}, \mathrm{b}&gt;0$$, let $$f(x)= \begin{cases}\frac{\tan ((\mathrm{a}+1) x)+\mathrm{b} \tan x}{x}, &amp; x&lt; 0 \\ 3, &amp; x=0 \\ \frac{\sqrt{\mathrm{a} x+\mathrm{b}^2 x^2}-\sqrt{\mathrm{a} x}}{\mathrm{~b} \sqrt{\mathrm{a}} x \sqrt{x}}, &amp; x&gt; 0\end{cases}$$ be a continuous function at $$x=0$$. Then $$\frac{\mathrm{b}}{\mathrm{a}}$$ is equal to :</p>
[{"identifier": "A", "content": "4"}, {"identifier": "B", "content": "5"}, {"identifier": "C", "content": "8"}, {"identifier": "D", "content": "6"}]
["D"]
null
<p>$$f(x)=\left\{\begin{array}{cc} \frac{\tan ((a+1) x)+b \tan x}{x}, & x<0 \\ 3 & x=0 \\ \frac{\sqrt{a x+b^2 x^2}-\sqrt{a x}}{b \sqrt{a} x \sqrt{x}}, & x>0 \end{array}\right.$$</p> <p>$$f(x)$$ is continuous at $$x=0$$</p> <p>$$\begin{aligned} & \Rightarrow \lim _{x \rightarrow 0^{-}} f(x)=f(0)=\lim _{x \rightarrow 0^{+}} f(x) \\ & \lim _{x \rightarrow 0^{-}} f(x)=3 \\ & \Rightarrow \lim _{x \rightarrow 0^{-}} \frac{\tan ((a+1) x)+b+a x}{x}=3 \\ & \Rightarrow a+1+b=3 \\ & \Rightarrow a+b=2 \quad \text{..... (1)} \end{aligned}$$</p> <p>also, $$\lim _\limits{x \rightarrow 0^{+}} \frac{\sqrt{a x+b^2 x^2}-\sqrt{a x}}{b \sqrt{a} x \sqrt{x}}=3$$</p> <p>$$\begin{aligned} & =\lim _{x \rightarrow 0^{+}} \frac{\sqrt{a h+b^2 h^2}-\sqrt{a h}}{b \sqrt{a} \times h \sqrt{h}}=3 \\ & =\lim _{h \rightarrow 0} \frac{\sqrt{a+b^2 h^2}-\sqrt{a}}{b \sqrt{a} h} \times \frac{\sqrt{a+b^2 h}+\sqrt{a}}{\sqrt{a+b^2 h}+\sqrt{a}}=3 \\ & =\lim _{h \rightarrow 0} \frac{a+b^2 h-a}{b \sqrt{a} h\left(\sqrt{a+b^2 h}+\sqrt{a}\right)}=3 \\ & \Rightarrow \frac{b^2}{b \sqrt{a}(2 \sqrt{a})}=3 \\ & \Rightarrow \frac{b}{2 a}=3 \\ & \Rightarrow \frac{b}{a}=6 \quad \text{..... (2)} \end{aligned}$$</p>
mcq
jee-main-2024-online-8th-april-evening-shift
lv7v3k5y
maths
limits-continuity-and-differentiability
continuity
<p>If the function $$f(x)=\frac{\sin 3 x+\alpha \sin x-\beta \cos 3 x}{x^3}, x \in \mathbf{R}$$, is continuous at $$x=0$$, then $$f(0)$$ is equal to :</p>
[{"identifier": "A", "content": "4"}, {"identifier": "B", "content": "$$-$$2"}, {"identifier": "C", "content": "$$-$$4"}, {"identifier": "D", "content": "2"}]
["C"]
null
<p>$$\begin{aligned} & \lim _\limits{x \rightarrow 0} f(x)=f(0) \quad \text { (continuous at } x=0) \\ & \lim _{x \rightarrow 0} \frac{\sin 3 x+\alpha \sin x-\beta \cos 3 x}{x^3} \end{aligned}$$</p> <p>For limit to exist $$\beta=0$$</p> <p>$$\begin{aligned} & \Rightarrow \lim _{x \rightarrow 0} \frac{\sin 3 x+\alpha \sin x}{x^3} \\ & \Rightarrow \lim _{x \rightarrow 0} \frac{(3+\alpha) \sin x-4 \sin ^3 x}{x^3} \end{aligned}$$</p> <p>For limit to exist $$\alpha+3=0 \Rightarrow \alpha=-3$$</p> <p>$$\Rightarrow \lim _\limits{x \rightarrow 0} \frac{-4 \sin ^3 x}{x^3}=-4=f(0)$$</p>
mcq
jee-main-2024-online-5th-april-morning-shift
lv9s207h
maths
limits-continuity-and-differentiability
continuity
<p>Let ,$$f:[-1,2] \rightarrow \mathbf{R}$$ be given by $$f(x)=2 x^2+x+\left[x^2\right]-[x]$$, where $$[t]$$ denotes the greatest integer less than or equal to $$t$$. The number of points, where $$f$$ is not continuous, is :</p>
[{"identifier": "A", "content": "5"}, {"identifier": "B", "content": "6"}, {"identifier": "C", "content": "4"}, {"identifier": "D", "content": "3"}]
["C"]
null
<p>$$\begin{aligned} & f(x)=2 x^2+x+\left[x^2\right]-[x]=2 x^2+\left[x^2\right]+\{x\} \\ & f(-1)=2+1+0=3 \\ & f\left(-1^{+}\right)=2+0+0=2 \\ & f\left(0^{-}\right)=0+1=1 \\ & f\left(0^{+}\right)=0+0+0=0 \\ & f\left(1^{+}\right)=2+1+0=3 \end{aligned}$$</p> <p>$$\begin{aligned} & f\left(1^{-}\right)=2+0+1=3 \\ & f\left(2^{-}\right)=8+3+1=12 \\ & f\left(2^{+}\right)=8+4+0=12 \end{aligned}$$</p> <p>$$\therefore$$ discontinuous at $$x=0, \sqrt{2}, \sqrt{3},-1$$</p>
mcq
jee-main-2024-online-5th-april-evening-shift
lvb294ya
maths
limits-continuity-and-differentiability
continuity
<p>Let $$[t]$$ denote the greatest integer less than or equal to $$t$$. Let $$f:[0, \infty) \rightarrow \mathbf{R}$$ be a function defined by $$f(x)=\left[\frac{x}{2}+3\right]-[\sqrt{x}]$$. Let $$\mathrm{S}$$ be the set of all points in the interval $$[0,8]$$ at which $$f$$ is not continuous. Then $$\sum_\limits{\text {aes }} a$$ is equal to __________.</p>
[]
null
17
<p>$$\begin{aligned} f(x) & =\left[\frac{x}{3}+3\right]-[\sqrt{x}] \\ & =\left[\frac{x}{2}\right]-[\sqrt{x}]+3 \end{aligned}$$</p> <p>Critical points where $$f(x)$$ might change behaviours when $$\frac{x}{2} \in$$ integer and $$\sqrt{x} \in$$ integer</p> <p>$$\Rightarrow$$ Critical points,</p> <p>$$\begin{aligned} & f(0)=3 \\ & f\left(0^{+}\right)=3 \\ & f\left(1^{-}\right)=3 \\ & f\left(1^{+}\right)=2 \\ & f\left(2^{-}\right)=2 \\ & f\left(2^{+}\right)=3 \\ & f\left(3^{+}\right)=f\left(3^{-}\right)=3=f\left(4^{+}\right)=f\left(4^{-}\right)=f\left(5^{+}\right)=f\left(5^{-}\right) \\ & f\left(6^{-}\right)=3 \\ & f\left(6^{+}\right)=4 \\ & f\left(7^{-}\right)=f\left(7^{+}\right)=4 \\ & f\left(8^{-}\right)=4 \\ & f(8)=5 \end{aligned}$$</p> <p>$$\begin{aligned} & \Rightarrow f(x) \text { is not continuous at } \\ & x=1,2,6,8 \\ & \Rightarrow \sum_{a \in s} a=1+2+6+8 \\ & \quad=17 \end{aligned}$$</p>
integer
jee-main-2024-online-6th-april-evening-shift
bX8g2hnm95fhLFjI
maths
limits-continuity-and-differentiability
differentiability
f(x) and g(x) are two differentiable functions on [0, 2] such that <br/><br/>f''(x) - g''(x) = 0, f'(1) = 2, g'(1) = 4, f(2) = 3, g(2) = 9 <br/><br/>then f(x) - g(x) at x = $${3 \over 2}$$ is
[{"identifier": "A", "content": "0"}, {"identifier": "B", "content": "2"}, {"identifier": "C", "content": "10"}, {"identifier": "D", "content": "-5"}]
["D"]
null
<p>To find the value of $$f(x) - g(x)$$ at $$x = \frac{3}{2}$$, we need to use the given conditions and properties of differentiable functions.</p> <p>First, we are told that:</p> <p>$$f''(x) - g''(x) = 0$$</p> <p>This implies that:</p> <p>$$f''(x) = g''(x)$$</p> <p>Since the second derivatives of both functions are equal, their difference, $$f'(x) - g'(x)$$, must be a linear function. Let’s denote it as:</p> <p>$$f'(x) - g'(x) = k$$</p> <p>We'll find the constant $$k$$ using the initial conditions of the derivatives:</p> <p>$$f'(1) = 2$$</p> <p>$$g'(1) = 4$$</p> <p>Thus,</p> <p>$$f'(1) - g'(1) = 2 - 4 = -2$$</p> <p>Therefore,</p> <p>$$f'(x) - g'(x) = -2$$</p> <p>Integrating the above result, we get:</p> <p>$$f(x) - g(x) = -2x + C$$</p> <p>To determine the constant $$C$$, we use the values of the functions at $$x = 2$$:</p> <p>$$f(2) = 3$$</p> <p>$$g(2) = 9$$</p> <p>Thus,</p> <p>$$f(2) - g(2) = 3 - 9 = -6$$</p> <p>Therefore,</p> <p>$$-2 \cdot 2 + C = -6$$</p> <p>$$-4 + C = -6$$</p> <p>$$C = -2$$</p> <p>So the expression for $$f(x) - g(x)$$ is:</p> <p>$$f(x) - g(x) = -2x - 2$$</p> <p>We need to find $$f\left( \frac{3}{2} \right) - g\left( \frac{3}{2} \right)$$:</p> <p>$$f\left( \frac{3}{2} \right) - g\left( \frac{3}{2} \right) = -2 \cdot \frac{3}{2} - 2$$</p> <p>$$= -3 - 2$$</p> <p>$$= -5$$</p> <p>Thus, the value of $$f(x) - g(x)$$ at $$x = \frac{3}{2}$$ is -5. </p>
mcq
aieee-2002
3Ip6iYJnQvKQ2klv
maths
limits-continuity-and-differentiability
differentiability
If f(x + y) = f(x).f(y) $$\forall $$ x, y and f(5) = 2, f'(0) = 3, then <br/>f'(5) is
[{"identifier": "A", "content": "0"}, {"identifier": "B", "content": "1"}, {"identifier": "C", "content": "6"}, {"identifier": "D", "content": "2"}]
["C"]
null
$$f\left( {x + y} \right) = f\left( x \right) \times f\left( y \right)$$ <br><br>Differeniate with respect to $$x,$$ treating $$y$$ as constant <br><br>$$f'\left( {x + y} \right) = f'\left( x \right)f\left( y \right)$$ <br><br>Putting $$x=0$$ and $$y=x$$, we get <br><br>$$f'\left( x \right) = f'\left( 0 \right)f\left( x \right);$$ <br><br>$$ \Rightarrow f'\left( 5 \right) = 3f\left( 5 \right) = 3 \times 2 = 6.$$
mcq
aieee-2002
7X0bs7xPIHP0Q5wn
maths
limits-continuity-and-differentiability
differentiability
Let $$f(a) = g(a) = k$$ and their n<sup>th</sup> derivatives <br/>$${f^n}(a)$$, $${g^n}(a)$$ exist and are not equal for some n. Further if <br/><br/>$$\mathop {\lim }\limits_{x \to a} {{f(a)g(x) - f(a) - g(a)f(x) + f(a)} \over {g(x) - f(x)}} = 4$$ <br/><br/>then the value of k is
[{"identifier": "A", "content": "0"}, {"identifier": "B", "content": "4"}, {"identifier": "C", "content": "2"}, {"identifier": "D", "content": "1"}]
["B"]
null
$$\mathop {\lim }\limits_{x \to a} {{f\left( a \right)g'\left( x \right) - g\left( a \right)f'\left( x \right)} \over {g'\left( x \right) - f'\left( x \right)}}$$ <br><br>$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,$$ (By $$L'$$ Hospital rule) <br><br>$$\mathop {\lim }\limits_{x \to a} {{k\,\,g'\left( x \right) - k\,\,f'\left( x \right)} \over {g'\left( x \right) - f'\left( x \right)}} = 4$$ <br><br>$$\therefore$$ $$k=4.$$
mcq
aieee-2003
PmgTOqs8pMxk3diI
maths
limits-continuity-and-differentiability
differentiability
If $$f(x) = \left\{ {\matrix{ {x{e^{ - \left( {{1 \over {\left| x \right|}} + {1 \over x}} \right)}}} &amp; {,x \ne 0} \cr 0 &amp; {,x = 0} \cr } } \right.$$ <br/><br/>then $$f(x)$$ is
[{"identifier": "A", "content": "discontinuous everywhere"}, {"identifier": "B", "content": "continuous as well as differentiable for all x"}, {"identifier": "C", "content": "continuous for all x but not differentiable at x = 0"}, {"identifier": "D", "content": "neither differentiable nor continuous at x = 0"}]
["C"]
null
$$f\left( 0 \right) = 0;\,\,f\left( x \right) = x{e^{ - \left( {{1 \over {\left| x \right|}} + {1 \over x}} \right)}}$$ <br><br>$$R.H.L.\,\,$$ $$\,\,\,\mathop {\lim }\limits_{h \to 0} \left( {0 + h} \right){e^{ - 2/h}}$$ <br><br>$$ = \,\mathop {\lim }\limits_{h \to 0} {h \over {{e^{2/h}}}} = 0$$ <br><br>$$L.H.L.$$ $$\,\,\,\mathop {\lim }\limits_{h \to 0} \left( {0 - h} \right){e^{ - \left( {{1 \over h} - {1 \over h}} \right)}} = 0$$ <br><br>therefore, $$f(x)$$ is continuous, <br><br>$$R.H.D=$$ $$\,\,\,\mathop {\lim }\limits_{h \to 0} {{\left( {0 + h} \right){e^{ - \left( {{1 \over h} + {1 \over h}} \right)}} - 0} \over h} = 0$$ <br><br>$$L.H.D.$$ $$\,\,\, = \mathop {\lim }\limits_{h \to 0} {{\left( {0 - h} \right){e^{ - \left( {{1 \over h} - {1 \over h}} \right)}} - 0} \over { - h}} = 1$$ <br><br>therefore, $$L.H.D. \ne R.H.D.$$ <br><br>$$f(x)$$ is not differentiable at $$x=0.$$
mcq
aieee-2003
U9v6NjxKosuCkmhk
maths
limits-continuity-and-differentiability
differentiability
Suppose $$f(x)$$ is differentiable at x = 1 and <br/><br/>$$\mathop {\lim }\limits_{h \to 0} {1 \over h}f\left( {1 + h} \right) = 5$$, then $$f'\left( 1 \right)$$ equals
[{"identifier": "A", "content": "3"}, {"identifier": "B", "content": "4"}, {"identifier": "C", "content": "5"}, {"identifier": "D", "content": "6"}]
["C"]
null
$$f'\left( 1 \right) = \mathop {\lim }\limits_{h \to 0} {{f\left( {1 + h} \right) - f\left( 1 \right)} \over h};$$ <br><br>As function is differentiable so it is continuous as it <br><br>is given that $$\mathop {\lim }\limits_{h \to 0} {{f\left( {1 + h} \right)} \over h} = 5$$ and hence $$f(1)=0$$ <br><br>Hence $$f'(1)$$ $$ = \mathop {\lim }\limits_{h \to 0} {{f\left( {1 + h} \right)} \over h} = 5$$
mcq
aieee-2005
err9ct1D8q5A5Tge
maths
limits-continuity-and-differentiability
differentiability
If $$f$$ is a real valued differentiable function satisfying <br/><br/>$$\left| {f\left( x \right) - f\left( y \right)} \right|$$ $$ \le {\left( {x - y} \right)^2}$$, $$x, y$$ $$ \in R$$ <br/>and $$f(0)$$ = 0, then $$f(1)$$ equals
[{"identifier": "A", "content": "-1"}, {"identifier": "B", "content": "0"}, {"identifier": "C", "content": "2"}, {"identifier": "D", "content": "1"}]
["B"]
null
$$f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} {{f\left( {x + h} \right) - f\left( x \right)} \over h}$$ <br><br>$$\,\,\,\,\,\,\,\,\,\left| {f'\left( x \right)} \right| = \mathop {\lim }\limits_{h \to 0} \left| {{{f\left( {x + h} \right) - f\left( x \right)} \over h}} \right| \le \mathop {\lim }\limits_{h \to 0} \left| {{{{{\left( h \right)}^2}} \over h}} \right|$$ <br><br>$$ \Rightarrow \left| {f'\left( x \right)} \right| \le 0 \Rightarrow f'\left( x \right) = 0$$ <br><br>$$ \Rightarrow f\left( x \right) = $$ constant <br><br>As $$f\left( 0 \right) = 0 \Rightarrow f\left( 1 \right) = 0$$
mcq
aieee-2005
20IRL1dIRMRqkslc
maths
limits-continuity-and-differentiability
differentiability
The set of points where $$f\left( x \right) = {x \over {1 + \left| x \right|}}$$ is differentiable is
[{"identifier": "A", "content": "$$\\left( { - \\infty ,0} \\right) \\cup \\left( {0,\\infty } \\right)$$ "}, {"identifier": "B", "content": "$$\\left( { - \\infty ,1} \\right) \\cup \\left( { - 1,\\infty } \\right)$$ "}, {"identifier": "C", "content": "$$\\left( { - \\infty ,\\infty } \\right)$$ "}, {"identifier": "D", "content": "$$\\left( {0,\\infty } \\right)$$ "}]
["C"]
null
$$f\left( x \right) = \left\{ {\matrix{ {{x \over {1 - x}},} &amp; {x &lt; 0} \cr {{x \over {1 + x}},} &amp; {x \ge 0} \cr } } \right.$$ <br><br>$$ \Rightarrow f'\left( x \right) = \left\{ {\matrix{ {{x \over {{{\left( {1 - x} \right)}^2}}},} &amp; {x &lt; 0} \cr {{x \over {{{\left( {1 + x} \right)}^2}}}} &amp; {x \ge 0} \cr } } \right.$$ <br><br>$$\therefore$$ $$f'\left( x \right)$$ exist at everywhere.
mcq
aieee-2006
O9Pfkq9XuIbELScm
maths
limits-continuity-and-differentiability
differentiability
Let $$f:R \to R$$ be a function defined by <br/><br/>$$f(x) = \min \left\{ {x + 1,\left| x \right| + 1} \right\}$$, then which of the following is true?
[{"identifier": "A", "content": "$$f(x)$$ is differentiale everywhere"}, {"identifier": "B", "content": "$$f(x)$$ is not differentiable at x = 0"}, {"identifier": "C", "content": "$$f(x) &gt; 1$$ for all $$x \\in R$$"}, {"identifier": "D", "content": "$$f(x)$$ is not differentiable at x = 1"}]
["A"]
null
$$f\left( x \right) = \min \left\{ {x + 1,\left| x \right| + 1} \right\}$$ <br><br>$$ \Rightarrow f\left( x \right) = x + 1\,\forall \,x \in R$$ <br><br><img class="question-image" src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734266784/exam_images/jxar1vgdorciobrxdspe.webp" loading="lazy" alt="AIEEE 2007 Mathematics - Limits, Continuity and Differentiability Question 212 English Explanation"> <br><br>Hence, $$f(x)$$ is differentiable everywhere for all $$x \in R.$$
mcq
aieee-2007
01SDTRQZ8xp9Z4WJ
maths
limits-continuity-and-differentiability
differentiability
Let $$f\left( x \right) = \left\{ {\matrix{ {\left( {x - 1} \right)\sin {1 \over {x - 1}}} &amp; {if\,x \ne 1} \cr 0 &amp; {if\,x = 1} \cr } } \right.$$ <br/><br/>Then which one of the following is true?
[{"identifier": "A", "content": "$$f$$ is neither differentiable at x = 0 nor at x = 1"}, {"identifier": "B", "content": "$$f$$ is differentiable at x = 0 and at x = 1"}, {"identifier": "C", "content": "$$f$$ is differentiable at x = 0 but not at x = 1"}, {"identifier": "D", "content": "$$f$$ is differentiable at x = 1 but not at x = 0"}]
["C"]
null
We have $$f\left( x \right) = \left\{ {\matrix{ {\left( {x - 1} \right)\sin \left( {{1 \over {x - 1}}} \right),} &amp; {if\,\,x \ne 1} \cr {0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,} &amp; {if\,\,x = 1} \cr } } \right.$$ <br><br>$$Rf'\left( 1 \right) = \mathop {\lim }\limits_{h \to 0} {{f\left( {1 + h} \right) - f\left( 1 \right)} \over h}$$ <br><br>$$ = \mathop {\lim }\limits_{h \to 0} {{h\,\sin {1 \over h} - 0} \over h} = \mathop {\lim }\limits_{h \to 0} \,\,\sin {1 \over h} = a$$ finite number <br><br>Let this finite number be $$l$$ <br><br>$$L$$ $$f'(1)$$ $$ = \mathop {\lim }\limits_{h \to 0} {{f\left( {1 - h} \right) - f\left( 1 \right)} \over { - h}}$$ <br><br>$$ = \mathop {\lim }\limits_{h \to 0} {{ - h\,\sin \left( {{1 \over { - h}}} \right)} \over { - h}} = \mathop {\lim }\limits_{h \to 0} \,\,\sin \left( {{1 \over { - h}}} \right)$$ <br><br>$$ = - \mathop {\lim }\limits_{h \to 0} \sin \left( {{1 \over h}} \right) = - (\,$$ a finite number $$\,)$$ $$=-l$$ <br><br>Thus $$Rf'\left( 1 \right) \ne Lf'\left( 1 \right)$$ <br><br>$$\therefore$$ $$f$$ is not differentiable at $$x=1$$ <br><br>Also, $$f'\left( 0 \right) = \sin {1 \over {\left( {x - 1} \right)}} - {{x - 1} \over {{{\left( {x - 1} \right)}^2}}}\cos {\left. {\left( {{1 \over {x - 1}}} \right)} \right]_{x = 0}}$$ <br><br>$$ = - \sin 1 + \cos \,1$$ <br><br>$$\therefore$$ $$f$$ is differentiable at $$x=0$$
mcq
aieee-2008
0QeoBy8todI83IoW
maths
limits-continuity-and-differentiability
differentiability
Let $$f\left( x \right) = x\left| x \right|$$ and $$g\left( x \right) = \sin x.$$ <br/><b>Statement-1:</b> gof is differentiable at $$x=0$$ and its derivative is continuous at that point. <br/><b>Statement-2:</b> gof is twice differentiable at $$x=0$$.
[{"identifier": "A", "content": "Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1."}, {"identifier": "B", "content": "Statement-1 is true, Statement-2 is false "}, {"identifier": "C", "content": "Statement-1 is false, Statement-2 is true "}, {"identifier": "D", "content": "Statement-1 is true, Statement-2 is true Statement-2 is a correct explanation for Statement-1"}]
["B"]
null
Given that $$f\left( x \right) = x\left| x \right|\,\,$$ and $$\,\,g\left( x \right) = \sin x$$ <br><br>So that go <br><br>$$f\left( x \right) = g\left( {f\left( x \right)} \right)$$ <br><br>$$ = g\left( {x\left| x \right|} \right) = \sin x\left| x \right|$$ <br><br>$$ = \left\{ {\matrix{ {\sin \left( { - {x^2}} \right),} &amp; {if\,\,\,x &lt; 0} \cr {\sin \left( {{x^2}} \right),} &amp; {if\,\,\,x \ge 0} \cr } } \right.$$ <br><br>$$ = \left\{ {\matrix{ { - \sin \,{x^2},} &amp; {if\,\,\,x &lt; 0} \cr {\sin \,\,{x^2},} &amp; {if\,\,\,x \ge 0} \cr } } \right.$$ <br><br>$$\therefore$$ $$\left( {go\,f} \right)'\,\,\left( x \right) = \left\{ {\matrix{ { - 2x\,\,\cos \,{x^2},\,\,\,\,if\,\,\,\,x &lt; 0} \cr {2x\,\cos \,{x^2},\,\,\,if\,\,\,\,x \ge 0} \cr } } \right.$$ <br><br>Here we observe <br><br>$$L\left( {gof} \right)'\left( 0 \right) = 0 = R\left( {gof} \right)'\left( 0 \right)$$ <br><br>$$ \Rightarrow $$ go $$f$$ is differentiable at $$x=0$$ <br><br>and $$\left( {go\,f} \right)'$$ is continuous at $$x=0$$ <br><br>Now $$\left( {go\,f} \right)''\left( x \right) = \left\{ {\matrix{ { - 2\cos {x^2} + 4{x^2}\sin {x^2},x &lt; 0} \cr {2\cos {x^2} - 4{x^2}\sin {x^2},x \ge 0} \cr } } \right.$$ <br><br>Here $$L\left( {gof} \right)''\left( 0 \right) = - 2$$ and $$R\left( {go\,f} \right)''\left( 0 \right) = 2$$ <br><br>As $$L{\left( {go\,f} \right)^{''}}\left( 0 \right) \ne R\left( {go\,f} \right)''\,\,\left( 0 \right)$$ <br><br>$$ \Rightarrow go\,f\left( x \right)$$ is not twice differentiable at $$x=0.$$ <br><br>$$\therefore$$ Statement - $$1$$ is true but statement $$-2$$ is false.
mcq
aieee-2009
vgUhS2v8cEKHz8Ex
maths
limits-continuity-and-differentiability
differentiability
Consider the function, $$f\left( x \right) = \left| {x - 2} \right| + \left| {x - 5} \right|,x \in R$$ <br/><br/><b>Statement - 1 :</b> $$f'\left( 4 \right) = 0$$ <br/><br/><b>Statement - 2 :</b> $$f$$ is continuous in [2, 5], differentiable in (2, 5) and $$f$$(2) = $$f$$(5)
[{"identifier": "A", "content": "Statement - 1 is false, statement - 2 is true "}, {"identifier": "B", "content": "Statement - 1 is true, statement - 2 is true; statement - 2 is a correct explanation for statement - 1"}, {"identifier": "C", "content": "Statement - 1 is true, statement - 2 is true; statement - 2 is not a correct explanation for statement - 1"}, {"identifier": "D", "content": "Statement - 1 is true, statement - 2 is false"}]
["C"]
null
$$f\left( x \right) = \left| {x - 2} \right| = \left\{ {\matrix{ {x - 2\,\,\,,} &amp; {x - 2 \ge 0} \cr {2 - x\,\,\,,} &amp; {x - 2 \le 0} \cr } } \right.$$ <br><br>$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \left\{ {\matrix{ {x - 2\,\,\,,} &amp; {x \ge 2} \cr {2 - x\,\,\,,} &amp; {x \le 2} \cr } } \right.$$ <br><br>Similarly, $$f\left( x \right) = \left| {x - 5} \right| = \left\{ {\matrix{ {x - 5\,\,\,,} &amp; {x \ge 5} \cr {5 - x\,\,\,,} &amp; {x \le 5} \cr } } \right.$$ <br><br>$$\therefore$$ $$f\left( x \right) = \left| {x - 2} \right| + \left| {x - 5} \right|$$ <br><br>$$ = \left\{ {x - 2 + 5 - x = 3,2 \le x \le 5} \right\}$$ <br><br>Thus $$\,\,\,\,\,\,\,\,\,f\left( x \right) = 3,2 \le x \le 5$$ <br><br>$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,f'\left( x \right) = 0,2 &lt; x &lt; 5$$ <br><br>$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,f'\left( 4 \right) = 0$$ <br><br>$$\therefore$$ Statement $$1$$ is true. <br><br><img class="question-image" src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734266217/exam_images/fghim8fqhfaqmfos46vi.webp" loading="lazy" alt="AIEEE 2012 Mathematics - Limits, Continuity and Differentiability Question 205 English Explanation"> <br><br>As $$f\left( 2 \right) = 0 + \left| {2 - 5} \right| = 3$$ <br><br>and $$f\left( 5 \right) = \left| {5 - 2} \right| + 0 = 3$$ <br><br>$$\therefore$$ Statement - $$2$$ is also true but not a correct explanation for statement $$1.$$
mcq
aieee-2012
RtZ9MK0tEqbtwJlp
maths
limits-continuity-and-differentiability
differentiability
If the function. <br/><br/>$$g\left( x \right) = \left\{ {\matrix{ {k\sqrt {x + 1} ,} &amp; {0 \le x \le 3} \cr {m\,x + 2,} &amp; {3 &lt; x \le 5} \cr } } \right.$$ <br/><br/>is differentiable, then the value of $$k+m$$ is :
[{"identifier": "A", "content": "$${{10} \\over 3}$$ "}, {"identifier": "B", "content": "$$4$$"}, {"identifier": "C", "content": "$$2$$ "}, {"identifier": "D", "content": "$${{16} \\over 5}$$"}]
["C"]
null
Since $$g(x)$$ is differentiable, - <br><br>it will be continuous at $$x=3$$ <br><br>$$\therefore$$ $$\mathop {\lim }\limits_{x \to {3^ - }} g\left( x \right) = \mathop {\lim }\limits_{x \to {3^ + }} g\left( x \right)$$ <br><br>$$2k = 3m + 2\,\,\,\,\,...\left( 1 \right)$$ <br><br>Also $$g(x)$$ is differentiable at $$x=0$$ <br><br>$$\therefore$$ $$\mathop {\lim }\limits_{x \to {3^ - }} g'\left( x \right) = \mathop {\lim }\limits_{x \to {3^ + }} g'\left( x \right)$$ <br><br>$${K \over {2\sqrt {3 + 1} }} = m$$ <br><br>$$k=4m$$ $$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,...\left( 2 \right)$$ <br><br>Solving $$(1)$$ and $$(2)$$, we get <br><br>$$m = {2 \over 5},\,\,k = {8 \over 5}$$ <br><br>$$\therefore$$ $$k+m=2$$
mcq
jee-main-2015-offline
dTkaSbOpd0NkpeiE
maths
limits-continuity-and-differentiability
differentiability
For $$x \in \,R,\,\,f\left( x \right) = \left| {\log 2 - \sin x} \right|\,\,$$ <br/><br/>and $$\,\,g\left( x \right) = f\left( {f\left( x \right)} \right),\,\,$$ then :
[{"identifier": "A", "content": " $$g$$ is not differentiable at $$x=0$$"}, {"identifier": "B", "content": "$$g'\\left( 0 \\right) = \\cos \\left( {\\log 2} \\right)$$ "}, {"identifier": "C", "content": "$$g'\\left( 0 \\right) = - \\cos \\left( {\\log 2} \\right)$$"}, {"identifier": "D", "content": "$$g$$ is differentiable at $$x=0$$ and $$g'\\left( 0 \\right) = - \\sin \\left( {\\log 2} \\right)$$"}]
["B"]
null
$$g\left( x \right) = f\left( {f\left( x \right)} \right)$$ <br><br>In the neighbourhood of $$x=0,$$ <br><br>$$f\left( x \right) = \left| {\log 2 - \sin \,x} \right| = \left( {\log 2 - \sin x} \right)$$ <br><br>$$\therefore$$ $$g\left( x \right) = \left| {\log 2 - \sin \left. {\left| {\log 2 - \sin x} \right|} \right|} \right.$$ <br><br>$$ = \left( {\log 2 - \sin \left( {\log 2 - \sin x} \right)} \right)$$ <br><br>$$\therefore$$ $$g(x)$$ is differentiable <br><br>and $$g'\left( x \right) = - \cos \left( {\log 2 - \sin x} \right)\left( { - \cos x} \right)$$ <br><br>$$ \Rightarrow g'\left( 0 \right) = \cos \left( {\log 2} \right)$$
mcq
jee-main-2016-offline
hF8RmsEat5uIVIgrYz5HO
maths
limits-continuity-and-differentiability
differentiability
If the function <br/><br/>f(x) = $$\left\{ {\matrix{ { - x} &amp; {x &lt; 1} \cr {a + {{\cos }^{ - 1}}\left( {x + b} \right),} &amp; {1 \le x \le 2} \cr } } \right.$$ <br/><br/>is differentiable at x = 1, then $${a \over b}$$ is equal to :
[{"identifier": "A", "content": "$${{\\pi - 2} \\over 2}$$"}, {"identifier": "B", "content": "$${{ - \\pi - 2} \\over 2}$$"}, {"identifier": "C", "content": "$${{\\pi + 2} \\over 2}$$"}, {"identifier": "D", "content": "$$ - 1 - {\\cos ^{ - 1}}\\left( 2 \\right)$$"}]
["C"]
null
As &nbsp;&nbsp;f(x) is differentiable at x = 1 <br><br>$$ \therefore $$&nbsp;&nbsp;&nbsp;$$\mathop {\lim }\limits_{x \to {1^ - }} \left( { - x} \right) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {a + {{\cos }^{ - 1}}\left( {x + b} \right)} \right) = f(1)$$ <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;$$-$$1 $$=$$ a + cos<sup>$$-$$1</sup>(1 + b) <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;cos<sup>$$-$$1</sup> (1 + b) $$=$$ $$-$$1 $$-$$ a . . . . . .(1) <br><br>As &nbsp;&nbsp;f(x) is differentiable, so, <br><br>2 . H . D $$=$$ R . H . D <br><br>Here, L . H . D $$=$$ $$\mathop {\lim }\limits_{h \to 0} $$ $${{f\left( {1 - h} \right) - f\left( 1 \right)} \over { - h}}$$ <br><br>$$ = \mathop {\lim }\limits_{h \to 0} {{ - \left( {1 - h} \right) - \left( { - 1} \right)} \over { - h}}$$ <br><br>$$ = \mathop {\lim }\limits_{x \to 0} {{ - 1 + h + 1} \over { - h}}$$ <br><br>$$=$$ $$ = \mathop {\lim }\limits_{x \to 0} {h \over { - h}}$$ <br><br>$$=$$ $$-$$ 1 <br><br>R. H. D $$ = \mathop {\lim }\limits_{x \to 0} {{f\left( {1 + h} \right) - f\left( 1 \right)} \over h}$$ <br><br>$$ = \mathop {\lim }\limits_{h \to 0} {{a + {{\cos }^{ - 1}}\left( {1 + h + b} \right) - \left[ {a + {{\cos }^{ - 1}}\left( {1 + b} \right)} \right]} \over h}$$ <br><br>$$ = \mathop {\lim }\limits_{h \to 0} {{{{\cos }^{ - 1}}\left( {1 + h + b} \right) - {{\cos }^{ - 1}}\left( {1 + b} \right)} \over h}\left[ {{0 \over 0}\,\,form\left. \, \right]} \right.$$ <br><br>$$ = \mathop {\lim }\limits_{h \to 0} {{ - 1} \over {\sqrt {1 - {{\left( {1 + h + b} \right)}^2}} }}$$ [ Using L' Hospital Rule] <br><br>$$ = {{ - 1} \over {\sqrt {1 - {{\left( {1 + b} \right)}^2}} }}$$ <br><br>$$ \therefore $$&nbsp;&nbsp;&nbsp;$$ - 1 = {{ - 1} \over {\sqrt {1 - {{\left( {1 + b} \right)}^2}} }}$$ <br><br>$$ \Rightarrow 1 - {\left( {1 + b} \right)^2} = 1$$ <br><br>$$ \Rightarrow $$&nbsp;&nbsp;$${\left( {1 + b} \right)^2} = 0$$ <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;$$b = - 1$$ <br><br>putting value of b in equation (1), we get, <br><br>$${\cos ^{ - 1}}\left( {1 - 1} \right) = - 1 - a$$ <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;$${\pi \over 2} = - 1 - a$$ <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;$$a = - 1 - {\pi \over 2}$$ <br><br>$$ \therefore $$&nbsp;&nbsp;&nbsp;$${a \over b} = {{ - 1 - {\pi \over 2}} \over { - 1}} = 1 + {\pi \over 2} = {{\pi + 2} \over 2}$$
mcq
jee-main-2016-online-9th-april-morning-slot
ppH8dXaEhhGCho4t
maths
limits-continuity-and-differentiability
differentiability
Let S = { t $$ \in R:f(x) = \left| {x - \pi } \right|.\left( {{e^{\left| x \right|}} - 1} \right)$$$$\sin \left| x \right|$$ is not differentiable at t}, then the set S is equal to
[{"identifier": "A", "content": "{0, $$\\pi $$}"}, {"identifier": "B", "content": "$$\\phi $$ (an empty set)"}, {"identifier": "C", "content": "{0}"}, {"identifier": "D", "content": "{$$\\pi $$}"}]
["B"]
null
Check differtiability at x = $$\pi $$ and x = 0 <br><br><b>at x = 0 : </b> <br><br>We have L. H. D = $$\mathop {\lim }\limits_{h \to 0} {{f\left( {0 - h} \right) - f\left( 0 \right)} \over { - h}}$$ <br><br>= $$\mathop {\lim }\limits_{h \to 0} {{\left| { - h - \pi } \right|\left( {{e^{\left| { - h} \right|}} - 1} \right)\sin \left| h \right| - 0} \over { - h}} = 0$$ <br><br>R. H. D = $$\mathop {\lim }\limits_{h \to 0} {{f\left( {0 + h} \right) - f\left( 0 \right)} \over h}$$ <br><br>$$ = \mathop {\lim }\limits_{h \to 0} {{\left| {h - \pi } \right|\left( {{e^{\left| h \right|}} - 1} \right)\sin \left| h \right| - o} \over h}$$ <br><br>= 0 <br><br>$$\therefore,\,\,$$ LHD = RHD <br><br>Therefore, function is differentiable at x = $$\pi $$. <br><br><b>at x = $$\pi $$ : </b> <br><br>L. H. D = $$\mathop {\lim }\limits_{h \to 0} {{f\left( {\pi - h} \right) - f\left( \pi \right)} \over { - h}}$$ <br><br>= $$\mathop {\lim }\limits_{h \to 0} {{\left| {\pi - h - \pi } \right|\left( {{e^{\left| {\pi - h} \right|}} - 1} \right)\sin \left| {\pi - h} \right| - 0.} \over { - h}}$$ <br><br>= 0 <br><br>RH. D = $$\mathop {\lim }\limits_{h \to 0} {{f\left( {\pi + h} \right) - f\left( \pi \right)} \over h}$$ <br><br>= $$\mathop {\lim }\limits_{h \to 0} {{\left| {\pi + h - \pi } \right|\left( {{e^{\left| {\pi + h} \right|}} - 1} \right)\sin \left| {\pi + h} \right| - 0} \over h}$$ <br><br>= 0 <br><br>$$\therefore\,\,\,$$ L. H. D = R H D <br><br>Therefore, function is differentiable at x = $$\pi $$, <br><br>Since, the function f(x) is differentiable at all the points including 0 and $$\pi $$. <br><br>So, f(x) is differentiable everywhere. <br><br>Therefore, set S is empty set. <br><br>S = $$\phi $$
mcq
jee-main-2018-offline
LyYVn5Xz5QYZhjEVYw7qG
maths
limits-continuity-and-differentiability
differentiability
Let S = {($$\lambda $$, $$\mu $$) $$ \in $$ <b>R</b> $$ \times $$ <b>R</b> : f(t) = (|$$\lambda $$| e<sup>|t|</sup> $$-$$ $$\mu $$). sin (2|t|), <b>t</b> $$ \in $$ <b>R</b>, is a differentiable function}. Then S is a subset of :
[{"identifier": "A", "content": "<b>R</b> $$ \\times $$ [0, $$\\infty $$)"}, {"identifier": "B", "content": "[0, $$\\infty $$) $$ \\times $$ <b>R</b>"}, {"identifier": "C", "content": "<b>R</b> $$ \\times $$ ($$-$$ $$\\infty $$, 0)"}, {"identifier": "D", "content": "($$-$$ $$\\infty $$, 0) $$ \\times $$ <b>R</b>"}]
["A"]
null
S = {($$\lambda $$, $$\mu $$) $$ \in $$ <b>R</b> $$ \times $$ <b>R</b> : f(t) = $$\left( {\left| \lambda \right|{e^{\left| t \right|}} - \mu } \right)$$ sin $$\left( {2\left| t \right|} \right),$$ t $$ \in $$ <b>R</b> <br><br>f(t) = $$\left( {\left| \lambda \right|{e^{\left| t \right|}} - \mu } \right)\sin \left( {2\left| t \right|} \right)$$ <br><br>= $$\left\{ {\matrix{ {\left( {\left| \lambda \right|{e^t} - \mu } \right)\sin 2t,} &amp; {t &gt; 0} \cr {\left( {\left| \lambda \right|{e^{ - t}} - \mu } \right)\left( { - \sin 2t} \right),} &amp; {t &lt; 0} \cr } } \right.$$ <br><br>f'(t) = $$\left\{ {\matrix{ {\left( {\left| \lambda \right|{e^t}} \right)\sin 2t + \left( {\left| \lambda \right|{e^t} - \mu } \right)\left( {2\cos 2t} \right),\,\,t &gt; 0} \cr {\left| \lambda \right|{e^{ - t}}\sin 2t + \left( {\left| \lambda \right|{e^{ - t}} - \mu } \right)\left( {-2\cos 2t} \right),t &lt; 0} \cr } } \right.$$ <br><br>As, f(t) is differentiable <br><br>$$ \therefore $$&nbsp;&nbsp;<b>LHD</b> = <b>RHD</b> at t = 0 <br><br>$$ \Rightarrow $$&nbsp;&nbsp; $$\left| \lambda \right|$$ . sin2(0) + $$\left( {\left| \lambda \right|{e^0} - \mu } \right)$$2cos(0) <br><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;= $$\left| \lambda \right|{e^{ - 0}}\,$$ . sin 2(0) $$-$$ 2 cos (0) $$\left( {\left| \lambda \right|{e^{ - 0}} - \mu } \right)$$ <br><br>$$ \Rightarrow $$$$\,\,\,$$ 0 + $$\left( {\left| \lambda \right| - \mu } \right)$$2 = 0 $$-$$ 2$$\left( {\left| \lambda \right| - \mu } \right)$$ <br><br>$$ \Rightarrow $$&nbsp;&nbsp;4$$\left( {\left| \lambda \right| - \mu } \right)$$ = 0 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;$$\left| \mu \right|$$&nbsp;=&nbsp;$$\mu $$ <br><br>So, S $$ \equiv $$ ($$\lambda $$, $$\mu $$) = {$$\lambda $$ $$ \in $$ <b>R</b> &amp; $$\mu $$ $$ \in $$ [0, $$\infty $$)} <br><br>Therefore set S is subset of R $$ \times $$ [0, $$\infty $$)
mcq
jee-main-2018-online-15th-april-morning-slot
E1UPnoGMUo46JcFfe7wpS
maths
limits-continuity-and-differentiability
differentiability
Let ƒ(x) = 15 – |x – 10|; x $$ \in $$ R. Then the set of all values of x, at which the function, g(x) = ƒ(ƒ(x)) is not differentiable, is :
[{"identifier": "A", "content": "{10,15}"}, {"identifier": "B", "content": "{5,10,15,20}"}, {"identifier": "C", "content": "{10}"}, {"identifier": "D", "content": "{5,10,15}"}]
["D"]
null
ƒ(x) = 15 – |x – 10| <br><br>g(x) = ƒ(ƒ(x)) = 15 – |ƒ(x) – 10| <br><br>= 15 – |15 – |x – 10| – 10| <br><br>= 15 – |5 – |x – 10|| <br><br>As this is a linear expression so it is non differentiable when value inside the modulus is zero. <br><br>So non differentiable when <br><br>x – 10 = 0 $$ \Rightarrow $$ x = 10 <br><br>and 5 – |x – 10| = 0 <br><br>$$ \Rightarrow $$ |x – 10| = 5 <br><br>$$ \Rightarrow $$ x - 10 = $$ \pm $$ 5 <br><br>$$ \Rightarrow $$ x = 5, 15 <br><br>$$ \therefore $$ g(x) is not differentiable at x = 5, 10, 15.
mcq
jee-main-2019-online-9th-april-morning-slot
OjgfQrxVeltiW0ZoZE3rsa0w2w9jwxut8on
maths
limits-continuity-and-differentiability
differentiability
Let f : R $$ \to $$ R be differentiable at c $$ \in $$ R and f(c) = 0. If g(x) = |f(x)| , then at x = c, g is :
[{"identifier": "A", "content": "differentiable if f '(c) = 0"}, {"identifier": "B", "content": "differentiable if f '(c) $$ \\ne $$ 0"}, {"identifier": "C", "content": "not differentiable"}, {"identifier": "D", "content": "not differentiable if f '(c) = 0"}]
["A"]
null
$$g'(c) = \mathop {\lim }\limits_{x \to c} {{g(x) - g(c)} \over {x - c}}$$<br><br> $$ \Rightarrow g'(c) = \mathop {\lim }\limits_{x \to c} {{\left| {f(x)} \right| - \left| {f(c)} \right|} \over {x - c}}$$<br><br> $$ \therefore $$ f(c) = 0<br><br> $$ \Rightarrow g'(c) = \mathop {\lim }\limits_{x \to c} {{\left| {f(x)} \right|} \over {x - c}}$$<br><br> $$ \Rightarrow g'(c) = \mathop {\lim }\limits_{x \to c} {{f(x)} \over {x - c}}$$ if f(x) &gt; 0<br><br> and $$g'(c) = \mathop {\lim }\limits_{x \to c} {{ - f(x)} \over {x - c}}$$ if f(x) &lt; 0<br><br> $$ \Rightarrow g'(c) = f'(c) = - f'(c)$$<br><br> $$ \Rightarrow $$ 2f'(c) = 0<br><br> $$ \Rightarrow $$ f'(c) = 0
mcq
jee-main-2019-online-10th-april-morning-slot
5lu85xMvzqpVj7b8OfEQ8
maths
limits-continuity-and-differentiability
differentiability
Let ƒ : R $$ \to $$ R be a differentiable function satisfying ƒ'(3) + ƒ'(2) = 0.<br/> Then $$\mathop {\lim }\limits_{x \to 0} {\left( {{{1 + f(3 + x) - f(3)} \over {1 + f(2 - x) - f(2)}}} \right)^{{1 \over x}}}$$ is equal to
[{"identifier": "A", "content": "e"}, {"identifier": "B", "content": "e<sup>2</sup>"}, {"identifier": "C", "content": "e<sup>\u20131</sup>"}, {"identifier": "D", "content": "1"}]
["D"]
null
The general formula for indeterminate form 1<sup>$$\infty $$</sup> is <br><br>$$\mathop {\lim }\limits_{x \to a} {\left( {f\left( x \right)} \right)^{g\left( x \right)}} = {e^{\mathop {\lim }\limits_{x \to a} g\left( x \right)\left( {f\left( x \right) - 1} \right)}}$$ <br><br>I = $$\mathop {\lim }\limits_{x \to 0} {\left( {{{1 + f(3 + x) - f(3)} \over {1 + f(2 - x) - f(2)}}} \right)^{{1 \over x}}}$$ <br><br>Here I is in 1<sup>$$\infty $$</sup> form. <br><br>$$ \therefore $$ I = $${e^{\mathop {\lim }\limits_{x \to 0} \left( {{{1 + f\left( {3 + x} \right) - f\left( 3 \right)} \over {1 + f\left( {2 - x} \right) - f\left( 2 \right)}} - 1} \right){1 \over x}}}$$ <br><br>= $${e^{\mathop {\lim }\limits_{x \to 0} \left( {{{1 + f\left( {3 + x} \right) - f\left( 3 \right) - 1 - f\left( {2 - x} \right) + f\left( 2 \right)} \over {1 + f\left( {2 - x} \right) - f\left( 2 \right)}}} \right){1 \over x}}}$$ <br><br>= $${e^{\mathop {\lim }\limits_{x \to 0} \left( {{{f\left( {3 + x} \right) - f\left( 3 \right) - f\left( {2 - x} \right) + f\left( 2 \right)} \over {1 + f\left( {2 - x} \right) - f\left( 2 \right)}}} \right){1 \over x}}}$$ <br><br>Here $${{{f\left( {3 + x} \right) - f\left( 3 \right) - f\left( {2 - x} \right) + f\left( 2 \right)} \over x}}$$ is in $${0 \over 0}$$ form. <br><br>So using L'Hopital rule we get <br><br>= $${e^{\mathop {\lim }\limits_{x \to 0} \left( {{{f'\left( {3 + x} \right) + f'\left( {2 - x} \right)} \over 1}} \right).\mathop {\lim }\limits_{x \to 0} \left( {{1 \over {1 + f\left( {2 - x} \right) - f\left( 2 \right)}}} \right)}}$$ <br><br>= $${e^{\left( {f'\left( 3 \right) + f'\left( 2 \right)} \right).1}}$$ <br><br>= e<sup>0</sup> [ as given ƒ'(3) + ƒ'(2) = 0 ] <br><br>= 1
mcq
jee-main-2019-online-8th-april-evening-slot
fG7JGryJ49wVQOWIzE1lB
maths
limits-continuity-and-differentiability
differentiability
Let f be a differentiable function such that f(1) = 2 and f '(x) = f(x) for all x $$ \in $$ R R. If h(x) = f(f(x)), then h'(1) is equal to :
[{"identifier": "A", "content": "4e"}, {"identifier": "B", "content": "2e<sup>2</sup>"}, {"identifier": "C", "content": "4e<sup>2</sup>"}, {"identifier": "D", "content": "2e"}]
["A"]
null
$${{f'(x)} \over {f(x)}} = 1\forall x \in R$$ <br><br>Intergrate &amp; use f(1) = 2 <br><br>f(x) = 2e<sup>x-1</sup> $$ \Rightarrow $$ f '(x) = 2e<sup>x$$-$$1</sup> <br><br>h(x) = f(f(x)) $$ \Rightarrow $$&nbsp;h'(x) = f '(f(x)) f'(x) <br><br>h'(1) = f '(f(1)) f'(1) <br><br>= f '(2) f '(1) <br><br>= 2e . 2 = 4e
mcq
jee-main-2019-online-12th-january-evening-slot
00UBMw9xgFLk3qTNH0S2d
maths
limits-continuity-and-differentiability
differentiability
Let S be the set of all points in (–$$\pi $$, $$\pi $$) at which the function, f(x) = min{sin x, cos x} is not differentiable. Then S is a subset of which of the following ?
[{"identifier": "A", "content": "$$\\left\\{ { - {\\pi \\over 2}, - {\\pi \\over 4},{\\pi \\over 4},{\\pi \\over 2}} \\right\\}$$"}, {"identifier": "B", "content": "$$\\left\\{ { - {{3\\pi } \\over 4}, - {\\pi \\over 2},{\\pi \\over 2},{{3\\pi } \\over 4}} \\right\\}$$"}, {"identifier": "C", "content": "$$\\left\\{ { - {\\pi \\over 4},0,{\\pi \\over 4}} \\right\\}$$"}, {"identifier": "D", "content": "$$\\left\\{ { - {{3\\pi } \\over 4}, - {\\pi \\over 4},{{3\\pi } \\over 4},{\\pi \\over 4}} \\right\\}$$"}]
["D"]
null
<img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734264785/exam_images/rhqvelsmxghhl3cztv4v.webp" style="max-width: 100%; height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2019 (Online) 12th January Morning Slot Mathematics - Limits, Continuity and Differentiability Question 172 English Explanation">
mcq
jee-main-2019-online-12th-january-morning-slot
ei04ZJBaNytj0HKOk0XL4
maths
limits-continuity-and-differentiability
differentiability
Let K be the set of all real values of x where the function f(x) = sin |x| – |x| + 2(x – $$\pi $$) cos |x| is not differentiable. Then the set K is equal to :
[{"identifier": "A", "content": "{0, $$\\pi $$}"}, {"identifier": "B", "content": "$$\\phi $$ (an empty set)"}, {"identifier": "C", "content": "{ r }"}, {"identifier": "D", "content": "{0}"}]
["B"]
null
f(x) = sin$$\left| x \right| - \left| x \right|$$ + 2(x $$-$$ $$\pi $$) cosx <br><br>$$ \because $$&nbsp;&nbsp;sin$$\left| x \right|$$ $$-$$ $$\left| x \right|$$ is differentiable function at c = 0 <br><br>$$ \therefore $$&nbsp;&nbsp;k = $$\phi $$
mcq
jee-main-2019-online-11th-january-evening-slot
iZbnjQ958X1XbdDcn9Kdv
maths
limits-continuity-and-differentiability
differentiability
Let $$f\left( x \right) = \left\{ {\matrix{ { - 1} &amp; { - 2 \le x &lt; 0} \cr {{x^2} - 1,} &amp; {0 \le x \le 2} \cr } } \right.$$ and <br/><br/>$$g(x) = \left| {f\left( x \right)} \right| + f\left( {\left| x \right|} \right).$$ <br/><br/>Then, in the interval (–2, 2), g is :
[{"identifier": "A", "content": "non continuous"}, {"identifier": "B", "content": "differentiable at all points"}, {"identifier": "C", "content": "not differentiable at two points"}, {"identifier": "D", "content": "not differentiable at one point"}]
["D"]
null
$$\left| {f\left( x \right)} \right| = \left\{ {\matrix{ 1 &amp; , &amp; { - 2 \le x &lt; 0} \cr {1 - {x^2}} &amp; , &amp; {0 \le x &lt; 1} \cr {{x^2} - 1} &amp; , &amp; {1 \le x \le 2} \cr } } \right.$$ <br><br>and&nbsp;&nbsp;$$f\left( {\left| x \right|} \right) = {x^2} - 1,x \in \left[ { - 2,2} \right]$$ <br><br>Hence&nbsp;&nbsp;$$g(x) = \left\{ {\matrix{ {{x^2}} &amp; , &amp; {x \in \left[ { - 2,0} \right]} \cr 0 &amp; , &amp; {x \in \left[ {0,1} \right)} \cr {2\left( {{x^2} - 1} \right)} &amp; , &amp; {x \in \left[ {1,2} \right]} \cr } } \right.$$ <br><br>It is not differentiable at x = 1
mcq
jee-main-2019-online-11th-january-morning-slot
UWIY66U2e4Fst3ZMSEOx2
maths
limits-continuity-and-differentiability
differentiability
Let f : ($$-$$1, 1) $$ \to $$ R be a function defined by f(x) = max $$\left\{ { - \left| x \right|, - \sqrt {1 - {x^2}} } \right\}.$$ If K be the set of all points at which f is not differentiable, then K has exactly -
[{"identifier": "A", "content": "one element"}, {"identifier": "B", "content": "three elements"}, {"identifier": "C", "content": "five elements"}, {"identifier": "D", "content": "two elements"}]
["B"]
null
f : ($$-$$ 1, 1) $$ \to $$ R <br><br>f(x) = max {$$-$$ $$\left| x \right|, - \sqrt {1 - {x^2}} $$} <br><br><img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734264960/exam_images/j9hfstro1mtiidz6xe3y.webp" style="max-width: 100%; height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2019 (Online) 10th January Evening Slot Mathematics - Limits, Continuity and Differentiability Question 178 English Explanation"> <br>Non-derivable at 3 points in ($$-$$1, 1)
mcq
jee-main-2019-online-10th-january-evening-slot
txkv94d31U1ZqKVvm4wJ2
maths
limits-continuity-and-differentiability
differentiability
Let  $$f\left( x \right) = \left\{ {\matrix{ {\max \left\{ {\left| x \right|,{x^2}} \right\}} &amp; {\left| x \right| \le 2} \cr {8 - 2\left| x \right|} &amp; {2 &lt; \left| x \right| \le 4} \cr } } \right.$$ <br/><br/>Let S be the set of points in the interval (– 4, 4) at which f is not differentiable. Then S
[{"identifier": "A", "content": "equals $$\\left\\{ { - 2, - 1,1,2} \\right\\}$$"}, {"identifier": "B", "content": "equals $$\\left\\{ { - 2, - 1,0,1,2} \\right\\}$$"}, {"identifier": "C", "content": "equals $$\\left\\{ { - 2,2} \\right\\}$$"}, {"identifier": "D", "content": "is an empty set"}]
["B"]
null
$$f\left( x \right) = \left\{ {\matrix{ {8 + 2x,} &amp; { - 4 \le x \le - 2} \cr {{x^2},} &amp; { - 2 \le x \le - 1} \cr {\left| x \right|,} &amp; { - 1 &lt; x &lt; 1} \cr {{x^2},} &amp; {1 \le x \le 2} \cr {8 - 2x,} &amp; {2 &lt; x \le 4} \cr } } \right.$$ <br><br><img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734266646/exam_images/sowb6jz8ffftgdwa0zm0.webp" style="max-width: 100%; height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2019 (Online) 10th January Morning Slot Mathematics - Limits, Continuity and Differentiability Question 179 English Explanation"> <br>f(x) is not differentiable at <br><br>x = $$\left\{ { - 2, - 1,0,1,2} \right\}$$ <br><br>$$ \Rightarrow $$&nbsp;&nbsp;S = {$$-$$2, $$-$$ 1, 0, 1, 2} <br><br>
mcq
jee-main-2019-online-10th-january-morning-slot
Q0KAqKgD9KG5tr0MYv7k9k2k5e4n2c9
maths
limits-continuity-and-differentiability
differentiability
Let S be the set of points where the function, ƒ(x) = |2-|x-3||, x $$ \in $$ R is not differentiable. Then $$\sum\limits_{x \in S} {f(f(x))} $$ is equal to_____.
[]
null
3
<img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734267767/exam_images/g4hsbmpaxkynaavxvqy0.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2020 (Online) 7th January Morning Slot Mathematics - Limits, Continuity and Differentiability Question 155 English Explanation"> <br><br>f(x) is non-differentiable at x = 1, 3, 5 <br><br>$$ \therefore $$ S is {1, 3, 5} <br><br>$$\sum\limits_{x \in S} {f(f(x))} $$ <br><br>= f(f(1)) + f(f(3)) + f(f (5)) <br><br>= f(0) + f(2) + f(0) <br><br> = 1 + 1 + 1 = 3
integer
jee-main-2020-online-7th-january-morning-slot
hdTiOWFqbqx1gGwexE7k9k2k5hiwqze
maths
limits-continuity-and-differentiability
differentiability
Let S be the set of all functions ƒ : [0,1] $$ \to $$ R, which are continuous on [0,1] and differentiable on (0,1). Then for every ƒ in S, there exists a c $$ \in $$ (0,1), depending on ƒ, such that
[{"identifier": "A", "content": "$$\\left| {f(c) - f(1)} \\right| &lt; \\left| {f'(c)} \\right|$$"}, {"identifier": "B", "content": "$$\\left| {f(c) + f(1)} \\right| &lt; \\left( {1 + c} \\right)\\left| {f'(c)} \\right|$$"}, {"identifier": "C", "content": "$$\\left| {f(c) - f(1)} \\right| &lt; \\left( {1 - c} \\right)\\left| {f'(c)} \\right|$$"}, {"identifier": "D", "content": "None"}]
["D"]
null
<p>If we consider the case where f(x) is a constant function, then its derivative f&#39;(x) is equal to 0 for all x in the interval (0,1). </p> <p>Therefore, if we substitute this into the expressions provided in Options A, B and C, we would have :</p> <p>Option A : |f(c) - f(1)| &lt; |f&#39;(c)| would become |constant - constant| &lt; |0|, which is 0 &lt; 0. This is not true.</p> <p>Option B : |f(c) + f(1)| &lt; (1 + c)|f&#39;(c)| would become |constant + constant| &lt; (1 + c)$$ \times $$0, which is a positive number &lt; 0. This is not true.</p> <p>Option C : |f(c) - f(1)| &lt; (1 - c)|f&#39;(c)| would become |constant - constant| &lt; (1 - c)$$ \times $$0, which is 0 &lt; 0. This is not true.</p> <p>Hence, for the case where f(x) is a constant function, none of the options A, B and C are correct.</p> <p>So, the correct answer would be Option D : None.</p>
mcq
jee-main-2020-online-8th-january-evening-slot
QQ2Lw8UucYICcFIsyS7k9k2k5ita4xf
maths
limits-continuity-and-differentiability
differentiability
Let ƒ be any function continuous on [a, b] and twice differentiable on (a, b). If for all x $$ \in $$ (a, b), ƒ'(x) &gt; 0 and ƒ''(x) &lt; 0, then for any c $$ \in $$ (a, b), $${{f(c) - f(a)} \over {f(b) - f(c)}}$$ is greater than :
[{"identifier": "A", "content": "1"}, {"identifier": "B", "content": "$${{b - c} \\over {c - a}}$$"}, {"identifier": "C", "content": "$${{b + a} \\over {b - a}}$$"}, {"identifier": "D", "content": "$${{c - a} \\over {b - c}}$$"}]
["D"]
null
<img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734264640/exam_images/thggkxyle8cgcwavqqvd.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2020 (Online) 9th January Morning Slot Mathematics - Limits, Continuity and Differentiability Question 150 English Explanation"> <br><br>It is clear from graph that, slope of AC $$&gt;$$ slope of CB <br><br>$$ \Rightarrow $$ $${{f\left( c \right) - f\left( a \right)} \over {c - a}}$$ $$&gt;$$ $${{f\left( b \right) - f\left( c \right)} \over {b - c}}$$ <br><br>$$ \Rightarrow $$ $${{f\left( c \right) - f\left( a \right)} \over {f\left( b \right) - f\left( c \right)}}$$ $$ &gt; {{c - a} \over {b - c}}$$
mcq
jee-main-2020-online-9th-january-morning-slot
hojNfgyrlIYlVlbyLXjgy2xukf8zuozg
maths
limits-continuity-and-differentiability
differentiability
Suppose a differentiable function f(x) satisfies the identity <br/>f(x+y) = f(x) + f(y) + xy<sup>2</sup> + x<sup>2</sup>y, for all real x and y.<br/> $$\mathop {\lim }\limits_{x \to 0} {{f\left( x \right)} \over x} = 1$$, then f'(3) is equal to ______.
[]
null
10
Given, f(x + y) = f(x) + f(y) + xy<sup>2</sup> + x<sup>2</sup>y ...(1)<br><br>differentiating partially with respect to x,<br><br>f'(x+y) = f'(x) + 0 + y<sup>2</sup> + y(2x) [y = constant]<br><br>Put x = 0 and y = x<br><br>$$ \therefore $$ f'(x) = f'(0) + x<sup>2</sup> ....(2)<br><br>putting x = y = 0 at equation (1),<br><br>f(0) = 2f(0)<br><br>$$ \Rightarrow $$ f(0) = 0<br><br>Given, $$\mathop {\lim }\limits_{x \to 0} {{f(x)} \over x} = 1$$<br><br>This is in $$ \frac{0}{0} $$ form, so we can apply L' hospital rule.<br><br>$$\mathop {\lim }\limits_{x \to 0} {{f'(x)} \over 1} = 1$$<br><br>$$ \Rightarrow f'(0) = 1$$<br><br>Putting value of f'(0) at equation (2), we get<br><br>f'(x) = 1 + x<sup>2</sup><br><br>$$ \therefore $$ f'(3) = 1 + 3<sup>2</sup> = 10
integer
jee-main-2020-online-4th-september-morning-slot
NQ1pUMPuqzxQ3JslnJjgy2xukfah3nal
maths
limits-continuity-and-differentiability
differentiability
Let $$f:\left( {0,\infty } \right) \to \left( {0,\infty } \right)$$ be a differentiable function such that f(1) = e and <br/>$$\mathop {\lim }\limits_{t \to x} {{{t^2}{f^2}(x) - {x^2}{f^2}(t)} \over {t - x}} = 0$$. If f(x) = 1, then x is equal to :
[{"identifier": "A", "content": "$${1 \\over e}$$"}, {"identifier": "B", "content": "e"}, {"identifier": "C", "content": "$${1 \\over 2e}$$"}, {"identifier": "D", "content": "2e"}]
["A"]
null
$$\mathop {\lim }\limits_{t \to x} {{{t^2}{f^2}(x) - {x^2}{f^2}(t)} \over {t - x}} = 0$$ <br><br>(Using L'Hospital's Rule)<br><br>$$ \Rightarrow \mathop {\lim }\limits_{t \to x} {{2t{f^2}(x) - 2{x^2}f(t).f'(t)} \over 1} = 0$$ <br><br>$$ \Rightarrow $$ 2xf<sup>2</sup>(x) - 2x<sup>2</sup>.f(x).f'(x) = 0 <br><br>$$ \Rightarrow $$ 2xf(x){f(x) - xf'(x)} = 0 <br><br>[x $$ \ne $$ 0, f(x) $$ \ne $$ 0 as given <br>function $$f:\left( {0,\infty } \right) \to \left( {0,\infty } \right)$$ only takes positive value as input and output] <br><br>$$ \Rightarrow f(x) = xf'(x) $$ <br><br>$$\Rightarrow {{f'(x)} \over {f(x)}} = {1 \over x}$$<br><br>Integrating w.r.t x, we get<br><br>$$ \Rightarrow ln\,f(x) = ln\,x + ln\,C$$<br><br>$$ \Rightarrow f(x) = Cx$$<br><br>$$ \because $$ f(1) = e<br><br>$$ \Rightarrow C = e;\,so\,f(x) = ex$$<br><br>When f(x) = 1 = ex<br><br>$$ \Rightarrow x = {1 \over e}$$
mcq
jee-main-2020-online-4th-september-evening-slot
fskTSdIfHZmkcWjazCjgy2xukfak0lbu
maths
limits-continuity-and-differentiability
differentiability
The function <br/>$$f(x) = \left\{ {\matrix{ {{\pi \over 4} + {{\tan }^{ - 1}}x,} &amp; {\left| x \right| \le 1} \cr {{1 \over 2}\left( {\left| x \right| - 1} \right),} &amp; {\left| x \right| &gt; 1} \cr } } \right.$$ is :
[{"identifier": "A", "content": "continuous on R\u2013{\u20131} and differentiable on R\u2013{\u20131, 1}"}, {"identifier": "B", "content": "both continuous and differentiable on R\u2013{1}\n"}, {"identifier": "C", "content": "both continuous and differentiable on R\u2013{\u20131}"}, {"identifier": "D", "content": "continuous on R\u2013{1} and differentiable on R\u2013{\u20131, 1}\n"}]
["D"]
null
$$f\left( x \right) = \left\{ {\matrix{ {{\pi \over 4} + {{\tan }^{ - 1}}x,} &amp; {x \in \left[ { - 1,1} \right]} \cr {{1 \over 2}\left( {x - 1} \right),} &amp; {x &gt; 1} \cr {{1 \over 2}\left( { - x - 1} \right),} &amp; {x &lt; - 1} \cr } } \right.$$ <br><br>At x = 1 <br><br>L.H.L = $$\mathop {\lim }\limits_{x \to {1^ - }} \left( {{\pi \over 4} + {{\tan }^{ - 1}}x} \right)$$ = $${{\pi \over 4} + {\pi \over 4}}$$ = $${{\pi \over 2}}$$ <br><br>f(1) = $${{\pi \over 4} + {{\tan }^{ - 1}}x}$$ = $${{\pi \over 4} + {\pi \over 4}}$$ = $${{\pi \over 2}}$$ <br><br>R.H.L = $$\mathop {\lim }\limits_{x \to {1^ + }} \left( {{1 \over 2}\left( {x - 1} \right)} \right)$$ = 0 <br><br>As L.H.L $$ \ne $$ R.H.L so function is discontinuous $$ \Rightarrow $$ non differentiable. <br><br>At x = -1 <br><br>L.H.L = $$\mathop {\lim }\limits_{x \to - {1^ - }} \left( {{1 \over 2}\left( { - x - 1} \right)} \right)$$ = $${{1 \over 2}\left( { - \left( { - 1} \right) - 1} \right)}$$ = 0 <br><br>f(-1) = $${\pi \over 4} + {\tan ^{ - 1}}\left( { - 1} \right)$$ = $${\pi \over 4} - {\pi \over 4}$$ = 0 <br><br>R.H.L = $$\mathop {\lim }\limits_{x \to - {1^ + }} \left( {{\pi \over 4} + {{\tan }^{ - 1}}x} \right)$$ <br><br>= $${\pi \over 4} + {\tan ^{ - 1}}\left( { - 1} \right)$$ = $${\pi \over 4} - {\pi \over 4}$$ = 0 <br><br>As L.H.L = f(-1) = R.H.L so function is continuous. <br><br>$$f'\left( x \right) = \left\{ {\matrix{ {{1 \over {1 + {x^2}}},} &amp; {x \in \left[ { - 1,1} \right]} \cr {{1 \over 2},} &amp; {x &gt; 1} \cr { - {1 \over 2},} &amp; {x &lt; - 1} \cr } } \right.$$ <br><br>For differentiability at x = –1 <br><br>L.H.D = $${ - {1 \over 2}}$$ <br><br>R.H.D. = $${{1 \over 2}}$$ <br><br>So, non differentiable at x = –1
mcq
jee-main-2020-online-4th-september-evening-slot
Qnulz8PdgvmSS14jDPjgy2xukfg792co
maths
limits-continuity-and-differentiability
differentiability
If the function <br/>$$f\left( x \right) = \left\{ {\matrix{ {{k_1}{{\left( {x - \pi } \right)}^2} - 1,} &amp; {x \le \pi } \cr {{k_2}\cos x,} &amp; {x &gt; \pi } \cr } } \right.$$ is<br/> twice differentiable, then the ordered pair (k<sub>1</sub>, k<sub>2</sub>) is equal to :
[{"identifier": "A", "content": "$$\\left( {{1 \\over 2},-1} \\right)$$"}, {"identifier": "B", "content": "(1, 1)"}, {"identifier": "C", "content": "(1, 0)"}, {"identifier": "D", "content": "$$\\left( {{1 \\over 2},1} \\right)$$"}]
["D"]
null
Given, $$f\left( x \right) = \left\{ {\matrix{ {{k_1}{{\left( {x - \pi } \right)}^2} - 1,} &amp; {x \le \pi } \cr {{k_2}\cos x,} &amp; {x &gt; \pi } \cr } } \right.$$ <br><br>Differentiating one time, <br><br>$$f'\left( x \right) = \left\{ {\matrix{ {2{k_1}\left( {x - \pi } \right),} &amp; {x \le \pi } \cr { - {k_2}\sin x,} &amp; {x &gt; \pi } \cr } } \right.$$ <br><br>Differentiating one more time, <br><br>$$f''\left( x \right) = \left\{ {\matrix{ {2{k_1},} &amp; {x \le \pi } \cr { - {k_2}\cos x,} &amp; {x &gt; \pi } \cr } } \right.$$ <br><br>As f''(x) is differentiable so <br><br>f''($$\pi $$<sup>+</sup>) = f''($$\pi $$<sup>-</sup>) <br><br>$$ \Rightarrow $$ -k<sub>2</sub>(-1) = 2k<sub>1</sub> <br><br>$$ \Rightarrow $$ 2k<sub>1</sub> = k<sub>2</sub> <br><br>$$ \therefore $$ (k<sub>1</sub>, k<sub>2</sub>) = $$\left( {{1 \over 2},1} \right)$$
mcq
jee-main-2020-online-5th-september-morning-slot
k2z9XqI4UQVKoU9SK7jgy2xukfxgleez
maths
limits-continuity-and-differentiability
differentiability
Let f : R $$ \to $$ R be defined as <br/>$$f\left( x \right) = \left\{ {\matrix{ {{x^5}\sin \left( {{1 \over x}} \right) + 5{x^2},} &amp; {x &lt; 0} \cr {0,} &amp; {x = 0} \cr {{x^5}\cos \left( {{1 \over x}} \right) + \lambda {x^2},} &amp; {x &gt; 0} \cr } } \right.$$ <br/><br/>The value of $$\lambda $$ for which f ''(0) exists, is _______.
[]
null
5
If g(x) = x<sup>5</sup>sin$$\left( {{1 \over x}} \right)$$ <br><br>and h(x) = x<sup>5</sup>cos$$\left( {{1 \over x}} \right)$$ <br><br>then g''(0) = 0 and h''(0) = 0 <br><br>So, f''(0<sup>+</sup> ) = g''(0<sup>+</sup> ) + 10 = 10 <br><br>and f''(0<sup>–</sup>) = h''(0<sup>–</sup>) + 2$$\lambda $$ = f''(0<sup>+</sup>) <br><br>$$ \Rightarrow $$ 2$$\lambda $$ = 10 <br><br>$$ \Rightarrow $$ $$\lambda $$ = 5
integer
jee-main-2020-online-6th-september-morning-slot
hI9jZChLQ9ZIKlSkxWjgy2xukg38e1e8
maths
limits-continuity-and-differentiability
differentiability
Let f : R $$ \to $$ R be a function defined by<br/> f(x) = max {x, x<sup>2</sup>}. Let S denote the set of all points in R, where f is not differentiable. Then :
[{"identifier": "A", "content": "{0, 1}"}, {"identifier": "B", "content": "{0}"}, {"identifier": "C", "content": "$$\\phi $$(an empty set)"}, {"identifier": "D", "content": "{1}"}]
["A"]
null
<img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734266844/exam_images/nsxa64efsvtbdkfgqlui.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2020 (Online) 6th September Evening Slot Mathematics - Limits, Continuity and Differentiability Question 133 English Explanation"> <br>From graph you can see, <br>(1) when x &lt; 0 then y = x<sup>2</sup> is greater than y = x. That is why for f(x) that curved part is chosen. <br>(2) when 0 $$ \le $$ x &lt; 1 then y = x is greater than y = x<sup>2</sup>. That is why for f(x) part of that straight line is chosen. <br>(3) when x $$ \ge $$ 1 then y = x<sup>2</sup> is greater than y = x. That is why for f(x) that curved part is chosen. <br><br>Here on the graph of f(x) there is two sharp corner at x = 0 and x = 1. As we know no function is differentiable at the sharp corner. So f(x) is not differentiable at those two sharp corner.
mcq
jee-main-2020-online-6th-september-evening-slot
tmzgtioYKrhGyobz5kjgy2xukg38nmd4
maths
limits-continuity-and-differentiability
differentiability
For all twice differentiable functions f : R $$ \to $$ R,<br/> with f(0) = f(1) = f'(0) = 0
[{"identifier": "A", "content": "f''(x) $$ \\ne $$ 0, at every point x $$ \\in $$ (0, 1)\n"}, {"identifier": "B", "content": "f''(x) = 0, for some x $$ \\in $$ (0, 1)"}, {"identifier": "C", "content": "f''(0) = 0\n"}, {"identifier": "D", "content": "f''(x) = 0, at every point x $$ \\in $$ (0, 1)"}]
["B"]
null
f : R $$ \to $$ R, with f(0) = f(1) = 0 <br>and f'(0) = 0 <br>$$ \because $$ f(x) is differentiable and continuous <br>and f(0) = f(1) = 0 <br><br>Applying Rolle’s theorem in [0, 1] for function f(x) <br>f'(c) = 0, c $$ \in $$ (0, 1) <br><br>Now again <br>$$ \because $$ f'(c) = 0, f'(0) = 0 <br>again applying Rolles theorem in [0, c] for function f'(x) <br>f''(c<sub>1</sub>) = 0 for some c<sub>1</sub> $$ \in $$ (0, c) $$ \in $$ (0, 1)
mcq
jee-main-2020-online-6th-september-evening-slot
7CStJ13dzNzxBm9hXE1kls5qoi3
maths
limits-continuity-and-differentiability
differentiability
The number of points, at which the function <br/>f(x) = | 2x + 1 | $$-$$ 3| x + 2 | + | x<sup>2</sup> + x $$-$$ 2 |, x$$\in$$R is not differentiable, is __________.
[]
null
2
$$f(x) = |2x + 1| - 3|x + 2| + |{x^2} + x - 2|$$<br><br>$$f(x) = \left\{ {\matrix{ {{x^2} - 7;} &amp; {x &gt; 1} \cr { - {x^2} - 2x - 3;} &amp; { - {1 \over 2} &lt; x &lt; 1} \cr { - {x^2} - 6x - 5;} &amp; { - 2 &lt; x &lt; {{ - 1} \over 2}} \cr {{x^2} + 2x + 3;} &amp; {x &lt; - 2} \cr } } \right.$$<br><br> $$ \therefore $$ $$f'(x) = \left\{ {\matrix{ {2x;} &amp; {x &gt; 1} \cr {2x - 3;} &amp; { - {1 \over 2} &lt; x &lt; 1} \cr { - 2x - 6;} &amp; { - 2 &lt; x &lt; {{ - 1} \over 2}} \cr {2x + 2;} &amp; {x &lt; - 2} \cr } } \right.$$<br><br>Check at 1, $$-$$2 and $${{ - 1} \over 2}$$<br><br>Non. differentiable at x = 1 and $${{ - 1} \over 2}$$
integer
jee-main-2021-online-25th-february-morning-slot
G51JVSYGYUdeZKBExi1klt9xprc
maths
limits-continuity-and-differentiability
differentiability
A function f is defined on [$$-$$3, 3] as<br/><br/>$$f(x) = \left\{ {\matrix{ {\min \{ |x|,2 - {x^2}\} ,} &amp; { - 2 \le x \le 2} \cr {[|x|],} &amp; {2 &lt; |x| \le 3} \cr } } \right.$$ where [x] denotes the greatest integer $$ \le $$ x. The number of points, where f is not differentiable in ($$-$$3, 3) is ___________.
[]
null
5
<img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734263292/exam_images/hlto1ikhz1kx3bmvaaoo.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2021 (Online) 25th February Evening Shift Mathematics - Limits, Continuity and Differentiability Question 127 English Explanation"> <br>Points of non-differentiability in ($$-$$3, 3) are at x = $$-$$2, $$-$$1, 0, 1, 2.<br><br>i.e. 5 points.
integer
jee-main-2021-online-25th-february-evening-slot
ZnqJ1UOMHCkoMDoY6E1kluvnyb9
maths
limits-continuity-and-differentiability
differentiability
Let f(x) be a differentiable function at x = a with f'(a) = 2 and f(a) = 4. <br/><br/>Then $$\mathop {\lim }\limits_{x \to a} {{xf(a) - af(x)} \over {x - a}}$$ equals :
[{"identifier": "A", "content": "4 $$-$$ 2a"}, {"identifier": "B", "content": "2a + 4"}, {"identifier": "C", "content": "a + 4"}, {"identifier": "D", "content": "2a $$-$$ 4"}]
["A"]
null
$$L = \mathop {\lim }\limits_{x \to a} {{xf(a) - af(x)} \over {x - a}}$$ [$${0 \over 0}$$ form] <br><br>Using L' Hospital rule we get<br><br>$$L = \mathop {\lim }\limits_{x \to a} {{f(a) - af'(x)} \over 1}$$<br><br>$$f(a) - af'(a) = 4 - 2a$$
mcq
jee-main-2021-online-26th-february-evening-slot
VY62ViQI22I2zXz9wn1kmhxcjph
maths
limits-continuity-and-differentiability
differentiability
Let the functions f : R $$ \to $$ R and g : R $$ \to $$ R be defined as :<br/><br/>$$f(x) = \left\{ {\matrix{ {x + 2,} &amp; {x &lt; 0} \cr {{x^2},} &amp; {x \ge 0} \cr } } \right.$$ and <br/><br/>$$g(x) = \left\{ {\matrix{ {{x^3},} &amp; {x &lt; 1} \cr {3x - 2,} &amp; {x \ge 1} \cr } } \right.$$<br/><br/>Then, the number of points in R where (fog) (x) is NOT differentiable is equal to :
[{"identifier": "A", "content": "0"}, {"identifier": "B", "content": "3"}, {"identifier": "C", "content": "1"}, {"identifier": "D", "content": "2"}]
["C"]
null
$$fog(x) = \left\{ {\matrix{ {{x^3} + 2,} &amp; {x \le 0} \cr {{x^6},} &amp; {0 \le x \le 1} \cr {{{(3x - 2)}^2},} &amp; {x \ge 1} \cr } } \right.$$<br><br>$$ \because $$ fog(x) is discontinuous at x = 0 then non-differentiable at x = 0<br><br>Now, <br><br>at x = 1<br><br>$$RHD = \mathop {\lim }\limits_{h \to 0} {{f(1 + h) - f(1)} \over h} = \mathop {\lim }\limits_{h \to 0} {{{{(3(1 + h) - 2)}^2} - 1} \over h} = 6$$<br><br>$$LHD = \mathop {\lim }\limits_{h \to 0} {{f(1 - h) - f(1)} \over { - h}} = \mathop {\lim }\limits_{h \to 0} {{{{(1 - h)}^6} - 1} \over { - h}} = 6$$<br><br>Number of points of non-differentiability = 1
mcq
jee-main-2021-online-16th-march-morning-shift
5A659Mvl7seLH4Q37Z1kmiwihi3
maths
limits-continuity-and-differentiability
differentiability
Let f : S $$ \to $$ S where S = (0, $$\infty $$) be a twice differentiable function such that f(x + 1) = xf(x). If g : S $$ \to $$ R be defined as g(x) = log<sub>e</sub> f(x), then the value of |g''(5) $$-$$ g''(1)| is equal to :
[{"identifier": "A", "content": "1"}, {"identifier": "B", "content": "$${{187} \\over {144}}$$"}, {"identifier": "C", "content": "$${{197} \\over {144}}$$"}, {"identifier": "D", "content": "$${{205} \\over {144}}$$"}]
["D"]
null
$$f(x + 1) = xf(x)$$<br><br>$$\ln (f(x + 1)) = \ln x + \ln f(x)$$<br><br>$$g(x + 1) = \ln x + g(x)$$<br><br>$$g(x + 1) - g(x) = \ln x$$ ..... (i)<br><br>$$g'(x + 1) - g'(x) = {1 \over x}$$<br><br>$$g''(x + 1) - g''(x) = {{ - 1} \over {{x^2}}}$$<br><br>$$g''(2) - g'(1) = {{ - 1} \over 1}$$ .... (ii)<br><br>$$g''(3) - g''(2) = {{ - 1} \over 4}$$ .... (iii)<br><br>$$g''(4) - g''(3) = {{ - 1} \over 9}$$ ..... (iv)<br><br>$$g''(5) - g''(4) = {{ - 1} \over {16}}$$ ....(v)<br><br>Adding (ii), (iii), (iv) &amp; (v)<br><br>$$g''(5) - g''(1) = - \left( {{1 \over 1} + {1 \over 4} + {1 \over 9} + {1 \over {16}}} \right) = {{ - 205} \over {144}}$$<br><br>$$|g''(5) - g''(1)|\, = {{205} \over {144}}$$
mcq
jee-main-2021-online-16th-march-evening-shift
nOdMVjSHQppilEI1PC1kmlj3ysh
maths
limits-continuity-and-differentiability
differentiability
If $$f(x) = \left\{ {\matrix{ {{1 \over {|x|}}} &amp; {;\,|x|\, \ge 1} \cr {a{x^2} + b} &amp; {;\,|x|\, &lt; 1} \cr } } \right.$$ is differentiable at every point of the domain, then the values of a and b are respectively :
[{"identifier": "A", "content": "$${1 \\over 2},{1 \\over 2}$$"}, {"identifier": "B", "content": "$${1 \\over 2}, - {3 \\over 2}$$"}, {"identifier": "C", "content": "$${5 \\over 2}, - {3 \\over 2}$$"}, {"identifier": "D", "content": "$$ - {1 \\over 2},{3 \\over 2}$$"}]
["D"]
null
$$f(x) = \left\{ {\matrix{ {{1 \over {|x|}},} &amp; {|x| \ge 1} \cr {a{x^2} + b,} &amp; {|x| &lt; 1} \cr } } \right.$$<br><br>$$ = \left\{ {\matrix{ { - {1 \over x};} &amp; {x \le - 1} \cr {a{x^2} + b;} &amp; { - 1 &lt; x &lt; 1} \cr {{1 \over x};} &amp; {x \ge 1} \cr } } \right.$$<br><br>As f(x) is differentiable so it is also continuous,<br><br> at x = 1,<br><br>$$\mathop {\lim }\limits_{x \to {1^ - }} f(x) = \mathop {\lim }\limits_{x \to {1^ + }} f(x)$$<br><br>$$ \Rightarrow a + b = {1 \over 1}$$<br><br>$$ \Rightarrow a + b = 1$$ ...... (1)<br><br>As f(x) is differentiable, so at x = 1<br><br>L.H.D. = R.H.D.<br><br>$$ \Rightarrow 2ax = - {1 \over {{x^2}}}$$<br><br>$$ \Rightarrow 2a = - 1$$<br><br>$$ \Rightarrow a = - {1 \over 2}$$<br><br>From (1), $$b = {3 \over 2}$$
mcq
jee-main-2021-online-18th-march-morning-shift
Xf9fFqIdYJZD5on2nB1kmm49510
maths
limits-continuity-and-differentiability
differentiability
Let f : R $$ \to $$ R satisfy the equation f(x + y) = f(x) . f(y) for all x, y $$\in$$R and f(x) $$\ne$$ 0 for any x$$\in$$R. If the function f is differentiable at x = 0 and f'(0) = 3, then <br/><br/>$$\mathop {\lim }\limits_{h \to 0} {1 \over h}(f(h) - 1)$$ is equal to ____________.
[]
null
3
<p>Given, $$f(x + y) = f(x)\,.\,f(y)\,\forall x,y \in R$$</p> <p>$$\therefore$$ $$f(x) = {a^x} \Rightarrow f'(x) = {a^x}\,.\,\log (a)$$</p> <p>Now, $$f'(0) = \log (a) \Rightarrow 3 = \log (a) \Rightarrow a = {e^3}$$</p> <p>$$\therefore$$ $$f(x) = {({e^3})^x} = {e^{3x}}$$</p> <p>$$\therefore$$ $$f(h) = {e^{3h}}$$</p> <p>Now, $$\mathop {\lim }\limits_{h \to 0} \left( {{{f(h) - 1} \over h}} \right) = \mathop {\lim }\limits_{h \to 0} \left( {{{{e^{3h}} - 1} \over h}} \right)$$</p> <p>$$ = \mathop {\lim }\limits_{h \to 0} \left( {{{{e^{3h}} - 1} \over {3h}} \times 3} \right) = 3 \times 1 = 3$$</p>
integer
jee-main-2021-online-18th-march-evening-shift
1krrwrbii
maths
limits-continuity-and-differentiability
differentiability
Let a function g : [ 0, 4 ] $$\to$$ R be defined as <br/><br/>$$g(x) = \left\{ {\matrix{ {\mathop {\max }\limits_{0 \le t \le x} \{ {t^3} - 6{t^2} + 9t - 3),} &amp; {0 \le x \le 3} \cr {4 - x,} &amp; {3 &lt; x \le 4} \cr } } \right.$$, then the number of points in the interval (0, 4) where g(x) is NOT differentiable, is ____________.
[]
null
1
$$f(x) = {x^3} - 6{x^2} + 9x - 3$$<br><br>$$f(x) = 3{x^2} - 12x + 9 = 3(x - 1)(x - 3)$$<br><br>$$f(1) = 1$$, $$f(3) = 3$$<br><br>$$g(x) = \left[ {\matrix{ {f(9x)} &amp; {0 \le x \le 1} \cr 0 &amp; {1 \le x \le 3} \cr { - 1} &amp; {3 &lt; x \le 4} \cr } } \right.$$<br><br>g(x) is continuous<br><br>$$g'(x) = \left[ {\matrix{ {3(x - 1)(x - 3)} &amp; {0 \le x \le 1} \cr 0 &amp; {1 \le x \le 3} \cr { - 1} &amp; {3 &lt; x \le 4} \cr } } \right.$$<br><br>g(x) is non-differentiable at x = 3
integer
jee-main-2021-online-20th-july-evening-shift
1krubclxp
maths
limits-continuity-and-differentiability
differentiability
Let f : R $$\to$$ R be a function defined as $$f(x) = \left\{ {\matrix{ {3\left( {1 - {{|x|} \over 2}} \right)} &amp; {if} &amp; {|x|\, \le 2} \cr 0 &amp; {if} &amp; {|x|\, &gt; 2} \cr } } \right.$$<br/><br/>Let g : R $$\to$$ R be given by $$g(x) = f(x + 2) - f(x - 2)$$. If n and m denote the number of points in R where g is not continuous and not differentiable, respectively, then n + m is equal to ______________.
[]
null
4
<p>$$f(x) = \left\{ {\matrix{ {3\left( {{{1 - \left| x \right|} \over 2}} \right)} & {if\,\left| x \right| \le 2} \cr 0 & {if\,\left| x \right| > 2} \cr } } \right.$$</p> <p>$$g(x) = f(x + 2) - f(x - 2)$$</p> <p>$$f(x) = \left\{ {\matrix{ {0,} & {x < - 2} \cr {{3 \over 2}(1 + x),} & { - 2 \le x < 0} \cr {{3 \over 2}(1 - x),} & {0 \le x < 2} \cr {0,} & {x > 2} \cr } } \right.$$</p> <p>$$f(x + 2) = \left\{ {\matrix{ {0,} & {x < - 4} \cr {{3 \over 2}( 3 + x),} & { - 4 \le x < - 2} \cr {{3 \over 2}( - 1 - x),} & { - 2 \le x < 0} \cr {0,} & {x > 4} \cr } } \right.$$</p> <p>$$f(x - 2) = \left\{ {\matrix{ {0,} & {x < 0} \cr {{3 \over 2}(x - 1),} & {0 \le x < 2} \cr {{3 \over 2}( - 1 - x),} & {2 \le x < 4} \cr {0,} & {x > 4} \cr } } \right.$$</p> <p>$$g(x) = f(x + 2) + f(x - 2)$$</p> <p>$$ = \left\{ {\matrix{ {{{3x} \over 2} + 6,} & { - 4 \le x \le 2} \cr { - {{3x} \over 2},} & { - 2 < x < 2} \cr {{{3x} \over 2} - 6,} & {2 \le x \le 4} \cr {0,} & {\left| x \right| > 4} \cr } } \right.$$</p> <p>So, n = 0 and m = 4</p> <p>$$\therefore$$ m + n = 4</p>
integer
jee-main-2021-online-22th-july-evening-shift
1krxlb5jm
maths
limits-continuity-and-differentiability
differentiability
Let $$f:[0,\infty ) \to [0,3]$$ be a function defined by <br/><br/>$$f(x) = \left\{ {\matrix{ {\max \{ \sin t:0 \le t \le x\} ,} &amp; {0 \le x \le \pi } \cr {2 + \cos x,} &amp; {x &gt; \pi } \cr } } \right.$$<br/><br/>Then which of the following is true?
[{"identifier": "A", "content": "f is continuous everywhere but not differentiable exactly at one point in (0, $$\\infty$$)"}, {"identifier": "B", "content": "f is differentiable everywhere in (0, $$\\infty$$)"}, {"identifier": "C", "content": "f is not continuous exactly at two points in (0, $$\\infty$$)"}, {"identifier": "D", "content": "f is continuous everywhere but not differentiable exactly at two points in (0, $$\\infty$$)"}]
["B"]
null
Graph of $$\max \{ \sin t:0 \le t \le x\} $$ in $$x \in [0,\pi ]$$<br><br><img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734267003/exam_images/njxdcddt27d4labpnhcm.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2021 (Online) 27th July Evening Shift Mathematics - Limits, Continuity and Differentiability Question 99 English Explanation 1"><br><br>&amp; graph of cos x for $$x \in [\pi ,\infty )$$<br><br><img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734266177/exam_images/mlkrr07qnsgtcedtgrri.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2021 (Online) 27th July Evening Shift Mathematics - Limits, Continuity and Differentiability Question 99 English Explanation 2"><br><br>So graph of <br><br>$$f(x) = \left\{ {\matrix{ {\max \{ \sin t:0 \le t \le x\} ,} &amp; {0 \le x \le \pi } \cr {2 + \cos x,} &amp; {x &gt; \pi} \cr } } \right.$$<br><br><img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734267341/exam_images/xx4dogq2jwbvxilj1i8d.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2021 (Online) 27th July Evening Shift Mathematics - Limits, Continuity and Differentiability Question 99 English Explanation 3"><br><br>f(x) is differentiable everywhere in (0, $$\infty$$)
mcq
jee-main-2021-online-27th-july-evening-shift
1ks0dcadh
maths
limits-continuity-and-differentiability
differentiability
Let $$f:[0,3] \to R$$ be defined by $$f(x) = \min \{ x - [x],1 + [x] - x\} $$ where [x] is the greatest integer less than or equal to x. Let P denote the set containing all x $$\in$$ [0, 3] where f i discontinuous, and Q denote the set containing all x $$\in$$ (0, 3) where f is not differentiable. Then the sum of number of elements in P and Q is equal to ______________.
[]
null
5
<picture><source media="(max-width: 320px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734264944/exam_images/avmgbcbdz7wsmx5hhnpg.webp"><source media="(max-width: 500px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734264951/exam_images/ot72zwnlvx1tkyc9kohr.webp"><img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734267638/exam_images/uj4pdcgnkf2sk9ywcaok.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2021 (Online) 27th July Morning Shift Mathematics - Limits, Continuity and Differentiability Question 95 English Explanation 1"></picture> <br><br>1 $$-$$ {x} = 1 $$-$$ x; 0 $$\le$$ x &lt; 1<br><br> <picture><source media="(max-width: 320px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734265349/exam_images/oa2ttguxwfbldlp3zpq0.webp"><source media="(max-width: 500px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734264167/exam_images/riljabrvycs6ypoits0f.webp"><source media="(max-width: 680px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734267197/exam_images/qgjuuqtt5dvgetesk2np.webp"><img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734266706/exam_images/ojrovdzbjtospfgtjkfj.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2021 (Online) 27th July Morning Shift Mathematics - Limits, Continuity and Differentiability Question 95 English Explanation 2"></picture> <br><br>Non differentiable at<br><br>$$x = {1 \over 2},1,{3 \over 2},2,{5 \over 2}$$
integer
jee-main-2021-online-27th-july-morning-shift
1ktcxxctq
maths
limits-continuity-and-differentiability
differentiability
Let [t] denote the greatest integer less than or equal to t. Let <br/>f(x) = x $$-$$ [x], g(x) = 1 $$-$$ x + [x], and h(x) = min{f(x), g(x)}, x $$\in$$ [$$-$$2, 2]. Then h is :
[{"identifier": "A", "content": "continuous in [$$-$$2, 2] but not differentiable at more than <br>four points in ($$-$$2, 2)"}, {"identifier": "B", "content": "not continuous at exactly three points in [$$-$$2, 2]"}, {"identifier": "C", "content": "continuous in [$$-$$2, 2] but not differentiable at exactly <br>three points in ($$-$$2, 2)"}, {"identifier": "D", "content": "not continuous at exactly four points in [$$-$$2, 2]"}]
["A"]
null
min{x $$-$$ [x], 1 $$-$$ x + [x]}<br><br>h(x) = min{x $$-$$ [x], 1 $$-$$ [x $$-$$ [x])}<br><br> <picture><source media="(max-width: 320px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734266549/exam_images/ownvykvbglm0alabpgjc.webp"><source media="(max-width: 500px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734264579/exam_images/tump60qgktboye2c0orm.webp"><source media="(max-width: 680px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734267659/exam_images/xysrrqavu5scrrxfshfc.webp"><img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734263692/exam_images/yav6eilmb28mctcjaeyf.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2021 (Online) 26th August Evening Shift Mathematics - Limits, Continuity and Differentiability Question 91 English Explanation"></picture> <br><br>$$\Rightarrow$$ always continuous in [$$-$$2, 2] but not differentiable at 7 points.
mcq
jee-main-2021-online-26th-august-evening-shift
1ktipaq58
maths
limits-continuity-and-differentiability
differentiability
The function <br/><br/>$$f(x) = \left| {{x^2} - 2x - 3} \right|\,.\,{e^{\left| {9{x^2} - 12x + 4} \right|}}$$ is not differentiable at exactly :
[{"identifier": "A", "content": "four points"}, {"identifier": "B", "content": "three points"}, {"identifier": "C", "content": "two points "}, {"identifier": "D", "content": "one point"}]
["C"]
null
$$f(x) = \left| {(x - 3)(x + 1)} \right|\,.\,{e^{{{(3x - 2)}^2}}}$$<br><br>$$f(x) = \left\{ {\matrix{ {(x - 3)(x + 1).\,{e^{{{(3x - 2)}^2}}}} &amp; ; &amp; {x \in (3,\infty )} \cr { - (x - 3)(x + 1).\,{e^{{{(3x - 2)}^2}}}} &amp; ; &amp; {x \in [ - 1,3]} \cr {(x - 3)\,.\,(x + 1).\,{e^{{{(3x - 2)}^2}}}} &amp; ; &amp; {x \in ( - \infty , - 1)} \cr } } \right.$$<br><br>Clearly, non-differentiable at x = $$-$$1 &amp; x = 3.
mcq
jee-main-2021-online-31st-august-morning-shift
1ktk9w00p
maths
limits-continuity-and-differentiability
differentiability
Let f be any continuous function on [0, 2] and twice differentiable on (0, 2). If f(0) = 0, f(1) = 1 and f(2) = 2, then
[{"identifier": "A", "content": "f''(x) = 0 for all x $$\\in$$ (0, 2)"}, {"identifier": "B", "content": "f''(x) = 0 for some x $$\\in$$ (0, 2)"}, {"identifier": "C", "content": "f'(x) = 0 for some x $$\\in$$ [0, 2]"}, {"identifier": "D", "content": "f''(x) &gt; 0 for all x $$\\in$$ (0, 2)"}]
["B"]
null
<p>f(0) = 0, f(1) = 1 and f(2) = 2</p> <p>Let h(x) = f(x) $$-$$ x</p> <p>Clearly h(x) is continuous and twice differentiable on (0, 2)</p> <p>Also, h(0) = h(1) = h(2) = 0</p> <p>$$\therefore$$ h(x) satisfies all the condition of Rolle's theorem.</p> <p>$$\therefore$$ there exist C<sub>1</sub> $$\in$$(0, 1) such that h'(c<sub>1</sub>) = 0</p> <p>$$\Rightarrow$$ f'(<sub>1</sub>) $$-$$ 1 = 0 $$\Rightarrow$$ f'(c<sub>1</sub>) = 1</p> <p>also there exist c<sub>2</sub> $$\in$$(1, 2) such that h'(c<sub>2</sub>) = 0</p> <p>$$\Rightarrow$$ f'(c<sub>2</sub>) = 1</p> <p>Now, using Rolle's theorem on [c<sub>1</sub>, c<sub>2</sub>] for f'(x)</p> <p>We have f''(c) = 0, c$$\in$$(c<sub>1</sub>, c<sub>2</sub>)</p> <p>Hence, f''(x) = 0 for some x$$\in$$(0, 2).</p>
mcq
jee-main-2021-online-31st-august-evening-shift
1l589h9sz
maths
limits-continuity-and-differentiability
differentiability
<p>Let f, g : R $$\to$$ R be two real valued functions defined as $$f(x) = \left\{ {\matrix{ { - |x + 3|} &amp; , &amp; {x &lt; 0} \cr {{e^x}} &amp; , &amp; {x \ge 0} \cr } } \right.$$ and $$g(x) = \left\{ {\matrix{ {{x^2} + {k_1}x} &amp; , &amp; {x &lt; 0} \cr {4x + {k_2}} &amp; , &amp; {x \ge 0} \cr } } \right.$$, where k<sub>1</sub> and k<sub>2</sub> are real constants. If (gof) is differentiable at x = 0, then (gof) ($$-$$ 4) + (gof) (4) is equal to :</p>
[{"identifier": "A", "content": "$$4({e^4} + 1)$$"}, {"identifier": "B", "content": "$$2(2{e^4} + 1)$$"}, {"identifier": "C", "content": "$$4{e^4}$$"}, {"identifier": "D", "content": "$$2(2{e^4} - 1)$$"}]
["D"]
null
<p>$$\because$$ gof is differentiable at x = 0</p> <p>So R.H.D = L.H.D</p> <p>$${d \over {dx}}(4{e^x} + {k_2}) = {d \over {dx}}\left( {{{( - |x + 3|)}^2} - {k_1}|x + 3|} \right)$$</p> <p>$$ \Rightarrow 4 = 6 - {k_1} \Rightarrow {k_1} = 2$$</p> <p>Also $$f(f({0^ + })) = g(f({0^ - }))$$</p> <p>$$ \Rightarrow 4 + {k_2} = 9 - 3{k_1} \Rightarrow {k_2} = - 1$$</p> <p>Now $$g(f( - 4)) + g(f(4))$$</p> <p>$$ = g( - 1) + g({e^4}) = (1 - {k_1}) + (4{e^4} + {k_2})$$</p> <p>$$ = 4{e^4} - 2$$</p> <p>$$ = 2(2{e^4} - 1)$$</p>
mcq
jee-main-2022-online-26th-june-morning-shift
1l58f5paa
maths
limits-continuity-and-differentiability
differentiability
<p>Let f(x) = min {1, 1 + x sin x}, 0 $$\le$$ x $$\le$$ 2$$\pi $$. If m is the number of points, where f is not differentiable and n is the number of points, where f is not continuous, then the ordered pair (m, n) is equal to</p>
[{"identifier": "A", "content": "(2, 0)"}, {"identifier": "B", "content": "(1, 0)"}, {"identifier": "C", "content": "(1, 1)"}, {"identifier": "D", "content": "(2, 1)"}]
["B"]
null
<p>$$f(x) = \min \{ 1,\,1 + x\sin x\} $$, $$0 \le x \le x$$</p> <p>$$f(x) = \left\{ {\matrix{ {1,} & {0 \le x < \pi } \cr {1 + x\sin x,} & {\pi \le x \le 2\pi } \cr } } \right.$$</p> <p>Now at $$x = \pi ,\,\,\mathop {\lim }\limits_{x \to {\pi ^ - }} f(x) = 1 = \mathop {\lim }\limits_{x \to {\pi ^ + }} f(x)$$</p> <p>$$\therefore$$ f(x) is continuous in [0, 2$$\pi$$]</p> <p>Now, at x = $$\pi$$ $$L.H.D = \mathop {\lim }\limits_{h \to 0} {{f(\pi - h) - f(\pi )} \over { - h}} = 0$$</p> <p>$$R.H.D = \mathop {\lim }\limits_{h \to 0} {{f(\pi + h) - f(\pi )} \over h} = 1 - {{(\pi + h)\sin \,h - 1} \over h} = - \pi $$</p> <p>$$\therefore$$ f(x) is not differentiable at x = $$\pi$$</p> <p>$$\therefore$$ (m, n) = (1, 0)</p>
mcq
jee-main-2022-online-26th-june-evening-shift
1l5b7z89d
maths
limits-continuity-and-differentiability
differentiability
<p>Let $$f(x) = \left\{ {\matrix{ {{{\sin (x - [x])} \over {x - [x]}}} &amp; {,\,x \in ( - 2, - 1)} \cr {\max \{ 2x,3[|x|]\} } &amp; {,\,|x| &lt; 1} \cr 1 &amp; {,\,otherwise} \cr } } \right.$$</p> <p>where [t] denotes greatest integer $$\le$$ t. If m is the number of points where $$f$$ is not continuous and n is the number of points where $$f$$ is not differentiable, then the ordered pair (m, n) is :</p>
[{"identifier": "A", "content": "(3, 3)"}, {"identifier": "B", "content": "(2, 4)"}, {"identifier": "C", "content": "(2, 3)"}, {"identifier": "D", "content": "(3, 4)"}]
["C"]
null
<p>$$f(x) = \left\{ {\matrix{ {{{\sin (x - [x])} \over {x[x]}}} & , & {x \in ( - 2, - 1)} \cr {\max \{ 2x,3[|x|]\} } & , & {|x| < 1} \cr 1 & , & {otherwise} \cr } } \right.$$</p> <p>$$f(x) = \left\{ {\matrix{ {{{\sin (x + 2)} \over {x + 2}}} & , & {x \in ( - 2, - 1)} \cr 0 & , & {x \in ( - 1,0]} \cr {2x} & , & {x \in (0,1)} \cr 1 & , & {otherwise} \cr } } \right.$$</p> <p>It clearly shows that f(x) is discontinuous</p> <p>At x = $$-$$1, 1 also non differentiable</p> <p>and at $$x = 0$$, $$L.H.D = \mathop {\lim }\limits_{h \to 0} {{f(0 - h) - f(0)} \over { - h}} = 0$$</p> <p>$$R.H.D = \mathop {\lim }\limits_{h \to 0} {{f(0 + h) - f(0)} \over h} = 2$$</p> <p>$$\therefore$$ f(x) is not differentiable at x = 0</p> <p>$$\therefore$$ m = 2, n = 3</p>
mcq
jee-main-2022-online-24th-june-evening-shift
1l6dxbjjs
maths
limits-continuity-and-differentiability
differentiability
<p>Let $$f(x)=\left\{\begin{array}{l}\left|4 x^{2}-8 x+5\right|, \text { if } 8 x^{2}-6 x+1 \geqslant 0 \\ {\left[4 x^{2}-8 x+5\right], \text { if } 8 x^{2}-6 x+1&lt;0,}\end{array}\right.$$ where $$[\alpha]$$ denotes the greatest integer less than or equal to $$\alpha$$. Then the number of points in $$\mathbf{R}$$ where $$f$$ is not differentiable is ___________. </p>
[]
null
3
$f(x)= \begin{cases}\left|4 x^{2}-8 x+5\right|, &amp; \text { if } 8 x^{2}-6 x+1 \geq 0 \\ {\left[4 x^{2}-8 x+5\right],} &amp; \text { if } 8 x^{2}-6 x+1&lt;0\end{cases}$ <br><br> $$ = \begin{cases}4 x^{2}-8 x+5, &amp; \text { if } x \in\left[-\infty, \frac{1}{4}\right] \cup\left[\frac{1}{2}, \infty\right) \\ {\left[4 x^{2}-8 x+5\right]} &amp; \text { if } x \in\left(\frac{1}{4}, \frac{1}{2}\right)\end{cases} $$ <br><br> $$f(x)=\left\{\begin{array}{cc} 4 x^2-8 x+5 &amp; \text { if } x \in\left(-\infty, \frac{1}{4}\right] \cup\left[\frac{1}{2}, \infty\right) \\ 3 &amp; x \in\left(\frac{1}{4}, \frac{2-\sqrt{2}}{2}\right) \\ 2 &amp; x \in\left[\frac{2-\sqrt{2}}{2}, \frac{1}{2}\right) \end{array}\right.$$<br><br> <img src="https://app-content.cdn.examgoal.net/fly/@width/image/1l97st8z9/f16176cf-a04a-4df8-9ae6-30f66a17f773/b9ee7e50-4b5d-11ed-bfde-e1cb3fafe700/file-1l97st8za.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1l97st8z9/f16176cf-a04a-4df8-9ae6-30f66a17f773/b9ee7e50-4b5d-11ed-bfde-e1cb3fafe700/file-1l97st8za.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh;" alt="JEE Main 2022 (Online) 25th July Morning Shift Mathematics - Limits, Continuity and Differentiability Question 63 English Explanation"><br> $\therefore \quad$ Non-diff at $x=\frac{1}{4}, \frac{2-\sqrt{2}}{2}, \frac{1}{2}$
integer
jee-main-2022-online-25th-july-morning-shift
1l6m6jj6x
maths
limits-continuity-and-differentiability
differentiability
<p>Let $$f:[0,1] \rightarrow \mathbf{R}$$ be a twice differentiable function in $$(0,1)$$ such that $$f(0)=3$$ and $$f(1)=5$$. If the line $$y=2 x+3$$ intersects the graph of $$f$$ at only two distinct points in $$(0,1)$$, then the least number of points $$x \in(0,1)$$, at which $$f^{\prime \prime}(x)=0$$, is ____________.</p>
[]
null
2
<p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1l7rb5odf/8441c3d2-e56e-4faa-a526-4c7b6253ae3c/ed702f30-2e7f-11ed-8702-156c00ced081/file-1l7rb5odg.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1l7rb5odf/8441c3d2-e56e-4faa-a526-4c7b6253ae3c/ed702f30-2e7f-11ed-8702-156c00ced081/file-1l7rb5odg.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh;" alt="JEE Main 2022 (Online) 28th July Morning Shift Mathematics - Limits, Continuity and Differentiability Question 54 English Explanation"></p> <p>If a graph cuts $$y = 2x + 5$$ in (0, 1) twice then its concavity changes twice.</p> <p>$$\therefore$$ $$f'(x) = 0$$ at at least two points.</p>
integer
jee-main-2022-online-28th-july-morning-shift
1l6p2shrs
maths
limits-continuity-and-differentiability
differentiability
<p>The number of points, where the function $$f: \mathbf{R} \rightarrow \mathbf{R}$$,</p> <p>$$f(x)=|x-1| \cos |x-2| \sin |x-1|+(x-3)\left|x^{2}-5 x+4\right|$$, is NOT differentiable, is :</p>
[{"identifier": "A", "content": "1"}, {"identifier": "B", "content": "2"}, {"identifier": "C", "content": "3"}, {"identifier": "D", "content": "4"}]
["B"]
null
<p>$$f:R \to R$$.</p> <p>$$f(x) = |x - 1|\cos |x - 2|\sin |x - 1| + (x - 3)|{x^2} - 5x + 4|$$</p> <p>$$ = |x - 1|\cos |x - 2|\sin |x - 1| + (x - 3)|x - 1||x - 4|$$</p> <p>$$ = |x - 1|[\cos |x - 2|\sin |x - 1| + (x - 3)|x - 4|]$$</p> <p>Sharp edges at $$x = 1$$ and $$x = 4$$</p> <p>$$\therefore$$ Non-differentiable at $$x = 1$$ and $$x = 4$$</p>
mcq
jee-main-2022-online-29th-july-morning-shift
1l6rfufia
maths
limits-continuity-and-differentiability
differentiability
<p>If $$[t]$$ denotes the greatest integer $$\leq t$$, then the number of points, at which the function $$f(x)=4|2 x+3|+9\left[x+\frac{1}{2}\right]-12[x+20]$$ is not differentiable in the open interval $$(-20,20)$$, is __________.</p>
[]
null
79
$f(x)=4|2 x+3|+9\left[x+\frac{1}{2}\right]-12[x+20]$ <br/><br/>$$ =4|2 x+3|+9\left[x+\frac{1}{2}\right]-12[x]-240 $$ <br/><br/>$f(x)$ is non differentiable at $x=-\frac{3}{2}$ <br/><br/>and $f(x)$ is discontinuous at $\{-19,-18, \ldots ., 18,19\}$ <br/><br/>as well as $\left\{-\frac{39}{2},-\frac{37}{2}, \ldots,-\frac{3}{2},-\frac{1}{2}, \frac{1}{2}, \ldots, \frac{39}{2}\right\}$, <br/><br/>at same point they are also non differentiable <br/><br/>$$ \begin{aligned} \therefore & \text { Total number of points of non differentiability } \\ &=39+40 \\ &=79 \end{aligned} $$
integer
jee-main-2022-online-29th-july-evening-shift
1ldr770hb
maths
limits-continuity-and-differentiability
differentiability
<p>Suppose $$f: \mathbb{R} \rightarrow(0, \infty)$$ be a differentiable function such that $$5 f(x+y)=f(x) \cdot f(y), \forall x, y \in \mathbb{R}$$. If $$f(3)=320$$, then $$\sum_\limits{n=0}^{5} f(n)$$ is equal to :</p>
[{"identifier": "A", "content": "6875"}, {"identifier": "B", "content": "6525"}, {"identifier": "C", "content": "6575"}, {"identifier": "D", "content": "6825"}]
["D"]
null
<p>$$5f(x + y) = f(x).f(y)$$</p> <p>$$5f(3) = f(1).f(2)$$</p> <p>$$5f(2) = {(f(1))^2}$$</p> <p>$$f(10) = 5$$</p> <p>$$f(1) = 20$$</p> <p>$$ \Rightarrow f(1).{{{{(f(1))}^2}} \over 5} = 1600$$</p> <p>$$\sum\limits_{n = 0}^5 {f(n) = f(0) + 20 + 80 + 320 + 1280 + 5120} $$</p> <p>$$ = 1750 + 5120 = 6825$$</p>
mcq
jee-main-2023-online-30th-january-morning-shift
1ldybn6xt
maths
limits-continuity-and-differentiability
differentiability
<p>Let $$f(x) = \left\{ {\matrix{ {{x^2}\sin \left( {{1 \over x}} \right)} &amp; {,\,x \ne 0} \cr 0 &amp; {,\,x = 0} \cr } } \right.$$</p> <p>Then at $$x=0$$</p>
[{"identifier": "A", "content": "$$f$$ is continuous but $$f'$$ is not continuous"}, {"identifier": "B", "content": "$$f$$ and $$f'$$ both are continuous"}, {"identifier": "C", "content": "$$f$$ is continuous but not differentiable"}, {"identifier": "D", "content": "$$f'$$ is continuous but not differentiable"}]
["A"]
null
<p>Given,</p> <p>$$f(x) = \left\{ {\matrix{ {{x^2}\sin \left( {{1 \over x}} \right),} & {x \ne 0} \cr {0,} & {x = 0} \cr } } \right.$$</p> <p>$$\therefore$$ $$f'(x) = 2x\sin \left( {{1 \over x}} \right) - \cos \left( {{1 \over x}} \right)$$</p> <p>Now,</p> <p>$$\mathop {\lim }\limits_{x \to 0} f'(x) = \mathop {\lim }\limits_{x \to 0} \left[ {2x\sin \left( {{1 \over x}} \right) - \cos \left( {{1 \over x}} \right)} \right]$$</p> <p>$$ = 0 - \mathop {\lim }\limits_{x \to 0} \cos \left( {{1 \over x}} \right)$$</p> <p>= Does not exist</p> <p>$$\therefore$$ $$f'(x)$$ is discontinuous function at $$x = 0$$.</p> <p>L.H.D. $$ = \mathop {\lim }\limits_{h \to {0^ + }} {{f(0 - h) - f(0)} \over { - h}}$$</p> <p>$$ = \mathop {\lim }\limits_{h \to {0^ + }} {{f( - h)} \over { - h}}$$</p> <p>$$ = \mathop {\lim }\limits_{h \to {0^ + }} {{ - {h^2}\sin \left( {{1 \over h}} \right)} \over { - h}} = 0$$</p> <p>R.H.D. $$ = \mathop {\lim }\limits_{h \to {0^ + }} {{f(0 + h) - f(0)} \over h}$$</p> <p>$$ = \mathop {\lim }\limits_{h \to {0^ + }} {{f(h)} \over h}$$</p> <p>$$ = \mathop {\lim }\limits_{h \to {0^ + }} {{{h^2}\sin \left( {{1 \over h}} \right)} \over h} = 0$$</p> <p>$$\therefore$$ L.H.D. = R.H.D.</p> <p>$$ \Rightarrow f(x)$$ is differentiable at $$x = 0$$. So, f(x) is continuous.</p>
mcq
jee-main-2023-online-24th-january-morning-shift
lgnx6vt2
maths
limits-continuity-and-differentiability
differentiability
Let $[x]$ denote the greatest integer function and <br/><br/>$f(x)=\max \{1+x+[x], 2+x, x+2[x]\}, 0 \leq x \leq 2$. Let $m$ be the number of <br/><br/>points in $[0,2]$, where $f$ is not continuous and $n$ be the number of points in <br/><br/>$(0,2)$, where $f$ is not differentiable. Then $(m+n)^{2}+2$ is equal to :
[{"identifier": "A", "content": "3"}, {"identifier": "B", "content": "6"}, {"identifier": "C", "content": "2"}, {"identifier": "D", "content": "11"}]
["A"]
null
$$ \begin{aligned} & \text { Let } g(x)=1+x+[x]=\left\{\begin{array}{cc} 1+x ; & x \in[0,1) \\\ 2+x ; & x \in[1,2) \\ 5 ; & x=2 \end{array}\right. \\\\ & \lambda(x)=x+2[x]=\left\{\begin{array}{cc} x ; & x \in[0,1) \\ x+2 ; & x \in[1,2) \\ 6 ; & x=2 \end{array}\right. \\\\ & r(x)=2+x \\\\ & f(x)=\left\{\begin{array}{cc} 2+x ; & x \in[0,2) \\ 6 ; & x=2 \end{array}\right. \end{aligned} $$ <br/><br/>$\mathrm{f}(\mathrm{x})$ is discontinuous only at $x=2 \Rightarrow \mathrm{m}=1$ <br/><br/>$\mathrm{f}(\mathrm{x})$ is differentiable in $(0,2) \Rightarrow \mathrm{n}=0$ <br/><br/>$$ (m+n)^2+2=3 $$
mcq
jee-main-2023-online-15th-april-morning-shift
1lgsvmum4
maths
limits-continuity-and-differentiability
differentiability
<p>Let $$f$$ and $$g$$ be two functions defined by</p> <p>$$f(x)=\left\{\begin{array}{cc}x+1, &amp; x &lt; 0 \\ |x-1|, &amp; x \geq 0\end{array}\right.$$ and $$\mathrm{g}(x)=\left\{\begin{array}{cc}x+1, &amp; x &lt; 0 \\ 1, &amp; x \geq 0\end{array}\right.$$</p> <p>Then $$(g \circ f)(x)$$ is :</p>
[{"identifier": "A", "content": "continuous everywhere but not differentiable at $$x=1$$"}, {"identifier": "B", "content": "differentiable everywhere"}, {"identifier": "C", "content": "not continuous at $$x=-1$$"}, {"identifier": "D", "content": "continuous everywhere but not differentiable exactly at one point"}]
["D"]
null
$$ \begin{aligned} &amp; \text { Sol. } f(x)=\left\{\begin{array}{c} x+1, x&lt;0 \\\ 1-x, 0 \leq x&lt;1 \\ x-1,1 \leq x \end{array}\right. \\\\ &amp; g(x)=\left\{\begin{array}{c} x+1, x&lt;0 \\ 1, x \geq 0 \end{array}\right. \\\\ &amp; g(f(x))=\left\{\begin{array}{c} x+2, x&lt;-1 \\ 1, x \geq-1 \end{array}\right. \end{aligned} $$ <br><br><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1lifi9pn2/0d3d2e66-f8f7-4969-8143-a77c378e96f7/b6eee2e0-01c8-11ee-91de-e7d2360ea0c8/file-1lifi9pn3.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1lifi9pn2/0d3d2e66-f8f7-4969-8143-a77c378e96f7/b6eee2e0-01c8-11ee-91de-e7d2360ea0c8/file-1lifi9pn3.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh;" alt="JEE Main 2023 (Online) 11th April Evening Shift Mathematics - Limits, Continuity and Differentiability Question 36 English Explanation"> <br>$\therefore \mathrm{g}(\mathrm{f}(\mathrm{x}))$ is continuous everywhere <br><br>$\mathrm{g}(\mathrm{f}(\mathrm{x}))$ is not differentiable at $\mathrm{x}=-1$ Differentiable everywhere else.
mcq
jee-main-2023-online-11th-april-evening-shift
1lgxw8rjx
maths
limits-continuity-and-differentiability
differentiability
<p>Let $$f:( - 2,2) \to R$$ be defined by $$f(x) = \left\{ {\matrix{ {x[x],} &amp; { - 2 &lt; x &lt; 0} \cr {(x - 1)[x],} &amp; {0 \le x \le 2} \cr } } \right.$$ where $$[x]$$ denotes the greatest integer function. If m and n respectively are the number of points in $$( - 2,2)$$ at which $$y = |f(x)|$$ is not continuous and not differentiable, then $$m + n$$ is equal to ____________.</p>
[]
null
4
Given function is $f(x)=\left\{\begin{array}{cc}x[x], &amp; -2 &lt; x &lt; 0 \\ (x-1)[x], &amp; 0 \leq x&lt;2\end{array}\right.$ <br><br>When $[x]$ is denotes greatest integer function <br><br><img src="https://app-content.cdn.examgoal.net/fly/@width/image/6y3zli1lnd9enbh/f19f578f-55e0-486b-a43d-c6ee1891f168/919e63d0-6389-11ee-b38e-7becbda30131/file-6y3zli1lnd9enbi.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/6y3zli1lnd9enbh/f19f578f-55e0-486b-a43d-c6ee1891f168/919e63d0-6389-11ee-b38e-7becbda30131/file-6y3zli1lnd9enbi.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh; vertical-align: baseline;" alt="JEE Main 2023 (Online) 10th April Morning Shift Mathematics - Limits, Continuity and Differentiability Question 34 English Explanation"> <br><br>Clearly, $|f(x)|$ remains same. <br><br>Given that, $m$ and $n$ respectively are the number points in $(-2,2)$ at which $y=|f(x)|$ is not continuous and not differentiable <br><br>So, $m=1$ where $y=|f(x)|$ not continuous <br><br>and $n=3$ where $|f(x)|$ is not differentiable. <br><br>Thus, $m+n=4$
integer
jee-main-2023-online-10th-april-morning-shift
1lgyorpkh
maths
limits-continuity-and-differentiability
differentiability
<p>Let $$\mathrm{k}$$ and $$\mathrm{m}$$ be positive real numbers such that the function $$f(x)=\left\{\begin{array}{cc}3 x^{2}+k \sqrt{x+1}, &amp; 0 &lt; x &lt; 1 \\ m x^{2}+k^{2}, &amp; x \geq 1\end{array}\right.$$ is differentiable for all $$x &gt; 0$$. Then $$\frac{8 f^{\prime}(8)}{f^{\prime}\left(\frac{1}{8}\right)}$$ is equal to ____________.</p>
[]
null
309
Here, $$f(x)=\left\{\begin{array}{cc}3 x^{2}+k \sqrt{x+1}, & 0 < x < 1 \\ m x^{2}+k^{2}, & x \geq 1\end{array}\right.$$ <br/><br/>$\because f(x)$ is differentiable at $x>0$ <br/><br/>So, $f(x)$ is differentiable at $x=1$ <br/><br/>$$ \begin{gathered} f\left(1^{-}\right)=f(1)=f\left(1^{+}\right) \\\\ 3+k \sqrt{2}=m+k^2 ......(i) \end{gathered} $$ <br/><br/>$$ \begin{aligned} & f^{\prime}\left(1^{-}\right)=f^{\prime}\left(1^{+}\right) \\\\ & 6(1)+\frac{k}{2 \sqrt{1+1}}=2 m(1) \\\\ & \Rightarrow 6+\frac{k}{2 \sqrt{2}}=2 m ......(ii) \end{aligned} $$ <br/><br/>Using (i) and (ii), <br/><br/>$$ \begin{aligned} & 3+k \sqrt{2}=3+\frac{k}{4 \sqrt{2}}+k^2 \\\\ & \Rightarrow k^2+k\left[\frac{1}{4 \sqrt{2}}-\sqrt{2}\right]=0 \end{aligned} $$ <br/><br/>$$ \Rightarrow k\left[k+\frac{1-8}{4 \sqrt{2}}\right]=0 \Rightarrow k=0, \frac{7}{4 \sqrt{2}} $$ <br/><br/>As the problem specifies k to be a positive real number, we can rule out k = 0. Hence, k = $\frac{7}{4 \sqrt{2}}$ <br/><br/>$$ \begin{aligned} & \text { for } k=\frac{7}{4 \sqrt{2}}, m=3+\frac{\frac{7}{4 \sqrt{2}}}{4 \sqrt{2}} \\\\ & =3+\frac{7}{32}=\frac{96+7}{32}=\frac{103}{32} \end{aligned} $$ <br/><br/>$$ \text { So, } \frac{8 f^{\prime}(8)}{f^{\prime}\left(\frac{1}{8}\right)}=\frac{8 \times\left[2 \times \frac{103}{32} \times 8\right]}{6 \times \frac{1}{8}+\frac{7}{4 \sqrt{2}} \times 2 \sqrt{918}} $$ <br/><br/>$$ =\frac{412}{\frac{3}{4}+\frac{7}{12}}=\frac{412}{\frac{9+7}{12}}=\frac{412 \times 12}{16}=309 $$ <br/><br/><b>Concept :</b> <br/><br/>$f(x)$ is differentiable at $x=a$, if $f^{\prime}\left(a^{-}\right)=f'\left(a^{+}\right)$
integer
jee-main-2023-online-8th-april-evening-shift
1lh23sso3
maths
limits-continuity-and-differentiability
differentiability
<p>Let $$a \in \mathbb{Z}$$ and $$[\mathrm{t}]$$ be the greatest integer $$\leq \mathrm{t}$$. Then the number of points, where the function $$f(x)=[a+13 \sin x], x \in(0, \pi)$$ is not differentiable, is __________.</p>
[]
null
25
<p>Given that $ f(x) = [a + 13\sin(x)] $, where $[t]$ is the greatest integer function and $ x \in (0, \pi) $.</p> <p>The function $[t]$ is not differentiable wherever $ t $ is an integer because at these points, the function has a jump discontinuity.</p> <p>For $ f(x) $ to have a point of non-differentiability, the value inside the greatest integer function, i.e., $ a + 13\sin(x) $, should be an integer. </p> <p>So, we need to find the values of $ x $ in the interval $ (0, \pi) $ for which $ a + 13\sin(x) $ is an integer.</p> <p>Now, $ \sin(x) $ varies from 0 to 1 in the interval $ (0, \pi) $, so the maximum value of $ 13\sin(x) $ in this interval is 13.</p> <p>For each integer value of $ 13\sin(x) $ between 0 and 13, we&#39;ll have a corresponding value of $ x $. There will be two such values of $ x $ for each value of $ 13\sin(x) $ (because of the periodic and symmetric nature of sine function over the interval $ (0, \pi) $), except for the maximum value, 13, which will have only one corresponding value of $ x $ (namely $ x = \frac{\pi}{2} $).</p> <p>Thus, the total number of integer values of $ 13\sin(x) $ between 0 and 13 is 13. Excluding the maximum value, we have 12 integer values, each giving rise to two values of $ x $. Including the maximum value, which gives one value of $ x $, we have :</p> <p>$ 12 \times 2 + 1 = 25 $</p> <p>Thus, $ f(x) $ is not differentiable at 25 points in the interval $ (0, \pi) $.</p>
integer
jee-main-2023-online-6th-april-morning-shift
lsamhqd8
maths
limits-continuity-and-differentiability
differentiability
Let $f(x)=\left|2 x^2+5\right| x|-3|, x \in \mathbf{R}$. If $\mathrm{m}$ and $\mathrm{n}$ denote the number of points where $f$ is not continuous and not differentiable respectively, then $\mathrm{m}+\mathrm{n}$ is equal to :
[{"identifier": "A", "content": "5"}, {"identifier": "B", "content": "3"}, {"identifier": "C", "content": "2"}, {"identifier": "D", "content": "0"}]
["B"]
null
$\begin{aligned} &amp; f(x)=\left|2 x^2+5\right| x|-3| \\\\ &amp; \text { Graph of } y=\left|2 x^2+5 x-3\right|\end{aligned}$ <br><br><img src="https://app-content.cdn.examgoal.net/fly/@width/image/6y3zli1lsq9xozp/ba71121b-98fa-43fb-8b6d-a25522270b09/e89ef840-cdae-11ee-8e42-2f10126c4c2c/file-6y3zli1lsq9xozq.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/6y3zli1lsq9xozp/ba71121b-98fa-43fb-8b6d-a25522270b09/e89ef840-cdae-11ee-8e42-2f10126c4c2c/file-6y3zli1lsq9xozq.png" loading="lazy" style="max-width: 100%;height: auto;display: block;margin: 0 auto;max-height: 40vh;vertical-align: baseline" alt="JEE Main 2024 (Online) 1st February Evening Shift Mathematics - Limits, Continuity and Differentiability Question 28 English Explanation 1"> <br><img src="https://app-content.cdn.examgoal.net/fly/@width/image/6y3zli1lsqa8zwn/f12f5f83-13c0-4aa6-8f79-7a22074474aa/22f45480-cdb0-11ee-8e42-2f10126c4c2c/file-6y3zli1lsqa8zwo.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/6y3zli1lsqa8zwn/f12f5f83-13c0-4aa6-8f79-7a22074474aa/22f45480-cdb0-11ee-8e42-2f10126c4c2c/file-6y3zli1lsqa8zwo.png" loading="lazy" style="max-width: 100%;height: auto;display: block;margin: 0 auto;max-height: 40vh;vertical-align: baseline" alt="JEE Main 2024 (Online) 1st February Evening Shift Mathematics - Limits, Continuity and Differentiability Question 28 English Explanation 2"> <br><br>Now $f(x)$ is continuous $\forall x \in R$ <br><br>but non- differentiable at $x=\frac{-1}{2}, \frac{1}{2}, 0$ <br><br>$$ \begin{aligned} \therefore m &amp; =0 \\\\ n &amp; =3 \\\\ m+n &amp; =3 \end{aligned} $$
mcq
jee-main-2024-online-1st-february-evening-shift
lsaowab9
maths
limits-continuity-and-differentiability
differentiability
Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be defined as : <br/><br/>$$ f(x)= \begin{cases}\frac{a-b \cos 2 x}{x^2} ; &amp; x&lt;0 \\\\ x^2+c x+2 ; &amp; 0 \leq x \leq 1 \\\\ 2 x+1 ; &amp; x&gt;1\end{cases} $$ <br/><br/>If $f$ is continuous everywhere in $\mathbf{R}$ and $m$ is the number of points where $f$ is NOT differential then $\mathrm{m}+\mathrm{a}+\mathrm{b}+\mathrm{c}$ equals :
[{"identifier": "A", "content": "1"}, {"identifier": "B", "content": "4"}, {"identifier": "C", "content": "3"}, {"identifier": "D", "content": "2"}]
["D"]
null
At $\mathrm{x}=1, \mathrm{f}(\mathrm{x})$ is continuous therefore, <br/><br/>$\mathrm{f}\left(1^{-}\right)=\mathrm{f}(1)=\mathrm{f}\left(1^{+}\right)$ <br/><br/>$$ f(1)=3+c $$ .........(1) <br/><br/>$$ \begin{aligned} & \mathrm{f}\left(1^{+}\right)=\lim _{h \rightarrow 0} 2(1+\mathrm{h})+1 \\\\ & \mathrm{f}\left(1^{+}\right)=\lim _{h \rightarrow 0} 3+2 \mathrm{~h}=3 .........(2) \end{aligned} $$ <br/><br/>from (1) and (2) <br/><br/>$$ \mathrm{c}=0 $$ <br/><br/>at $\mathrm{x}=0, \mathrm{f}(\mathrm{x})$ is continuous therefore, <br/><br/>$$ \begin{aligned} & \mathrm{f}\left(0^{-}\right)=\mathrm{f}(0)=\mathrm{f}\left(0^{+}\right) ........(3) \\\\ & \mathrm{f}(0)=\mathrm{f}\left(0^{+}\right)=2 ...........(4) \end{aligned} $$ <br/><br/>$\mathrm{f}\left(0^{-}\right)$has to be equal to 2 <br/><br/>$\lim\limits_{h \rightarrow 0} \frac{a-b \cos (2 h)}{h^2}$ <br/><br/>= $\lim\limits_{h \rightarrow 0} \frac{a-b\left\{1-\frac{4 h^2}{2 !}+\frac{16 h^4}{4 !}+\ldots\right\}}{h^2}$ <br/><br/>= $\lim\limits_{h \rightarrow 0} \frac{a-b+b\left\{2 h^2-\frac{2}{3} h^4 \ldots\right\}}{h^2}$ <br/><br/>for limit to exist $a-b=0$ and limit is $2 b$ from (3), (4) and (5) <br/><br/>$$ \mathrm{a}=\mathrm{b}=1 $$ <br/><br/>checking differentiability at $\mathrm{x}=0$ <br/><br/>$$ \begin{aligned} & \text { LHD : } \lim _{h \rightarrow 0} \frac{\frac{1-\cos 2 h}{h^2}-2}{-h} \\\\ & \lim _{h \rightarrow 0} \frac{1-\left(1-\frac{4 h^2}{2 !}+\frac{16 h^4}{4 !} \ldots\right)-2 h^2}{-h^3}=0 \\\\ & \text { RHD : } \lim _{h \rightarrow 0} \frac{(0+h)^2+2-2}{h}=0 \end{aligned} $$ <br/><br/>Function is differentiable at every point in its domain <br/><br/>$$ \therefore \mathrm{m}=0 $$ <br/><br/>m + a + b + c = 0 + 1 + 1 + 0 = 2
mcq
jee-main-2024-online-1st-february-morning-shift
jaoe38c1lscn03is
maths
limits-continuity-and-differentiability
differentiability
<p>Consider the function $$f:(0,2) \rightarrow \mathbf{R}$$ defined by $$f(x)=\frac{x}{2}+\frac{2}{x}$$ and the function $$g(x)$$ defined by</p> <p>$$g(x)=\left\{\begin{array}{ll} \min \lfloor f(t)\}, &amp; 0&lt;\mathrm{t} \leq x \text { and } 0 &lt; x \leq 1 \\ \frac{3}{2}+x, &amp; 1 &lt; x &lt; 2 \end{array} .\right. \text { Then, }$$</p>
[{"identifier": "A", "content": "$$g$$ is continuous but not differentiable at $$x=1$$\n"}, {"identifier": "B", "content": "$$g$$ is continuous and differentiable for all $$x \\in(0,2)$$\n"}, {"identifier": "C", "content": "$$g$$ is not continuous for all $$x \\in(0,2)$$\n"}, {"identifier": "D", "content": "$$g$$ is neither continuous nor differentiable at $$x=1$$"}]
["A"]
null
<p>$$\begin{aligned} &amp; f:(0,2) \rightarrow R ; f(x)=\frac{x}{2}+\frac{2}{x} \\ &amp; f^{\prime}(x)=\frac{1}{2}-\frac{2}{x^2} \end{aligned}$$</p> <p>$$\therefore \mathrm{f}(\mathrm{x})$$ is decreasing in domain.</p> <p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1lt1qvsrr/82daf6e5-d235-46d9-8017-461f6f164b34/ce430770-d3fd-11ee-acd6-03dea0d2c848/file-1lt1qvsrs.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1lt1qvsrr/82daf6e5-d235-46d9-8017-461f6f164b34/ce430770-d3fd-11ee-acd6-03dea0d2c848/file-1lt1qvsrs.png" loading="lazy" style="max-width: 100%;height: auto;display: block;margin: 0 auto;max-height: 40vh;vertical-align: baseline" alt="JEE Main 2024 (Online) 27th January Evening Shift Mathematics - Limits, Continuity and Differentiability Question 22 English Explanation 1"></p> <p>$$g(x)= \begin{cases}\frac{x}{2}+\frac{2}{x} &amp; 0 &lt; x \leq 1 \\ \frac{3}{2}+x &amp; 1 &lt; x &lt; 2\end{cases}$$</p> <p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1lt1qwxt1/0909b125-954a-4e40-9ed4-1383ae43484b/edf5f550-d3fd-11ee-acd6-03dea0d2c848/file-1lt1qwxt2.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1lt1qwxt1/0909b125-954a-4e40-9ed4-1383ae43484b/edf5f550-d3fd-11ee-acd6-03dea0d2c848/file-1lt1qwxt2.png" loading="lazy" style="max-width: 100%;height: auto;display: block;margin: 0 auto;max-height: 40vh;vertical-align: baseline" alt="JEE Main 2024 (Online) 27th January Evening Shift Mathematics - Limits, Continuity and Differentiability Question 22 English Explanation 2"></p>
mcq
jee-main-2024-online-27th-january-evening-shift
jaoe38c1lsd4ro0j
maths
limits-continuity-and-differentiability
differentiability
<p>Consider the function $$f:(0, \infty) \rightarrow \mathbb{R}$$ defined by $$f(x)=e^{-\left|\log _e x\right|}$$. If $$m$$ and $$n$$ be respectively the number of points at which $$f$$ is not continuous and $$f$$ is not differentiable, then $$m+n$$ is</p>
[{"identifier": "A", "content": "0"}, {"identifier": "B", "content": "1"}, {"identifier": "C", "content": "2"}, {"identifier": "D", "content": "3"}]
["B"]
null
<p>$$\begin{aligned} &amp; f:(0, \infty) \rightarrow R \\ &amp; f(x)=e^{-\left|\log _e x\right|} \end{aligned}$$</p> <p>$$\mathrm{f}(\mathrm{x})=\frac{1}{\mathrm{e}^{|\ln \mathrm{x}|}}=\left\{\begin{array}{l} \frac{1}{\mathrm{e}^{-\ln \mathrm{x}}} ; 0&lt;\mathrm{x}&lt;1 \\ \frac{1}{\mathrm{e}^{\ln \mathrm{x}}} ; \mathrm{x} \geq 1 \end{array}\right.$$</p> <p>$$\left\{\begin{array}{l} \frac{1}{\frac{1}{x}}=x ; 0&lt; x&lt;1 \\ \frac{1}{x}, x \geq 1 \end{array}\right.$$</p> <p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/6y3zli1lsjwnla3/94c1149f-a7b9-41cc-b180-4bf0cc496ba7/451674b0-ca2e-11ee-8854-3b5a6c9e9092/file-6y3zli1lsjwnla4.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/6y3zli1lsjwnla3/94c1149f-a7b9-41cc-b180-4bf0cc496ba7/451674b0-ca2e-11ee-8854-3b5a6c9e9092/file-6y3zli1lsjwnla4.png" loading="lazy" style="max-width: 100%;height: auto;display: block;margin: 0 auto;max-height: 40vh;vertical-align: baseline" alt="JEE Main 2024 (Online) 31st January Evening Shift Mathematics - Limits, Continuity and Differentiability Question 20 English Explanation"></p> <p>$$\mathrm{m}=0$$ (No point at which function is not continuous)</p> <p>$$\mathrm{n}=1$$ (Not differentiable)</p> <p>$$\therefore \mathrm{m}+\mathrm{n}=1$$</p>
mcq
jee-main-2024-online-31st-january-evening-shift
jaoe38c1lsflbgha
maths
limits-continuity-and-differentiability
differentiability
<p>Let $$f(x)=\sqrt{\lim _\limits{r \rightarrow x}\left\{\frac{2 r^2\left[(f(r))^2-f(x) f(r)\right]}{r^2-x^2}-r^3 e^{\frac{f(r)}{r}}\right\}}$$ be differentiable in $$(-\infty, 0) \cup(0, \infty)$$ and $$f(1)=1$$. Then the value of ea, such that $$f(a)=0$$, is equal to _________.</p>
[]
null
2
<p>$$\begin{aligned} & f(1)=1, f(a)=0 \\ & {f^2}(x) = \mathop {\lim }\limits_{r \to x} \left( {{{2{r^2}({f^2}(r) - f(x)f(r))} \over {{r^2} - {x^2}}} - {r^3}{e^{{{f(r)} \over r}}}} \right) \\ & = \mathop {\lim }\limits_{r \to x} \left( {{{2{r^2}f(r)} \over {r + x}}{{(f(r) - f(x))} \over {r - x}} - {r^3}{e^{{{f(r)} \over r}}}} \right) \\ & f^2(x)=\frac{2 x^2 f(x)}{2 x} f^{\prime}(x)-x^3 e^{\frac{f(x)}{x}} \\ & y^2=x y \frac{d y}{d x}-x^3 e^{\frac{y}{x}} \\ & \frac{y}{x}=\frac{d y}{d x}-\frac{x^2}{y} e^{\frac{y}{x}} \end{aligned}$$</p> <p>Put $$y=v x \Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$$</p> <p>$$\begin{aligned} & v=v+x \frac{d v}{d x}-\frac{x}{v} e^v \\ & \frac{d v}{d x}=\frac{e^v}{v} \Rightarrow e^{-v} v d v=d x \end{aligned}$$</p> <p>Integrating both side</p> <p>$$\begin{aligned} & \mathrm{e}^{\mathrm{v}}(\mathrm{x}+\mathrm{c})+1+\mathrm{v}=0 \\ & \mathrm{f}(1)=1 \Rightarrow \mathrm{x}=1, \mathrm{y}=1 \end{aligned}$$</p> <p>$$\begin{aligned} & \Rightarrow c=-1-\frac{2}{e} \\ & e^v\left(-1-\frac{2}{e}+x\right)+1+v=0 \\ & e^{\frac{y}{x}}\left(-1-\frac{2}{e}+x\right)+1+\frac{y}{x}=0 \\ & x=a, y=0 \Rightarrow a=\frac{2}{e} \\ & a e=2 \end{aligned}$$</p>
integer
jee-main-2024-online-29th-january-evening-shift
1lsgcplix
maths
limits-continuity-and-differentiability
differentiability
<p>If the function</p> <p>$$f(x)= \begin{cases}\frac{1}{|x|}, &amp; |x| \geqslant 2 \\ \mathrm{a} x^2+2 \mathrm{~b}, &amp; |x|&lt;2\end{cases}$$</p> <p>is differentiable on $$\mathbf{R}$$, then $$48(a+b)$$ is equal to __________.</p>
[]
null
15
<p>$$\mathrm{f}(\mathrm{x})\left\{\begin{array}{c} \frac{1}{\mathrm{x}} ; \mathrm{x} \geq 2 \\ \mathrm{ax}^2+2 \mathrm{~b} ;-2<\mathrm{x}<2 \\ -\frac{1}{\mathrm{x}} ; \mathrm{x} \leq-2 \end{array}\right.$$</p> <p>Continuous at $$\mathrm{x}=2 \quad \Rightarrow \frac{1}{2}=\frac{\mathrm{a}}{4}+2 \mathrm{~b}$$</p> <p>Continuous at $$\mathrm{x}=-2 \quad \Rightarrow \frac{1}{2}=\frac{\mathrm{a}}{4}+2 \mathrm{~b}$$</p> <p>Since, it is differentiable at $$\mathrm{x}=2$$</p> <p>$$-\frac{1}{x^2}=2 \mathrm{ax}$$</p> <p>Differentiable at $$x=2 \quad \Rightarrow \frac{-1}{4}=4 a \Rightarrow a=\frac{-1}{16}, b =\frac{3}{8}$$</p>
integer
jee-main-2024-online-30th-january-morning-shift
lv7v3v83
maths
limits-continuity-and-differentiability
differentiability
<p>Let $$f$$ be a differentiable function in the interval $$(0, \infty)$$ such that $$f(1)=1$$ and $$\lim _\limits{t \rightarrow x} \frac{t^2 f(x)-x^2 f(t)}{t-x}=1$$ for each $$x&gt;0$$. Then $$2 f(2)+3 f(3)$$ is equal to _________.</p>
[]
null
24
<p>$$\lim _\limits{t \rightarrow x} \frac{t^2 f(x)-x^2 f(t)}{(t-x)}=1 \quad\left(\frac{0}{0} \text { form }\right)$$</p> <p>$$\begin{aligned} & \lim _{t \rightarrow x} \frac{2 \operatorname{tf}(x)-x^2 f^{\prime}(t)}{1}=1 \\ & \Rightarrow 2 x f(x)-x^2 f'(x)=1 \\ & \frac{d y}{d x}-\frac{2 x y}{x^2}=\frac{-1}{x^2} \\ & \Rightarrow \frac{d y}{d x}-\left(\frac{2}{x}\right) y=\frac{-1}{x^2} \\ & \Rightarrow \text { I.F. }=e^{\int \frac{-2}{x} d x}=e^{-2 \ln x}=x^{-2}=\frac{1}{x^2} \end{aligned}$$</p> <p>$$\begin{aligned} \Rightarrow & y\left(\frac{1}{x^2}\right)=\int\left(\frac{-1}{x^2}\right)\left(\frac{1}{x^2}\right) d x+C \\ & \frac{y}{x^2}=\frac{1}{3 x^3}+C \text { at } x=1, y=1 \\ \Rightarrow & 1=\frac{1}{3}+C \Rightarrow C=\frac{2}{3} \\ \Rightarrow & y=\frac{1}{3 x}+\frac{2}{3} x^2=f(x) \\ \Rightarrow & 2 f(2)+3 f(3)=24 \end{aligned}$$</p>
integer
jee-main-2024-online-5th-april-morning-shift
wcEtMRsaibecOeOmm3jgy2xukf0x5uc1
maths
limits-continuity-and-differentiability
existance-of-limits
Let [t] denote the greatest integer $$ \le $$ t. If for some <br/>$$\lambda $$ $$ \in $$ R - {1, 0}, $$\mathop {\lim }\limits_{x \to 0} \left| {{{1 - x + \left| x \right|} \over {\lambda - x + \left[ x \right]}}} \right|$$ = L, then L is equal to :
[{"identifier": "A", "content": "1"}, {"identifier": "B", "content": "2"}, {"identifier": "C", "content": "0"}, {"identifier": "D", "content": "$${1 \\over 2}$$"}]
["B"]
null
Here $$\mathop {\lim }\limits_{x \to 0} \left| {{{1 - x + \left| x \right|} \over {\lambda - x + [x]}}} \right| = L$$<br><br>Here L.H.L. $$\mathop {\lim }\limits_{h \to 0^-} \left| {{{1 + h + h} \over {\lambda + h - 1}}} \right| = \left| {{1 \over {\lambda - 1}}} \right|$$<br><br>R.H.L. = $$\mathop {\lim }\limits_{h \to 0^+} \left| {{{1 - h + h} \over {\lambda + h + 0}}} \right| = \left| {{1 \over \lambda }} \right|$$<br><br>$$ \because $$ Limit exists. Hence L.H.L. = R.H.L.<br><br>$$ \Rightarrow $$ $$\left| {\lambda - 1} \right| = \left| \lambda \right|$$<br><br>$$ \Rightarrow $$ $$\lambda = {1 \over 2}$$ <br><br>$$ \therefore $$ L = $${1 \over {\left| \lambda \right|}}$$ = 2
mcq
jee-main-2020-online-3rd-september-morning-slot
1krrxiqlj
maths
limits-continuity-and-differentiability
existance-of-limits
If $$\mathop {\lim }\limits_{x \to 0} {{\alpha x{e^x} - \beta {{\log }_e}(1 + x) + \gamma {x^2}{e^{ - x}}} \over {x{{\sin }^2}x}} = 10,\alpha ,\beta ,\gamma \in R$$, then the value of $$\alpha$$ + $$\beta$$ + $$\gamma$$ is _____________.
[]
null
3
$$\mathop {\lim }\limits_{x \to 0} {{\alpha x\left( {1 + x + {{{x^2}} \over x}} \right) - \beta \left( {x - {{{x^2}} \over 2} + {{{x^3}} \over 3}} \right) + \gamma {x^2}(1 - x)} \over {{x^3}}}$$<br><br>$$\mathop {\lim }\limits_{x \to 0} {{x(\alpha - \beta ) + {x^2}\left( {\alpha + {\beta \over 2} + \gamma } \right) + {x^3}\left( {{\alpha \over 2} - {\beta \over 3} - \gamma } \right)} \over {{x^3}}} = 10$$<br><br>For limit to exist<br><br>$$\alpha - \beta = 0,\alpha + {\beta \over 2} + \gamma = 0$$$${\alpha \over 2} - {\beta \over 3} - \gamma = 10$$ ..... (i)<br><br>$$\beta = \alpha ,\gamma = - 3{\alpha \over 2}$$<br><br>Put in (i)<br><br>$${\alpha \over 2} - {\alpha \over 3} + {{3\alpha } \over 2} = 10$$<br><br>$${\alpha \over 6} + {{3\alpha } \over 2} = 10 \Rightarrow {{\alpha + 9\alpha } \over 6} = 10$$<br><br>$$ \Rightarrow \alpha = 6$$<br><br>$$\alpha$$ = 6, $$\beta$$ = 6, $$\gamma$$ = $$-$$9<br><br>$$\alpha$$ + $$\beta$$ + $$\gamma$$ = 3
integer
jee-main-2021-online-20th-july-evening-shift
6EivwZ6DrQWjLqAR
maths
limits-continuity-and-differentiability
limits-of-algebric-function
If $$f\left( 1 \right) = 1,{f'}\left( 1 \right) = 2,$$ then <br/>$$\mathop {\lim }\limits_{x \to 1} {{\sqrt {f\left( x \right)} - 1} \over {\sqrt x - 1}}$$ is
[{"identifier": "A", "content": "$$2$$"}, {"identifier": "B", "content": "$$4$$"}, {"identifier": "C", "content": "$$1$$"}, {"identifier": "D", "content": "$${1 \\over 2}$$"}]
["A"]
null
$$\mathop {\lim }\limits_{x \to 1} {{\sqrt {f\left( x \right)} - 1 } \over {\sqrt x - 1}}\,\,\left( {{0 \over 0}} \right)$$ form using $$L'$$ Hospital's rule <br><br>$$ = \mathop {\lim }\limits_{x \to 1} {{{1 \over {2\sqrt {f\left( x \right)} }}f'\left( x \right)} \over {1/2\sqrt x }}$$ <br><br>$$ = {{f'\left( 1 \right)} \over {\sqrt {f\left( 1 \right)} }} = {2 \over 1} = 2.$$
mcq
aieee-2002
j2lxIWGAe1k1pqXc
maths
limits-continuity-and-differentiability
limits-of-algebric-function
Let $$f(2) = 4$$ and $$f'(x) = 4.$$ <br/><br/>Then $$\mathop {\lim }\limits_{x \to 2} {{xf\left( 2 \right) - 2f\left( x \right)} \over {x - 2}}$$ is given by
[{"identifier": "A", "content": "$$2$$"}, {"identifier": "B", "content": "$$- 2$$"}, {"identifier": "C", "content": "$$- 4$$"}, {"identifier": "D", "content": "$$3$$"}]
["C"]
null
Given, <br><br>$$\mathop {\lim }\limits_{x \to 2} {{xf\left( 2 \right) - 2f\left( x \right)} \over {x - 2}}$$ <br><br>= $$\mathop {\lim }\limits_{x \to 2} {{xf\left( 2 \right) - 2f\left( 2 \right) + 2f\left( 2 \right) - 2f\left( x \right)} \over {x - 2}}$$ <br><br>= $$\mathop {\lim }\limits_{x \to 2} {{f\left( 2 \right)\left( {x - 2} \right) - 2\left\{ {f\left( x \right) - f\left( 2 \right)} \right\}} \over {x - 2}}$$ <br><br>= $$f\left( 2 \right) - 2\mathop {\lim }\limits_{x \to 2} {{f\left( x \right) - f\left( 2 \right)} \over {x - 2}}$$ <br><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;$$\left[ {As\,f'\left( x \right) = \mathop {\lim }\limits_{x \to 2} {{f\left( x \right) - f\left( 2 \right)} \over {x - 2}}} \right]$$ <br><br>= $$f\left( 2 \right) - 2f'\left( x \right)$$ <br><br>= 4 - 2 $$ \times $$ 4 <br><br>= - 4
mcq
aieee-2002
lGj7y8njpmls6ye2
maths
limits-continuity-and-differentiability
limits-of-algebric-function
Let $$f:R \to R$$ be a positive increasing function with <br/><br/>$$\mathop {\lim }\limits_{x \to \infty } {{f(3x)} \over {f(x)}} = 1$$. Then $$\mathop {\lim }\limits_{x \to \infty } {{f(2x)} \over {f(x)}} = $$
[{"identifier": "A", "content": "$${2 \\over 3}$$"}, {"identifier": "B", "content": "$${3 \\over 2}$$"}, {"identifier": "C", "content": "3"}, {"identifier": "D", "content": "1"}]
["D"]
null
$$f(x)$$ is a positive increasing function. <br><br>$$\therefore$$ $$0 &lt; f\left( x \right) &lt; f\left( {2x} \right) &lt; f\left( {3x} \right)$$ <br><br>$$ \Rightarrow 0 &lt; 1 &lt; {{f\left( {2x} \right)} \over {f\left( x \right)}} &lt; {{f\left( {3x} \right)} \over {f\left( x \right)}}$$ <br><br>$$ \Rightarrow \mathop {\lim }\limits_{x \to \infty } 1 \le \mathop {\lim }\limits_{x \to \infty } {{f\left( {2x} \right)} \over {f\left( x \right)}} \le \mathop {\lim }\limits_{x \to \infty } {{f\left( {3x} \right)} \over {f\left( x \right)}}$$ <br><br>By Sandwich Theorem. <br><br>$$ \Rightarrow \mathop {\lim }\limits_{x \to \infty } {{f\left( {2x} \right)} \over {f\left( x \right)}} = 1$$
mcq
aieee-2010
wLgGeNX26Y861NCnho4cC
maths
limits-continuity-and-differentiability
limits-of-algebric-function
$$\mathop {\lim }\limits_{x \to 3} $$ $${{\sqrt {3x} - 3} \over {\sqrt {2x - 4} - \sqrt 2 }}$$ is equal to :
[{"identifier": "A", "content": "$$\\sqrt 3 $$ "}, {"identifier": "B", "content": "$${1 \\over {\\sqrt 2 }}$$ "}, {"identifier": "C", "content": "$${{\\sqrt 3 } \\over 2}$$"}, {"identifier": "D", "content": "$${1 \\over {2\\sqrt 2 }}$$"}]
["B"]
null
Given, <br><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;$$\mathop {\lim }\limits_{x \to 3} $$ $${{\sqrt {3x} - 3} \over {\sqrt {2x - 4} - \sqrt 2 }}$$ <br><br>Here if you put x = 3 in $${{\sqrt {3x} - 3} \over {\sqrt {2x - 4 - \sqrt 2 } }}$$ <br><br>you will get $${0 \over 0}$$ form. <br><br>So, we can apply L' Hospital rule <br><br>$$\therefore\,\,\,$$ $$\mathop {\lim }\limits_{x \to 3} {{\sqrt {3x} - 3} \over {\sqrt {2x - 4} - \sqrt 2 }}$$ <br><br>= $$\mathop {\lim }\limits_{x \to 3} $$ $${{\sqrt 3 .{1 \over {2\sqrt x }}} \over {{2 \over {2\sqrt {2x - 4} }}}}$$ (applying L' Hospital rule) <br><br>= $${{\sqrt 3 .{1 \over {2\sqrt 3 }}} \over {{1 \over {\sqrt 6 - 4}}}}$$ <br><br>= $${1 \over 2}$$ $$ \times $$ $$\sqrt 2 $$ <br><br>= $${1 \over {\sqrt 2 }}$$
mcq
jee-main-2017-online-8th-april-morning-slot
WtrrL787R3wCQZqP
maths
limits-continuity-and-differentiability
limits-of-algebric-function
For each t $$ \in R$$, let [t] be the greatest integer less than or equal to t. <br/><br/>Then $$\mathop {\lim }\limits_{x \to {0^ + }} x\left( {\left[ {{1 \over x}} \right] + \left[ {{2 \over x}} \right] + ..... + \left[ {{{15} \over x}} \right]} \right)$$
[{"identifier": "A", "content": "does not exist in R"}, {"identifier": "B", "content": "is equal to 0"}, {"identifier": "C", "content": "is equal to 15"}, {"identifier": "D", "content": "is equal to 120"}]
["D"]
null
Given, <br><br>$$\mathop {lim}\limits_{x \to {0^ + }} \,\,x\,\left( {\left[ {{1 \over x}} \right] + \left[ {{2 \over x}} \right]} \right. + $$ $$\left. {\,.\,.\,.\,.\,.\, + \left[ {{{15} \over x}} \right]} \right)$$ <br><br>as we know that <br><br>$${1 \over x} = \left[ {{1 \over x}} \right] + \left\{ {{1 \over x}} \right\}$$ <br><br>$$ \Rightarrow \,\,\,\,\left[ {{1 \over x}} \right] = {1 \over x} - \left\{ {{1 \over x}} \right\}$$ <br><br>$$ = \,\,\,\,\mathop {\lim }\limits_{x \to {0^ + }} \,\,x\left[ {{1 \over x} - \left\{ {{1 \over x}} \right\} + {2 \over 2} - \left\{ {{2 \over x}} \right\} + ........{{15} \over x} - \left\{ {{{15} \over x}} \right\}} \right]$$ <br><br>$$ = \,\,\,\,\mathop {\lim }\limits_{x \to {0^ + }} \,\left[ {x.{1 \over x} + x.{2 \over x} + .....x.{{15} \over x}} \right]$$ <br><br>$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, - \,\left[ {x.\left\{ {{1 \over 2}} \right\} + .. + x.\left\{ {{{15} \over x}} \right\}} \right]$$ <br><br>We know $$\left\{ {{1 \over x}} \right\}$$ is fractional part of $${1 \over x}.$$ <br><br>So, the range of $$\,\left\{ {{1 \over x}} \right\}$$ is $$0 \le \left\{ {{1 \over x}} \right\} &lt; 1$$ <br><br>So, $$\mathop {lim}\limits_{x \to {0^ + }} \,\,x\,\left\{ {{1 \over x}} \right\} = 0.$$ (finite no) $$=0$$ <br><br>Similarly $$\mathop {\lim }\limits_{x \to {0^ + }} x.\left\{ {{2 \over x}} \right\} = 0$$ <br><br>$$ = \,\,\,\,\left( {1 + 2 + ... + 15} \right) - \left( {0 + 0...} \right)$$ <br><br>$$ = \,\,\,\,{{15 \times 16} \over 2}$$ <br><br>$$ = \,\,\,\,120$$
mcq
jee-main-2018-offline
L9hsA4UrY7uaEooFI7Xug
maths
limits-continuity-and-differentiability
limits-of-algebric-function
Let f(x) be a polynomial of degree $$4$$ having extreme values at $$x = 1$$ and $$x = 2.$$ <br/><br/>If   $$\mathop {lim}\limits_{x \to 0} \left( {{{f\left( x \right)} \over {{x^2}}} + 1} \right) = 3$$   then f($$-$$1) is equal to :
[{"identifier": "A", "content": "$${9 \\over 2}$$"}, {"identifier": "B", "content": "$${5 \\over 2}$$"}, {"identifier": "C", "content": "$${3 \\over 2}$$"}, {"identifier": "D", "content": "$${1 \\over 2}$$"}]
["A"]
null
$$ \because $$ &nbsp;&nbsp; f(x) has extremum values at x = 1, and x = 2 <br><br>$$ \because $$&nbsp;&nbsp;f'(1) = 0 and f'(2) = 0 <br><br>As, f(x) is a polynomial of degree 4. <br><br>Suppose f(x) = Ax<sup>4</sup> + Bx<sup>3</sup> + cx<sup>2</sup> + Dx + E <br><br>$$ \because $$&nbsp;&nbsp; $$\mathop {\lim }\limits_{x \to 0} $$ $$\left( {{{f\left( x \right)} \over {{x^2}}} + 1} \right)$$ = 3 <br><br>$$ \Rightarrow $$$$\,\,\,$$$$\mathop {\lim }\limits_{x \to 0} \left( {{{A{x^4} + B{x^3} + C{x^2} + Dx + E} \over {{x^2}}} + 1} \right)$$ = 3 <br><br>$$ \Rightarrow $$&nbsp;&nbsp; $$\mathop {\lim }\limits_{x \to 0} $$ $$\left( {A{x^2} + Bx + C + {D \over x} + {E \over {{x^2}}} + 1} \right)$$ = 3 <br><br>As limit has finite value, so D = 0 and E = 0 <br><br>Now A(0)<sup>2</sup> + B(0) + C + 0 + 0 + 1 = 3 <br><br>$$ \Rightarrow $$&nbsp;&nbsp; c + 1 = 3 $$ \Rightarrow $$ c = 2 <br><br>f'(x) = 4Ax<sup>3</sup> + 3Bx<sup>2</sup> + 2Cx + D <br><br>f'(1) = 0 $$ \Rightarrow $$ 4A(1) + 3B(1) + 2C(1) + D = 0 <br><br>$$ \Rightarrow $$$$\,\,\,$$ 4A + 3B = $$-$$ 4&nbsp;&nbsp;&nbsp;&nbsp; . . . .(1) <br><br>f'(2) = 0 $$ \Rightarrow $$ 4A(8) + 3B(4) + 2C(2) + D = 0 <br><br>$$ \Rightarrow $$ 8A + 3B = $$-$$ 2 &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;. . . . .(2) <br><br>From equations (1) and (2), we get <br><br>A = $${1 \over 2}$$ and B = $$-$$ 2 <br><br>So, f(x) = $${{{x_4}} \over 2} - 2{x^3} + 2x{}^2$$ <br><br>Therefore, f($$-$$ 1) = $${{{{( - 1)}^4}} \over 2} - 2{( - 1)^3} + 2{( - 1)^2}$$ <br><br>= $${1 \over 2} + 2 + 2 = {9 \over 2}$$ <br><br>Hence f($$-$$1) = $${9 \over 2}$$
mcq
jee-main-2018-online-15th-april-evening-slot
wztfeePIP7DfsJ4eiSWl3
maths
limits-continuity-and-differentiability
limits-of-algebric-function
$$\mathop {\lim }\limits_{x \to 0} \,\,{{{{\left( {27 + x} \right)}^{{1 \over 3}}} - 3} \over {9 - {{\left( {27 + x} \right)}^{{2 \over 3}}}}}$$ equals.
[{"identifier": "A", "content": "$${1 \\over 3}$$ "}, {"identifier": "B", "content": "$$-$$ $${1 \\over 3}$$"}, {"identifier": "C", "content": "$$-$$ $${1 \\over 6}$$"}, {"identifier": "D", "content": "$${1 \\over 6}$$"}]
["C"]
null
Given, <br><br>$$\mathop {lim}\limits_{x \to 0} \,{{{{\left( {27 + x} \right)}^{{1 \over 3}}} - 3} \over {9 - {{\left( {27 + x} \right)}^{{2 \over 3}}}}}$$ <br><br>=&nbsp;&nbsp; $$\mathop {\lim }\limits_{x \to 0} \,{{3\left[ {{{\left( {1 + {x \over {27}}} \right)}^{{1 \over 3}}} - 1} \right]} \over {9\left[ {1 - {{\left( {1 + {x \over {27}}} \right)}^{{2 \over 3}}}} \right]}}$$ <br><br>=&nbsp;&nbsp; $$\mathop {\lim }\limits_{x \to 0} \,\,{{\left( {1 + {x \over {3 \times 27}}} \right) - 1} \over {3\left[ {1 - \left( {1 + {{2x} \over {3 \times 27}}} \right)} \right]}}$$ <br><br>= &nbsp;&nbsp;$$\mathop {\lim }\limits_{x \to 0} \,\,{{{x \over {81}}} \over {3\left( { - {{2x} \over {81}}} \right)}} = - {1 \over 6}$$
mcq
jee-main-2018-online-16th-april-morning-slot
sX1MfZeJPUdVnpCXpDYX5
maths
limits-continuity-and-differentiability
limits-of-algebric-function
$$\mathop {\lim }\limits_{y \to 0} {{\sqrt {1 + \sqrt {1 + {y^4}} } - \sqrt 2 } \over {{y^4}}}$$
[{"identifier": "A", "content": "exists and equals $${1 \\over {2\\sqrt 2 }}$$"}, {"identifier": "B", "content": "exists and equals $${1 \\over {4\\sqrt 2 }}$$"}, {"identifier": "C", "content": "exists and equals $${1 \\over {2\\sqrt 2 (1 + \\sqrt {2)} }}$$"}, {"identifier": "D", "content": "does not exists"}]
["B"]
null
$$\mathop {\lim }\limits_{y \to 0} {{\sqrt {1 + \sqrt {1 + {y^4}} } - \sqrt 2 } \over {{y^4}}}$$ <br><br>If you put y = 0 at $${{\sqrt {1 + \sqrt {1 + {y^4}} } - \sqrt 2 } \over {{y^4}}}$$ it is in $${0 \over 0}$$ form. So we can use L' Hospital's Rule. <br><br>= $$\mathop {\lim }\limits_{y \to 0} {{{1 \over {2\sqrt {1 + \sqrt {1 + {y^4}} } }} \times \left( {{1 \over {2\sqrt {1 + {y^4}} }}} \right) \times 4{y^3}} \over {4{y^3}}}$$ <br><br>= $$\mathop {\lim }\limits_{y \to 0} {1 \over {2\sqrt {1 + \sqrt {1 + {y^4}} } }} \times {1 \over {2\sqrt {1 + {y^4}} }}$$ <br><br>= $${1 \over {4\sqrt 2 }}$$
mcq
jee-main-2019-online-9th-january-morning-slot
3hyv1yKOaRDf7sWOv23rsa0w2w9jwxrvaa6
maths
limits-continuity-and-differentiability
limits-of-algebric-function
If $$\mathop {\lim }\limits_{x \to 1} {{{x^4} - 1} \over {x - 1}} = \mathop {\lim }\limits_{x \to k} {{{x^3} - {k^3}} \over {{x^2} - {k^2}}}$$, then k is :
[{"identifier": "A", "content": "$${3 \\over 2}$$"}, {"identifier": "B", "content": "$${8 \\over 3}$$"}, {"identifier": "C", "content": "$${4 \\over 3}$$"}, {"identifier": "D", "content": "$${3 \\over 8}$$"}]
["B"]
null
If $$\mathop {\lim }\limits_{x \to 1} {{{x^4} - 1} \over {x - 1}} = \mathop {\lim }\limits_{x \to K} \left( {{{{x^3} - {k^3}} \over {{x^2} - {k^2}}}} \right)$$<br><br> <b>L·H·S·</b><br><br> $$\mathop {Lt}\limits_{x \to 1} {{{x^4} - 1} \over {x - 1}} = \left( {{0 \over 0}form} \right)$$<br><br> $$ \Rightarrow \mathop {Lt}\limits_{x \to 1} {{4{x^3}} \over 1} = 4$$<br><br> Now, $$\mathop {\lim }\limits_{x \to K} \left( {{{{x^3} - {k^3}} \over {{x^2} - {k^2}}}} \right)$$ = 4<br><br> $$ \Rightarrow \mathop {\lim }\limits_{x \to K} {{3{x^2}} \over {2x}} = 4$$<br><br> $$ \Rightarrow {3 \over 2}k = 4 \Rightarrow k = {8 \over 3}$$
mcq
jee-main-2019-online-10th-april-morning-slot
BRO7yDGmrfgKvmK5Aa3rsa0w2w9jx1yg7ul
maths
limits-continuity-and-differentiability
limits-of-algebric-function
If $$\mathop {\lim }\limits_{x \to 1} {{{x^2} - ax + b} \over {x - 1}} = 5$$, then a + b is equal to :
[{"identifier": "A", "content": "1"}, {"identifier": "B", "content": "- 4"}, {"identifier": "C", "content": "- 7"}, {"identifier": "D", "content": "5"}]
["C"]
null
$$\mathop {\lim }\limits_{x \to 1} {{{x^2} - ax + b} \over {x - 1}} = 5$$<br><br> $$ \Rightarrow $$ $${(1)^2} - a(1) + b = 0$$<br><br> $$ \Rightarrow $$$$1 - a + b = 0$$<br><br> $$ \Rightarrow $$$$a - b = 1\,\,......(1)$$<br><br> Now 'L' hospital rule<br><br> 2x - a = 5<br><br> $$ \Rightarrow $$2 - a = 5 ($$ \because $$ x = 1)<br><br> $$ \Rightarrow $$ a = - 3<br><br> By putting a = -3 in (1)<br><br> $$ \Rightarrow $$ b = -4<br><br> $$ \therefore $$ a + b = -7
mcq
jee-main-2019-online-10th-april-evening-slot
fyMDR3N15sswpQy8CW3rsa0w2w9jx5crbn3
maths
limits-continuity-and-differentiability
limits-of-algebric-function
If $$\alpha $$ and $$\beta $$ are the roots of the equation 375x<sup>2</sup> – 25x – 2 = 0, then $$\mathop {\lim }\limits_{n \to \infty } \sum\limits_{r = 1}^n {{\alpha ^r}} + \mathop {\lim }\limits_{n \to \infty } \sum\limits_{r = 1}^n {{\beta ^r}} $$ is equal to :
[{"identifier": "A", "content": "$${7 \\over {116}}$$"}, {"identifier": "B", "content": "$${{29} \\over {348}}$$"}, {"identifier": "C", "content": "$${1 \\over {12}}$$"}, {"identifier": "D", "content": "$${{21} \\over {346}}$$"}]
["B"]
null
$$\alpha $$ and $$\beta $$ are the two root of 375x<sup>2</sup> - 25x - 2 = 0<br><br> Both of the roots are lie in (-1, 1) hence sum of given series is finite<br><br> $$\mathop {\lim }\limits_{n \to \infty } \left( {{\alpha \over {1 - \alpha }} + {\beta \over {1 - \beta }}} \right) = {{\alpha (1 - \beta ) + \beta (1 - \alpha )} \over {(1 - \alpha )(1 - \beta )}}$$<br><br> $$ \Rightarrow {{\left( {\alpha + \beta } \right) - 2\alpha \beta } \over {1 - (\alpha + \beta ) + \alpha \beta }} = {{25 - 2( - 2)} \over {375 - 25 - 2}} = {{29} \over {348}}$$
mcq
jee-main-2019-online-12th-april-morning-slot
RJPBYHj7M347weF0yn3rsa0w2w9jxb3yvjl
maths
limits-continuity-and-differentiability
limits-of-algebric-function
Let f(x) = 5 – |x – 2| and g(x) = |x + 1|, x $$ \in $$ R. If f(x) attains maximum value at $$\alpha $$ and g(x) attains minimum value at $$\beta $$, then $$\mathop {\lim }\limits_{x \to -\alpha \beta } {{\left( {x - 1} \right)\left( {{x^2} - 5x + 6} \right)} \over {{x^2} - 6x + 8}}$$ is equal to :
[{"identifier": "A", "content": "$${1 \\over 2}$$"}, {"identifier": "B", "content": "$$-{1 \\over 2}$$"}, {"identifier": "C", "content": "$${3 \\over 2}$$"}, {"identifier": "D", "content": "$$-{3 \\over 2}$$"}]
["A"]
null
From f(x) = 5 - | x - 2 |<br> maximum value of f(x) is at x = 2<br><br> From g(x) = | x + 1 |<br> minimum value of g(x) is at x = -1<br><br> $$ \therefore $$ $$\alpha \beta $$ = - 2<br><br> $$ \Rightarrow $$ $$\mathop {\lim }\limits_{x \to 2} {{(x - 1)(x - 2)(x - 3)} \over {(x - 2)(x - 4)}}$$<br><br> $$ \Rightarrow $$ $${{(2 - 1)(2 - 3)} \over {(2 - 4)}} = {1 \over 2}$$
mcq
jee-main-2019-online-12th-april-evening-slot
N2VlnkwaNhHCXerce6jgy2xukewticxv
maths
limits-continuity-and-differentiability
limits-of-algebric-function
If $$\mathop {\lim }\limits_{x \to 1} {{x + {x^2} + {x^3} + ... + {x^n} - n} \over {x - 1}}$$ = 820, <br/>(n $$ \in $$ N) then the value of n is equal to _______.
[]
null
40
$$\mathop {\lim }\limits_{x \to 1} {{x + {x^2} + {x^3} + ... + {x^n} - n} \over {x - 1}}$$ = 820 <br><br>As it is $$\left( {{0 \over 0}} \right)$$ form, Apply L'Hospital's Rule. <br><br>$$\mathop {\lim }\limits_{x \to 1} \left( {{{1 + 2x + 3{x^2} + ... + n{x^{n - 1}}} \over 1}} \right)$$ = 820 <br><br>$$ \Rightarrow $$ 1 + 2 + 3 + .....+ n = 820 <br><br>$$ \Rightarrow $$ $${{n\left( {n + 1} \right)} \over 2}$$ = 820 <br><br>$$ \Rightarrow $$ n<sup>2</sup> + n – 1640 = 0 <br><br>$$ \Rightarrow $$ (n – 40)(n + 41) = 0 <br><br>Since n $$ \in $$ N, so n = 40.
integer
jee-main-2020-online-2nd-september-morning-slot
IJisEY7lKJW1ewvjbNjgy2xukf4999tx
maths
limits-continuity-and-differentiability
limits-of-algebric-function
$$\mathop {\lim }\limits_{x \to a} {{{{\left( {a + 2x} \right)}^{{1 \over 3}}} - {{\left( {3x} \right)}^{{1 \over 3}}}} \over {{{\left( {3a + x} \right)}^{{1 \over 3}}} - {{\left( {4x} \right)}^{{1 \over 3}}}}}$$ ($$a$$ $$ \ne $$ 0) is equal to :
[{"identifier": "A", "content": "$$\\left( {{2 \\over 9}} \\right){\\left( {{2 \\over 3}} \\right)^{{1 \\over 3}}}$$"}, {"identifier": "B", "content": "$$\\left( {{2 \\over 3}} \\right){\\left( {{2 \\over 9}} \\right)^{{1 \\over 3}}}$$"}, {"identifier": "C", "content": "$${\\left( {{2 \\over 3}} \\right)^{{4 \\over 3}}}$$"}, {"identifier": "D", "content": "$${\\left( {{2 \\over 9}} \\right)^{{4 \\over 3}}}$$"}]
["B"]
null
L = $$\mathop {\lim }\limits_{x \to a} {{{{\left( {a + 2x} \right)}^{{1 \over 3}}} - {{\left( {3x} \right)}^{{1 \over 3}}}} \over {{{\left( {3a + x} \right)}^{{1 \over 3}}} - {{\left( {4x} \right)}^{{1 \over 3}}}}}$$ <br><br>$$= \mathop {\lim }\limits_{h \to 0} {{{{(a + 2(a + h))}^{1/3}} - {{(3(a + h))}^{1/3}}} \over {{{(3a + a + h)}^{1/3}} - {{(4(a + h))}^{1/3}}}}$$<br><br>= $$\mathop {\lim }\limits_{h \to 0} {{{{(3a)}^{1/3}}{{\left( {1 + {{2h} \over {3a}}} \right)}^{1/3}} - {{(3a)}^{1/3}}{{\left( {1 + {h \over a}} \right)}^{1/3}}} \over {{{(4a)}^{1/3}}{{\left( {1 + {h \over {4a}}} \right)}^{1/3}} - {{(4a)}^{1/3}}{{\left( {1 + {h \over a}} \right)}^{1/3}}}}$$<br><br>= $$\mathop {\lim }\limits_{h \to 0} \left( {{{{3^{1/3}}} \over {{4^{1/3}}}}} \right)\left[ {{{\left( {1 + {{2h} \over {9a}}} \right) - \left( {1 + {h \over {3a}}} \right)} \over {\left( {1 + {h \over {12a}}} \right) - \left( {1 + {h \over {3a}}} \right)}}} \right]$$<br><br>$$ = {\left( {{3 \over 4}} \right)^{1/3}}{{\left( {{2 \over 9} - {1 \over 3}} \right)} \over {\left( {{1 \over {12}} - {1 \over 3}} \right)}} = {\left( {{3 \over 4}} \right)^{1/3}}\left( {{{8 - 12} \over {3 - 12}}} \right)$$<br><br>$$ = {\left( {{3 \over 4}} \right)^{1/3}}\left( {{{ - 4} \over { - 9}}} \right) = {{{4^{1 - {1 \over 3}}}} \over {{3^{2 - {1 \over 3}}}}} = {{{4^{2/3}}} \over {{3^{5/3}}}}$$<br><br>$$ = {{{{(8 \times 2)}^{1/3}}} \over {{{(27 \times 9)}^{1/3}}}} = {2 \over 3}{\left( {{2 \over 9}} \right)^{1/3}}$$
mcq
jee-main-2020-online-3rd-september-evening-slot
zig2fGHakn5vCGZ9cI1kluxa7u1
maths
limits-continuity-and-differentiability
limits-of-algebric-function
Let $$f(x) = {\sin ^{ - 1}}x$$ and $$g(x) = {{{x^2} - x - 2} \over {2{x^2} - x - 6}}$$. If $$g(2) = \mathop {\lim }\limits_{x \to 2} g(x)$$, then the domain of the function fog is :
[{"identifier": "A", "content": "$$( - \\infty , - 2] \\cup \\left[ { - {4 \\over 3},\\infty } \\right)$$"}, {"identifier": "B", "content": "$$( - \\infty , - 2] \\cup [ - 1,\\infty )$$"}, {"identifier": "C", "content": "$$( - \\infty , - 2] \\cup \\left[ { - {3 \\over 2},\\infty } \\right)$$"}, {"identifier": "D", "content": "$$( - \\infty , - 1] \\cup [2,\\infty )$$"}]
["A"]
null
$$g(2) = \mathop {\lim }\limits_{x \to 2} {{(x - 2)(x + 1)} \over {(2x + 3)(x - 2)}} = {3 \over 7}$$<br><br>Domain of $$fog(x) = {\sin ^{ - 1}}(g(x))$$<br><br>$$ \Rightarrow |g(x)|\, \le 1$$<br><br>$$\left| {{{{x^2} - x - 2} \over {2{x^2} - x - 6}}} \right| \le 1$$<br><br>$$\left| {{{(x + 1)(x - 2)} \over {(2x + 3)(x - 2)}}} \right| \le 1$$<br><br>$${{x + 1} \over {2x + 3}} \le 1$$ and $${{x + 1} \over {2x + 3}} \ge - 1$$<br><br>$${{x + 1 - 2x - 3} \over {2x + 3}} \le 0$$ and $${{x + 1 + 2x + 3} \over {2x + 3}} \ge 0$$<br><br>$${{x + 2} \over {2x + 3}} \ge 0$$ and $${{3x + 4} \over {2x + 3}} \ge 0$$<br><br>$$x \in ( - \infty , - 2] \cup \left[ { - {4 \over 3},\infty } \right)$$
mcq
jee-main-2021-online-26th-february-evening-slot