seq_id
string
text
string
repo_name
string
sub_path
string
file_name
string
file_ext
string
file_size_in_byte
int64
program_lang
string
lang
string
doc_type
string
stars
int64
dataset
string
pt
string
api
list
498662479
#!/usr/bin/env python # Copyright: (c) 2019, Tanner Dowhy <[email protected]> # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1'} DOCUMENTATION = ''' --- module: Create conda environment. version_added: "2.7" author: "Tanner Dowhy (@TannerDowhy)" options: name: description: - This is the message to send to the sample module required: true new: description: - Control to demo if the result of this module is changed or not required: false notes: - This module will make you cool. ''' EXAMPLES = ''' # Pass in a message - name: Test with a message my_new_test_module: name: hello world # pass in a message and have changed true - name: Test with a message and changed output my_new_test_module: name: hello world new: true # fail the module - name: Test failure of the module my_new_test_module: name: fail me ''' RETURN = ''' original_message: description: The original name param that was passed in type: str message: description: The output message that the sample module generates ''' from ansible.module_utils.basic import AnsibleModule from biolighthouse.module_utils.Conda.conda import * def conda_install_arg_spec(**kwargs): spec = dict( state=dict(type='str', choices=['present', 'absent', 'latest'], default='present'), name=dict(type='list', default=[], requred=True), version=dict(required=False), env_path=dict(type='path', default=None, required=False), environment=dict(type='str', default=None, required=False), channel=dict(type='list', defualt=[], requred=False), executable=dict(type='path', required=False) ) spec.update(kwargs) return spec def run_module(): argument_spec=conda_install_arg_spec() module = AnsibleModule(argument_spec, supports_check_mode=True ) result = dict( changed=False, actions = [] ) state = module.params['state'] name = module.params['name'] version = module.params['version'] env_path = module.params['env_path'] environment = module.params['environment'] channel = module.params['channel'] executable = module.params['executable'] conda = Conda(module, environment) if environment: env_exists = conda.check_env(environment) if not env_exists: result['msg'] = "%s environment does not exist." % environment target_packages = [conda.split_name_version(n, version) for n in name] installed_packages = conda.list_packages(environment) if state == 'present': absent_packages = conda.get_absent_packages(target_packages, installed_packages, check_version=True) if absent_packages: if not module.check_mode: actions = conda.install_packages(absent_packages, channel) result['actions'] += actions result['changed'] = True elif state == 'absent': present_packages = conda.get_present_packages( target_packages, installed_packages, check_version=False) if present_packages: names = [p['name'] for p in present_packages] if not module.check_mode: actions = conda.remove_packages(names, channel) result['actions'] += actions result['changed'] = True elif state == 'latest': # Find missing packages first absent_packages = conda.get_absent_packages(target_packages, installed_packages, check_version=False) present_packages = conda.get_present_packages(target_packages, installed_packages, check_version=False) if absent_packages: if not module.check_mode: actions = conda.install_packages(absent_packages, channel) result['actions'] += actions result['changed'] = True if present_packages: # Check what needs to be updated with a dry run names = [p['name'] for p in present_packages] dry_actions = conda.update_packages(names, channel, dry_run=True) if dry_actions: if not module.check_mode: actions = conda.update_packages(names, channel) result['actions'] += actions result['changed'] = True if module.check_mode: return result module.exit_json(**result) def main(): run_module() if __name__ == '__main__': main()
null
biolighthouse/modules/Conda/conda_install.py
conda_install.py
py
5,087
python
en
code
null
code-starcoder2
83
[ { "api_name": "ansible.module_utils.basic.AnsibleModule", "line_number": 74, "usage_type": "call" } ]
91127038
from symtype import KT, SymType from scanner import Scanner import stmts from copy import copy import traceback import typez import sys import pygame pygame.init() window = pygame.display.set_mode((640, 480)) class Parser(object): def __init__(self, program): super(Parser, self).__init__() self.scanner = Scanner(program) self.symbol = "" self.statementList = [] self.__nextSymbol() self.relops = [SymType.eqop, SymType.ltop, SymType.leop, SymType.geop, SymType.gtop] self.predefFigures = [SymType.circle, SymType.square, SymType.point, SymType.line] self.colors = [SymType.black, SymType.notblack] def __nextSymbol(self): self.symbol = self.scanner.nextSymbol() def __accept(self, atom): if self.symbol == atom: self.__nextSymbol() return 1 else: return 0 def __expect(self, atom): if self.__accept(atom): return 1 else: self.__syntaxError(atom) return 0 def __syntaxError(self, atom): self.scanner.scanError(atom, "Spodziewany symbol: ", atom) raise Exception def __syntaxError1(self, atom): self.scanner.scanError(atom, "Nieoczekiwany symbol: ", atom) raise Exception def program(self): i = 0 while self.symbol != SymType.others: self.statementList.extend([self.__statement()]) i = i + 1 if i > 1000: raise Exception("Zbyt wiele instrukcji.") def __statement(self): r = self.__assignmentStmt() if r != None: return r r = self.__incrementStmt() if r != None: return r r = self.__decrementStmt() if r != None: return r r = self.__whileStmt() if r != None: return r r = self.__ifStmt() if r != None: return r r = self.__drawStmt() if r != None: return r r = self.__moveStmt() if r != None: return r r = self.__printStmt() if r != None: return r else: self.__syntaxError1(self.symbol) return r def __assignmentStmt(self): if self.symbol == SymType.ident : varName = self.scanner.spell self.__nextSymbol() if self.__accept(SymType.becomes): value = self.__number() return stmts.AssignmentStmt(varName, value) elif self.symbol == SymType.beginsy: return self.__figureAssignmentStmt(varName) else: self.__syntaxError1(self.symbol) else: return None def __figureAssignmentStmt(self, figureName): statements = self.__block() figure = typez.MyFigure(figureName, statements) return stmts.FigureAssignmentStmt(figureName, figure) def __incrementStmt(self): if self.__accept(SymType.increment) : if self.symbol == SymType.ident: ident = self.scanner.spell self.__nextSymbol() else: self.__syntaxError1(self.symbol) return stmts.IncrementStmt(ident) else: return None def __decrementStmt(self): if self.__accept(SymType.decrement) : if self.symbol == SymType.ident: ident = self.scanner.spell self.__nextSymbol() else: self.__syntaxError1(self.symbol) return stmts.DecrementStmt(ident) else: return None def __whileStmt(self): if self.__accept(SymType.whilesy) : condition = self.__condition() statements = self.__block() return stmts.WhileStmt(condition, statements) else: return None def __ifStmt(self): if self.__accept(SymType.ifsy) : condition = self.__condition() statements = self.__block() return stmts.IfStmt(condition, statements) else: return None def __drawStmt(self): if self.__accept(SymType.draw) : if self.symbol in self.predefFigures: figureType = self.symbol self.__nextSymbol() name = self.scanner.spell self.__expect(SymType.ident) position = self.__position() if figureType == SymType.circle: size = self.__number() color = self.symbol if self.symbol in self.colors: self.__nextSymbol() else: self.__syntaxError1(self.symbol) fig = typez.Circle(name, position, color, size, window) elif figureType == SymType.square: size = self.__number() color = self.symbol if self.symbol in self.colors: self.__nextSymbol() else: self.__syntaxError1(self.symbol) fig = typez.Square(name, position, color, size, window) elif figureType == SymType.point: color = self.symbol if self.symbol in self.colors: self.__nextSymbol() else: self.__syntaxError1(self.symbol) fig = typez.Point(name, position, color, window) elif figureType == SymType.line: positionEnd = self.__position() color = self.symbol if self.symbol in self.colors: self.__nextSymbol() else: self.__syntaxError1(self.symbol) fig = typez.Line(name, position, positionEnd, color, window) return stmts.DrawWithAssignStmt(name, fig) elif self.symbol == SymType.ident: name = self.scanner.spell self.__expect(SymType.ident) return stmts.DrawStmt(name) else: self.__syntaxError1(self.symbol) elif self.symbol == SymType.ident: name = self.scanner.spell self.__expect(SymType.ident) return stmts.DrawStmt(name) else: return None def __moveStmt(self): if self.__accept(SymType.move) : name = self.scanner.spell if self.__expect(SymType.ident): position = self.__position() return stmts.MoveStmt(name, position) else: self.__syntaxError1(self.symbol) else: return None def __printStmt(self): if self.__accept(SymType.printz): self.__accept(SymType.charconst) return stmts.Printz(self.scanner.strConst) else: return None def __condition(self): lvalue = self.__number() relation = SymType.others if self.symbol in self.relops: relation = self.symbol self.__nextSymbol() else: self.__syntaxError1(self.symbol) rvalue = self.__number() return stmts.Condition(lvalue, relation, rvalue) def __block(self): self.__expect(SymType.beginsy) i = 0 statements = [] while self.symbol != SymType.others and self.symbol != SymType.endsy: statements.extend([self.__statement()]) i = i + 1 if i > 1000: raise Exception("Zbyt wiele instrukcji w bloku.") self.__expect(SymType.endsy) return statements def __number(self): if self.symbol == SymType.intconst: value = self.scanner.intConst self.__nextSymbol() elif self.symbol == SymType.ident: value = self.scanner.spell self.__nextSymbol() else : self.__syntaxError1(self.symbol) return value def __position(self): self.__expect(SymType.lparent) firstCoord = self.__number() self.__expect(SymType.comma) secondCoord = self.__number() self.__expect(SymType.rparent) return typez.Position(firstCoord, secondCoord) class Interpreter(object): def __init__(self, parser): super(Interpreter, self).__init__() self.parser = parser def run(self): self.parser.program() scope = {} window.fill((250, 250, 250)) for s in self.parser.statementList: scope = s.execute(scope) pygame.display.flip() while True: for event in pygame.event.get(): if event.type == pygame.QUIT: sys.exit(0) i = Interpreter(Parser(sys.argv[1])) i.run()
null
parser.py
parser.py
py
7,664
python
en
code
null
code-starcoder2
83
[ { "api_name": "pygame.init", "line_number": 10, "usage_type": "call" }, { "api_name": "pygame.display.set_mode", "line_number": 12, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 12, "usage_type": "attribute" }, { "api_name": "scanner.Scanner", "line_number": 17, "usage_type": "call" }, { "api_name": "symtype.SymType.eqop", "line_number": 21, "usage_type": "attribute" }, { "api_name": "symtype.SymType", "line_number": 21, "usage_type": "name" }, { "api_name": "symtype.SymType.ltop", "line_number": 21, "usage_type": "attribute" }, { "api_name": "symtype.SymType.leop", "line_number": 21, "usage_type": "attribute" }, { "api_name": "symtype.SymType.geop", "line_number": 21, "usage_type": "attribute" }, { "api_name": "symtype.SymType.gtop", "line_number": 21, "usage_type": "attribute" }, { "api_name": "symtype.SymType.circle", "line_number": 22, "usage_type": "attribute" }, { "api_name": "symtype.SymType", "line_number": 22, "usage_type": "name" }, { "api_name": "symtype.SymType.square", "line_number": 22, "usage_type": "attribute" }, { "api_name": "symtype.SymType.point", "line_number": 22, "usage_type": "attribute" }, { "api_name": "symtype.SymType.line", "line_number": 22, "usage_type": "attribute" }, { "api_name": "symtype.SymType.black", "line_number": 23, "usage_type": "attribute" }, { "api_name": "symtype.SymType", "line_number": 23, "usage_type": "name" }, { "api_name": "symtype.SymType.notblack", "line_number": 23, "usage_type": "attribute" }, { "api_name": "symtype.SymType.others", "line_number": 52, "usage_type": "attribute" }, { "api_name": "symtype.SymType", "line_number": 52, "usage_type": "name" }, { "api_name": "symtype.SymType.ident", "line_number": 88, "usage_type": "attribute" }, { "api_name": "symtype.SymType", "line_number": 88, "usage_type": "name" }, { "api_name": "symtype.SymType.becomes", "line_number": 91, "usage_type": "attribute" }, { "api_name": "symtype.SymType", "line_number": 91, "usage_type": "name" }, { "api_name": "stmts.AssignmentStmt", "line_number": 93, "usage_type": "call" }, { "api_name": "symtype.SymType.beginsy", "line_number": 94, "usage_type": "attribute" }, { "api_name": "symtype.SymType", "line_number": 94, "usage_type": "name" }, { "api_name": "typez.MyFigure", "line_number": 103, "usage_type": "call" }, { "api_name": "stmts.FigureAssignmentStmt", "line_number": 104, "usage_type": "call" }, { "api_name": "symtype.SymType.increment", "line_number": 107, "usage_type": "attribute" }, { "api_name": "symtype.SymType", "line_number": 107, "usage_type": "name" }, { "api_name": "symtype.SymType.ident", "line_number": 108, "usage_type": "attribute" }, { "api_name": "symtype.SymType", "line_number": 108, "usage_type": "name" }, { "api_name": "stmts.IncrementStmt", "line_number": 113, "usage_type": "call" }, { "api_name": "symtype.SymType.decrement", "line_number": 118, "usage_type": "attribute" }, { "api_name": "symtype.SymType", "line_number": 118, "usage_type": "name" }, { "api_name": "symtype.SymType.ident", "line_number": 119, "usage_type": "attribute" }, { "api_name": "symtype.SymType", "line_number": 119, "usage_type": "name" }, { "api_name": "stmts.DecrementStmt", "line_number": 124, "usage_type": "call" }, { "api_name": "symtype.SymType.whilesy", "line_number": 129, "usage_type": "attribute" }, { "api_name": "symtype.SymType", "line_number": 129, "usage_type": "name" }, { "api_name": "stmts.WhileStmt", "line_number": 133, "usage_type": "call" }, { "api_name": "symtype.SymType.ifsy", "line_number": 138, "usage_type": "attribute" }, { "api_name": "symtype.SymType", "line_number": 138, "usage_type": "name" }, { "api_name": "stmts.IfStmt", "line_number": 141, "usage_type": "call" }, { "api_name": "symtype.SymType.draw", "line_number": 146, "usage_type": "attribute" }, { "api_name": "symtype.SymType", "line_number": 146, "usage_type": "name" }, { "api_name": "symtype.SymType.ident", "line_number": 151, "usage_type": "attribute" }, { "api_name": "symtype.SymType", "line_number": 151, "usage_type": "name" }, { "api_name": "symtype.SymType.circle", "line_number": 153, "usage_type": "attribute" }, { "api_name": "symtype.SymType", "line_number": 153, "usage_type": "name" }, { "api_name": "typez.Circle", "line_number": 160, "usage_type": "call" }, { "api_name": "symtype.SymType.square", "line_number": 161, "usage_type": "attribute" }, { "api_name": "symtype.SymType", "line_number": 161, "usage_type": "name" }, { "api_name": "typez.Square", "line_number": 168, "usage_type": "call" }, { "api_name": "symtype.SymType.point", "line_number": 169, "usage_type": "attribute" }, { "api_name": "symtype.SymType", "line_number": 169, "usage_type": "name" }, { "api_name": "typez.Point", "line_number": 175, "usage_type": "call" }, { "api_name": "symtype.SymType.line", "line_number": 176, "usage_type": "attribute" }, { "api_name": "symtype.SymType", "line_number": 176, "usage_type": "name" }, { "api_name": "typez.Line", "line_number": 183, "usage_type": "call" }, { "api_name": "stmts.DrawWithAssignStmt", "line_number": 184, "usage_type": "call" }, { "api_name": "symtype.SymType.ident", "line_number": 185, "usage_type": "attribute" }, { "api_name": "symtype.SymType", "line_number": 185, "usage_type": "name" }, { "api_name": "symtype.SymType.ident", "line_number": 187, "usage_type": "attribute" }, { "api_name": "symtype.SymType", "line_number": 187, "usage_type": "name" }, { "api_name": "stmts.DrawStmt", "line_number": 188, "usage_type": "call" }, { "api_name": "symtype.SymType.ident", "line_number": 191, "usage_type": "attribute" }, { "api_name": "symtype.SymType", "line_number": 191, "usage_type": "name" }, { "api_name": "symtype.SymType.ident", "line_number": 193, "usage_type": "attribute" }, { "api_name": "symtype.SymType", "line_number": 193, "usage_type": "name" }, { "api_name": "stmts.DrawStmt", "line_number": 194, "usage_type": "call" }, { "api_name": "symtype.SymType.move", "line_number": 199, "usage_type": "attribute" }, { "api_name": "symtype.SymType", "line_number": 199, "usage_type": "name" }, { "api_name": "symtype.SymType.ident", "line_number": 201, "usage_type": "attribute" }, { "api_name": "symtype.SymType", "line_number": 201, "usage_type": "name" }, { "api_name": "stmts.MoveStmt", "line_number": 203, "usage_type": "call" }, { "api_name": "symtype.SymType.printz", "line_number": 210, "usage_type": "attribute" }, { "api_name": "symtype.SymType", "line_number": 210, "usage_type": "name" }, { "api_name": "symtype.SymType.charconst", "line_number": 211, "usage_type": "attribute" }, { "api_name": "symtype.SymType", "line_number": 211, "usage_type": "name" }, { "api_name": "stmts.Printz", "line_number": 212, "usage_type": "call" }, { "api_name": "symtype.SymType.others", "line_number": 218, "usage_type": "attribute" }, { "api_name": "symtype.SymType", "line_number": 218, "usage_type": "name" }, { "api_name": "stmts.Condition", "line_number": 225, "usage_type": "call" }, { "api_name": "symtype.SymType.beginsy", "line_number": 228, "usage_type": "attribute" }, { "api_name": "symtype.SymType", "line_number": 228, "usage_type": "name" }, { "api_name": "symtype.SymType.others", "line_number": 231, "usage_type": "attribute" }, { "api_name": "symtype.SymType", "line_number": 231, "usage_type": "name" }, { "api_name": "symtype.SymType.endsy", "line_number": 231, "usage_type": "attribute" }, { "api_name": "symtype.SymType.endsy", "line_number": 236, "usage_type": "attribute" }, { "api_name": "symtype.SymType", "line_number": 236, "usage_type": "name" }, { "api_name": "symtype.SymType.intconst", "line_number": 240, "usage_type": "attribute" }, { "api_name": "symtype.SymType", "line_number": 240, "usage_type": "name" }, { "api_name": "symtype.SymType.ident", "line_number": 243, "usage_type": "attribute" }, { "api_name": "symtype.SymType", "line_number": 243, "usage_type": "name" }, { "api_name": "symtype.SymType.lparent", "line_number": 251, "usage_type": "attribute" }, { "api_name": "symtype.SymType", "line_number": 251, "usage_type": "name" }, { "api_name": "symtype.SymType.comma", "line_number": 253, "usage_type": "attribute" }, { "api_name": "symtype.SymType", "line_number": 253, "usage_type": "name" }, { "api_name": "symtype.SymType.rparent", "line_number": 255, "usage_type": "attribute" }, { "api_name": "symtype.SymType", "line_number": 255, "usage_type": "name" }, { "api_name": "typez.Position", "line_number": 256, "usage_type": "call" }, { "api_name": "pygame.display.flip", "line_number": 269, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 269, "usage_type": "attribute" }, { "api_name": "pygame.event.get", "line_number": 271, "usage_type": "call" }, { "api_name": "pygame.event", "line_number": 271, "usage_type": "attribute" }, { "api_name": "pygame.QUIT", "line_number": 272, "usage_type": "attribute" }, { "api_name": "sys.exit", "line_number": 273, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 275, "usage_type": "attribute" } ]
283272705
import attr from pandas.core.util.hashing import hash_pandas_object from dbnd._core.utils import json_utils from dbnd._vendor import fast_hasher from targets.value_meta import ValueMeta, ValueMetaConf from targets.values.pandas_values import DataFrameValueType class TestDataFrameValueType(object): def test_df_value_meta(self, pandas_data_frame): expected_data_schema = { "type": DataFrameValueType.type_str, "columns": list(pandas_data_frame.columns), "size.bytes": int(pandas_data_frame.size), "shape": pandas_data_frame.shape, "dtypes": { col: str(type_) for col, type_ in pandas_data_frame.dtypes.items() }, } meta_conf = ValueMetaConf.enabled() expected_value_meta = ValueMeta( value_preview=DataFrameValueType().to_preview( pandas_data_frame, preview_size=meta_conf.get_preview_size() ), data_dimensions=pandas_data_frame.shape, data_schema=expected_data_schema, data_hash=fast_hasher.hash( hash_pandas_object(pandas_data_frame, index=True).values ), ) df_value_meta = DataFrameValueType().get_value_meta( pandas_data_frame, meta_conf=meta_conf ) assert df_value_meta.value_preview == expected_value_meta.value_preview assert df_value_meta.data_hash == expected_value_meta.data_hash assert json_utils.dumps(df_value_meta.data_schema) == json_utils.dumps( expected_value_meta.data_schema ) assert df_value_meta.data_dimensions == expected_value_meta.data_dimensions assert df_value_meta.data_schema == expected_value_meta.data_schema # histograms and stats are tested in histogram tests and they change a lot, no need to test also here assert set(df_value_meta.descriptive_stats.keys()) == {"Names", "Births"} assert set(df_value_meta.histograms.keys()) == {"Names", "Births"}
null
modules/dbnd/test_dbnd/targets_tests/values/test_dataframe_value_type.py
test_dataframe_value_type.py
py
2,039
python
en
code
null
code-starcoder2
83
[ { "api_name": "targets.values.pandas_values.DataFrameValueType.type_str", "line_number": 14, "usage_type": "attribute" }, { "api_name": "targets.values.pandas_values.DataFrameValueType", "line_number": 14, "usage_type": "name" }, { "api_name": "targets.value_meta.ValueMetaConf.enabled", "line_number": 23, "usage_type": "call" }, { "api_name": "targets.value_meta.ValueMetaConf", "line_number": 23, "usage_type": "name" }, { "api_name": "targets.value_meta.ValueMeta", "line_number": 24, "usage_type": "call" }, { "api_name": "targets.values.pandas_values.DataFrameValueType", "line_number": 25, "usage_type": "call" }, { "api_name": "dbnd._vendor.fast_hasher.hash", "line_number": 30, "usage_type": "call" }, { "api_name": "dbnd._vendor.fast_hasher", "line_number": 30, "usage_type": "name" }, { "api_name": "pandas.core.util.hashing.hash_pandas_object", "line_number": 31, "usage_type": "call" }, { "api_name": "targets.values.pandas_values.DataFrameValueType", "line_number": 35, "usage_type": "call" }, { "api_name": "dbnd._core.utils.json_utils.dumps", "line_number": 41, "usage_type": "call" }, { "api_name": "dbnd._core.utils.json_utils", "line_number": 41, "usage_type": "name" } ]
292873195
import os import sys import json import argparse from allennlp.commands.subcommand import Subcommand from allennlp.common.util import JsonDict class ConvertTREC(Subcommand): def add_subparser(self, name: str, parser: argparse._SubParsersAction) -> argparse.ArgumentParser: # pylint: disable=protected-access description = '''Convert JSON output to TREC or TSV output''' subparser = parser.add_parser( name, description=description, help='Convert JSON output to TREC or TSV.') subparser.add_argument('--input', type=str, help='input file', required=True) subparser.add_argument('--output', type=str, default='', help='output file or directory') subparser.add_argument('--corrections', type=str, default='', help='corrections file for empty queries') subparser.add_argument('--type', type=str, default='trec', help='output type [trec, tsv]') subparser.set_defaults(func=_convert) return subparser def _convert(args: argparse.Namespace) -> None: output_type = 'file' if os.path.isdir(args.output): output_type = 'dir' else: fp = open(args.output, 'w') fp.close() files = [args.input] if args.corrections != '': files.append(args.corrections) for file in files: with open(file) as fp: for line in fp: query = json.loads(line) process_query(query, args.output, args.type, output_type) def process_query(query: JsonDict, output: str, doctype: str = 'trec', output_type: str = 'file') -> None: query_id = query['query_id'] if output_type == 'file': fp = open(output, 'a') else: fp = open(os.path.join(output, 'q-' + query_id + '.' + doctype), 'w') if doctype == 'tsv': fp.write(f'{query_id}\tquery\n') if 'scores' in query: for i, (doc_id, score) in enumerate(query['scores']): if doctype == 'trec': fp.write(f'{query_id}\tQ0\t{doc_id}\t{i+1}\t{score}\tneuclir\n') elif doctype == 'tsv': fp.write(f'{doc_id}\t{score}\n') fp.close()
null
neuclir/commands/convert_trec.py
convert_trec.py
py
2,147
python
en
code
null
code-starcoder2
83
[ { "api_name": "allennlp.commands.subcommand.Subcommand", "line_number": 10, "usage_type": "name" }, { "api_name": "argparse._SubParsersAction", "line_number": 11, "usage_type": "attribute" }, { "api_name": "argparse.ArgumentParser", "line_number": 11, "usage_type": "attribute" }, { "api_name": "argparse.Namespace", "line_number": 26, "usage_type": "attribute" }, { "api_name": "os.path.isdir", "line_number": 28, "usage_type": "call" }, { "api_name": "os.path", "line_number": 28, "usage_type": "attribute" }, { "api_name": "json.loads", "line_number": 41, "usage_type": "call" }, { "api_name": "allennlp.common.util.JsonDict", "line_number": 45, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 51, "usage_type": "call" }, { "api_name": "os.path", "line_number": 51, "usage_type": "attribute" } ]
111808028
# coding: utf-8 # In[1]: import preprocess as read_files import glob import numpy as np # # read file # In[2]: ucf = read_files.UCF() fea = glob.glob('ucf101_fea_video/*.mat') ucf.fill(fea) ucf.dump('fea.ucf') ucf_test = read_files.UCF() ucf_test.svd_data = list() feaval = glob.glob('ucf101_fea_val_video/*.mat') ucf_test.fill(feaval) ucf_test.dump('feaval.ucf') # # cluster # In[4]: from sklearn.cluster import KMeans def kmeans_method(data): X =data[0] kmeans = KMeans(9).fit(X) eleven = [[],[]] existed = [] for i in range(len(kmeans.labels_)): if kmeans.labels_[i] in existed: pass else: eleven[0].append(X[i]) eleven[1].append(data[1][i]) existed.append(kmeans.labels_[i]) return eleven ucf.eleven_data = [] for data in ucf.data: tmp = kmeans_method(data) ucf.eleven_data.append(tmp) ucf_test.eleven_data = [] for data in ucf_test.data: tmp= kmeans_method(data) ucf_test.eleven_data.append(tmp) # # neural network # In[8]: from mxnet import nd, gluon, init, autograd from mxnet.gluon import nn from mxnet.gluon.data.vision import datasets, transforms import matplotlib.pyplot as plt from time import time # In[9]: svd_data = [] for ele in ucf.eleven_data: svd_data.append(nd.array(ele)) train_label =[] for ele in ucf.label: train_label.append(int(ele)) # In[30]: ucf_test_data =[] for ele in ucf_test.eleven_data: ucf_test_data.append(nd.array(ele)) test_label = [] for ele in ucf_test.label: test_label.append(int(ele)) test_samples = zip(ucf_test_data,test_label) # In[10]: for ele in svd_data: print(type(ele)) break # In[11]: import numpy as np samples = zip(svd_data,train_label) np.random.shuffle(samples) train_dataset = samples[:int(len(ucf.label)*0.9)] valid_dataset = samples[int(len(ucf.label)*0.9):] # def ndify(dataset): # for ele in dataset: # ele[0] = nd.array(np.asarray(ele[0])) # ndify(train_dataset) # ndify(valid_dataset) # ndify(test_dataset) # for elem in train_dataset: # print(type(elem)) # break # In[12]: batch_size=256 train_data = gluon.data.DataLoader(train_dataset, batch_size=batch_size,shuffle=True,num_workers=4) valid_data = gluon.data.DataLoader(valid_dataset, batch_size=batch_size,shuffle=True,num_workers=4) test_data = gluon.data.DataLoader(test_samples, batch_size=batch_size,shuffle=True,num_workers=4) # In[13]: for data, label in train_data: print(data.shape, label.shape) break # In[19]: net = nn.Sequential() net.add( nn.Conv2D(channels=4, kernel_size=1, activation='relu'), nn.MaxPool2D(pool_size=2, strides=2), #nn.Dropout(0.8), nn.Conv2D(channels=4, kernel_size=1, activation='relu'), nn.MaxPool2D(pool_size=2, strides=2), nn.Flatten(), #nn.Dense(4096,activation='relu'), nn.Dropout(.1), nn.Dense(1024, activation="relu"), nn.Dropout(.1), nn.Dense(128, activation="relu"), nn.Dropout(.8), nn.Dense(52)) net.initialize(init=init.Xavier()) # from mxnet.gluon.model_zoo import vision # # net = vision.alexnet(pretrained=False,classes=50) # #net.add(nn.Dense(50)) # net.initialize(init=init.Xavier()) # In[20]: softmax_cross_entropy = gluon.loss.SoftmaxCrossEntropyLoss() # In[22]: trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 0.1}) # In[54]: def acc(output, label): # output: (batch, num_output) float32 ndarray # label: (batch, ) int32 ndarray return (output.argmax(axis=1) == label.astype('float32')).mean().asscalar() # In[62]: for epoch in range(10): train_loss, train_acc, valid_acc = 0., 0., 0. tic = time() for data, label in train_data: # forward + backward with autograd.record(): output = net(data) loss = softmax_cross_entropy(output, label) loss.backward() # update parameters trainer.step(batch_size) # calculate training metrics train_loss += loss.mean().asscalar() train_acc += acc(output, label) # calculate validation accuracy for data, label in valid_data: valid_acc += acc(net(data), label) print("Epoch %d: Loss: %.3f, Train acc %.3f, valid acc %.3f, Time %.1f sec" % ( epoch, train_loss/len(train_data), train_acc/len(train_data), valid_acc/len(valid_data), time()-tic)) # In[75]: test_acc = 0. for data, label in test_data: test_acc += acc(net(data), label) print("Test acc %.3f "%(test_acc/len(test_data)))
null
svd_method.py
svd_method.py
py
4,629
python
en
code
null
code-starcoder2
83
[ { "api_name": "preprocess.UCF", "line_number": 17, "usage_type": "call" }, { "api_name": "glob.glob", "line_number": 19, "usage_type": "call" }, { "api_name": "preprocess.UCF", "line_number": 23, "usage_type": "call" }, { "api_name": "glob.glob", "line_number": 25, "usage_type": "call" }, { "api_name": "sklearn.cluster.KMeans", "line_number": 40, "usage_type": "call" }, { "api_name": "mxnet.nd.array", "line_number": 81, "usage_type": "call" }, { "api_name": "mxnet.nd", "line_number": 81, "usage_type": "name" }, { "api_name": "mxnet.nd.array", "line_number": 92, "usage_type": "call" }, { "api_name": "mxnet.nd", "line_number": 92, "usage_type": "name" }, { "api_name": "numpy.random.shuffle", "line_number": 112, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 112, "usage_type": "attribute" }, { "api_name": "mxnet.gluon.data.DataLoader", "line_number": 131, "usage_type": "call" }, { "api_name": "mxnet.gluon.data", "line_number": 131, "usage_type": "attribute" }, { "api_name": "mxnet.gluon", "line_number": 131, "usage_type": "name" }, { "api_name": "mxnet.gluon.data.DataLoader", "line_number": 132, "usage_type": "call" }, { "api_name": "mxnet.gluon.data", "line_number": 132, "usage_type": "attribute" }, { "api_name": "mxnet.gluon", "line_number": 132, "usage_type": "name" }, { "api_name": "mxnet.gluon.data.DataLoader", "line_number": 134, "usage_type": "call" }, { "api_name": "mxnet.gluon.data", "line_number": 134, "usage_type": "attribute" }, { "api_name": "mxnet.gluon", "line_number": 134, "usage_type": "name" }, { "api_name": "mxnet.gluon.nn.Sequential", "line_number": 148, "usage_type": "call" }, { "api_name": "mxnet.gluon.nn", "line_number": 148, "usage_type": "name" }, { "api_name": "mxnet.gluon.nn.Conv2D", "line_number": 150, "usage_type": "call" }, { "api_name": "mxnet.gluon.nn", "line_number": 150, "usage_type": "name" }, { "api_name": "mxnet.gluon.nn.MaxPool2D", "line_number": 151, "usage_type": "call" }, { "api_name": "mxnet.gluon.nn", "line_number": 151, "usage_type": "name" }, { "api_name": "mxnet.gluon.nn.Conv2D", "line_number": 153, "usage_type": "call" }, { "api_name": "mxnet.gluon.nn", "line_number": 153, "usage_type": "name" }, { "api_name": "mxnet.gluon.nn.MaxPool2D", "line_number": 154, "usage_type": "call" }, { "api_name": "mxnet.gluon.nn", "line_number": 154, "usage_type": "name" }, { "api_name": "mxnet.gluon.nn.Flatten", "line_number": 155, "usage_type": "call" }, { "api_name": "mxnet.gluon.nn", "line_number": 155, "usage_type": "name" }, { "api_name": "mxnet.gluon.nn.Dropout", "line_number": 157, "usage_type": "call" }, { "api_name": "mxnet.gluon.nn", "line_number": 157, "usage_type": "name" }, { "api_name": "mxnet.gluon.nn.Dense", "line_number": 158, "usage_type": "call" }, { "api_name": "mxnet.gluon.nn", "line_number": 158, "usage_type": "name" }, { "api_name": "mxnet.gluon.nn.Dropout", "line_number": 159, "usage_type": "call" }, { "api_name": "mxnet.gluon.nn", "line_number": 159, "usage_type": "name" }, { "api_name": "mxnet.gluon.nn.Dense", "line_number": 160, "usage_type": "call" }, { "api_name": "mxnet.gluon.nn", "line_number": 160, "usage_type": "name" }, { "api_name": "mxnet.gluon.nn.Dropout", "line_number": 161, "usage_type": "call" }, { "api_name": "mxnet.gluon.nn", "line_number": 161, "usage_type": "name" }, { "api_name": "mxnet.gluon.nn.Dense", "line_number": 162, "usage_type": "call" }, { "api_name": "mxnet.gluon.nn", "line_number": 162, "usage_type": "name" }, { "api_name": "mxnet.init.Xavier", "line_number": 163, "usage_type": "call" }, { "api_name": "mxnet.init", "line_number": 163, "usage_type": "name" }, { "api_name": "mxnet.gluon.loss.SoftmaxCrossEntropyLoss", "line_number": 175, "usage_type": "call" }, { "api_name": "mxnet.gluon.loss", "line_number": 175, "usage_type": "attribute" }, { "api_name": "mxnet.gluon", "line_number": 175, "usage_type": "name" }, { "api_name": "mxnet.gluon.Trainer", "line_number": 181, "usage_type": "call" }, { "api_name": "mxnet.gluon", "line_number": 181, "usage_type": "name" }, { "api_name": "time.time", "line_number": 199, "usage_type": "call" }, { "api_name": "mxnet.autograd.record", "line_number": 202, "usage_type": "call" }, { "api_name": "mxnet.autograd", "line_number": 202, "usage_type": "name" }, { "api_name": "time.time", "line_number": 219, "usage_type": "call" } ]
79197329
# -*- coding: utf-8 -*- # Copyright 2023 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import annotations from typing import MutableMapping, MutableSequence from google.protobuf import field_mask_pb2 # type: ignore from google.protobuf import timestamp_pb2 # type: ignore from google.type import money_pb2 # type: ignore from google.type import postal_address_pb2 # type: ignore import proto # type: ignore __protobuf__ = proto.module( package="google.cloud.domains.v1", manifest={ "ContactPrivacy", "DomainNotice", "ContactNotice", "TransferLockState", "Registration", "ManagementSettings", "DnsSettings", "ContactSettings", "SearchDomainsRequest", "SearchDomainsResponse", "RetrieveRegisterParametersRequest", "RetrieveRegisterParametersResponse", "RegisterDomainRequest", "RetrieveTransferParametersRequest", "RetrieveTransferParametersResponse", "TransferDomainRequest", "ListRegistrationsRequest", "ListRegistrationsResponse", "GetRegistrationRequest", "UpdateRegistrationRequest", "ConfigureManagementSettingsRequest", "ConfigureDnsSettingsRequest", "ConfigureContactSettingsRequest", "ExportRegistrationRequest", "DeleteRegistrationRequest", "RetrieveAuthorizationCodeRequest", "ResetAuthorizationCodeRequest", "RegisterParameters", "TransferParameters", "AuthorizationCode", "OperationMetadata", }, ) class ContactPrivacy(proto.Enum): r"""Defines a set of possible contact privacy settings for a ``Registration``. `ICANN <https://icann.org/>`__ maintains the WHOIS database, a publicly accessible mapping from domain name to contact information, and requires that each domain name have an entry. Choose from these options to control how much information in your ``ContactSettings`` is published. Values: CONTACT_PRIVACY_UNSPECIFIED (0): The contact privacy settings are undefined. PUBLIC_CONTACT_DATA (1): All the data from ``ContactSettings`` is publicly available. When setting this option, you must also provide a ``PUBLIC_CONTACT_DATA_ACKNOWLEDGEMENT`` in the ``contact_notices`` field of the request. PRIVATE_CONTACT_DATA (2): None of the data from ``ContactSettings`` is publicly available. Instead, proxy contact data is published for your domain. Email sent to the proxy email address is forwarded to the registrant's email address. Cloud Domains provides this privacy proxy service at no additional cost. REDACTED_CONTACT_DATA (3): Some data from ``ContactSettings`` is publicly available. The actual information redacted depends on the domain. For details, see `the registration privacy article <https://support.google.com/domains/answer/3251242>`__. """ CONTACT_PRIVACY_UNSPECIFIED = 0 PUBLIC_CONTACT_DATA = 1 PRIVATE_CONTACT_DATA = 2 REDACTED_CONTACT_DATA = 3 class DomainNotice(proto.Enum): r"""Notices about special properties of certain domains. Values: DOMAIN_NOTICE_UNSPECIFIED (0): The notice is undefined. HSTS_PRELOADED (1): Indicates that the domain is preloaded on the HTTP Strict Transport Security list in browsers. Serving a website on such domain requires an SSL certificate. For details, see `how to get an SSL certificate <https://support.google.com/domains/answer/7638036>`__. """ DOMAIN_NOTICE_UNSPECIFIED = 0 HSTS_PRELOADED = 1 class ContactNotice(proto.Enum): r"""Notices related to contact information. Values: CONTACT_NOTICE_UNSPECIFIED (0): The notice is undefined. PUBLIC_CONTACT_DATA_ACKNOWLEDGEMENT (1): Required when setting the ``privacy`` field of ``ContactSettings`` to ``PUBLIC_CONTACT_DATA``, which exposes contact data publicly. """ CONTACT_NOTICE_UNSPECIFIED = 0 PUBLIC_CONTACT_DATA_ACKNOWLEDGEMENT = 1 class TransferLockState(proto.Enum): r"""Possible states of a ``Registration``'s transfer lock. Values: TRANSFER_LOCK_STATE_UNSPECIFIED (0): The state is unspecified. UNLOCKED (1): The domain is unlocked and can be transferred to another registrar. LOCKED (2): The domain is locked and cannot be transferred to another registrar. """ TRANSFER_LOCK_STATE_UNSPECIFIED = 0 UNLOCKED = 1 LOCKED = 2 class Registration(proto.Message): r"""The ``Registration`` resource facilitates managing and configuring domain name registrations. There are several ways to create a new ``Registration`` resource: To create a new ``Registration`` resource, find a suitable domain name by calling the ``SearchDomains`` method with a query to see available domain name options. After choosing a name, call ``RetrieveRegisterParameters`` to ensure availability and obtain information like pricing, which is needed to build a call to ``RegisterDomain``. Another way to create a new ``Registration`` is to transfer an existing domain from another registrar. First, go to the current registrar to unlock the domain for transfer and retrieve the domain's transfer authorization code. Then call ``RetrieveTransferParameters`` to confirm that the domain is unlocked and to get values needed to build a call to ``TransferDomain``. Attributes: name (str): Output only. Name of the ``Registration`` resource, in the format ``projects/*/locations/*/registrations/<domain_name>``. domain_name (str): Required. Immutable. The domain name. Unicode domain names must be expressed in Punycode format. create_time (google.protobuf.timestamp_pb2.Timestamp): Output only. The creation timestamp of the ``Registration`` resource. expire_time (google.protobuf.timestamp_pb2.Timestamp): Output only. The expiration timestamp of the ``Registration``. state (google.cloud.domains_v1.types.Registration.State): Output only. The state of the ``Registration`` issues (MutableSequence[google.cloud.domains_v1.types.Registration.Issue]): Output only. The set of issues with the ``Registration`` that require attention. labels (MutableMapping[str, str]): Set of labels associated with the ``Registration``. management_settings (google.cloud.domains_v1.types.ManagementSettings): Settings for management of the ``Registration``, including renewal, billing, and transfer. You cannot update these with the ``UpdateRegistration`` method. To update these settings, use the ``ConfigureManagementSettings`` method. dns_settings (google.cloud.domains_v1.types.DnsSettings): Settings controlling the DNS configuration of the ``Registration``. You cannot update these with the ``UpdateRegistration`` method. To update these settings, use the ``ConfigureDnsSettings`` method. contact_settings (google.cloud.domains_v1.types.ContactSettings): Required. Settings for contact information linked to the ``Registration``. You cannot update these with the ``UpdateRegistration`` method. To update these settings, use the ``ConfigureContactSettings`` method. pending_contact_settings (google.cloud.domains_v1.types.ContactSettings): Output only. Pending contact settings for the ``Registration``. Updates to the ``contact_settings`` field that change its ``registrant_contact`` or ``privacy`` fields require email confirmation by the ``registrant_contact`` before taking effect. This field is set only if there are pending updates to the ``contact_settings`` that have not been confirmed. To confirm the changes, the ``registrant_contact`` must follow the instructions in the email they receive. supported_privacy (MutableSequence[google.cloud.domains_v1.types.ContactPrivacy]): Output only. Set of options for the ``contact_settings.privacy`` field that this ``Registration`` supports. """ class State(proto.Enum): r"""Possible states of a ``Registration``. Values: STATE_UNSPECIFIED (0): The state is undefined. REGISTRATION_PENDING (1): The domain is being registered. REGISTRATION_FAILED (2): The domain registration failed. You can delete resources in this state to allow registration to be retried. TRANSFER_PENDING (3): The domain is being transferred from another registrar to Cloud Domains. TRANSFER_FAILED (4): The attempt to transfer the domain from another registrar to Cloud Domains failed. You can delete resources in this state and retry the transfer. ACTIVE (6): The domain is registered and operational. The domain renews automatically as long as it remains in this state. SUSPENDED (7): The domain is suspended and inoperative. For more details, see the ``issues`` field. EXPORTED (8): The domain is no longer managed with Cloud Domains. It may have been transferred to another registrar or exported for management in `Google Domains <https://domains.google/>`__. You can no longer update it with this API, and information shown about it may be stale. Domains in this state are not automatically renewed by Cloud Domains. """ STATE_UNSPECIFIED = 0 REGISTRATION_PENDING = 1 REGISTRATION_FAILED = 2 TRANSFER_PENDING = 3 TRANSFER_FAILED = 4 ACTIVE = 6 SUSPENDED = 7 EXPORTED = 8 class Issue(proto.Enum): r"""Possible issues with a ``Registration`` that require attention. Values: ISSUE_UNSPECIFIED (0): The issue is undefined. CONTACT_SUPPORT (1): Contact the Cloud Support team to resolve a problem with this domain. UNVERIFIED_EMAIL (2): `ICANN <https://icann.org/>`__ requires verification of the email address in the ``Registration``'s ``contact_settings.registrant_contact`` field. To verify the email address, follow the instructions in the email the ``registrant_contact`` receives following registration. If you do not complete email verification within 15 days of registration, the domain is suspended. To resend the verification email, call ConfigureContactSettings and provide the current ``registrant_contact.email``. """ ISSUE_UNSPECIFIED = 0 CONTACT_SUPPORT = 1 UNVERIFIED_EMAIL = 2 name: str = proto.Field( proto.STRING, number=1, ) domain_name: str = proto.Field( proto.STRING, number=2, ) create_time: timestamp_pb2.Timestamp = proto.Field( proto.MESSAGE, number=3, message=timestamp_pb2.Timestamp, ) expire_time: timestamp_pb2.Timestamp = proto.Field( proto.MESSAGE, number=6, message=timestamp_pb2.Timestamp, ) state: State = proto.Field( proto.ENUM, number=7, enum=State, ) issues: MutableSequence[Issue] = proto.RepeatedField( proto.ENUM, number=8, enum=Issue, ) labels: MutableMapping[str, str] = proto.MapField( proto.STRING, proto.STRING, number=9, ) management_settings: "ManagementSettings" = proto.Field( proto.MESSAGE, number=10, message="ManagementSettings", ) dns_settings: "DnsSettings" = proto.Field( proto.MESSAGE, number=11, message="DnsSettings", ) contact_settings: "ContactSettings" = proto.Field( proto.MESSAGE, number=12, message="ContactSettings", ) pending_contact_settings: "ContactSettings" = proto.Field( proto.MESSAGE, number=13, message="ContactSettings", ) supported_privacy: MutableSequence["ContactPrivacy"] = proto.RepeatedField( proto.ENUM, number=14, enum="ContactPrivacy", ) class ManagementSettings(proto.Message): r"""Defines renewal, billing, and transfer settings for a ``Registration``. Attributes: renewal_method (google.cloud.domains_v1.types.ManagementSettings.RenewalMethod): Output only. The renewal method for this ``Registration``. transfer_lock_state (google.cloud.domains_v1.types.TransferLockState): Controls whether the domain can be transferred to another registrar. """ class RenewalMethod(proto.Enum): r"""Defines how the ``Registration`` is renewed. Values: RENEWAL_METHOD_UNSPECIFIED (0): The renewal method is undefined. AUTOMATIC_RENEWAL (1): The domain is automatically renewed each year . To disable automatic renewals, delete the resource by calling ``DeleteRegistration`` or export it by calling ``ExportRegistration``. MANUAL_RENEWAL (2): The domain must be explicitly renewed each year before its ``expire_time``. This option is only available when the ``Registration`` is in state ``EXPORTED``. To manage the domain's current billing and renewal settings, go to `Google Domains <https://domains.google/>`__. """ RENEWAL_METHOD_UNSPECIFIED = 0 AUTOMATIC_RENEWAL = 1 MANUAL_RENEWAL = 2 renewal_method: RenewalMethod = proto.Field( proto.ENUM, number=3, enum=RenewalMethod, ) transfer_lock_state: "TransferLockState" = proto.Field( proto.ENUM, number=4, enum="TransferLockState", ) class DnsSettings(proto.Message): r"""Defines the DNS configuration of a ``Registration``, including name servers, DNSSEC, and glue records. This message has `oneof`_ fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members. .. _oneof: https://proto-plus-python.readthedocs.io/en/stable/fields.html#oneofs-mutually-exclusive-fields Attributes: custom_dns (google.cloud.domains_v1.types.DnsSettings.CustomDns): An arbitrary DNS provider identified by its name servers. This field is a member of `oneof`_ ``dns_provider``. google_domains_dns (google.cloud.domains_v1.types.DnsSettings.GoogleDomainsDns): The free DNS zone provided by `Google Domains <https://domains.google/>`__. This field is a member of `oneof`_ ``dns_provider``. glue_records (MutableSequence[google.cloud.domains_v1.types.DnsSettings.GlueRecord]): The list of glue records for this ``Registration``. Commonly empty. """ class DsState(proto.Enum): r"""The publication state of DS records for a ``Registration``. Values: DS_STATE_UNSPECIFIED (0): DS state is unspecified. DS_RECORDS_UNPUBLISHED (1): DNSSEC is disabled for this domain. No DS records for this domain are published in the parent DNS zone. DS_RECORDS_PUBLISHED (2): DNSSEC is enabled for this domain. Appropriate DS records for this domain are published in the parent DNS zone. This option is valid only if the DNS zone referenced in the ``Registration``'s ``dns_provider`` field is already DNSSEC-signed. """ DS_STATE_UNSPECIFIED = 0 DS_RECORDS_UNPUBLISHED = 1 DS_RECORDS_PUBLISHED = 2 class CustomDns(proto.Message): r"""Configuration for an arbitrary DNS provider. Attributes: name_servers (MutableSequence[str]): Required. A list of name servers that store the DNS zone for this domain. Each name server is a domain name, with Unicode domain names expressed in Punycode format. ds_records (MutableSequence[google.cloud.domains_v1.types.DnsSettings.DsRecord]): The list of DS records for this domain, which are used to enable DNSSEC. The domain's DNS provider can provide the values to set here. If this field is empty, DNSSEC is disabled. """ name_servers: MutableSequence[str] = proto.RepeatedField( proto.STRING, number=1, ) ds_records: MutableSequence["DnsSettings.DsRecord"] = proto.RepeatedField( proto.MESSAGE, number=2, message="DnsSettings.DsRecord", ) class GoogleDomainsDns(proto.Message): r"""Configuration for using the free DNS zone provided by Google Domains as a ``Registration``'s ``dns_provider``. You cannot configure the DNS zone itself using the API. To configure the DNS zone, go to `Google Domains <https://domains.google/>`__. Attributes: name_servers (MutableSequence[str]): Output only. A list of name servers that store the DNS zone for this domain. Each name server is a domain name, with Unicode domain names expressed in Punycode format. This field is automatically populated with the name servers assigned to the Google Domains DNS zone. ds_state (google.cloud.domains_v1.types.DnsSettings.DsState): Required. The state of DS records for this domain. Used to enable or disable automatic DNSSEC. ds_records (MutableSequence[google.cloud.domains_v1.types.DnsSettings.DsRecord]): Output only. The list of DS records published for this domain. The list is automatically populated when ``ds_state`` is ``DS_RECORDS_PUBLISHED``, otherwise it remains empty. """ name_servers: MutableSequence[str] = proto.RepeatedField( proto.STRING, number=1, ) ds_state: "DnsSettings.DsState" = proto.Field( proto.ENUM, number=2, enum="DnsSettings.DsState", ) ds_records: MutableSequence["DnsSettings.DsRecord"] = proto.RepeatedField( proto.MESSAGE, number=3, message="DnsSettings.DsRecord", ) class DsRecord(proto.Message): r"""Defines a Delegation Signer (DS) record, which is needed to enable DNSSEC for a domain. It contains a digest (hash) of a DNSKEY record that must be present in the domain's DNS zone. Attributes: key_tag (int): The key tag of the record. Must be set in range 0 -- 65535. algorithm (google.cloud.domains_v1.types.DnsSettings.DsRecord.Algorithm): The algorithm used to generate the referenced DNSKEY. digest_type (google.cloud.domains_v1.types.DnsSettings.DsRecord.DigestType): The hash function used to generate the digest of the referenced DNSKEY. digest (str): The digest generated from the referenced DNSKEY. """ class Algorithm(proto.Enum): r"""List of algorithms used to create a DNSKEY. Certain algorithms are not supported for particular domains. Values: ALGORITHM_UNSPECIFIED (0): The algorithm is unspecified. RSAMD5 (1): RSA/MD5. Cannot be used for new deployments. DH (2): Diffie-Hellman. Cannot be used for new deployments. DSA (3): DSA/SHA1. Not recommended for new deployments. ECC (4): ECC. Not recommended for new deployments. RSASHA1 (5): RSA/SHA-1. Not recommended for new deployments. DSANSEC3SHA1 (6): DSA-NSEC3-SHA1. Not recommended for new deployments. RSASHA1NSEC3SHA1 (7): RSA/SHA1-NSEC3-SHA1. Not recommended for new deployments. RSASHA256 (8): RSA/SHA-256. RSASHA512 (10): RSA/SHA-512. ECCGOST (12): GOST R 34.10-2001. ECDSAP256SHA256 (13): ECDSA Curve P-256 with SHA-256. ECDSAP384SHA384 (14): ECDSA Curve P-384 with SHA-384. ED25519 (15): Ed25519. ED448 (16): Ed448. INDIRECT (252): Reserved for Indirect Keys. Cannot be used for new deployments. PRIVATEDNS (253): Private algorithm. Cannot be used for new deployments. PRIVATEOID (254): Private algorithm OID. Cannot be used for new deployments. """ ALGORITHM_UNSPECIFIED = 0 RSAMD5 = 1 DH = 2 DSA = 3 ECC = 4 RSASHA1 = 5 DSANSEC3SHA1 = 6 RSASHA1NSEC3SHA1 = 7 RSASHA256 = 8 RSASHA512 = 10 ECCGOST = 12 ECDSAP256SHA256 = 13 ECDSAP384SHA384 = 14 ED25519 = 15 ED448 = 16 INDIRECT = 252 PRIVATEDNS = 253 PRIVATEOID = 254 class DigestType(proto.Enum): r"""List of hash functions that may have been used to generate a digest of a DNSKEY. Values: DIGEST_TYPE_UNSPECIFIED (0): The DigestType is unspecified. SHA1 (1): SHA-1. Not recommended for new deployments. SHA256 (2): SHA-256. GOST3411 (3): GOST R 34.11-94. SHA384 (4): SHA-384. """ DIGEST_TYPE_UNSPECIFIED = 0 SHA1 = 1 SHA256 = 2 GOST3411 = 3 SHA384 = 4 key_tag: int = proto.Field( proto.INT32, number=1, ) algorithm: "DnsSettings.DsRecord.Algorithm" = proto.Field( proto.ENUM, number=2, enum="DnsSettings.DsRecord.Algorithm", ) digest_type: "DnsSettings.DsRecord.DigestType" = proto.Field( proto.ENUM, number=3, enum="DnsSettings.DsRecord.DigestType", ) digest: str = proto.Field( proto.STRING, number=4, ) class GlueRecord(proto.Message): r"""Defines a host on your domain that is a DNS name server for your domain and/or other domains. Glue records are a way of making the IP address of a name server known, even when it serves DNS queries for its parent domain. For example, when ``ns.example.com`` is a name server for ``example.com``, the host ``ns.example.com`` must have a glue record to break the circular DNS reference. Attributes: host_name (str): Required. Domain name of the host in Punycode format. ipv4_addresses (MutableSequence[str]): List of IPv4 addresses corresponding to this host in the standard decimal format (e.g. ``198.51.100.1``). At least one of ``ipv4_address`` and ``ipv6_address`` must be set. ipv6_addresses (MutableSequence[str]): List of IPv6 addresses corresponding to this host in the standard hexadecimal format (e.g. ``2001:db8::``). At least one of ``ipv4_address`` and ``ipv6_address`` must be set. """ host_name: str = proto.Field( proto.STRING, number=1, ) ipv4_addresses: MutableSequence[str] = proto.RepeatedField( proto.STRING, number=2, ) ipv6_addresses: MutableSequence[str] = proto.RepeatedField( proto.STRING, number=3, ) custom_dns: CustomDns = proto.Field( proto.MESSAGE, number=1, oneof="dns_provider", message=CustomDns, ) google_domains_dns: GoogleDomainsDns = proto.Field( proto.MESSAGE, number=2, oneof="dns_provider", message=GoogleDomainsDns, ) glue_records: MutableSequence[GlueRecord] = proto.RepeatedField( proto.MESSAGE, number=4, message=GlueRecord, ) class ContactSettings(proto.Message): r"""Defines the contact information associated with a ``Registration``. `ICANN <https://icann.org/>`__ requires all domain names to have associated contact information. The ``registrant_contact`` is considered the domain's legal owner, and often the other contacts are identical. Attributes: privacy (google.cloud.domains_v1.types.ContactPrivacy): Required. Privacy setting for the contacts associated with the ``Registration``. registrant_contact (google.cloud.domains_v1.types.ContactSettings.Contact): Required. The registrant contact for the ``Registration``. *Caution: Anyone with access to this email address, phone number, and/or postal address can take control of the domain.* *Warning: For new ``Registration``\ s, the registrant receives an email confirmation that they must complete within 15 days to avoid domain suspension.* admin_contact (google.cloud.domains_v1.types.ContactSettings.Contact): Required. The administrative contact for the ``Registration``. technical_contact (google.cloud.domains_v1.types.ContactSettings.Contact): Required. The technical contact for the ``Registration``. """ class Contact(proto.Message): r"""Details required for a contact associated with a ``Registration``. Attributes: postal_address (google.type.postal_address_pb2.PostalAddress): Required. Postal address of the contact. email (str): Required. Email address of the contact. phone_number (str): Required. Phone number of the contact in international format. For example, ``"+1-800-555-0123"``. fax_number (str): Fax number of the contact in international format. For example, ``"+1-800-555-0123"``. """ postal_address: postal_address_pb2.PostalAddress = proto.Field( proto.MESSAGE, number=1, message=postal_address_pb2.PostalAddress, ) email: str = proto.Field( proto.STRING, number=2, ) phone_number: str = proto.Field( proto.STRING, number=3, ) fax_number: str = proto.Field( proto.STRING, number=4, ) privacy: "ContactPrivacy" = proto.Field( proto.ENUM, number=1, enum="ContactPrivacy", ) registrant_contact: Contact = proto.Field( proto.MESSAGE, number=2, message=Contact, ) admin_contact: Contact = proto.Field( proto.MESSAGE, number=3, message=Contact, ) technical_contact: Contact = proto.Field( proto.MESSAGE, number=4, message=Contact, ) class SearchDomainsRequest(proto.Message): r"""Request for the ``SearchDomains`` method. Attributes: query (str): Required. String used to search for available domain names. location (str): Required. The location. Must be in the format ``projects/*/locations/*``. """ query: str = proto.Field( proto.STRING, number=1, ) location: str = proto.Field( proto.STRING, number=2, ) class SearchDomainsResponse(proto.Message): r"""Response for the ``SearchDomains`` method. Attributes: register_parameters (MutableSequence[google.cloud.domains_v1.types.RegisterParameters]): Results of the domain name search. """ register_parameters: MutableSequence["RegisterParameters"] = proto.RepeatedField( proto.MESSAGE, number=1, message="RegisterParameters", ) class RetrieveRegisterParametersRequest(proto.Message): r"""Request for the ``RetrieveRegisterParameters`` method. Attributes: domain_name (str): Required. The domain name. Unicode domain names must be expressed in Punycode format. location (str): Required. The location. Must be in the format ``projects/*/locations/*``. """ domain_name: str = proto.Field( proto.STRING, number=1, ) location: str = proto.Field( proto.STRING, number=2, ) class RetrieveRegisterParametersResponse(proto.Message): r"""Response for the ``RetrieveRegisterParameters`` method. Attributes: register_parameters (google.cloud.domains_v1.types.RegisterParameters): Parameters to use when calling the ``RegisterDomain`` method. """ register_parameters: "RegisterParameters" = proto.Field( proto.MESSAGE, number=1, message="RegisterParameters", ) class RegisterDomainRequest(proto.Message): r"""Request for the ``RegisterDomain`` method. Attributes: parent (str): Required. The parent resource of the ``Registration``. Must be in the format ``projects/*/locations/*``. registration (google.cloud.domains_v1.types.Registration): Required. The complete ``Registration`` resource to be created. domain_notices (MutableSequence[google.cloud.domains_v1.types.DomainNotice]): The list of domain notices that you acknowledge. Call ``RetrieveRegisterParameters`` to see the notices that need acknowledgement. contact_notices (MutableSequence[google.cloud.domains_v1.types.ContactNotice]): The list of contact notices that the caller acknowledges. The notices needed here depend on the values specified in ``registration.contact_settings``. yearly_price (google.type.money_pb2.Money): Required. Yearly price to register or renew the domain. The value that should be put here can be obtained from RetrieveRegisterParameters or SearchDomains calls. validate_only (bool): When true, only validation is performed, without actually registering the domain. Follows: https://cloud.google.com/apis/design/design_patterns#request_validation """ parent: str = proto.Field( proto.STRING, number=1, ) registration: "Registration" = proto.Field( proto.MESSAGE, number=2, message="Registration", ) domain_notices: MutableSequence["DomainNotice"] = proto.RepeatedField( proto.ENUM, number=3, enum="DomainNotice", ) contact_notices: MutableSequence["ContactNotice"] = proto.RepeatedField( proto.ENUM, number=4, enum="ContactNotice", ) yearly_price: money_pb2.Money = proto.Field( proto.MESSAGE, number=5, message=money_pb2.Money, ) validate_only: bool = proto.Field( proto.BOOL, number=6, ) class RetrieveTransferParametersRequest(proto.Message): r"""Request for the ``RetrieveTransferParameters`` method. Attributes: domain_name (str): Required. The domain name. Unicode domain names must be expressed in Punycode format. location (str): Required. The location. Must be in the format ``projects/*/locations/*``. """ domain_name: str = proto.Field( proto.STRING, number=1, ) location: str = proto.Field( proto.STRING, number=2, ) class RetrieveTransferParametersResponse(proto.Message): r"""Response for the ``RetrieveTransferParameters`` method. Attributes: transfer_parameters (google.cloud.domains_v1.types.TransferParameters): Parameters to use when calling the ``TransferDomain`` method. """ transfer_parameters: "TransferParameters" = proto.Field( proto.MESSAGE, number=1, message="TransferParameters", ) class TransferDomainRequest(proto.Message): r"""Request for the ``TransferDomain`` method. Attributes: parent (str): Required. The parent resource of the ``Registration``. Must be in the format ``projects/*/locations/*``. registration (google.cloud.domains_v1.types.Registration): Required. The complete ``Registration`` resource to be created. You can leave ``registration.dns_settings`` unset to import the domain's current DNS configuration from its current registrar. Use this option only if you are sure that the domain's current DNS service does not cease upon transfer, as is often the case for DNS services provided for free by the registrar. contact_notices (MutableSequence[google.cloud.domains_v1.types.ContactNotice]): The list of contact notices that you acknowledge. The notices needed here depend on the values specified in ``registration.contact_settings``. yearly_price (google.type.money_pb2.Money): Required. Acknowledgement of the price to transfer or renew the domain for one year. Call ``RetrieveTransferParameters`` to obtain the price, which you must acknowledge. authorization_code (google.cloud.domains_v1.types.AuthorizationCode): The domain's transfer authorization code. You can obtain this from the domain's current registrar. validate_only (bool): Validate the request without actually transferring the domain. """ parent: str = proto.Field( proto.STRING, number=1, ) registration: "Registration" = proto.Field( proto.MESSAGE, number=2, message="Registration", ) contact_notices: MutableSequence["ContactNotice"] = proto.RepeatedField( proto.ENUM, number=3, enum="ContactNotice", ) yearly_price: money_pb2.Money = proto.Field( proto.MESSAGE, number=4, message=money_pb2.Money, ) authorization_code: "AuthorizationCode" = proto.Field( proto.MESSAGE, number=5, message="AuthorizationCode", ) validate_only: bool = proto.Field( proto.BOOL, number=6, ) class ListRegistrationsRequest(proto.Message): r"""Request for the ``ListRegistrations`` method. Attributes: parent (str): Required. The project and location from which to list ``Registration``\ s, specified in the format ``projects/*/locations/*``. page_size (int): Maximum number of results to return. page_token (str): When set to the ``next_page_token`` from a prior response, provides the next page of results. filter (str): Filter expression to restrict the ``Registration``\ s returned. The expression must specify the field name, a comparison operator, and the value that you want to use for filtering. The value must be a string, a number, a boolean, or an enum value. The comparison operator should be one of =, !=, >, <, >=, <=, or : for prefix or wildcard matches. For example, to filter to a specific domain name, use an expression like ``domainName="example.com"``. You can also check for the existence of a field; for example, to find domains using custom DNS settings, use an expression like ``dnsSettings.customDns:*``. You can also create compound filters by combining expressions with the ``AND`` and ``OR`` operators. For example, to find domains that are suspended or have specific issues flagged, use an expression like ``(state=SUSPENDED) OR (issue:*)``. """ parent: str = proto.Field( proto.STRING, number=1, ) page_size: int = proto.Field( proto.INT32, number=2, ) page_token: str = proto.Field( proto.STRING, number=3, ) filter: str = proto.Field( proto.STRING, number=4, ) class ListRegistrationsResponse(proto.Message): r"""Response for the ``ListRegistrations`` method. Attributes: registrations (MutableSequence[google.cloud.domains_v1.types.Registration]): A list of ``Registration``\ s. next_page_token (str): When present, there are more results to retrieve. Set ``page_token`` to this value on a subsequent call to get the next page of results. """ @property def raw_page(self): return self registrations: MutableSequence["Registration"] = proto.RepeatedField( proto.MESSAGE, number=1, message="Registration", ) next_page_token: str = proto.Field( proto.STRING, number=2, ) class GetRegistrationRequest(proto.Message): r"""Request for the ``GetRegistration`` method. Attributes: name (str): Required. The name of the ``Registration`` to get, in the format ``projects/*/locations/*/registrations/*``. """ name: str = proto.Field( proto.STRING, number=1, ) class UpdateRegistrationRequest(proto.Message): r"""Request for the ``UpdateRegistration`` method. Attributes: registration (google.cloud.domains_v1.types.Registration): Fields of the ``Registration`` to update. update_mask (google.protobuf.field_mask_pb2.FieldMask): Required. The field mask describing which fields to update as a comma-separated list. For example, if only the labels are being updated, the ``update_mask`` is ``"labels"``. """ registration: "Registration" = proto.Field( proto.MESSAGE, number=1, message="Registration", ) update_mask: field_mask_pb2.FieldMask = proto.Field( proto.MESSAGE, number=2, message=field_mask_pb2.FieldMask, ) class ConfigureManagementSettingsRequest(proto.Message): r"""Request for the ``ConfigureManagementSettings`` method. Attributes: registration (str): Required. The name of the ``Registration`` whose management settings are being updated, in the format ``projects/*/locations/*/registrations/*``. management_settings (google.cloud.domains_v1.types.ManagementSettings): Fields of the ``ManagementSettings`` to update. update_mask (google.protobuf.field_mask_pb2.FieldMask): Required. The field mask describing which fields to update as a comma-separated list. For example, if only the transfer lock is being updated, the ``update_mask`` is ``"transfer_lock_state"``. """ registration: str = proto.Field( proto.STRING, number=1, ) management_settings: "ManagementSettings" = proto.Field( proto.MESSAGE, number=2, message="ManagementSettings", ) update_mask: field_mask_pb2.FieldMask = proto.Field( proto.MESSAGE, number=3, message=field_mask_pb2.FieldMask, ) class ConfigureDnsSettingsRequest(proto.Message): r"""Request for the ``ConfigureDnsSettings`` method. Attributes: registration (str): Required. The name of the ``Registration`` whose DNS settings are being updated, in the format ``projects/*/locations/*/registrations/*``. dns_settings (google.cloud.domains_v1.types.DnsSettings): Fields of the ``DnsSettings`` to update. update_mask (google.protobuf.field_mask_pb2.FieldMask): Required. The field mask describing which fields to update as a comma-separated list. For example, if only the name servers are being updated for an existing Custom DNS configuration, the ``update_mask`` is ``"custom_dns.name_servers"``. When changing the DNS provider from one type to another, pass the new provider's field name as part of the field mask. For example, when changing from a Google Domains DNS configuration to a Custom DNS configuration, the ``update_mask`` is ``"custom_dns"``. // validate_only (bool): Validate the request without actually updating the DNS settings. """ registration: str = proto.Field( proto.STRING, number=1, ) dns_settings: "DnsSettings" = proto.Field( proto.MESSAGE, number=2, message="DnsSettings", ) update_mask: field_mask_pb2.FieldMask = proto.Field( proto.MESSAGE, number=3, message=field_mask_pb2.FieldMask, ) validate_only: bool = proto.Field( proto.BOOL, number=4, ) class ConfigureContactSettingsRequest(proto.Message): r"""Request for the ``ConfigureContactSettings`` method. Attributes: registration (str): Required. The name of the ``Registration`` whose contact settings are being updated, in the format ``projects/*/locations/*/registrations/*``. contact_settings (google.cloud.domains_v1.types.ContactSettings): Fields of the ``ContactSettings`` to update. update_mask (google.protobuf.field_mask_pb2.FieldMask): Required. The field mask describing which fields to update as a comma-separated list. For example, if only the registrant contact is being updated, the ``update_mask`` is ``"registrant_contact"``. contact_notices (MutableSequence[google.cloud.domains_v1.types.ContactNotice]): The list of contact notices that the caller acknowledges. The notices needed here depend on the values specified in ``contact_settings``. validate_only (bool): Validate the request without actually updating the contact settings. """ registration: str = proto.Field( proto.STRING, number=1, ) contact_settings: "ContactSettings" = proto.Field( proto.MESSAGE, number=2, message="ContactSettings", ) update_mask: field_mask_pb2.FieldMask = proto.Field( proto.MESSAGE, number=3, message=field_mask_pb2.FieldMask, ) contact_notices: MutableSequence["ContactNotice"] = proto.RepeatedField( proto.ENUM, number=4, enum="ContactNotice", ) validate_only: bool = proto.Field( proto.BOOL, number=5, ) class ExportRegistrationRequest(proto.Message): r"""Request for the ``ExportRegistration`` method. Attributes: name (str): Required. The name of the ``Registration`` to export, in the format ``projects/*/locations/*/registrations/*``. """ name: str = proto.Field( proto.STRING, number=1, ) class DeleteRegistrationRequest(proto.Message): r"""Request for the ``DeleteRegistration`` method. Attributes: name (str): Required. The name of the ``Registration`` to delete, in the format ``projects/*/locations/*/registrations/*``. """ name: str = proto.Field( proto.STRING, number=1, ) class RetrieveAuthorizationCodeRequest(proto.Message): r"""Request for the ``RetrieveAuthorizationCode`` method. Attributes: registration (str): Required. The name of the ``Registration`` whose authorization code is being retrieved, in the format ``projects/*/locations/*/registrations/*``. """ registration: str = proto.Field( proto.STRING, number=1, ) class ResetAuthorizationCodeRequest(proto.Message): r"""Request for the ``ResetAuthorizationCode`` method. Attributes: registration (str): Required. The name of the ``Registration`` whose authorization code is being reset, in the format ``projects/*/locations/*/registrations/*``. """ registration: str = proto.Field( proto.STRING, number=1, ) class RegisterParameters(proto.Message): r"""Parameters required to register a new domain. Attributes: domain_name (str): The domain name. Unicode domain names are expressed in Punycode format. availability (google.cloud.domains_v1.types.RegisterParameters.Availability): Indicates whether the domain is available for registration. This value is accurate when obtained by calling ``RetrieveRegisterParameters``, but is approximate when obtained by calling ``SearchDomains``. supported_privacy (MutableSequence[google.cloud.domains_v1.types.ContactPrivacy]): Contact privacy options that the domain supports. domain_notices (MutableSequence[google.cloud.domains_v1.types.DomainNotice]): Notices about special properties of the domain. yearly_price (google.type.money_pb2.Money): Price to register or renew the domain for one year. """ class Availability(proto.Enum): r"""Possible availability states of a domain name. Values: AVAILABILITY_UNSPECIFIED (0): The availability is unspecified. AVAILABLE (1): The domain is available for registration. UNAVAILABLE (2): The domain is not available for registration. Generally this means it is already registered to another party. UNSUPPORTED (3): The domain is not currently supported by Cloud Domains, but may be available elsewhere. UNKNOWN (4): Cloud Domains is unable to determine domain availability, generally due to system maintenance at the domain name registry. """ AVAILABILITY_UNSPECIFIED = 0 AVAILABLE = 1 UNAVAILABLE = 2 UNSUPPORTED = 3 UNKNOWN = 4 domain_name: str = proto.Field( proto.STRING, number=1, ) availability: Availability = proto.Field( proto.ENUM, number=2, enum=Availability, ) supported_privacy: MutableSequence["ContactPrivacy"] = proto.RepeatedField( proto.ENUM, number=3, enum="ContactPrivacy", ) domain_notices: MutableSequence["DomainNotice"] = proto.RepeatedField( proto.ENUM, number=4, enum="DomainNotice", ) yearly_price: money_pb2.Money = proto.Field( proto.MESSAGE, number=5, message=money_pb2.Money, ) class TransferParameters(proto.Message): r"""Parameters required to transfer a domain from another registrar. Attributes: domain_name (str): The domain name. Unicode domain names are expressed in Punycode format. current_registrar (str): The registrar that currently manages the domain. name_servers (MutableSequence[str]): The name servers that currently store the configuration of the domain. transfer_lock_state (google.cloud.domains_v1.types.TransferLockState): Indicates whether the domain is protected by a transfer lock. For a transfer to succeed, this must show ``UNLOCKED``. To unlock a domain, go to its current registrar. supported_privacy (MutableSequence[google.cloud.domains_v1.types.ContactPrivacy]): Contact privacy options that the domain supports. yearly_price (google.type.money_pb2.Money): Price to transfer or renew the domain for one year. """ domain_name: str = proto.Field( proto.STRING, number=1, ) current_registrar: str = proto.Field( proto.STRING, number=2, ) name_servers: MutableSequence[str] = proto.RepeatedField( proto.STRING, number=3, ) transfer_lock_state: "TransferLockState" = proto.Field( proto.ENUM, number=4, enum="TransferLockState", ) supported_privacy: MutableSequence["ContactPrivacy"] = proto.RepeatedField( proto.ENUM, number=5, enum="ContactPrivacy", ) yearly_price: money_pb2.Money = proto.Field( proto.MESSAGE, number=6, message=money_pb2.Money, ) class AuthorizationCode(proto.Message): r"""Defines an authorization code. Attributes: code (str): The Authorization Code in ASCII. It can be used to transfer the domain to or from another registrar. """ code: str = proto.Field( proto.STRING, number=1, ) class OperationMetadata(proto.Message): r"""Represents the metadata of the long-running operation. Output only. Attributes: create_time (google.protobuf.timestamp_pb2.Timestamp): The time the operation was created. end_time (google.protobuf.timestamp_pb2.Timestamp): The time the operation finished running. target (str): Server-defined resource path for the target of the operation. verb (str): Name of the verb executed by the operation. status_detail (str): Human-readable status of the operation, if any. api_version (str): API version used to start the operation. """ create_time: timestamp_pb2.Timestamp = proto.Field( proto.MESSAGE, number=1, message=timestamp_pb2.Timestamp, ) end_time: timestamp_pb2.Timestamp = proto.Field( proto.MESSAGE, number=2, message=timestamp_pb2.Timestamp, ) target: str = proto.Field( proto.STRING, number=3, ) verb: str = proto.Field( proto.STRING, number=4, ) status_detail: str = proto.Field( proto.STRING, number=5, ) api_version: str = proto.Field( proto.STRING, number=6, ) __all__ = tuple(sorted(__protobuf__.manifest))
null
packages/google-cloud-domains/google/cloud/domains_v1/types/domains.py
domains.py
py
53,578
python
en
code
null
code-starcoder2
83
[ { "api_name": "proto.module", "line_number": 26, "usage_type": "call" }, { "api_name": "proto.Enum", "line_number": 64, "usage_type": "attribute" }, { "api_name": "proto.Enum", "line_number": 100, "usage_type": "attribute" }, { "api_name": "proto.Enum", "line_number": 117, "usage_type": "attribute" }, { "api_name": "proto.Enum", "line_number": 132, "usage_type": "attribute" }, { "api_name": "proto.Message", "line_number": 150, "usage_type": "attribute" }, { "api_name": "proto.Enum", "line_number": 224, "usage_type": "attribute" }, { "api_name": "proto.Enum", "line_number": 268, "usage_type": "attribute" }, { "api_name": "proto.Field", "line_number": 292, "usage_type": "call" }, { "api_name": "proto.STRING", "line_number": 293, "usage_type": "attribute" }, { "api_name": "proto.Field", "line_number": 296, "usage_type": "call" }, { "api_name": "proto.STRING", "line_number": 297, "usage_type": "attribute" }, { "api_name": "google.protobuf.timestamp_pb2.Timestamp", "line_number": 300, "usage_type": "attribute" }, { "api_name": "google.protobuf.timestamp_pb2", "line_number": 300, "usage_type": "name" }, { "api_name": "proto.Field", "line_number": 300, "usage_type": "call" }, { "api_name": "proto.MESSAGE", "line_number": 301, "usage_type": "attribute" }, { "api_name": "google.protobuf.timestamp_pb2.Timestamp", "line_number": 303, "usage_type": "attribute" }, { "api_name": "google.protobuf.timestamp_pb2", "line_number": 303, "usage_type": "name" }, { "api_name": "google.protobuf.timestamp_pb2.Timestamp", "line_number": 305, "usage_type": "attribute" }, { "api_name": "google.protobuf.timestamp_pb2", "line_number": 305, "usage_type": "name" }, { "api_name": "proto.Field", "line_number": 305, "usage_type": "call" }, { "api_name": "proto.MESSAGE", "line_number": 306, "usage_type": "attribute" }, { "api_name": "google.protobuf.timestamp_pb2.Timestamp", "line_number": 308, "usage_type": "attribute" }, { "api_name": "google.protobuf.timestamp_pb2", "line_number": 308, "usage_type": "name" }, { "api_name": "proto.Field", "line_number": 310, "usage_type": "call" }, { "api_name": "proto.ENUM", "line_number": 311, "usage_type": "attribute" }, { "api_name": "typing.MutableSequence", "line_number": 315, "usage_type": "name" }, { "api_name": "proto.RepeatedField", "line_number": 315, "usage_type": "call" }, { "api_name": "proto.ENUM", "line_number": 316, "usage_type": "attribute" }, { "api_name": "typing.MutableMapping", "line_number": 320, "usage_type": "name" }, { "api_name": "proto.MapField", "line_number": 320, "usage_type": "call" }, { "api_name": "proto.STRING", "line_number": 321, "usage_type": "attribute" }, { "api_name": "proto.STRING", "line_number": 322, "usage_type": "attribute" }, { "api_name": "proto.Field", "line_number": 325, "usage_type": "call" }, { "api_name": "proto.MESSAGE", "line_number": 326, "usage_type": "attribute" }, { "api_name": "proto.Field", "line_number": 330, "usage_type": "call" }, { "api_name": "proto.MESSAGE", "line_number": 331, "usage_type": "attribute" }, { "api_name": "proto.Field", "line_number": 335, "usage_type": "call" }, { "api_name": "proto.MESSAGE", "line_number": 336, "usage_type": "attribute" }, { "api_name": "proto.Field", "line_number": 340, "usage_type": "call" }, { "api_name": "proto.MESSAGE", "line_number": 341, "usage_type": "attribute" }, { "api_name": "typing.MutableSequence", "line_number": 345, "usage_type": "name" }, { "api_name": "proto.RepeatedField", "line_number": 345, "usage_type": "call" }, { "api_name": "proto.ENUM", "line_number": 346, "usage_type": "attribute" }, { "api_name": "proto.Message", "line_number": 352, "usage_type": "attribute" }, { "api_name": "proto.Enum", "line_number": 364, "usage_type": "attribute" }, { "api_name": "proto.Field", "line_number": 388, "usage_type": "call" }, { "api_name": "proto.ENUM", "line_number": 389, "usage_type": "attribute" }, { "api_name": "proto.Field", "line_number": 393, "usage_type": "call" }, { "api_name": "proto.ENUM", "line_number": 394, "usage_type": "attribute" }, { "api_name": "proto.Message", "line_number": 400, "usage_type": "attribute" }, { "api_name": "proto.Enum", "line_number": 427, "usage_type": "attribute" }, { "api_name": "proto.Message", "line_number": 448, "usage_type": "attribute" }, { "api_name": "typing.MutableSequence", "line_number": 464, "usage_type": "name" }, { "api_name": "proto.RepeatedField", "line_number": 464, "usage_type": "call" }, { "api_name": "proto.STRING", "line_number": 465, "usage_type": "attribute" }, { "api_name": "typing.MutableSequence", "line_number": 468, "usage_type": "name" }, { "api_name": "proto.RepeatedField", "line_number": 468, "usage_type": "call" }, { "api_name": "proto.MESSAGE", "line_number": 469, "usage_type": "attribute" }, { "api_name": "proto.Message", "line_number": 474, "usage_type": "attribute" }, { "api_name": "typing.MutableSequence", "line_number": 499, "usage_type": "name" }, { "api_name": "proto.RepeatedField", "line_number": 499, "usage_type": "call" }, { "api_name": "proto.STRING", "line_number": 500, "usage_type": "attribute" }, { "api_name": "proto.Field", "line_number": 503, "usage_type": "call" }, { "api_name": "proto.ENUM", "line_number": 504, "usage_type": "attribute" }, { "api_name": "typing.MutableSequence", "line_number": 508, "usage_type": "name" }, { "api_name": "proto.RepeatedField", "line_number": 508, "usage_type": "call" }, { "api_name": "proto.MESSAGE", "line_number": 509, "usage_type": "attribute" }, { "api_name": "proto.Message", "line_number": 514, "usage_type": "attribute" }, { "api_name": "proto.Enum", "line_number": 534, "usage_type": "attribute" }, { "api_name": "proto.Enum", "line_number": 603, "usage_type": "attribute" }, { "api_name": "proto.Field", "line_number": 625, "usage_type": "call" }, { "api_name": "proto.INT32", "line_number": 626, "usage_type": "attribute" }, { "api_name": "proto.Field", "line_number": 629, "usage_type": "call" }, { "api_name": "proto.ENUM", "line_number": 630, "usage_type": "attribute" }, { "api_name": "proto.Field", "line_number": 634, "usage_type": "call" }, { "api_name": "proto.ENUM", "line_number": 635, "usage_type": "attribute" }, { "api_name": "proto.Field", "line_number": 639, "usage_type": "call" }, { "api_name": "proto.STRING", "line_number": 640, "usage_type": "attribute" }, { "api_name": "proto.Message", "line_number": 644, "usage_type": "attribute" }, { "api_name": "proto.Field", "line_number": 666, "usage_type": "call" }, { "api_name": "proto.STRING", "line_number": 667, "usage_type": "attribute" }, { "api_name": "typing.MutableSequence", "line_number": 670, "usage_type": "name" }, { "api_name": "proto.RepeatedField", "line_number": 670, "usage_type": "call" }, { "api_name": "proto.STRING", "line_number": 671, "usage_type": "attribute" }, { "api_name": "typing.MutableSequence", "line_number": 674, "usage_type": "name" }, { "api_name": "proto.RepeatedField", "line_number": 674, "usage_type": "call" }, { "api_name": "proto.STRING", "line_number": 675, "usage_type": "attribute" }, { "api_name": "proto.Field", "line_number": 679, "usage_type": "call" }, { "api_name": "proto.MESSAGE", "line_number": 680, "usage_type": "attribute" }, { "api_name": "proto.Field", "line_number": 685, "usage_type": "call" }, { "api_name": "proto.MESSAGE", "line_number": 686, "usage_type": "attribute" }, { "api_name": "typing.MutableSequence", "line_number": 691, "usage_type": "name" }, { "api_name": "proto.RepeatedField", "line_number": 691, "usage_type": "call" }, { "api_name": "proto.MESSAGE", "line_number": 692, "usage_type": "attribute" }, { "api_name": "proto.Message", "line_number": 698, "usage_type": "attribute" }, { "api_name": "proto.Message", "line_number": 727, "usage_type": "attribute" }, { "api_name": "google.type.postal_address_pb2.PostalAddress", "line_number": 743, "usage_type": "attribute" }, { "api_name": "google.type.postal_address_pb2", "line_number": 743, "usage_type": "name" }, { "api_name": "proto.Field", "line_number": 743, "usage_type": "call" }, { "api_name": "proto.MESSAGE", "line_number": 744, "usage_type": "attribute" }, { "api_name": "google.type.postal_address_pb2.PostalAddress", "line_number": 746, "usage_type": "attribute" }, { "api_name": "google.type.postal_address_pb2", "line_number": 746, "usage_type": "name" }, { "api_name": "proto.Field", "line_number": 748, "usage_type": "call" }, { "api_name": "proto.STRING", "line_number": 749, "usage_type": "attribute" }, { "api_name": "proto.Field", "line_number": 752, "usage_type": "call" }, { "api_name": "proto.STRING", "line_number": 753, "usage_type": "attribute" }, { "api_name": "proto.Field", "line_number": 756, "usage_type": "call" }, { "api_name": "proto.STRING", "line_number": 757, "usage_type": "attribute" }, { "api_name": "proto.Field", "line_number": 761, "usage_type": "call" }, { "api_name": "proto.ENUM", "line_number": 762, "usage_type": "attribute" }, { "api_name": "proto.Field", "line_number": 766, "usage_type": "call" }, { "api_name": "proto.MESSAGE", "line_number": 767, "usage_type": "attribute" }, { "api_name": "proto.Field", "line_number": 771, "usage_type": "call" }, { "api_name": "proto.MESSAGE", "line_number": 772, "usage_type": "attribute" }, { "api_name": "proto.Field", "line_number": 776, "usage_type": "call" }, { "api_name": "proto.MESSAGE", "line_number": 777, "usage_type": "attribute" }, { "api_name": "proto.Message", "line_number": 783, "usage_type": "attribute" }, { "api_name": "proto.Field", "line_number": 795, "usage_type": "call" }, { "api_name": "proto.STRING", "line_number": 796, "usage_type": "attribute" }, { "api_name": "proto.Field", "line_number": 799, "usage_type": "call" }, { "api_name": "proto.STRING", "line_number": 800, "usage_type": "attribute" }, { "api_name": "proto.Message", "line_number": 805, "usage_type": "attribute" }, { "api_name": "typing.MutableSequence", "line_number": 813, "usage_type": "name" }, { "api_name": "proto.RepeatedField", "line_number": 813, "usage_type": "call" }, { "api_name": "proto.MESSAGE", "line_number": 814, "usage_type": "attribute" }, { "api_name": "proto.Message", "line_number": 820, "usage_type": "attribute" }, { "api_name": "proto.Field", "line_number": 832, "usage_type": "call" }, { "api_name": "proto.STRING", "line_number": 833, "usage_type": "attribute" }, { "api_name": "proto.Field", "line_number": 836, "usage_type": "call" }, { "api_name": "proto.STRING", "line_number": 837, "usage_type": "attribute" }, { "api_name": "proto.Message", "line_number": 842, "usage_type": "attribute" }, { "api_name": "proto.Field", "line_number": 851, "usage_type": "call" }, { "api_name": "proto.MESSAGE", "line_number": 852, "usage_type": "attribute" }, { "api_name": "proto.Message", "line_number": 858, "usage_type": "attribute" }, { "api_name": "proto.Field", "line_number": 887, "usage_type": "call" }, { "api_name": "proto.STRING", "line_number": 888, "usage_type": "attribute" }, { "api_name": "proto.Field", "line_number": 891, "usage_type": "call" }, { "api_name": "proto.MESSAGE", "line_number": 892, "usage_type": "attribute" }, { "api_name": "typing.MutableSequence", "line_number": 896, "usage_type": "name" }, { "api_name": "proto.RepeatedField", "line_number": 896, "usage_type": "call" }, { "api_name": "proto.ENUM", "line_number": 897, "usage_type": "attribute" }, { "api_name": "typing.MutableSequence", "line_number": 901, "usage_type": "name" }, { "api_name": "proto.RepeatedField", "line_number": 901, "usage_type": "call" }, { "api_name": "proto.ENUM", "line_number": 902, "usage_type": "attribute" }, { "api_name": "google.type.money_pb2.Money", "line_number": 906, "usage_type": "attribute" }, { "api_name": "google.type.money_pb2", "line_number": 906, "usage_type": "name" }, { "api_name": "proto.Field", "line_number": 906, "usage_type": "call" }, { "api_name": "proto.MESSAGE", "line_number": 907, "usage_type": "attribute" }, { "api_name": "google.type.money_pb2.Money", "line_number": 909, "usage_type": "attribute" }, { "api_name": "google.type.money_pb2", "line_number": 909, "usage_type": "name" }, { "api_name": "proto.Field", "line_number": 911, "usage_type": "call" }, { "api_name": "proto.BOOL", "line_number": 912, "usage_type": "attribute" }, { "api_name": "proto.Message", "line_number": 917, "usage_type": "attribute" }, { "api_name": "proto.Field", "line_number": 929, "usage_type": "call" }, { "api_name": "proto.STRING", "line_number": 930, "usage_type": "attribute" }, { "api_name": "proto.Field", "line_number": 933, "usage_type": "call" }, { "api_name": "proto.STRING", "line_number": 934, "usage_type": "attribute" }, { "api_name": "proto.Message", "line_number": 939, "usage_type": "attribute" }, { "api_name": "proto.Field", "line_number": 948, "usage_type": "call" }, { "api_name": "proto.MESSAGE", "line_number": 949, "usage_type": "attribute" }, { "api_name": "proto.Message", "line_number": 955, "usage_type": "attribute" }, { "api_name": "proto.Field", "line_number": 989, "usage_type": "call" }, { "api_name": "proto.STRING", "line_number": 990, "usage_type": "attribute" }, { "api_name": "proto.Field", "line_number": 993, "usage_type": "call" }, { "api_name": "proto.MESSAGE", "line_number": 994, "usage_type": "attribute" }, { "api_name": "typing.MutableSequence", "line_number": 998, "usage_type": "name" }, { "api_name": "proto.RepeatedField", "line_number": 998, "usage_type": "call" }, { "api_name": "proto.ENUM", "line_number": 999, "usage_type": "attribute" }, { "api_name": "google.type.money_pb2.Money", "line_number": 1003, "usage_type": "attribute" }, { "api_name": "google.type.money_pb2", "line_number": 1003, "usage_type": "name" }, { "api_name": "proto.Field", "line_number": 1003, "usage_type": "call" }, { "api_name": "proto.MESSAGE", "line_number": 1004, "usage_type": "attribute" }, { "api_name": "google.type.money_pb2.Money", "line_number": 1006, "usage_type": "attribute" }, { "api_name": "google.type.money_pb2", "line_number": 1006, "usage_type": "name" }, { "api_name": "proto.Field", "line_number": 1008, "usage_type": "call" }, { "api_name": "proto.MESSAGE", "line_number": 1009, "usage_type": "attribute" }, { "api_name": "proto.Field", "line_number": 1013, "usage_type": "call" }, { "api_name": "proto.BOOL", "line_number": 1014, "usage_type": "attribute" }, { "api_name": "proto.Message", "line_number": 1019, "usage_type": "attribute" }, { "api_name": "proto.Field", "line_number": 1055, "usage_type": "call" }, { "api_name": "proto.STRING", "line_number": 1056, "usage_type": "attribute" }, { "api_name": "proto.Field", "line_number": 1059, "usage_type": "call" }, { "api_name": "proto.INT32", "line_number": 1060, "usage_type": "attribute" }, { "api_name": "proto.Field", "line_number": 1063, "usage_type": "call" }, { "api_name": "proto.STRING", "line_number": 1064, "usage_type": "attribute" }, { "api_name": "proto.Field", "line_number": 1067, "usage_type": "call" }, { "api_name": "proto.STRING", "line_number": 1068, "usage_type": "attribute" }, { "api_name": "proto.Message", "line_number": 1073, "usage_type": "attribute" }, { "api_name": "typing.MutableSequence", "line_number": 1089, "usage_type": "name" }, { "api_name": "proto.RepeatedField", "line_number": 1089, "usage_type": "call" }, { "api_name": "proto.MESSAGE", "line_number": 1090, "usage_type": "attribute" }, { "api_name": "proto.Field", "line_number": 1094, "usage_type": "call" }, { "api_name": "proto.STRING", "line_number": 1095, "usage_type": "attribute" }, { "api_name": "proto.Message", "line_number": 1100, "usage_type": "attribute" }, { "api_name": "proto.Field", "line_number": 1109, "usage_type": "call" }, { "api_name": "proto.STRING", "line_number": 1110, "usage_type": "attribute" }, { "api_name": "proto.Message", "line_number": 1115, "usage_type": "attribute" }, { "api_name": "proto.Field", "line_number": 1127, "usage_type": "call" }, { "api_name": "proto.MESSAGE", "line_number": 1128, "usage_type": "attribute" }, { "api_name": "google.protobuf.field_mask_pb2.FieldMask", "line_number": 1132, "usage_type": "attribute" }, { "api_name": "google.protobuf.field_mask_pb2", "line_number": 1132, "usage_type": "name" }, { "api_name": "proto.Field", "line_number": 1132, "usage_type": "call" }, { "api_name": "proto.MESSAGE", "line_number": 1133, "usage_type": "attribute" }, { "api_name": "google.protobuf.field_mask_pb2.FieldMask", "line_number": 1135, "usage_type": "attribute" }, { "api_name": "google.protobuf.field_mask_pb2", "line_number": 1135, "usage_type": "name" }, { "api_name": "proto.Message", "line_number": 1139, "usage_type": "attribute" }, { "api_name": "proto.Field", "line_number": 1156, "usage_type": "call" }, { "api_name": "proto.STRING", "line_number": 1157, "usage_type": "attribute" }, { "api_name": "proto.Field", "line_number": 1160, "usage_type": "call" }, { "api_name": "proto.MESSAGE", "line_number": 1161, "usage_type": "attribute" }, { "api_name": "google.protobuf.field_mask_pb2.FieldMask", "line_number": 1165, "usage_type": "attribute" }, { "api_name": "google.protobuf.field_mask_pb2", "line_number": 1165, "usage_type": "name" }, { "api_name": "proto.Field", "line_number": 1165, "usage_type": "call" }, { "api_name": "proto.MESSAGE", "line_number": 1166, "usage_type": "attribute" }, { "api_name": "google.protobuf.field_mask_pb2.FieldMask", "line_number": 1168, "usage_type": "attribute" }, { "api_name": "google.protobuf.field_mask_pb2", "line_number": 1168, "usage_type": "name" }, { "api_name": "proto.Message", "line_number": 1172, "usage_type": "attribute" }, { "api_name": "proto.Field", "line_number": 1199, "usage_type": "call" }, { "api_name": "proto.STRING", "line_number": 1200, "usage_type": "attribute" }, { "api_name": "proto.Field", "line_number": 1203, "usage_type": "call" }, { "api_name": "proto.MESSAGE", "line_number": 1204, "usage_type": "attribute" }, { "api_name": "google.protobuf.field_mask_pb2.FieldMask", "line_number": 1208, "usage_type": "attribute" }, { "api_name": "google.protobuf.field_mask_pb2", "line_number": 1208, "usage_type": "name" }, { "api_name": "proto.Field", "line_number": 1208, "usage_type": "call" }, { "api_name": "proto.MESSAGE", "line_number": 1209, "usage_type": "attribute" }, { "api_name": "google.protobuf.field_mask_pb2.FieldMask", "line_number": 1211, "usage_type": "attribute" }, { "api_name": "google.protobuf.field_mask_pb2", "line_number": 1211, "usage_type": "name" }, { "api_name": "proto.Field", "line_number": 1213, "usage_type": "call" }, { "api_name": "proto.BOOL", "line_number": 1214, "usage_type": "attribute" }, { "api_name": "proto.Message", "line_number": 1219, "usage_type": "attribute" }, { "api_name": "proto.Field", "line_number": 1243, "usage_type": "call" }, { "api_name": "proto.STRING", "line_number": 1244, "usage_type": "attribute" }, { "api_name": "proto.Field", "line_number": 1247, "usage_type": "call" }, { "api_name": "proto.MESSAGE", "line_number": 1248, "usage_type": "attribute" }, { "api_name": "google.protobuf.field_mask_pb2.FieldMask", "line_number": 1252, "usage_type": "attribute" }, { "api_name": "google.protobuf.field_mask_pb2", "line_number": 1252, "usage_type": "name" }, { "api_name": "proto.Field", "line_number": 1252, "usage_type": "call" }, { "api_name": "proto.MESSAGE", "line_number": 1253, "usage_type": "attribute" }, { "api_name": "google.protobuf.field_mask_pb2.FieldMask", "line_number": 1255, "usage_type": "attribute" }, { "api_name": "google.protobuf.field_mask_pb2", "line_number": 1255, "usage_type": "name" }, { "api_name": "typing.MutableSequence", "line_number": 1257, "usage_type": "name" }, { "api_name": "proto.RepeatedField", "line_number": 1257, "usage_type": "call" }, { "api_name": "proto.ENUM", "line_number": 1258, "usage_type": "attribute" }, { "api_name": "proto.Field", "line_number": 1262, "usage_type": "call" }, { "api_name": "proto.BOOL", "line_number": 1263, "usage_type": "attribute" }, { "api_name": "proto.Message", "line_number": 1268, "usage_type": "attribute" }, { "api_name": "proto.Field", "line_number": 1277, "usage_type": "call" }, { "api_name": "proto.STRING", "line_number": 1278, "usage_type": "attribute" }, { "api_name": "proto.Message", "line_number": 1283, "usage_type": "attribute" }, { "api_name": "proto.Field", "line_number": 1292, "usage_type": "call" }, { "api_name": "proto.STRING", "line_number": 1293, "usage_type": "attribute" }, { "api_name": "proto.Message", "line_number": 1298, "usage_type": "attribute" }, { "api_name": "proto.Field", "line_number": 1308, "usage_type": "call" }, { "api_name": "proto.STRING", "line_number": 1309, "usage_type": "attribute" }, { "api_name": "proto.Message", "line_number": 1314, "usage_type": "attribute" }, { "api_name": "proto.Field", "line_number": 1324, "usage_type": "call" }, { "api_name": "proto.STRING", "line_number": 1325, "usage_type": "attribute" }, { "api_name": "proto.Message", "line_number": 1330, "usage_type": "attribute" }, { "api_name": "proto.Enum", "line_number": 1353, "usage_type": "attribute" }, { "api_name": "proto.Field", "line_number": 1379, "usage_type": "call" }, { "api_name": "proto.STRING", "line_number": 1380, "usage_type": "attribute" }, { "api_name": "proto.Field", "line_number": 1383, "usage_type": "call" }, { "api_name": "proto.ENUM", "line_number": 1384, "usage_type": "attribute" }, { "api_name": "typing.MutableSequence", "line_number": 1388, "usage_type": "name" }, { "api_name": "proto.RepeatedField", "line_number": 1388, "usage_type": "call" }, { "api_name": "proto.ENUM", "line_number": 1389, "usage_type": "attribute" }, { "api_name": "typing.MutableSequence", "line_number": 1393, "usage_type": "name" }, { "api_name": "proto.RepeatedField", "line_number": 1393, "usage_type": "call" }, { "api_name": "proto.ENUM", "line_number": 1394, "usage_type": "attribute" }, { "api_name": "google.type.money_pb2.Money", "line_number": 1398, "usage_type": "attribute" }, { "api_name": "google.type.money_pb2", "line_number": 1398, "usage_type": "name" }, { "api_name": "proto.Field", "line_number": 1398, "usage_type": "call" }, { "api_name": "proto.MESSAGE", "line_number": 1399, "usage_type": "attribute" }, { "api_name": "google.type.money_pb2.Money", "line_number": 1401, "usage_type": "attribute" }, { "api_name": "google.type.money_pb2", "line_number": 1401, "usage_type": "name" }, { "api_name": "proto.Message", "line_number": 1405, "usage_type": "attribute" }, { "api_name": "proto.Field", "line_number": 1432, "usage_type": "call" }, { "api_name": "proto.STRING", "line_number": 1433, "usage_type": "attribute" }, { "api_name": "proto.Field", "line_number": 1436, "usage_type": "call" }, { "api_name": "proto.STRING", "line_number": 1437, "usage_type": "attribute" }, { "api_name": "typing.MutableSequence", "line_number": 1440, "usage_type": "name" }, { "api_name": "proto.RepeatedField", "line_number": 1440, "usage_type": "call" }, { "api_name": "proto.STRING", "line_number": 1441, "usage_type": "attribute" }, { "api_name": "proto.Field", "line_number": 1444, "usage_type": "call" }, { "api_name": "proto.ENUM", "line_number": 1445, "usage_type": "attribute" }, { "api_name": "typing.MutableSequence", "line_number": 1449, "usage_type": "name" }, { "api_name": "proto.RepeatedField", "line_number": 1449, "usage_type": "call" }, { "api_name": "proto.ENUM", "line_number": 1450, "usage_type": "attribute" }, { "api_name": "google.type.money_pb2.Money", "line_number": 1454, "usage_type": "attribute" }, { "api_name": "google.type.money_pb2", "line_number": 1454, "usage_type": "name" }, { "api_name": "proto.Field", "line_number": 1454, "usage_type": "call" }, { "api_name": "proto.MESSAGE", "line_number": 1455, "usage_type": "attribute" }, { "api_name": "google.type.money_pb2.Money", "line_number": 1457, "usage_type": "attribute" }, { "api_name": "google.type.money_pb2", "line_number": 1457, "usage_type": "name" }, { "api_name": "proto.Message", "line_number": 1461, "usage_type": "attribute" }, { "api_name": "proto.Field", "line_number": 1471, "usage_type": "call" }, { "api_name": "proto.STRING", "line_number": 1472, "usage_type": "attribute" }, { "api_name": "proto.Message", "line_number": 1477, "usage_type": "attribute" }, { "api_name": "google.protobuf.timestamp_pb2.Timestamp", "line_number": 1498, "usage_type": "attribute" }, { "api_name": "google.protobuf.timestamp_pb2", "line_number": 1498, "usage_type": "name" }, { "api_name": "proto.Field", "line_number": 1498, "usage_type": "call" }, { "api_name": "proto.MESSAGE", "line_number": 1499, "usage_type": "attribute" }, { "api_name": "google.protobuf.timestamp_pb2.Timestamp", "line_number": 1501, "usage_type": "attribute" }, { "api_name": "google.protobuf.timestamp_pb2", "line_number": 1501, "usage_type": "name" }, { "api_name": "google.protobuf.timestamp_pb2.Timestamp", "line_number": 1503, "usage_type": "attribute" }, { "api_name": "google.protobuf.timestamp_pb2", "line_number": 1503, "usage_type": "name" }, { "api_name": "proto.Field", "line_number": 1503, "usage_type": "call" }, { "api_name": "proto.MESSAGE", "line_number": 1504, "usage_type": "attribute" }, { "api_name": "google.protobuf.timestamp_pb2.Timestamp", "line_number": 1506, "usage_type": "attribute" }, { "api_name": "google.protobuf.timestamp_pb2", "line_number": 1506, "usage_type": "name" }, { "api_name": "proto.Field", "line_number": 1508, "usage_type": "call" }, { "api_name": "proto.STRING", "line_number": 1509, "usage_type": "attribute" }, { "api_name": "proto.Field", "line_number": 1512, "usage_type": "call" }, { "api_name": "proto.STRING", "line_number": 1513, "usage_type": "attribute" }, { "api_name": "proto.Field", "line_number": 1516, "usage_type": "call" }, { "api_name": "proto.STRING", "line_number": 1517, "usage_type": "attribute" }, { "api_name": "proto.Field", "line_number": 1520, "usage_type": "call" }, { "api_name": "proto.STRING", "line_number": 1521, "usage_type": "attribute" } ]
240641241
import logging logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt = '%m/%d/%Y %H:%M:%S', level = logging.INFO) logger = logging.getLogger(__name__) ss="This is a test sentence." sss="The same to last one." logger.info("111 %s" % ss) logger.info("111")
null
examples/ttt.py
ttt.py
py
339
python
en
code
null
code-starcoder2
83
[ { "api_name": "logging.basicConfig", "line_number": 4, "usage_type": "call" }, { "api_name": "logging.INFO", "line_number": 6, "usage_type": "attribute" }, { "api_name": "logging.getLogger", "line_number": 7, "usage_type": "call" } ]
490664792
from circuitbreaker import CircuitBreaker from cache_driver import CacheDriver import logging from logstash_async.handler import AsynchronousLogstashHandler from time import sleep from sanic import response # Setup elk stack # host_logger = 'localhost' host_logger = 'logstash' # host_logger = 'elk' port_logger = 5000 # Get you a test logger test_logger = logging.getLogger('python-logstash-logger') # Set it to whatever level you want - default will be info test_logger.setLevel(logging.DEBUG) # Create a handler for it async_handler = AsynchronousLogstashHandler(host_logger, port_logger, database_path=None) # Add the handler to the logger test_logger.addHandler(async_handler) ###### Define possible cache statuses##### SUCCESS = 1 CUSTOM_CACHE_FAILED = 2 REDIS_CACHE_FAILED = 3 BOTH_CACHES_FAILED = 4 ########################################## class LoadBalancer: def any_available(self, service_type): """ returns True if any service of respective type is available or False if not""" cache_status = SUCCESS len_services1 = 0 len_services2 = 0 cache = CacheDriver() try: len_services1 = cache.do("custom", 'llen', ["services-" + str(service_type)]) except Exception as e: test_logger.error("ERROR: Custom cache llen command failed on key" + "services-" + str(service_type) ) test_logger.error(str(e)) cache_status = CUSTOM_CACHE_FAILED try: len_services2 = cache.do("redis", 'llen', ["services-" + str(service_type)]) except Exception as e: test_logger.error("ERROR: Redis cache llen command failed on key" +"services-" + str(service_type) ) test_logger.error(str(e)) cache_status = REDIS_CACHE_FAILED if SUCCESS else BOTH_CACHES_FAILED if cache_status == BOTH_CACHES_FAILED: test_logger.error("ERROR: Alert! Both caches failed (redis and custom) on command llen (" + "services-" + str(service_type) + ")") if len_services1 is None or type(len_services1) is not int: len_services1 = 0 if len_services2 is None or type(len_services2) is not int: len_services2 = 0 return max(int(len_services1), int(len_services2))>0 #will return true or false def next(self, service_type): cache_status = SUCCESS sleep(0.3) #give some time for processing previous request cache = CacheDriver() service1 = None service2 = None try: service1 = cache.do("custom", 'rpoplpush', ["services-"+str(service_type), "services-"+str(service_type)]) except Exception as e: test_logger.error("ERROR: Custom cache rpoplpush command failed on" + str(["services-"+str(service_type), "services-"+str(service_type)])) test_logger.error(str(e)) cache_status = CUSTOM_CACHE_FAILED try: service2 = cache.do("redis", 'rpoplpush', ["services-"+str(service_type), "services-"+str(service_type)]) if service2 is not None: service2 = service2.decode('utf-8') except Exception as e: test_logger.error("ERROR: Redis cache rpoplpush command failed on" + str(["services-"+str(service_type), "services-"+str(service_type)])) test_logger.error(str(e)) cache_status = REDIS_CACHE_FAILED if SUCCESS else BOTH_CACHES_FAILED if cache_status == BOTH_CACHES_FAILED: test_logger.error("ERROR: Alert! Both caches rpoplpush command failed on " + str(["services-"+str(service_type), "services-"+str(service_type)])) if service1 is not None: circuitbreaker = CircuitBreaker(service1, service_type) elif service2 is not None: circuitbreaker = CircuitBreaker(service2, service_type) return circuitbreaker
null
gateway2/loadbalancer.py
loadbalancer.py
py
3,930
python
en
code
null
code-starcoder2
83
[ { "api_name": "logging.getLogger", "line_number": 17, "usage_type": "call" }, { "api_name": "logging.DEBUG", "line_number": 19, "usage_type": "attribute" }, { "api_name": "logstash_async.handler.AsynchronousLogstashHandler", "line_number": 21, "usage_type": "call" }, { "api_name": "cache_driver.CacheDriver", "line_number": 43, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 76, "usage_type": "call" }, { "api_name": "cache_driver.CacheDriver", "line_number": 77, "usage_type": "call" }, { "api_name": "circuitbreaker.CircuitBreaker", "line_number": 103, "usage_type": "call" }, { "api_name": "circuitbreaker.CircuitBreaker", "line_number": 105, "usage_type": "call" } ]
485164192
from __future__ import annotations import climetlab as cml import xarray as xr from climetlab.normalize import normalize_args from . import DATA, OBSERVATIONS_DATA_VERSION, URL, S2sDataset from .extra import cf_conventions from .s2s_mergers import S2sMerger PATTERN_OBS = "{url}/{data}/{dataset}/{version}/{parameter}-{date}.nc" PATTERN_RAWOBS = "{url}/{data}/{dataset}/{version}/{parameter}{grid_string}.nc" GRID_STRING = { "240x121": "", "121x240": "", "720x360": "_720x360", "360x720": "_720x360", } class Observations(S2sDataset): terms_of_use = ( S2sDataset.terms_of_use + "\n" + ( " This dataset has been dowloaded from IRIDL. By downloading this data you also agree to " "the terms and conditions defined at https://iridl.ldeo.columbia.edu." ) ) class RawObservations(Observations): valid_parameters = ["t2m", "pr"] dataset = "observations" @normalize_args(parameter=valid_parameters) def __init__(self, parameter=None, grid="240x121", version=OBSERVATIONS_DATA_VERSION): self.version = version self.grid_string = GRID_STRING[grid] if parameter is None: parameter = self.valid_parameters parameter = cf_conventions(parameter) request = dict( url=URL, data=DATA, parameter=parameter, dataset=self.dataset, version=self.version, grid_string=self.grid_string, ) self.source = cml.load_source("url-pattern", PATTERN_RAWOBS, request, merger="merge()") def to_xarray(self, like=None): ds = self.source.to_xarray() if isinstance(like, xr.Dataset): from .extra import forecast_like_observations ds = forecast_like_observations(like, ds) return ds class PreprocessedObservations(Observations): dataset = None valid_parameters = ["t2m", "tp"] @normalize_args(date="date-list(%Y%m%d)", parameter=["t2m", "tp"]) def __init__(self, date, parameter=None, version=OBSERVATIONS_DATA_VERSION): if parameter is None: parameter = self.valid_parameters parameter = cf_conventions(parameter) self.version = version self.date = date self.parameter = parameter sources = [] for p in parameter: request = self._make_request(p) sources.append( cml.load_source("url-pattern", PATTERN_OBS, request, merger=S2sMerger(engine="netcdf4")) # cml.load_source("url-pattern", PATTERN_OBS, request, merger=S2sMerger(engine="h5netcdf")) # cml.load_source("url-pattern", PATTERN_OBS, request, merger='concat(concat_dim=time_forecast)') ) self.source = cml.load_source("multi", sources, merger="merge()") def _make_request(self, parameter): request = dict( url=URL, data=DATA, parameter=parameter, dataset=self.dataset, date=self.date, version=self.version, ) return request class TrainingOutputReference(PreprocessedObservations): dataset = "training-output-reference" class TestOutputReference(PreprocessedObservations): dataset = "test-output-reference" HindcastLikeObservations = TrainingOutputReference ForecastLikeObservations = TestOutputReference
null
climetlab_s2s_ai_challenge/observations.py
observations.py
py
3,421
python
en
code
null
code-starcoder2
83
[ { "api_name": "extra.cf_conventions", "line_number": 43, "usage_type": "call" }, { "api_name": "climetlab.load_source", "line_number": 54, "usage_type": "call" }, { "api_name": "climetlab.normalize.normalize_args", "line_number": 37, "usage_type": "call" }, { "api_name": "xarray.Dataset", "line_number": 58, "usage_type": "attribute" }, { "api_name": "extra.forecast_like_observations", "line_number": 61, "usage_type": "call" }, { "api_name": "extra.cf_conventions", "line_number": 73, "usage_type": "call" }, { "api_name": "climetlab.load_source", "line_number": 82, "usage_type": "call" }, { "api_name": "s2s_mergers.S2sMerger", "line_number": 82, "usage_type": "call" }, { "api_name": "climetlab.load_source", "line_number": 86, "usage_type": "call" }, { "api_name": "climetlab.normalize.normalize_args", "line_number": 69, "usage_type": "call" } ]
322465304
from pandas import read_csv import numpy as np import matplotlib.pyplot as plt import ConfigParser import argparse import seaborn as sns WARMUP_SECS = 30 COOLDOWN_SECS = 0 def cleandf(df): start_time = np.min(df['epoch']) end_time = np.max(df['epoch']) new_start_time = start_time + (WARMUP_SECS) new_end_time = end_time - (COOLDOWN_SECS) df = df[df['epoch'] > new_start_time] df = df[df['epoch'] < new_end_time] df['t'] = (df['epoch'] - new_start_time) / 60.0 df['send'] = df['send'] / 1024.0 df['recv'] = df['recv'] / 1024.0 df['used'] = df['used'] / 1024.0 ** 2 df['free'] = df['free'] / 1024.0 ** 2 return df def main(): parser = argparse.ArgumentParser() parser.add_argument("dstat_csv", help="Dstat CSV file") args = parser.parse_args() df = cleandf(read_csv(args.dstat_csv)) # CPU related stuff cpu_usage = df['usr'] + df['sys'] # plt.plot(df['t'], df['usr'], alpha=0.7, label='usr') # plt.plot(df['t'], df['sys'], alpha=0.7, label='sys') # plt.plot(df['t'], df['idl'], alpha=0.7, label='idl') plt.plot(df['t'], cpu_usage, alpha=0.7, label='CPU usage') plt.xlim(xmin=0.0) plt.ylim(ymin=0.0) plt.legend(loc="best", fancybox=True, framealpha=0.5) # plt.grid() plt.xlabel('Time (in mins)') plt.ylabel('Percentage') plt.show() # Network related plt.plot(df['t'], df['send'], alpha=0.7, label='send') plt.plot(df['t'], df['recv'], alpha=0.7, label='recv') plt.xlim(xmin=0.0) plt.ylim(ymin=0.0) plt.legend(loc="best", fancybox=True, framealpha=0.5) plt.grid() plt.xlabel('Time (in mins)') plt.ylabel('Bytes') plt.show() # Memory related plt.plot(df['t'], df['used'], alpha=0.7, label='used') plt.plot(df['t'], df['free'], alpha=0.7, label='free') plt.xlim(xmin=0.0) plt.ylim(ymin=0.0) plt.legend(loc="best", fancybox=True, framealpha=0.5) plt.grid() plt.xlabel('Time (in mins)') plt.ylabel('Megabytes') plt.show() if __name__ == '__main__': main()
null
MessagingSystemScripts/harware_metrics.py
harware_metrics.py
py
2,066
python
en
code
null
code-starcoder2
83
[ { "api_name": "numpy.min", "line_number": 14, "usage_type": "call" }, { "api_name": "numpy.max", "line_number": 15, "usage_type": "call" }, { "api_name": "argparse.ArgumentParser", "line_number": 31, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 35, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 42, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 42, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlim", "line_number": 44, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 44, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylim", "line_number": 45, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 45, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.legend", "line_number": 46, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 46, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 48, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 48, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 49, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 49, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 50, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 50, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 53, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 53, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 54, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 54, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlim", "line_number": 56, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 56, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylim", "line_number": 57, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 57, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.legend", "line_number": 58, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 58, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.grid", "line_number": 59, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 59, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 60, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 60, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 61, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 61, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 62, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 62, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 65, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 65, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 66, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 66, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlim", "line_number": 68, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 68, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylim", "line_number": 69, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 69, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.legend", "line_number": 70, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 70, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.grid", "line_number": 71, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 71, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 72, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 72, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 73, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 73, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 74, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 74, "usage_type": "name" } ]
407529485
#!/usr/bin/env python # -*- encoding: UTF-8 -*- # @Author : Administrator # @File : DatabaseUtil.py # @Version: 1.0.0 # @Time : 2019/8/16 13:02 # @Project: reptile-python # @Package: # @Software: PyCharm import os import sqlite3 import sys import pandas import pymysql def select(connect, sql): """ 游标对象执行SQL :param sql: :param connect: :return: """ try: # 创建一个游标对象 cursor cursor = connect.cursor() # 执行SQL cursor.execute(sql) # 使用 fetchone() 方法获取单条数据. # data = cursor.fetchone() # 获取所有数据 return cursor.fetchall() except sqlite3.OperationalError as e: print(sql) raise e finally: # 关闭游标 cursor.close() # 关闭数据库连接 connect.close() def execute_commit(connect, sql): """ 游标对象执行SQL并提交事物 :param connect: :param sql: :return: """ try: # 创建一个游标对象 cursor cursor = connect.cursor() # 执行SQL cursor.execute(sql) # 提交事物 connect.commit() # 插入操作后获得自增ID # return cursor.lastrowid # 操作后获取成功行数 # return cursor.arraysize return cursor.rowcount except sqlite3.OperationalError as e: print(sql) raise e finally: # 关闭游标 cursor.close() # 关闭数据库连接 connect.close() def is_table_exist(connect, table): """ 查询表是否存在 :param connect: 连接 :param table: 表名 :return: """ sql = f"select name from sqlite_master where type='table' and name='{table}'" res = select(connect, sql) if len(res) == 0: return False return True class Mysql: def __init__(self, host, port, user, password, database, charset="UTF-8"): """ 初始化MySQL配置 :param host: 连接主机地址 :param port: 端口 :param user: 用户 :param password: 密码 :param database: 数据库 :param charset: 字符编码,默认UTF-8 """ self.host = host self.port = port self.user = user self.password = password self.db = database self.charset = charset def connect(self): """ 获取链接 :return: """ return pymysql.connect( host=self.host, port=self.port, user=self.user, password=self.password, db=self.db, charset=self.charset ) def execute_commit(self, sql): """ 插入数据、更新数据、删除数据 :param sql: :return: """ execute_commit(self.connect(), sql) def select(self, sql): """ 更新数据 :param sql: :return: """ return select(self.connect(), sql) def is_table_exist(self, table): """ 查询表是否存在 :param table: 表名 :return: """ return is_table_exist(self.connect(), table) def pandas_select(self, sql): """ 用pandas库的read_sql获取Mysql数据库数据 :param sql: :return: """ try: # 创建连接 conn = self.connect() return pandas.read_sql(sql, conn) finally: # 关闭数据库连接 conn.close() class Sqlite3: def __init__(self, database, charset="UTF-8"): """ 初始化Sqlite3配置 :param database: 数据库 :param charset: 字符编码,默认UTF-8 """ self.db = database self.charset = charset self.get_path() def get_path(self): if not self.db.endswith('.db'): self.db = self.db + '.db' # 分割目录与文件 p, f = os.path.split(self.db) # 判断目录是否存在 if p != "" and not os.path.exists(p): # 目录不存在则创建 os.mkdir(p) # def __enter__(self): # """ # https://gist.githubusercontent.com/miku/6522074/raw # 获取连接,返回游标 # :return: # """ # self.conn = sqlite3.connect(self.db) # self.cursor = self.conn.cursor() # return self.cursor # # def __exit__(self, exc_class, exc, traceback): # self.conn.commit() # self.conn.close() def connect(self): """ 获取连接,如果数据库不存在,那么它就会被创建,最后将返回一个数据库对象。 :return: """ conn = sqlite3.connect(self.db) # 插入中文字符 # conn.text_factory = str return conn def execute_commit(self, sql): """ 插入数据、更新数据、删除数据 :param sql: :return: """ return execute_commit(self.connect(), sql) def select(self, sql): """ 更新数据 :param sql: :return: """ return select(self.connect(), sql) def is_table_exist(self, table): """ 查询表是否存在 :param table: 表名 :return: """ return is_table_exist(self.connect(), table)
null
utils/DatabaseUtil.py
DatabaseUtil.py
py
5,462
python
en
code
null
code-starcoder2
83
[ { "api_name": "sqlite3.OperationalError", "line_number": 34, "usage_type": "attribute" }, { "api_name": "sqlite3.OperationalError", "line_number": 63, "usage_type": "attribute" }, { "api_name": "pymysql.connect", "line_number": 110, "usage_type": "call" }, { "api_name": "pandas.read_sql", "line_number": 152, "usage_type": "call" }, { "api_name": "os.path.split", "line_number": 174, "usage_type": "call" }, { "api_name": "os.path", "line_number": 174, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 176, "usage_type": "call" }, { "api_name": "os.path", "line_number": 176, "usage_type": "attribute" }, { "api_name": "os.mkdir", "line_number": 178, "usage_type": "call" }, { "api_name": "sqlite3.connect", "line_number": 199, "usage_type": "call" } ]
620830208
# Create your views here. from django.shortcuts import render_to_response, get_object_or_404 from django.template import RequestContext from arartekomaps.settings import STATIC_URL from arartekomaps.locations.models import Location from arartekomaps.places.models import Place from arartekomaps.categories.models import Category from django.utils.translation import ugettext_lazy as _ def split_seq(seq, num_pieces): """ Split a list in n groups. Useful for listings in cols """ start = 0 for i in xrange(num_pieces): stop = start + len(seq[i::num_pieces]) yield seq[start:stop] start = stop def listing(request, state): """ Listing cities in an state (probintziak) """ mystate = Location.objects.get(slug=state) cities = Location.objects.filter(parent=mystate) city_slices = split_seq(cities, 4) hidesearch = True return render_to_response('listing.html', locals(), context_instance=RequestContext(request) ) def location(request,state,city,maincat='',subcat=''): """ Default view for a city """ city = get_object_or_404(Location, slug=city) rootcats = [] subcats = [] places_here = Place.objects.filter(city=city) for mplace in places_here: thiscat = mplace.category rootcat = thiscat.get_root() if rootcat not in rootcats: rootcats.append(rootcat) if maincat and maincat==rootcat.slug and thiscat.get_level()>0 and not thiscat in subcats: subcats.append(thiscat) if maincat: if subcat: parentcat = get_object_or_404(Category, slug=maincat) childcat = get_object_or_404(Category, slug=subcat) pagetitle = _("%(parentcatname)s: %(childcatname)s in %(cityname)s") % {'parentcatname':_('cat_%s' % parentcat.name), 'childcatname':_('cat_%s' % childcat.name), 'cityname':city.name} places = Place.objects.filter(city=city, category=childcat)[:20] else: parentcat = get_object_or_404(Category, slug=maincat) pagetitle = _("%(parentcatname)s in %(cityname)s") % {'parentcatname':_('cat_%s' % parentcat.name), 'cityname':city.name} places = Place.objects.filter(city=city, category__in=parentcat.get_descendants(include_self=True))[:20] pass else: places = Place.objects.filter(city=city)[:20] pagetitle = city.name return render_to_response('location.html', locals(), context_instance=RequestContext(request) )
null
arartekomaps/locations/views.py
views.py
py
2,537
python
en
code
null
code-starcoder2
83
[ { "api_name": "arartekomaps.locations.models.Location.objects.get", "line_number": 22, "usage_type": "call" }, { "api_name": "arartekomaps.locations.models.Location.objects", "line_number": 22, "usage_type": "attribute" }, { "api_name": "arartekomaps.locations.models.Location", "line_number": 22, "usage_type": "name" }, { "api_name": "arartekomaps.locations.models.Location.objects.filter", "line_number": 23, "usage_type": "call" }, { "api_name": "arartekomaps.locations.models.Location.objects", "line_number": 23, "usage_type": "attribute" }, { "api_name": "arartekomaps.locations.models.Location", "line_number": 23, "usage_type": "name" }, { "api_name": "django.shortcuts.render_to_response", "line_number": 26, "usage_type": "call" }, { "api_name": "django.template.RequestContext", "line_number": 26, "usage_type": "call" }, { "api_name": "django.shortcuts.get_object_or_404", "line_number": 32, "usage_type": "call" }, { "api_name": "arartekomaps.locations.models.Location", "line_number": 32, "usage_type": "argument" }, { "api_name": "arartekomaps.places.models.Place.objects.filter", "line_number": 36, "usage_type": "call" }, { "api_name": "arartekomaps.places.models.Place.objects", "line_number": 36, "usage_type": "attribute" }, { "api_name": "arartekomaps.places.models.Place", "line_number": 36, "usage_type": "name" }, { "api_name": "django.shortcuts.get_object_or_404", "line_number": 47, "usage_type": "call" }, { "api_name": "arartekomaps.categories.models.Category", "line_number": 47, "usage_type": "argument" }, { "api_name": "django.shortcuts.get_object_or_404", "line_number": 48, "usage_type": "call" }, { "api_name": "arartekomaps.categories.models.Category", "line_number": 48, "usage_type": "argument" }, { "api_name": "django.utils.translation.ugettext_lazy", "line_number": 49, "usage_type": "call" }, { "api_name": "arartekomaps.places.models.Place.objects.filter", "line_number": 50, "usage_type": "call" }, { "api_name": "arartekomaps.places.models.Place.objects", "line_number": 50, "usage_type": "attribute" }, { "api_name": "arartekomaps.places.models.Place", "line_number": 50, "usage_type": "name" }, { "api_name": "django.shortcuts.get_object_or_404", "line_number": 52, "usage_type": "call" }, { "api_name": "arartekomaps.categories.models.Category", "line_number": 52, "usage_type": "argument" }, { "api_name": "django.utils.translation.ugettext_lazy", "line_number": 53, "usage_type": "call" }, { "api_name": "arartekomaps.places.models.Place.objects.filter", "line_number": 54, "usage_type": "call" }, { "api_name": "arartekomaps.places.models.Place.objects", "line_number": 54, "usage_type": "attribute" }, { "api_name": "arartekomaps.places.models.Place", "line_number": 54, "usage_type": "name" }, { "api_name": "arartekomaps.places.models.Place.objects.filter", "line_number": 57, "usage_type": "call" }, { "api_name": "arartekomaps.places.models.Place.objects", "line_number": 57, "usage_type": "attribute" }, { "api_name": "arartekomaps.places.models.Place", "line_number": 57, "usage_type": "name" }, { "api_name": "django.shortcuts.render_to_response", "line_number": 61, "usage_type": "call" }, { "api_name": "django.template.RequestContext", "line_number": 61, "usage_type": "call" } ]
490515688
import os from celery import Celery os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'ucheshi.settings') app = Celery('ucheshi') app.config_from_object('django.conf:settings', namespace='CELERY') app.conf.beat_schedule = { 'get_joke_3s': { 'task': 'cheshi.tasks.get_joke', 'schedule': 3.0 } } app.autodiscover_tasks()
null
Realtime-Broadcasting-API/ucheshi/ucheshi/celery.py
celery.py
py
347
python
en
code
null
code-starcoder2
83
[ { "api_name": "os.environ.setdefault", "line_number": 5, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 5, "usage_type": "attribute" }, { "api_name": "celery.Celery", "line_number": 7, "usage_type": "call" } ]
161653145
import os import wave import random import tempfile from subprocess import Popen, DEVNULL import threading from concurrent.futures import ThreadPoolExecutor, wait from typing import List, Text MIDI_PATH = './clean_midi' SAVE_PATH = './dataset' FREQ_TABLE_PATH = './freq_table' SAMPLES = 100 * 3 # must be multiple of 3 PARALLEL = 8 def find_all_midi(path) -> List[Text]: midi_path = [] for d in os.listdir(path): p = os.path.join(path, d) if not os.path.isdir(p): continue for m in os.listdir(p): if m.startswith('.') or not m.endswith('.mid'): continue midi_path.append(os.path.join(p, m)) midi_path.sort() return midi_path def midi_to_wav(in_path, out_path, freq_table=None): cmd = ['timidity', '-Ow', '-o', out_path] if freq_table: cmd.extend(['-Z', freq_table]) cmd.append(in_path) try: p = Popen(cmd, stdout=DEVNULL, stderr=DEVNULL) assert p.wait() == 0 except Exception: def repr_safe(s): if set(s) & set('"&$ ,'): return repr(s) return s cmdline = ' '.join(repr_safe(i) for i in cmd) raise RuntimeError(cmdline) from None def cut_wav(in_path, out_path, begin_sec=None, dura_sec=30.): with wave.open(in_path, 'rb') as f: nchannels, sampwidth, framerate, nframes, *_ = f.getparams() assert sampwidth == 2, ( "doesn't support sample width other that 16-bit, current: %d" % sampwidth * 8) read_frame = int(dura_sec * framerate) if begin_sec is None: assert read_frame <= nframes, 'duration out of range' begin_frame = random.randint(0, nframes - read_frame) else: begin_frame = int(begin_sec * framerate) assert begin_frame + read_frame <= nframes, 'read out of range' # each frame is stored as (L, R) if it's stereo f.readframes(begin_frame) data = f.readframes(read_frame) with wave.open(out_path, 'wb') as f: f.setnchannels(nchannels) f.setsampwidth(sampwidth) f.setframerate(framerate) f.writeframes(data) completed = 0 completed_lock = threading.Lock() def task(i, temper): global completed def progress(): return '[%5d/%5d]' % (completed, SAMPLES) noret = {'end': '', 'flush': True} in_path = midi_path[i] out_dir = os.path.join(SAVE_PATH, temper) os.makedirs(out_dir, exist_ok=True) out_path = os.path.join(out_dir, '%05d.wav' % i) _, tmp_path = tempfile.mkstemp('.wav') print('%s > %s\n%s\r' % (in_path, out_path, progress()), **noret) try: freq_table = os.path.join(FREQ_TABLE_PATH, '%s.txt' % temper) midi_to_wav(in_path, tmp_path, freq_table) cut_wav(tmp_path, out_path) except Exception as e: print(e) raise e from None finally: os.remove(tmp_path) with completed_lock: completed += 1 print('%s\r' % progress(), **noret) if __name__ == '__main__': midi_path = find_all_midi(MIDI_PATH) print('dataset size:', len(midi_path)) random.seed(0) sample = random.sample(range(len(midi_path)), SAMPLES) print('samples size:', len(sample)) tasks = [] with ThreadPoolExecutor(PARALLEL) as t: for i in range(0, len(sample), 3): tasks.append(t.submit(task, sample[i], 'equal')) tasks.append(t.submit(task, sample[i + 1], 'pure')) tasks.append(t.submit(task, sample[i + 2], 'pytha')) wait(tasks)
null
python/gen_wav.py
gen_wav.py
py
3,594
python
en
code
null
code-starcoder2
83
[ { "api_name": "os.listdir", "line_number": 19, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 20, "usage_type": "call" }, { "api_name": "os.path", "line_number": 20, "usage_type": "attribute" }, { "api_name": "os.path.isdir", "line_number": 21, "usage_type": "call" }, { "api_name": "os.path", "line_number": 21, "usage_type": "attribute" }, { "api_name": "os.listdir", "line_number": 23, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 26, "usage_type": "call" }, { "api_name": "os.path", "line_number": 26, "usage_type": "attribute" }, { "api_name": "typing.List", "line_number": 17, "usage_type": "name" }, { "api_name": "typing.Text", "line_number": 17, "usage_type": "name" }, { "api_name": "subprocess.Popen", "line_number": 37, "usage_type": "call" }, { "api_name": "subprocess.DEVNULL", "line_number": 37, "usage_type": "name" }, { "api_name": "wave.open", "line_number": 49, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 58, "usage_type": "call" }, { "api_name": "wave.open", "line_number": 67, "usage_type": "call" }, { "api_name": "threading.Lock", "line_number": 75, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 86, "usage_type": "call" }, { "api_name": "os.path", "line_number": 86, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 87, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 88, "usage_type": "call" }, { "api_name": "os.path", "line_number": 88, "usage_type": "attribute" }, { "api_name": "tempfile.mkstemp", "line_number": 89, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 93, "usage_type": "call" }, { "api_name": "os.path", "line_number": 93, "usage_type": "attribute" }, { "api_name": "os.remove", "line_number": 100, "usage_type": "call" }, { "api_name": "random.seed", "line_number": 110, "usage_type": "call" }, { "api_name": "random.sample", "line_number": 111, "usage_type": "call" }, { "api_name": "concurrent.futures.ThreadPoolExecutor", "line_number": 114, "usage_type": "call" }, { "api_name": "concurrent.futures.wait", "line_number": 119, "usage_type": "call" } ]
108482689
#!/usr/bin/env python # coding: utf-8 """Export des ingrédients et des processes du builder""" from bw2data.project import projects from food.impacts import impacts as impacts_definition import bw2calc import bw2data import functools import hashlib import json import uuid # Input PROJECT = "Food" DBNAME = "Agribalyse 3.1.1" BIOSPHERE = DBNAME + " biosphere" ACTIVITIES = "activities.json" IMPACTS = "../../public/data/impacts.json" # TODO move the impact definition somewhere else and remove base impact # Output INGREDIENTS = "../../public/data/food/ingredients.json" BUILDER = "../../public/data/food/processes.json" # maximum variation for new impacts compared to old impacts projects.create_project(PROJECT, activate=True, exist_ok=True) bw2data.config.p["biosphere_database"] = BIOSPHERE db = bw2data.Database(DBNAME) @functools.cache def search(name): results = db.search(name) assert len(results) >= 1, f"'{name}' was not found in Brightway" return results[0] def find_id(activity): # if this is a complex ingredient, the id is the one constructed by ecobalyse if "ratio" in activity.keys(): return str( uuid.UUID( hashlib.md5( f"{activity['id']}, constructed by Ecobalyse".encode("utf-8") ).hexdigest() ) ) else: return search(activity["search"])["Process identifier"] if __name__ == "__main__": # backup the previous builder with old impacts with open(BUILDER) as f: oldbuilder = json.load(f) with open(ACTIVITIES, "r") as f: activities = json.load(f) print("Creating ingredient list...") ingredients = [ { "id": activity["id"], "name": activity["name"], "categories": [c for c in activity["categories"] if c != "ingredient"], "default": find_id(activity), "default_origin": activity["default_origin"], "raw_to_cooked_ratio": activity["raw_to_cooked_ratio"], "density": activity["density"], "inedible_part": activity["inedible_part"], "transport_cooling": activity["transport_cooling"], "visible": activity["visible"], "complements": activity.get("complements", []), } for activity in activities if activity["category"] == "ingredient" ] # cleanup unuseful attributes for ingredient in ingredients: if ( "animal_product" not in ingredient["categories"] and "dairy_product" not in ingredient["categories"] and "animal-welfare" in ingredient.get("complements") ): del ingredient["complements"]["animal-welfare"] print("Creating builder process list...") builder = { activity["id"]: { "id": activity["id"], "name": search(activity["search"])["name"], "displayName": activity["name"], "unit": search(activity["search"])["unit"], "identifier": find_id(activity), "system_description": search(activity["search"])["System description"], "category": activity.get("category"), "comment": list(search(activity["search"]).production())[0]["comment"], # those are removed at the end: "search": activity["search"], "ratio": activity.get("ratio"), "subingredient_default": activity.get("subingredient_default"), "subingredient_organic": activity.get("subingredient_organic"), "impacts": {"bvi": activity.get("bvi", 0)}, } for activity in activities } # remove empty category for p in builder: if not builder[p]["category"]: del builder[p]["category"] # remove complex ingredient attributes on simple ingredients for processid in builder.keys(): if not builder[processid]["ratio"]: del builder[processid]["ratio"] del builder[processid]["subingredient_default"] del builder[processid]["subingredient_organic"] # check that all three attributes are present on complex ingredients for activity in activities: if any( [ key in activity for key in ("ratio", "subingredient_default", "subingredient_organic") ] ): assert all( [ key in activity for key in ( "ratio", "subingredient_default", "subingredient_organic", ) ] ), f"{activity} seems is missing either ratio or subingredient_default or subingredient_organic" # compute the impacts of base processes print("Computing impacts:") for index, (processid, process) in enumerate( # keep complex ingredients at the end since they depend on subingredient processes sorted(builder.items(), key=lambda x: "ratio" in x[1]) ): print( "(" + (index) * "•" + (len(builder) - index) * " " + f") {str(index)}/{len(builder)}", end="\r", ) lca = bw2calc.LCA({search(process["search"]): 1}) lca.lci() for key, method in impacts_definition.items(): lca.switch_method(method) lca.lcia() process.setdefault("impacts", {})[key] = float("{:.10g}".format(lca.score)) # etf-o = etf-o1 + etf-o2 process["impacts"]["etf-o"] = ( process["impacts"]["etf-o1"] + process["impacts"]["etf-o2"] ) del process["impacts"]["etf-o1"] del process["impacts"]["etf-o2"] # etf = etf1 + etf2 process["impacts"]["etf"] = ( process["impacts"]["etf1"] + process["impacts"]["etf2"] ) del process["impacts"]["etf1"] del process["impacts"]["etf2"] # Now compute an identifier for complex ingredients # Compute impacts of complex ingredients # and tweak some attributes if "ratio" in process: for impact in process["impacts"]: # The ratio is the quantity of simple ingredient necessary to produce 1 unit of complex ingredient. # You need 1.16 kg of wheat (simple) to produce 1 kg of flour (complex) -> ratio = 1.16 # Formula: Impact farine bio = impact farine conventionnel + ratio * ( impact blé bio - impact blé conventionnel) if impact == "bvi" and ( process["impacts"][impact] == 0 or builder[process["subingredient_organic"]]["impacts"][impact] == 0 or builder[process["subingredient_default"]]["impacts"][impact] == 0 ): # if the base ingredient has no bvi, neither the organic continue process["impacts"][impact] = process["impacts"][impact] + process[ "ratio" ] * ( builder[process["subingredient_organic"]]["impacts"][impact] - builder[process["subingredient_default"]]["impacts"][impact] ) process["name"] = f"{processid}, constructed by Ecobalyse" process["system_description"] = "Ecobalyse" # remove unneeded attributes for attribute in ( "search", "ratio", "subingredient_default", "subingredient_organic", ): if attribute in process: del process[attribute] print("Computing corrected impacts...") with open(IMPACTS, "r") as f: impacts_ecobalyse = json.load(f) corrections = { k: v["correction"] for (k, v) in impacts_ecobalyse.items() if "correction" in v } for process in builder.values(): # compute corrected impacts for impact_to_correct, correction in corrections.items(): corrected_impact = 0 for correction_item in correction: # For each sub-impact and its weighting sub_impact_name = correction_item["sub-impact"] if sub_impact_name in process["impacts"]: sub_impact = process["impacts"].get(sub_impact_name, 1) corrected_impact += sub_impact * correction_item["weighting"] del process["impacts"][sub_impact_name] process["impacts"][impact_to_correct] = corrected_impact with open(INGREDIENTS, "w") as outfile: json.dump(ingredients, outfile, indent=2, ensure_ascii=False) # Add a newline at the end of the file, to avoid creating a diff with editors adding a newline outfile.write("\n") print(f"\nExported {len(ingredients)} ingredients to {INGREDIENTS}") # display impacts that have changed old = {p["id"]: p["impacts"] for p in oldbuilder} review = False changes = [] for p in builder: for impact in builder[p]["impacts"]: if old.get(p, {}).get(impact, {}): percent_change = ( 100 * abs(builder[p]["impacts"][impact] - old[p][impact]) / old[p][impact] ) if percent_change > 0.1: changes.append( { "trg": impact, "name": p, "%diff": percent_change, "from": old[p][impact], "to": builder[p]["impacts"][impact], } ) review = True changes.sort(key=lambda c: c["%diff"]) if review: keys = ("trg", "name", "%diff", "from", "to") widths = {key: max([len(str(c[key])) for c in changes]) for key in keys} print("==".join(["=" * widths[key] for key in keys])) print("Please review the impact changes below") print("==".join(["=" * widths[key] for key in keys])) print(" ".join([f"{key.ljust(widths[key])}" for key in keys])) print("==".join(["=" * widths[key] for key in keys])) for c in changes: print(" ".join([f"{str(c[key]).ljust(widths[key])}" for key in keys])) print("==".join(["=" * widths[key] for key in keys])) print(" ".join([f"{key.ljust(widths[key])}" for key in keys])) print("==".join(["=" * widths[key] for key in keys])) print("Please review the impact changes above") print("==".join(["=" * widths[key] for key in keys])) with open(BUILDER, "w") as outfile: json.dump(list(builder.values()), outfile, indent=2, ensure_ascii=False) # Add a newline at the end of the file, to avoid creating a diff with editors adding a newline outfile.write("\n") print(f"Exported {len(builder)} processes to {BUILDER}")
null
data/food/export_builder.py
export_builder.py
py
11,011
python
en
code
null
code-starcoder2
83
[ { "api_name": "bw2data.project.projects.create_project", "line_number": 26, "usage_type": "call" }, { "api_name": "bw2data.project.projects", "line_number": 26, "usage_type": "name" }, { "api_name": "bw2data.config", "line_number": 27, "usage_type": "attribute" }, { "api_name": "bw2data.Database", "line_number": 28, "usage_type": "call" }, { "api_name": "functools.cache", "line_number": 31, "usage_type": "attribute" }, { "api_name": "uuid.UUID", "line_number": 42, "usage_type": "call" }, { "api_name": "hashlib.md5", "line_number": 43, "usage_type": "call" }, { "api_name": "json.load", "line_number": 55, "usage_type": "call" }, { "api_name": "json.load", "line_number": 58, "usage_type": "call" }, { "api_name": "bw2calc.LCA", "line_number": 150, "usage_type": "call" }, { "api_name": "food.impacts.impacts.items", "line_number": 152, "usage_type": "call" }, { "api_name": "food.impacts.impacts", "line_number": 152, "usage_type": "name" }, { "api_name": "json.load", "line_number": 207, "usage_type": "call" }, { "api_name": "json.dump", "line_number": 225, "usage_type": "call" }, { "api_name": "json.dump", "line_number": 271, "usage_type": "call" } ]
175381617
# coding:utf-8 from copy import deepcopy from typing import List, Dict class SingerInfoGetter: """ 获取歌手信息的类 """ def __init__(self, albumInfo_list: list) -> None: self.albumInfo_list = deepcopy(albumInfo_list) # type:List[dict] self.singerInfos = self.getSingerInfos(self.albumInfo_list) @staticmethod def getSingerInfos(albumInfo_list: list) -> Dict[str, dict]: """ 获取歌手信息 """ singerInfos = {} year = '0' for albumInfo in albumInfo_list: singer = albumInfo['singer'] genre = albumInfo['genre'] year_ = albumInfo.get('year', '0') # 如果字典中没有该歌手的信息就插入一个 if singer not in singerInfos: singerInfos[singer] = { "singer": singer, "genre": genre, "albumInfo_list": [], "coverPath": f'singer_avatar/{singer}.jpg' } singerInfos[singer]["albumInfo_list"].append(albumInfo) # 使用最新的专辑流派作为歌手的流派 if year_ >= year: singerInfos[singer]['genre'] = genre year = year_ # 排序专辑信息 for singerInfo in singerInfos.values(): singerInfo["albumInfo_list"].sort( key=lambda i: i.get('year', '0'), reverse=True) return singerInfos def updateSingerInfos(self, albumInfo_list: list): """ 更新歌手信息 """ self.albumInfo_list = deepcopy(albumInfo_list) # type:List[dict] self.singerInfos = self.getSingerInfos(self.albumInfo_list)
null
app/common/meta_data_getter/get_singer_info.py
get_singer_info.py
py
1,711
python
en
code
null
code-starcoder2
83
[ { "api_name": "copy.deepcopy", "line_number": 10, "usage_type": "call" }, { "api_name": "typing.Dict", "line_number": 14, "usage_type": "name" }, { "api_name": "copy.deepcopy", "line_number": 49, "usage_type": "call" } ]
382450608
# -*- coding: utf-8 -*- """ @author: Olav Milian Gran """ import datetime import multiprocessing as mp import sys from time import perf_counter import matplotlib.pyplot as plt import numpy as np import sympy as sym from matplotlib.ticker import MaxNLocator from linear_elasticity_2d_solver import LinearElasticity2DProblem from linear_elasticity_2d_solver.default_constants import default_tol from linear_elasticity_2d_solver.helpers import check_and_make_folder """for nice representation of plots""" sym.init_printing() fontsize = 20 new_params = {'axes.titlesize': fontsize, 'axes.labelsize': fontsize, 'figure.figsize': (12, 7), 'lines.linewidth': 2, 'lines.markersize': 7, 'ytick.labelsize': fontsize, 'figure.titlesize': fontsize, 'xtick.labelsize': fontsize, 'legend.fontsize': fontsize, 'legend.handlelength': 1.5} plt.rcParams.update(new_params) # rho_steal = 8e3 # kg/m^3 alpha = 8e3 * 100 * 9.81 * 0.01 # N/m^2 # Example 2: Gravity in 2D def f(x, y): return alpha, 0 def clamped_bc(x, y): return abs(x) <= default_tol def make_plots(n, save, q=None, do_errors=True): now1 = datetime.datetime.now().time() # time object txt = f"start time: {now1}, n={n}, save={save} \n" newline = "\n" line = "-" * 20 save_dict = r"reduced_order_plots" if save: save_dict = check_and_make_folder(n, save_dict) # define problem, can not get from saves, here because we want to set n_rom s = perf_counter() le2d = LinearElasticity2DProblem.from_functions(n, f, get_dirichlet_edge_func=clamped_bc, print_info=False) txt += f"Assembled HF system in {perf_counter() - s} s" + newline sigma2_dict = {} mean_err_dict = {} max_err_dict = {} n_rom_dict = {} for mode in ("Uniform", "Gauss-Lobatto"): sigma2_dict[mode] = {} mean_err_dict[mode] = {} max_err_dict[mode] = {} n_rom_dict[mode] = {} for grid in (5, 11): txt += line + newline + f"mode={mode}, gird={grid}" + newline s = perf_counter() le2d.build_rb_model(grid=grid, mode=mode, print_info=False) txt += f"Built RB model in {perf_counter() - s} s" + newline sigma2_dict[mode][grid] = le2d.singular_values_squared_pod n_rom_dict[mode][grid] = le2d.n_rom txt += f"Chosen n_rom={le2d.n_rom}, max use is n_rom_max={le2d.n_rom_max}, " \ + f"grid size is ns_rom={le2d.ns_rom}, Number of node on one axis is n={n}, " \ + f"Solution matrix rank: {le2d.solution_matrix_rank}" + newline txt += "Singular values squared:" + newline txt += str(le2d.singular_values_squared_pod) + newline if do_errors: max_err = np.zeros(le2d.n_rom_max) mean_err = np.zeros(le2d.n_rom_max) for n_rom in range(1, le2d.n_rom_max + 1): errs = np.zeros(le2d.ns_rom) for i, (e_young, nu_poisson) in enumerate(le2d.e_young_nu_poisson_mat): # print(i, e_young, nu_poisson) errs[i] = le2d.error_a_rb(e_young, nu_poisson, n_rom=n_rom) max_err[n_rom - 1] = np.max(errs) mean_err[n_rom - 1] = np.mean(errs) mean_err_dict[mode][grid] = mean_err max_err_dict[mode][grid] = max_err # make singular values plot plt.figure("Singular values") plt.title(f"Singular values, scaled to $\\sigma_1$, $n={n}$") for grid in (11, 5): for mode in ("Gauss-Lobatto", "Uniform"): sigma2_vec = sigma2_dict[mode][grid] arg0 = np.argwhere(sigma2_vec >= 0) sigma_vec = np.sqrt(sigma2_vec[arg0]) rel_sigma_vec = sigma_vec / sigma_vec[0] plt.semilogy(np.arange(len(rel_sigma_vec)) + 1, rel_sigma_vec, "D-", label=f"{mode} ${grid}\\times{grid}$", alpha=.8) plt.xlabel("$i$") plt.ylabel("$\\sigma_i$") plt.grid() plt.legend() if save: plt.savefig(save_dict + f"/singular_values.pdf") plt.show() # make relative information plot plt.figure("Relative information content") plt.title(f"Relative information content, $I(N)$, $n={n}$") k = 5 for grid in (11, 5): for mode in ("Gauss-Lobatto", "Uniform"): n_rom = n_rom_dict[mode][grid] sigma2_vec = sigma2_dict[mode][grid] arg0 = np.argwhere(sigma2_vec >= 0) i_n = np.cumsum(sigma2_vec[arg0]) / np.sum(sigma2_vec[arg0]) plt.plot(np.arange(len(i_n)) + 1, i_n, "D-", label=f"{mode} ${grid}\\times{grid}$", alpha=.8) plt.plot(n_rom, i_n[n_rom - 1], "b.", alpha=.7, zorder=k) k += 1 plt.xlabel("$N$") plt.ylabel("$I(N)$") plt.ylim(0.999_6, 1.000_05) plt.grid() plt.legend() if save: plt.savefig(save_dict + f"/relative_information_content.pdf") plt.show() if do_errors: # make error plots for grid in (5, 11): fig, ax = plt.subplots(1, 1, num="Reduced order errors v. $N$" + f"{grid}, $n={n}$", figsize=(12, 7)) fig.suptitle("Reduced order errors v. $N$" + f", $n={n}$") for mode in ("Gauss-Lobatto", "Uniform"): mean_err = mean_err_dict[mode][grid] ax.semilogy(np.arange(len(mean_err)) + 1, mean_err, "D-", label=f"mean: {mode} ${grid}\\times{grid}$", alpha=.8) for mode in ("Gauss-Lobatto", "Uniform"): max_err = max_err_dict[mode][grid] ax.semilogy(np.arange(len(max_err)) + 1, max_err, "D-", label=f"max: {mode} ${grid}\\times{grid}$", alpha=.8) ax.set_xlabel("$N$") ax.set_ylabel("$\\|\\|u_h(\\mu) - Vu_N(\\mu)\\|\\|_a$") ax.xaxis.set_major_locator(MaxNLocator(integer=True)) ax.grid() # adjust ax.legend(loc=9, bbox_to_anchor=(0.5, -0.13), ncol=2) if save: plt.savefig(save_dict + f"/reduced_order_errors_grid{grid}.pdf", bbox_inches='tight') plt.show() now2 = datetime.datetime.now().time() # time object txt += f"end time: {now2}, n={n}, save={save} \n" if q is None: print(txt) else: res = "Process" + str(n), txt, now2 q.put(res) def listener(q, output_file): """listens for messages on the q, writes to file. """ with open(output_file, 'w') as time_code_log: while True: m = q.get() if m == 'kill': time_code_log.write('killed') break time_code_log.write(m[0] + '\n') time_code_log.write(m[1] + '\n') time_code_log.write(str(m[2]) + '\n') time_code_log.flush() # Example 2: Gravity in 2D def main(): # took some time!!!! (20: 12 min, 40: 40 min, 80: 2 hours 42 min, total: 3 hours 34 min), without multiprocessing # took some time!!!! (20: 13 min, 40: 41 min, 80: 2 hours 41 min, total: 2 hours 41 min), with multiprocessing multi_process = True do_errors = True # !!! Set to True to save the plots!!! save = True n_vec = [20, 40, 80] text_n_vec = "_".join(str(n) for n in n_vec) if do_errors: extra = "" else: extra = "_no_errors" output_file = "reduced_order_plots/time_log_n" + text_n_vec + extra + ".txt" if multi_process: # must use Manager queue here, or will not work manager = mp.Manager() q = manager.Queue() pool = mp.Pool(mp.cpu_count()) # put listener to work first watcher = pool.apply_async(listener, (q, output_file)) jobs = [] for n in n_vec: job = pool.apply_async(make_plots, (n, save, q, do_errors)) jobs.append(job) # collect results from the make_plots through the pool result queue for job in jobs: job.get() # now we are done, kill the listener q.put('kill') pool.close() pool.join() else: with open(output_file, "w") as time_code_log: sys.stdout = time_code_log for n in n_vec: make_plots(n, save, do_errors=do_errors) if __name__ == '__main__': main()
null
code_use_for_report/Example_2_Gravity_in_2D/reduced_order_error_rel_info_singular_values.py
reduced_order_error_rel_info_singular_values.py
py
8,365
python
en
code
null
code-starcoder2
83
[ { "api_name": "sympy.init_printing", "line_number": 21, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.rcParams.update", "line_number": 26, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.rcParams", "line_number": 26, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot", "line_number": 26, "usage_type": "name" }, { "api_name": "linear_elasticity_2d_solver.default_constants.default_tol", "line_number": 38, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 42, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 42, "usage_type": "attribute" }, { "api_name": "linear_elasticity_2d_solver.helpers.check_and_make_folder", "line_number": 48, "usage_type": "call" }, { "api_name": "time.perf_counter", "line_number": 51, "usage_type": "call" }, { "api_name": "linear_elasticity_2d_solver.LinearElasticity2DProblem.from_functions", "line_number": 52, "usage_type": "call" }, { "api_name": "linear_elasticity_2d_solver.LinearElasticity2DProblem", "line_number": 52, "usage_type": "name" }, { "api_name": "time.perf_counter", "line_number": 53, "usage_type": "call" }, { "api_name": "time.perf_counter", "line_number": 65, "usage_type": "call" }, { "api_name": "time.perf_counter", "line_number": 67, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 78, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 79, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 81, "usage_type": "call" }, { "api_name": "numpy.max", "line_number": 85, "usage_type": "call" }, { "api_name": "numpy.mean", "line_number": 86, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 91, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 91, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 92, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 92, "usage_type": "name" }, { "api_name": "numpy.argwhere", "line_number": 96, "usage_type": "call" }, { "api_name": "numpy.sqrt", "line_number": 97, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.semilogy", "line_number": 99, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 99, "usage_type": "name" }, { "api_name": "numpy.arange", "line_number": 99, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 101, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 101, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 102, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 102, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.grid", "line_number": 103, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 103, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.legend", "line_number": 104, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 104, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 106, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 106, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 107, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 107, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 110, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 110, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 111, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 111, "usage_type": "name" }, { "api_name": "numpy.argwhere", "line_number": 117, "usage_type": "call" }, { "api_name": "numpy.cumsum", "line_number": 118, "usage_type": "call" }, { "api_name": "numpy.sum", "line_number": 118, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 119, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 119, "usage_type": "name" }, { "api_name": "numpy.arange", "line_number": 119, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 120, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 120, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 122, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 122, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 123, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 123, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylim", "line_number": 124, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 124, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.grid", "line_number": 125, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 125, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.legend", "line_number": 126, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 126, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 128, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 128, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 129, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 129, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.subplots", "line_number": 134, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 134, "usage_type": "name" }, { "api_name": "numpy.arange", "line_number": 138, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 142, "usage_type": "call" }, { "api_name": "matplotlib.ticker.MaxNLocator", "line_number": 146, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 151, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 151, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 152, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 152, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 154, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 154, "usage_type": "attribute" }, { "api_name": "multiprocessing.Manager", "line_number": 197, "usage_type": "call" }, { "api_name": "multiprocessing.Pool", "line_number": 199, "usage_type": "call" }, { "api_name": "multiprocessing.cpu_count", "line_number": 199, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 215, "usage_type": "attribute" } ]
387664372
import psycopg2 class WorkWithDataBase: def __init__(self, dbname, user, password, host): self.dbname = dbname self.user = user self.password = password self.host = host self.connection, self.cursor = self.get_connection() # создает подключение def get_connection(self): connection = psycopg2.connect(dbname=self.dbname, user=self.user, password=self.password, host=self.host) connection.autocommit = True cursor = connection.cursor() return connection, cursor # создает таблицы def create_db(self): self.cursor.execute("""CREATE TABLE IF NOT EXISTS Course ( id serial PRIMARY KEY NOT NULL, name VARCHAR(100) NOT NULL); CREATE TABLE IF NOT EXISTS Student ( id serial PRIMARY KEY NOT NULL, name VARCHAR(100) NOT NULL, gpa NUMERIC(10, 2), birth TIMESTAMP WITH TIME ZONE); CREATE TABLE IF NOT EXISTS Student_course ( id serial PRIMARY KEY NOT NULL, student_id INTEGER REFERENCES Student(id) NOT NULL, course_id INTEGER REFERENCES Course(id) NOT NULL); """) print('Таблицы созданы') return # создание курса def create_course(self, name_course): self.cursor.execute("""INSERT INTO Course (name) values (%s);""", (name_course,)) print('\tкурс добавлен в таблицу') return # возвращает студентов выбранного курса def get_students(self, course_id): self.cursor.execute("""SELECT * FROM Student_course WHERE course_id = (%s);""", (course_id,)) print(self.cursor.fetchall()) return # записывает студентов на курс def add_students(self, course_id, student_id): self.cursor.execute("""INSERT INTO Student_course (course_id, student_id) values (%s, %s)""", (course_id, student_id)) print('\tстудент записан') return # просто создает студента в таблице из словаря def add_student(self, student): self.cursor.execute("""INSERT INTO Student (name, gpa, birth) values (%(name)s, %(gpa)s, %(birth)s);""", student) return # посмотреть студента def get_student(self, student_id): self.cursor.execute("""SELECT * FROM Student WHERE id = (%s);""", student_id) print(self.cursor.fetchall()) return # посмотреть курсы def get_course(self): print('\tдоступные курсы') self.cursor.execute("""SELECT * FROM Course""") print(self.cursor.fetchall()) return def create_student_dict(): student_dict = {} while True: print('создание студента(ов): "n" - новый студент, "e" - выход') input_command = input('\tвведите комманду ') if input_command == 'n': name_student = input('\tимя ') gpa_student = input('\tсредняя оценка ') birth_student = input('\tдата рождения ') student = {'name': name_student, 'gpa': gpa_student, 'birth': birth_student} student_dict.update(student) if input_command == 'e': break return student_dict if __name__ == '__main__': print('\nСкрипт для работы с базой PostgreSQL\n' 'Для дальнейшей работы необходимо ввести данные:') base_name = input('\tназвание базы ') user = input('\tлогин ') password = input('\tпароль ') host = input('\tадрес сервера ') postgres_db = WorkWithDataBase(base_name, user, password, host) print('Подключение к базе данных прошло уcпешно') while True: print('\nДоступные команды:\n' '\t"с" - создать таблицу\n' '\t"cc" - создание курса\n' '\t"lc" - посмотреть курсы\n' '\t"g" - показать студентов курса\n' '\t"a" - записать студента на курс\n' '\t"s" - создание студента\n' '\t"l" - посмотреть студента\n' '\t"q" - выход') input_command = input('Ввведите команду: ') if input_command == 'c': postgres_db.create_db() if input_command == 'cc': postgres_db.create_course(input('\tнаберите название курса ')) if input_command == 'lc': postgres_db.get_course() if input_command == 'g': postgres_db.get_students(input('\tнаберите id курса ')) if input_command == 'a': postgres_db.add_students(input('\tнаберите id курса '), input('\tнаберите id студента ')) if input_command == 's': postgres_db.add_student(create_student_dict()) if input_command == 'l': postgres_db.get_student(input('\tнаберите id студента ')) if input_command == 'q': print('\tвыход') break
null
postgresql.py
postgresql.py
py
5,966
python
en
code
null
code-starcoder2
83
[ { "api_name": "psycopg2.connect", "line_number": 14, "usage_type": "call" } ]
435359009
import numpy as np from scipy.integrate import odeint import matplotlib.pyplot as plt plt.switch_backend('agg') import torch import torch.nn as nn from torch.autograd import Variable import torch.optim as optim from mpl_toolkits.mplot3d import Axes3D INPUT_SIZE = 3 HIDDEN_SIZE = 64 OUTPUT_SIZE = 3 LR = 0.01 # Create dataset para = (10.0, 28, 8.0/3.0) #define lorenz equations def f(state, t): x, y, z = state sigma, rho, beta = para return sigma * (y - x), x * (rho - z) - y, x * y - beta * z # time points t_seq = np.arange(0, 40, 0.01) # initial values of x, y, z state0 = [1.0, 1.0, 1.0] # solve ODE states = odeint(f, state0, t_seq) inputs = torch.FloatTensor(states[:-1]).view(1, states.shape[0] - 1, 3) targets = torch.FloatTensor(states[1:]).view(1, states.shape[0] - 1, 3) print(states[:10]) # Define the model class GRUNet(nn.Module): def __init__(self,): super(GRUNet, self).__init__() self.gru = nn.GRU(input_size = INPUT_SIZE, hidden_size = HIDDEN_SIZE, num_layers = 1, #num_layers = 2, batch_first = True) """ self.rnn2 = nn.RNN(input_size = HIDDEN_SIZE, hidden_size = HIDDEN_SIZE, num_layers = 1, batch_first = True) """ self.linear = nn.Linear(HIDDEN_SIZE, OUTPUT_SIZE) def forward(self, x, hidden): out, hidden = self.gru(x,hidden) # [1,seq_len, h] => [seq_len, h] # out, hidden = self.rnn2(out1, hidden1) out = out.view(-1, HIDDEN_SIZE) out = self.linear(out) # [seq_len, h] => [seq_len, 1] out = out.unsqueeze(dim=0) #[seq_len, 1] => [1, seq_len, 1] return out, hidden # Train the model model = GRUNet() criterion = nn.MSELoss() optimizer = optim.Adam(model.parameters(), LR) hidden = None inputs = Variable(inputs) targets = Variable(targets) for iter in range(1001): output, hidden = model(inputs, hidden) hidden = hidden.data loss = criterion(output, targets) model.zero_grad() loss.backward() optimizer.step() if iter % 100 == 0: print("Iteration{} : loss {}".format(iter, loss.item())) # Give any initial point predict the following points and Visualize the result predictions = [] input_point = inputs[:, 30, :] for _ in range(2*inputs.shape[1]): input_point = input_point.view(1, 1, 3) (pred, hidden) = model(input_point, hidden) input_point = pred predictions.append(pred.detach().numpy().ravel()) inputs = inputs.data.numpy().ravel() predictions = np.asarray(predictions) print(predictions) print(predictions[:,0]) fig = plt.figure() ax = fig.gca(projection='3d') print(predictions.shape) ax.plot(predictions[:, 0], predictions[:, 1], predictions[:, 2]) plt.show() plt.savefig("64_gru.png") print(states[:10]) fig1 = plt.figure() ax =fig1.gca(projection = '3d') ax.plot(states[:,0], states[:,1], states[:,2]) plt.savefig("out_exact.png")
null
lorenz_gru.py
lorenz_gru.py
py
3,051
python
en
code
null
code-starcoder2
83
[ { "api_name": "matplotlib.pyplot.switch_backend", "line_number": 4, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 4, "usage_type": "name" }, { "api_name": "numpy.arange", "line_number": 24, "usage_type": "call" }, { "api_name": "scipy.integrate.odeint", "line_number": 29, "usage_type": "call" }, { "api_name": "torch.FloatTensor", "line_number": 30, "usage_type": "call" }, { "api_name": "torch.FloatTensor", "line_number": 31, "usage_type": "call" }, { "api_name": "torch.nn.Module", "line_number": 36, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 36, "usage_type": "name" }, { "api_name": "torch.nn.GRU", "line_number": 40, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 40, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 51, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 51, "usage_type": "name" }, { "api_name": "torch.nn.MSELoss", "line_number": 63, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 63, "usage_type": "name" }, { "api_name": "torch.optim.Adam", "line_number": 64, "usage_type": "call" }, { "api_name": "torch.optim", "line_number": 64, "usage_type": "name" }, { "api_name": "torch.autograd.Variable", "line_number": 67, "usage_type": "call" }, { "api_name": "torch.autograd.Variable", "line_number": 68, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 91, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 94, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 94, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 99, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 99, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 100, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 100, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 103, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 103, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 107, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 107, "usage_type": "name" } ]
74839682
#!/usr/bin/python3 """ Review objects that will handles all default RestFul API actions """ from api.v1.views import app_views from models import storage from models.review import Review from flask import jsonify, abort, request, make_response from werkzeug.exceptions import BadRequest @app_views.route('/places/<place_id>/reviews', methods=['GET', 'POST'], strict_slashes=False) def reviews_by_place(place_id): """ Handle reviews by place """ place = storage.get('Place', place_id) if place is None: abort(404, 'Not found') if request.method == 'GET': reviews_list = [x.to_dict() for x in place.reviews] return make_response(jsonify(reviews_list), 200) elif request.method == 'POST': data = request.get_json() if data is None: abort(400, 'Not a JSON') if data.get('user_id') is None: abort(400, 'Missing user_id') user = storage.get('User', data.get('user_id')) if user is None: abort(404, 'Not found') if data.get('text') is None: abort(400, 'Missing text') new_review = Review(**data) new_review.place_id = place.id new_review.user_id = user.id new_review.save() return make_response(jsonify(**new_review.to_dict()), 201) @app_views.route('/reviews/<review_id>', methods=['GET', 'PUT', 'DELETE'], strict_slashes=False) def reviews(review_id): """ Handle reviews by id """ review = storage.get('Review', review_id) if review is None: abort(404, 'Not found') if request.method == 'GET': return make_response(jsonify(review.to_dict()), 200) elif request.method == 'PUT': changes = dict() try: changes = request.get_json() if changes is None: abort(400, 'Not a JSON') except BadRequest: abort(400, 'Not a JSON') ignores = ('id', 'user_id', 'place_id', 'created_at', 'updated_at') for key, val in changes.items(): if key in ignores: pass else: setattr(review, key, val) review.save() return make_response(jsonify(**review.to_dict()), 200) elif request.method == 'DELETE': storage.delete(review) storage.save() return jsonify({}), 200
null
api/v1/views/places_reviews.py
places_reviews.py
py
2,407
python
en
code
null
code-starcoder2
83
[ { "api_name": "models.storage.get", "line_number": 18, "usage_type": "call" }, { "api_name": "models.storage", "line_number": 18, "usage_type": "name" }, { "api_name": "flask.abort", "line_number": 20, "usage_type": "call" }, { "api_name": "flask.request.method", "line_number": 22, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 22, "usage_type": "name" }, { "api_name": "flask.make_response", "line_number": 24, "usage_type": "call" }, { "api_name": "flask.jsonify", "line_number": 24, "usage_type": "call" }, { "api_name": "flask.request.method", "line_number": 26, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 26, "usage_type": "name" }, { "api_name": "flask.request.get_json", "line_number": 27, "usage_type": "call" }, { "api_name": "flask.request", "line_number": 27, "usage_type": "name" }, { "api_name": "flask.abort", "line_number": 29, "usage_type": "call" }, { "api_name": "flask.abort", "line_number": 31, "usage_type": "call" }, { "api_name": "models.storage.get", "line_number": 33, "usage_type": "call" }, { "api_name": "models.storage", "line_number": 33, "usage_type": "name" }, { "api_name": "flask.abort", "line_number": 35, "usage_type": "call" }, { "api_name": "flask.abort", "line_number": 38, "usage_type": "call" }, { "api_name": "models.review.Review", "line_number": 40, "usage_type": "call" }, { "api_name": "flask.make_response", "line_number": 44, "usage_type": "call" }, { "api_name": "flask.jsonify", "line_number": 44, "usage_type": "call" }, { "api_name": "api.v1.views.app_views.route", "line_number": 12, "usage_type": "call" }, { "api_name": "api.v1.views.app_views", "line_number": 12, "usage_type": "name" }, { "api_name": "models.storage.get", "line_number": 53, "usage_type": "call" }, { "api_name": "models.storage", "line_number": 53, "usage_type": "name" }, { "api_name": "flask.abort", "line_number": 55, "usage_type": "call" }, { "api_name": "flask.request.method", "line_number": 57, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 57, "usage_type": "name" }, { "api_name": "flask.make_response", "line_number": 58, "usage_type": "call" }, { "api_name": "flask.jsonify", "line_number": 58, "usage_type": "call" }, { "api_name": "flask.request.method", "line_number": 60, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 60, "usage_type": "name" }, { "api_name": "flask.request.get_json", "line_number": 64, "usage_type": "call" }, { "api_name": "flask.request", "line_number": 64, "usage_type": "name" }, { "api_name": "flask.abort", "line_number": 66, "usage_type": "call" }, { "api_name": "werkzeug.exceptions.BadRequest", "line_number": 67, "usage_type": "name" }, { "api_name": "flask.abort", "line_number": 68, "usage_type": "call" }, { "api_name": "flask.make_response", "line_number": 79, "usage_type": "call" }, { "api_name": "flask.jsonify", "line_number": 79, "usage_type": "call" }, { "api_name": "flask.request.method", "line_number": 81, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 81, "usage_type": "name" }, { "api_name": "models.storage.delete", "line_number": 82, "usage_type": "call" }, { "api_name": "models.storage", "line_number": 82, "usage_type": "name" }, { "api_name": "models.storage.save", "line_number": 83, "usage_type": "call" }, { "api_name": "models.storage", "line_number": 83, "usage_type": "name" }, { "api_name": "flask.jsonify", "line_number": 84, "usage_type": "call" }, { "api_name": "api.v1.views.app_views.route", "line_number": 47, "usage_type": "call" }, { "api_name": "api.v1.views.app_views", "line_number": 47, "usage_type": "name" } ]
105182208
import requests from django.db import transaction from django.http import HttpResponse from django.http import HttpResponseRedirect from django.http import JsonResponse from django.template.loader import render_to_string from django.urls import reverse from django.views import generic from collections import defaultdict from component_browser.models import PathRequest from core.db_interaction import save_parameters, get_request_params, get_pipes_params, \ get_pipe_params, get_request_path, save_output from core.parse_open_api import extract_parameters from core.pipeline import * from pipeline.models import Pipe, Pipeline def edit_pipeline(request, pk): if request.method == 'POST': pipeline = Pipeline.objects.get(pk=pk) pipeline.delete() return HttpResponseRedirect(reverse('pipeline:index')) class PipelineView(generic.DetailView): model = Pipeline template_name = 'pipeline/pipeline.html' pk_url_kwarg = "pipeline_pk" def get_context_data(self, **kwargs): # Call the base implementation first to get a context context = super().get_context_data(**kwargs) sorted_pipe_objs = [pipe for pipe in Pipe.objects.filter(pipe_line=context["pipeline"]).order_by('position')] get_pipes_params(sorted_pipe_objs) context['pipes'] = get_pipes_params(sorted_pipe_objs) context['pipe_id'] = context['pipeline'].id del context['object'] # del context['pipeline'] return context class OutputDetailView(generic.TemplateView): template_name = 'pipeline/output.html' def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) context['pipe'] = Pipe.objects.get(pk=kwargs['pipe_pk']) return context def evaluation(request, pk, param_pk): if request.method == 'GET': param = Parameter.objects.get(pk=param_pk) evaluation_html = param.evaluation_short if request.is_ajax(): html = render_to_string('pipeline/evaluation.html', {'evaluation': evaluation_html}) return HttpResponse(html) def render_html(request, *args, **kwargs): pipe = Pipe.objects.get(pk=kwargs['pipe_pk']) html_obj = pipe.output return HttpResponse(html_obj['html']) class InputDetailView(generic.TemplateView): template_name = 'pipeline/input.html' def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) pipe = Pipe.objects.get(pk=kwargs['pipe_pk']) context['pipe'] = get_pipe_params(pipe) return context class EmptyPipeView(generic.TemplateView): template_name = 'pipeline/empty_pipeline.html' def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) context['pipeline'] = Pipeline.objects.get(pk=kwargs['pk']) return context class InputOutputDetailView(generic.TemplateView): template_name = 'pipeline/input_output.html' def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) context['pipeline'] = Pipeline.objects.get(pk=kwargs['pipeline_pk']) pipe_data = get_pipe_params(Pipe.objects.get(pk=kwargs['pipe_pk'])) context['pipe'] = pipe_data return context def run(request, pipeline_pk, pipe_pk): # Initialise validation errors. This is appended to by various parts of this function. validation_errors = defaultdict(list) tz = request.session.get('django_timezone', '') if request.method == 'PUT': try: request_data = json.loads(request.body) # Use the pipe id to get the pipeline id. pipe = Pipe.objects.get(pk=pipe_pk) pipeline_id = pipeline_pk # Extract params from form and validate formats. # Note. If parameter values were created by an expression. Evaluate the expression # and save the output as the passed value. What is shown in the text box when # there is an evaluation is only part of the data to reduce data overhead. source_params = convert_and_eval_params(request_data, pipeline_id, validation_errors) # Need to save parameters before making a request, as we load from saved parameters when making the request # rather than from parameters passed to the browser. This ensures consistency between # what is visualised and what is sent in requests. save_parameters(pipe, source_params, validation_errors) # Don't make the request if there were validation errors during conversion and/or saving parameters if validation_errors: return JsonResponse({"errors": validation_errors}, status=400) return make_request(pipe, source_params) except Exception as e: # a catch all # TODO create a snapshot of the processing to help debugging generic errors. # E.g. the passed parameters, the target url, the request type etc. return JsonResponse({"errors": {'general': ["Something unexpected went wrong with the penelope server. " "Please inform the Penelope developers of the following error: {}" .format(str(e))]}}, status="500") def make_request(pipe, source_params): # Get saved parameters request_data = get_request_params(pipe) # Get path to send parameters request_obj = pipe.request request_url = get_request_path(request_obj) headers = {'Content-type': 'application/json', 'Accept': 'application/json'} request = None try: if request_obj.type == "POST": request = requests.post('http://' + request_url, json=request_data, headers=headers) elif request_obj.type == "GET": request = requests.get('http://' + request_url, json=request_data, headers=headers) except Exception as e: return JsonResponse({"errors": {'general': [ "Could not make request to {}. " "Perhaps the server is down?".format(e.request.url)]}}, status="500") return handle_request_response(request, request_url, source_params, pipe) def handle_request_response(request, request_url, source_params, pipe): def round_down(num, divisor): return num - (num % divisor) try: content = json.loads(request.content) except: content = None default_error_message = { 500: "Service at {} had some internal problem processing your request." "No content was returned so no information is given about what went wrong.", 400: "Service at {} reports that the data it received was wrong but no content was provided." "No content was returned so no information is given about what went wrong.", 300: "Service at {} reports a 'redirection' error occurred. This could potentially mean many different things. " "No content was returned so no information is given about what went wrong.", 200: "Service at {} reports success but did not return any content." "No content was returned so no further information is given. This is reported as an error by Penelope" " as content is expected by Penelope but the service may have executed appropriately." } ##################### # handle no content # ##################### if not content: return JsonResponse({"errors": {'general': [default_error_message[round_down(request.status_code, 100)] .format(request_url)]}}, status=request.status_code) ############################ # handle errors in content # ############################ if 'errors' in content: # map value names to ids # TODO decide what to do if the same parameter name occurs more than once in, say, a nested structure param_name_param_id = {param.name: param.id for param in source_params} mapped_errors = {key if key == 'general' else 'val-' + param_name_param_id[key]: value for key, value in content['errors'].items()} content['errors'] = mapped_errors return JsonResponse(content, status=request.status_code) ################## # handle success # ################## # As long as what is returned is json it is saved. This is already taken care of during the json.loads call. if 'html' in content: save_output(pipe, content, True) else: save_output(pipe, {"output": content}, False) return JsonResponse({}, status=request.status_code) def create_pipe(request, pipeline_pk): if request.method == 'PUT': with transaction.atomic(): request_data = json.loads(request.body) pipe_id = request_data['pipe_id'] # use this to decide after which pipe to create new pipe request_id = request_data['request_id'] pipeline = Pipeline.objects.get(pk=pipeline_pk) pipeline.local_id_gen += 1 pipeline.save() # if pipes exist increment all pipes positions ahead of this one. We will insert the pipe below this one in # the position of the pipe that was there before incrementing its position if pipe_id != 'empty': pipe = Pipe.objects.get(pk=pipe_id) pipe_position = pipe.position next_postition = pipe_position + 1 # this is the position the new pipe will occupy # get all pipes at this position and beyond and increment them by 1 pipes = Pipe.objects.filter(position__gte=next_postition) for pipe in pipes: pipe.position += 1 pipe.save() else: next_postition = 0 # start from 0 request_object = PathRequest.objects.get(pk=request_id) new_pipe = Pipe.objects.create(pipe_line=pipeline, request=request_object, output='', local_id=pipeline.local_id_gen, position=next_postition, owner=request.user) new_pipe.save() param_filter = ['id', 'in', '_state', 'is_expression', 'items'] parameters = extract_parameters(request_object.parameters, param_filter, loads=False) def create_param_objects(parameters, parent=None): for param in parameters: properties = None if 'properties' in param: properties = param['properties'] del param['properties'] new_param = Parameter(pipe=new_pipe, info=param, parent=parent) new_param.save() if properties: create_param_objects(properties, new_param) create_param_objects(parameters) # json_new_pipe = json.loads(serializers.serialize('json', [new_pipe])) # json_new_pipe = json_new_pipe[0] # json_new_pipe['pipe_origin'] = pipe_id return JsonResponse({"new_pipe": new_pipe.pk, "pipe_origin": pipe_id}) def delete_pipe(request, pipeline_pk, pipe_pk): if request.method == 'PUT': with transaction.atomic(): pipe = Pipe.objects.get(pk=pipe_pk) next_position = pipe.position + 1 pipe.delete() # need to move back all future pipes by 1 pipes = Pipe.objects.filter(position__gte=next_position) for pipe in pipes: pipe.position -= 1 pipe.save() return JsonResponse({"deleted_pipe": pipe_pk}) def move_up_pipe(request, pipeline_pk, pipe_pk): if request.method == 'PUT': with transaction.atomic(): current_pipe = Pipe.objects.get(pk=pipe_pk) current_position = current_pipe.position try: pipe_before_current = Pipe.objects.filter(pipe_line=pipeline_pk) \ .get(position=current_position - 1) current_pipe.position = pipe_before_current.position pipe_before_current.position = current_position current_pipe.save() pipe_before_current.save() return JsonResponse({"pipe_origin_id": pipe_pk, "pipe_swap_id": pipe_before_current.id}) except Exception as e: return JsonResponse({"message": str(e)}) def move_down_pipe(request, pipeline_pk, pipe_pk): if request.method == 'PUT': with transaction.atomic(): current_pipe = Pipe.objects.get(pk=pipe_pk) current_position = current_pipe.position try: pipe_before_current = Pipe.objects.filter(pipe_line=pipeline_pk)\ .get(position=current_position + 1) current_pipe.position = pipe_before_current.position pipe_before_current.position = current_position current_pipe.save() pipe_before_current.save() return JsonResponse({"pipe_origin_id": pipe_pk, "pipe_swap_id": pipe_before_current.id}) except Exception as e: return JsonResponse({"message": str(e)})
null
pipeline/views.py
views.py
py
13,718
python
en
code
null
code-starcoder2
83
[ { "api_name": "pipeline.models", "line_number": 21, "usage_type": "name" }, { "api_name": "pipeline.models.Pipeline.objects.get", "line_number": 21, "usage_type": "call" }, { "api_name": "pipeline.models.Pipeline.objects", "line_number": 21, "usage_type": "attribute" }, { "api_name": "pipeline.models.Pipeline", "line_number": 21, "usage_type": "name" }, { "api_name": "pipeline.models.delete", "line_number": 22, "usage_type": "call" }, { "api_name": "pipeline.models", "line_number": 22, "usage_type": "name" }, { "api_name": "django.http.HttpResponseRedirect", "line_number": 24, "usage_type": "call" }, { "api_name": "django.urls.reverse", "line_number": 24, "usage_type": "call" }, { "api_name": "django.views.generic.DetailView", "line_number": 27, "usage_type": "attribute" }, { "api_name": "django.views.generic", "line_number": 27, "usage_type": "name" }, { "api_name": "pipeline.models.Pipeline", "line_number": 28, "usage_type": "name" }, { "api_name": "pipeline.models.Pipe.objects.filter", "line_number": 35, "usage_type": "call" }, { "api_name": "pipeline.models.Pipe.objects", "line_number": 35, "usage_type": "attribute" }, { "api_name": "pipeline.models.Pipe", "line_number": 35, "usage_type": "name" }, { "api_name": "core.db_interaction.get_pipes_params", "line_number": 37, "usage_type": "call" }, { "api_name": "core.db_interaction.get_pipes_params", "line_number": 38, "usage_type": "call" }, { "api_name": "django.views.generic.TemplateView", "line_number": 45, "usage_type": "attribute" }, { "api_name": "django.views.generic", "line_number": 45, "usage_type": "name" }, { "api_name": "pipeline.models.Pipe.objects.get", "line_number": 50, "usage_type": "call" }, { "api_name": "pipeline.models.Pipe.objects", "line_number": 50, "usage_type": "attribute" }, { "api_name": "pipeline.models.Pipe", "line_number": 50, "usage_type": "name" }, { "api_name": "django.template.loader.render_to_string", "line_number": 60, "usage_type": "call" }, { "api_name": "django.http.HttpResponse", "line_number": 61, "usage_type": "call" }, { "api_name": "pipeline.models.Pipe.objects.get", "line_number": 65, "usage_type": "call" }, { "api_name": "pipeline.models.Pipe.objects", "line_number": 65, "usage_type": "attribute" }, { "api_name": "pipeline.models.Pipe", "line_number": 65, "usage_type": "name" }, { "api_name": "django.http.HttpResponse", "line_number": 67, "usage_type": "call" }, { "api_name": "django.views.generic.TemplateView", "line_number": 70, "usage_type": "attribute" }, { "api_name": "django.views.generic", "line_number": 70, "usage_type": "name" }, { "api_name": "pipeline.models.Pipe.objects.get", "line_number": 75, "usage_type": "call" }, { "api_name": "pipeline.models.Pipe.objects", "line_number": 75, "usage_type": "attribute" }, { "api_name": "pipeline.models.Pipe", "line_number": 75, "usage_type": "name" }, { "api_name": "core.db_interaction.get_pipe_params", "line_number": 77, "usage_type": "call" }, { "api_name": "django.views.generic.TemplateView", "line_number": 81, "usage_type": "attribute" }, { "api_name": "django.views.generic", "line_number": 81, "usage_type": "name" }, { "api_name": "pipeline.models.Pipeline.objects.get", "line_number": 86, "usage_type": "call" }, { "api_name": "pipeline.models.Pipeline.objects", "line_number": 86, "usage_type": "attribute" }, { "api_name": "pipeline.models.Pipeline", "line_number": 86, "usage_type": "name" }, { "api_name": "django.views.generic.TemplateView", "line_number": 90, "usage_type": "attribute" }, { "api_name": "django.views.generic", "line_number": 90, "usage_type": "name" }, { "api_name": "pipeline.models.Pipeline.objects.get", "line_number": 95, "usage_type": "call" }, { "api_name": "pipeline.models.Pipeline.objects", "line_number": 95, "usage_type": "attribute" }, { "api_name": "pipeline.models.Pipeline", "line_number": 95, "usage_type": "name" }, { "api_name": "core.db_interaction.get_pipe_params", "line_number": 97, "usage_type": "call" }, { "api_name": "pipeline.models.Pipe.objects.get", "line_number": 97, "usage_type": "call" }, { "api_name": "pipeline.models.Pipe.objects", "line_number": 97, "usage_type": "attribute" }, { "api_name": "pipeline.models.Pipe", "line_number": 97, "usage_type": "name" }, { "api_name": "collections.defaultdict", "line_number": 105, "usage_type": "call" }, { "api_name": "pipeline.models.Pipe.objects.get", "line_number": 114, "usage_type": "call" }, { "api_name": "pipeline.models.Pipe.objects", "line_number": 114, "usage_type": "attribute" }, { "api_name": "pipeline.models.Pipe", "line_number": 114, "usage_type": "name" }, { "api_name": "core.db_interaction.save_parameters", "line_number": 126, "usage_type": "call" }, { "api_name": "django.http.JsonResponse", "line_number": 130, "usage_type": "call" }, { "api_name": "django.http.JsonResponse", "line_number": 137, "usage_type": "call" }, { "api_name": "core.db_interaction.get_request_params", "line_number": 146, "usage_type": "call" }, { "api_name": "core.db_interaction.get_request_path", "line_number": 149, "usage_type": "call" }, { "api_name": "requests.post", "line_number": 156, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 158, "usage_type": "call" }, { "api_name": "django.http.JsonResponse", "line_number": 160, "usage_type": "call" }, { "api_name": "django.http.JsonResponse", "line_number": 193, "usage_type": "call" }, { "api_name": "django.http.JsonResponse", "line_number": 209, "usage_type": "call" }, { "api_name": "core.db_interaction.save_output", "line_number": 217, "usage_type": "call" }, { "api_name": "core.db_interaction.save_output", "line_number": 219, "usage_type": "call" }, { "api_name": "django.http.JsonResponse", "line_number": 221, "usage_type": "call" }, { "api_name": "django.db.transaction.atomic", "line_number": 227, "usage_type": "call" }, { "api_name": "django.db.transaction", "line_number": 227, "usage_type": "name" }, { "api_name": "pipeline.models", "line_number": 232, "usage_type": "name" }, { "api_name": "pipeline.models.Pipeline.objects.get", "line_number": 232, "usage_type": "call" }, { "api_name": "pipeline.models.Pipeline.objects", "line_number": 232, "usage_type": "attribute" }, { "api_name": "pipeline.models.Pipeline", "line_number": 232, "usage_type": "name" }, { "api_name": "pipeline.models.local_id_gen", "line_number": 233, "usage_type": "attribute" }, { "api_name": "pipeline.models", "line_number": 233, "usage_type": "name" }, { "api_name": "pipeline.models.save", "line_number": 234, "usage_type": "call" }, { "api_name": "pipeline.models", "line_number": 234, "usage_type": "name" }, { "api_name": "pipeline.models.Pipe.objects.get", "line_number": 239, "usage_type": "call" }, { "api_name": "pipeline.models.Pipe.objects", "line_number": 239, "usage_type": "attribute" }, { "api_name": "pipeline.models.Pipe", "line_number": 239, "usage_type": "name" }, { "api_name": "pipeline.models.Pipe.objects.filter", "line_number": 244, "usage_type": "call" }, { "api_name": "pipeline.models.Pipe.objects", "line_number": 244, "usage_type": "attribute" }, { "api_name": "pipeline.models.Pipe", "line_number": 244, "usage_type": "name" }, { "api_name": "component_browser.models.PathRequest.objects.get", "line_number": 252, "usage_type": "call" }, { "api_name": "component_browser.models.PathRequest.objects", "line_number": 252, "usage_type": "attribute" }, { "api_name": "component_browser.models.PathRequest", "line_number": 252, "usage_type": "name" }, { "api_name": "pipeline.models.Pipe.objects.create", "line_number": 253, "usage_type": "call" }, { "api_name": "pipeline.models.Pipe.objects", "line_number": 253, "usage_type": "attribute" }, { "api_name": "pipeline.models.Pipe", "line_number": 253, "usage_type": "name" }, { "api_name": "pipeline.models", "line_number": 253, "usage_type": "name" }, { "api_name": "pipeline.models.local_id_gen", "line_number": 256, "usage_type": "attribute" }, { "api_name": "pipeline.models", "line_number": 256, "usage_type": "name" }, { "api_name": "core.parse_open_api.extract_parameters", "line_number": 263, "usage_type": "call" }, { "api_name": "django.http.JsonResponse", "line_number": 286, "usage_type": "call" }, { "api_name": "django.db.transaction.atomic", "line_number": 291, "usage_type": "call" }, { "api_name": "django.db.transaction", "line_number": 291, "usage_type": "name" }, { "api_name": "pipeline.models.Pipe.objects.get", "line_number": 292, "usage_type": "call" }, { "api_name": "pipeline.models.Pipe.objects", "line_number": 292, "usage_type": "attribute" }, { "api_name": "pipeline.models.Pipe", "line_number": 292, "usage_type": "name" }, { "api_name": "pipeline.models.Pipe.objects.filter", "line_number": 297, "usage_type": "call" }, { "api_name": "pipeline.models.Pipe.objects", "line_number": 297, "usage_type": "attribute" }, { "api_name": "pipeline.models.Pipe", "line_number": 297, "usage_type": "name" }, { "api_name": "django.http.JsonResponse", "line_number": 302, "usage_type": "call" }, { "api_name": "django.db.transaction.atomic", "line_number": 307, "usage_type": "call" }, { "api_name": "django.db.transaction", "line_number": 307, "usage_type": "name" }, { "api_name": "pipeline.models.Pipe.objects.get", "line_number": 308, "usage_type": "call" }, { "api_name": "pipeline.models.Pipe.objects", "line_number": 308, "usage_type": "attribute" }, { "api_name": "pipeline.models.Pipe", "line_number": 308, "usage_type": "name" }, { "api_name": "pipeline.models.Pipe.objects.filter", "line_number": 311, "usage_type": "call" }, { "api_name": "pipeline.models.Pipe.objects", "line_number": 311, "usage_type": "attribute" }, { "api_name": "pipeline.models.Pipe", "line_number": 311, "usage_type": "name" }, { "api_name": "django.http.JsonResponse", "line_number": 318, "usage_type": "call" }, { "api_name": "django.http.JsonResponse", "line_number": 322, "usage_type": "call" }, { "api_name": "django.db.transaction.atomic", "line_number": 327, "usage_type": "call" }, { "api_name": "django.db.transaction", "line_number": 327, "usage_type": "name" }, { "api_name": "pipeline.models.Pipe.objects.get", "line_number": 328, "usage_type": "call" }, { "api_name": "pipeline.models.Pipe.objects", "line_number": 328, "usage_type": "attribute" }, { "api_name": "pipeline.models.Pipe", "line_number": 328, "usage_type": "name" }, { "api_name": "pipeline.models.Pipe.objects.filter", "line_number": 331, "usage_type": "call" }, { "api_name": "pipeline.models.Pipe.objects", "line_number": 331, "usage_type": "attribute" }, { "api_name": "pipeline.models.Pipe", "line_number": 331, "usage_type": "name" }, { "api_name": "django.http.JsonResponse", "line_number": 338, "usage_type": "call" }, { "api_name": "django.http.JsonResponse", "line_number": 342, "usage_type": "call" } ]
316336639
#!/usr/bin/env python import sys import argparse import os import warnings import json import prism import transformers import bert_score from scipy import stats import matplotlib.pyplot as plt import pandas as pd import statistics import csv import seaborn as sns import numpy as np import datasets __models__ = ['prism', 'bert_score', 'roberta_ft', 'bleu', 'bleurt', 'fed'] def create_arg_parser(): """Creates and returns the ArgumentParser object.""" parser = argparse.ArgumentParser(description='Description of your app.') parser.add_argument('-d','--datadir', type=str, help='Path to data from baseline_preprocess.py.') parser.add_argument('-o','--outputdir', type=str, help='Path to output to write scores.') parser.add_argument('-p','--plotdir', type=str, help='Path to output to write plots.') parser.add_argument('--ref', type=str, help='Reference to use: ref, empty.') parser.add_argument('--model', type=str, help='Model to use. Implemented for prism, bert_score, roberta_ft.') return parser def get_scores(modelname, datadir, outputdir=None, ref='ref'): """ Uses specified model to score examples read from datadir. See README.md for proper data format Keyword arguments: model -- model to use datadir -- string directory to fetch data (tsv) outputdir -- optional string directory path to save output ref -- optional string denoting reference string. either 'ref' or 'empty' """ # check ref argument validity if ref not in ['ref', 'context_last', 'empty', 'multi_avg', 'multi_max', 'multi']: raise ValueError("ref must be 'ref' or 'context_last' or 'empty' or 'multi_avg' or 'multi_max' or 'multi'.") if modelname not in __models__: raise ValueError("model not listed") # get scores if modelname == 'prism': model = prism.Prism(model_dir=os.environ['MODEL_DIR'], lang='en') elif modelname == 'bert_score': pass # no model directory elif modelname == 'roberta_ft': pass # no model directory elif modelname == 'bleu': model = datasets.load_metric("sacrebleu") elif modelname == 'bleurt': model = datasets.load_metric('bleurt', 'bleurt-large-512') else: warnings.warn('Model not listed.') # read in data data = pd.read_csv(datadir, sep='\t') # determine model inputs if ref == 'ref': ref_list = data['reference_text'].astype(str).to_list() elif ref == 'context_last': ref_list = data['prompt_text'].astype(str).to_list() elif ref == 'empty': ref_list = [''] * len(data['candidate_text']) cand_list = data['candidate_text'].astype(str).to_list() # determine model and calculate scores score = [] if modelname == 'prism': if ref == 'multi_avg' or ref == 'multi_max': # ref ref_list = data['reference_text'].astype(str).to_list() ref_score = [model.score([c], [r]) for c, r in zip(cand_list, ref_list)] # context_last ref_list = data['prompt_text'].apply(lambda x: str(x).split('\n')[-1]).to_list() context_score = [model.score([c], [r]) for c, r in zip(cand_list, ref_list)] # empty ref_list = [''] * len(data['candidate_text']) empty_score = [model.score([c], [r]) for c, r in zip(cand_list, ref_list)] else: score = [model.score([c], [r]) for c, r in zip(cand_list, ref_list)] elif modelname == 'bert_score': p, r, score = bert_score.score(cands=cand_list, refs=ref_list, lang='en', verbose=True) elif modelname == 'roberta_ft': p, r, score = bert_score.score(cands=cand_list, refs=ref_list, lang='en', verbose=True, model_type='../Chatbot_evaluation/models/roberta_ft', num_layers=10) elif modelname == 'bleu': if ref == 'multi': # ref ref_list = data['reference_text'].astype(str).to_list() # context_last context_list = data['prompt_text'].apply(lambda x: str(x).split('\n')[-1]).to_list() bs = [model.compute(predictions=[cand], references=[[ref, ctx]]) for cand, ref, ctx in zip(cand_list, ref_list, context_list)] else: bs = [model.compute(predictions=[c], references=[[r]]) for c, r in zip(cand_list, ref_list)] score = [x['bp'] for x in bs] elif modelname == 'bleurt': preds = model.compute(predictions=cand_list, references=ref_list) score = preds['scores'] # add scores to dataframe if modelname == 'prism' and (ref == 'multi_avg' or ref == 'multi_max'): data['ref_score'] = ref_score data['context_score'] = context_score data['empty_score'] = empty_score if ref == 'multi_avg': data['score'] = data[['ref_score', 'context_score', 'empty_score']].mean(axis=1) elif ref == 'multi_max': data['score'] = data[['ref_score', 'context_score', 'empty_score']].max(axis=1) else: data['score'] = score # write scores to output if outputdir is not None: data.to_csv(outputdir, sep='\t') return data def plot_correlation(scores, plotdir, ref, modelname): """ plots correlation between human annotation and evaluation scores Keyword arguments: scores -- dataframe of examples and scores plotdir -- string directory path to save plots """ scores.dropna(subset=['score', 'win_ratio'], inplace=True) evaluation_scores = np.array(scores['score'], dtype=float) win_ratio = np.array(scores['win_ratio'], dtype=float) # construct correlation plot plt.figure() fig, ax = plt.subplots(1,1, figsize=(12,12)) # compute correlation slope, intercept, r_value, p_value, std_err = stats.linregress(evaluation_scores, win_ratio) # plot ax.plot(evaluation_scores, win_ratio, 'o', label='original data') ax.plot(evaluation_scores, intercept + slope*evaluation_scores, 'r', label='fitted line') ax.set_title(label='$R=${0}\n p={1}'.format(str(round(r_value,6)), str(round(p_value,6)))) print('$R=${0}\n p={1}'.format(str(round(r_value,6)), str(round(p_value,6)))) handles, labels = ax.get_legend_handles_labels() fig.legend(handles, labels, loc='upper right') fig.text(0.5, 0.00, 'Automatic Evaluation Metric Score', ha='center', fontsize=12) fig.text(0.02, 0.5, 'Win Ratio', va='center', rotation='vertical', fontsize=12) fig.tight_layout() plt.savefig(plotdir) plt.close() # for multi ref PRISM, also compare to single ref scores if modelname == 'prism' and (ref == 'multi_avg' or ref == 'multi_max'): for col in ['ref_score', 'context_score', 'empty_score']: # compute correlation slope, intercept, r_value, p_value, std_err = stats.linregress(evaluation_scores, scores[col]) print(col) print('$R=${0}\n p={1}'.format(str(round(r_value,6)), str(round(p_value,6)))) def main(): print("Entered main...") arg_parser = create_arg_parser() try: options = arg_parser.parse_args() except ArgumentError(): print('baseline_scores.py --model <model> --ref <ref> -d <datadir> -o <outputdir> -p <plotdir>') print(options) print('Getting scores... ') scores = get_scores(modelname=options.model, datadir=options.datadir, outputdir=options.outputdir, ref=options.ref) if options.plotdir is not None: print('Getting correlations...') median_annotations = plot_correlation(scores=scores, plotdir=options.plotdir, ref=options.ref, modelname=options.model) if __name__ == '__main__': main() sys.exit(0)
null
chateval_db_scores.py
chateval_db_scores.py
py
7,668
python
en
code
null
code-starcoder2
83
[ { "api_name": "argparse.ArgumentParser", "line_number": 25, "usage_type": "call" }, { "api_name": "prism.Prism", "line_number": 50, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 50, "usage_type": "attribute" }, { "api_name": "datasets.load_metric", "line_number": 56, "usage_type": "call" }, { "api_name": "datasets.load_metric", "line_number": 58, "usage_type": "call" }, { "api_name": "warnings.warn", "line_number": 60, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 63, "usage_type": "call" }, { "api_name": "bert_score.score", "line_number": 89, "usage_type": "call" }, { "api_name": "bert_score.score", "line_number": 91, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 133, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 134, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 136, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 136, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.subplots", "line_number": 137, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 137, "usage_type": "name" }, { "api_name": "scipy.stats.linregress", "line_number": 139, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 139, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 152, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 152, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.close", "line_number": 153, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 153, "usage_type": "name" }, { "api_name": "scipy.stats.linregress", "line_number": 159, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 159, "usage_type": "name" }, { "api_name": "sys.exit", "line_number": 180, "usage_type": "call" } ]
200532619
import requests from sys import exit class Finance: indicat = [ 'Bid', 'Open', 'Ask', 'Volume','All','Exit' ] url = "https://finance.yahoo.com/quote/AAPL?p=AAPL" def __init__(self): self.ShowScreen(1) param = input("\nSelect value from the list above: ") if(param.capitalize() == 'All' or int (param) == 4): self.getAllParams() else: self.getParamValue(param) print("\nBye..") exit(0) def getParamValue(self,param): inputType = True if param.isalpha() else False if inputType: param = param.capitalize() if param in self.indicat: pass else: print("you enter Wrong value, Please try again") exit(1) else: param = int(param) if param < len(self.indicat): if(param == len(self.indicat)-1): print("\nBye...") exit(0) else: param = self.indicat[param] else: print("you enter Wrong value, Please try again") exit(2) try: response = requests.get(self.url) htmltext = response.text splitlist = htmltext.split(param) result = splitlist[1].split("\">")[2].split("<")[0] except: result = "Error...We will fix it soon" exit(3) print(f"\n{Colors.OKGREEN}Result: {result}{Colors.OKGREEN}") def getAllParams(self): for i in range((len(self.indicat)-2)): self.getParamValue(self.indicat[i]) def ShowScreen(self, showMeThis): if showMeThis == 1: # welcome Screen print(f"\n{Colors.HEADER}Welcom to Apple Inc.(AAPL) Finance\n{Colors.HEADER}") for i in self.indicat: print(f" [*]\t{i}") class Colors: HEADER = '\033[95m' OKBLUE = '\033[94m' OKCYAN = '\033[96m' OKGREEN = '\033[92m' WARNING = '\033[93m' FAIL = '\033[91m' ENDC = '\033[0m' BOLD = '\033[1m' UNDERLINE = '\033[4m' ############## Finance()
null
Finance_web_scraping_Exmaple.py
Finance_web_scraping_Exmaple.py
py
2,258
python
en
code
null
code-starcoder2
83
[ { "api_name": "sys.exit", "line_number": 18, "usage_type": "call" }, { "api_name": "sys.exit", "line_number": 28, "usage_type": "call" }, { "api_name": "sys.exit", "line_number": 34, "usage_type": "call" }, { "api_name": "sys.exit", "line_number": 39, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 41, "usage_type": "call" }, { "api_name": "sys.exit", "line_number": 47, "usage_type": "call" } ]
299817752
# -*- coding: utf-8 -*- """ Created on Mon Jul 11 11:26:12 2016 @author: SRINIVAS """ from bs4 import BeautifulSoup as bs import urllib.request t=[] we=0 url='https://projecteuler.net/problem=' meep=input('Problem #') url=url+meep page = urllib.request.urlopen(url) soup = bs(page.read()) tea=soup.findAll('p') for elem in tea: print(bs.get_text(elem))
null
E find.py
E find.py
py
380
python
en
code
null
code-starcoder2
83
[ { "api_name": "urllib.request.request.urlopen", "line_number": 14, "usage_type": "call" }, { "api_name": "urllib.request.request", "line_number": 14, "usage_type": "attribute" }, { "api_name": "urllib.request", "line_number": 14, "usage_type": "name" }, { "api_name": "bs4.BeautifulSoup", "line_number": 15, "usage_type": "call" }, { "api_name": "bs4.BeautifulSoup.get_text", "line_number": 18, "usage_type": "call" }, { "api_name": "bs4.BeautifulSoup", "line_number": 18, "usage_type": "name" } ]
551556376
import os, pickle import pandas as pd import numpy as np import xml.etree.ElementTree as ET TEST_ROOT = 'validate_results/py-faster-rcnn2_15000_iters100000test53107_12_10/Main/' # 模型测试结果根目录 ANNOTATIONS_ROOT = 'data/validate_annotations/Annotations/' # 标注根目录 CLASS_IDS = ['0001', '0002', '0003', '0004', '0005', '0006', '0007', '0008', '0009', '0010', '0011', '0012', '0013', '0014', '0015', '0016', '0017', '0018', '0019', '0020', '0021', '0022', '0023', '0024', '0025', '0026', '0027', '0028', '0029', '0030', '0031', '0032'] def get_classX_test_paths(class_id, test_root = TEST_ROOT): # 获取类别X的测试结果路径 classX_test_paths, files = [], None for root, dirs, files in os.walk(test_root): pass for file in files: if file[-8:-4] == class_id: classX_test_paths.append(file) f = lambda x: test_root + x classX_test_paths = list(map(f, classX_test_paths)) return classX_test_paths def read_classX_test_data(classX_test_paths): # 获取类别X的测试结果数据 classX_test_data = pd.DataFrame(columns=['image_id', 'score', 'b0', 'b1', 'b2', 'b3', 'predict_class']) for classX_test_path in classX_test_paths: temp = pd.read_csv(classX_test_path, header=None, names=['image_id', 'score', 'b0', 'b1', 'b2', 'b3'], sep=' ') temp['predict_class'] = class_id classX_test_data = classX_test_data.append(temp) classX_test_data = classX_test_data.sort_values('score', ascending=False).reset_index(drop=True) return classX_test_data def get_annotation_paths(annotations_root = ANNOTATIONS_ROOT): # 获取标注路径 files = None for root, dirs, files in os.walk(annotations_root): pass f = lambda x: annotations_root + x annotation_paths = list(map(f, files)) return annotation_paths def read_image_annotations(img_id, class_id, annotations_root = ANNOTATIONS_ROOT): # 获取图像的标注 annotations_path = annotations_root + img_id + '.xml' annotations_xml_root = ET.parse(annotations_path) object_nodes = annotations_xml_root.findall('object') ref_bboxs = [] for object in object_nodes: if object.find('name').text == class_id: temp_bbox = [] bbox_node = object.find('bndbox') temp_bbox.append(int(bbox_node.find('xmin').text)) temp_bbox.append(int(bbox_node.find('ymin').text)) temp_bbox.append(int(bbox_node.find('xmax').text)) temp_bbox.append(int(bbox_node.find('ymax').text)) ref_bboxs.append(temp_bbox) return ref_bboxs def statistic_class_counts(annotations_root = ANNOTATIONS_ROOT): # 统计整个验证集中各个类别的数量 dump_path = 'class_counts.pkl' if os.path.exists(dump_path): print('class_counts exist') with open(dump_path, 'rb') as f: class_counts = pickle.load(f) else: print('class_count not exist') class_counts = [0] * 32 annotation_paths = get_annotation_paths(annotations_root) for annotation_path in annotation_paths: annotations_xml_root = ET.parse(annotation_path) object_nodes = annotations_xml_root.findall('object') for object in object_nodes: class_id = int(object.find('name').text) class_counts[class_id - 1] += 1 with open(dump_path, 'wb') as f: pickle.dump(class_counts, f, protocol=4) return class_counts def calculate_iou(ref_bbox, test_bbox): # 计算两个矩形框的iou值 ref_x1 = ref_bbox[0] ref_y1 = ref_bbox[1] ref_x2 = ref_bbox[2] ref_y2 = ref_bbox[3] ref_width = ref_x2 - ref_x1 ref_height = ref_y2 - ref_y1 ref_area = ref_width * ref_height test_x1 = test_bbox[0] test_y1 = test_bbox[1] test_x2 = test_bbox[2] test_y2 = test_bbox[3] test_width = test_x2 - test_x1 test_height = test_y2 - test_y1 test_area = test_width * test_height start_x = min(ref_x1, test_x1) end_x= max(ref_x2, test_x2) start_y = min(ref_y1, test_y1) end_y = max(ref_y2, test_y2) inter_width = ref_width + test_width - (end_x - start_x) inter_height = ref_height + test_height - (end_y - start_y) inter_area = inter_width * inter_height if inter_width < 0 or inter_height < 0: iou = 0 else: iou = inter_area * 1.0 / (ref_area + test_area - inter_area) return iou def calculate_gt_precision_recall(classX_test_data, annotations_root): # 计算某个类别 class_id = classX_test_data.ix[0, 'predict_class'] ground_truth, precision, recall, tp = [], [], [], 0 for row in range(len(classX_test_data)):#row=0 predict_count = row + 1 img_id = classX_test_data.iloc[row, 0] test_bbox = list(map(int, map(round, list(classX_test_data.iloc[row, 2:6])))) ref_bboxs = read_image_annotations(img_id, class_id, annotations_root) if len(ref_bboxs) == 0: ground_truth.append(0) else: IS_TP = False for ref_bbox in ref_bboxs: iou = calculate_iou(ref_bbox, test_bbox) if iou > 0.5: IS_TP = True if IS_TP: ground_truth.append(1) tp += 1 else: ground_truth.append(0) precision.append(tp / predict_count) recall.append(tp) classX_test_data['ground_truth'] = ground_truth classX_test_data['precision'] = precision classX_test_data['recall'] = recall return classX_test_data def calculate_classX_ap(classX_test_data, threshold, class_count, calculated_max_precisions = None, calculated_rows = 0): # 计算类别X的AP 具体计算方法见链接http://blog.sina.com.cn/s/blog_9db078090102whzw.html if calculated_rows == 0: calculated_max_precisions = [] predict_count, recall = 0, 0 else: predict_count, recall = calculated_rows, classX_test_data.ix[calculated_rows - 1, 'recall'] class_id = classX_test_data.ix[0, 'predict_class'] classX_count = class_count[int(class_id) - 1] temp_data = classX_test_data[classX_test_data.score >= threshold] max_precisions = calculated_max_precisions[:] for row in range(calculated_rows, len(temp_data)): predict_count += 1 temp_recall = temp_data.iloc[row, -1] if recall != temp_recall: recall = temp_recall temp_max_precision = temp_data.ix[row, 'precision'] max_precisions.append(temp_max_precision) calculated_max_precisions.append(temp_max_precision) calculated_rows = len(temp_data) # 计算真正例没有超过该类别实际数量的max_precisions,相当于有classX_count-tp+1个正例没有预测出来,可以认为预测置信度为0 # 这时候相当于每增加一个预测都一个真实的标签被预测错误 tp = recall for i in range(classX_count - tp + 1): predict_count += 1 max_precisions.append(tp / predict_count) ap = np.sum(np.array(max_precisions)) / len(max_precisions) return ap, calculated_max_precisions, calculated_rows def get_best_threshold(classX_test_data, min_threshold, max_threshold, class_count): # 获取类别X的最优阈值 max_ap, best_threshold = 0, 0 threshold_range = [x / 100 for x in range(int(min_threshold * 100), int(max_threshold * 100), 1)] threshold_range.sort(reverse=True) calculated_max_precisions, calculated_rows = [], 0 for threshold in threshold_range: ap, calculated_max_precisions, calculated_rows = \ calculate_classX_ap(classX_test_data, threshold, class_count, calculated_max_precisions, calculated_rows) if ap > max_ap: max_ap = ap best_threshold = threshold return best_threshold, max_ap if __name__ == '__main__': class_count = statistic_class_counts(ANNOTATIONS_ROOT) best_thresholds, max_aps = [], [] for class_id in CLASS_IDS: classX_test_paths = get_classX_test_paths(class_id, TEST_ROOT) classX_test_data = read_classX_test_data(classX_test_paths) classX_test_data = calculate_gt_precision_recall(classX_test_data, ANNOTATIONS_ROOT) best_threshold, max_ap = get_best_threshold(classX_test_data, 0.1, 1, class_count) # 阈值范围设定在 0.1 ~ 1 best_thresholds.append(best_threshold) max_aps.append(max_ap) print(class_id + ' best_threshold: ' + str(best_threshold) + ' max_ap: ' + str(max_ap)) max_mAP = np.sum(np.array(max_aps)) / len(max_aps) print('best thresholds: ', best_thresholds) print('max mAP: ', max_mAP)
null
deadline_code_results/code/calculate_rcnn2_mAP.py
calculate_rcnn2_mAP.py
py
8,778
python
en
code
null
code-starcoder2
83
[ { "api_name": "os.walk", "line_number": 16, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 27, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 30, "usage_type": "call" }, { "api_name": "os.walk", "line_number": 40, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree.parse", "line_number": 49, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree", "line_number": 49, "usage_type": "name" }, { "api_name": "os.path.exists", "line_number": 66, "usage_type": "call" }, { "api_name": "os.path", "line_number": 66, "usage_type": "attribute" }, { "api_name": "pickle.load", "line_number": 69, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree.parse", "line_number": 75, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree", "line_number": 75, "usage_type": "name" }, { "api_name": "pickle.dump", "line_number": 81, "usage_type": "call" }, { "api_name": "numpy.sum", "line_number": 175, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 175, "usage_type": "call" }, { "api_name": "numpy.sum", "line_number": 206, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 206, "usage_type": "call" } ]
300185574
# -*- coding: utf-8 -*- # Author: Ke Wang # Contact: wangke17[AT]pku.edu.cn ###################################################################################### # Packages ###################################################################################### # Basic Packages import os import time import argparse import math import numpy import torch import torch.nn as nn # import matplotlib # from matplotlib import pyplot as plt # Import your custom models. from models.hello_world import HELLO from data_utils.tools import Logger # Pre-set os.environ['CUDA_LAUNCH_BLOCKING'] = "1" ###################################################################################### # Hyper-parameters ###################################################################################### parser = argparse.ArgumentParser(description="Here is your model discription.") # parser.add_argument("--task_name", default=None, type=str/int/float/bool, required=True, choices=[], # help="The name of the task to train.") # Environmental parameters parser.add_argument('--gpu_id', type=str, default='0', help='Specifies the GPU to use.') parser.add_argument('--if_load_from_checkpoint', type=bool, default=False, help='If load from saved checkpoint.') # File parameters parser.add_argument('--checkpoint_name', type=str, default="None", help='Saved checkpoint name.') # Model parameters ###################################################################################### # End of hyper parameters ###################################################################################### args = parser.parse_args() # Set logging file if args.if_load_from_checkpoint: timestamp = args.checkpoint_name else: timestamp = str(int(time.time())) args.current_save_path = 'outputs/%s/' % timestamp if not os.path.exists(args.current_save_path): os.makedirs(args.current_save_path) # Create the output path args.log_file = args.current_save_path + time.strftime("log_%Y_%m_%d_%H_%M_%S.txt", time.localtime()) args.log = Logger(args.log_file, level="debug") args.logger = args.log.logger # set gpu if torch.cuda.is_available(): os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id args.logger.info("You are now using GPU {}".format(args.gpu_id)) else: args.logger.warning("CUDA is not avaliable, so now in CPU mode!") # Write your main code here. if __name__ == '__main__': HELLO()
null
Basic_framework/main.py
main.py
py
2,397
python
en
code
null
code-starcoder2
83
[ { "api_name": "os.environ", "line_number": 25, "usage_type": "attribute" }, { "api_name": "argparse.ArgumentParser", "line_number": 29, "usage_type": "call" }, { "api_name": "time.time", "line_number": 50, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 52, "usage_type": "call" }, { "api_name": "os.path", "line_number": 52, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 53, "usage_type": "call" }, { "api_name": "time.strftime", "line_number": 54, "usage_type": "call" }, { "api_name": "time.localtime", "line_number": 54, "usage_type": "call" }, { "api_name": "data_utils.tools.Logger", "line_number": 55, "usage_type": "call" }, { "api_name": "torch.cuda.is_available", "line_number": 59, "usage_type": "call" }, { "api_name": "torch.cuda", "line_number": 59, "usage_type": "attribute" }, { "api_name": "os.environ", "line_number": 60, "usage_type": "attribute" }, { "api_name": "models.hello_world.HELLO", "line_number": 68, "usage_type": "call" } ]
535290133
# Simple script to create region file from catalog import numpy as np from astropy.io import fits import sys wd='/Users/alberto/Downloads/' input = 'bootes_LOFAR_lba_retana-montenegro18.fit' output = 'bootes_LOFAR_lba_retana-montenegro18.reg' size = '8' color='yellow' # Open the catalog cat=fits.open(wd+input) ra=cat[1].data['RAJ2000'] dec=cat[1].data['DEJ2000'] cat.close() w=open(wd+output,'w') for i in range(len(ra)): w.write('circle('+str(ra[i])+'d,'+str(dec[i])+'d,'+size+'\") # width=2 color='+color+'\n') w.close()
null
create_regfile_from_catalog.py
create_regfile_from_catalog.py
py
531
python
en
code
null
code-starcoder2
83
[ { "api_name": "astropy.io.fits.open", "line_number": 15, "usage_type": "call" }, { "api_name": "astropy.io.fits", "line_number": 15, "usage_type": "name" } ]
309860680
import numpy as np from keras.datasets import mnist from keras.models import Model from keras.layers import Dense,Input import matplotlib.pyplot as plt #process data (X_train,_),(X_test,Y_test)=mnist.load_data() X_train=X_train.astype("float32")/255-0.5 X_test=X_test.astype("float32")/255-0.5 X_train=X_train.reshape((X_train.shape[0],-1)) X_test=X_test.reshape((X_test.shape[0],-1)) print(X_train.shape) print(X_test.shape) #build model #the target dimension to compress encoding_dim=2 #placeholder for input input_img=Input(shape=(784,)) #encoder layers encoded=Dense(128,activation="relu")(input_img) encoded=Dense(64,activation="relu")(encoded) encoded=Dense(10,activation="relu")(encoded) encoder_output=Dense(encoding_dim)(encoded) #decode layers decoded=Dense(10,activation="relu")(encoder_output) decoded=Dense(64,activation="relu")(decoded) decoded=Dense(128,activation="relu")(decoded) decoded=Dense(784,activation="tanh")(decoded) #autoencoder model autoencoder=Model(input=input_img,output=decoded) #encoder model encoder=Model(input=input_img,output=encoder_output) #compile model autoencoder.compile(optimizer="adam",loss="mse") autoencoder.fit(X_train,X_train,epochs=50,batch_size=256,shuffle=True) # plotting encoded_imgs = encoder.predict(X_test) plt.scatter(encoded_imgs[:, 0], encoded_imgs[:, 1], c=Y_test) plt.colorbar() plt.show()
null
Autoencoder.py
Autoencoder.py
py
1,361
python
en
code
null
code-starcoder2
83
[ { "api_name": "keras.datasets.mnist.load_data", "line_number": 9, "usage_type": "call" }, { "api_name": "keras.datasets.mnist", "line_number": 9, "usage_type": "name" }, { "api_name": "keras.layers.Input", "line_number": 21, "usage_type": "call" }, { "api_name": "keras.layers.Dense", "line_number": 24, "usage_type": "call" }, { "api_name": "keras.layers.Dense", "line_number": 25, "usage_type": "call" }, { "api_name": "keras.layers.Dense", "line_number": 26, "usage_type": "call" }, { "api_name": "keras.layers.Dense", "line_number": 27, "usage_type": "call" }, { "api_name": "keras.layers.Dense", "line_number": 30, "usage_type": "call" }, { "api_name": "keras.layers.Dense", "line_number": 31, "usage_type": "call" }, { "api_name": "keras.layers.Dense", "line_number": 32, "usage_type": "call" }, { "api_name": "keras.layers.Dense", "line_number": 33, "usage_type": "call" }, { "api_name": "keras.models.Model", "line_number": 36, "usage_type": "call" }, { "api_name": "keras.models.Model", "line_number": 38, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.scatter", "line_number": 46, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 46, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.colorbar", "line_number": 47, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 47, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 48, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 48, "usage_type": "name" } ]
566560367
#! /usr/bin/python3 import numpy as np import matplotlib.pyplot as plt origin_data = [] processed_data = [] sample_rate = 44100 with open("fft_output.txt", 'r') as f: origin_data = [float(x) for x in f.readline().split()] processed_data = [float(x) for x in f.readline().split()] y1 = np.array(origin_data) y2 = np.array(processed_data) x1 = np.array(range(len(y1))) x1 = x1 * sample_rate / len(y1) / 2 fig, (ax1) = plt.subplots(1, 1, sharex=True) ax1.plot(x1, y1, linewidth=1.0, color='darkmagenta') ax1.plot(x1, y2, linewidth=1.0, color='darkmagenta') #ax1.set_xlim(0,len(y1)); fig.tight_layout() plt.show()
null
plot_data.py
plot_data.py
py
625
python
en
code
null
code-starcoder2
83
[ { "api_name": "numpy.array", "line_number": 14, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 15, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 16, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.subplots", "line_number": 20, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 20, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 26, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 26, "usage_type": "name" } ]
275761709
import numpy as np import sys if '../' not in sys.path: sys.path.append('../') from lib.envs.gridworld import GridworldEnv def policy_eval(policy, env, gamma=1.0, theta=0.00001): V = np.zeros(env.nS) nS = env.nS P = env.P while True: delta = 0 for s in range(env.nS): v = 0 for a, action_prob in enumerate(policy[s]): for prob, ns, reward, _ in env.P[s][a]: v += action_prob*prob*(reward + gamma*V[ns]) delta = max(delta, np.abs(v - V[s])) V[s] = v if delta < theta: break return np.array(V) if __name__ == '__main__': env = GridworldEnv() random_policy = np.ones([env.nS, env.nA])/env.nA v = policy_eval(random_policy, env) print('v: {}'.format(v))
null
policy_eval.py
policy_eval.py
py
812
python
en
code
null
code-starcoder2
83
[ { "api_name": "sys.path", "line_number": 3, "usage_type": "attribute" }, { "api_name": "sys.path.append", "line_number": 4, "usage_type": "call" }, { "api_name": "sys.path", "line_number": 4, "usage_type": "attribute" }, { "api_name": "numpy.zeros", "line_number": 8, "usage_type": "call" }, { "api_name": "numpy.abs", "line_number": 18, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 22, "usage_type": "call" }, { "api_name": "lib.envs.gridworld.GridworldEnv", "line_number": 25, "usage_type": "call" }, { "api_name": "numpy.ones", "line_number": 26, "usage_type": "call" } ]
37423887
import sys, os import argparse import pandas as pd from itertools import product from multiprocessing import Pool import subprocess ''' This script joins the bias files per eta-rings intervals. ''' parser = argparse.ArgumentParser() parser.add_argument("-d", "--dof", type=str, help="DOF file", required=True) parser.add_argument("-i", "--inputdir", type=str, help="Input dir", required=True) parser.add_argument("-o", "--outputdir", type=str, help="Output dir", required=True) parser.add_argument("-er","--eta-rings", type=int, nargs="+", help="Etarings: 18 19 20 ", required=False) parser.add_argument("-fw", "--fixed", action="store_true", help="Fixed weights") parser.add_argument("-ws", "--weights-signal", nargs='+', type=int, help="Select signal in weights set", required=False) parser.add_argument("-wp", "--weights-pu", nargs='+', type=int, help="Select PU in weights set", required=False) args = parser.parse_args() if not os.path.exists(args.outputdir): os.makedirs(args.outputdir) dof = pd.read_csv(args.dof , sep=",") commands = [] for etaring in args.eta_rings: if args.fixed: list_of_files = [] for stripid in dof[abs(dof.eta_ring) == etaring].stripid.unique(): list_of_files.append("{}/bias_stripID{}.root".format(args.inputdir, stripid)) command = "hadd -f {}/bias_rings_etr{}.root ".format(args.outputdir, etaring) command += " ".join(list_of_files) commands.append(command) else: for s, p in product(args.weights_signal, args.weights_pu): list_of_files = [] for stripid in dof[abs(dof.eta_ring) == etaring].stripid.unique(): list_of_files.append("{}/bias_stripID{}_PU{}_S{}.root".format(args.inputdir, stripid,p,s )) command = "hadd -f {}/bias_rings_etr{}_PU{}_S{}.root ".format(args.outputdir, etaring, p, s) command += " ".join(list_of_files) commands.append(command) def run(command): subprocess.call(command.split(" ")) p = Pool() print("Executing hadd...") p.map(run, commands) print("DONE")
null
PileupMC_v2/joinFilesByEtaRing.py
joinFilesByEtaRing.py
py
2,082
python
en
code
null
code-starcoder2
83
[ { "api_name": "argparse.ArgumentParser", "line_number": 12, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 22, "usage_type": "call" }, { "api_name": "os.path", "line_number": 22, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 23, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 25, "usage_type": "call" }, { "api_name": "itertools.product", "line_number": 39, "usage_type": "call" }, { "api_name": "subprocess.call", "line_number": 50, "usage_type": "call" }, { "api_name": "multiprocessing.Pool", "line_number": 52, "usage_type": "call" } ]
512214684
from unittest.mock import Mock import IPython.display from solara.server import app, kernel def test_shell(no_app_context): ws1 = Mock() ws2 = Mock() kernel1 = kernel.Kernel() kernel2 = kernel.Kernel() kernel1.session.websockets.add(ws1) kernel2.session.websockets.add(ws2) context1 = app.AppContext(id="1", kernel=kernel1) context2 = app.AppContext(id="2", kernel=kernel2) with context1: IPython.display.display("test1") assert ws1.send.call_count == 1 assert ws2.send.call_count == 0 with context2: IPython.display.display("test1") assert ws1.send.call_count == 1 assert ws2.send.call_count == 1
null
tests/unit/shell_test.py
shell_test.py
py
691
python
en
code
null
code-starcoder2
83
[ { "api_name": "unittest.mock.Mock", "line_number": 9, "usage_type": "call" }, { "api_name": "unittest.mock.Mock", "line_number": 10, "usage_type": "call" }, { "api_name": "solara.server.kernel.Kernel", "line_number": 11, "usage_type": "call" }, { "api_name": "solara.server.kernel", "line_number": 11, "usage_type": "name" }, { "api_name": "solara.server.kernel.Kernel", "line_number": 12, "usage_type": "call" }, { "api_name": "solara.server.kernel", "line_number": 12, "usage_type": "name" }, { "api_name": "solara.server.app.AppContext", "line_number": 15, "usage_type": "call" }, { "api_name": "solara.server.app", "line_number": 15, "usage_type": "name" }, { "api_name": "solara.server.app.AppContext", "line_number": 16, "usage_type": "call" }, { "api_name": "solara.server.app", "line_number": 16, "usage_type": "name" }, { "api_name": "IPython.display.display.display", "line_number": 19, "usage_type": "call" }, { "api_name": "IPython.display.display", "line_number": 19, "usage_type": "attribute" }, { "api_name": "IPython.display", "line_number": 19, "usage_type": "name" }, { "api_name": "IPython.display.display.display", "line_number": 23, "usage_type": "call" }, { "api_name": "IPython.display.display", "line_number": 23, "usage_type": "attribute" }, { "api_name": "IPython.display", "line_number": 23, "usage_type": "name" } ]
361876175
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations import model_utils.fields import django.utils.timezone class Migration(migrations.Migration): dependencies = [ ] operations = [ migrations.CreateModel( name='Vacancy', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, verbose_name='ID', serialize=False)), ('created', model_utils.fields.AutoCreatedField(editable=False, verbose_name='created', default=django.utils.timezone.now)), ('modified', model_utils.fields.AutoLastModifiedField(editable=False, verbose_name='modified', default=django.utils.timezone.now)), ('status', model_utils.fields.StatusField(max_length=100, no_check_for_status=True, choices=[('active', 'active'), ('draft', 'draft')], verbose_name='status', default='active')), ('status_changed', model_utils.fields.MonitorField(monitor='status', verbose_name='status changed', default=django.utils.timezone.now)), ('company', models.CharField(max_length=100, verbose_name='Компания')), ('name', models.CharField(max_length=100, verbose_name='Должность')), ('salary', models.CharField(max_length=100, verbose_name='З/П', blank=True)), ('url', models.URLField(unique=True, verbose_name='Внешняя ссылка')), ('published_at', models.DateTimeField(verbose_name='Дата публикации', null=True)), ('description', models.TextField(help_text='Markdown', verbose_name='Текст', blank=True)), ('contacts', models.TextField(help_text='Markdown', verbose_name='Контакты', blank=True)), ('type', models.CharField(max_length=50, choices=[('fulltime', 'Фултайм'), ('contract', 'Контракт')], verbose_name='Занятость', default='fulltime')), ('is_participant', models.BooleanField(verbose_name='На митапе', default=False)), ('is_priority', models.BooleanField(verbose_name='Приоритетная вакансия', default=False)), ], options={ 'ordering': ['-is_priority', '-published_at'], 'verbose_name_plural': 'Вакансии', 'verbose_name': 'Вакансия', }, bases=(models.Model,), ), ]
null
apps/vacancies/migrations/0001_initial.py
0001_initial.py
py
2,510
python
en
code
null
code-starcoder2
83
[ { "api_name": "django.db.migrations.Migration", "line_number": 9, "usage_type": "attribute" }, { "api_name": "django.db.migrations", "line_number": 9, "usage_type": "name" }, { "api_name": "django.db.migrations.CreateModel", "line_number": 15, "usage_type": "call" }, { "api_name": "django.db.migrations", "line_number": 15, "usage_type": "name" }, { "api_name": "django.db.models.AutoField", "line_number": 18, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 18, "usage_type": "name" }, { "api_name": "model_utils.fields.fields.AutoCreatedField", "line_number": 19, "usage_type": "call" }, { "api_name": "model_utils.fields.fields", "line_number": 19, "usage_type": "attribute" }, { "api_name": "model_utils.fields", "line_number": 19, "usage_type": "name" }, { "api_name": "django.db.utils", "line_number": 19, "usage_type": "attribute" }, { "api_name": "django.db", "line_number": 19, "usage_type": "name" }, { "api_name": "model_utils.fields.fields.AutoLastModifiedField", "line_number": 20, "usage_type": "call" }, { "api_name": "model_utils.fields.fields", "line_number": 20, "usage_type": "attribute" }, { "api_name": "model_utils.fields", "line_number": 20, "usage_type": "name" }, { "api_name": "django.db.utils", "line_number": 20, "usage_type": "attribute" }, { "api_name": "django.db", "line_number": 20, "usage_type": "name" }, { "api_name": "model_utils.fields.fields.StatusField", "line_number": 21, "usage_type": "call" }, { "api_name": "model_utils.fields.fields", "line_number": 21, "usage_type": "attribute" }, { "api_name": "model_utils.fields", "line_number": 21, "usage_type": "name" }, { "api_name": "model_utils.fields.fields.MonitorField", "line_number": 22, "usage_type": "call" }, { "api_name": "model_utils.fields.fields", "line_number": 22, "usage_type": "attribute" }, { "api_name": "model_utils.fields", "line_number": 22, "usage_type": "name" }, { "api_name": "django.db.utils", "line_number": 22, "usage_type": "attribute" }, { "api_name": "django.db", "line_number": 22, "usage_type": "name" }, { "api_name": "django.db.models.CharField", "line_number": 23, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 23, "usage_type": "name" }, { "api_name": "django.db.models.CharField", "line_number": 24, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 24, "usage_type": "name" }, { "api_name": "django.db.models.CharField", "line_number": 25, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 25, "usage_type": "name" }, { "api_name": "django.db.models.URLField", "line_number": 26, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 26, "usage_type": "name" }, { "api_name": "django.db.models.DateTimeField", "line_number": 27, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 27, "usage_type": "name" }, { "api_name": "django.db.models.TextField", "line_number": 28, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 28, "usage_type": "name" }, { "api_name": "django.db.models.TextField", "line_number": 29, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 29, "usage_type": "name" }, { "api_name": "django.db.models.CharField", "line_number": 30, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 30, "usage_type": "name" }, { "api_name": "django.db.models.BooleanField", "line_number": 31, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 31, "usage_type": "name" }, { "api_name": "django.db.models.BooleanField", "line_number": 32, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 32, "usage_type": "name" }, { "api_name": "django.db.models.Model", "line_number": 39, "usage_type": "attribute" }, { "api_name": "django.db.models", "line_number": 39, "usage_type": "name" } ]
464058095
import re from nltk.tokenize import sent_tokenize def detect_dependency(text): """Attempts to determine if the claim set out in text is dependent - if it is dependency is returned - if claim is deemed independent 0 is returned as dependency """ p = re.compile('(of|to|with|in)?\s(C|c)laims?\s\d+((\sto\s\d+)|(\sor\s(C|c)laim\s\d+))?(,\swherein)?') located = p.search(text) if located: num = re.compile('\d+') dependency = int(num.search(located.group()).group()) else: # Also check for "preceding claims" or "previous claims" = claim 1 pre = re.compile('\s(preceding|previous)\s(C|c)laims?(,\swherein)?') located = pre.search(text) if located: dependency = 1 else: dependency = 0 return dependency def detect_category(text): """Attempts to determine and return a string containing the claim category, initially from a choice of two: (method or process - "method") OR (system/product/apparatus - "system") param string text: the claim text as a string """ p = re.compile('(A|An|The)\s([\w-]+\s)*(method|process)\s(of|for)?') located = p.search(text) if located: return "method" else: return "system" def split_into_features(text): """ Attempts to split a claim into features. param string text: the claim text as a string """ featurelist = [] startindex = 0 #split_re = r'(.+;\s*(and)?)|(.+,.?(and)?\n)|(.+:\s*)|(.+\.\s*$)' split_expression = r'(;\s*(and)?)|(,.?(and)?\n)|(:\s*)|(\.\s*$)' p = re.compile(split_expression) for match in p.finditer(text): feature = {} feature['startindex'] = startindex endindex = match.end() feature['endindex'] = endindex feature['text'] = text[startindex:endindex] featurelist.append(feature) startindex = endindex # Try spliting on ';' or ',' followed by '\n' or ':' #splitlist = filter(None, re.split(r";|(,.?\n)|:", text)) # This also removes the characters - we want to keep them - back to search method? return featurelist def extract_claims(text): """ Attempts to extract claims as a list from a large text string. param string text: string containing several claims """ sent_list = sent_tokenize(text) # On a test string this returned a list with the claim number and then the # claim text as separate items claims_list = [" ".join(sent_list[i:i+2]) for i in xrange(0, len(sent_list), 2)] return claims_list
null
app/mod_nlp/claim_processing.py
claim_processing.py
py
2,560
python
en
code
null
code-starcoder2
83
[ { "api_name": "re.compile", "line_number": 6, "usage_type": "call" }, { "api_name": "re.compile", "line_number": 9, "usage_type": "call" }, { "api_name": "re.compile", "line_number": 13, "usage_type": "call" }, { "api_name": "re.compile", "line_number": 25, "usage_type": "call" }, { "api_name": "re.compile", "line_number": 40, "usage_type": "call" }, { "api_name": "nltk.tokenize.sent_tokenize", "line_number": 58, "usage_type": "call" } ]
16827393
# coding=utf-8 import os import sys import psutil mProc = 'desktop.exe' mProcs = 'desktop' mFile = '..\\RX\Record.txt' mOutFile = '..\\PY_RXX\\ROut.txt' replay = "test?r=replay&file={_file}&outfile={_outfile}" def existsProc(processname): pl = psutil.pids() for pid in pl: if psutil.Process(pid).name() == processname: print(pid) break else: print("not found") def findPid(processname): pl = psutil.pids() for pid in pl: if psutil.Process(pid).name() == processname: print(pid) return pid break else: print("not found") return 0 def killProc(pid): if pid < 0: return False if pid == 0: # According to "man 2 kill" PID 0 refers to every process # in the process group of the calling process. # On certain systems 0 is a valid PID but we have no way # to know that in a portable fashion. raise ValueError('invalid PID 0') try: os.kill(pid, 0) except OSError as err: if err.errno == errno.ESRCH: # ESRCH == No such process return False elif err.errno == errno.EPERM: # EPERM clearly means there's a process to deny access to return True else: # According to "man 2 kill" possible error values are # (EINVAL, EPERM, ESRCH) raise else: return True def startProc(file, arg): main = "file " + arg r_v = os.system(main) print(r_v) if __name__ == "__main__": pid = findPid(mProcs) while pid > 0: killProc(pid) time.sleep(100) pid = findPid(mProcs) arg = replay.format(_file=mFile,_outfile=mOutFile) for i in range(0,5): startProc(mProc,arg) print('Test loop {_t}'.format(_t=i)) while existsProc(mProcs): time.sleep(100) print('all test done') pass
null
Notes/Python/Process/UITest.py
UITest.py
py
1,958
python
en
code
null
code-starcoder2
83
[ { "api_name": "psutil.pids", "line_number": 14, "usage_type": "call" }, { "api_name": "psutil.Process", "line_number": 16, "usage_type": "call" }, { "api_name": "psutil.pids", "line_number": 24, "usage_type": "call" }, { "api_name": "psutil.Process", "line_number": 26, "usage_type": "call" }, { "api_name": "os.kill", "line_number": 45, "usage_type": "call" }, { "api_name": "os.system", "line_number": 63, "usage_type": "call" } ]
370492354
__author__ = "Pruthvi Kumar, [email protected]" __copyright__ = "Copyright (C) 2018 Pruthvi Kumar | http://www.apricity.co.in" __license__ = "Public Domain" __version__ = "1.0" import os from jinja2 import Environment, FileSystemLoader from nucleus.db.cache_manager import CacheManager class MetaGen(CacheManager): def __init__(self): super(MetaGen, self).__init__() self.logger = self.get_logger(log_file_name='metaGen_logs', log_file_path='{}/trace/metaGen_logs.log'.format(self.ROOT_DIR)) self.__models_root = '{}/mic/models'.format(self.ROOT_DIR) self.__controllers_root = '{}/mic/controllers'.format(self.ROOT_DIR) self.__main_executable = '{}/main.py'.format(self.ROOT_DIR) self.__jinja_env = Environment(loader=FileSystemLoader('{}/nucleus/templates/'.format(self.ROOT_DIR))) self.__models_template = self.__jinja_env.get_template('model_template.py') self.__controllers_template = self.__jinja_env.get_template('controller_template.py') self.new_mic = self.__meta_generator def __meta_generator(self, mic_name): """ Generate structure for everything from models, & controllers. :param mic_name: :return: """ new_model = self.__models_root + '/{}'.format(mic_name) try: if not os.path.exists(new_model): os.makedirs(new_model) open(new_model + '/__init__.py', 'w+').close() #open(new_model + '/model_{}.py'.format(mic_name), 'w+').close() with open(new_model + '/model_{}.py'.format(mic_name), 'w+') as mf: mf.write(self.__models_template.render(modelName=mic_name)) # Generate Controllers for newly created model. with open(self.__controllers_root + '/controller_{}.py'.format(mic_name), 'w+') as cf: cf.write(self.__controllers_template.render(modelName=mic_name, controllerName=mic_name)) return('Meta Structure of models & controllers for {} successfully created!'.format(mic_name)) else: raise Exception('[MetaGen]: File/Folder named {} already exists in path {}. MetaGen will require ' 'unique names for it to generate MIC structure.'.format(mic_name, new_model)) except Exception as e: self.logger.exception('[MetaGen]: Exception during instantiating MIC stack for {}. ' 'Details: {}'.format(mic_name, str(e))) if __name__ == '__main__': mg = MetaGen() mg.new_mic('test_5')
null
nucleus/metagen.py
metagen.py
py
2,668
python
en
code
null
code-starcoder2
83
[ { "api_name": "nucleus.db.cache_manager.CacheManager", "line_number": 11, "usage_type": "name" }, { "api_name": "jinja2.Environment", "line_number": 20, "usage_type": "call" }, { "api_name": "jinja2.FileSystemLoader", "line_number": 20, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 34, "usage_type": "call" }, { "api_name": "os.path", "line_number": 34, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 35, "usage_type": "call" } ]
261047640
import torch from torch import nn from torch.utils.data import Dataset class Engine: def __init__(self, model, optimizer, device): self.model = model self.optimizer = optimizer self.device = device @staticmethod def loss_fn(targets, outputs): return nn.BCEWithLogitsLoss()(outputs, targets) def train(self, data_loader): self.model.train() final_loss = 0 for x, t, y in data_loader: self.optimizer.zero_grad() inputs = x.to(self.device) timestamps = t.to(self.device) targets = y.to(self.device) outputs = self.model(inputs, timestamps).squeeze(1) loss = self.loss_fn(targets, outputs) # print(loss.shape) loss.backward() self.optimizer.step() final_loss += loss.item() return (final_loss/len(data_loader)) def evaluate(self, data_loader): self.model.eval() final_loss = 0 with torch.no_grad(): for x, t, y in data_loader: inputs = x.to(self.device) timestamps = t.to(self.device) targets = y.to(self.device) outputs = self.model(inputs, timestamps).squeeze(1) loss = self.loss_fn(targets, outputs) final_loss += loss.item() return (final_loss/len(data_loader)) class ParlDataset(Dataset): def __init__(self, features, timestamps, labels): self.features = features self.timestamps = timestamps self.labels = labels def __getitem__(self, idx): item = ( torch.tensor(self.features[idx]), torch.tensor(self.timestamps[idx], dtype=torch.float32), torch.tensor(self.labels[idx], dtype=torch.float32) ) return item def __len__(self): return len(self.labels)
null
utils_timeLSTM.py
utils_timeLSTM.py
py
1,926
python
en
code
null
code-starcoder2
83
[ { "api_name": "torch.nn.BCEWithLogitsLoss", "line_number": 13, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 13, "usage_type": "name" }, { "api_name": "torch.no_grad", "line_number": 38, "usage_type": "call" }, { "api_name": "torch.utils.data.Dataset", "line_number": 51, "usage_type": "name" }, { "api_name": "torch.tensor", "line_number": 59, "usage_type": "call" }, { "api_name": "torch.tensor", "line_number": 60, "usage_type": "call" }, { "api_name": "torch.float32", "line_number": 60, "usage_type": "attribute" }, { "api_name": "torch.tensor", "line_number": 61, "usage_type": "call" }, { "api_name": "torch.float32", "line_number": 61, "usage_type": "attribute" } ]
574940043
from memoize import memoized def is_complete(csp, assignment): w, h, horiz_constr, vert_constr = csp return len(assignment) == h @memoized def order_domain_values(csp, var): w, h, horiz_constr, vert_constr = csp # calculate the possible lengths and movements # generate the numbers by moving sequences of ones for bits in generate_bits(horiz_constr[var][::-1], w): yield bits def generate_bits(constraint, length): return generate_bits_rec(constraint, length, bits=(), zeros=0, part=0) def generate_bits_rec(constraint, length, bits, zeros, part): if len(bits) == length and part == len(constraint) + 1: yield bits if part == 0 or part >= len(constraint): choice_start = 0 else: choice_start = 1 for choice in range(choice_start, length - sum(constraint) - zeros + 1): if part < len(constraint): new_bits = bits + (0,) * choice + (1,) * constraint[part] else: new_bits = bits + (0,) * choice new_zeros = zeros + choice new_part = part + 1 if new_part <= len(constraint) + 1 and len(new_bits) <= length: yield from generate_bits_rec(constraint, length, new_bits, new_zeros, new_part) # @memoized def is_consistent(csp, assignment, value): # Todo: should be called value_is_consistent_with_assignment """Assumes all the assignments are consistent with the horizontal constraints so it checks only the verticals.""" w, h, horiz_constr, vert_constr = csp new_ass = assign_value(assignment, value, len(assignment)) if len(new_ass) == h: for col in range(len(vert_constr)): if not col_is_consistent(csp, new_ass, vert_constr[col], col): return False return True # @memoized def col_is_consistent(csp, assignment, constr, col): w, h, horiz_constr, vert_constr = csp row = tuple(bits[col] for bits in assignment) return row_is_consistent(csp, row, constr) # @memoized def row_is_consistent(csp, bits, constraint): lengths_of_1 = [] prev = False current_length = 0 for bit in bits: if bit: current_length += 1 else: if prev: if len(lengths_of_1) < len(constraint) and current_length != constraint[len(lengths_of_1)]: return False lengths_of_1.append(current_length) current_length = 0 prev = bit if current_length > 0: lengths_of_1.append(current_length) return len(lengths_of_1) == len(constraint) and all([(a == b) for a, b in zip(lengths_of_1, constraint)]) def complete_assignment(csp): w, h, horiz_constr, vert_constr = csp assignment = () for var in range(h): assignment = assign_value(assignment, next(order_domain_values(csp, var)), var) # todo: maybe choosing values consistent with the vertical constraints will speed things up since we start "nearer" return assignment def assign_value(assignment, value, var): return assignment[:var] + (value,) + assignment[var + 1:] def null_assignment(): return () # # def assign_value(assignment, value, var): # return assignment[:var] + [value] + assignment[var + 1:] # # # def null_assignment(): # return []
null
level_32/csp_tuple.py
csp_tuple.py
py
3,288
python
en
code
null
code-starcoder2
83
[ { "api_name": "memoize.memoized", "line_number": 9, "usage_type": "name" } ]
392093911
# Code provided under the BSD License from xml.dom import minidom import urllib.request import series import teevee_conf import re import time import sys import pickle import tweepy DEBUG = True PROD = True # _________________________________________________________ # Finds a node that matches the given attributes within a DOM # document # _________________________________________________________ def findNode( content, attr, slist): for x in slist: y = [] for j in range(0,len(attr)): y.append( x.getAttribute(attr[j]).lower() ) if y == content: return x return None # _________________________________________________________ # FUNCTION: get_newzbin_release # ARGS: release_id (teevee), release_name # # Search for release_name.nzb in teevee newzgroups using # Newzbin RAW search. If a result is found it is stored # within one NZB file. # _________________________________________________________ def get_newzbin_release( release_id, release_name ): # Performs raw search on newzbin to find the NZB query = { "username":teevee_conf.newzbin_user, "password":teevee_conf.newzbin_pwd, "query":str(release_id) + " " + ".nzb", "group":"alt.binaries.teevee" } http_data = urllib.parse.urlencode( query ) http_resp = urllib.request.urlopen( \ "http://www.newzbin.com/api/filefind3/", http_data ) # Parse response and gets fileids try: results = int( http_resp.readline().decode().replace("TOTAL=","").rstrip() ) response = '' print(results) for i in range(0,results): response += http_resp.readline().decode().rstrip().split('\t')[0] if i+1 < results: response += ',' except: print('Search failed') return False # Retrieves the corresponding NZB file query = { "username":teevee_conf.newzbin_user, "password":teevee_conf.newzbin_pwd, "fileid":response } http_data = urllib.parse.urlencode( query ) # Fetches NZB while( True ): http_resp = urllib.request.urlopen( \ "http://www.newzbin.com/api/dnzb/", http_data ) # DNZB Max Rate is reached : Retry later if http_resp.getheader('X-DNZB-RCode') == '450': wait = int( re.findall( r'(\d+)', http_resp.getheader('X-DNZB-RText') )[0] ) + 1 time.sleep( wait ) # Other unhandable error elif http_resp.getheader('X-DNZB-RCode') != '200': print('Newzbin:' + http_resp.getheader('X-DNZB-RCode') ) return False else: break # Nzb is fetched, file is saved outputnzb = open( teevee_conf.newzbin_dest + release_name + ".nzb","bw+") outputnzb.write( http_resp.readall() ) outputnzb.close() return True # _________________________________________________________ # FUNCTION: get_nzbmatrix_release # ARGS: release_id (teevee), release_name, group (teevee or multimedia) # # Search for a given release on NZBMatrix by looking up posts with release_id # in their subjects on the corresponding groups. The resulting NZB is then fetched # from nzbmatrix and stored for future use # _________________________________________________________ def get_nzbmatrix_release( release_id, release_name, group="alt.binaries.teevee" ): query = { "username":teevee_conf.nzbmatrix_user, "apikey":teevee_conf.nzbmatrix_key, "search":str( release_id ), "searchin":"subject", "group":group } http_data = urllib.parse.urlencode( query ) # Search for release while True: http_resp = urllib.request.urlopen( \ "http://api.nzbmatrix.com/v1.1/search.php?" + http_data ) response = http_resp.readline().decode().rstrip() # Nothing found : we re-run the search on ab.multi and then drop the file if response == 'error:nothing_found': if group == "alt.binaries.teevee": return get_nzbmatrix_release( release_id, release_name, "alt.binaries.multimedia" ) else: print("Notfound") return False # If we hit the max rate, sleep elif response.find("error:please_wait") != -1: time.sleep( int( re.findall( r'(\d+)', response )[0] + 1 ) ) # Other Unknown error elif response.find("error") != -1: print( response ) if group == "alt.binaries.teevee": return get_nzbmatrix_release( release_id, release_name, "alt.binaries.multimedia" ) return False # Everything is fine else: NZB_NAME = http_resp.readline().decode().rstrip().replace("NZBNAME:","").replace(";","") if NZB_NAME == release_name.replace(".", " ").replace("-", " ").replace("_", " "): NZB_ID = int( re.findall( r'(\d+)', response )[0] ) else: if group == "alt.binaries.teevee": return get_nzbmatrix_release( release_id, release_name, "alt.binaries.multimedia" ) return False break # At this point NZB_ID should contain the ID of the Nzb to fetch, let us get it query = { "username":teevee_conf.nzbmatrix_user, "apikey":teevee_conf.nzbmatrix_key, "id":str(NZB_ID) } http_data = urllib.parse.urlencode( query ) http_resp = urllib.request.urlopen( "http://api.nzbmatrix.com/v1.1/download.php?" + http_data ) # Houston we have a problem if http_resp.getheader('Content-Type') != 'application/x-nzb': print( http_resp.readline() ) return False # Otherwise response = http_resp.readall() outputnzb = open(teevee_conf.nzbmatrix_dest + release_name + ".nzb","bw+") outputnzb.write( response ) outputnzb.close( ) # Makes sure that we wait 10 seconds until next download # Rate limit is per hour now, don't need this no more # time.sleep( 10 ) return True # _________________________________________________________ # FUNCTION: download_rlz # ARGS: release_id (teevee), release_name # # Search release and downloads nzb file on newzbin with # fallback on nzbmatrix # _________________________________________________________ def download_rlz( release_id, release_name ): izGood = False # Let us give newzbin a try try: izGood = get_newzbin_release( release_id, release_name ) except: izGood = False # Nothing on newzbin (or down, or ... whatever), fallback using nzbmatrix if not izGood: try: print('Trying nzbmatrix ...') izGood = get_nzbmatrix_release( release_id, release_name ) except: izGood = False try: if izGood and teevee_conf.tw_enable: tw_api = load_twitter_api() tw_api.update_status('Incoming: ' + release_name) except: pass return izGood def load_twitter_api(): auth = tweepy.OAuthHandler(teevee_conf.tw_consumer_token, \ teevee_conf.tw_consumer_secret) auth.set_access_token(teevee_conf.tw_access_token, \ teevee_conf.tw_access_secret) api = tweepy.API(auth) return api # _________________________________________________________ # # MAIN CODE: # Read TEEVEE RSS Feed, According to data contained # within teevee.xml, REQID's from releases that need # to be downloaded are retrieved. These ID's are then # used to retrieve the correponding nzb file(s) on # UseNet # # _________________________________________________________ # Let's go print('') print('--' + time.strftime("%a, %d %b %Y %H:%M:%S +0200") + '--') print('Hi There, Let\'s shake some dust') print('') # TEEVEE feed url + some command line options if "x264" in sys.argv: FEED_URL = 'http://abteevee.allfilled.com/rss.php?f=x264' elif "xvid" in sys.argv: FEED_URL = 'http://abteevee.allfilled.com/rss.php?f=xvid' else: # Test feed print('Test Mode, dummy feed') FEED_URL='' if "tw_off" in sys.argv: print('Twitter-announce forced off') teevee_conf.tw_enable = False elif "tw_on" in sys.argv: print('Twitter-announce forced on') teevee_conf.tw_enable = True else: pass # Load Download Queue and process it try: fq = open( teevee_conf.rlz_queue, 'br' ) release_queue = pickle.load( fq ) fq.close() except: release_queue = { } print('Processing Queue') for dlrlz in release_queue.copy().keys(): dld = False print('download_rlz( ' + str( release_queue[ dlrlz ] ) + ', '+ dlrlz + ' )') if PROD: dld = download_rlz( release_queue[ dlrlz ], dlrlz ) if not dld: print('Could not fetch NZB. Maybe next time ?') else: print('NZB fetched OK. Removing from queue.') del release_queue[ dlrlz ] print('Done') # Updates Queue content fq = open( teevee_conf.rlz_queue, 'wb+' ) pickle.dump( release_queue, fq ) fq.close() # Load Teevee Feed and download new episodes print('Processing Feed') # For Release Name parsing s = series.parser(); # For score comparison at some point s2 = series.parser(); # Load showlist tv_stat = minidom.parse("./teevee.xml") series_list = tv_stat.getElementsByTagName("series") try: # Gets feed and retrieves last releases list feed = urllib.request.urlopen(FEED_URL) parsedfeed = minidom.parse(feed) rlz = parsedfeed.getElementsByTagName("item") # Iterates over releases in RSS for node in rlz: rlzname = node.getElementsByTagName("title")[0].firstChild.data rlzid = int( node.getAttribute("id") ) # If Filename was successfully parsed if s.scan( rlzname ): # Lookup current serie in the local database snode = findNode( [ s.f_title.lower(), s.f_type ] , ["name", "enc"], series_list ) # If a corresponding entry was found if snode != None: # Finds if the corresponding episode has already been # downloaded series = snode.getElementsByTagName("ep") epz = findNode( [ s.f_epinfo.lower() ], [ "number" ], series ) # Not downloaded yet if epz == None: # Then we download the corresponding NZB print('download_rlz( ' + str(rlzid) + ', '+ rlzname + ' )') if PROD: dld = download_rlz( rlzid , rlzname ) else: dld = True # Create one node for th episode and fills its info ep = tv_stat.createElement("ep") num = tv_stat.createAttribute("number") fullname = tv_stat.createTextNode( rlzname ) # Saves release name num.value = s.f_epinfo.lower() ep.setAttributeNode( num ) # Updates the tree ep.appendChild( fullname ) snode.appendChild( ep ) # If the download was not successfull, we queue the file # to process it next time if not dld: print('Could not fetch NZB, queuing ...') release_queue[ rlzname ] = rlzid else: print('NZB fetched OK.') # Episode already downloaded, let us see if we need to fetch the new file else: rlzname2 = epz.firstChild.data s2.scan( rlzname2 ) # New file has a better score : download if ( s2.computeScore( teevee_conf.scoretable ) < \ s.computeScore( teevee_conf.scoretable ) ) and \ (rlzname2 != rlzname): # Print scores for debugging print(rlzname2 + " scored " + str(s2.computeScore( teevee_conf.scoretable) ) ) print(rlzname + " scored " + str(s.computeScore( teevee_conf.scoretable) ) ) print("Replacing Release") # Updates XML data epz.firstChild.data = rlzname print('download_rlz( ' + str(rlzid) + ', '+ rlzname + ' )') # Download NZB if PROD: dld = download_rlz( rlzid , rlzname ) else: dld = True if not dld: print('Could not fetch NZB, queuing ...') release_queue[ rlzname ] = rlzid else: print('NZB fetched OK.') # Old file is best, do nothing else: print("exists") print("ID:" + str( rlzid ) + " - " + s.f_group + " - " + rlzname) # Updates Episode Download Info outputxml = open("./teevee.xml","w+") tv_stat.writexml(outputxml) outputxml.close() outputxml = open("./teevee2.xml","w+") tv_stat.writexml(outputxml, "", "", "\n") outputxml.close() # Updates Queue content fq = open( teevee_conf.rlz_queue, 'wb+' ) pickle.dump( release_queue, fq ) fq.close() except urllib.error.URLError as err: print('Can\'t open URL :' + format(err))
null
pyvee.py
pyvee.py
py
13,963
python
en
code
null
code-starcoder2
83
[ { "api_name": "teevee_conf.newzbin_user", "line_number": 42, "usage_type": "attribute" }, { "api_name": "teevee_conf.newzbin_pwd", "line_number": 43, "usage_type": "attribute" }, { "api_name": "urllib.request.parse.urlencode", "line_number": 48, "usage_type": "call" }, { "api_name": "urllib.request.parse", "line_number": 48, "usage_type": "attribute" }, { "api_name": "urllib.request", "line_number": 48, "usage_type": "name" }, { "api_name": "urllib.request.request.urlopen", "line_number": 49, "usage_type": "call" }, { "api_name": "urllib.request.request", "line_number": 49, "usage_type": "attribute" }, { "api_name": "urllib.request", "line_number": 49, "usage_type": "name" }, { "api_name": "teevee_conf.newzbin_user", "line_number": 69, "usage_type": "attribute" }, { "api_name": "teevee_conf.newzbin_pwd", "line_number": 70, "usage_type": "attribute" }, { "api_name": "urllib.request.parse.urlencode", "line_number": 73, "usage_type": "call" }, { "api_name": "urllib.request.parse", "line_number": 73, "usage_type": "attribute" }, { "api_name": "urllib.request", "line_number": 73, "usage_type": "name" }, { "api_name": "urllib.request.request.urlopen", "line_number": 77, "usage_type": "call" }, { "api_name": "urllib.request.request", "line_number": 77, "usage_type": "attribute" }, { "api_name": "urllib.request", "line_number": 77, "usage_type": "name" }, { "api_name": "re.findall", "line_number": 83, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 84, "usage_type": "call" }, { "api_name": "teevee_conf.newzbin_dest", "line_number": 93, "usage_type": "attribute" }, { "api_name": "teevee_conf.nzbmatrix_user", "line_number": 110, "usage_type": "attribute" }, { "api_name": "teevee_conf.nzbmatrix_key", "line_number": 111, "usage_type": "attribute" }, { "api_name": "urllib.request.parse.urlencode", "line_number": 117, "usage_type": "call" }, { "api_name": "urllib.request.parse", "line_number": 117, "usage_type": "attribute" }, { "api_name": "urllib.request", "line_number": 117, "usage_type": "name" }, { "api_name": "urllib.request.request.urlopen", "line_number": 121, "usage_type": "call" }, { "api_name": "urllib.request.request", "line_number": 121, "usage_type": "attribute" }, { "api_name": "urllib.request", "line_number": 121, "usage_type": "name" }, { "api_name": "time.sleep", "line_number": 136, "usage_type": "call" }, { "api_name": "re.findall", "line_number": 136, "usage_type": "call" }, { "api_name": "re.findall", "line_number": 149, "usage_type": "call" }, { "api_name": "teevee_conf.nzbmatrix_user", "line_number": 159, "usage_type": "attribute" }, { "api_name": "teevee_conf.nzbmatrix_key", "line_number": 160, "usage_type": "attribute" }, { "api_name": "urllib.request.parse.urlencode", "line_number": 164, "usage_type": "call" }, { "api_name": "urllib.request.parse", "line_number": 164, "usage_type": "attribute" }, { "api_name": "urllib.request", "line_number": 164, "usage_type": "name" }, { "api_name": "urllib.request.request.urlopen", "line_number": 165, "usage_type": "call" }, { "api_name": "urllib.request.request", "line_number": 165, "usage_type": "attribute" }, { "api_name": "urllib.request", "line_number": 165, "usage_type": "name" }, { "api_name": "teevee_conf.nzbmatrix_dest", "line_number": 174, "usage_type": "attribute" }, { "api_name": "teevee_conf.tw_enable", "line_number": 209, "usage_type": "attribute" }, { "api_name": "tweepy.OAuthHandler", "line_number": 218, "usage_type": "call" }, { "api_name": "teevee_conf.tw_consumer_token", "line_number": 218, "usage_type": "attribute" }, { "api_name": "teevee_conf.tw_consumer_secret", "line_number": 219, "usage_type": "attribute" }, { "api_name": "teevee_conf.tw_access_token", "line_number": 221, "usage_type": "attribute" }, { "api_name": "teevee_conf.tw_access_secret", "line_number": 222, "usage_type": "attribute" }, { "api_name": "tweepy.API", "line_number": 224, "usage_type": "call" }, { "api_name": "time.strftime", "line_number": 241, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 248, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 250, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 258, "usage_type": "attribute" }, { "api_name": "teevee_conf.tw_enable", "line_number": 260, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 261, "usage_type": "attribute" }, { "api_name": "teevee_conf.tw_enable", "line_number": 263, "usage_type": "attribute" }, { "api_name": "teevee_conf.rlz_queue", "line_number": 269, "usage_type": "attribute" }, { "api_name": "pickle.load", "line_number": 270, "usage_type": "call" }, { "api_name": "teevee_conf.rlz_queue", "line_number": 290, "usage_type": "attribute" }, { "api_name": "pickle.dump", "line_number": 291, "usage_type": "call" }, { "api_name": "series.parser", "line_number": 297, "usage_type": "call" }, { "api_name": "series.parser", "line_number": 299, "usage_type": "call" }, { "api_name": "xml.dom.minidom.parse", "line_number": 301, "usage_type": "call" }, { "api_name": "xml.dom.minidom", "line_number": 301, "usage_type": "name" }, { "api_name": "urllib.request.request.urlopen", "line_number": 306, "usage_type": "call" }, { "api_name": "urllib.request.request", "line_number": 306, "usage_type": "attribute" }, { "api_name": "urllib.request", "line_number": 306, "usage_type": "name" }, { "api_name": "xml.dom.minidom.parse", "line_number": 307, "usage_type": "call" }, { "api_name": "xml.dom.minidom", "line_number": 307, "usage_type": "name" }, { "api_name": "teevee_conf.scoretable", "line_number": 363, "usage_type": "attribute" }, { "api_name": "teevee_conf.scoretable", "line_number": 364, "usage_type": "attribute" }, { "api_name": "teevee_conf.scoretable", "line_number": 368, "usage_type": "attribute" }, { "api_name": "teevee_conf.scoretable", "line_number": 369, "usage_type": "attribute" }, { "api_name": "teevee_conf.rlz_queue", "line_number": 405, "usage_type": "attribute" }, { "api_name": "pickle.dump", "line_number": 406, "usage_type": "call" }, { "api_name": "urllib.request.error", "line_number": 409, "usage_type": "attribute" }, { "api_name": "urllib.request", "line_number": 409, "usage_type": "name" } ]
544688601
import vcf import sys import os import json from collections import Counter, defaultdict import pysam import sqlite3 import cStringIO as StringIO from threadpool import ProducerConsumer from utils import removeFiles def consumer(con, returndata): cur = con.cursor() for dat in returndata: if not dat: continue fileidx = dat[0] modvcf = dat[1] jsonstr = dat[2] cur.execute("""INSERT INTO trimmed_modvcf(fileID, vcf, json) VALUES (?,?,?)""", (fileidx, modvcf, jsonstr,) ) con.commit() def producer(info): fileid = str(info[0]) try: vcfInput = vcf.Reader(StringIO.StringIO(info[1])) except: return None line = None try: line = vcfInput.next() except: return None if not line: return None bamfile = "%s.bam"%(fileid) bamidxfile = "%s.bam.bai"%(fileid) with open(bamfile, "wb") as o: o.write(info[2]) with open(bamidxfile, "wb") as o: o.write(info[3]) vcfInput = vcf.Reader(StringIO.StringIO(info[1])) vcfohndl = StringIO.StringIO() vcfOutput = vcf.Writer(vcfohndl, vcfInput) jsonhndl = StringIO.StringIO() data = computeData(vcfInput, vcfOutput, bamfile, 0) json.dump(data, jsonhndl, separators=(',', ':')) jsonhndl.flush() jsonstr = jsonhndl.getvalue() jsonhndl.close() vcfohndl.flush() modvcf = vcfohndl.getvalue() vcfohndl.close() removeFiles([bamfile, bamidxfile]) return info[0], modvcf, jsonstr # A method to use the BAM file + the vcf to compute our data, if the vcf does not contain it, # or we have no idea about the specific field we need to use in the vcf file. def computeData(inputvcf, outputvcf, samf, shift): samfile = pysam.Samfile(samf) vcff = dict([ (v.start - shift, v) for v in inputvcf]) data = [] for p in samfile.pileup(): if p.pos not in vcff: continue if outputvcf: vcff[p.pos].POS -= shift if not vcff[p.pos].is_snp: if outputvcf: outputvcf.write_record(vcff[p.pos]) continue ref = vcff[p.pos].REF alts = [str(v) for v in vcff[p.pos].ALT] counts = defaultdict(Counter) found_alts= set() for pread in p.pileups: if pread.is_del: continue base = "N" try: base = pread.alignment.seq[pread.qpos] except: if pread.query_position: base = pread.alignment.seq[pread.query_position] else: continue # Do we discard gaps and N? if base.upper() != 'N' or base != '-': sample = pread.alignment.qname.split("_")[-1] found_alts.add(base.upper()) counts[sample].update(base.upper()) newALTS = list(found_alts.difference([ref])) data.append( dict(pos = vcff[p.pos].POS, counts = dict(counts), ref = ref, alts = newALTS) ) if outputvcf: vcff[p.pos].ALT = [vcf.model._Substitution(j) for j in newALTS] outputvcf.write_record(vcff[p.pos]) return data def updateVCFfiles(args, con): cur = con.cursor() cur.execute(""" SELECT A.fileID, A.vcf, B.bam, B.bamidx FROM trimmed_vcf AS A JOIN trimmed_inferSAM AS B ON (A.fileID = B.fileID); """) rows = ( (r[0], r[1], bytearray(r[2]), bytearray(r[3]), ) for r in cur ) worker = ProducerConsumer(args, args.threads, producer, consumer) worker.run(con, rows)
null
scripts/utils/vcfmod.py
vcfmod.py
py
3,580
python
en
code
null
code-starcoder2
83
[ { "api_name": "vcf.Reader", "line_number": 28, "usage_type": "call" }, { "api_name": "cStringIO.StringIO", "line_number": 28, "usage_type": "call" }, { "api_name": "vcf.Reader", "line_number": 47, "usage_type": "call" }, { "api_name": "cStringIO.StringIO", "line_number": 47, "usage_type": "call" }, { "api_name": "cStringIO.StringIO", "line_number": 48, "usage_type": "call" }, { "api_name": "vcf.Writer", "line_number": 49, "usage_type": "call" }, { "api_name": "cStringIO.StringIO", "line_number": 50, "usage_type": "call" }, { "api_name": "json.dump", "line_number": 52, "usage_type": "call" }, { "api_name": "utils.removeFiles", "line_number": 60, "usage_type": "call" }, { "api_name": "pysam.Samfile", "line_number": 67, "usage_type": "call" }, { "api_name": "collections.defaultdict", "line_number": 81, "usage_type": "call" }, { "api_name": "collections.Counter", "line_number": 81, "usage_type": "argument" }, { "api_name": "vcf.model._Substitution", "line_number": 103, "usage_type": "call" }, { "api_name": "vcf.model", "line_number": 103, "usage_type": "attribute" }, { "api_name": "threadpool.ProducerConsumer", "line_number": 113, "usage_type": "call" } ]
372412912
import numpy as np import random import matplotlib.pyplot as plt import pickle infile = open('maze_examples\maze4x6.pckl', 'rb') data = pickle.load(infile) infile.close() print(data) nr, nc = data.shape # number of rows and columns in array pc = [] # will contain open points along the boarder pr = [] for i, m in enumerate(data[:, 0]): # looping over most left column if m: # if m is true pc.append(0) pr.append(i) for i, m in enumerate(data[:, nc - 1]): # looping over most right column if m: # if m is true pc.append(nc - 1) pr.append(i) for i, m in enumerate(data[0, :]): # looping over top row if m: # if m is true pc.append(i) pr.append(0) for i, m in enumerate(data[nr - 1, :]): # looping over bottom row if m: # if m is true pc.append(i) pr.append(nr - 1) start_point = [pr[0], pc[0]] # finds starting point end_point = [pr[1], pc[1]] # finds end point new_point_all = [] current_point = start_point loop_counter = 0 while current_point != end_point: possible_moves = [] if current_point[0] < nr: if data[current_point[0] + 1, current_point[1]]: # Check cell down possible_moves.append([current_point[0] + 1, current_point[1]]) if current_point[1] < nc: if data[current_point[0], current_point[1] + 1]: # check cell right possible_moves.append([current_point[0], current_point[1] + 1]) if current_point[0] > 0: if data[current_point[0] - 1, current_point[1]]: # Check cell up possible_moves.append([current_point[0] - 1, current_point[1]]) if current_point[1] > 0: if data[current_point[0], current_point[1] - 1]: # check cell left possible_moves.append([current_point[0], current_point[1] - 1]) new_point = random.choice(possible_moves) # New point choices a random co ordinates in possible moves list new_point_all.append(new_point) # appends new points to the new point al list plt.imshow(data, cmap="plasma") plt.scatter(new_point[1], new_point[0], c="blue", alpha=0.9, s=1000) # Makes a graph of each move as it passes through the while loop plt.axis('off') plt.show() current_point = new_point # Checks if current point has reached the new point cordinates and kills the loop if current_point == end_point: print("End point reached") break loop_counter += 1 # set a loop counter to kill loop because there is a possibility it can run forever if loop_counter > 10000: print("Maximum number of loops reached") break print(new_point_all)
null
maze_runner.py
maze_runner.py
py
2,655
python
en
code
null
code-starcoder2
83
[ { "api_name": "pickle.load", "line_number": 7, "usage_type": "call" }, { "api_name": "random.choice", "line_number": 61, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.imshow", "line_number": 64, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 64, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.scatter", "line_number": 65, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 65, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.axis", "line_number": 67, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 67, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 68, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 68, "usage_type": "name" } ]
379337612
# -*- coding: utf-8 -*- """ Created on Fri Feb 26 14:04:02 2021 @author: tfahry """ import pandas as pd ldf = pd.read_csv('Lateness.csv', index_col='Date') locset = list(set(ldf['Geography'])) loclist = [] temploc = [] for loc in ldf['Geography']: if ';Terminate' in loc: temploc.append(loc) loclist.append(temploc) temploc = [] else: temploc.append(loc) def compare(a,b): global loclist for sublist in loclist: if a in sublist and b in sublist: return sublist.index(a) - sublist.index(b) else: return 0 from functools import cmp_to_key locset.sort(key = cmp_to_key(compare)) print(locset) #%% import numpy as np df = pd.read_csv(r'C:\Users\Tfarhy\OneDrive - Network Rail\2021.02.15_Path Variance demos\pivoted-lateness.csv', index_col=0) df = df.mask(df.eq('#ERROR')) df = df.dropna(axis=1,thresh=len(df)*.98).dropna() columns = sorted(list(df.columns), key = cmp_to_key(compare)) df = df[columns] for col in columns: df[col]= df[col].str.replace(',','') df = df.astype(float) bdf = pd.read_csv(r'C:\Users\Tfarhy\OneDrive - Network Rail\2021.02.15_Path Variance demos\pivoted-busyness.csv', index_col=0) for col in bdf.columns: bdf[col] = bdf[col].str.replace(',','') bdf = bdf.astype(float) odf = pd.read_csv(r'C:\Users\Tfarhy\OneDrive - Network Rail\2021.02.15_Path Variance demos\pivoted-offpeak.csv', index_col=0) odf = odf.fillna(value=0) odf = odf.astype(float) X = df.merge(odf,how='left', left_index=True, right_index=True) X = X.merge(bdf,how='left', left_index=True, right_index=True) X = X[['OFF-PEAK','PEAK']] y=df.values X=X.values #%% # example of evaluating chained multioutput regression with an SVM model import numpy as np np.set_printoptions(suppress=True) from numpy import mean from numpy import std from numpy import absolute from sklearn.datasets import make_regression from sklearn.model_selection import cross_val_score from sklearn.model_selection import RepeatedKFold from sklearn.multioutput import RegressorChain from sklearn.svm import LinearSVR # define dataset #X, y = make_regression(n_samples=1000, n_features=1,n_informative=1, n_targets=3, random_state=1, noise=0.5) # define base model model = LinearSVR() # define the chained multioutput wrapper model wrapper = RegressorChain(model) # define the evaluation procedure cv = RepeatedKFold(n_splits=10, n_repeats=3, random_state=1) # evaluate the model and collect the scores n_scores = cross_val_score(wrapper, X, y, scoring='neg_mean_absolute_error', cv=cv, n_jobs=-1) # force the scores to be positive n_scores = absolute(n_scores) # summarize performance print('MAE: %.3f (%.3f)' % (mean(n_scores), std(n_scores))) wrapper.fit(X,y) print(wrapper.predict(X[0:20])) print(y[0:20])
null
path-variance-preprocessing.py
path-variance-preprocessing.py
py
2,812
python
en
code
null
code-starcoder2
83
[ { "api_name": "pandas.read_csv", "line_number": 9, "usage_type": "call" }, { "api_name": "functools.cmp_to_key", "line_number": 37, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 43, "usage_type": "call" }, { "api_name": "functools.cmp_to_key", "line_number": 46, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 53, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 58, "usage_type": "call" }, { "api_name": "numpy.set_printoptions", "line_number": 74, "usage_type": "call" }, { "api_name": "sklearn.svm.LinearSVR", "line_number": 90, "usage_type": "call" }, { "api_name": "sklearn.multioutput.RegressorChain", "line_number": 92, "usage_type": "call" }, { "api_name": "sklearn.model_selection.RepeatedKFold", "line_number": 94, "usage_type": "call" }, { "api_name": "sklearn.model_selection.cross_val_score", "line_number": 96, "usage_type": "call" }, { "api_name": "numpy.absolute", "line_number": 98, "usage_type": "call" }, { "api_name": "numpy.mean", "line_number": 100, "usage_type": "call" }, { "api_name": "numpy.std", "line_number": 100, "usage_type": "call" } ]
43143127
# -*- coding: utf-8 -*- import numpy as np import cv2 # Função para gerar a peleta de cores com um início e fim de cor definida pelo usuário def palette( b1, g1, r1, b2, g2, r2): b = np.linspace(b1, b2, 256) g = np.linspace(g1, g2, 256) r = np.linspace(r1, r2, 256) p1 = np.tile( b.reshape(256,1), 256 ) p2 = np.tile( g.reshape(256,1), 256 ) p3 = np.tile( r.reshape(256,1), 256 ) p1 = np.uint8(p1) p2 = np.uint8(p2) p3 = np.uint8(p3) palette = np.dstack( (np.dstack( (p1,p2) ), p3) ) return palette # Cor inicial b1 = 56 g1 = 23 r1 = 87 # Cor final b2 = 145 g2 = 201 r2 = 150 # Paleta de cores com as cores iniciais e finais definidas paleta = palette(b1, g1, r1, b2, g2, r2) img = cv2.imread('a.jpg', 0) out = np.zeros( (img.shape[0], img.shape[1], 3) ) for i in range(img.shape[0]): for j in range(img.shape[1]): out[i][j] = paleta [ img[i][j] ][0] out = np.uint8(out) # Mostrar uma imagem cv2.imshow('Paleta de cores', paleta) cv2.imshow('Imagem Original', img) cv2.imshow('Imagem resultante', out) cv2.waitKey(0)
null
photoshop/gimp/colorization-image.py
colorization-image.py
py
1,128
python
en
code
null
code-starcoder2
83
[ { "api_name": "numpy.linspace", "line_number": 8, "usage_type": "call" }, { "api_name": "numpy.linspace", "line_number": 9, "usage_type": "call" }, { "api_name": "numpy.linspace", "line_number": 10, "usage_type": "call" }, { "api_name": "numpy.tile", "line_number": 12, "usage_type": "call" }, { "api_name": "numpy.tile", "line_number": 13, "usage_type": "call" }, { "api_name": "numpy.tile", "line_number": 14, "usage_type": "call" }, { "api_name": "numpy.uint8", "line_number": 16, "usage_type": "call" }, { "api_name": "numpy.uint8", "line_number": 17, "usage_type": "call" }, { "api_name": "numpy.uint8", "line_number": 18, "usage_type": "call" }, { "api_name": "numpy.dstack", "line_number": 20, "usage_type": "call" }, { "api_name": "cv2.imread", "line_number": 37, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 38, "usage_type": "call" }, { "api_name": "numpy.uint8", "line_number": 44, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 47, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 48, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 49, "usage_type": "call" }, { "api_name": "cv2.waitKey", "line_number": 50, "usage_type": "call" } ]
567903868
from copy import deepcopy from typing import List, Dict, Tuple from cv2 import data from vqa_benchmarking_backend.datasets.dataset import DataSample, DatasetModelAdapter, DiagnosticDataset import torch from skimage.util import noise, random_noise from collections import defaultdict @torch.no_grad() def inputs_for_image_robustness_imagespace(current_sample: DataSample, trials: int = 3, gaussian_mean: float = 0.0, gaussian_variance: float = 0.025, salt_pepper_amount: float = 0.1, salt_vs_pepper_ratio: float = 0.5, speckle_mean: float = 0.0, speckle_variance: float = 0.05, noise_types = ['gaussian', 'poisson', 's&p', 'speckle'], seed: int = 12345) -> List[DataSample]: """ NOTE: creates len(noise_types) * trials outputs, because 1 output per noise type () https://scikit-image.org/docs/stable/api/skimage.util.html#random-noise Args: noise_types: sub-list of ['gaussian', 'localvar', 'poisson', 'salt', 'pepper', 's&p', 'speckle'] Returns: List[DataSample] of length len(noise_types)*trials """ candidates = [] noise_seed = seed for i in range(trials): # generate image noise for noise_mode in noise_types: kwargs = {'seed': noise_seed, 'clip': True, 'mode': noise_mode} if noise_mode in ['gaussian', 'speckle']: kwargs['mean'] = gaussian_mean if noise_mode == 'gaussian' else speckle_mean kwargs['var'] = gaussian_variance if noise_mode == 'gaussian' else speckle_variance if noise_mode in ['s&p']: kwargs['amount'] = salt_pepper_amount kwargs['salt_vs_pepper'] = salt_vs_pepper_ratio noisy_img = random_noise(current_sample.image, **kwargs) candidate = deepcopy(current_sample) candidate.image = noisy_img candidate.image_features = None # reset image features, they have to be recalculated candidates.append(candidate) noise_seed += 1 # need to change seed between iterations s.t. we obtain different samples each trial return candidates @torch.no_grad() def inputs_for_image_robustness_featurespace(current_sample: DataSample, std: float = 0.01, trials: int = 15) -> List[DataSample]: """ Additive gaussian noise for input features """ candidates = [] for i in range(trials): # generate gaussian noise, add to question features candidate = deepcopy(current_sample) candidate.image_features = torch.normal(mean=candidate.image_features, std=std) candidates.append(candidate) return candidates @torch.no_grad() def inputs_for_question_robustness_wordspace(current_sample: DataSample, trials: int = 15, noise_types=['typo', 'insert', 'permute', 'synonyms', 'delete'], max_edits_per_sample: int =2 ) -> List[DataSample]: """ Ideas: * typos (might not be in vocab... - should be doable with BERT and fastText.subwords though) * change order of words (does it have to be grammatically safe?) * insert unneccessary words (when is that safe?) * replace with synonyms (where to get synonym map?) * delete word (when is that safe? e.g. don't delete 'color' from 'What color is...?') maybe noise is more meaningful in feature space than word space """ raise NotImplementedError @torch.no_grad() def inputs_for_question_robustness_featurespace(current_sample: DataSample, adapter: DatasetModelAdapter, std: float = 0.01, trials: int = 15) -> List[DataSample]: """ Additive gaussian noise for input features """ candidates = [] for i in range(trials): # generate gaussian noise, add to question features candidate = deepcopy(current_sample) if isinstance(candidate.question_features, type(None)): candidate.question_features = adapter.get_question_embedding(candidate) candidate.question_features = torch.normal(mean=candidate.question_features, std=std) candidates.append(candidate) return candidates @torch.no_grad() def eval_robustness(dataset: DiagnosticDataset, original_class_prediction: str, predictions: torch.FloatTensor) -> Tuple[Dict[int, float], float]: """ Evalutate predictions generated with `inputs_for_question_bias_featurespace`, `inputs_for_question_bias_imagespace`, `inputs_for_image_bias_featurespace` or `inputs_for_image_bias_wordspace`. Args: predictions (trials): Model predictions (probabilities) Returns: * Mapping from best prediction class -> fraction of total predictions * normalized robustness score (float), where 0 means not robust, and 1 means 100% robust """ trials = predictions.size(dim=0) class_pred_counter = defaultdict(float) robustness_score = [] for trial in range(trials): top_pred_class = predictions[trial].squeeze().argmax(dim=-1).item() # scalar top_answer = dataset.class_idx_to_answer(top_pred_class) class_pred_counter[top_answer] += 1 if original_class_prediction == top_answer: robustness_score.append(1.0) else: robustness_score.append(0.0) for class_idx in class_pred_counter: class_pred_counter[class_idx] /= trials return class_pred_counter, sum(robustness_score)/len(robustness_score)
null
backend/vqa_benchmarking_backend/metrics/robustness.py
robustness.py
py
5,721
python
en
code
null
code-starcoder2
83
[ { "api_name": "vqa_benchmarking_backend.datasets.dataset.DataSample", "line_number": 11, "usage_type": "name" }, { "api_name": "skimage.util.random_noise", "line_number": 40, "usage_type": "call" }, { "api_name": "copy.deepcopy", "line_number": 41, "usage_type": "call" }, { "api_name": "torch.no_grad", "line_number": 10, "usage_type": "call" }, { "api_name": "typing.List", "line_number": 16, "usage_type": "name" }, { "api_name": "vqa_benchmarking_backend.datasets.dataset.DataSample", "line_number": 16, "usage_type": "name" }, { "api_name": "vqa_benchmarking_backend.datasets.dataset.DataSample", "line_number": 51, "usage_type": "name" }, { "api_name": "copy.deepcopy", "line_number": 58, "usage_type": "call" }, { "api_name": "torch.normal", "line_number": 59, "usage_type": "call" }, { "api_name": "torch.no_grad", "line_number": 50, "usage_type": "call" }, { "api_name": "typing.List", "line_number": 51, "usage_type": "name" }, { "api_name": "vqa_benchmarking_backend.datasets.dataset.DataSample", "line_number": 65, "usage_type": "name" }, { "api_name": "torch.no_grad", "line_number": 64, "usage_type": "call" }, { "api_name": "typing.List", "line_number": 67, "usage_type": "name" }, { "api_name": "vqa_benchmarking_backend.datasets.dataset.DataSample", "line_number": 67, "usage_type": "name" }, { "api_name": "vqa_benchmarking_backend.datasets.dataset.DataSample", "line_number": 82, "usage_type": "name" }, { "api_name": "vqa_benchmarking_backend.datasets.dataset.DatasetModelAdapter", "line_number": 82, "usage_type": "name" }, { "api_name": "copy.deepcopy", "line_number": 89, "usage_type": "call" }, { "api_name": "torch.normal", "line_number": 92, "usage_type": "call" }, { "api_name": "torch.no_grad", "line_number": 81, "usage_type": "call" }, { "api_name": "typing.List", "line_number": 82, "usage_type": "name" }, { "api_name": "vqa_benchmarking_backend.datasets.dataset.DiagnosticDataset", "line_number": 98, "usage_type": "name" }, { "api_name": "torch.FloatTensor", "line_number": 98, "usage_type": "attribute" }, { "api_name": "collections.defaultdict", "line_number": 113, "usage_type": "call" }, { "api_name": "torch.no_grad", "line_number": 97, "usage_type": "call" }, { "api_name": "typing.Tuple", "line_number": 98, "usage_type": "name" }, { "api_name": "typing.Dict", "line_number": 98, "usage_type": "name" } ]
323254757
#!/usr/bin/python import networkx as nx import random import math # INDEPENDENT CASCADE MODEL # Let S_0 is the set of seeds, i.e., nodes active at step 0, # and more in general S_t is the set of nodes activated at step t. # Moreover, we denote with S_<t the set of nodes activated before step t, i.e., S_<t is the union of S_i for i = 0, ..., t-1. # The dynamics then proceeds as follows. # At each time step t >= 1, for each node u in S_{t-1}, and each neighbor v not yet active (i.e., not in S_<t), # with probability prob v is activated, i.e. v is inserted in S_t. # The dynamics stops at the first time step t* such that S_t* is empty. def cascade(graph, active): #active represents the set S_t in the description above if len(active) > 0: #newactive represents the set S_{t+1} newactive=set() for i in active: #This allows to keep track of S_<t, i.e. the set of nodes activated before time t graph.nodes[i]['active']=True for i in active: for j in graph[i]: if 'active' not in graph.nodes[j]: r=random.random() if r < graph[i][j]['prob']: newactive.add(j) cascade(graph,newactive) return graph # LINEAR THRESHOLD MODEL # The dynamics then proceeds as follows. # At each time step t >= 1, for each node v not yet activated (i.e., not in S_<t) # if the fraction of activated neighbors (i.e., neighbors in S_<t) # is above the threshold t(v), then v is activated, i.e., v is inserted in S_t. # The dynamics stops at the first time step t* such that S_t* is empty. def threshold(graph, active): #Thresholds are randomly assigned only at first step thresholds=nx.get_node_attributes(graph,'threshold') if len(thresholds) == 0: for i in graph.nodes(): graph.nodes[i]['threshold'] = random.random() if len(active) > 0: newactive=set() for i in active: graph.nodes[i]['active'] = True for i in active: for j in graph[i]: if 'active' not in graph.nodes[j]: #updating the number of active neighbors if 'num_act' not in graph.nodes[j]: graph.nodes[j]['num_act']=1 else: graph.nodes[j]['num_act']+=1 # node activation if graph.nodes[j]['num_act']/len(graph[j]) >= graph.nodes[j]['threshold']: newactive.add(j) threshold(graph,newactive) return graph # MAJORITY DYNAMICS # At each time step we select a single node whose state does not corresponds to the state of the majority of the neighbors, # and we fix it. # # Differently from the previous models, this dynamics allows to revise the state (i.e., to go from non-active to active and viceversa). # We consider a single update at each time step. Indeed, multiple updates may lead the dynamics to never converge (e.g., the bipartite graph with each side having a different initial state). # Note the different update order may lead to very different stable states (again, look at the case of the bipartite graph). # This makes more complicate to forecast the outcome of dynamics running according to this dynamics. def majority(graph, act, nact): # At previous step there may be either nodes that have been activated or nodes that have been dis-activated if len(act) > 0 or len(nact) > 0: for i in act: graph.nodes[i]['active']=True #updating the number of active neighbors for i in act: for j in graph[i]: if 'num_act' not in graph.nodes[j]: graph.nodes[j]['num_act'] = 1 else: graph.nodes[j]['num_act'] += 1 #updating the number of non active neighbors for i in nact: graph.nodes[i]['active']=False for i in nact: for j in graph[i]: if 'num_act' not in graph.nodes[j]: graph.nodes[j]['num_act'] = 0 else: graph.nodes[j]['num_act'] -= 1 change=False #We choose to update a node willing to become active before than a node willing to become non active #This will maximizes the number of active nodes at the end of the dynamics for i in graph.nodes(): #checking if i has an incentive to be activated if ('active' not in graph.nodes[i] or not graph.nodes[i]['active']) and 'num_act' in graph.nodes[i] and graph.nodes[i]['num_act'] >= len(graph[i])/2: majority(graph,[i],[]) change=True # the break serves to update a single node at each time step break if not change: #if no node is willing to become active, checks for nodes willing to become non active for i in graph.nodes(): # checking if i has an incentive to be dis-activated if ('active' in graph.nodes[i] and graph.nodes[i]['active']) and ('num_act' not in graph.nodes[i] or graph.nodes[i]['num_act'] < len(graph[i])/2): majority(graph,[],[i]) break return graph # VOTER MODEL # Above models are essentially deterministic models (except, for example, for the random selection of thresholds). # There are instead purely probabilistic models, such as the voter model. # # In this model, at each time step we select a random node, and we update this node's state by coping the state of a random neighbor. # The advantage of these models is that they allow "wrong" choice, that may be realistic, and useful to escape from bad unrealistic equilibria. # # Note that this dynamics does not terminates, unless either all nodes are active, or all nodes are not. # For this reason we only run a limited number of steps. def voter(graph, seed, num_steps): #Initialization for i in graph.nodes(): if i in seed: graph.nodes[i]['active'] = True else: graph.nodes[i]['active'] = False #Update for t in range(num_steps): u=random.choice(list(graph.nodes())) v=random.choice(list(graph[u])) graph.nodes[u]['active'] = graph.nodes[v]['active'] return graph # Since the independent cascade and the linear threshold models are not deterministic, # the marginal contribution cannot be directly computed, but it should be estimated # by averaging over multiple run of the dynamics. # # As we will observe below the number of runs necessary to achieve a good estimation is very large, # and this increases the running time of the greedy algorithm. # On the other side, if the greedy algorithm does not work with a good estimation, # its approximation can become much larger thn what it is stated below. def marginal_influence(graph,seeds,v,dynamics): # In order to have that the returned estimation is close to the real marginal contribution with high probability, # we have to choose a large number of runs. Specifically, to have that the estimated value is within the interval # [(1-eps)*true value, (1+eps)*true value] with probability at least 1-nu the number of runs must be the following one # num_repeat=math.ceil(2*graph.number_of_nodes()*math.ln(1/nu)/(eps*eps)) # E.g., if we want that the estimated value is at most 5% away from the real value with probability at least 90%, # we should set eps = 0.05 and nu = 0.1, and we have num_repeat = 2*n*ln(10)*400 = 1842*n. # If, instead, we want that the estimated value is at most 1% away from the real value with probability at least 99%, # we should set eps = 0.01 and nu = 0.01, and we have num_repeat = 2*n*ln(100)*10000 = 92104*n. eps=0.05 nu = 0.1 num_repeat = math.ceil(2 * graph.number_of_nodes() * math.log(1 / nu) / (eps * eps)) sumt=0 for i in range(num_repeat): sumt+=len(nx.get_node_attributes(dynamics(graph,list(seeds+[v])),'active')) return sumt/num_repeat #The following greedy algorithms returns a set of seeds of size budget such that #the (expected) number of active nodes at the end of the dynamics is a good approximation (namely, 1-1/e) #of the maximum (expected) number of nodes that would be achieved by the best seed set of size budget, #whenever the dynamics satisfies the following two properties: #- Monotony: the (expected) number of active nodes at the end of the dynamics increases as the number of seed nodes increase; #- Submodularity: the marginal contribution of a seed node (i.e., how much it increases the number of active nodes at the end of the dynamics) # is larger when this seed node is added to a small seed set than when it is added to a large seed set. # # Interestingly, both the independent cascade model and the linear threshold model enjoy these properties. # Hence, for these dynamics the following greedy algorithm returns a good approximation of the optimal seed set. # # The greedy algorithm simply works by adding at each time step the node with larger marginal contribution to the seed set def greedy(graph,budget,dynamics): seeds=[] while budget > 0: best=0 for v in graph.nodes(): if v not in seeds: #compute the marginal contribution of each node that is not yet in the seed set infl=marginal_influence(graph,seeds,v,dynamics) #we save the one node with larger marginal contribution if infl >= best: best=infl bestV=v #we add the node with larger marginal contribution to the seed set seeds.append(bestV) budget-=1 return seeds G = nx.Graph() G.add_edge('A', 'B',prob=2/3) G.add_edge('A', 'C',prob=2/3) G.add_edge('B', 'C',prob=2/3) G.add_edge('B', 'D',prob=2/3) G.add_edge('D', 'E',prob=2/3) G.add_edge('D', 'F',prob=2/3) G.add_edge('D', 'G',prob=2/3) G.add_edge('E', 'F',prob=2/3) G.add_edge('F', 'G',prob=2/3) seed = {'B'} # INDEPENDENT CASCADE print(list(nx.get_node_attributes(cascade(G, seed), 'active').keys())) G = nx.Graph() G.add_edge('A', 'B') G.add_edge('A', 'C') G.add_edge('B', 'C') G.add_edge('B', 'D') G.add_edge('D', 'E') G.add_edge('D', 'F') G.add_edge('D', 'G') G.add_edge('E', 'F') G.add_edge('F', 'G') seed = {'B'} # LINEAR THRESHOLD print(list(nx.get_node_attributes(threshold(G, seed), 'active').keys())) G = nx.Graph() G.add_edge('A', 'B') G.add_edge('A', 'C') G.add_edge('B', 'C') G.add_edge('B', 'D') G.add_edge('D', 'E') G.add_edge('D', 'F') G.add_edge('D', 'G') G.add_edge('E', 'F') G.add_edge('F', 'G') seed = {'B','F'} # MAJORITY active = nx.get_node_attributes(majority(G, seed, {}), 'active') print([i for i in active.keys() if active[i]]) G = nx.Graph() G.add_edge('A', 'B') G.add_edge('A', 'C') G.add_edge('B', 'C') G.add_edge('B', 'D') G.add_edge('D', 'E') G.add_edge('D', 'F') G.add_edge('D', 'G') G.add_edge('E', 'F') G.add_edge('F', 'G') seed = {'B'} # VOTER active = nx.get_node_attributes(voter(G, seed, 10), 'active') print([i for i in active.keys() if active[i]]) G=nx.Graph() G.add_edge('A','B',prob=0.66) G.add_edge('A','C',prob=0.6) G.add_edge('B','C',prob=0.75) G.add_edge('B','D',prob=0.55) G.add_edge('D','E',prob=0.7) G.add_edge('D','F',prob=0.5) G.add_edge('D','G',prob=0.45) G.add_edge('E','F',prob=0.8) G.add_edge('F','G',prob=0.66) print(greedy(G,2,cascade))
null
utils/lesson3.py
lesson3.py
py
11,467
python
en
code
null
code-starcoder2
83
[ { "api_name": "random.random", "line_number": 27, "usage_type": "call" }, { "api_name": "networkx.get_node_attributes", "line_number": 42, "usage_type": "call" }, { "api_name": "random.random", "line_number": 45, "usage_type": "call" }, { "api_name": "random.choice", "line_number": 132, "usage_type": "call" }, { "api_name": "random.choice", "line_number": 133, "usage_type": "call" }, { "api_name": "math.ceil", "line_number": 156, "usage_type": "call" }, { "api_name": "math.log", "line_number": 156, "usage_type": "call" }, { "api_name": "networkx.get_node_attributes", "line_number": 159, "usage_type": "call" }, { "api_name": "networkx.Graph", "line_number": 192, "usage_type": "call" }, { "api_name": "networkx.get_node_attributes", "line_number": 204, "usage_type": "call" }, { "api_name": "networkx.Graph", "line_number": 206, "usage_type": "call" }, { "api_name": "networkx.get_node_attributes", "line_number": 218, "usage_type": "call" }, { "api_name": "networkx.Graph", "line_number": 220, "usage_type": "call" }, { "api_name": "networkx.get_node_attributes", "line_number": 232, "usage_type": "call" }, { "api_name": "networkx.Graph", "line_number": 235, "usage_type": "call" }, { "api_name": "networkx.get_node_attributes", "line_number": 247, "usage_type": "call" }, { "api_name": "networkx.Graph", "line_number": 250, "usage_type": "call" } ]
81805111
#!/home/kjeong23/softwares/bin/python3.4 # program to calculate hoppingless MSD of surfactants # v04 renovation: imported mdtraj to process xtc file. Also, xtc file is truncated with 1 atomtype. # definition of non-hopping: until it is detected in 'other' micelle. # in migevent scheme, until the arrival time for the destination micelle. # algorithm: read migevent to record cutting points -> track 1 surfactant. cut traj. # -> record r0 (now don't calc COM) -> calc square displacement until it hops.(consider PBC) # in every step of COM SD calc, pile up in the bins, adding up "counts"(w.r.t. t) # to compare statistical weight of all dr^2(t). -> calc MSD(t). # -> display MSD(t), count(t). # ** binary .xtc trajectory file: requires pbc -whole treatment!! #inputs: grofile, traj xtc file, migfile (listed inter-micellar exchanges, molecule index sorted) #output: file of {t, nonhop_MSD(t), count(t)} #v03: started consideration of hopping: when a surfactant hopps, set new r0,t=0 #philosophy of ensemble averaging : the issue is, because of unequal length of non-hop traj, #averaging without care will result in unequal weighting of averaging. but, still do that. #leave statistical count beside, to make good averaging of different surfactant groups later. import math import sys import numpy import timeit import mdtraj as md tstep=0.200 #use skip10-trajectory #now do not use atomic mass matrix anymore. Don't care about COM, and only track 1 atom. #def mig_stepteller(migline,tb1,tb2,mi1,mi2): #read migline, record surf index and time # #read surf index and initial time(important) # split=migline.split() # mindex,tarr=int(split[0]),float(split[4]) #mindex : 'string' form # hop_info=[] # if mi1<=mindex<=mi2 and tb1<=tarr<=tb2: #collect info only in this case # ntarr=(tarr-tb1)/tstep #collect info only in this case. frame index in entire trajectory # ntarr=int(round(ntarr)) # hop_info=[mindex,ntarr] # return hop_info def pbcdr(ri,rf,box): #displacement vector with considering pbc dr=rf-ri for i in range(3): if dr[i]>(box[i]/2.0): dr[i]-=box[i] elif dr[i]<(-box[i]/2.0): dr[i]+=box[i] return dr def SD_calculator(trimtraj,nstep): #square displacement calculator. assumes that trajectory has 1 particle. sdbin1,count1=numpy.zeros(nstep),numpy.zeros(nstep) trimstep=trimtraj.n_frames crd=trimtraj.xyz box=numpy.array(trimtraj.unitcell_lengths[0]) #for ntau in range(trimstep): #use tau-step loop first # for i in range(trimstep-ntau): #initial snapshot for i in range(trimstep-1): vec=numpy.zeros(3) for j in range(i+1,trimstep): dr=pbcdr(crd[j][0],crd[j-1][0],box) vec+=dr rmag2=numpy.dot(vec,vec) sdbin1[j-i]+=rmag2 count1[j-i]+=1 sdbin1[0],count1[0]=0.0,1 return sdbin1,count1 #main fxn def main(): #Part to load coordinate file, migration event file grofile = sys.argv[1] trjfile = sys.argv[2] migfile = sys.argv[3] outfile = open(sys.argv[4],'w') tblock=input("What is the time interval of trajectory you're loading(in ns)? ex) 200 400 \n") tb12=tblock.split() tb1,tb2=float(tb12[0]),float(tb12[1]) ntb1,ntb2=tb1/tstep,tb2/tstep ntb1,ntb2=int(round(ntb1)),int(round(ntb2)) mi12=input("What is the surfactant index interval of MSD calculation? ex) 0 9 \n") mi12=mi12.split() mi1,mi2=int(mi12[0]),int(mi12[1]) start_time=timeit.default_timer() #input 1 : load surf traj. (big file) traj=md.load(trjfile,top=grofile) traj=traj[ntb1:ntb2+1] topology=traj.topology if topology.n_residues <= mi2: #surfactant index exceeded mi2=topology.n_residues-1 #autofix surfactant index range elapsed=timeit.default_timer() - start_time print('finished trajectory loading {}'.format(elapsed)) print(traj) nstep=traj.n_frames #prepare bins for MSD sdbin,count=numpy.zeros(nstep),numpy.zeros(nstep) #bin & stat weight of dr^2(t) ave #input 2 : load migevents. Then, for target surfactant molecules, should make 'cutting time list'. # the cutting time list will be used for next loop, to slice trajectories and calc MSD internally for each traj segment. #tagmi=mi1 #index of surfactant being searched to write cuttlist #row,cuttlist=[],[] #while True: # migline=migfile.readline() # if migline=='':#EOF # break # info=mig_stepteller(migline,tb1,tb2,mi1,mi2) # if len(info)!=0 and info[0]==tagmi: # row.append(info[1]) # elif len(info)!=0 and info[0]>tagmi: # row.append(nstep) # tagmi=info[0] # cuttlist.append(row) # row=[info[1]] #cuttlist.append(row) #for the last molecule\ total_miginfo=numpy.loadtxt(migfile) row,cuttlist=[],[] for mi in range(mi1,mi2+1): mi_mig=total_miginfo[total_miginfo[:,0]==mi] mi_mig=mi_mig[tb1<=mi_mig[:,4]] mi_mig=mi_mig[mi_mig[:,4]<=tb2] if mi_mig.ndim==1: #1-line ntarr=(mi_mig[4]-tb1)/tstep ntarr=int(round(ntarr)) if len(row)==0: row.append(ntarr) elif row[-1]!=ntarr: row.append(ntarr) #avoid duplicate else: for entry in mi_mig: ntarr=(entry[4]-tb1)/tstep ntarr=int(round(ntarr)) #duplicate check if len(row)==0: row.append(ntarr) elif row[-1]!=ntarr: row.append(ntarr) #avoid duplicate if len(row)==0: row.append(nstep) elif row[-1]!=nstep: row.append(nstep) if row[0]==0: del row[0] cuttlist.append(row) row=[] elapsed=timeit.default_timer() - start_time print('migevent information loading complete {}'.format(elapsed)) print(cuttlist) #loop of trajectory slicing and MSD calculation mindex=mi1 for row in cuttlist: #each row represent 1 surfactant lastframe=0 #remove duplicates in 1 row of cuttlist for x in row: trimtraj=traj[lastframe:x] trimtraj=trimtraj.atom_slice(topology.select('resid '+str(mindex))) sdbin1,count1=SD_calculator(trimtraj,nstep) #square displacement and statist.count for 1 traj-segment sdbin+=sdbin1 count+=count1 lastframe=x elapsed=timeit.default_timer() - start_time print('surf# {} partial trajcut {} MSD calculated. time {:11.4f}'.format(mindex,x,elapsed)) mindex+=1 #printing section sdbin=numpy.divide(sdbin,count,out=numpy.zeros_like(sdbin), where=count!=0) #outfile.write('{:11.4f} {:11.4f} {:11.4f}\n'.format(0,0,0)) for i in range(nstep): outfile.write('{:11.4f} {:11.4f} {:11.4f}\n'.format(tstep*i,sdbin[i],count[i])) outfile.close() if __name__ == "__main__": main()
null
py_development/data_process/micelles/nohopmsd_v04.py
nohopmsd_v04.py
py
6,484
python
en
code
null
code-starcoder2
83
[ { "api_name": "numpy.zeros", "line_number": 50, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 53, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 57, "usage_type": "call" }, { "api_name": "numpy.dot", "line_number": 61, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 70, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 71, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 72, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 73, "usage_type": "attribute" }, { "api_name": "timeit.default_timer", "line_number": 84, "usage_type": "call" }, { "api_name": "mdtraj.load", "line_number": 87, "usage_type": "call" }, { "api_name": "timeit.default_timer", "line_number": 92, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 98, "usage_type": "call" }, { "api_name": "numpy.loadtxt", "line_number": 117, "usage_type": "call" }, { "api_name": "timeit.default_timer", "line_number": 141, "usage_type": "call" }, { "api_name": "timeit.default_timer", "line_number": 158, "usage_type": "call" }, { "api_name": "numpy.divide", "line_number": 163, "usage_type": "call" }, { "api_name": "numpy.zeros_like", "line_number": 163, "usage_type": "call" } ]
215633734
#!usr/bin/env python # encoding: utf-8 """ @author: tommars00 @softwawre: PyCharm Community Edition @file: run.py @time: 8:37 PM """ from scrapy import cmdline name = 'book' cmd = 'scrapy crawl {0}'.format(name) cmdline.execute(cmd.split())
null
dangdang/run.py
run.py
py
246
python
en
code
null
code-starcoder2
83
[ { "api_name": "scrapy.cmdline.execute", "line_number": 17, "usage_type": "call" }, { "api_name": "scrapy.cmdline", "line_number": 17, "usage_type": "name" } ]
573482198
import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from tqdm import tqdm import os, glob, json import config as cfg from module.cluster import VAE_Cluster from module.vmt import VMT, TemplateD, QHead from module.vae import GaussianKLLoss from dataset import KKDayUser, seq_collate from constant import Constants import fasttext from utils import get_fixed_temperature, get_losses import sklearn import numpy as np from tensorboardX import SummaryWriter from utils import gradient_penalty, str2bool, chunks from nltk.translate.bleu_score import sentence_bleu from nltk.translate.bleu_score import SmoothingFunction from shutil import copyfile import pickle def data_iter(dataloader): def function(): while True: for batch in dataloader: yield batch return function() class TemplateTrainer(): def __init__(self, args): self.dataset2 = KKDayUser(-1, 'data/kkday_dataset/user_data', 'data/kkday_dataset/matrix_factorized_64.pkl', prefix='item_graph', embedding=None, max_length=args.max_seq_len, force_fix_len=args.grad_penalty or args.full_text, token_level=args.tokenize, is_train=True) self.dataset1 = KKDayUser(-1, 'data/kkday_dataset/user_data', 'data/kkday_dataset/matrix_factorized_64.pkl', prefix='item_graph', embedding=None, max_length=args.max_seq_len, force_fix_len=args.grad_penalty or args.full_text, token_level=args.tokenize, is_train=True) self.val_dataset = KKDayUser(-1, 'data/kkday_dataset/user_data', 'data/kkday_dataset/matrix_factorized_64.pkl', prefix='item_graph', is_train=False,embedding=None, max_length=args.max_seq_len, force_fix_len=args.grad_penalty or args.full_text, token_level=args.tokenize) self.model = VMT(args.gen_embed_dim, self.dataset2.vocab_size, enc_hidden_size=128, dec_hidden_size=128, tmp_category=args.tmp_cat_dim, tmp_latent_dim=args.tmp_latent_dim, desc_latent_dim=args.desc_latent_dim, user_latent_dim=args.user_latent_dim, biset=args.biset, max_seq_len=args.max_seq_len-1, gpu=True) output_latent = args.desc_latent_dim+(args.tmp_latent_dim*args.tmp_cat_dim) self.D = TemplateD(64, args.max_seq_len, 32, self.dataset2.vocab_size, output_latent) self.Q = QHead(self.D.feature_dim, args.tmp_cat_dim*args.tmp_latent_dim , args.desc_latent_dim) self.D.cuda() self.model.cuda(), self.Q.cuda() args.vocab_size = self.dataset1.vocab_size self.args = args max_temp = 1.0 temp_min = 0.00005 temp = 1.0 self.gumbel_temp = temp N = args.iterations self.gumbel_anneal_rate = 1 / N self.temp_anneal = max_temp / N self.temp = args.temperature_min # self.cluster_opt = optim.Adam(self.C.parameters(), lr=args.dis_lr) self.gen_opt = optim.Adam(list(self.model.parameters())+list(self.Q.parameters()), lr=args.gen_lr) self.gen_adv_opt = optim.Adam(list(self.model.parameters())+list(self.Q.parameters()), lr=args.gen_adv_lr, betas=(0.5, 0.999)) self.dis_adv_opt = optim.Adam(self.D.parameters(), lr=args.dis_lr, betas=(0.5, 0.999)) opt_level = args.opt_level # [self.model, self.C], self.gen_adv_opt = amp.initialize([self.model, self.C], self.gen_adv_opt, opt_level=opt_level) self.dataloader1 = torch.utils.data.DataLoader(self.dataset1, num_workers=3, collate_fn=seq_collate, batch_size=args.batch_size, shuffle=True, drop_last=True) self.dataloader2 = torch.utils.data.DataLoader(self.dataset2, num_workers=3, collate_fn=seq_collate, batch_size=args.batch_size, shuffle=True, drop_last=True) self.mle_criterion = nn.NLLLoss(ignore_index=Constants.PAD) self.KL_loss = GaussianKLLoss() self.mse_criterion = nn.MSELoss() self.xent_criterion = nn.CrossEntropyLoss() self.data_iterator1 = data_iter(self.dataloader1) self.data_iterator2 = data_iter(self.dataloader2) self.init_sample_inputs() def pretrain(self, epochs, writer=None): from dataset import KKDayUser, seq_collate dataset = KKDayUser(-1, 'data/kkday_dataset/user_data', 'data/kkday_dataset/matrix_factorized_64.pkl', prefix='item_graph', embedding=None, max_length=128, token_level='word', is_train=True) val_dataset = KKDayUser(-1, 'data/kkday_dataset/user_data', 'data/kkday_dataset/matrix_factorized_64.pkl', prefix='item_graph', embedding=None, max_length=128, token_level='word', is_train=False) vae = self.model.template_vae class Model(nn.Module): def __init__(self): super(Model, self).__init__() self.vae = vae model = Model().cuda() pretrain_dataloader = torch.utils.data.DataLoader(dataset, num_workers=6, collate_fn=seq_collate, batch_size=32, shuffle=True, drop_last=True) val_dataloader = torch.utils.data.DataLoader(val_dataset, num_workers=6, collate_fn=seq_collate, batch_size=56, shuffle=True, drop_last=True) optimizer = optim.Adam(model.parameters(), lr=0.0001, betas=(0.5, 0.999)) nll_criterion = nn.NLLLoss(ignore_index=Constants.PAD) iter_ = 0 max_temp = 1.0 temp_min = 0.00005 temp = 1.0 N = len(pretrain_dataloader) * 10 anneal_rate = max_temp / N for e in range(epochs): for batch in pretrain_dataloader: inputs, target = batch['tmp'][:, :-1], batch['tmp'][:, 1:] title = batch['tgt'][:, :-1] title = title.cuda() inputs = inputs.cuda() target = target.cuda() decoder_output, latent, inp = model.vae(inputs, max_length=inputs.shape[1], temperature=temp) nll_loss = nll_criterion(decoder_output.view(-1, dataset.vocab_size), target.flatten()) if iter_ % 100 == 1: temp = np.maximum(temp * np.exp(-anneal_rate * iter_), temp_min) log_ratio = torch.log(latent * args.tmp_cat_dim + 1e-20) kl_loss = torch.sum(latent * log_ratio, dim=-1).mean() optimizer.zero_grad() loss = kl_loss + nll_loss loss.backward() optimizer.step() decoder_output, latent, inp = model.vae(title, max_length=title.shape[1], temperature=temp) nll_loss = nll_criterion(decoder_output.view(-1, dataset.vocab_size), target.flatten()) if iter_ % 100 == 1: temp = np.maximum(temp * np.exp(-anneal_rate * iter_), temp_min) log_ratio = torch.log(latent * args.tmp_cat_dim + 1e-20) kl_loss = torch.sum(latent * log_ratio, dim=-1).mean() optimizer.zero_grad() loss = kl_loss + nll_loss loss.backward() optimizer.step() if iter_ % 100 == 0: print('loss: {:.4f}'.format(loss.item())) if iter_ % 1000 == 0 and iter_ != 0: model.eval() with torch.no_grad(): print('sample latent') clusters = {} for batch in val_dataloader: inputs, target = batch['tmp'][:, :-1], batch['tmp'][:, 1:] inputs = inputs.cuda() target = target.cuda() decoder_output, latents, inp = model.vae(inputs, max_length=inputs.shape[1], temperature=temp) for idx, sent in enumerate(batch['tmp'][:, 1:]): sentence = [] for token in sent: if token.item() == Constants.EOS: break sentence.append( dataset.idx2word[token.item()]) sent = ' '.join(sentence) latent = latents[idx].cpu().detach().numpy() clusters[sent] = latent model.train() iter_ += 1 self.model.template_vae.load_state_dict(model.vae.state_dict()) for params in self.model.template_vae.parameters(): params.requires_grad = False torch.save(self.model, 'save/pretrain_vmt.pt') def dis_step(self, i): batch1 = next(self.data_iterator1) src_inputs1 = batch1['src'] tmp1 = batch1['tmp'] items1, users1 = batch1['items'], batch1['users'] item_ids1 = batch1['item_ids'] inputs1, target1 = batch1['tgt'][:, :-1], batch1['tgt'][:, 1:] if cfg.CUDA: inputs1, items1, users1 = inputs1.cuda(), items1.cuda(), users1.cuda() src_inputs1 = src_inputs1.cuda() item_ids1 = item_ids1.cuda() inputs1 = inputs1.cuda() target1 = target1.cuda() tmp1 = tmp1.cuda() batch2 = next(self.data_iterator2) tmp2 = batch2['tmp'] if cfg.CUDA: tmp2 = tmp2.cuda() with torch.no_grad(): desc1_outputs, desc1_latent, desc1_mean, desc1_std = self.model.encode_desc(src_inputs1) temp1_outputs, tmp1_latent = self.model.encode_tmp(tmp1) real_latent = torch.cat([ tmp1_latent, desc1_latent ], axis=1) _, _, one_hots = self.model.decode(tmp1_latent, desc1_latent, users1, desc1_outputs, temp1_outputs, max_length=target1.shape[1], gumbel=True) temp1_outputs, tmp2_latent = self.model.encode_tmp(tmp2) fake_latent = torch.cat([ tmp2_latent, desc1_latent ], axis=1) _, _, fake_hots = self.model.decode(tmp2_latent, desc1_latent, users1, desc1_outputs, temp1_outputs, max_length=target1.shape[1], gumbel=True) real_samples = F.one_hot(target1, self.args.vocab_size).float() real_logits, d_latent = self.D(real_samples) latent_dim = tmp2_latent.shape[1] desc_m, desc_v, tmp_latent = self.Q(d_latent) desc_kl_loss = self.KL_loss(desc_m, desc_v) template_loss_real = self.xent_criterion( tmp_latent.view(-1, self.args.tmp_cat_dim), torch.argmax( tmp1_latent.view(-1, self.args.tmp_cat_dim), -1 ).long()) fake_logits, d_latent = self.D(fake_hots) desc_m, desc_v, tmp_latent = self.Q(d_latent) desc_kl_loss += self.KL_loss(desc_m, desc_v) template_loss_real += self.xent_criterion( tmp_latent.view(-1, self.args.tmp_cat_dim), torch.argmax( tmp1_latent.view(-1, self.args.tmp_cat_dim), -1 ).long()) _, d_loss = get_losses(real_logits, fake_logits, loss_type='rsgan') self.dis_adv_opt.zero_grad() cond_loss = template_loss_real + desc_kl_loss loss = d_loss + cond_loss loss.backward() self.dis_adv_opt.step() return loss.item(), d_loss.item(), cond_loss.item() def step(self, i): self.D.eval() batch1 = next(self.data_iterator1) src_inputs1 = batch1['src'] tmp1 = batch1['tmp'] items1, users1 = batch1['items'], batch1['users'] item_ids1 = batch1['item_ids'] inputs1, target1 = batch1['tgt'][:, :-1], batch1['tgt'][:, 1:] if cfg.CUDA: inputs1, items1, users1 = inputs1.cuda(), items1.cuda(), users1.cuda() src_inputs1 = src_inputs1.cuda() item_ids1 = item_ids1.cuda() inputs1 = inputs1.cuda() target1 = target1.cuda() tmp1 = tmp1.cuda() batch2 = next(self.data_iterator2) src_inputs2 = batch2['src'] tmp2 = batch2['tmp'] items2, users2 = batch2['items'], batch2['users'] item_ids2 = batch2['item_ids'] inputs2, target2 = batch2['tgt'][:, :-1], batch2['tgt'][:, 1:] if cfg.CUDA: inputs2, items2, users2 = inputs2.cuda(), items2.cuda(), users2.cuda() src_inputs2 = src_inputs2.cuda() item_ids2 = item_ids2.cuda() inputs2 = inputs2.cuda() target2 = target2.cuda() tmp2 = tmp2.cuda() # nll_loss1, kl_loss1 = self.model.cycle_template(tmp1[:, :-1], tmp1[:, 1:], temperature=self.gumbel_temp) # nll_loss2, kl_loss2 = self.model.cycle_template(tmp2[:, :-1], tmp2[:, 1:], temperature=self.gumbel_temp) # cycle_nll = (nll_loss1+nll_loss2)/2 # cycle_kl = (kl_loss1+kl_loss2)/2 # nll_loss1, kl_loss1 = self.model.cycle_template(inputs1, tmp1[:, 1:], temperature=self.gumbel_temp) # nll_loss2, kl_loss2 = self.model.cycle_template(inputs2, tmp2[:, 1:], temperature=self.gumbel_temp) # title_cycle_nll = (nll_loss1+nll_loss2)/2 # title_cycle_kl = (kl_loss1+kl_loss2)/2 desc1_outputs, desc1_latent, desc1_mean, desc1_std = self.model.encode_desc(src_inputs1) tmp1_outputs, tmp1_latent = self.model.encode_tmp(tmp1) output1_target, output1_logits = self.model.decode(tmp1_latent, desc1_latent, users1, desc1_outputs, tmp1_outputs, max_length=target1.shape[1]) desc2_outputs, desc2_latent, desc2_mean, desc2_std = self.model.encode_desc(src_inputs2) tmp1_outputs, tmp2_latent = self.model.encode_tmp(tmp2) output2_target, output2_logits, output2_one_hot = self.model.decode(tmp2_latent, desc2_latent, users2, desc2_outputs, tmp1_outputs, max_length=target2.shape[1], gumbel=True) desc_kl_loss = self.KL_loss(desc2_mean, desc2_std) + self.KL_loss(desc1_mean, desc1_std) construct1_loss = self.mle_criterion(output1_target.view(-1, self.args.vocab_size), target1.flatten()) construct2_loss = self.mle_criterion(output2_target.view(-1, self.args.vocab_size), target2.flatten()) reconstruct_loss = (construct1_loss+construct2_loss)/2 total_kl_loss = desc_kl_loss# + cycle_kl # cycle_nll_loss = cycle_nll # title_loss = (title_cycle_kl* self.temp + title_cycle_nll) real_samples = F.one_hot(target1, self.args.vocab_size).float() d_out_real, real_latent = self.D(real_samples) desc_m, desc_v, tmp_latent = self.Q(real_latent) desc_kl_loss = self.KL_loss(desc_m, desc_v) template_loss = self.xent_criterion( tmp_latent.view(-1, self.args.tmp_cat_dim), torch.argmax( tmp1_latent.view(-1, self.args.tmp_cat_dim), -1 ).long()) _, _, output21_one_hot = self.model.decode(tmp1_latent, desc2_latent, users2, desc2_outputs, tmp1_outputs, max_length=target2.shape[1], gumbel=True) d_out_fake, fake_latent = self.D(output21_one_hot) desc_m, desc_v, tmp_latent = self.Q(fake_latent) desc_kl_loss += self.KL_loss(desc_m, desc_v) template_loss += self.xent_criterion( tmp_latent.view(-1, self.args.tmp_cat_dim), torch.argmax( tmp1_latent.view(-1, self.args.tmp_cat_dim), -1 ).long()) g_loss, _ = get_losses(d_out_real, d_out_fake, self.args.loss_type) g_loss_ = g_loss + desc_kl_loss + template_loss total_loss = reconstruct_loss*self.args.re_weight + \ total_kl_loss* self.temp + \ g_loss_ * self.args.dis_weight # title_loss + \ # cycle_nll_loss*self.args.cycle_weight + \ self.gen_adv_opt.zero_grad() # with amp.scale_loss(total_loss, self.gen_adv_opt) as scaled_loss: # scaled_loss.backward() total_loss.backward() torch.nn.utils.clip_grad_norm_(self.model.parameters(), cfg.clip_norm) # torch.nn.utils.clip_grad_norm_(self.C.parameters(), cfg.clip_norm) # torch.nn.utils.clip_grad_norm_(amp.master_params(self.gen_adv_opt), cfg.clip_norm) self.gen_adv_opt.step() self.D.train() return total_loss.item(), total_kl_loss.item(), reconstruct_loss.item(), 0, desc_kl_loss.item(), template_loss.item(), g_loss_.item() def sample_results(self, writer, step=0): sample_size = 5 embed = self.users[:sample_size,] desc1_outputs, desc1_latent, _, _ = self.model.encode_desc(self.descripion[:sample_size]) tmp1_outputs, tmp1_latent = self.model.encode_tmp(self.template[:sample_size]) tmp2_outputs, tmp2_latent = self.model.encode_tmp(self.template2[:sample_size]) _, output_title = self.model.decode(tmp1_latent, desc1_latent, embed, desc1_outputs, tmp1_outputs, max_length=self.args.max_seq_len) _, output_title2 = self.model.decode(tmp2_latent, desc1_latent, embed, desc1_outputs, tmp2_outputs, max_length=self.args.max_seq_len) samples, new_sample = '', '' with torch.no_grad(): for idx, sent in enumerate(output_title): sentence = [] for token in self.template[idx][1:]: if token.item() == Constants.EOS: break sentence.append( self.dataset1.idx2word[token.item()]) samples += str(idx) + '. [tmp]: ' +' '.join(sentence) + '\n\n' sentence = [] for token in sent: if token.item() == Constants.EOS: break sentence.append( self.dataset1.idx2word[token.item()]) samples += ' [out]: ' +' '.join(sentence[:30]) + '\n\n' sentence = [] for token in self.template2[idx][1:]: if token.item() == Constants.EOS: break sentence.append( self.dataset1.idx2word[token.item()]) new_sample += str(idx) + '. [tmp]: ' +' '.join(sentence) + '\n\n' sentence = [] for token in output_title2[idx]: if token.item() == Constants.EOS: break sentence.append( self.dataset1.idx2word[token.item()]) new_sample += ' [mod]: ' +' '.join(sentence[:30]) + '\n\n' if writer != None: writer.add_text("Text", samples, step) writer.flush() writer.add_text("Transfer", new_sample, step) writer.flush() def calculate_bleu(self, writer, step=0, size=1000, ngram=4): eval_dataloader = torch.utils.data.DataLoader(self.val_dataset, num_workers=8, collate_fn=seq_collate, batch_size=20, shuffle=False) sentences, references = [], [] scores_weights = { str(gram): [1/gram] * gram for gram in range(1, ngram+1) } scores = { str(gram): 0 for gram in range(1, ngram+1) } # print('Evaluate bleu scores', scores) with torch.no_grad(): for batch in eval_dataloader: src_inputs = batch['src'] tmp = batch['tmp'] items, users = batch['items'], batch['users'] inputs, target1 = batch['tgt'][:, :-1], batch['tgt'][:, 1:] if cfg.CUDA: inputs, items, users = inputs.cuda(), items.cuda(), users.cuda() src_inputs = src_inputs.cuda() inputs = inputs.cuda() target1 = target1.cuda() tmp = tmp.cuda() batch_size = src_inputs.shape[0] embed = users desc_outputs, desc_latent, _, _ = self.model.encode_desc(src_inputs) tmp_outputs, tmp_latent = self.model.encode_tmp(tmp) _, output_title = self.model.decode(tmp_latent, desc_latent, embed, desc_outputs, tmp_outputs, max_length=self.args.max_seq_len) # output_title = torch.argmax(output_logits, dim=-1) for idx, sent_token in enumerate(batch['tgt'][:, 1:]): reference = [] for token in sent_token: if token.item() == Constants.EOS: break reference.append(self.val_dataset.idx2word[token.item()] ) references.append(reference) sent = output_title[idx] sentence = [] for token in sent: if token.item() == Constants.EOS: break sentence.append( self.val_dataset.idx2word[token.item()]) sentences.append(sentence) for key, weights in scores_weights.items(): scores[key] += sentence_bleu([reference], sentence, weights, smoothing_function=SmoothingFunction().method1) if len(sentences) > size: break with open(os.path.join(self.save_path, '{}_reference.txt'.format(0)), 'w') as f: for sent in references: f.write(' '.join(sent)+'\n') with open(os.path.join(self.save_path, '{}_generate.txt'.format(step)), 'w') as f: for sent in sentences: f.write(' '.join(sent)+'\n') if writer != None: for key, weights in scores.items(): scores[key] /= len(sentences) writer.add_scalar("Bleu/score-"+key, scores[key], step) writer.flush() def init_sample_inputs(self): batch1 = next(self.data_iterator1) src_inputs1 = batch1['src'] tmp1 = batch1['tmp'] items1, users1 = batch1['items'], batch1['users'] inputs1, target1 = batch1['tgt'][:, :-1], batch1['tgt'][:, 1:] if cfg.CUDA: inputs1, items1, users1 = inputs1.cuda(), items1.cuda(), users1.cuda() src_inputs1 = src_inputs1.cuda() inputs1 = inputs1.cuda() target1 = target1.cuda() tmp1 = tmp1.cuda() self.title_input = inputs1 self.items, self.users = items1, users1 self.descripion = src_inputs1 self.template = tmp1 batch2 = next(self.data_iterator1) tmp2 = batch2['tmp'] if cfg.CUDA: tmp2 = tmp2.cuda() self.template2 = tmp2 def test(self): i = 0 self.temp = np.maximum(self.temp * np.exp(-self.temp_anneal * i), 0.00005) self.gumbel_temp = np.minimum(self.args.gumbel_max - (self.gumbel_temp * np.exp(-self.gumbel_anneal_rate * i)), 0.00005) for i in range(100): self.temp = np.maximum(self.temp * np.exp(-self.temp_anneal * i), 0.00005) self.gumbel_temp = np.maximum(self.args.gumbel_max ** (self.gumbel_anneal_rate * i), 0.00005) print(self.temp, self.gumbel_temp) def train(self): if self.args.pretrain_embeddings != None: model = fasttext.load_model(self.args.pretrain_embeddings) embedding_weight = self.model.embedding.cpu().weight.data hit = 0 for word, idx in self.dataset1.word2idx.items(): embedding_weight[idx] = torch.from_numpy(model[word]).float() hit += 1 embedding_weight = embedding_weight.cuda() self.model.embedding.weight.data.copy_(embedding_weight) self.model.embedding.cuda() self.model.title_decoder.decoder.outputs2vocab.weight.data.copy_(self.model.embedding.weight.data) self.model.template_vae.load_state_dict( torch.load('save/pretrain_vmt.pt').template_vae.state_dict() ) for params in self.model.template_vae.parameters(): params.requires_grad = False from datetime import datetime cur_time = datetime.now().strftime('%Y-%m-%d-%H-%M-%S') save_path = 'save/temp_{}-{}'.format(self.args.name, cur_time) os.makedirs(save_path, exist_ok=True) copyfile('module/vmt.py', os.path.join(save_path, 'vmt.py')) copyfile('module/vae.py', os.path.join(save_path, 'vae.py')) self.save_path = save_path with open(os.path.join(save_path, 'params.json'), 'w') as f: json.dump(vars(self.args), f) writer = SummaryWriter('logs/temp_{}-{}'.format(self.args.name, cur_time)) # self.pretrain(1, writer=writer) i = 0 self.temp = self.args.kl_weight self.gumbel_temp = np.minimum(self.args.gumbel_max - (self.gumbel_temp * np.exp(-self.gumbel_anneal_rate * i)), 0.00005) with tqdm(total=args.iterations+1, dynamic_ncols=True) as pbar: for i in range(args.iterations+1): self.model.train(), self.D.eval(), self.Q.train() total_loss, total_kl_loss, reconstruct_loss, cycle_nll_loss, title_cycle_nll, tmp_cycle_nll, g_loss = self.step(i) self.model.eval(), self.D.train(), self.Q.eval() d_loss, logit_loss, mle_loss = self.dis_step(i) if i % self.args.bleu_iter == 0: self.model.eval() self.calculate_bleu(writer, i) self.model.train() if i % cfg.adv_log_step == 0 and writer != None: writer.add_scalar('G/loss', total_loss, i) writer.add_scalar('G/kl_loss', total_kl_loss, i) writer.add_scalar('G/reconstruct_loss', reconstruct_loss, i) writer.add_scalar('G/cycle_nll_loss', tmp_cycle_nll, i) writer.add_scalar('G/gan', g_loss, i) writer.add_scalar('D/d_loss', d_loss, i) writer.add_scalar('D/logit', logit_loss, i) writer.add_scalar('D/mle', mle_loss, i) writer.add_scalar('temp/gumbel', self.gumbel_temp, i) writer.add_scalar('temp/kl', self.temp, i) if i % 100 == 0: self.model.eval() self.sample_results(writer, i) self.model.train() self.gumbel_temp = np.maximum(self.args.gumbel_max ** (self.gumbel_anneal_rate * i), 0.00005) if i % args.check_iter == 0: torch.save({ 'model': self.model.state_dict(), # 'amp': amp.state_dict() }, os.path.join(save_path,'amp_checkpoint_{}.pt'.format(i))) torch.save({ 'gen_opt': self.gen_opt, 'gen_adv_opt': self.gen_adv_opt.state_dict(), 'dis_opt': self.dis_adv_opt, 'D': self.D.state_dict(), }, os.path.join(save_path,'optimizers.pt')) pbar.update(1) pbar.set_description( 'g_loss: %.4f, c_loss: %.4f, cycle: %.4f' % (total_loss, reconstruct_loss, tmp_cycle_nll)) def update_temp(self, i, N): # temperature = np.maximum( np.exp(-self.args.anneal_rate * i), self.args.temperature_min) return get_fixed_temperature(self.args.temperature, i, N, cfg.temp_adpt) if __name__ == "__main__": import argparse # args.mem_slots, args.num_heads, args.head_size, args.gen_embed_dim, args.gen_hidden_dim # args.dis_embed_dim, args.max_seq_len, args.num_rep # args.gen_lr args.gen_adv_lr, args.dis_lr parser = argparse.ArgumentParser(description='KKDay users') parser.add_argument('--batch-size', type=int, default=16) parser.add_argument('--pre-batch-size', type=int, default=48) parser.add_argument('--clip-norm', type=float, default=1.0) parser.add_argument('--pretrain-epochs', type=int, default=100) parser.add_argument('--pretrain-embeddings', type=str, default=None) parser.add_argument('--iterations', type=int, default=10000) parser.add_argument('--check-iter', type=int, default=1000, help='checkpoint every 1k') parser.add_argument('--bleu-iter', type=int, default=400, help='bleu evaluation step') parser.add_argument('--pretrain-gen', type=str, default=None) parser.add_argument('--gen-steps', type=int, default=1) parser.add_argument('--dis-steps', type=int, default=1) parser.add_argument('--tokenize', '-t', type=str, default='word', choices=['word', 'char']) parser.add_argument('--name', type=str, default='rec_vae_gan') parser.add_argument('--tmp-latent-dim', type=int, default=16) parser.add_argument('--tmp-cat-dim', type=int, default=10) parser.add_argument('--desc-latent-dim', type=int, default=32) parser.add_argument('--user-latent-dim', type=int, default=64) parser.add_argument('--gen-embed-dim', type=int, default=128) parser.add_argument('--dis-embed-dim', type=int, default=64) parser.add_argument('--dis-num-layers', type=int, default=5) parser.add_argument('--max-seq-len', type=int, default=64) parser.add_argument('--num-rep', type=int, default=64) parser.add_argument('--temperature-min', type=float, default=0.01) parser.add_argument('--temperature', type=float, default=1) parser.add_argument('--gumbel-max', type=float, default=5) parser.add_argument('--anneal-rate', type=float, default=0.00002) parser.add_argument('--gen-lr', type=float, default=0.0001) parser.add_argument('--gen-adv-lr', type=float, default=0.0001) parser.add_argument('--dis-lr', type=float, default=0.001) parser.add_argument('--grad-penalty', type=str2bool, nargs='?', default=False, help='Apply gradient penalty') parser.add_argument('--full-text', type=str2bool, nargs='?', default=False, help='Dataset return full max length') parser.add_argument('--update-latent', type=str2bool, nargs='?', default=True, help='Update latent assignment every epoch?') parser.add_argument('--biset',type=str2bool, nargs='?', default=False, help='Use BiSET module to fuse article/template feature') parser.add_argument('--dis-weight', type=float, default=0.1) parser.add_argument('--kl-weight', type=float, default=1.0) parser.add_argument('--opt-level', type=str, default='O1') parser.add_argument('--cycle-weight', type=float, default=0.2) parser.add_argument('--re-weight', type=float, default=0.5) parser.add_argument('--gp-weight', type=float, default=10) parser.add_argument('--bin-weight', type=float, default=0.5) parser.add_argument('--loss-type', type=str, default='rsgan', choices=['rsgan', 'wasstestein', 'hinge']) args = parser.parse_args() trainer = TemplateTrainer(args) # trainer.pretrain(5) # trainer.sample_results(None) # trainer.step(1) # trainer.dis_step(1) # trainer.calculate_bleu(None, size=1000) # trainer.test() trainer.train() # trainer.pretrain(args.pretrain_epochs) # for _ in range(10000): # total_loss, total_kl_loss, reconstruct_loss, cycle_nll_loss, title_cycle_nll, tmp_cycle_nll = trainer.step() # print(total_loss, total_kl_loss, reconstruct_loss, cycle_nll_loss, title_cycle_nll, tmp_cycle_nll)
null
cli/vae_info_gan_trainer.py
vae_info_gan_trainer.py
py
31,779
python
en
code
null
code-starcoder2
83
[ { "api_name": "dataset.KKDayUser", "line_number": 37, "usage_type": "call" }, { "api_name": "dataset.KKDayUser", "line_number": 41, "usage_type": "call" }, { "api_name": "dataset.KKDayUser", "line_number": 45, "usage_type": "call" }, { "api_name": "module.vmt.VMT", "line_number": 50, "usage_type": "call" }, { "api_name": "module.vmt.TemplateD", "line_number": 57, "usage_type": "call" }, { "api_name": "module.vmt.QHead", "line_number": 58, "usage_type": "call" }, { "api_name": "torch.optim.Adam", "line_number": 75, "usage_type": "call" }, { "api_name": "torch.optim", "line_number": 75, "usage_type": "name" }, { "api_name": "torch.optim.Adam", "line_number": 77, "usage_type": "call" }, { "api_name": "torch.optim", "line_number": 77, "usage_type": "name" }, { "api_name": "torch.optim.Adam", "line_number": 78, "usage_type": "call" }, { "api_name": "torch.optim", "line_number": 78, "usage_type": "name" }, { "api_name": "torch.utils.data.DataLoader", "line_number": 83, "usage_type": "call" }, { "api_name": "torch.utils", "line_number": 83, "usage_type": "attribute" }, { "api_name": "dataset.seq_collate", "line_number": 84, "usage_type": "name" }, { "api_name": "torch.utils.data.DataLoader", "line_number": 86, "usage_type": "call" }, { "api_name": "torch.utils", "line_number": 86, "usage_type": "attribute" }, { "api_name": "dataset.seq_collate", "line_number": 87, "usage_type": "name" }, { "api_name": "torch.nn.NLLLoss", "line_number": 89, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 89, "usage_type": "name" }, { "api_name": "constant.Constants.PAD", "line_number": 89, "usage_type": "attribute" }, { "api_name": "constant.Constants", "line_number": 89, "usage_type": "name" }, { "api_name": "module.vae.GaussianKLLoss", "line_number": 90, "usage_type": "call" }, { "api_name": "torch.nn.MSELoss", "line_number": 91, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 91, "usage_type": "name" }, { "api_name": "torch.nn.CrossEntropyLoss", "line_number": 92, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 92, "usage_type": "name" }, { "api_name": "dataset.KKDayUser", "line_number": 100, "usage_type": "call" }, { "api_name": "dataset.KKDayUser", "line_number": 104, "usage_type": "call" }, { "api_name": "torch.nn.Module", "line_number": 111, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 111, "usage_type": "name" }, { "api_name": "torch.utils.data.DataLoader", "line_number": 117, "usage_type": "call" }, { "api_name": "torch.utils", "line_number": 117, "usage_type": "attribute" }, { "api_name": "dataset.seq_collate", "line_number": 118, "usage_type": "name" }, { "api_name": "torch.utils.data.DataLoader", "line_number": 119, "usage_type": "call" }, { "api_name": "torch.utils", "line_number": 119, "usage_type": "attribute" }, { "api_name": "dataset.seq_collate", "line_number": 120, "usage_type": "name" }, { "api_name": "torch.optim.Adam", "line_number": 122, "usage_type": "call" }, { "api_name": "torch.optim", "line_number": 122, "usage_type": "name" }, { "api_name": "torch.nn.NLLLoss", "line_number": 123, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 123, "usage_type": "name" }, { "api_name": "constant.Constants.PAD", "line_number": 123, "usage_type": "attribute" }, { "api_name": "constant.Constants", "line_number": 123, "usage_type": "name" }, { "api_name": "dataset.vocab_size", "line_number": 142, "usage_type": "attribute" }, { "api_name": "numpy.maximum", "line_number": 146, "usage_type": "call" }, { "api_name": "numpy.exp", "line_number": 146, "usage_type": "call" }, { "api_name": "torch.log", "line_number": 148, "usage_type": "call" }, { "api_name": "torch.sum", "line_number": 149, "usage_type": "call" }, { "api_name": "dataset.vocab_size", "line_number": 156, "usage_type": "attribute" }, { "api_name": "numpy.maximum", "line_number": 159, "usage_type": "call" }, { "api_name": "numpy.exp", "line_number": 159, "usage_type": "call" }, { "api_name": "torch.log", "line_number": 160, "usage_type": "call" }, { "api_name": "torch.sum", "line_number": 161, "usage_type": "call" }, { "api_name": "torch.no_grad", "line_number": 173, "usage_type": "call" }, { "api_name": "constant.Constants.EOS", "line_number": 184, "usage_type": "attribute" }, { "api_name": "constant.Constants", "line_number": 184, "usage_type": "name" }, { "api_name": "dataset.idx2word", "line_number": 186, "usage_type": "attribute" }, { "api_name": "torch.save", "line_number": 199, "usage_type": "call" }, { "api_name": "config.CUDA", "line_number": 210, "usage_type": "attribute" }, { "api_name": "config.CUDA", "line_number": 221, "usage_type": "attribute" }, { "api_name": "torch.no_grad", "line_number": 224, "usage_type": "call" }, { "api_name": "torch.cat", "line_number": 228, "usage_type": "call" }, { "api_name": "torch.cat", "line_number": 233, "usage_type": "call" }, { "api_name": "torch.nn.functional.one_hot", "line_number": 239, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 239, "usage_type": "name" }, { "api_name": "torch.argmax", "line_number": 247, "usage_type": "call" }, { "api_name": "torch.argmax", "line_number": 256, "usage_type": "call" }, { "api_name": "utils.get_losses", "line_number": 258, "usage_type": "call" }, { "api_name": "config.CUDA", "line_number": 278, "usage_type": "attribute" }, { "api_name": "config.CUDA", "line_number": 294, "usage_type": "attribute" }, { "api_name": "torch.nn.functional.one_hot", "line_number": 339, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 339, "usage_type": "name" }, { "api_name": "torch.argmax", "line_number": 346, "usage_type": "call" }, { "api_name": "torch.argmax", "line_number": 359, "usage_type": "call" }, { "api_name": "utils.get_losses", "line_number": 362, "usage_type": "call" }, { "api_name": "torch.nn.utils.clip_grad_norm_", "line_number": 379, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 379, "usage_type": "attribute" }, { "api_name": "config.clip_norm", "line_number": 379, "usage_type": "attribute" }, { "api_name": "torch.no_grad", "line_number": 404, "usage_type": "call" }, { "api_name": "constant.Constants.EOS", "line_number": 409, "usage_type": "attribute" }, { "api_name": "constant.Constants", "line_number": 409, "usage_type": "name" }, { "api_name": "constant.Constants.EOS", "line_number": 416, "usage_type": "attribute" }, { "api_name": "constant.Constants", "line_number": 416, "usage_type": "name" }, { "api_name": "constant.Constants.EOS", "line_number": 423, "usage_type": "attribute" }, { "api_name": "constant.Constants", "line_number": 423, "usage_type": "name" }, { "api_name": "constant.Constants.EOS", "line_number": 430, "usage_type": "attribute" }, { "api_name": "constant.Constants", "line_number": 430, "usage_type": "name" }, { "api_name": "torch.utils.data.DataLoader", "line_number": 444, "usage_type": "call" }, { "api_name": "torch.utils", "line_number": 444, "usage_type": "attribute" }, { "api_name": "dataset.seq_collate", "line_number": 445, "usage_type": "name" }, { "api_name": "torch.no_grad", "line_number": 451, "usage_type": "call" }, { "api_name": "config.CUDA", "line_number": 458, "usage_type": "attribute" }, { "api_name": "constant.Constants.EOS", "line_number": 477, "usage_type": "attribute" }, { "api_name": "constant.Constants", "line_number": 477, "usage_type": "name" }, { "api_name": "constant.Constants.EOS", "line_number": 485, "usage_type": "attribute" }, { "api_name": "constant.Constants", "line_number": 485, "usage_type": "name" }, { "api_name": "nltk.translate.bleu_score.sentence_bleu", "line_number": 490, "usage_type": "call" }, { "api_name": "nltk.translate.bleu_score.SmoothingFunction", "line_number": 491, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 496, "usage_type": "call" }, { "api_name": "os.path", "line_number": 496, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 500, "usage_type": "call" }, { "api_name": "os.path", "line_number": 500, "usage_type": "attribute" }, { "api_name": "config.CUDA", "line_number": 517, "usage_type": "attribute" }, { "api_name": "config.CUDA", "line_number": 531, "usage_type": "attribute" }, { "api_name": "numpy.maximum", "line_number": 537, "usage_type": "call" }, { "api_name": "numpy.exp", "line_number": 537, "usage_type": "call" }, { "api_name": "numpy.minimum", "line_number": 538, "usage_type": "call" }, { "api_name": "numpy.exp", "line_number": 538, "usage_type": "call" }, { "api_name": "numpy.maximum", "line_number": 540, "usage_type": "call" }, { "api_name": "numpy.exp", "line_number": 540, "usage_type": "call" }, { "api_name": "numpy.maximum", "line_number": 541, "usage_type": "call" }, { "api_name": "fasttext.load_model", "line_number": 549, "usage_type": "call" }, { "api_name": "torch.from_numpy", "line_number": 553, "usage_type": "call" }, { "api_name": "torch.load", "line_number": 560, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 565, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 565, "usage_type": "name" }, { "api_name": "os.makedirs", "line_number": 567, "usage_type": "call" }, { "api_name": "shutil.copyfile", "line_number": 568, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 568, "usage_type": "call" }, { "api_name": "os.path", "line_number": 568, "usage_type": "attribute" }, { "api_name": "shutil.copyfile", "line_number": 569, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 569, "usage_type": "call" }, { "api_name": "os.path", "line_number": 569, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 571, "usage_type": "call" }, { "api_name": "os.path", "line_number": 571, "usage_type": "attribute" }, { "api_name": "json.dump", "line_number": 572, "usage_type": "call" }, { "api_name": "tensorboardX.SummaryWriter", "line_number": 573, "usage_type": "call" }, { "api_name": "numpy.minimum", "line_number": 579, "usage_type": "call" }, { "api_name": "numpy.exp", "line_number": 579, "usage_type": "call" }, { "api_name": "tqdm.tqdm", "line_number": 581, "usage_type": "call" }, { "api_name": "config.adv_log_step", "line_number": 594, "usage_type": "attribute" }, { "api_name": "numpy.maximum", "line_number": 613, "usage_type": "call" }, { "api_name": "torch.save", "line_number": 617, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 620, "usage_type": "call" }, { "api_name": "os.path", "line_number": 620, "usage_type": "attribute" }, { "api_name": "torch.save", "line_number": 622, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 627, "usage_type": "call" }, { "api_name": "os.path", "line_number": 627, "usage_type": "attribute" }, { "api_name": "utils.get_fixed_temperature", "line_number": 635, "usage_type": "call" }, { "api_name": "config.temp_adpt", "line_number": 635, "usage_type": "attribute" }, { "api_name": "argparse.ArgumentParser", "line_number": 644, "usage_type": "call" }, { "api_name": "utils.str2bool", "line_number": 681, "usage_type": "name" }, { "api_name": "utils.str2bool", "line_number": 683, "usage_type": "name" }, { "api_name": "utils.str2bool", "line_number": 685, "usage_type": "name" }, { "api_name": "utils.str2bool", "line_number": 687, "usage_type": "name" }, { "api_name": "{'KKDayUser': 'dataset.KKDayUser', 'seq_collate': 'dataset.seq_collate', 'datetime': 'datetime.datetime'}", "line_number": 701, "usage_type": "call" } ]
30709289
import discord from discord.ext import commands import asyncio import random import re from urllib.parse import quote as uriquote import sqlite3 FACES = [" ͡° ͜ʖ ͡°", " ͡° ʖ̯ ͡°", " ͠° ͟ʖ ͡°", " ͡ᵔ ͜ʖ ͡ᵔ", " . •́ _ʖ •̀ .", " ఠ ͟ʖ ఠ", " ͡ಠ ʖ̯ ͡ಠ", " ಠ ʖ̯ ಠ", " ಠ ͜ʖ ಠ", " ͡• ͜ʖ ͡• ", " ・ิ ͜ʖ ・ิ", " ͡ ͜ʖ ͡ ", "≖ ͜ʖ≖", "ʘ ʖ̯ ʘ", "ʘ ͟ʖ ʘ", "ʘ ͜ʖ ʘ", "* ^ ω ^", "´ ∀ ` *", "◕‿◕。", "≧▽≦", "o^▽^o", "⌒▽⌒", "*⌒―⌒*", "・∀・", "´。• ω •。`", " ̄ω ̄", "°ε° ", "o・ω・o", "@^◡^", "*・ω・", "^人^", "o´▽`o", "*´▽`*", " ゚^∀^゚", " ´ ω ` ", "≧◡≦", "´• ω •`", "⌒ω⌒", "*^‿^*", "◕‿◕", "*≧ω≦*", "。•́‿•̀。", "ー_ー", "´ー` ", "‘~` ", "  ̄д ̄", " ̄ヘ ̄", " ̄~ ̄ ", "ˇヘˇ", "︶▽︶", "ツ", " ´ д ` ", "︶︿︶", " ˘ 、 ˘ ", " ˘_˘ ", " ᐛ ", "・_・", "⇀_⇀", "¬_¬" ] SHRUG = r"¯\\\_({})\_/¯" class Chat(commands.Cog): def __init__(self, bot): self.bot = bot self.custom_command_conn = sqlite3.connect("customcommands.sqlite") cursor = self.custom_command_conn.cursor() self.custom_command_cursor = cursor result = cursor.execute("SELECT name FROM sqlite_master WHERE type='table' AND name='commands';").fetchone() if not result: cursor.execute("CREATE TABLE 'commands' ('cmd' TEXT UNIQUE ON CONFLICT REPLACE, 'output' TEXT, 'owner' TEXT);") self.custom_command_conn.commit() REPOST = ['\N{REGIONAL INDICATOR SYMBOL LETTER R}', '\N{REGIONAL INDICATOR SYMBOL LETTER E}', '\N{REGIONAL INDICATOR SYMBOL LETTER P}', '\N{REGIONAL INDICATOR SYMBOL LETTER O}', '\N{REGIONAL INDICATOR SYMBOL LETTER S}', '\N{REGIONAL INDICATOR SYMBOL LETTER T}',] @commands.Cog.listener() async def on_reaction_add(self, reaction, user): if reaction.emoji == '\N{BLACK UNIVERSAL RECYCLING SYMBOL}\N{VARIATION SELECTOR-16}': for letter in self.REPOST: await reaction.message.add_reaction(letter) @commands.command(name='qp') async def quickpoll(self, ctx): """Add a Checkmark and X to your post for a quick yes-no poll""" await ctx.message.add_reaction('\N{WHITE HEAVY CHECK MARK}') await ctx.message.add_reaction('\N{CROSS MARK}') @commands.command() async def poll(self, ctx, *, msg): """Create a poll using reactions. !poll 1. cats 2. dogs 3. birds !poll what's for lunch? 1) pizza 2) chicken 3) starvation """ options = re.split("(\d\.|\d\))", msg) emoji = ['1⃣', '2⃣', '3⃣', '4⃣', '5⃣', '6⃣', '7⃣', '8⃣', '9⃣'] for opt in options[1:]: try: number = int(opt[0]) await ctx.message.add_reaction(emoji[number-1]) except: pass @commands.command() async def translate(self, ctx, *, phrase: str): """Translate short phrases using google translate Optionally specify language code such as `!translate en-es cat`""" langs = re.search(r"(\w{2})-(\w{2})", phrase[0:5]) if langs: sl = langs.group(1) tl = langs.group(2) phrase = phrase[6:] else: sl = "auto" tl = "en" url = "https://translate.googleapis.com/translate_a/single" params = {'client': 'gtx', 'sl': sl, 'tl': tl, 'dt': 't', "q": phrase} ua = "Mozilla/5.0 (X11; CrOS x86_64 12239.19.0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.38 Safari/537.36" headers = {'User-Agent': ua} async with self.bot.session.get(url, headers=headers, params=params) as resp: result = await resp.json() await ctx.send("{} ({}): {}".format(result[0][0][1], result[2], result[0][0][0])) @commands.Cog.listener() async def on_message(self, message): self.bot.logger.debug(message) self.bot.logger.debug(message.content) out = '' prefix = self.bot.command_prefix lower = message.content.lower() if lower.startswith('bot '): decide = self.decider(message.clean_content[4:]) if decide: out = f"{message.author.mention}: {decide}" elif "shrug" in lower: out = self.shrug() elif message.content[:1] in prefix: cmd = lower[1:].split(" ")[0] out = await self.custom_command(cmd) if out: ctx = await self.bot.get_context(message, cls=self.bot.utils.MoreContext) await ctx.send(out) def shrug(self): return SHRUG.format(random.choice(FACES)) @commands.command(name="bot") async def decide(self, ctx, *, line:str): """Decide things""" out = f"{ctx.author.mention}: {self.decider(line)}" await ctx.send(out) def decider(self, msg): things = re.split(", or |, | or ", msg, flags=re.IGNORECASE) if len(things) > 1: return random.choice(things).strip() async def custom_command(self, command): c = self.custom_command_cursor result = c.execute("SELECT output FROM commands WHERE cmd = (?)", [command.lower()]).fetchone() if not result: return else: return result[0].strip() @commands.command() @commands.has_role('Admins') async def addcmd(self, ctx, cmd, *, output: str): """Adds a custom command to the bot that will output whatever is in the <output> field""" #Currently hard insert so can be used to edit too owner = str(ctx.author) c = self.custom_command_cursor conn = self.custom_command_conn c.execute("INSERT INTO commands VALUES (?,?,?)", (cmd.lower(), output, owner)) conn.commit() @commands.command() @commands.has_role('Admins') async def delcmd(self, ctx, cmd: str): c = self.custom_command_cursor conn = self.custom_command_conn c.execute("DELETE FROM commands WHERE cmd = (?)", [cmd.lower()]) conn.commit() def setup(bot): bot.add_cog(Chat(bot))
null
modules/chat.py
chat.py
py
6,517
python
en
code
null
code-starcoder2
83
[ { "api_name": "discord.ext.commands.Cog", "line_number": 20, "usage_type": "attribute" }, { "api_name": "discord.ext.commands", "line_number": 20, "usage_type": "name" }, { "api_name": "sqlite3.connect", "line_number": 23, "usage_type": "call" }, { "api_name": "discord.ext.commands.Cog.listener", "line_number": 38, "usage_type": "call" }, { "api_name": "discord.ext.commands.Cog", "line_number": 38, "usage_type": "attribute" }, { "api_name": "discord.ext.commands", "line_number": 38, "usage_type": "name" }, { "api_name": "discord.ext.commands.command", "line_number": 45, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 45, "usage_type": "name" }, { "api_name": "re.split", "line_number": 61, "usage_type": "call" }, { "api_name": "discord.ext.commands.command", "line_number": 51, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 51, "usage_type": "name" }, { "api_name": "re.search", "line_number": 77, "usage_type": "call" }, { "api_name": "discord.ext.commands.command", "line_number": 72, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 72, "usage_type": "name" }, { "api_name": "discord.ext.commands.Cog.listener", "line_number": 96, "usage_type": "call" }, { "api_name": "discord.ext.commands.Cog", "line_number": 96, "usage_type": "attribute" }, { "api_name": "discord.ext.commands", "line_number": 96, "usage_type": "name" }, { "api_name": "random.choice", "line_number": 117, "usage_type": "call" }, { "api_name": "discord.ext.commands.command", "line_number": 119, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 119, "usage_type": "name" }, { "api_name": "re.split", "line_number": 126, "usage_type": "call" }, { "api_name": "re.IGNORECASE", "line_number": 126, "usage_type": "attribute" }, { "api_name": "random.choice", "line_number": 128, "usage_type": "call" }, { "api_name": "discord.ext.commands.command", "line_number": 140, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 140, "usage_type": "name" }, { "api_name": "discord.ext.commands.has_role", "line_number": 141, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 141, "usage_type": "name" }, { "api_name": "discord.ext.commands.command", "line_number": 151, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 151, "usage_type": "name" }, { "api_name": "discord.ext.commands.has_role", "line_number": 152, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 152, "usage_type": "name" } ]
554537136
# coding: utf-8 from __future__ import unicode_literals from sqlalchemy.orm import joinedload, joinedload_all from clld.db.meta import DBSession from clld.db.util import get_distinct_values from clld.db.models.common import Value, Contribution, ValueSet, Parameter, Language from clld.web.util.helpers import external_link, linked_references from clld.web.datatables.base import Col, IdCol, LinkCol, LinkToMapCol, DataTable from clld.web.datatables.language import Languages from clld.web.datatables.parameter import Parameters from clld.web.datatables.value import Values from clld.web.datatables.contribution import Contributions from clld.web.datatables.source import Sources from clld_glottologfamily_plugin.datatables import MacroareaCol, FamilyLinkCol from clld_glottologfamily_plugin.models import Family from lexibank.models import ( LexibankLanguage, Counterpart, Concept, Provider, LexibankSource, CounterpartReference, Cognateset, ) class LexibankSources(Sources): def base_query(self, query): query = Sources.base_query(self, query) query = query.join(LexibankSource.provider).options(joinedload(LexibankSource.provider)) return query def col_defs(self): cols = Sources.col_defs(self) provider = LinkCol( self, 'provider', choices=get_distinct_values(Provider.name), model_col=Provider.name, get_object=lambda i: i.provider) return cols[:-1] + [provider] class MaybeLinkCol(LinkCol): def format(self, item): obj = self.get_obj(item) if obj: return LinkCol.format(self, item) return '' class RefsCol(Col): __kw__ = dict(bSearchable=False, bSortable=False) def format(self, item): return linked_references(self.dt.req, item) class Counterparts(Values): def base_query(self, query): query = query.join(ValueSet).options( joinedload(Value.valueset), joinedload_all(Counterpart.references, CounterpartReference.source) ) if self.language: query = query \ .join(ValueSet.parameter) \ .join(ValueSet.contribution) \ .options( joinedload(Value.valueset, ValueSet.contribution), joinedload(Value.valueset, ValueSet.parameter)) return query.filter(ValueSet.language_pk == self.language.pk) if self.parameter: query = query \ .join(ValueSet.language) \ .outerjoin(LexibankLanguage.family) \ .options(joinedload_all( Value.valueset, ValueSet.language, LexibankLanguage.family)) return query.filter(ValueSet.parameter_pk == self.parameter.pk) if self.contribution: query = query.join(ValueSet.parameter) return query.filter(ValueSet.contribution_pk == self.contribution.pk) return query \ .join(ValueSet.parameter)\ .join(ValueSet.language)\ .options( joinedload(Value.valueset, ValueSet.parameter), joinedload(Value.valueset, ValueSet.language), ) def col_defs(self): if self.parameter: return [ LinkCol(self, 'form', model_col=Counterpart.name), LinkCol( self, 'language', model_col=LexibankLanguage.name, get_object=lambda i: i.valueset.language), MaybeLinkCol( self, 'family', model_col=Family.name, get_object=lambda i: i.valueset.language.family), Col(self, 'variety', model_col=Counterpart.variety_name), #Col(self, 'loan', model_col=Counterpart.loan), RefsCol(self, 'source'), ] if self.language: return [ LinkCol(self, 'form', model_col=Counterpart.name), LinkCol( self, 'concept', model_col=Concept.name, get_object=lambda i: i.valueset.parameter), Col(self, 'variety', model_col=Counterpart.variety_name), LinkCol( self, 'provider', model_col=Contribution.name, get_object=lambda i: i.valueset.contribution), RefsCol(self, 'source'), ] return [ LinkCol(self, 'form', model_col=Value.name), Col(self, 'context', model_col=Counterpart.context), LinkCol( self, 'language', model_col=Language.name, get_object=lambda i: i.valueset.language), LinkCol( self, 'concept', model_col=Parameter.name, get_object=lambda i: i.valueset.parameter), ] #class FeatureIdCol(IdCol): # def search(self, qs): # if self.model_col: # return self.model_col.contains(qs) # def order(self): # return Feature.sortkey_str, Feature.sortkey_int class LanguageIdCol(LinkCol): def get_attrs(self, item): return dict(label=item.id) class LexibankLanguages(Languages): __constraints__ = [Contribution] def base_query(self, query): if self.contribution: sq = DBSession.query(ValueSet.language_pk)\ .filter(ValueSet.contribution_pk == self.contribution.pk)\ .distinct()\ .subquery() query = query.filter(LexibankLanguage.pk.in_(sq)) return query.outerjoin(Family).options(joinedload(LexibankLanguage.family)) def col_defs(self): return [ LanguageIdCol(self, 'id'), LinkCol(self, 'name'), LinkToMapCol(self, 'm'), Col(self, 'latitude', sDescription='<small>The geographic latitude</small>'), Col(self, 'longitude', sDescription='<small>The geographic longitude</small>'), MacroareaCol(self, 'macroarea', LexibankLanguage), FamilyLinkCol(self, 'family', LexibankLanguage), ] class ConcepticonLink(Col): __kw__ = {'bSearchable': False, 'bSortable': False} def format(self, item): return external_link(item.concepticon_url) class Concepts(Parameters): def col_defs(self): return [ IdCol(self, 'id'), LinkCol(self, 'name', sTitle='Concept'), Col(self, 'Languages', model_col=Concept.representation), Col(self, 'semantic_field', model_col=Concept.semanticfield, choices=get_distinct_values(Concept.semanticfield)), ConcepticonLink(self, 'Concepticon'), ] class Providers(Contributions): def col_defs(self): return [ IdCol(self, 'id'), LinkCol(self, 'name'), Col(self, 'cite', model_col=Contribution.description), Col(self, 'language_count', sTitle='# languages', model_col=Provider.language_count), Col(self, 'parameter_count', sTitle='# concepts', model_col=Provider.parameter_count), Col(self, 'lexeme_count', sTitle='# lexemes', model_col=Provider.lexeme_count, format=lambda i: '{:,}'.format(i.lexeme_count)), Col(self, 'synonymy', sDescription=Provider.synonym_index.doc, model_col=Provider.synonym_index, format=lambda i: '{:.3f}'.format(i.synonym_index)) ] class ProviderCol(LinkCol): def __init__(self, dt, name, **kw): kw['model_col'] = Contribution.name kw['choices'] = [(p.id, p.name) for p in DBSession.query(Provider)] LinkCol.__init__(self, dt, name, **kw) def search(self, qs): return Contribution.id == qs class Cognatesets(DataTable): def base_query(self, query): return query.join(Cognateset.contribution)\ .options(joinedload(Cognateset.contribution)) def col_defs(self): return [ IdCol(self, 'id'), LinkCol(self, 'name'), Col(self, 'cognates', model_col=Cognateset.representation), ProviderCol( self, 'provider', get_object=lambda i: i.contribution), ] def includeme(config): config.register_datatable('cognatesets', Cognatesets) config.register_datatable('languages', LexibankLanguages) config.register_datatable('contributions', Providers) config.register_datatable('parameters', Concepts) config.register_datatable('values', Counterparts) config.register_datatable('sources', LexibankSources)
null
lexibank/datatables.py
datatables.py
py
8,987
python
en
code
null
code-starcoder2
83
[ { "api_name": "clld.web.datatables.source.Sources", "line_number": 27, "usage_type": "name" }, { "api_name": "clld.web.datatables.source.Sources.base_query", "line_number": 29, "usage_type": "call" }, { "api_name": "clld.web.datatables.source.Sources", "line_number": 29, "usage_type": "name" }, { "api_name": "lexibank.models.LexibankSource.provider", "line_number": 30, "usage_type": "attribute" }, { "api_name": "lexibank.models.LexibankSource", "line_number": 30, "usage_type": "name" }, { "api_name": "sqlalchemy.orm.joinedload", "line_number": 30, "usage_type": "call" }, { "api_name": "clld.web.datatables.source.Sources.col_defs", "line_number": 34, "usage_type": "call" }, { "api_name": "clld.web.datatables.source.Sources", "line_number": 34, "usage_type": "name" }, { "api_name": "clld.web.datatables.base.LinkCol", "line_number": 35, "usage_type": "call" }, { "api_name": "clld.db.util.get_distinct_values", "line_number": 38, "usage_type": "call" }, { "api_name": "lexibank.models.Provider.name", "line_number": 38, "usage_type": "attribute" }, { "api_name": "lexibank.models.Provider", "line_number": 38, "usage_type": "name" }, { "api_name": "lexibank.models.Provider.name", "line_number": 39, "usage_type": "attribute" }, { "api_name": "lexibank.models.Provider", "line_number": 39, "usage_type": "name" }, { "api_name": "clld.web.datatables.base.LinkCol", "line_number": 44, "usage_type": "name" }, { "api_name": "clld.web.datatables.base.LinkCol.format", "line_number": 48, "usage_type": "call" }, { "api_name": "clld.web.datatables.base.LinkCol", "line_number": 48, "usage_type": "name" }, { "api_name": "clld.web.datatables.base.Col", "line_number": 52, "usage_type": "name" }, { "api_name": "clld.web.util.helpers.linked_references", "line_number": 56, "usage_type": "call" }, { "api_name": "clld.web.datatables.value.Values", "line_number": 59, "usage_type": "name" }, { "api_name": "clld.db.models.common.ValueSet", "line_number": 61, "usage_type": "argument" }, { "api_name": "sqlalchemy.orm.joinedload", "line_number": 62, "usage_type": "call" }, { "api_name": "clld.db.models.common.Value.valueset", "line_number": 62, "usage_type": "attribute" }, { "api_name": "clld.db.models.common.Value", "line_number": 62, "usage_type": "name" }, { "api_name": "sqlalchemy.orm.joinedload_all", "line_number": 63, "usage_type": "call" }, { "api_name": "lexibank.models.Counterpart.references", "line_number": 63, "usage_type": "attribute" }, { "api_name": "lexibank.models.Counterpart", "line_number": 63, "usage_type": "name" }, { "api_name": "lexibank.models.CounterpartReference.source", "line_number": 63, "usage_type": "attribute" }, { "api_name": "lexibank.models.CounterpartReference", "line_number": 63, "usage_type": "name" }, { "api_name": "clld.db.models.common.ValueSet.parameter", "line_number": 68, "usage_type": "attribute" }, { "api_name": "clld.db.models.common.ValueSet", "line_number": 68, "usage_type": "name" }, { "api_name": "clld.db.models.common.ValueSet.contribution", "line_number": 69, "usage_type": "attribute" }, { "api_name": "clld.db.models.common.ValueSet", "line_number": 69, "usage_type": "name" }, { "api_name": "sqlalchemy.orm.joinedload", "line_number": 71, "usage_type": "call" }, { "api_name": "clld.db.models.common.Value.valueset", "line_number": 71, "usage_type": "attribute" }, { "api_name": "clld.db.models.common.Value", "line_number": 71, "usage_type": "name" }, { "api_name": "clld.db.models.common.ValueSet.contribution", "line_number": 71, "usage_type": "attribute" }, { "api_name": "clld.db.models.common.ValueSet", "line_number": 71, "usage_type": "name" }, { "api_name": "sqlalchemy.orm.joinedload", "line_number": 72, "usage_type": "call" }, { "api_name": "clld.db.models.common.Value.valueset", "line_number": 72, "usage_type": "attribute" }, { "api_name": "clld.db.models.common.Value", "line_number": 72, "usage_type": "name" }, { "api_name": "clld.db.models.common.ValueSet.parameter", "line_number": 72, "usage_type": "attribute" }, { "api_name": "clld.db.models.common.ValueSet", "line_number": 72, "usage_type": "name" }, { "api_name": "clld.db.models.common.ValueSet.language_pk", "line_number": 73, "usage_type": "attribute" }, { "api_name": "clld.db.models.common.ValueSet", "line_number": 73, "usage_type": "name" }, { "api_name": "clld.db.models.common.ValueSet.language", "line_number": 77, "usage_type": "attribute" }, { "api_name": "clld.db.models.common.ValueSet", "line_number": 77, "usage_type": "name" }, { "api_name": "lexibank.models.LexibankLanguage.family", "line_number": 78, "usage_type": "attribute" }, { "api_name": "lexibank.models.LexibankLanguage", "line_number": 78, "usage_type": "name" }, { "api_name": "sqlalchemy.orm.joinedload_all", "line_number": 79, "usage_type": "call" }, { "api_name": "clld.db.models.common.Value.valueset", "line_number": 80, "usage_type": "attribute" }, { "api_name": "clld.db.models.common.Value", "line_number": 80, "usage_type": "name" }, { "api_name": "clld.db.models.common.ValueSet.language", "line_number": 80, "usage_type": "attribute" }, { "api_name": "clld.db.models.common.ValueSet", "line_number": 80, "usage_type": "name" }, { "api_name": "lexibank.models.LexibankLanguage.family", "line_number": 80, "usage_type": "attribute" }, { "api_name": "lexibank.models.LexibankLanguage", "line_number": 80, "usage_type": "name" }, { "api_name": "clld.db.models.common.ValueSet.parameter_pk", "line_number": 81, "usage_type": "attribute" }, { "api_name": "clld.db.models.common.ValueSet", "line_number": 81, "usage_type": "name" }, { "api_name": "clld.db.models.common.ValueSet.parameter", "line_number": 84, "usage_type": "attribute" }, { "api_name": "clld.db.models.common.ValueSet", "line_number": 84, "usage_type": "name" }, { "api_name": "clld.db.models.common.ValueSet.contribution_pk", "line_number": 85, "usage_type": "attribute" }, { "api_name": "clld.db.models.common.ValueSet", "line_number": 85, "usage_type": "name" }, { "api_name": "clld.db.models.common.ValueSet.parameter", "line_number": 88, "usage_type": "attribute" }, { "api_name": "clld.db.models.common.ValueSet", "line_number": 88, "usage_type": "name" }, { "api_name": "clld.db.models.common.ValueSet.language", "line_number": 89, "usage_type": "attribute" }, { "api_name": "clld.db.models.common.ValueSet", "line_number": 89, "usage_type": "name" }, { "api_name": "sqlalchemy.orm.joinedload", "line_number": 91, "usage_type": "call" }, { "api_name": "clld.db.models.common.Value.valueset", "line_number": 91, "usage_type": "attribute" }, { "api_name": "clld.db.models.common.Value", "line_number": 91, "usage_type": "name" }, { "api_name": "clld.db.models.common.ValueSet.parameter", "line_number": 91, "usage_type": "attribute" }, { "api_name": "clld.db.models.common.ValueSet", "line_number": 91, "usage_type": "name" }, { "api_name": "sqlalchemy.orm.joinedload", "line_number": 92, "usage_type": "call" }, { "api_name": "clld.db.models.common.Value.valueset", "line_number": 92, "usage_type": "attribute" }, { "api_name": "clld.db.models.common.Value", "line_number": 92, "usage_type": "name" }, { "api_name": "clld.db.models.common.ValueSet.language", "line_number": 92, "usage_type": "attribute" }, { "api_name": "clld.db.models.common.ValueSet", "line_number": 92, "usage_type": "name" }, { "api_name": "clld.web.datatables.base.LinkCol", "line_number": 98, "usage_type": "call" }, { "api_name": "lexibank.models.Counterpart.name", "line_number": 98, "usage_type": "attribute" }, { "api_name": "lexibank.models.Counterpart", "line_number": 98, "usage_type": "name" }, { "api_name": "clld.web.datatables.base.LinkCol", "line_number": 99, "usage_type": "call" }, { "api_name": "lexibank.models.LexibankLanguage.name", "line_number": 102, "usage_type": "attribute" }, { "api_name": "lexibank.models.LexibankLanguage", "line_number": 102, "usage_type": "name" }, { "api_name": "clld_glottologfamily_plugin.models.Family.name", "line_number": 107, "usage_type": "attribute" }, { "api_name": "clld_glottologfamily_plugin.models.Family", "line_number": 107, "usage_type": "name" }, { "api_name": "clld.web.datatables.base.Col", "line_number": 109, "usage_type": "call" }, { "api_name": "lexibank.models.Counterpart.variety_name", "line_number": 109, "usage_type": "attribute" }, { "api_name": "lexibank.models.Counterpart", "line_number": 109, "usage_type": "name" }, { "api_name": "clld.web.datatables.base.LinkCol", "line_number": 115, "usage_type": "call" }, { "api_name": "lexibank.models.Counterpart.name", "line_number": 115, "usage_type": "attribute" }, { "api_name": "lexibank.models.Counterpart", "line_number": 115, "usage_type": "name" }, { "api_name": "clld.web.datatables.base.LinkCol", "line_number": 116, "usage_type": "call" }, { "api_name": "lexibank.models.Concept.name", "line_number": 119, "usage_type": "attribute" }, { "api_name": "lexibank.models.Concept", "line_number": 119, "usage_type": "name" }, { "api_name": "clld.web.datatables.base.Col", "line_number": 121, "usage_type": "call" }, { "api_name": "lexibank.models.Counterpart.variety_name", "line_number": 121, "usage_type": "attribute" }, { "api_name": "lexibank.models.Counterpart", "line_number": 121, "usage_type": "name" }, { "api_name": "clld.web.datatables.base.LinkCol", "line_number": 122, "usage_type": "call" }, { "api_name": "clld.db.models.common.Contribution.name", "line_number": 125, "usage_type": "attribute" }, { "api_name": "clld.db.models.common.Contribution", "line_number": 125, "usage_type": "name" }, { "api_name": "clld.web.datatables.base.LinkCol", "line_number": 130, "usage_type": "call" }, { "api_name": "clld.db.models.common.Value.name", "line_number": 130, "usage_type": "attribute" }, { "api_name": "clld.db.models.common.Value", "line_number": 130, "usage_type": "name" }, { "api_name": "clld.web.datatables.base.Col", "line_number": 131, "usage_type": "call" }, { "api_name": "lexibank.models.Counterpart.context", "line_number": 131, "usage_type": "attribute" }, { "api_name": "lexibank.models.Counterpart", "line_number": 131, "usage_type": "name" }, { "api_name": "clld.web.datatables.base.LinkCol", "line_number": 132, "usage_type": "call" }, { "api_name": "clld.db.models.common.Language.name", "line_number": 135, "usage_type": "attribute" }, { "api_name": "clld.db.models.common.Language", "line_number": 135, "usage_type": "name" }, { "api_name": "clld.web.datatables.base.LinkCol", "line_number": 137, "usage_type": "call" }, { "api_name": "clld.db.models.common.Parameter.name", "line_number": 140, "usage_type": "attribute" }, { "api_name": "clld.db.models.common.Parameter", "line_number": 140, "usage_type": "name" }, { "api_name": "clld.web.datatables.base.LinkCol", "line_number": 154, "usage_type": "name" }, { "api_name": "clld.web.datatables.language.Languages", "line_number": 159, "usage_type": "name" }, { "api_name": "clld.db.models.common.Contribution", "line_number": 160, "usage_type": "name" }, { "api_name": "clld.db.meta.DBSession.query", "line_number": 164, "usage_type": "call" }, { "api_name": "clld.db.meta.DBSession", "line_number": 164, "usage_type": "name" }, { "api_name": "clld.db.models.common.ValueSet.language_pk", "line_number": 164, "usage_type": "attribute" }, { "api_name": "clld.db.models.common.ValueSet", "line_number": 164, "usage_type": "name" }, { "api_name": "clld.db.models.common.ValueSet.contribution_pk", "line_number": 165, "usage_type": "attribute" }, { "api_name": "clld.db.models.common.ValueSet", "line_number": 165, "usage_type": "name" }, { "api_name": "lexibank.models.LexibankLanguage.pk.in_", "line_number": 168, "usage_type": "call" }, { "api_name": "lexibank.models.LexibankLanguage.pk", "line_number": 168, "usage_type": "attribute" }, { "api_name": "lexibank.models.LexibankLanguage", "line_number": 168, "usage_type": "name" }, { "api_name": "clld_glottologfamily_plugin.models.Family", "line_number": 169, "usage_type": "argument" }, { "api_name": "sqlalchemy.orm.joinedload", "line_number": 169, "usage_type": "call" }, { "api_name": "lexibank.models.LexibankLanguage.family", "line_number": 169, "usage_type": "attribute" }, { "api_name": "lexibank.models.LexibankLanguage", "line_number": 169, "usage_type": "name" }, { "api_name": "clld.web.datatables.base.LinkCol", "line_number": 174, "usage_type": "call" }, { "api_name": "clld.web.datatables.base.LinkToMapCol", "line_number": 175, "usage_type": "call" }, { "api_name": "clld.web.datatables.base.Col", "line_number": 176, "usage_type": "call" }, { "api_name": "clld.web.datatables.base.Col", "line_number": 179, "usage_type": "call" }, { "api_name": "clld_glottologfamily_plugin.datatables.MacroareaCol", "line_number": 182, "usage_type": "call" }, { "api_name": "lexibank.models.LexibankLanguage", "line_number": 182, "usage_type": "argument" }, { "api_name": "clld_glottologfamily_plugin.datatables.FamilyLinkCol", "line_number": 183, "usage_type": "call" }, { "api_name": "lexibank.models.LexibankLanguage", "line_number": 183, "usage_type": "argument" }, { "api_name": "clld.web.datatables.base.Col", "line_number": 187, "usage_type": "name" }, { "api_name": "clld.web.util.helpers.external_link", "line_number": 191, "usage_type": "call" }, { "api_name": "clld.web.datatables.parameter.Parameters", "line_number": 194, "usage_type": "name" }, { "api_name": "clld.web.datatables.base.IdCol", "line_number": 197, "usage_type": "call" }, { "api_name": "clld.web.datatables.base.LinkCol", "line_number": 198, "usage_type": "call" }, { "api_name": "clld.web.datatables.base.Col", "line_number": 199, "usage_type": "call" }, { "api_name": "lexibank.models.Concept.representation", "line_number": 199, "usage_type": "attribute" }, { "api_name": "lexibank.models.Concept", "line_number": 199, "usage_type": "name" }, { "api_name": "clld.web.datatables.base.Col", "line_number": 200, "usage_type": "call" }, { "api_name": "lexibank.models.Concept.semanticfield", "line_number": 200, "usage_type": "attribute" }, { "api_name": "lexibank.models.Concept", "line_number": 200, "usage_type": "name" }, { "api_name": "clld.db.util.get_distinct_values", "line_number": 200, "usage_type": "call" }, { "api_name": "clld.web.datatables.contribution.Contributions", "line_number": 205, "usage_type": "name" }, { "api_name": "clld.web.datatables.base.IdCol", "line_number": 208, "usage_type": "call" }, { "api_name": "clld.web.datatables.base.LinkCol", "line_number": 209, "usage_type": "call" }, { "api_name": "clld.web.datatables.base.Col", "line_number": 210, "usage_type": "call" }, { "api_name": "clld.db.models.common.Contribution.description", "line_number": 210, "usage_type": "attribute" }, { "api_name": "clld.db.models.common.Contribution", "line_number": 210, "usage_type": "name" }, { "api_name": "clld.web.datatables.base.Col", "line_number": 211, "usage_type": "call" }, { "api_name": "lexibank.models.Provider.language_count", "line_number": 211, "usage_type": "attribute" }, { "api_name": "lexibank.models.Provider", "line_number": 211, "usage_type": "name" }, { "api_name": "clld.web.datatables.base.Col", "line_number": 212, "usage_type": "call" }, { "api_name": "lexibank.models.Provider.parameter_count", "line_number": 212, "usage_type": "attribute" }, { "api_name": "lexibank.models.Provider", "line_number": 212, "usage_type": "name" }, { "api_name": "clld.web.datatables.base.Col", "line_number": 213, "usage_type": "call" }, { "api_name": "lexibank.models.Provider.lexeme_count", "line_number": 216, "usage_type": "attribute" }, { "api_name": "lexibank.models.Provider", "line_number": 216, "usage_type": "name" }, { "api_name": "clld.web.datatables.base.Col", "line_number": 218, "usage_type": "call" }, { "api_name": "lexibank.models.Provider.synonym_index", "line_number": 220, "usage_type": "attribute" }, { "api_name": "lexibank.models.Provider", "line_number": 220, "usage_type": "name" }, { "api_name": "lexibank.models.Provider.synonym_index", "line_number": 221, "usage_type": "attribute" }, { "api_name": "lexibank.models.Provider", "line_number": 221, "usage_type": "name" }, { "api_name": "clld.web.datatables.base.LinkCol", "line_number": 226, "usage_type": "name" }, { "api_name": "clld.db.models.common.Contribution.name", "line_number": 228, "usage_type": "attribute" }, { "api_name": "clld.db.models.common.Contribution", "line_number": 228, "usage_type": "name" }, { "api_name": "clld.db.meta.DBSession.query", "line_number": 229, "usage_type": "call" }, { "api_name": "lexibank.models.Provider", "line_number": 229, "usage_type": "argument" }, { "api_name": "clld.db.meta.DBSession", "line_number": 229, "usage_type": "name" }, { "api_name": "clld.web.datatables.base.LinkCol.__init__", "line_number": 230, "usage_type": "call" }, { "api_name": "clld.web.datatables.base.LinkCol", "line_number": 230, "usage_type": "name" }, { "api_name": "clld.db.models.common.Contribution.id", "line_number": 233, "usage_type": "attribute" }, { "api_name": "clld.db.models.common.Contribution", "line_number": 233, "usage_type": "name" }, { "api_name": "clld.web.datatables.base.DataTable", "line_number": 236, "usage_type": "name" }, { "api_name": "lexibank.models.Cognateset.contribution", "line_number": 238, "usage_type": "attribute" }, { "api_name": "lexibank.models.Cognateset", "line_number": 238, "usage_type": "name" }, { "api_name": "sqlalchemy.orm.joinedload", "line_number": 239, "usage_type": "call" }, { "api_name": "lexibank.models.Cognateset.contribution", "line_number": 239, "usage_type": "attribute" }, { "api_name": "lexibank.models.Cognateset", "line_number": 239, "usage_type": "name" }, { "api_name": "clld.web.datatables.base.IdCol", "line_number": 243, "usage_type": "call" }, { "api_name": "clld.web.datatables.base.LinkCol", "line_number": 244, "usage_type": "call" }, { "api_name": "clld.web.datatables.base.Col", "line_number": 245, "usage_type": "call" }, { "api_name": "lexibank.models.Cognateset.representation", "line_number": 245, "usage_type": "attribute" }, { "api_name": "lexibank.models.Cognateset", "line_number": 245, "usage_type": "name" } ]
650696173
from django.db.models.signals import post_save, pre_delete from django.dispatch import receiver from rest_framework.authtoken.models import Token from application import settings from core.models import WatchableModel, User from event.models import add_event_for_object from .models import ModelWithAuthor, Like from .tasks import send_confirmation_email_task from django.db import transaction # transaction.on_commit(lambda: dewfewhfwe) def model_with_author_post_save(instance, created=False, *args, **kwargs): if created: instance.author.objects_count += 1 instance.author.save() @receiver(post_save, sender=Like) def like_post_save(instance, created, *args, **kwargs): if created: instance.object.likes_count += 1 instance.object.save() @receiver(pre_delete, sender=Like) def like_pre_delete(instance, *args, **kwargs): instance.object.likes_count -= 1 if 0 > instance.object.likes_count: instance.object.likes_count = 0 instance.object.save() def watchable_object_post_save(instance, created, *args, **kwargs): if instance.is_tracked(): # we create new event on each object edit add_event_for_object(instance, created=created) @receiver(post_save, sender=settings.AUTH_USER_MODEL) def create_auth_token(sender, instance=None, created=False, **kwargs): if created: Token.objects.create(user=instance) @receiver(post_save, sender=User) def confirm_user_email(instance, created, *args, **kwargs): if created: transaction.on_commit(lambda: send_confirmation_email_task.apply_async([instance.id], {})) # for user in User.objects.all(): # Token.objects.get_or_create(user=user) for model in WatchableModel.__subclasses__(): post_save.connect(watchable_object_post_save, model) for model in ModelWithAuthor.__subclasses__(): post_save.connect(model_with_author_post_save, model) # post_save.connect() # for model in WatchableModel.__subclasses__(): # post_save.connect(m)
null
core/signals.py
signals.py
py
2,005
python
en
code
null
code-starcoder2
83
[ { "api_name": "django.dispatch.receiver", "line_number": 21, "usage_type": "call" }, { "api_name": "django.db.models.signals.post_save", "line_number": 21, "usage_type": "argument" }, { "api_name": "models.Like", "line_number": 21, "usage_type": "name" }, { "api_name": "django.dispatch.receiver", "line_number": 28, "usage_type": "call" }, { "api_name": "django.db.models.signals.pre_delete", "line_number": 28, "usage_type": "argument" }, { "api_name": "models.Like", "line_number": 28, "usage_type": "name" }, { "api_name": "event.models.add_event_for_object", "line_number": 39, "usage_type": "call" }, { "api_name": "rest_framework.authtoken.models.Token.objects.create", "line_number": 45, "usage_type": "call" }, { "api_name": "rest_framework.authtoken.models.Token.objects", "line_number": 45, "usage_type": "attribute" }, { "api_name": "rest_framework.authtoken.models.Token", "line_number": 45, "usage_type": "name" }, { "api_name": "django.dispatch.receiver", "line_number": 42, "usage_type": "call" }, { "api_name": "django.db.models.signals.post_save", "line_number": 42, "usage_type": "argument" }, { "api_name": "application.settings.AUTH_USER_MODEL", "line_number": 42, "usage_type": "attribute" }, { "api_name": "application.settings", "line_number": 42, "usage_type": "name" }, { "api_name": "django.db.transaction.on_commit", "line_number": 51, "usage_type": "call" }, { "api_name": "django.db.transaction", "line_number": 51, "usage_type": "name" }, { "api_name": "tasks.send_confirmation_email_task.apply_async", "line_number": 51, "usage_type": "call" }, { "api_name": "tasks.send_confirmation_email_task", "line_number": 51, "usage_type": "name" }, { "api_name": "django.dispatch.receiver", "line_number": 48, "usage_type": "call" }, { "api_name": "django.db.models.signals.post_save", "line_number": 48, "usage_type": "argument" }, { "api_name": "core.models.User", "line_number": 48, "usage_type": "name" }, { "api_name": "core.models.WatchableModel.__subclasses__", "line_number": 57, "usage_type": "call" }, { "api_name": "core.models.WatchableModel", "line_number": 57, "usage_type": "name" }, { "api_name": "django.db.models.signals.post_save.connect", "line_number": 58, "usage_type": "call" }, { "api_name": "django.db.models.signals.post_save", "line_number": 58, "usage_type": "name" }, { "api_name": "models.ModelWithAuthor.__subclasses__", "line_number": 60, "usage_type": "call" }, { "api_name": "models.ModelWithAuthor", "line_number": 60, "usage_type": "name" }, { "api_name": "django.db.models.signals.post_save.connect", "line_number": 61, "usage_type": "call" }, { "api_name": "django.db.models.signals.post_save", "line_number": 61, "usage_type": "name" } ]
499609773
# ------------------------------------------------------- # Merge Sorted Array - https://leetcode.com/problems/merge-sorted-array/ # ------------------------------------------------------- # Author: Arshad Mehmood # Github: https://github.com/arshad115 # Blog: https://arshadmehmood.com # LinkedIn: https://www.linkedin.com/in/arshadmehmood115 # Date : 2020-07-22 # Project: 100-days-of-leetcode # ------------------------------------------------------- import sys from math import inf from statistics import median from typing import List class Solution: def merge(self, nums1: List[int], m: int, nums2: List[int], n: int) -> None: """ Do not return anything, modify nums1 in-place instead. """ j, k, total = 0,0,0 temp = [] while j<=m or k <= n: if j<m: if k < n and nums1[j] <= nums2[k]: temp.append(nums1[j]) j+=1 total +=1 elif k < n and nums1[j] > nums2[k]: temp.append(nums2[k]) k += 1 total += 1 elif total<m+n: temp.append(nums1[j]) j += 1 total += 1 elif k < n: if j < m and nums1[j] > nums2[k]: temp.append(nums2[k]) k += 1 total +=1 elif j < m and nums1[j] < nums2[k]: temp.append(nums1[j]) j += 1 total +=1 elif total<m+n: temp.append(nums2[k]) k += 1 total += 1 else: break nums1[:] = temp solution = Solution() nums1 = [1, 2, 3, 5, 7, 15] m = 6 nums2 = [2, 3 ,4 ,5] n = 4 solution.merge(nums1, m, nums2, n) print(nums1)
null
codes/2020-07-22-merge-sorted-array.py
2020-07-22-merge-sorted-array.py
py
1,908
python
en
code
null
code-starcoder2
83
[ { "api_name": "typing.List", "line_number": 17, "usage_type": "name" } ]
535961985
""" Python Makefile System """ import os import sys import argparse from functools import wraps, partial from distutils import log from pake.config import PAKEFILE_NAME from pake.globals import app, context from pake.exceptions import PakeError class Task(object): """ A decorator make a function be a sub-command of pake. A task function should have 1 argument 'task' at least. """ def __init__(self, prerequisites=[], target=None, default=False): self.target = target self.prerequisites = prerequisites self.default = default self.help = None self.options = [] self.invoked = False def __call__(self, func): if isinstance(func, Option): self.options = func.options func = func.func if self.target is None: self.target = func.__name__ if func.__doc__: self.help = func.__doc__.strip() else: self.help = self.target parser = app.subparser.add_parser(self.target, help=self.help) for args, kwargs in self.options: parser.add_argument(*args, **kwargs) self.parser = parser helper = partial(func, self) self.func = wraps(func)(helper) context.add_task(self) return self def __repr__(self): return self.target def execute(self, argv=[]): self.option, self.argv = self.parser.parse_known_args(argv[1:]) self.func() self.invoked = True def task(*args, **kwargs): return Task(*args, **kwargs) class Option(object): def __init__(self, *args, **kwargs): self.options = [(args, kwargs)] def __call__(self, func): if isinstance(func, Option): self.options += func.options self.func = func.func else: self.func = func return self def option(*args, **kwargs): return Option(*args, **kwargs) class Rule(object): def __init__(self, target_suffix, source_suffix): self.target_suffix = target_suffix[1:] self.source_suffix = source_suffix[1:] def __call__(self, func): self.func = func context.add_rule(self) def rule(target, source): return Rule(target, source)
null
lib/pake/pake/core.py
core.py
py
1,963
python
en
code
null
code-starcoder2
83
[ { "api_name": "pake.globals.app.subparser.add_parser", "line_number": 41, "usage_type": "call" }, { "api_name": "pake.globals.app.subparser", "line_number": 41, "usage_type": "attribute" }, { "api_name": "pake.globals.app", "line_number": 41, "usage_type": "name" }, { "api_name": "functools.partial", "line_number": 46, "usage_type": "call" }, { "api_name": "functools.wraps", "line_number": 47, "usage_type": "call" }, { "api_name": "pake.globals.context.add_task", "line_number": 48, "usage_type": "call" }, { "api_name": "pake.globals.context", "line_number": 48, "usage_type": "name" }, { "api_name": "pake.globals.context.add_rule", "line_number": 84, "usage_type": "call" }, { "api_name": "pake.globals.context", "line_number": 84, "usage_type": "name" } ]
437741559
""" sqlite3 context manager and try-except error handling """ import sqlite3 def create_table(db): try: with db: cur = db.cursor() cur.execute('create table phones (brand text, version int)') except sqlite3.Error as e: print(f'error creating table because {e}') def add_test_data(db): try: with db: cur = db.cursor() cur.execute('insert into phones values ("Android", 5)') cur.execute('insert into phones values ("iPhone", 6)') except sqlite3.Error: print('Error adding rows') def print_all_data(db): # Execute a query. Do not need a context manager, as no changes are being made to the DB try: cur = db.cursor() # Need a cursor object to perform operations for row in cur.execute('select * from phones'): print(row) except sqlite3.Error as e: print(f'Error selecting data from phones table because {e}') def delete_table(db): try: with db: cur = db.cursor() cur.execute('drop table phones') # Delete table except sqlite3.Error as e: print(f'Error deleting phones table because {e}') def main(): db = None try: db = sqlite3.connect('my_first_db.db') except sqlite3.Error as e: print(f'Unable to connect to database because {e}.') if db is not None: create_table(db) add_test_data(db) print_all_data(db) delete_table(db) try: db.close() except sqlite3.Error: print(f'Error closing database because {e}') if __name__ == '__main__': main()
null
sqlite/db_context_manager_error_handling.py
db_context_manager_error_handling.py
py
1,673
python
en
code
null
code-starcoder2
83
[ { "api_name": "sqlite3.Error", "line_number": 14, "usage_type": "attribute" }, { "api_name": "sqlite3.Error", "line_number": 26, "usage_type": "attribute" }, { "api_name": "sqlite3.Error", "line_number": 38, "usage_type": "attribute" }, { "api_name": "sqlite3.Error", "line_number": 47, "usage_type": "attribute" }, { "api_name": "sqlite3.connect", "line_number": 55, "usage_type": "call" }, { "api_name": "sqlite3.Error", "line_number": 56, "usage_type": "attribute" }, { "api_name": "sqlite3.Error", "line_number": 67, "usage_type": "attribute" } ]
104167045
import torch import torch.nn as nn import torch.nn.functional as F from torchvision import datasets, transforms import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation import cv2 import shy import os import os.path as osp from train import Net shy.err_hook() CUR_DIR = osp.dirname(__file__) DATA_DIR = osp.join(CUR_DIR, 'data') WEIGHT_PATH = osp.join(CUR_DIR, 'grad-cam-weight.pt') if not osp.isfile(WEIGHT_PATH): print('Use pretrained weight') shy.download_url('https://www.dropbox.com/s/9c3w8aenwpw4lf7/grad-cam-weight.pt?dl=1', WEIGHT_PATH) net = Net() net.load_state_dict(torch.load(WEIGHT_PATH)) net.eval().cuda() test_loader = torch.utils.data.DataLoader( datasets.CIFAR10(DATA_DIR, train=False, transform=transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ])), batch_size=1) classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') def tensor2img(t): img = t[0].permute(1, 2, 0).cpu().numpy() img *= np.array([0.229, 0.224, 0.225]) img += np.array([0.485, 0.456, 0.406]) img *= 255 return img.astype(np.uint8) def vis(cam): cam = cv2.resize(cam, dsize=(224, 224), interpolation=cv2.INTER_LINEAR) plt.subplot(131) plt.imshow(tensor2img(data)) plt.subplot(132) plt.imshow(cam, cmap='jet', alpha=0.2) plt.subplot(133) plt.imshow(tensor2img(data)) plt.imshow(cam, cmap='jet', alpha=0.2) plt.show() # calc gradCAM def get_gradCAM(module, grad_input, grad_output): A = grad_output[0] a = A.mean(dim=3).mean(dim=2) b, c = a.shape L = a.reshape(b, c, 1, 1) * A L = F.relu(L.sum(dim=1)) L = L.detach().cpu().numpy() L = L / L.max() Ls.append(L[0]) # register hook at layer which you want to look gradCAM of net.backbone.layer4[2].conv3.register_backward_hook(get_gradCAM) for data, target in test_loader: data = data.cuda() output = net(data) pred = output.argmax(dim=1) output = output[0] pred = pred[0] target = target[0] Ls = [] output[pred.item()].backward() vis(Ls[0])
null
grad-CAM/vis-simple.py
vis-simple.py
py
2,369
python
en
code
null
code-starcoder2
83
[ { "api_name": "shy.err_hook", "line_number": 17, "usage_type": "call" }, { "api_name": "os.path.dirname", "line_number": 19, "usage_type": "call" }, { "api_name": "os.path", "line_number": 19, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 20, "usage_type": "call" }, { "api_name": "os.path", "line_number": 20, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 21, "usage_type": "call" }, { "api_name": "os.path", "line_number": 21, "usage_type": "name" }, { "api_name": "os.path.isfile", "line_number": 23, "usage_type": "call" }, { "api_name": "os.path", "line_number": 23, "usage_type": "name" }, { "api_name": "shy.download_url", "line_number": 25, "usage_type": "call" }, { "api_name": "train.Net", "line_number": 28, "usage_type": "call" }, { "api_name": "torch.load", "line_number": 29, "usage_type": "call" }, { "api_name": "torch.utils.data.DataLoader", "line_number": 32, "usage_type": "call" }, { "api_name": "torch.utils", "line_number": 32, "usage_type": "attribute" }, { "api_name": "torchvision.datasets.CIFAR10", "line_number": 33, "usage_type": "call" }, { "api_name": "torchvision.datasets", "line_number": 33, "usage_type": "name" }, { "api_name": "torchvision.transforms.Compose", "line_number": 33, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 33, "usage_type": "name" }, { "api_name": "torchvision.transforms.Resize", "line_number": 34, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 34, "usage_type": "name" }, { "api_name": "torchvision.transforms.ToTensor", "line_number": 35, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 35, "usage_type": "name" }, { "api_name": "torchvision.transforms.Normalize", "line_number": 36, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 36, "usage_type": "name" }, { "api_name": "numpy.array", "line_number": 44, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 45, "usage_type": "call" }, { "api_name": "numpy.uint8", "line_number": 47, "usage_type": "attribute" }, { "api_name": "cv2.resize", "line_number": 50, "usage_type": "call" }, { "api_name": "cv2.INTER_LINEAR", "line_number": 50, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot.subplot", "line_number": 52, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 52, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.imshow", "line_number": 53, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 53, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.subplot", "line_number": 55, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 55, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.imshow", "line_number": 56, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 56, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.subplot", "line_number": 58, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 58, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.imshow", "line_number": 59, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 59, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.imshow", "line_number": 60, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 60, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 62, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 62, "usage_type": "name" }, { "api_name": "torch.nn.functional.relu", "line_number": 72, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 72, "usage_type": "name" } ]
506219078
"""Code snippets vol-44-snip-220 220-Difference between two dates stevepython.wordpress.com Download all snippets so far: https://wp.me/Pa5TU8-1yg Requirements: None source: https://gist.github.com/amalgjose/c767a4846d6ecaa3b6d7 """ from datetime import datetime from dateutil import relativedelta ##Aug 7 1989 8:10 pm date_1 = datetime(1989, 8, 7, 20, 10) ##Dec 5 1990 5:20 am date_2 = datetime(1990, 12, 5, 5, 20) #This will find the difference between the two dates difference = relativedelta.relativedelta(date_2, date_1) years = difference.years months = difference.months days = difference.days hours = difference.hours minutes = difference.minutes print() print(date_1, ' and ', date_2) print("Difference is %s year, %s months, %s days, %s hours, %s minutes " %(years, months, days, hours, minutes))
null
Python-code-snippets-201-300/220-Difference between two dates.py
220-Difference between two dates.py
py
856
python
en
code
null
code-starcoder2
83
[ { "api_name": "datetime.datetime", "line_number": 19, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 22, "usage_type": "call" }, { "api_name": "dateutil.relativedelta.relativedelta", "line_number": 25, "usage_type": "call" }, { "api_name": "dateutil.relativedelta", "line_number": 25, "usage_type": "name" } ]
97397963
from django.http import HttpResponseRedirect, HttpResponseForbidden from django.shortcuts import render, get_object_or_404 # Create your views here. from django.urls import reverse from django.utils import timezone from characters.forms import CreateCharacterForm from characters.models import Character, BasicStats from guardian.shortcuts import assign_perm from powers.models import Power_Full def create_character(request): if request.method == 'POST': form = CreateCharacterForm(request.POST) if form.is_valid(): stats = BasicStats(stats=form.cleaned_data['stats']) stats.save() character = Character(name=form.cleaned_data['name'], tagline=form.cleaned_data['tagline'], appearance=form.cleaned_data['appearance'], player=request.user, age=form.cleaned_data['age'], sex=form.cleaned_data['sex'], concept_summary=form.cleaned_data['concept'], ambition=form.cleaned_data['ambition'], pub_date=timezone.now(), edit_date=timezone.now(), private=form.cleaned_data['private'], basic_stats = stats) character.save() return HttpResponseRedirect(reverse('characters:characters_view', args=(character.id,))) else: print(form.errors) return None else: # Build a character form. form = CreateCharacterForm() context = { 'form' : form, } return render(request, 'characters/edit_character.html', context) def edit_character(request, character_id): character = get_object_or_404(Character, id=character_id) if request.method == 'POST': if not request.user.has_perm('edit_character', character): return HttpResponseForbidden() if character.private and not request.user.has_perm("view_private_character", character): return HttpResponseForbidden() form = CreateCharacterForm(request.POST) if form.is_valid(): if character.private != form.cleaned_data['private']: for power_full in character.power_full_set.all(): power_full.set_self_and_children_privacy(is_private=form.cleaned_data['private']) character.name=form.cleaned_data['name'] character.tagline=form.cleaned_data['tagline'] character.appearance=form.cleaned_data['appearance'] character.age=form.cleaned_data['age'] character.sex=form.cleaned_data['sex'] character.concept_summary=form.cleaned_data['concept'] character.ambition=form.cleaned_data['ambition'] character.pub_date=timezone.now() character.edit_date=timezone.now() character.private=form.cleaned_data['private'] character.save() stats = character.basic_stats stats.stats=form.cleaned_data['stats'] stats.save() return HttpResponseRedirect(reverse('characters:characters_view', args=(character.id,))) else: print(form.errors) return None else: # Build a character form. form = CreateCharacterForm(initial={'name': character.name, 'tagline': character.tagline, 'appearance': character.appearance, 'age': character.age, 'sex': character.sex, 'concept': character.concept_summary, 'ambition': character.ambition, 'private': character.private, 'stats': character.basic_stats.stats,}) context = { 'character': character, 'form' : form, } return render(request, 'characters/edit_character.html', context) def view_character(request, character_id): character = get_object_or_404(Character, id=character_id) if character.private and not request.user.has_perm("view_private_character", character): return HttpResponseForbidden() context = { 'character': character, } return render(request, 'characters/view_character.html', context) def choose_powers(request, character_id): character = get_object_or_404(Character, id=character_id) if not request.user.has_perm('edit_character', character): return HttpResponseForbidden() assigned_powers = character.power_full_set.all() unassigned_powers = request.user.power_full_set.filter(character=None).order_by('-pub_date').all() context = { 'character': character, 'assigned_powers': assigned_powers, 'unassigned_powers': unassigned_powers, } return render(request, 'characters/choose_powers.html', context) def toggle_power(request, character_id, power_full_id): character = get_object_or_404(Character, id=character_id) power_full = get_object_or_404(Power_Full, id=power_full_id) if not ( request.user.has_perm('edit_character', character) and request.user.has_perm('edit_power_full', power_full)): return HttpResponseForbidden() if power_full.character == character: power_full.character = None power_full.save() power_full.set_self_and_children_privacy(is_private=False) elif not power_full.character: power_full.character = character power_full.save() power_full.set_self_and_children_privacy(is_private=character.private) return HttpResponseRedirect(reverse('characters:characters_power_picker', args=(character.id,)))
null
hgapp/characters/views.py
views.py
py
6,043
python
en
code
null
code-starcoder2
83
[ { "api_name": "characters.forms.CreateCharacterForm", "line_number": 18, "usage_type": "call" }, { "api_name": "characters.models.BasicStats", "line_number": 20, "usage_type": "call" }, { "api_name": "characters.models.Character", "line_number": 22, "usage_type": "call" }, { "api_name": "django.utils.timezone.now", "line_number": 30, "usage_type": "call" }, { "api_name": "django.utils.timezone", "line_number": 30, "usage_type": "name" }, { "api_name": "django.utils.timezone.now", "line_number": 31, "usage_type": "call" }, { "api_name": "django.utils.timezone", "line_number": 31, "usage_type": "name" }, { "api_name": "django.http.HttpResponseRedirect", "line_number": 35, "usage_type": "call" }, { "api_name": "django.urls.reverse", "line_number": 35, "usage_type": "call" }, { "api_name": "characters.forms.CreateCharacterForm", "line_number": 41, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 45, "usage_type": "call" }, { "api_name": "django.shortcuts.get_object_or_404", "line_number": 49, "usage_type": "call" }, { "api_name": "characters.models.Character", "line_number": 49, "usage_type": "argument" }, { "api_name": "django.http.HttpResponseForbidden", "line_number": 52, "usage_type": "call" }, { "api_name": "django.http.HttpResponseForbidden", "line_number": 54, "usage_type": "call" }, { "api_name": "characters.forms.CreateCharacterForm", "line_number": 55, "usage_type": "call" }, { "api_name": "django.utils.timezone.now", "line_number": 67, "usage_type": "call" }, { "api_name": "django.utils.timezone", "line_number": 67, "usage_type": "name" }, { "api_name": "django.utils.timezone.now", "line_number": 68, "usage_type": "call" }, { "api_name": "django.utils.timezone", "line_number": 68, "usage_type": "name" }, { "api_name": "django.http.HttpResponseRedirect", "line_number": 74, "usage_type": "call" }, { "api_name": "django.urls.reverse", "line_number": 74, "usage_type": "call" }, { "api_name": "characters.forms.CreateCharacterForm", "line_number": 80, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 93, "usage_type": "call" }, { "api_name": "django.shortcuts.get_object_or_404", "line_number": 96, "usage_type": "call" }, { "api_name": "characters.models.Character", "line_number": 96, "usage_type": "argument" }, { "api_name": "django.http.HttpResponseForbidden", "line_number": 98, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 102, "usage_type": "call" }, { "api_name": "django.shortcuts.get_object_or_404", "line_number": 105, "usage_type": "call" }, { "api_name": "characters.models.Character", "line_number": 105, "usage_type": "argument" }, { "api_name": "django.http.HttpResponseForbidden", "line_number": 107, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 115, "usage_type": "call" }, { "api_name": "django.shortcuts.get_object_or_404", "line_number": 118, "usage_type": "call" }, { "api_name": "characters.models.Character", "line_number": 118, "usage_type": "argument" }, { "api_name": "django.shortcuts.get_object_or_404", "line_number": 119, "usage_type": "call" }, { "api_name": "powers.models.Power_Full", "line_number": 119, "usage_type": "argument" }, { "api_name": "django.http.HttpResponseForbidden", "line_number": 121, "usage_type": "call" }, { "api_name": "django.http.HttpResponseRedirect", "line_number": 130, "usage_type": "call" }, { "api_name": "django.urls.reverse", "line_number": 130, "usage_type": "call" } ]
222253029
import cv2 import numpy as np num = input("Type 0 or 1 to show image \n") print(num) path = "images/sample{}.jpg" img = cv2.imread(path.format(num)) kernelSize = 5 kernel = np.ones((5,5),np.uint8) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) hsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV) blur_gray = cv2.GaussianBlur(gray,(kernelSize,kernelSize),0) ret,thresh = cv2.threshold(hsv, 230,255, cv2.THRESH_BINARY) thresh = cv2.morphologyEx(thresh,cv2.MORPH_CLOSE,kernel) #cv2.imshow("",thresh) range = cv2.inRange(thresh, (0,0,127),(0,0,255)) edges = cv2.Canny(range, 100, 300,apertureSize=3, L2gradient=True) #cv2.imshow("edge",edges) closed = cv2.morphologyEx(edges,cv2.MORPH_CLOSE,kernel) #cv2.imshow("closed",closed) minLLength = 100 maxLGap = 15 lines = cv2.HoughLinesP(closed, 1, np.pi/180, 100, minLineLength=minLLength, maxLineGap=maxLGap) for line in lines: for x1,y1,x2,y2 in line: cv2.line(img,(x1, y1),(x2, y2),(127,255,127),2) cv2.imshow("lines", img) cv2.imwrite("output.jpg",img) cv2.waitKey(0) cv2.destroyAllWindows()
null
source.py
source.py
py
1,039
python
en
code
null
code-starcoder2
83
[ { "api_name": "cv2.imread", "line_number": 7, "usage_type": "call" }, { "api_name": "numpy.ones", "line_number": 9, "usage_type": "call" }, { "api_name": "numpy.uint8", "line_number": 9, "usage_type": "attribute" }, { "api_name": "cv2.cvtColor", "line_number": 10, "usage_type": "call" }, { "api_name": "cv2.COLOR_BGR2GRAY", "line_number": 10, "usage_type": "attribute" }, { "api_name": "cv2.cvtColor", "line_number": 12, "usage_type": "call" }, { "api_name": "cv2.COLOR_BGR2HSV", "line_number": 12, "usage_type": "attribute" }, { "api_name": "cv2.GaussianBlur", "line_number": 13, "usage_type": "call" }, { "api_name": "cv2.threshold", "line_number": 14, "usage_type": "call" }, { "api_name": "cv2.THRESH_BINARY", "line_number": 14, "usage_type": "attribute" }, { "api_name": "cv2.morphologyEx", "line_number": 15, "usage_type": "call" }, { "api_name": "cv2.MORPH_CLOSE", "line_number": 15, "usage_type": "attribute" }, { "api_name": "cv2.inRange", "line_number": 17, "usage_type": "call" }, { "api_name": "cv2.Canny", "line_number": 18, "usage_type": "call" }, { "api_name": "cv2.morphologyEx", "line_number": 20, "usage_type": "call" }, { "api_name": "cv2.MORPH_CLOSE", "line_number": 20, "usage_type": "attribute" }, { "api_name": "cv2.HoughLinesP", "line_number": 24, "usage_type": "call" }, { "api_name": "numpy.pi", "line_number": 24, "usage_type": "attribute" }, { "api_name": "cv2.line", "line_number": 27, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 28, "usage_type": "call" }, { "api_name": "cv2.imwrite", "line_number": 29, "usage_type": "call" }, { "api_name": "cv2.waitKey", "line_number": 30, "usage_type": "call" }, { "api_name": "cv2.destroyAllWindows", "line_number": 31, "usage_type": "call" } ]
95312101
from collections import namedtuple from statistics import mean from functools import wraps from util import count_syllables from tagging import AnnotatedDocument, AnnotatedSentence, AnnotatedParagraph Metric = namedtuple( 'Metric', ('code', 'name', 'description'), ) class MetricRegistry: def __init__(self, measured_cls): self.measured_cls = measured_cls self._metrics = [] def __iter__(self): return iter(self._metrics) def register(self, func, metric): """ Register a function as a metric. It should take a `measured_cls` object and return a number. """ func.meta = metric self._metrics.append(func) def metric(self, code, name, description=''): """ Create a decorator that turns a function into a metric for `measured_cls`. The function must take a `measured_cls` object and return a number. The decorator will add the decorated function to the registry so it gets picked up by the runner. """ def decorator(f): @wraps(f) def decorated(obj): if not isinstance(obj, self.measured_cls): raise TypeError( "{} expected type {}, but got {}".format( f.__name__, self.measured_class.__name__, type(obj).__name__ ) ) return f(obj) self.register( decorated, Metric( code=code, name=name, description=description ) ) return decorated return decorator # Registries document_metrics = MetricRegistry(AnnotatedDocument) paragraph_metrics = MetricRegistry(AnnotatedParagraph) sentence_metrics = MetricRegistry(AnnotatedSentence) # Decorators document_metric = document_metrics.metric paragraph_metric = paragraph_metrics.metric sentence_metric = sentence_metrics.metric @paragraph_metric(code='readability:flesch', name='Flesch readability score') def flesch_score(paragraph): """ Readability score 0 = Very difficult 60 = Plain english 100 = Very easy """ sentences = paragraph.sentences num_sentences = len(sentences) num_words = 0 num_syllables = 0 for sentence in sentences: for word, pronunciations in sentence.pronunciation_tags: if pronunciations: num_syllables += mean( count_syllables(tag) for tag in pronunciations ) num_words += 1 else: # TODO: this is for debugging only print(word) return ( 206.835 - (1.015 * num_words / num_sentences) - (84.6 * num_syllables / num_words) )
null
writerlint/metrics.py
metrics.py
py
2,943
python
en
code
null
code-starcoder2
83
[ { "api_name": "collections.namedtuple", "line_number": 7, "usage_type": "call" }, { "api_name": "functools.wraps", "line_number": 39, "usage_type": "call" }, { "api_name": "tagging.AnnotatedDocument", "line_number": 66, "usage_type": "argument" }, { "api_name": "tagging.AnnotatedParagraph", "line_number": 67, "usage_type": "argument" }, { "api_name": "tagging.AnnotatedSentence", "line_number": 68, "usage_type": "argument" }, { "api_name": "statistics.mean", "line_number": 91, "usage_type": "call" }, { "api_name": "util.count_syllables", "line_number": 92, "usage_type": "call" } ]
172920357
#!/usr/bin/env python # coding: utf-8 # In[1]: ### GT ID: cchen376 ### Assignment #1 CS7641 Fall 2019 import pandas as pd import numpy as np import time from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA,FastICA from sklearn.cluster import KMeans import matplotlib.pyplot as plt from sklearn.pipeline import Pipeline from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score from sklearn.model_selection import GridSearchCV from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, classification_report,confusion_matrix from sklearn.metrics.pairwise import pairwise_distances from matplotlib.ticker import FuncFormatter from sklearn.random_projection import SparseRandomProjection, GaussianRandomProjection import matplotlib import seaborn as sns from itertools import product import warnings from collections import defaultdict warnings.filterwarnings('ignore') from helperfuncs_hw3 import * import sys # In[2]: seed=0 df_elec=pd.read_csv('Data_for_UCI_named.csv') df_elec['stabf']=np.where(df_elec['stabf']=='unstable',0,1) y_elec=df_elec['stabf'] X_elec=df_elec.drop(['stabf','stab'],axis=1) X_elec=StandardScaler().fit_transform(X_elec) df_def = pd.read_csv('default_data_cleaned.csv') y_def=df_def['default payment next month'] X_def=df_def.drop(['default payment next month','ID','PAY_0'],axis=1) X_def_dummies = pd.get_dummies(X_def,columns = ['SEX','EDUCATION','MARRIAGE'],drop_first=[True,True,True]) X_def=StandardScaler().fit_transform(X_def_dummies) # # ICA # In[3]: X_train_elec, X_test_elec, y_train_elec, y_test_elec= train_test_split(X_elec,y_elec,test_size=.2,random_state=seed,stratify=y_elec) X_train_def, X_test_def, y_train_def, y_test_def= train_test_split(X_def,y_def,test_size=.2,random_state=seed,stratify=y_def) # In[22]: kurt_elec = {} nn_f1_score=[] dim_list_elec =[i+2 for i in range(X_elec.shape[1]-1)] for i in dim_list_elec: ica_elec = FastICA(n_components=i,random_state=seed) tmp = ica_elec.fit_transform(X_elec) tmp = pd.DataFrame(tmp) X_train_elec, X_test_elec, y_train_elec, y_test_elec= train_test_split(tmp,y_elec,test_size=.2,random_state=seed,stratify=y_elec) clf_elec = MLPClassifier(hidden_layer_sizes= (100, 10)) clf_elec.fit(X_train_elec,y_train_elec) y_pred_elec=clf_elec.predict(X_test_elec) nn_f1_score.append(f1_score(y_test_elec,y_pred_elec)) tmp = tmp.kurt(axis=0) kurt_elec[i] = tmp.abs().mean() kurt_elec = list(pd.Series(kurt_elec)) plot_DR(x=dim_list_elec, ax1_data=kurt_elec, ax2_data=nn_f1_score, method='ICA', data='Electrical Grid', ylabel1='Kurtosis', ylabel2='F1 Score (Neural Net)', ax2none=False) # In[23]: kurt_def = {} nn_f1_score=[] dim_list_def =[i+2 for i in range(X_def.shape[1]-1)] for i in dim_list_def: ica_def = FastICA(n_components=i,random_state=seed) tmp = ica_def.fit_transform(X_def) tmp = pd.DataFrame(tmp) X_train_def, X_test_def, y_train_def, y_test_def= train_test_split(tmp,y_def,test_size=.2,random_state=seed,stratify=y_def) clf_def= MLPClassifier(hidden_layer_sizes= (50,5)) clf_def.fit(X_train_def,y_train_def) y_pred_def=clf_def.predict(X_test_def) nn_f1_score.append(f1_score(y_test_def,y_pred_def)) tmp = tmp.kurt(axis=0) kurt_def[i] = tmp.abs().mean() kurt_def = list(pd.Series(kurt_def)) plot_DR(x=dim_list_def, ax1_data=kurt_def, ax2_data=nn_f1_score, method='ICA', data='Default Data', ylabel1='Kurtosis', ylabel2='F1 Score (Neural Net)', ax2none=False) # ## ICA clustering # In[4]: ica_elec = FastICA(n_components=10,random_state=seed) X_ica_elec = ica_elec.fit_transform(X_elec) ica_def = FastICA(n_components=21,random_state=seed) X_ica_def = ica_def.fit_transform(X_def) # In[26]: from helperfuncs_hw3 import * clusters = [3,5,10,20,30] elec_km_dict_ica = fit_clusters(X_ica_elec,y_elec,clusters,method='KM') elec_gmm_dict_ica = fit_clusters(X_ica_elec,y_elec,clusters,method='GMM') def_km_dict_ica = fit_clusters(X_ica_def,y_def,clusters,method='KM') def_gmm_dict_ica = fit_clusters(X_ica_def,y_def,clusters,method='GMM') # In[27]: plot_clusters(elec_km_dict_ica,'KM','Electrical (ICA)') plot_clusters(def_km_dict_ica,'KM','Default (ICA)') plot_clusters(elec_gmm_dict_ica,'GMM','Electrical (ICA)') plot_clusters(def_gmm_dict_ica,'GMM','Default (ICA)') # # ICA NN # In[5]: X_train_elec_ica, X_test_elec_ica, y_train_elec_ica, y_test_elec_ica= train_test_split(X_ica_elec,y_elec,test_size=.2,random_state=seed,stratify=y_elec) X_train_def_ica, X_test_def_ica, y_train_def_ica, y_test_def_ica= train_test_split(X_ica_def,y_def,test_size=.2,random_state=seed,stratify=y_def) # In[6]: clf_elec = MLPClassifier(hidden_layer_sizes= (100, 10)) clf_def= MLPClassifier(hidden_layer_sizes= (50,5)) # In[7]: clf_elec.fit(X_train_elec_ica,y_train_elec_ica) y_pred_elec_ica=clf_elec.predict(X_test_elec_ica) print(classification_report(y_test_elec_ica,y_pred_elec_ica)) print(confusion_matrix(y_test_elec_ica,y_pred_elec_ica)) plot_roc_curve(y_test_elec_ica,y_pred_elec_ica,'ROC Curve for MLP Electrical (ICA)') # In[15]: clf_def.fit(X_train_def_ica,y_train_def_ica) y_pred_def_ica=clf_def.predict(X_test_def_ica) print(classification_report(y_test_def_ica,y_pred_def_ica)) print(confusion_matrix(y_test_def_ica,y_pred_def_ica)) plot_roc_curve(y_test_def_ica,y_pred_def_ica,'ROC Curve for MLP Default (ICA)') # In[ ]: # ## ICA NN with clusters # In[ ]: n_best_clusters = 10 km_ica_elec = KMeans(n_clusters=n_best_clusters,random_state=seed) km_ica_def = KMeans(n_clusters=n_best_clusters,random_state=seed) gmm_ica_elec = GaussianMixture(n_components=n_best_clusters,random_state=seed) gmm_ica_def = GaussianMixture(n_components=n_best_clusters,random_state=seed) labels_ica_km_elec = np.reshape(km_ica_elec.fit_predict(X_ica_elec),(-1,1)) labels_ica_km_def = np.reshape(km_ica_def.fit_predict(X_ica_def),(-1,1)) labels_ica_gmm_elec = np.reshape(gmm_ica_elec.fit_predict(X_ica_elec),(-1,1)) labels_ica_gmm_def = np.reshape(gmm_ica_def.fit_predict(X_ica_def),(-1,1)) X_ica_clust_elec = np.hstack((X_ica_elec,labels_ica_km_elec,labels_ica_gmm_elec)) X_ica_clust_def = np.hstack((X_ica_def,labels_ica_km_def,labels_ica_gmm_def)) # In[ ]: X_train_ica_clust_elec, X_test_ica_clust_elec, y_train_ica_clust_elec, y_test_ica_clust_elec= train_test_split(X_ica_clust_elec,y_elec,test_size=.2,random_state=seed,stratify=y_elec) X_train_ica_clust_def, X_test_ica_clust_def, y_train_ica_clust_def, y_test_ica_clust_def= train_test_split(X_ica_clust_def,y_def,test_size=.2,random_state=seed,stratify=y_def) clf_elec = MLPClassifier(hidden_layer_sizes= (100, 10)) clf_def= MLPClassifier(hidden_layer_sizes= (50,5)) # In[ ]: get_ipython().run_cell_magic('time', '', "\nclf_elec.fit(X_train_ica_clust_elec,y_train_ica_clust_elec)\ny_pred_ica_clust_elec=clf_elec.predict(X_test_ica_clust_elec)\n\nprint(classification_report(y_test_ica_clust_elec,y_pred_ica_clust_elec))\nprint(confusion_matrix(y_test_ica_clust_elec,y_pred_ica_clust_elec))\n\nplot_roc_curve(y_test_elec_ica,y_pred_elec_ica,'ROC Curve for MLP Electrical (ica + Clustering)')") # In[13]: clf_def.fit(X_train_ica_clust_def,y_train_def_ica) y_pred_ica_clust_def=clf_def.predict(X_test_ica_clust_def) print(classification_report(y_test_ica_clust_def,y_pred_ica_clust_def,)) print(confusion_matrix(y_test_ica_clust_def,y_pred_ica_clust_def)) plot_roc_curve(y_test_ica_clust_def,y_pred_ica_clust_def,'ROC Curve for MLP Default (ica + clustering)') # In[ ]:
null
ICA_cchen376.py
ICA_cchen376.py
py
7,747
python
en
code
null
code-starcoder2
83
[ { "api_name": "warnings.filterwarnings", "line_number": 31, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 40, "usage_type": "call" }, { "api_name": "numpy.where", "line_number": 41, "usage_type": "call" }, { "api_name": "sklearn.preprocessing.StandardScaler", "line_number": 44, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 46, "usage_type": "call" }, { "api_name": "pandas.get_dummies", "line_number": 49, "usage_type": "call" }, { "api_name": "sklearn.preprocessing.StandardScaler", "line_number": 50, "usage_type": "call" }, { "api_name": "sklearn.model_selection.train_test_split", "line_number": 58, "usage_type": "call" }, { "api_name": "sklearn.model_selection.train_test_split", "line_number": 59, "usage_type": "call" }, { "api_name": "sklearn.decomposition.FastICA", "line_number": 70, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 72, "usage_type": "call" }, { "api_name": "sklearn.model_selection.train_test_split", "line_number": 73, "usage_type": "call" }, { "api_name": "sklearn.metrics.f1_score", "line_number": 77, "usage_type": "call" }, { "api_name": "pandas.Series", "line_number": 81, "usage_type": "call" }, { "api_name": "sklearn.decomposition.FastICA", "line_number": 102, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 104, "usage_type": "call" }, { "api_name": "sklearn.model_selection.train_test_split", "line_number": 105, "usage_type": "call" }, { "api_name": "sklearn.metrics.f1_score", "line_number": 111, "usage_type": "call" }, { "api_name": "pandas.Series", "line_number": 115, "usage_type": "call" }, { "api_name": "sklearn.decomposition.FastICA", "line_number": 133, "usage_type": "call" }, { "api_name": "sklearn.decomposition.FastICA", "line_number": 136, "usage_type": "call" }, { "api_name": "sklearn.model_selection.train_test_split", "line_number": 168, "usage_type": "call" }, { "api_name": "sklearn.model_selection.train_test_split", "line_number": 169, "usage_type": "call" }, { "api_name": "sklearn.metrics.classification_report", "line_number": 186, "usage_type": "call" }, { "api_name": "sklearn.metrics.confusion_matrix", "line_number": 187, "usage_type": "call" }, { "api_name": "sklearn.metrics.classification_report", "line_number": 200, "usage_type": "call" }, { "api_name": "sklearn.metrics.confusion_matrix", "line_number": 201, "usage_type": "call" }, { "api_name": "sklearn.cluster.KMeans", "line_number": 219, "usage_type": "call" }, { "api_name": "sklearn.cluster.KMeans", "line_number": 220, "usage_type": "call" }, { "api_name": "numpy.reshape", "line_number": 225, "usage_type": "call" }, { "api_name": "numpy.reshape", "line_number": 226, "usage_type": "call" }, { "api_name": "numpy.reshape", "line_number": 228, "usage_type": "call" }, { "api_name": "numpy.reshape", "line_number": 229, "usage_type": "call" }, { "api_name": "numpy.hstack", "line_number": 231, "usage_type": "call" }, { "api_name": "numpy.hstack", "line_number": 232, "usage_type": "call" }, { "api_name": "sklearn.model_selection.train_test_split", "line_number": 238, "usage_type": "call" }, { "api_name": "sklearn.model_selection.train_test_split", "line_number": 239, "usage_type": "call" }, { "api_name": "sklearn.metrics.classification_report", "line_number": 260, "usage_type": "call" }, { "api_name": "sklearn.metrics.confusion_matrix", "line_number": 261, "usage_type": "call" } ]
550014964
import cv2 import numpy as np class SlidingWindowLocalization: """ Uses sliding window localization to localize the human's centroid using a Haar Cascade model """ def __init__(self, images): images = np.array(images) images = images.reshape(images.shape[0], 240, 320) height = 1 width = 0.5 self.px = [] self.py = [] i_count=0 self.classifier = cv2.CascadeClassifier("C:/Users/gcper/Code/STEM/haarcascade_fullbody.xml") self.rects = [] self.boxes = [] for j, image in enumerate(images): # print("Sliding on image ",j) image = image.reshape(240, 320) rects = [] for x, y, size, window in self.slide(image, height, width): person = self.is_person(window) if person: rects.append([size, [x, y]]) points = sorted(rects, key=lambda i:i[1][0])[len(rects) // 3: ((len(rects) * 2) // 3) + 1] l = len(points) if l != 0: if len(rects) > 0: points = rects if len(points) != 0: self.px.append(sum([c[1][0] for c in points]) // len(points)) self.py.append(sum([c[1][1] for c in points]) // len(points)) left_x = sum([points[i][1][0] - (points[i][0][0]//2) for i in range(l)]) // l left_y = sum([points[i][1][1] - (points[i][0][1]//2) for i in range(l)]) // l size_w = sum([points[i][0][0] for i in range(l)]) // l size_h = sum([points[i][0][1] for i in range(l)]) // l self.boxes.append([[left_x, left_y], [left_x + size_w, left_y + size_h]]) else: # print("0 humans detected") self.px.append(0) self.py.append(0) self.boxes.append([[0, 0], [0, 0]]) def sliding_window(self, image, step_size, window_size): # slide a window across the image for y in range(0, image.shape[0]-window_size[1], step_size): for x in range(0, image.shape[1]-window_size[0], step_size): # yield the current window tmp_x, tmp_y = x + (window_size[0] // 2), y + (window_size[1] // 2) yield (tmp_x, tmp_y, window_size, image[y:y + window_size[1], x:x + window_size[0]]) def slide(self, image, height, width): # image size 240 by 320 for size in range(200, 240, 20)[::-1]: for window in self.sliding_window(image, 5, [int(width * size), int(height * size)]): # generator function yields windows of varying sizes, 240 down to 100 in steps of 20 yield window def is_person(self, image): return bool(len(self.classifier.detectMultiScale(image.astype(np.uint8)))) if __name__ == "__main__": from versions.swl1 import main main.main()
null
versions/swl2/slidingwindow.py
slidingwindow.py
py
2,941
python
en
code
null
code-starcoder2
83
[ { "api_name": "numpy.array", "line_number": 10, "usage_type": "call" }, { "api_name": "cv2.CascadeClassifier", "line_number": 17, "usage_type": "call" }, { "api_name": "numpy.uint8", "line_number": 66, "usage_type": "attribute" }, { "api_name": "versions.swl1.main.main", "line_number": 72, "usage_type": "call" }, { "api_name": "versions.swl1.main", "line_number": 72, "usage_type": "name" } ]
202600481
import sys import csv from csv import reader import numpy as np from sklearn.naive_bayes import GaussianNB from sklearn.metrics import roc_auc_score, precision_score from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import GradientBoostingClassifier from sklearn.svm import SVC from sklearn.linear_model import SGDClassifier, LogisticRegression from sklearn.model_selection import GridSearchCV, KFold, cross_validate from sklearn.preprocessing import StandardScaler from utils import ClassifierGrids from evaluation import * class eviction_classifier: def __init__(self, data_dir): """ constructor input: data_dir (str): path where time sliced data splits are located. """ self.result_accumulator = {} # accumulate results for later graphing self.data_dir = data_dir def train_test_split(self, training_year, testing_year): """ Takes care of extracting features and labels from testing and training year datasets Also takes care of scaling training_year [(str)]: array of strings. represents the years that are being used for training data testing_year [(str)]: array of strings. represents the years that are being used for testing data """ scaler = StandardScaler() training_features = [] training_labels = [] for year in training_year: fp = "%s/%s.csv" % (self.data_dir,year) readCSV = csv.reader(open(fp), delimiter=',') for row in readCSV: features = [float(x) for x in row[3:]] features[-1] = int(features[-1]) training_features.append(tuple(features)) training_labels.append(int(float(row[0]))) testing_features = [] testing_labels = [] for year in testing_year: fp = "%s/%s.csv" % (self.data_dir,year) readCSV = csv.reader(open(fp), delimiter=',') for row in readCSV: features = [float(x) for x in row[3:]] features[-1] = int(features[-1]) testing_features.append(tuple(features)) testing_labels.append(int(float(row[0]))) training_features = scaler.fit_transform(training_features) testing_features = scaler.fit_transform(testing_features) return {"training_features": tuple(training_features), "training_labels": tuple(training_labels), "testing_features": tuple(testing_features), "testing_labels": tuple(testing_labels)} def run_classifiers(self, data, classifier, parameters_grid, test_year, draw_prec_rec_curve=False, draw_feat_imp=False): """ Runs a single classifier through hypterparameter grid search. Inputs: Data (dict): training and testing features and labels used in the model Classifier (sklearn.classifier): sklearn classifier object to run grid search on Parameters_grid (dict): Dictionary of parameters to grid search through, written in config.py test_year (str): year that the test data is from draw (str)(optional): Will draw feature importance for classifier if True """ clf = GridSearchCV(classifier, parameters_grid) pred = clf.fit(data['training_features'], data['training_labels']) pred_labels = pred.predict(data['testing_features']) if draw_feat_imp: draw_feature_importance(clf) if draw_prec_rec_curve: y_scores=clf.predict_proba(data['testing_features']) draw_precision_recall_curve(data["testing_labels"], y_scores) roc_auc = roc_auc_score(data["testing_labels"], pred_labels, average='macro') prec = precision_score(data["testing_labels"], pred_labels, average='macro') self.persist_result(classifier.__class__.__name__, clf.best_params_, roc_auc, prec, data["training_labels"], data["testing_labels"], test_year, write_out=True) def run_all(self, years_range=(2010,2016)): """ Runs all classifiers. Also plots performance over time for all classifiers. years_range (int,int)(opt): year range to do analysis on. """ for clf in ClassifierGrids.clf_list: classifier, param_grid = ClassifierGrids.clf_list[clf] first_year = True for year in range(years_range[0]+1, years_range[1]+1): data = None if first_year: data = self.train_test_split([year-1], [year]) first_year = False else: data = self.train_test_split([year-1, year-2], [year]) self.run_classifiers(data, classifier, param_grid, year) draw_temporal_perf_graph(self.result_accumulator) print(self.result_accumulator) return def persist_result(self, classifier, best_params, roc_auc_score, precision, train_labels, test_labels, test_year, write_out=False): """ Prints results, writes them to a log file, and also adds result to the object results dictionary. classifier (sklearn.classifier): classifier type best_params (dict): best parameters roc_auc_score (float): roc_auc score for this setting precision (float): precision score for this setting train_labels ([int]): training labels test_labels ([int]): testing labels test_year (int): the year that the testing split was on write_out (bool)(opt): writes to log if True """ if classifier not in self.result_accumulator: self.result_accumulator[classifier] = {} self.result_accumulator[classifier][test_year] = (roc_auc_score, precision) print("======= %s %s ========" % (classifier, test_year)) print ("BEST PARAMS: %s" % (best_params) ) print("Training Set Size:%s" % (len(train_labels))) print("Testing Set Size: %s" % (len(test_labels))) print("ROC AUC Score: %s" % (roc_auc_score)) print("Precision: %s" % (precision)) if write_out: f = open("results.txt", "a+") f.write("======= %s : %s ========\n" % (classifier, test_year)) f.write("BEST PARAMS: %s\n" % (best_params) ) f.write("Training Set Size:%s\n" % (len(train_labels))) f.write("Testing Set Size: %s\n" % (len(test_labels))) f.write("ROC AUC Score: %s\n" % (roc_auc_score)) f.write("Precision: %s\n" % (precision)) if __name__ == "__main__": e = eviction_classifier("../../datasets/time_sliced") print(e.run_all())
null
src/model/core.py
core.py
py
6,765
python
en
code
null
code-starcoder2
83
[ { "api_name": "sklearn.preprocessing.StandardScaler", "line_number": 36, "usage_type": "call" }, { "api_name": "csv.reader", "line_number": 41, "usage_type": "call" }, { "api_name": "csv.reader", "line_number": 52, "usage_type": "call" }, { "api_name": "sklearn.model_selection.GridSearchCV", "line_number": 78, "usage_type": "call" }, { "api_name": "sklearn.metrics.roc_auc_score", "line_number": 86, "usage_type": "call" }, { "api_name": "sklearn.metrics.precision_score", "line_number": 87, "usage_type": "call" }, { "api_name": "utils.ClassifierGrids.clf_list", "line_number": 97, "usage_type": "attribute" }, { "api_name": "utils.ClassifierGrids", "line_number": 97, "usage_type": "name" }, { "api_name": "utils.ClassifierGrids.clf_list", "line_number": 98, "usage_type": "attribute" }, { "api_name": "utils.ClassifierGrids", "line_number": 98, "usage_type": "name" }, { "api_name": "sklearn.metrics.roc_auc_score", "line_number": 130, "usage_type": "name" }, { "api_name": "sklearn.metrics.roc_auc_score", "line_number": 136, "usage_type": "name" }, { "api_name": "sklearn.metrics.roc_auc_score", "line_number": 145, "usage_type": "name" } ]
472183572
# run with # python test_dask_proc.py import yt import os from dask.distributed import Client from profiler import ProfileManager, test_info from timeit import default_timer as timer if __name__ == "__main__": c = Client(n_workers = 4, threads_per_worker=1) ds = yt.load_sample("snapshot_033") ttype = "dask_multiproc" sdir = os.path.join(".", "results", ttype) if os.path.isdir(sdir) is False: os.mkdir(sdir) for test_iter in range(test_info['iterations']): p = ProfileManager(ttype) sp = ds.sphere(ds.domain_center, 0.5) p.enable() vals = sp[("PartType0", "Density")].compute() p.disable() saveprof = os.path.join(sdir, f"it_{test_iter}.prof") p.dump_stats(saveprof) # raw time measure p = ProfileManager(ttype, nproc=4) times = [] for test_iter in range(test_info['iterations']): sp = ds.sphere(ds.domain_center, 0.5) t0 = timer() vals = sp[("PartType0", "Density")] t1 = timer() times.append(t1 - t0) p.save_rawtimes("results", times, "sphere")
null
code/test_dask_proc.py
test_dask_proc.py
py
1,121
python
en
code
null
code-starcoder2
83
[ { "api_name": "dask.distributed.Client", "line_number": 11, "usage_type": "call" }, { "api_name": "yt.load_sample", "line_number": 13, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 17, "usage_type": "call" }, { "api_name": "os.path", "line_number": 17, "usage_type": "attribute" }, { "api_name": "os.path.isdir", "line_number": 18, "usage_type": "call" }, { "api_name": "os.path", "line_number": 18, "usage_type": "attribute" }, { "api_name": "os.mkdir", "line_number": 19, "usage_type": "call" }, { "api_name": "profiler.test_info", "line_number": 21, "usage_type": "name" }, { "api_name": "profiler.ProfileManager", "line_number": 23, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 30, "usage_type": "call" }, { "api_name": "os.path", "line_number": 30, "usage_type": "attribute" }, { "api_name": "profiler.ProfileManager", "line_number": 34, "usage_type": "call" }, { "api_name": "profiler.test_info", "line_number": 36, "usage_type": "name" }, { "api_name": "timeit.default_timer", "line_number": 39, "usage_type": "call" }, { "api_name": "timeit.default_timer", "line_number": 41, "usage_type": "call" } ]
518548683
#!/usr/bin/python #_*_ encoding:utf-8_*_ """ 日志管理模块 """ import logging """创建日志""" logger = logging.getLogger(__name__) logger.setLevel(level = logging.INFO) handler = logging.FileHandler("Scraping_log2.txt") handler.setLevel(logging.INFO) formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') handler.setFormatter(formatter) logger.addHandler(handler)
null
Scraping/practice/Douyu/log.py
log.py
py
404
python
en
code
null
code-starcoder2
83
[ { "api_name": "logging.getLogger", "line_number": 9, "usage_type": "call" }, { "api_name": "logging.INFO", "line_number": 10, "usage_type": "attribute" }, { "api_name": "logging.FileHandler", "line_number": 11, "usage_type": "call" }, { "api_name": "logging.INFO", "line_number": 12, "usage_type": "attribute" }, { "api_name": "logging.Formatter", "line_number": 13, "usage_type": "call" } ]
628111448
import numpy as np import cv2 import time confThreshold = 0.5 nmsThreshold = 0.2 inpWidth = 416 inpHeight = 416 def get_coods(img, outs): frameHeight, frameWidth = img.shape[0], img.shape[1] classIds, confidences, boxes = [], [], [] for out in outs: for detection in out: scores = detection[5:] classId = np.argmax(scores) confidence = scores[classId] if confidence > confThreshold: center_x = int(detection[0] * frameWidth) center_y = int(detection[1] * frameHeight) width = int(detection[2] * frameWidth) height = int(detection[3] * frameHeight) left = int(center_x - width / 2) top = int(center_y - height / 2) classIds.append(classId) confidences.append(float(confidence)) boxes.append([left, top, width, height]) # Perform non maximum suppression to eliminate redundant overlapping boxes with # lower confidences. indices = cv2.dnn.NMSBoxes(boxes, confidences, confThreshold, nmsThreshold) return[boxes[i[0]] for i in indices] start = time.time() cfg_path = "../yolo/yolov3-tiny.cfg" weights_path = "../yolo/yolov3-tiny.weights" net = cv2.dnn.readNetFromDarknet(cfg_path , weights_path) classes = [] with open("../yolo/coco.names", "r") as f: classes = [line.strip() for line in f.readlines()] layer_names = net.getLayerNames() output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()] frame = cv2.imread('../media/view3.jpeg') background = cv2.imread('../media/s.jpg') img = cv2.resize(frame, (504, 378)) bgdModel = np.zeros((1,65), np.float64) fgdModel = np.zeros((1,65), np.float64) blob = cv2.dnn.blobFromImage(img, 0.00392, (416, 416), (0, 0, 0), True, crop=False) net.setInput(blob) outs = net.forward(output_layers) rects = get_coods(img, outs) for rect in rects: mask = np.zeros(img.shape[:2],np.uint8) cv2.grabCut(img, mask, rect, bgdModel, fgdModel, 5, cv2.GC_INIT_WITH_RECT) mask2 = np.where((mask==2)|(mask==0),0,1).astype('uint8') img = img*mask2[:,:,np.newaxis] img = cv2.resize(img, (4032, 3024)) non_black_pixels_mask = np.all(img != [0, 0, 0], axis=-1) background[non_black_pixels_mask] = frame[non_black_pixels_mask] cv2.imwrite("output3c.jpg", background) end = time.time() print(end-start)
null
programs/background_change.py
background_change.py
py
2,506
python
en
code
null
code-starcoder2
83
[ { "api_name": "numpy.argmax", "line_number": 18, "usage_type": "call" }, { "api_name": "cv2.dnn.NMSBoxes", "line_number": 33, "usage_type": "call" }, { "api_name": "cv2.dnn", "line_number": 33, "usage_type": "attribute" }, { "api_name": "time.time", "line_number": 36, "usage_type": "call" }, { "api_name": "cv2.dnn.readNetFromDarknet", "line_number": 41, "usage_type": "call" }, { "api_name": "cv2.dnn", "line_number": 41, "usage_type": "attribute" }, { "api_name": "cv2.imread", "line_number": 50, "usage_type": "call" }, { "api_name": "cv2.imread", "line_number": 51, "usage_type": "call" }, { "api_name": "cv2.resize", "line_number": 53, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 55, "usage_type": "call" }, { "api_name": "numpy.float64", "line_number": 55, "usage_type": "attribute" }, { "api_name": "numpy.zeros", "line_number": 56, "usage_type": "call" }, { "api_name": "numpy.float64", "line_number": 56, "usage_type": "attribute" }, { "api_name": "cv2.dnn.blobFromImage", "line_number": 58, "usage_type": "call" }, { "api_name": "cv2.dnn", "line_number": 58, "usage_type": "attribute" }, { "api_name": "numpy.zeros", "line_number": 65, "usage_type": "call" }, { "api_name": "numpy.uint8", "line_number": 65, "usage_type": "attribute" }, { "api_name": "cv2.grabCut", "line_number": 67, "usage_type": "call" }, { "api_name": "cv2.GC_INIT_WITH_RECT", "line_number": 67, "usage_type": "attribute" }, { "api_name": "numpy.where", "line_number": 68, "usage_type": "call" }, { "api_name": "numpy.newaxis", "line_number": 69, "usage_type": "attribute" }, { "api_name": "cv2.resize", "line_number": 71, "usage_type": "call" }, { "api_name": "numpy.all", "line_number": 73, "usage_type": "call" }, { "api_name": "cv2.imwrite", "line_number": 76, "usage_type": "call" }, { "api_name": "time.time", "line_number": 77, "usage_type": "call" } ]
215217540
#!/usr/bin/env python3 ''' This is a set of functions used by pymm scripts This file is organized into 4 main sections: * CONFIG CHECK STUFF * PYMM ADMIN / LOGGING STUFF * FILE CHECK STUFF * SYSTEM / ENVIRONMENT STUFF ''' import configparser from datetime import date import glob import hashlib import json import os import platform import re import subprocess import sys import shutil import time # nonstandard libraries: import Levenshtein # local modules: try: import dbReporters import loggers import makeMetadata import MySQLqueries import directoryScanner except: from . import dbReporters from . import loggers from . import makeMetadata from . import MySQLqueries from . import directoryScanner ################################################################ # # CONFIG CHECK STUFF # def read_config(): pymmDirectory = os.path.dirname(os.path.abspath(__file__)) configPath = os.path.join(pymmDirectory,'pymmconfig','config.ini') if not os.path.isfile(configPath): print(''' CONFIGURATION PROBLEM:\n YOU HAVE NOT YET SET CONFIG.INI OR IT IS MISSING.\n RUN pymmconfig.py TO CREATE CONFIG.INI AND CHOOSE YOUR DESIRED SETTINGS.\n NOW EXITING. ''') sys.exit() config = configparser.SafeConfigParser() config.read(configPath) return config def check_missing_ingest_paths(pymmConfig): requiredPaths = { 'outdir_ingestsip':'the ingestSip.py output path', 'aip_staging':'the AIP storage path', 'resourcespace_deliver':'the resourcespace output path' } missingPaths = 0 for path in requiredPaths.items(): if not os.path.isdir(pymmConfig['paths'][path[0]]): missingPaths += 1 print(''' CONFIGURATION PROBLEM: You have not yet set a valid directory for '{}.' Please run pymmConfig.py, edit the config file directly, or use '--{}' to set {}. HINT: Check that the filepath is entered correctly. '''.format(path[0],path[0],path[1]) ) if missingPaths > 0: print("\nYou are missing some required file paths and we have to quit. Sorry.") sys.exit() # # END CONFIG CHECK STUFF # ################################################################ ################################################################ # # PYMM ADMIN / LOGGING STUFF # # have to import dbAccess after init config to avoid circular error try: import dbAccess except: from . import dbAccess def cleanup_package(CurrentIngest,pathForDeletion,reason,outcome=None): # print(pathForDeletion) inputType = CurrentIngest.InputObject.inputType dontDelete = False if reason == "ABORTING": status = 'ABORTING' event = 'ingestion end' if not outcome: outcome = ( "Something went critically wrong... " "The ingest process was aborted." "\n{}\nand its contents have been deleted.".format( pathForDeletion ) ) # put the things back try: if inputType == 'file': _object = [ thing.path for thing in os.scandir(CurrentIngest.packageObjectDir) if thing.is_file() ][0] if os.path.isfile(CurrentIngest.InputObject.inputPath): pass else: shutil.move( _object, CurrentIngest.InputObject.inputParent ) else: if not os.path.isdir(CurrentIngest.InputObject.inputPath): os.mkdir(CurrentIngest.InputObject.inputPath) for _object in os.scandir(CurrentIngest.packageObjectDir): if _object.name not in ('resourcespace','prores'): shutil.move( _object.path, CurrentIngest.InputObject.inputPath ) except: dontDelete = True outcome = ("COULD NOT REPLACE ORIGINAL COPIES!! \ NOT DELETING {}!".format(pathForDeletion)) print(outcome) elif reason == 'done': status = 'OK' event = 'deletion' outcome = ( "Deleting original copies " "of object at {}".format(pathForDeletion) ) if os.path.isdir(pathForDeletion) and dontDelete == False: try: shutil.rmtree(pathForDeletion) except: outcome = ( "Could not delete the package at " +pathForDeletion+ ". Try deleting it manually?" ) print(outcome) CurrentIngest.caller = 'pymmFunctions.cleanup_package()' loggers.end_log( CurrentIngest, event, outcome, status ) def validate_SIP_structure(SIPpath): ''' Check that all the top-level stuff expected in a package exists. Don't go too deep... Current expected structure is: UUID/ UUID/ metadata/ objects_manifest_UUID_iso8601.txt objectCanonicalName_pbcore.xml logs/ ingestLog.txt ffmpeglog rsyncLog objects/ masterobject1_framemd5.md5 masterobject2_framemd5.md5 masterobject1_mediainfo.xml masterobject2_mediainfo.xml resourcespace/ resourcespace_mediainfo.xml objects/ masterobject1 masterobject2 resourcespace/ resourcespace1 resourcespace2 # (changed this 7/16/18) hashdeep_manifest_UUID_iso8601.txt ''' structureValidated = True status = "OK" _UUID = os.path.basename(SIPpath) # define the directories to check ingestDir = os.path.join(SIPpath,_UUID) metadataDir = os.path.join(ingestDir,'metadata') logDir = os.path.join(metadataDir,'logs') objectMetadataDir = os.path.join(metadataDir,'objects') objectDir = os.path.join(ingestDir,'objects') dirs = [ingestDir,metadataDir,logDir,objectMetadataDir,objectDir] reasonsFailed = [] # check that they exist # I should log the non-existence of any of these # maybe rename the SIP to FAILED-UUID? for thing in dirs: if not os.path.isdir(thing): structureValidated = False failure = "missing {}".format(os.path.basename(thing)) reasonsFailed.append(failure) print(failure) # use glob to search for the existence of # 1) hashdeep manifest # 2) pbcore xml file objectManifestPattern = os.path.join( metadataDir, 'objects_manifest_*' ) manifest = glob.glob(objectManifestPattern) if manifest == []: failure = "missing a hashdeep manifest for the SIP object directory" reasonsFailed.append(failure) print(failure) structureValidated = False pbcorePattern = os.path.join(metadataDir,'*_pbcore.xml') pbcore = glob.glob(pbcorePattern) if pbcore == []: failure = "missing a pbcore xml description for the object" reasonsFailed.append(failure) print(failure) structureValidated = False if structureValidated: outcome = "SIP validated against expected structure" else: outcome = "SIP failed to validate for these reasons:\n~ {}\n".format( "\n~ ".join(reasonsFailed) ) return structureValidated,outcome def database_connection(user): connection = dbAccess.DB(user) try: connection.connect() return connection except: print("DB connection problem...") return False def do_query(connection,sql,*args): ''' must be passed an open mysql.connector.connection.MySQLConnection object ''' cursor = connection.query(sql,*args) return cursor def parse_pbcore_xml(pbcoreFile): pbcoreString = '' with open(pbcoreFile,'r') as f: for line in f: pbcoreString += line return pbcoreString # # END PYMM ADMIN / LOGGING STUFF # ################################################################ ################################################################ # # FILE CHECK STUFF # def is_video(inputPath): # Look for a video stream with codec_type == 'video' ffprobe = [ 'ffprobe', '-v','error', '-i',inputPath, '-print_format','json', '-show_streams', '-select_streams','v' ] try: probe = subprocess.run(ffprobe,stdout=subprocess.PIPE) out = probe.stdout.decode('utf-8') output = json.loads(out) try: codec_type = output['streams'][0]['codec_type'] if codec_type == 'video': if not any([x in output['streams'][0]['codec_name'] for x in ('jpeg','jpg','png')]): return True else: return False except: return False except: return False def is_audio(inputPath): print("THIS ISN'T A VIDEO FILE\n" 'maybe this is an audio file?') # DO THE SAME AS ABOVE BUT codec_type == 'audio' ffprobe = [ 'ffprobe', '-v','error', '-i',inputPath, '-print_format','json', '-show_streams', '-select_streams','a' ] try: probe = subprocess.run(ffprobe,stdout=subprocess.PIPE) out = probe.stdout.decode('utf-8') output = json.loads(out) try: codec_type = output['streams'][0]['codec_type'] if codec_type == 'audio': print("This appears to be an audio file!") return True except: print("THIS DOESN'T SMELL LIKE AN AUDIO FILE EITHER") # print(output) return False except: print("INVALID FILE INPUT, NOT AUDIO EITHER") return False def is_av(inputPath): ''' run tests for video, then audio, then DPX seq, then give up. @FIXME - this should return a more verbose/useful explanation of failed tests. Currently the expected return value os Boolean when is_av() is called. ''' _is_video = is_video(inputPath) _is_audio = False _is_dpx = False _is_dpx_av = False if _is_video == True: return 'VIDEO' else: _is_audio = is_audio(inputPath) if _is_audio: return 'AUDIO' else: if os.path.isdir(inputPath): # if it's a folder, see if it's a DPX sequence try: # test for a valid folder structure _is_dpx,details = directoryScanner.main(inputPath) print(_is_dpx) print(details) except: print('error scanning input!') return False if _is_dpx: if _is_dpx == 'dpx': print('THIS IS AN IMAGE SEQUENCE!') return 'DPX' else: # if it passes the folder structure, run # mediainfo to check for dpx contents status, failedDirs = test_sequence_reel_dir(inputPath) if status == True: print('THIS IS AN IMAGE SEQUENCE!') return 'DPX' else: print( 'ERROR: check out this list of ' 'problem directories: {}'.format(failedDirs) ) return False else: return None else: return None def test_sequence_reel_dir(reelPath): ''' Take a directory that should contain only a wav file and a corresponding directory with an image sequence in it. If there's a problem with one or more of the directories return it/them in a list. ''' failedDirs = [] failures = 0 for item in os.scandir(reelPath): if item.name == 'documentation': break if item.is_dir(): print(item.path) if item.name.lower() == 'dpx': _is_dpx = is_dpx_sequence(item.path) if not _is_dpx: failedDirs.append(item.path) failures += 1 else: failedDirs.append(item.path) failures += 1 if failures > 0: return False, failedDirs else: return True, failedDirs def is_dpx_sequence(inputPath): ''' run mediainfo on the 'dpx' folder ''' _is_dpx_av = False try: format = get_mediainfo_value(inputPath,'General','Format') if any([('dpx','directory') for x in format.lower()]): _is_dpx_av = True else: pass except: _is_dpx_av = False return _is_dpx_av def check_policy(ingestType,inputPath): print('do policy check stuff') policyStatus = "result of check against mediaconch policy" return policyStatus def dir_or_file(inputPath): if os.path.isdir(inputPath): return 'dir' elif os.path.isfile(inputPath): return 'file' else: return False def get_base(inputPath,base='basename'): bases = {'basename':'','baseMinusExtension':'','ext_original':''} if not base in bases.keys(): return "_:(_" else: try: basename = os.path.basename(inputPath) bases['basename'] = basename baseAndExt = os.path.splitext(basename) baseMinusExtension = baseAndExt[0] bases['baseMinusExtension'] = baseMinusExtension ext_original = baseAndExt[1] bases['ext_original'] = ext_original return bases[base] except: print("error getting basename") return "_:(_" def abspath_list(directory): paths = [] for filename in os.listdir(directory): path = os.path.abspath(os.path.join(directory, filename)) # path = path.replace(' ','\\ ') paths.append(path) return paths def check_dir_filename_distances(directory): ''' Check a directory to be ingested for wildly divergent filenames. We will currently only want to allow single-level directories of files that represent parts of a whole and thus have fairly similar filenames. ''' _list = abspath_list(directory) names = [] for name in _list: if os.path.isfile(name): if not os.path.basename(name).startswith('.'): names.append(name) median = Levenshtein.median(names) # print(median) outliers = 0 # start a counter for the number of files that diverge from the median name outlierList = [] # and list them for name in names: distance = Levenshtein.distance(median,name) # print(distance) if distance > 15: outliers += 1 outlierList.append(name) return outliers,outlierList def check_for_outliers(inputPath): ''' Use distance check function to approve/deny viability of directory ingest. ''' goodNames = True outliers, outlierList = check_dir_filename_distances(inputPath) if outliers > 0: outlierListString = '\n'.join(outlierList) warning = ( "Hey, there are {} files that seem like they might not belong"\ " in the input directory. If you think this is incorrect, check"\ " the filenames below. Maybe make them more consistent.\n"\ "Here's a list of possible outliers:\n{}".format( str(outliers), outlierListString ) ) return False,outlierList else: return True,None def list_files(_input): ''' Take in an absolute path of a directory and return a list of the paths for everything in it. ''' if os.path.isdir(_input): source_list = [] for _file in os.listdir(_input): if os.path.isdir(_file) and not _file.lower() == 'documentation': print("you have unexpected subdirectories!") else: source_list.append(os.path.join(_input,_file)) source_list.sort() return source_list else: print("you're trying to list files but the input is a file. go away.") # sys.exit() pass def get_temp_id(_string): ''' Generate a hash of a string (i.e., of an input path) that can be used to produce a *locally* unique temporary ID during the ingestSIP process. For convenience (?) I'm cutting it down to 10 digits. example: ingestSIP -i 'foo.mov' --> tempID = a8bcd6d073 where: sha256 = a8bcd6d073c91f6132f6d64674ecaf658a33c4aedde4046b0b7bf64e9c723073 ''' pathHash = hashlib.sha256(_string.encode()).hexdigest() tempID = pathHash[:10] return tempID def rename_dir(_dir,newName): if os.path.isdir(_dir): path = os.path.dirname(_dir) newPath = os.path.join(path,newName) try: newDir = os.rename(_dir,newPath) return newPath except OSError as e: print("OOPS: {}".format(e)) else: print("{} is not a directory so go away.".format(_dir)) def convert_millis(milli): ''' Lifted directly from IFIscripts. Written by Kieran O'Leary. Requires an integer that is the number of milliseconds. For example mediainfo returns '00:51:58.824' as a string '3118.824' so you gotta remove the period, convert to integer, and parse here. Accepts milliseconds and returns this value as HH:MM:SS.NNN ''' # get the number of seconds and milliseconds a = datetime.timedelta(milliseconds=milli) # convert to a handy string that looks like '0:51:58.824000' # so we can check for milliseconds present b = str(a) # no millseconds are present if there is no remainder. We need milliseconds! if len(b) == 7: b += '.000000' # convert seconds-based tuple to H:M:S:ms tuple timestamp = datetime.datetime.strptime(b, "%H:%M:%S.%f").time() # turn that into a string like '0:51:58.824000' c = str(timestamp) if len(c) == 8: c += '.000000' # trim off the unneeded zeros return str(c)[:-3] def get_audio_sample_rate(inputPath): # get the sample rate for an audio file _type = 'Audio' fieldName = 'SamplingRate' rate = get_mediainfo_value( inputPath, _type, fieldName ) return rate def get_encoded_date(inputPath): encodedDate = get_mediainfo_value( inputPath, 'General', 'Encoded_Date' ) return encodedDate def get_mediainfo_value(inputPath,_type,fieldName): ''' inspired by IFIscripts and StackOverflow answer by Jerome M. Note: you don't need quotation marks here after --inform parameter which you do need when calling mediainfo from command line. `_type` is either General, Audio, or Video `fieldName` is the raw field name (look at `mediainfo --Language=raw --Full /file/path` to see all the fields) ''' mediainfo = [ 'mediainfo', '--inform={};%{}%'.format(_type,fieldName), inputPath ] out = subprocess.run(mediainfo,stdout=subprocess.PIPE,stderr=subprocess.PIPE) value = out.stdout.decode().rstrip() return value def get_framerate(inputPath): ''' get the framerate from a video file ''' framerate = get_mediainfo_value( inputPath, 'Video', 'FrameRate' ) return framerate def parse_sequence_parent(inputPath): ''' input path should only ever be: title_acc#_barcode_reel#/ dpx/ title_acc#_barcode_reel#_sequence#.dpx [optionaltitle_acc#_barcode_reel#.wav] this function returns a few variables: * audioPath = path to an audio file (should be .wav in all our cases) * filePattern = pattern for ffmpeg to parse * startNumber = first sequence number * framerate = embedded by scanner in DPX files ''' directoryScanner.main(inputPath) for entry in os.scandir(inputPath): if entry.is_file(): if entry.name.endswith('.wav'): audioPath = entry.path else: audioPath = None elif entry.is_dir(): # should be a single DPX dir with only dpx files in it filePattern,startNumber,file0 = parse_sequence_folder(entry.path) try: framerate = get_framerate(file0) except: framerate = None # try/except test to catch no audio path in silent DPX scans try: audioPath = audioPath except: audioPath = None return audioPath,filePattern,startNumber,framerate def parse_sequence_folder(dpxPath): ''' Grab some information needed for ffmpeg transcoding of an image sequence: * the /path/plus/file_%6d.dpx type pattern needed for ffmpeg * the starting number of the sequence * the /path/to/first/file in the sequence ''' files = [] scan = os.scandir(dpxPath) for entry in scan: files.append(entry.path) files.sort() file0 = files[0] match = re.search(r'(.*)(\d{6}|\d{7})(\..+)',file0) fileBase = match.group(1) startNumber = match.group(2) numberOfDigits = len(startNumber) extension = match.group(3) filePattern = "{}%0{}d{}".format(fileBase,numberOfDigits,extension) # print(filePattern,startNumber,file0) return filePattern,startNumber,file0 def get_stream_count(inputPath,_type="video"): ''' Count the data streams present in an av file. Specify _type as "audio" or "video" (default) For example, a file with audio track(s) should return one line per stream: 'streams.stream.0.index=1' Tally these lines and take that as the count of audio streams. ''' probeCommand = [ 'ffprobe', '-hide_banner', inputPath, '-select_streams', _type[:1], # get the first letter of _type (a or v) '-show_entries', 'stream=index', '-of', 'flat' ] count = None try: count = 0 probe = subprocess.run( probeCommand, stdout=subprocess.PIPE, # this should return a list of streams stderr=subprocess.PIPE ) count += len(probe.stdout.splitlines()) except Exception as e: print(e) pass return count def check_dual_mono(inputPath): ''' Check if a video file has the first two audio streams mono inspired by `mmfunctions` _has_first_two_tracks_mono() ''' probes = [] dualMono = None for index in range(2): probe = [ 'ffprobe', inputPath, "-show_streams", "-select_streams","a:{}".format(index) ] out = subprocess.run( probe, stdout=subprocess.PIPE, stderr=subprocess.PIPE ) probes.append(out) probe1 = probes[0] probe2 = probes[1] stream1Channels = [ x for x in probe1.stdout.decode().splitlines() \ if x.startswith('channels=') ] stream2Channels = [ x for x in probe2.stdout.decode().splitlines() \ if x.startswith('channels=') ] if stream1Channels == stream2Channels == ['channels=1']: dualMono = True else: dualMono = False return dualMono def check_empty_mono_track(inputPath): ''' Check if one mono audio track is basically empty. Intended usage is with a dual mono file so we can remove an empty track and use the non-empty one as track 1. NB: setting "empty" as below -50dB RMS (root mean square) level, this could be tweaked! ''' # ffmpeg -i /Users/michael/Desktop/test_files/illuminated_extract.mov -map 0:a:1 -af astats -f null - empty = {0:False,1:False} for stream in range(2): command = [ 'ffmpeg', '-i',inputPath, '-map','0:a:{}'.format(stream), '-af','astats', '-f','null','-' ] # print(command) output = subprocess.run( command, stdout=subprocess.PIPE, stderr=subprocess.PIPE ) stats = [line for line in output.stderr.decode().splitlines()] chopped = [re.sub(r'\[Parsed_astats.+\]\ ','',line) for line in stats] leveldB = [ int(float(line.replace('RMS level dB: ',''))) for line in chopped \ if line.startswith('RMS level dB: ') ] print(leveldB) try: if leveldB[1] < -50: empty[stream] = True except: pass print(empty) returnValue = None count = 0 if any([v for v in empty.values()]): for k,v in empty.items(): if not v: returnValue = k # return the stream id to keep else: count += 1 if count > 1: returnValue = 'both' else: returnValue = None return returnValue # # END FILE CHECK STUFF # ################################################################ ################################################################ # # SYSTEM / ENVIRONMENT STUFF # def get_system(): if sys.platform.startswith("darwin"): return "mac" elif sys.platform.startswith("win"): return "windows" elif sys.platform.startswith("linux"): return "linux" else: return False def system_info(): info = platform.uname() systemDict = dict(info._asdict()) systemString = "" systemDict['ffmpeg version'] = get_ffmpeg_version() systemDict['mediainfo version'] = get_mediainfo_version() # format a string to be returned with each bit of info on a new line for k,v in systemDict.items(): systemString += "{} : {}\n".format(k,v) return systemString def get_node_name(): nodeName = platform.uname().node return nodeName def timestamp(style=None): knownStyles = ['iso8601','YMD','now','8601-filename'] if style in knownStyles: if style == 'iso8601': timestamp = time.strftime("%Y-%m-%dT%H:%M:%S") elif style == 'YMD': timestamp = str(date.today()) elif style == '8601-filename': timestamp = time.strftime("%Y-%m-%dT%H-%M-%S") elif style == 'now': timestamp = time.strftime("%Y%m%d_%H%M%S") return timestamp else: return str(date.today()) def get_caller(): caller = sys.argv[0] caller = os.path.splitext(caller) return caller def get_ffmpeg_version(): call = subprocess.check_output(['ffmpeg','-version']) version = call.decode('utf-8').split()[2] return version def get_mediainfo_version(): call = subprocess.check_output(['mediainfo','--version']) version = ' '.join(call.decode('utf-8').split()) return version def set_ffreport(dest,caller): ffmpegVersion = get_ffmpeg_version() os.environ["FFREPORT"] = "file="+os.path.join(dest,"ffmpeg-"+ffmpegVersion+"_"+timestamp('now')+"_"+caller+".txt") return "set FFREPORT to "+dest def unset_ffreport(): del os.environ["FFREPORT"] def get_unix_ip(): # totally stolen from mmfunctions ifconfig = subprocess.Popen(['ifconfig'],stdout=subprocess.PIPE) grep = subprocess.Popen(['grep','inet '],stdin=ifconfig.stdout,stdout=subprocess.PIPE) tail = subprocess.Popen(['tail','-n1'],stdin=grep.stdout,stdout=subprocess.PIPE) thestuff = subprocess.Popen(['cut','-d',' ','-f2'],stdin=tail.stdout,stdout=subprocess.PIPE) ip = thestuff.communicate()[0].decode().rstrip() return ip def boolean_answer(string): thumbsUp = ['YES','Yes','yes','y','Y',True,1,'True','1'] thumbsDown = ['NO','No','no','n','N',False,0,'False','0'] if string in thumbsUp: return True elif string in thumbsDown: return False else: print("Not a Boolean answer... try again.") return "Not Boolean" def sanitize_dragged_linux_path(var): if get_system() == 'linux': if len(var) >= 3 and var[0] == var[-1] == "'": var = var[1:-1] return var else: print("???") return var else: return var def gcp_test(): ''' test that `gcp` is installed and get the path for the binary. test for a dbus error on linux and add `dbus-launch` if needed. ''' whichGcp = subprocess.run(['which','gcp'],stdout=subprocess.PIPE) gcpPath = whichGcp.stdout.decode().rstrip() gcpCommand = [gcpPath] if gcpPath == '': print('gcp is not installed.') else: tryGcp = subprocess.run(gcpCommand,stdout=subprocess.PIPE,stderr=subprocess.PIPE) if "DBusException" in tryGcp.stderr.decode(): gcpCommand.insert(0,"dbus-launch") return gcpCommand def recursive_chmod(path,mode=0o777): chmodded = False try: os.chmod(path,mode) chmodded = True for root,dirs,files in os.walk(path): for directory in dirs: try: os.chmod(os.path.join(root,directory),mode) chmodded = True except: chmodded = False for f in files: try: os.chmod(os.path.join(root,f),mode) chmodded = True except: chmodded = False except: chmodded = False return chmodded def remove_hidden_system_files(inputPath): removed = [] dont_remove = ['.git','.tmp.drivedownload'] for root,dirs,files in os.walk(inputPath): for f in os.listdir(root): if f.startswith('.'): # weird list comprehension to make sure not to delete # files accidentally - checks for .git/gitignore # and Drive hidden files; can add to list!! if not any( [x for x in f if (f in dont_remove) or ( [x for x in dont_remove if x in f] ) ] ): target = os.path.join(root,f) os.remove(target) removed.append(target) print("removed a system file at {}".format(target)) for _dir in dirs: for f in os.listdir(os.path.join(root,_dir)): if f.startswith('.'): if not any( [x for x in f if (f in dont_remove) or ( [x for x in dont_remove if x in f] ) ] ): target = os.path.join(root,_dir,f) removed.append(target) os.remove(target) print("removed a system file at {}".format(target)) return removed def get_desktop(): desktop = os.path.expanduser("~/Desktop") return desktop def get_filesystem_id(path): ''' input a path and return the filesystem id * use to compare filesystem identities for `mv` vs `rsync` when running moveNcopy ''' fs_id = os.stat(path).st_dev return fs_id # # SYSTEM / ENVIRONMENT STUFF # ################################################################ today = str(date.today()) now = timestamp('now') iso8601 = timestamp('iso8601') pymmConfig = read_config() # pymmLogDir = pymmConfig['logging']['pymm_log_dir'] # pymmLogPath = os.path.join(pymmLogDir,'pymm_log.txt')
null
pymmFunctions.py
pymmFunctions.py
py
27,072
python
en
code
null
code-starcoder2
83
[ { "api_name": "os.path.dirname", "line_number": 46, "usage_type": "call" }, { "api_name": "os.path", "line_number": 46, "usage_type": "attribute" }, { "api_name": "os.path.abspath", "line_number": 46, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 47, "usage_type": "call" }, { "api_name": "os.path", "line_number": 47, "usage_type": "attribute" }, { "api_name": "os.path.isfile", "line_number": 48, "usage_type": "call" }, { "api_name": "os.path", "line_number": 48, "usage_type": "attribute" }, { "api_name": "sys.exit", "line_number": 55, "usage_type": "call" }, { "api_name": "configparser.SafeConfigParser", "line_number": 56, "usage_type": "call" }, { "api_name": "os.path.isdir", "line_number": 68, "usage_type": "call" }, { "api_name": "os.path", "line_number": 68, "usage_type": "attribute" }, { "api_name": "sys.exit", "line_number": 80, "usage_type": "call" }, { "api_name": "os.scandir", "line_number": 116, "usage_type": "call" }, { "api_name": "os.path.isfile", "line_number": 119, "usage_type": "call" }, { "api_name": "os.path", "line_number": 119, "usage_type": "attribute" }, { "api_name": "shutil.move", "line_number": 122, "usage_type": "call" }, { "api_name": "os.path.isdir", "line_number": 127, "usage_type": "call" }, { "api_name": "os.path", "line_number": 127, "usage_type": "attribute" }, { "api_name": "os.mkdir", "line_number": 128, "usage_type": "call" }, { "api_name": "os.scandir", "line_number": 129, "usage_type": "call" }, { "api_name": "shutil.move", "line_number": 131, "usage_type": "call" }, { "api_name": "os.path.isdir", "line_number": 149, "usage_type": "call" }, { "api_name": "os.path", "line_number": 149, "usage_type": "attribute" }, { "api_name": "shutil.rmtree", "line_number": 151, "usage_type": "call" }, { "api_name": "loggers.end_log", "line_number": 161, "usage_type": "call" }, { "api_name": "os.path.basename", "line_number": 201, "usage_type": "call" }, { "api_name": "os.path", "line_number": 201, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 203, "usage_type": "call" }, { "api_name": "os.path", "line_number": 203, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 204, "usage_type": "call" }, { "api_name": "os.path", "line_number": 204, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 205, "usage_type": "call" }, { "api_name": "os.path", "line_number": 205, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 206, "usage_type": "call" }, { "api_name": "os.path", "line_number": 206, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 207, "usage_type": "call" }, { "api_name": "os.path", "line_number": 207, "usage_type": "attribute" }, { "api_name": "os.path.isdir", "line_number": 214, "usage_type": "call" }, { "api_name": "os.path", "line_number": 214, "usage_type": "attribute" }, { "api_name": "os.path.basename", "line_number": 216, "usage_type": "call" }, { "api_name": "os.path", "line_number": 216, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 223, "usage_type": "call" }, { "api_name": "os.path", "line_number": 223, "usage_type": "attribute" }, { "api_name": "glob.glob", "line_number": 227, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 234, "usage_type": "call" }, { "api_name": "os.path", "line_number": 234, "usage_type": "attribute" }, { "api_name": "glob.glob", "line_number": 235, "usage_type": "call" }, { "api_name": "dbAccess.DB", "line_number": 251, "usage_type": "call" }, { "api_name": "subprocess.run", "line_number": 293, "usage_type": "call" }, { "api_name": "subprocess.PIPE", "line_number": 293, "usage_type": "attribute" }, { "api_name": "json.loads", "line_number": 295, "usage_type": "call" }, { "api_name": "subprocess.run", "line_number": 322, "usage_type": "call" }, { "api_name": "subprocess.PIPE", "line_number": 322, "usage_type": "attribute" }, { "api_name": "json.loads", "line_number": 324, "usage_type": "call" }, { "api_name": "os.path.isdir", "line_number": 356, "usage_type": "call" }, { "api_name": "os.path", "line_number": 356, "usage_type": "attribute" }, { "api_name": "directoryScanner.main", "line_number": 360, "usage_type": "call" }, { "api_name": "os.scandir", "line_number": 397, "usage_type": "call" }, { "api_name": "os.path.isdir", "line_number": 438, "usage_type": "call" }, { "api_name": "os.path", "line_number": 438, "usage_type": "attribute" }, { "api_name": "os.path.isfile", "line_number": 440, "usage_type": "call" }, { "api_name": "os.path", "line_number": 440, "usage_type": "attribute" }, { "api_name": "os.path.basename", "line_number": 451, "usage_type": "call" }, { "api_name": "os.path", "line_number": 451, "usage_type": "attribute" }, { "api_name": "os.path.splitext", "line_number": 453, "usage_type": "call" }, { "api_name": "os.path", "line_number": 453, "usage_type": "attribute" }, { "api_name": "os.listdir", "line_number": 466, "usage_type": "call" }, { "api_name": "os.path.abspath", "line_number": 467, "usage_type": "call" }, { "api_name": "os.path", "line_number": 467, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 467, "usage_type": "call" }, { "api_name": "os.path.isfile", "line_number": 483, "usage_type": "call" }, { "api_name": "os.path", "line_number": 483, "usage_type": "attribute" }, { "api_name": "os.path.basename", "line_number": 484, "usage_type": "call" }, { "api_name": "os.path", "line_number": 484, "usage_type": "attribute" }, { "api_name": "Levenshtein.median", "line_number": 486, "usage_type": "call" }, { "api_name": "Levenshtein.distance", "line_number": 491, "usage_type": "call" }, { "api_name": "os.path.isdir", "line_number": 526, "usage_type": "call" }, { "api_name": "os.path", "line_number": 526, "usage_type": "attribute" }, { "api_name": "os.listdir", "line_number": 528, "usage_type": "call" }, { "api_name": "os.path.isdir", "line_number": 529, "usage_type": "call" }, { "api_name": "os.path", "line_number": 529, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 532, "usage_type": "call" }, { "api_name": "os.path", "line_number": 532, "usage_type": "attribute" }, { "api_name": "hashlib.sha256", "line_number": 549, "usage_type": "call" }, { "api_name": "os.path.isdir", "line_number": 555, "usage_type": "call" }, { "api_name": "os.path", "line_number": 555, "usage_type": "attribute" }, { "api_name": "os.path.dirname", "line_number": 556, "usage_type": "call" }, { "api_name": "os.path", "line_number": 556, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 557, "usage_type": "call" }, { "api_name": "os.path", "line_number": 557, "usage_type": "attribute" }, { "api_name": "os.rename", "line_number": 559, "usage_type": "call" }, { "api_name": "datetime.timedelta", "line_number": 575, "usage_type": "call" }, { "api_name": "datetime.datetime.strptime", "line_number": 583, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 583, "usage_type": "attribute" }, { "api_name": "subprocess.run", "line_number": 627, "usage_type": "call" }, { "api_name": "subprocess.PIPE", "line_number": 627, "usage_type": "attribute" }, { "api_name": "directoryScanner.main", "line_number": 657, "usage_type": "call" }, { "api_name": "os.scandir", "line_number": 658, "usage_type": "call" }, { "api_name": "os.scandir", "line_number": 688, "usage_type": "call" }, { "api_name": "re.search", "line_number": 693, "usage_type": "call" }, { "api_name": "subprocess.run", "line_number": 721, "usage_type": "call" }, { "api_name": "subprocess.PIPE", "line_number": 723, "usage_type": "attribute" }, { "api_name": "subprocess.PIPE", "line_number": 724, "usage_type": "attribute" }, { "api_name": "subprocess.run", "line_number": 747, "usage_type": "call" }, { "api_name": "subprocess.PIPE", "line_number": 749, "usage_type": "attribute" }, { "api_name": "subprocess.PIPE", "line_number": 750, "usage_type": "attribute" }, { "api_name": "subprocess.run", "line_number": 791, "usage_type": "call" }, { "api_name": "subprocess.PIPE", "line_number": 793, "usage_type": "attribute" }, { "api_name": "subprocess.PIPE", "line_number": 794, "usage_type": "attribute" }, { "api_name": "re.sub", "line_number": 797, "usage_type": "call" }, { "api_name": "sys.platform.startswith", "line_number": 836, "usage_type": "call" }, { "api_name": "sys.platform", "line_number": 836, "usage_type": "attribute" }, { "api_name": "sys.platform.startswith", "line_number": 838, "usage_type": "call" }, { "api_name": "sys.platform", "line_number": 838, "usage_type": "attribute" }, { "api_name": "sys.platform.startswith", "line_number": 840, "usage_type": "call" }, { "api_name": "sys.platform", "line_number": 840, "usage_type": "attribute" }, { "api_name": "platform.uname", "line_number": 846, "usage_type": "call" }, { "api_name": "platform.uname", "line_number": 858, "usage_type": "call" }, { "api_name": "time.strftime", "line_number": 866, "usage_type": "call" }, { "api_name": "datetime.date.today", "line_number": 868, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 868, "usage_type": "name" }, { "api_name": "time.strftime", "line_number": 870, "usage_type": "call" }, { "api_name": "time.strftime", "line_number": 872, "usage_type": "call" }, { "api_name": "datetime.date.today", "line_number": 875, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 875, "usage_type": "name" }, { "api_name": "sys.argv", "line_number": 878, "usage_type": "attribute" }, { "api_name": "os.path.splitext", "line_number": 879, "usage_type": "call" }, { "api_name": "os.path", "line_number": 879, "usage_type": "attribute" }, { "api_name": "subprocess.check_output", "line_number": 883, "usage_type": "call" }, { "api_name": "subprocess.check_output", "line_number": 888, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 894, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 894, "usage_type": "call" }, { "api_name": "os.path", "line_number": 894, "usage_type": "attribute" }, { "api_name": "os.environ", "line_number": 898, "usage_type": "attribute" }, { "api_name": "subprocess.Popen", "line_number": 902, "usage_type": "call" }, { "api_name": "subprocess.PIPE", "line_number": 902, "usage_type": "attribute" }, { "api_name": "subprocess.Popen", "line_number": 903, "usage_type": "call" }, { "api_name": "subprocess.PIPE", "line_number": 903, "usage_type": "attribute" }, { "api_name": "subprocess.Popen", "line_number": 904, "usage_type": "call" }, { "api_name": "subprocess.PIPE", "line_number": 904, "usage_type": "attribute" }, { "api_name": "subprocess.Popen", "line_number": 905, "usage_type": "call" }, { "api_name": "subprocess.PIPE", "line_number": 905, "usage_type": "attribute" }, { "api_name": "subprocess.run", "line_number": 937, "usage_type": "call" }, { "api_name": "subprocess.PIPE", "line_number": 937, "usage_type": "attribute" }, { "api_name": "subprocess.run", "line_number": 943, "usage_type": "call" }, { "api_name": "subprocess.PIPE", "line_number": 943, "usage_type": "attribute" }, { "api_name": "os.chmod", "line_number": 952, "usage_type": "call" }, { "api_name": "os.walk", "line_number": 954, "usage_type": "call" }, { "api_name": "os.chmod", "line_number": 957, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 957, "usage_type": "call" }, { "api_name": "os.path", "line_number": 957, "usage_type": "attribute" }, { "api_name": "os.chmod", "line_number": 964, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 964, "usage_type": "call" }, { "api_name": "os.path", "line_number": 964, "usage_type": "attribute" }, { "api_name": "os.walk", "line_number": 977, "usage_type": "call" }, { "api_name": "os.listdir", "line_number": 978, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 989, "usage_type": "call" }, { "api_name": "os.path", "line_number": 989, "usage_type": "attribute" }, { "api_name": "os.remove", "line_number": 990, "usage_type": "call" }, { "api_name": "os.listdir", "line_number": 994, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 994, "usage_type": "call" }, { "api_name": "os.path", "line_number": 994, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 1002, "usage_type": "call" }, { "api_name": "os.path", "line_number": 1002, "usage_type": "attribute" }, { "api_name": "os.remove", "line_number": 1004, "usage_type": "call" }, { "api_name": "os.path.expanduser", "line_number": 1010, "usage_type": "call" }, { "api_name": "os.path", "line_number": 1010, "usage_type": "attribute" }, { "api_name": "os.stat", "line_number": 1019, "usage_type": "call" }, { "api_name": "datetime.date.today", "line_number": 1027, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 1027, "usage_type": "name" } ]
360756884
# -*- coding: utf-8 -*- # --------------------------------------------------------------------- # Copyright (C) 2007-2012 The NOC Project # See LICENSE for details # --------------------------------------------------------------------- # Django modules from django.db import models # Third-party modules from south.db import db class Migration: def forwards(self): db.delete_table('sa_task') def backwards(self): # Model 'Task' db.create_table('sa_task', ( ('id', models.AutoField(verbose_name='ID', primary_key=True, auto_created=True)), ('task_id', models.IntegerField("Task",unique=True)), ('start_time', models.DateTimeField("Start Time",auto_now_add=True)), ('end_time', models.DateTimeField("End Time")), ('profile_name', models.CharField("Profile",max_length=64)), ('stream_url', models.CharField("Stream URL",max_length=128)), ('action', models.CharField("Action",max_length=64)), ('args', models.TextField("Args")), ('status', models.CharField("Status",max_length=1,choices=[("n","New"),("p","In Progress"),("f","Failure"),("c","Complete")])), ('out', models.TextField("Out")) )) db.send_create_signal('sa', ['Task'])
null
sa/migrations/0004_no_task.py
0004_no_task.py
py
1,302
python
en
code
null
code-starcoder2
83
[ { "api_name": "south.db.db.delete_table", "line_number": 16, "usage_type": "call" }, { "api_name": "south.db.db", "line_number": 16, "usage_type": "name" }, { "api_name": "south.db.db.create_table", "line_number": 21, "usage_type": "call" }, { "api_name": "south.db.db", "line_number": 21, "usage_type": "name" }, { "api_name": "django.db.models.AutoField", "line_number": 22, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 22, "usage_type": "name" }, { "api_name": "django.db.models.IntegerField", "line_number": 23, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 23, "usage_type": "name" }, { "api_name": "django.db.models.DateTimeField", "line_number": 24, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 24, "usage_type": "name" }, { "api_name": "django.db.models.DateTimeField", "line_number": 25, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 25, "usage_type": "name" }, { "api_name": "django.db.models.CharField", "line_number": 26, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 26, "usage_type": "name" }, { "api_name": "django.db.models.CharField", "line_number": 27, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 27, "usage_type": "name" }, { "api_name": "django.db.models.CharField", "line_number": 28, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 28, "usage_type": "name" }, { "api_name": "django.db.models.TextField", "line_number": 29, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 29, "usage_type": "name" }, { "api_name": "django.db.models.CharField", "line_number": 30, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 30, "usage_type": "name" }, { "api_name": "django.db.models.TextField", "line_number": 31, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 31, "usage_type": "name" }, { "api_name": "south.db.db.send_create_signal", "line_number": 34, "usage_type": "call" }, { "api_name": "south.db.db", "line_number": 34, "usage_type": "name" } ]
141517354
# -*- coding: utf-8 -*- from time import sleep import sys import random import cloud4rpi import psutil import rpi import os import re from statistics import mean pattern = re.compile("^cpu[0-9]?\-thermal$") #import RPi.GPIO as GPIO # pylint: disable=F0401 # Put your device token here. To get the token, # sign up at https://cloud4rpi.io and create a device. DEVICE_TOKEN = os.environ['TOKEN'] # Constants DATA_SENDING_INTERVAL = 30 # secs DIAG_SENDING_INTERVAL = 60 # secs POLL_INTERVAL = 0.5 # 500 ms # Configure GPIO library #GPIO.setmode(GPIO.BOARD) #GPIO.setup(LED_PIN, GPIO.OUT) # Handler for the button or switch variable def led_control(value=None): # GPIO.output(LED_PIN, value) # return GPIO.input(LED_PIN) pass def cpu_percent(value=None): return psutil.cpu_percent(interval=1) def cpu_freq(value=None): freq_tuple = psutil.cpu_freq() return freq_tuple.current def mem_percent(value=None): mem = psutil.virtual_memory() return mem.percent def swap_percent(value=None): swap = psutil.swap_memory() return swap.percent def disk_percent(value=None): disk = psutil.disk_usage('/') return disk.percent def cpu_temp(value=None): temps = psutil.sensors_temperatures() temp_values_arr = [] for temp_key, temp_val in temps.items(): if (pattern.match(temp_key)): temp_values_arr.append(temp_val[0].current) return mean(temp_values_arr) def main(): variables = { # 'LED On': { # 'type': 'bool', # 'value': False, # 'bind': led_control # }, 'CPU Temp': { 'type': 'numeric', 'bind': cpu_temp }, 'CPU %': { 'type' : 'numeric', 'bind' : cpu_percent }, 'CPU freq' : { 'type' : 'numeric', 'bind' : cpu_freq }, 'Memory Usage %': { 'type' : 'numeric', 'bind' : mem_percent }, 'Swap Usage %': { 'type' : 'numeric', 'bind' : swap_percent }, 'Disk Usage %': { 'type' : 'numeric', 'bind' : disk_percent } } diagnostics = { 'IP Address': rpi.ip_address, 'Host': rpi.host_name, 'Operating System': rpi.os_name } device = cloud4rpi.connect(DEVICE_TOKEN) # Use the following 'device' declaration # to enable the MQTT traffic encryption (TLS). # # tls = { # 'ca_certs': '/etc/ssl/certs/ca-certificates.crt' # } # device = cloud4rpi.connect(DEVICE_TOKEN, tls_config=tls) try: device.declare(variables) device.declare_diag(diagnostics) device.publish_config() # Adds a 1 second delay to ensure device variables are created sleep(1) data_timer = 0 diag_timer = 0 while True: if data_timer <= 0: device.publish_data() data_timer = DATA_SENDING_INTERVAL if diag_timer <= 0: device.publish_diag() diag_timer = DIAG_SENDING_INTERVAL sleep(POLL_INTERVAL) diag_timer -= POLL_INTERVAL data_timer -= POLL_INTERVAL except KeyboardInterrupt: cloud4rpi.log.info('Keyboard interrupt received. Stopping...') except Exception as e: error = cloud4rpi.get_error_message(e) cloud4rpi.log.exception("ERROR! %s %s", error, sys.exc_info()[0]) finally: sys.exit(0) if __name__ == '__main__': main()
null
cloud4rpi_monitor.py
cloud4rpi_monitor.py
py
3,774
python
en
code
null
code-starcoder2
83
[ { "api_name": "re.compile", "line_number": 12, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 18, "usage_type": "attribute" }, { "api_name": "psutil.cpu_percent", "line_number": 38, "usage_type": "call" }, { "api_name": "psutil.cpu_freq", "line_number": 41, "usage_type": "call" }, { "api_name": "psutil.virtual_memory", "line_number": 45, "usage_type": "call" }, { "api_name": "psutil.swap_memory", "line_number": 49, "usage_type": "call" }, { "api_name": "psutil.disk_usage", "line_number": 53, "usage_type": "call" }, { "api_name": "psutil.sensors_temperatures", "line_number": 57, "usage_type": "call" }, { "api_name": "statistics.mean", "line_number": 62, "usage_type": "call" }, { "api_name": "rpi.ip_address", "line_number": 102, "usage_type": "attribute" }, { "api_name": "rpi.host_name", "line_number": 103, "usage_type": "attribute" }, { "api_name": "rpi.os_name", "line_number": 104, "usage_type": "attribute" }, { "api_name": "cloud4rpi.connect", "line_number": 106, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 123, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 137, "usage_type": "call" }, { "api_name": "cloud4rpi.log.info", "line_number": 142, "usage_type": "call" }, { "api_name": "cloud4rpi.log", "line_number": 142, "usage_type": "attribute" }, { "api_name": "cloud4rpi.get_error_message", "line_number": 145, "usage_type": "call" }, { "api_name": "cloud4rpi.log.exception", "line_number": 146, "usage_type": "call" }, { "api_name": "cloud4rpi.log", "line_number": 146, "usage_type": "attribute" }, { "api_name": "sys.exc_info", "line_number": 146, "usage_type": "call" }, { "api_name": "sys.exit", "line_number": 149, "usage_type": "call" } ]
444973323
#libraries from PIL import Image import numpy as np import matplotlib.pyplot as plt from matplotlib import rc #import pandas as pd def plot_stacked_bar(bars1, bars2, names, file_name): # y-axis in bold rc('font', weight='bold') # Values of each group # bars1 = [12, 28, 1, 8, 22] # bars2 = [28, 7, 16, 4, 10] # bars3 = [25, 3, 23, 25, 17] # Heights of bars1 + bars2 bars = np.add(bars1, bars2).tolist() # The position of the bars on the x-axis #r = [0,1,2,3,4] #x = len(bars1) r = [i for i in range (0,len(bars1))] # Names of group and bar width #names = ['A','B','C','D','E'] barWidth = 1 # Create brown bars plt.bar(r, bars1, color='#7f6d5f', edgecolor='white', width=barWidth, label= 'Academy Students') # Create green bars (middle), on top of the firs ones plt.bar(r, bars2, bottom=bars1, color='#557f2d', edgecolor='white', width=barWidth, label='External') # Create green bars (top) #plt.bar(r, bars3, bottom=bars, color='#2d7f5e', edgecolor='white', width=barWidth) # Create legend plt.legend() # Custom X axis plt.xticks(r, names, fontweight='normal', rotation=90) #plt.xticks(r, names, rotation=90) plt.xlabel("Zoom Meeting Date") plt.subplots_adjust(bottom=0.25, top=0.96) # Show graphic #plt.show() plt.savefig(file_name) def display_image(filename): img = Image.open(filename) img.show()
null
Zoom/graph.py
graph.py
py
1,449
python
en
code
null
code-starcoder2
83
[ { "api_name": "matplotlib.rc", "line_number": 12, "usage_type": "call" }, { "api_name": "numpy.add", "line_number": 20, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.bar", "line_number": 31, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 31, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.bar", "line_number": 33, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 33, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.legend", "line_number": 38, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 38, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xticks", "line_number": 41, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 41, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 43, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 43, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.subplots_adjust", "line_number": 45, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 45, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 49, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 49, "usage_type": "name" }, { "api_name": "PIL.Image.open", "line_number": 52, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 52, "usage_type": "name" } ]
130524939
''' Copyright (C) 2018 Busacca Davide This file is part of PV. PV is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation (FSF), either version 3 of the License, or (at your option) any later version. PV is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the Affero GNU General Public License version 3 along with PV. If not, see http://www.gnu.org/licenses/ ''' import os, sys import numpy as np import matplotlib.pyplot as plt from scipy.fftpack import ifft sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../')) import STFT import utils as U def ISTFT(X, frameSize = 4096, hopSize= 2048, fftshift = True, windowType='hann', zeroPadding=0, normalized=False): ''' Inverse Short Time Fourier Transform ISTFT using Least Squared Error Estimation for Modified Spectrograms Add description ''' #normalization commented because apparently useless #Creating window w = U.windowing(np.ones(frameSize), frameSize, typeWindow=windowType) #Computing squared windows for LSEE window = np.power(w, 2) #Computing IFFT, appending frames and windows i=0 for frame_X in X: x_t = np.real(ifft(frame_X)) x_t = U.zeroPhasing(x_t, frameSize, zeroPadding=zeroPadding, fftshift=fftshift, inverse=True) x_w = x_t*w if i==0: i = 1 x_f = x_w ow_f = window else: x_f = np.append(x_f, x_w) ow_f = np.append(ow_f, window) #The TSM Toolbox here has a "restore energy" part. #Overlapping and adding frames and windows x = U.myOverlapAdd(x_f, frameSize, hopSize) ow = U.myOverlapAdd(ow_f, frameSize, hopSize) ow[np.where(ow<0.001)] = 1 #avoid division by 0 #Apparently the normalization is not needed #Normalization #if normalized: # x = x/(frameSize+zeroPadding) #Least Squares Error Estimation x = x/(ow + np.finfo(float).eps) #LSEE (avoiding division by zero) #Deleting half frame at the beginning and half at the end #Not used because it introduces artefacts in the magnitude spectrogram #x = x[int(frameSize/2):int(-frameSize/2)] return x, ow def callback(nameInput='../sounds/sine.wav', nameOutput='processed/sine_STFT.wav', frameSize=3071, zeroPadding=1025, hopSize=256, windowType='hann', fftshift=True): normalized=False #parameter not considered in the ISTFT function #Loading audio x, fs = U.wavread(nameInput) #Computing STFT X = STFT.STFT(x, frameSize, hopSize, fftshift, windowType, zeroPadding) #Computing ISTFT [y, ow] = ISTFT(X, frameSize=frameSize, hopSize=hopSize, fftshift=fftshift, windowType=windowType, normalized=normalized, zeroPadding=zeroPadding) #Writing audio output U.wavwrite(y, fs, nameOutput) #Plotting fig = plt.figure(figsize=(15, 15), dpi= 80, facecolor='w', edgecolor='k') fig.canvas.set_window_title('Signals and Window') tmp = fig.add_subplot(3,1,1) tmp.plot(U.getTimeAxis(x, fs), x) tmp.set_title('Original Signal') tmp = fig.add_subplot(3,1,2) tmp.plot(U.getTimeAxis(y, fs), y) tmp.set_title('Re-Synthesized Signal') tmp = fig.add_subplot(3,1,3) tmp.plot(U.getTimeAxis(ow, fs), ow) tmp.set_title('Sum of (Squared) Windows') [tx, fx] = U.getSpectrogramAxis(X, fs, hopSize) endX = int(X.shape[1]/2+1) fig2 = plt.figure(figsize=(15, 15), dpi= 80, facecolor='w', edgecolor='k') fig2.canvas.set_window_title('Spectrograms') tmp = fig2.add_subplot(2,1,1) tmp.pcolormesh(tx, fx, np.transpose(U.amp2db(U.getMagnitude(X[:, :endX])))) tmp.set_title('Original Magnitude Spectrogram') tmp = fig2.add_subplot(2,1,2) plt.pcolormesh(tx, fx, np.transpose(np.diff(U.getPhase(X[:, :endX])))) tmp.set_title('Differential of the Original Phase Spectrogram') plt.show() # Evaluating the difference between input and re-synthesized signals print("The sum of the differences between the original signal and the resynthsized using the STFT is: " + str(U.distance2signals(x, y, frameSize)) ) if __name__ == "__main__": callback()
null
spectrogram/ISTFT.py
ISTFT.py
py
4,546
python
en
code
null
code-starcoder2
83
[ { "api_name": "sys.path.append", "line_number": 25, "usage_type": "call" }, { "api_name": "sys.path", "line_number": 25, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 25, "usage_type": "call" }, { "api_name": "os.path", "line_number": 25, "usage_type": "attribute" }, { "api_name": "os.path.dirname", "line_number": 25, "usage_type": "call" }, { "api_name": "os.path.realpath", "line_number": 25, "usage_type": "call" }, { "api_name": "utils.windowing", "line_number": 39, "usage_type": "call" }, { "api_name": "numpy.ones", "line_number": 39, "usage_type": "call" }, { "api_name": "numpy.power", "line_number": 41, "usage_type": "call" }, { "api_name": "numpy.real", "line_number": 46, "usage_type": "call" }, { "api_name": "scipy.fftpack.ifft", "line_number": 46, "usage_type": "call" }, { "api_name": "utils.zeroPhasing", "line_number": 47, "usage_type": "call" }, { "api_name": "numpy.append", "line_number": 54, "usage_type": "call" }, { "api_name": "numpy.append", "line_number": 55, "usage_type": "call" }, { "api_name": "utils.myOverlapAdd", "line_number": 60, "usage_type": "call" }, { "api_name": "utils.myOverlapAdd", "line_number": 61, "usage_type": "call" }, { "api_name": "numpy.where", "line_number": 62, "usage_type": "call" }, { "api_name": "numpy.finfo", "line_number": 70, "usage_type": "call" }, { "api_name": "utils.wavread", "line_number": 82, "usage_type": "call" }, { "api_name": "STFT.STFT", "line_number": 85, "usage_type": "call" }, { "api_name": "utils.wavwrite", "line_number": 91, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 94, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 94, "usage_type": "name" }, { "api_name": "utils.getTimeAxis", "line_number": 98, "usage_type": "call" }, { "api_name": "utils.getTimeAxis", "line_number": 101, "usage_type": "call" }, { "api_name": "utils.getTimeAxis", "line_number": 104, "usage_type": "call" }, { "api_name": "utils.getSpectrogramAxis", "line_number": 107, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 109, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 109, "usage_type": "name" }, { "api_name": "numpy.transpose", "line_number": 112, "usage_type": "call" }, { "api_name": "utils.amp2db", "line_number": 112, "usage_type": "call" }, { "api_name": "utils.getMagnitude", "line_number": 112, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.pcolormesh", "line_number": 115, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 115, "usage_type": "name" }, { "api_name": "numpy.transpose", "line_number": 115, "usage_type": "call" }, { "api_name": "numpy.diff", "line_number": 115, "usage_type": "call" }, { "api_name": "utils.getPhase", "line_number": 115, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.show", "line_number": 118, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 118, "usage_type": "name" }, { "api_name": "utils.distance2signals", "line_number": 121, "usage_type": "call" } ]
372976317
# 主要作用是载入数据集,处理npz文件,因为keras自带的访问不能获取,只能本地完成了 # (X_train, y_train), (X_test, y_test) = imdb.load_data(num_words=max_features)input_file = "D:\用户目录\Desktop\郭磊\keras\imdb.npz" from __future__ import absolute_import from six.moves import zip import numpy as np import json import warnings # 下面的函数是keras的sequence的自带函数,但是我导入不进去,只能取出来了 def _remove_long_seq(maxlen, seq, label): # 移除超过指定最大长度的序列,返回,序列 和 标签 """Removes sequences that exceed the maximum length. # Arguments maxlen: int, maximum length seq: list of lists where each sublist is a sequence label: list where each element is an integer # Returns new_seq, new_label: shortened lists for `seq` and `label`. """ new_seq, new_label = [], [] for x, y in zip(seq, label): if len(x) < maxlen: new_seq.append(x) new_label.append(y) return new_seq, new_label # get_file_path 是文件的地址,本来是个keras的函数 def load_data(get_file_path, num_words=None, skip_top=0, maxlen=None, seed=113, start_char=1, oov_char=2, index_from=3, **kwargs): # Legacy support # out of vocabulary 非推荐术语; 非规范用语; if 'nb_words' in kwargs: warnings.warn('The `nb_words` argument in `load_data` ' 'has been renamed `num_words`.') num_words = kwargs.pop('nb_words') # pop() 函数用于移除列表中的一个元素(默认最后一个元素),并且返回该元素的值。 if kwargs: raise TypeError('Unrecognized keyword arguments: ' + str(kwargs)) path = get_file_path# 输入imdb.npz的地址 get_file_path本来是个函数,远程访问的函数,keras功能函数 with np.load(path) as f: x_train, labels_train = f['x_train'], f['y_train'] x_test, labels_test = f['x_test'], f['y_test'] np.random.seed(seed) # seed( ) 用于指定随机数生成时所用算法开始的整数值, # 如果使用相同的seed( )值,则每次生成的随即数都相同, # 如果不设置这个值,则系统根据时间来自己选择这个值, # 此时每次生成的随机数因时间差异而不同。 np.random.shuffle(x_train) # 按照相同的随机值进行打乱 np.random.seed(seed) np.random.shuffle(labels_train) # 按照相同的随机值进行打乱 # 打乱测试集 np.random.seed(seed * 2) np.random.shuffle(x_test) np.random.seed(seed * 2) np.random.shuffle(labels_test) xs = np.concatenate([x_train, x_test])# 把训练集和测试集中输出的特征序列sequence连接起来 labels = np.concatenate([labels_train, labels_test])# 把训练集和测试集中 标签 连接起来 if start_char is not None: xs = [[start_char] + [w + index_from for w in x] for x in xs] elif index_from: xs = [[w + index_from for w in x] for x in xs] if maxlen: xs, labels = _remove_long_seq(maxlen, xs, labels) if not xs: raise ValueError('After filtering for sequences shorter than maxlen=' + str(maxlen) + ', no sequence was kept. ' 'Increase maxlen.') if not num_words: num_words = max([max(x) for x in xs]) # by convention, use 2 as OOV word # reserve 'index_from' (=3 by default) characters: # 0 (padding), 1 (start), 2 (OOV) if oov_char is not None: xs = [[w if (skip_top <= w < num_words) else oov_char for w in x] for x in xs] else: xs = [[w for w in x if (skip_top <= w < num_words)] for x in xs] idx = len(x_train) x_train, y_train = np.array(xs[:idx]), np.array(labels[:idx]) # 最后训练的也是array类型 x_test, y_test = np.array(xs[idx:]), np.array(labels[idx:]) return (x_train, y_train), (x_test, y_test) def get_word_index(get_file_path): path = get_file_path f = open(path) data = json.load(f) f.close() return data
null
imdb.py
imdb.py
py
4,179
python
en
code
null
code-starcoder2
83
[ { "api_name": "six.moves.zip", "line_number": 22, "usage_type": "call" }, { "api_name": "warnings.warn", "line_number": 36, "usage_type": "call" }, { "api_name": "numpy.load", "line_number": 44, "usage_type": "call" }, { "api_name": "numpy.random.seed", "line_number": 48, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 48, "usage_type": "attribute" }, { "api_name": "numpy.random.shuffle", "line_number": 53, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 53, "usage_type": "attribute" }, { "api_name": "numpy.random.seed", "line_number": 54, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 54, "usage_type": "attribute" }, { "api_name": "numpy.random.shuffle", "line_number": 55, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 55, "usage_type": "attribute" }, { "api_name": "numpy.random.seed", "line_number": 58, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 58, "usage_type": "attribute" }, { "api_name": "numpy.random.shuffle", "line_number": 59, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 59, "usage_type": "attribute" }, { "api_name": "numpy.random.seed", "line_number": 60, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 60, "usage_type": "attribute" }, { "api_name": "numpy.random.shuffle", "line_number": 61, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 61, "usage_type": "attribute" }, { "api_name": "numpy.concatenate", "line_number": 63, "usage_type": "call" }, { "api_name": "numpy.concatenate", "line_number": 64, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 89, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 91, "usage_type": "call" }, { "api_name": "json.load", "line_number": 99, "usage_type": "call" } ]
89472880
from pytorch_rrt import UniformActionSpace, ActionDescription, \ UniformStateSpace, State, StateDescription, \ KinodynamicRRT, Visualizer from typing import Iterable import torch # from window_recorder.recorder import WindowRecorder import matplotlib.pyplot as plt class TwoDActionSpace(UniformActionSpace): MAX_ACTION = 0.3 @classmethod def description(cls) -> Iterable[ActionDescription]: return [ActionDescription("dx", -cls.MAX_ACTION, cls.MAX_ACTION), ActionDescription("dy", -cls.MAX_ACTION, cls.MAX_ACTION)] class TwoDStateSpace(UniformStateSpace): MAX_STATE = 3 @classmethod def description(cls) -> Iterable[StateDescription]: return [StateDescription("x", -cls.MAX_STATE, cls.MAX_STATE), StateDescription("y", -cls.MAX_STATE, cls.MAX_STATE)] def distance(self, s1: State, s2: State) -> torch.tensor: return (s1 - s2).view(-1, self.dim()).norm(dim=1) class TwoDVisualizer(Visualizer): def draw_state(self, x: State, color='k', s=4, alpha=0.2): x = x.cpu().numpy() plt.scatter(x[0], x[1], color=color, s=s, alpha=alpha) # plt.pause(0.0001) def draw_connect(self, x_start: State, x_next: State): self.draw_state(x_next) plt.plot([x_start[0].cpu().numpy(), x_next[0].cpu().numpy()], [x_start[1].cpu().numpy(), x_next[1].cpu().numpy()], color='gray', linewidth=1, alpha=0.2) plt.pause(0.0001) state_space = TwoDStateSpace() action_space = TwoDActionSpace() def true_dynamics(state, action, environment=None): return state + action # try different true dynamics than given approximate dynamics dynamics = true_dynamics def traj_cost(trajectory, goal): states = torch.stack(trajectory.states) d = state_space.distance(states, goal) return d.min() rrt = KinodynamicRRT(state_space, action_space, dynamics, traj_cost) goal = state_space.sample((1,)).view(-1) state = state_space.sample((1,)).view(-1) def goal_check(trajectory): states = torch.stack(trajectory.states) d = state_space.distance(states, goal) return d.min() < 0.1 vis = TwoDVisualizer() plt.ion() plt.figure() plt.xlim([-4, 4]) plt.ylim([-4, 4]) plt.axis("equal") vis.draw_state(state, color='k', s=20, alpha=1) vis.draw_state(goal, color='g', s=20, alpha=1) plt.draw() # use RRT in MPC manner, re-plan after each action while True: res = rrt.plan(state, goal_check, goal=goal, visualizer=vis) action = res.trajectory.actions[0] # step in environment next_state = true_dynamics(state, action) state = next_state vis.draw_state(state, color='k', s=8, alpha=1) plt.draw() if state_space.distance(state, goal) < 0.1: print("done planning state: {} goal: {}".format(state, goal)) break input('enter to finish')
null
tests/twod.py
twod.py
py
2,845
python
en
code
null
code-starcoder2
83
[ { "api_name": "pytorch_rrt.UniformActionSpace", "line_number": 11, "usage_type": "name" }, { "api_name": "pytorch_rrt.ActionDescription", "line_number": 16, "usage_type": "call" }, { "api_name": "pytorch_rrt.ActionDescription", "line_number": 17, "usage_type": "call" }, { "api_name": "typing.Iterable", "line_number": 15, "usage_type": "name" }, { "api_name": "pytorch_rrt.ActionDescription", "line_number": 15, "usage_type": "name" }, { "api_name": "pytorch_rrt.UniformStateSpace", "line_number": 20, "usage_type": "name" }, { "api_name": "pytorch_rrt.StateDescription", "line_number": 25, "usage_type": "call" }, { "api_name": "pytorch_rrt.StateDescription", "line_number": 26, "usage_type": "call" }, { "api_name": "typing.Iterable", "line_number": 24, "usage_type": "name" }, { "api_name": "pytorch_rrt.StateDescription", "line_number": 24, "usage_type": "name" }, { "api_name": "pytorch_rrt.State", "line_number": 28, "usage_type": "name" }, { "api_name": "torch.tensor", "line_number": 28, "usage_type": "attribute" }, { "api_name": "pytorch_rrt.Visualizer", "line_number": 32, "usage_type": "name" }, { "api_name": "pytorch_rrt.State", "line_number": 33, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.scatter", "line_number": 35, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 35, "usage_type": "name" }, { "api_name": "pytorch_rrt.State", "line_number": 38, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 40, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 40, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.pause", "line_number": 42, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 42, "usage_type": "name" }, { "api_name": "torch.stack", "line_number": 58, "usage_type": "call" }, { "api_name": "pytorch_rrt.KinodynamicRRT", "line_number": 63, "usage_type": "call" }, { "api_name": "torch.stack", "line_number": 70, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.ion", "line_number": 76, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 76, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 78, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 78, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlim", "line_number": 79, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 79, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylim", "line_number": 80, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 80, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.axis", "line_number": 81, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 81, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.draw", "line_number": 84, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 84, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.draw", "line_number": 96, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 96, "usage_type": "name" } ]
282892793
# vi: set shiftwidth=4 tabstop=4 expandtab: import datetime import re import itertools def get_program_from_file(file_path="day14_input.txt"): with open(file_path) as f: return [l.strip() for l in f] # mask = X100110110X011000101000101XX11001X11 mask_re = re.compile(r"^mask = (?P<mask>[01X]+)$") # mem[5201] = 1838761 mem_re = re.compile(r"^mem\[(?P<addr>\d+)\] = (?P<value>\d+)") def apply_mask(value, mask): value = format(value, "0%db" % len(mask)) bits = [bv if bm == "X" else bm for bv, bm in zip(value, mask)] return int("".join(bits), 2) def all_combinations(lst): for l in range(len(lst) + 1): for comb in itertools.combinations(lst, l): yield comb def apply_mask2(value, mask): value = format(value, "0%db" % len(mask)) floating = [] base_val = 0 for i, (bval, bmask) in enumerate(reversed(list(zip(value, mask)))): val = 2 ** i if bmask == "X": floating.append(val) elif int(bmask) or int(bval): base_val += val return [base_val + sum(comb) for comb in all_combinations(floating)] def run_program(program): mask = "" memory = dict() for line in program: m_mask = mask_re.fullmatch(line) if m_mask is not None: d = m_mask.groupdict() mask = d["mask"] else: m_mem = mem_re.fullmatch(line) if m_mem is not None: d = m_mem.groupdict() memory[int(d["addr"])] = apply_mask(int(d["value"]), mask) else: raise ValueError(line) return sum(v for v in memory.values()) def run_program2(program): mask = "" memory = dict() for line in program: m_mask = mask_re.fullmatch(line) if m_mask is not None: d = m_mask.groupdict() mask = d["mask"] else: m_mem = mem_re.fullmatch(line) if m_mem is not None: d = m_mem.groupdict() v = int(d["value"]) for addr in apply_mask2(int(d["addr"]), mask): memory[addr] = v else: raise ValueError(line) return sum(v for v in memory.values()) def run_tests(): example1 = [ "mask = XXXXXXXXXXXXXXXXXXXXXXXXXXXXX1XXXX0X", "mem[8] = 11", "mem[7] = 101", "mem[8] = 0", ] assert apply_mask(11, "XXXXXXXXXXXXXXXXXXXXXXXXXXXXX1XXXX0X") == 73 assert apply_mask(101, "XXXXXXXXXXXXXXXXXXXXXXXXXXXXX1XXXX0X") == 101 assert apply_mask(0, "XXXXXXXXXXXXXXXXXXXXXXXXXXXXX1XXXX0X") == 64 assert run_program(example1) == 165 example2 = [ "mask = 000000000000000000000000000000X1001X", "mem[42] = 100", "mask = 00000000000000000000000000000000X0XX", "mem[26] = 1", ] assert sorted(apply_mask2(42, "000000000000000000000000000000X1001X")) == [ 26, 27, 58, 59, ] assert sorted(apply_mask2(26, "00000000000000000000000000000000X0XX")) == [ 16, 17, 18, 19, 24, 25, 26, 27, ] assert run_program2(example2) == 208 def get_solutions(): program = get_program_from_file() print(run_program(program) == 6559449933360) print(run_program2(program) == 3369767240513) if __name__ == "__main__": begin = datetime.datetime.now() run_tests() get_solutions() end = datetime.datetime.now() print(end - begin)
null
day14.py
day14.py
py
3,513
python
en
code
null
code-starcoder2
83
[ { "api_name": "re.compile", "line_number": 13, "usage_type": "call" }, { "api_name": "re.compile", "line_number": 15, "usage_type": "call" }, { "api_name": "itertools.combinations", "line_number": 26, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 124, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 124, "usage_type": "attribute" }, { "api_name": "datetime.datetime.now", "line_number": 127, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 127, "usage_type": "attribute" } ]
175701350
# # linter.py # Linter for SublimeLinter3, a code checking framework for Sublime Text 3 # # Written by Fred Callaway # Copyright (c) 2015 Fred Callaway # Copyright (c) 2017 FichteFoll <[email protected]> # # License: MIT # """This module exports the Mypy plugin class.""" import logging import os import re import shutil import tempfile import getpass from SublimeLinter.lint import const from SublimeLinter.lint import PythonLinter USER = getpass.getuser() TMPDIR_PREFIX = "SublimeLinter-contrib-mypy-%s" % USER logger = logging.getLogger("SublimeLinter.plugin.mypy") # Mapping for our created temporary directories. # For smarter caching purposes, # we index different cache folders based on the working dir. tmpdirs = {} class Mypy(PythonLinter): """Provides an interface to mypy.""" executable = "mypy" regex = r'^[^:]+:(?P<line>\d+):((?P<col>\d+):)?\s*((?P<error>error)|(?P<warning>warning)):\s*(?P<message>.+)' line_col_base = (1, 1) tempfile_suffix = 'py' default_type = const.WARNING # Pretty much all interesting options don't expect a value, # so you'll have to specify those in "args" anyway. # This dict only contains settings for which we have special handling. defaults = { 'selector': "source.python", # Will default to tempfile.TemporaryDirectory if empty. "--cache-dir:": "", # Allow users to disable this "--incremental": True, # Need this to silent lints for other files. Alternatively: 'skip' "--follow-imports:": "silent", } def run(self, *args): # Column numbers were 0-based before version 0.570 version = self._get_version() if version < (0, 520): # abort lint raise RuntimeError("mypy linter plugin requires at least version 0.520") if version < (0, 570): self.line_col_base = (1, 0) else: self.line_col_base = (1, 1) return super().run(*args) def cmd(self): """Return a list with the command line to execute.""" cmd = [ self.executable, '${args}', '--show-column-numbers', '--hide-error-context', # '--incremental', ] if self.filename: cmd.extend([ # --shadow-file SOURCE_FILE SHADOW_FILE # # '@' needs to be the (temporary) shadow file, # while we request the normal filename # to be checked in its normal environment. '--shadow-file', '${file}', '${temp_file}', # The file we want to lint on the surface '${file}', ]) else: cmd.append('${temp_file}') # Add a temporary cache dir to the command if none was specified. # Helps keep the environment clean # by not littering everything with `.mypy_cache` folders. settings = self.get_view_settings() if not settings.get('cache-dir'): cwd = os.getcwd() if cwd in tmpdirs: cache_dir = tmpdirs[cwd].name else: tmp_dir = tempfile.TemporaryDirectory(prefix=TMPDIR_PREFIX) tmpdirs[cwd] = tmp_dir cache_dir = tmp_dir.name logger.info("Created temporary cache dir at: %s", cache_dir) cmd[1:1] = ["--cache-dir", cache_dir] return cmd def _get_version(self): """Determine the linter's version by command invocation.""" success, cmd = self.context_sensitive_executable_path(self.executable) if isinstance(cmd, str): cmd = [cmd] cmd.append('--version') output = self.communicate(cmd) match = re.search(r"(\d+)\.(\d+)(?:\.(\d+))?", output) if not match: logger.info("failed to determine mypy version. output:\n%s", output) return () version = tuple(int(g) for g in match.groups() if g) logger.info("mypy version: %s", version) return version def _cleanup_tmpdirs(): def _onerror(function, path, exc_info): logger.exception("mypy: Unable to delete '%s' while cleaning up temporary directory", path, exc_info=exc_info) tmpdir = tempfile.gettempdir() for dirname in os.listdir(tmpdir): if dirname.startswith(TMPDIR_PREFIX): shutil.rmtree(os.path.join(tmpdir, dirname), onerror=_onerror) def plugin_loaded(): """Attempt to clean up temporary directories from previous runs.""" _cleanup_tmpdirs() def plugin_unloaded(): """Clear references to TemporaryDirectory instances. They should then be removed automatically. """ # (Actually, do we even need to do this?) tmpdirs.clear()
null
linter.py
linter.py
py
4,822
python
en
code
null
code-starcoder2
83
[ { "api_name": "getpass.getuser", "line_number": 24, "usage_type": "call" }, { "api_name": "logging.getLogger", "line_number": 27, "usage_type": "call" }, { "api_name": "SublimeLinter.lint.PythonLinter", "line_number": 35, "usage_type": "name" }, { "api_name": "SublimeLinter.lint.const.WARNING", "line_number": 42, "usage_type": "attribute" }, { "api_name": "SublimeLinter.lint.const", "line_number": 42, "usage_type": "name" }, { "api_name": "os.getcwd", "line_number": 97, "usage_type": "call" }, { "api_name": "tempfile.TemporaryDirectory", "line_number": 101, "usage_type": "call" }, { "api_name": "re.search", "line_number": 116, "usage_type": "call" }, { "api_name": "tempfile.gettempdir", "line_number": 129, "usage_type": "call" }, { "api_name": "os.listdir", "line_number": 130, "usage_type": "call" }, { "api_name": "shutil.rmtree", "line_number": 132, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 132, "usage_type": "call" }, { "api_name": "os.path", "line_number": 132, "usage_type": "attribute" } ]
146572208
import asyncio from contextlib import suppress from copy import copy from io import BytesIO import discord from redbot.core import commands, checks, Config from redbot.core.utils import common_filters, mod from redbot.core.utils.chat_formatting import pagify, humanize_list from redbot.core.i18n import Translator, cog_i18n check_permissions = getattr(mod, "check_permissions", checks.check_permissions) from .converter import RiftConverter, search_converter Cog = getattr(commands, "Cog", object) listener = getattr(Cog, "listener", lambda: lambda x: x) _ = Translator("Rift", __file__) max_size = 8_000_000 # can be 1 << 23 but some unknowns also add to the size async def close_check(ctx): """Admin / manage channel OR private channel""" if isinstance(ctx.channel, discord.DMChannel): return True return await mod.is_admin_or_superior(ctx.bot, ctx.author) or await check_permissions( ctx, {"manage_channels": True} ) class RiftError(Exception): pass class Rift(Cog): """ Communicate with other servers/channels. """ def __init__(self, bot): super().__init__() self.bot = bot self.open_rifts = {} self.config = Config.get_conf(self, identifier=2_113_674_295, force_registration=True) self.config.register_channel(blacklisted=False) self.config.register_guild(blacklisted=False) self.config.register_user(blacklisted=False) self.config.register_global(notify=True) # COMMANDS @commands.group() async def rift(self, ctx): """ Communicate with other channels through Red. """ pass @rift.group() async def blacklist(self, ctx): """ Configures blacklists. Blacklisted destinations cannot have rifts opened to them. """ pass @blacklist.command(name="channel") @commands.check(close_check) async def blacklist_channel(self, ctx, *, channel: discord.TextChannel = None): """ Blacklists the current channel or the specified channel. Can also blacklist DM channels. """ if channel and isinstance(ctx.channel, discord.DMChannel): raise commands.BadArgument(_("You cannot blacklist a channel in DMs.")) if isinstance(ctx.channel, discord.DMChannel): channel = ctx.author group = self.config.user(channel) else: channel = channel or ctx.channel group = self.config.channel(channel) blacklisted = not await group.blacklisted() await group.blacklisted.set(blacklisted) await ctx.maybe_send_embed( _("Channel is {} blacklisted.".format("now" if blacklisted else "no longer")) ) if blacklisted: await self.close_rifts(ctx, ctx.author, channel) @blacklist.command(name="server") @commands.guild_only() @checks.admin_or_permissions(manage_guild=True) async def blacklist_server(self, ctx): """ Blacklists the current server. All channels and members in a server are considered blacklisted if the server is blacklisted. Members can still be reached if they are in another, non-blacklisted server. """ group = self.config.guild(ctx.guild) blacklisted = not await group.blacklisted() await group.blacklisted.set(blacklisted) await ctx.maybe_send_embed( _("Server is {} blacklisted.".format("now" if blacklisted else "no longer")) ) if blacklisted: await self.close_rifts(ctx, ctx.author, ctx.guild) @rift.command(name="close") @commands.check(close_check) async def rift_close(self, ctx): """ Closes all rifts that lead to this channel. """ channel = ctx.author if isinstance(ctx.channel, discord.DMChannel) else ctx.channel await self.close_rifts(ctx, ctx.author, channel) @rift.command(name="notify") @checks.is_owner() async def rift_notify(self, ctx, *, notify: bool = None): """ Toggle whether the bot notifies the destination of an open rift. The notification is only disabled for bot owners, and will still notify channels the bot owner doesn't have direct access to. """ if notify is None: notify = not await self.config.notify() await self.config.notify.set(notify) await ctx.send( _( "I will {} notify destinations when you open new rifts.".format( "now" if notify else "no longer" ) ) ) @rift.command(name="open") async def rift_open(self, ctx, *rifts: RiftConverter(_, globally=True)): """ Opens a rift to the specified destination. The destination may be any channel or user that both you and the bot are connected to, even across servers. """ if not rifts: return await ctx.send_help() rifts = set(rifts) no_notify = await self.bot.is_owner(ctx.author) and not await self.config.notify() for rift in rifts: if no_notify and isinstance(rift.destination, discord.abc.GuildChannel): mem = rift.destination.guild.get_member(ctx.author.id) if mem and rift.destination.permissions_for(mem).read_messages: notify = False else: notify = True else: notify = True self.open_rifts[rift] = {"notify": notify} if notify: ctx.bot.loop.create_task( rift.destination.send(_("{} has opened a rift to here.").format(rift.author)) ) await ctx.send( _( "A rift has been opened to {}! Everything you say will be relayed there.\nResponses will be relayed here.\nType `exit` to quit." ).format(humanize_list([str(rift.destination) for rift in rifts])) ) @rift.command(name="search") async def rift_search(self, ctx, searchby: search_converter(_) = None, *, search=None): """ Searches through open rifts. searchby: author, source, or destination. If this isn't provided, all three are searched through. search: Search for the specified author/source/destination. If this isn't provided, the author or channel of the command is used. """ searchby = searchby or list(range(3)) if search is None: search = [ctx.author, ctx.channel, ctx.author] else: search = await RiftConverter.search(ctx, search, False, _) results = set() for rift in self.open_rifts: for i in searchby: if rift[i] in search: results.add(rift) if not results: return await ctx.maybe_send_embed(_("No rifts were found with these parameters.")) message = _("Results:") + "\n\n" message += "\n".join(str(rift) for rift in results) for page in pagify(message): await ctx.maybe_send_embed(page) # UTILITIES async def close_rifts(self, ctx, closer, destination): if isinstance(destination, discord.Guild): check = lambda rift: rift.destination in destination.channels else: check = lambda rift: rift.destination == destination noclose = True for rift in self.open_rifts.copy(): if check(rift): del self.open_rifts[rift] noclose = False await rift.source.send( _("{} has closed the rift to {}.").format(closer, rift.destination) ) await rift.destination.send(_("Rift from {} closed.").format(rift.source)) if noclose: await ctx.send(_("No rifts were found that connect to here.")) async def get_embed(self, destination, attachments): attach = attachments[0] if ( hasattr(destination, "guild") and await self.bot.db.guild(destination.guild).use_bot_color() ): color = destination.guild.me.colour else: color = self.bot.color description = "\n\n".join( f"{self.xbytes(attach.size)}\n**[{attach.filename}]({attach.url})**" for a in attachments ) embed = discord.Embed(colour=color, description=description) embed.set_image(url=attach.url) return embed def permissions(self, destination, user, is_owner=False): if isinstance(destination, discord.User): return destination.dm_channel.permissions_for(user) if not is_owner: member = destination.guild.get_member(user.id) if member: return destination.permissions_for(member) else: every = destination.guild.default_role overs = destination.overwrites_for(every) overs.read_messages = True overs.send_messages = True overs = overs.pair() perms = (every.permissions.value & ~overs[1].value) | overs[0].value return discord.Permissions(perms) return discord.Permissions.all() async def process_message(self, rift, message, destination): if isinstance(destination, discord.Message): send_coro = destination.edit else: send_coro = destination.send channel = ( message.author if isinstance(message.channel, discord.DMChannel) else message.channel ) send = channel == rift.source destination = rift.destination if send else rift.source author = message.author me = ( destination.dm_channel.me if isinstance(destination, discord.User) else destination.guild.me ) is_owner = await self.bot.is_owner(author) author_perms = self.permissions(destination, author, is_owner) bot_perms = self.permissions(destination, me) content = message.content if not is_owner: if not author_perms.administrator: content = common_filters.filter_invites(content) if not author_perms.mention_everyone: content = common_filters.filter_mass_mentions(content) attachments = message.attachments files = [] embed = None if attachments and author_perms.attach_files and bot_perms.attach_files: overs = await asyncio.gather(*(self.save_attach(file, files) for file in attachments)) overs = list(filter(bool, overs)) if overs: if bot_perms.embed_links: embed = await self.get_embed(destination, overs) else: content += ( "\n\n" + _("Attachments:") + "\n" + "\n".join(f"({self.xbytes(a.size)}) {a.url}" for a in attachments) ) if not any((content, files, embed)): raise RiftError(_("No content to send.")) if not is_owner or not send: content = f"{author}: {content}" return await send_coro(content=content, files=files, embed=embed) async def save_attach(self, file: discord.Attachment, files) -> discord.File: if file.size > max_size: return file buffer = BytesIO() await file.save(buffer, seek_begin=True) files.append(discord.File(buffer, file.filename)) return None def xbytes(self, b): blist = ("B", "KB", "MB") index = 0 while True: if b > 900: b = b / 1024.0 index += 1 else: return "{:.3g} {}".format(b, blist[index]) # EVENTS @listener() async def on_message(self, m): if m.author.bot: return channel = m.author if isinstance(m.channel, discord.DMChannel) else m.channel sent = {} is_command = (await self.bot.get_context(m)).valid for rift, record in self.open_rifts.copy().items(): if rift.source == channel and rift.author == m.author: if m.content.lower() == "exit": processed = self.open_rifts.pop(rift) if processed["notify"]: with suppress(discord.HTTPException): await rift.destination.send( _("{} has closed the rift.").format(m.author) ) await channel.send(_("Rift closed.")) else: if not is_command: try: record[m] = await self.process_message(rift, m, rift.destination) except discord.HTTPException as e: await channel.send( _("I couldn't send your message due to an error: {}").format(e) ) elif rift.destination == channel: rift_chans = (rift.source, rift.destination) if rift_chans in sent: record[m] = sent[rift_chans] else: record[m] = sent[rift_chans] = await self.process_message(rift, m, rift.source) async def on_message_delete(self, m): if m.author.bot: return deleted = set() for record in self.open_rifts.copy().values(): with suppress(KeyError, discord.NotFound): rifted = record.pop(m) if rifted not in deleted: deleted.add(rifted) await rifted.delete() async def on_message_edit(self, b, a): if a.author.bot: return channel = a.author if isinstance(a.channel, discord.DMChannel) else a.channel sent = set() for rift, record in self.open_rifts.copy().items(): if rift.source == channel and rift.author == a.author: with suppress(KeyError, discord.NotFound): await self.process_message(rift, a, record[a]) elif rift.destination == channel: rift_chans = (rift.source, rift.destination) if rift_chans not in sent: sent.add(rift_chans) with suppress(KeyError, discord.NotFound): await self.process_message(rift, a, record[a])
null
cogs/CogManager/cogs/rift/rift.py
rift.py
py
15,090
python
en
code
null
code-starcoder2
83
[ { "api_name": "redbot.core.utils.mod", "line_number": 13, "usage_type": "argument" }, { "api_name": "redbot.core.checks.check_permissions", "line_number": 13, "usage_type": "attribute" }, { "api_name": "redbot.core.checks", "line_number": 13, "usage_type": "name" }, { "api_name": "redbot.core.commands", "line_number": 18, "usage_type": "argument" }, { "api_name": "redbot.core.i18n.Translator", "line_number": 22, "usage_type": "call" }, { "api_name": "discord.DMChannel", "line_number": 30, "usage_type": "attribute" }, { "api_name": "redbot.core.utils.mod.is_admin_or_superior", "line_number": 32, "usage_type": "call" }, { "api_name": "redbot.core.utils.mod", "line_number": 32, "usage_type": "name" }, { "api_name": "redbot.core.Config.get_conf", "line_number": 51, "usage_type": "call" }, { "api_name": "redbot.core.Config", "line_number": 51, "usage_type": "name" }, { "api_name": "redbot.core.commands.group", "line_number": 59, "usage_type": "call" }, { "api_name": "redbot.core.commands", "line_number": 59, "usage_type": "name" }, { "api_name": "discord.TextChannel", "line_number": 77, "usage_type": "attribute" }, { "api_name": "discord.DMChannel", "line_number": 83, "usage_type": "attribute" }, { "api_name": "redbot.core.commands.BadArgument", "line_number": 84, "usage_type": "call" }, { "api_name": "redbot.core.commands", "line_number": 84, "usage_type": "name" }, { "api_name": "discord.DMChannel", "line_number": 85, "usage_type": "attribute" }, { "api_name": "redbot.core.commands.check", "line_number": 76, "usage_type": "call" }, { "api_name": "redbot.core.commands", "line_number": 76, "usage_type": "name" }, { "api_name": "redbot.core.commands.guild_only", "line_number": 100, "usage_type": "call" }, { "api_name": "redbot.core.commands", "line_number": 100, "usage_type": "name" }, { "api_name": "redbot.core.checks.admin_or_permissions", "line_number": 101, "usage_type": "call" }, { "api_name": "redbot.core.checks", "line_number": 101, "usage_type": "name" }, { "api_name": "discord.DMChannel", "line_number": 124, "usage_type": "attribute" }, { "api_name": "redbot.core.commands.check", "line_number": 119, "usage_type": "call" }, { "api_name": "redbot.core.commands", "line_number": 119, "usage_type": "name" }, { "api_name": "redbot.core.checks.is_owner", "line_number": 128, "usage_type": "call" }, { "api_name": "redbot.core.checks", "line_number": 128, "usage_type": "name" }, { "api_name": "converter.RiftConverter", "line_number": 148, "usage_type": "call" }, { "api_name": "discord.abc", "line_number": 159, "usage_type": "attribute" }, { "api_name": "redbot.core.utils.chat_formatting.humanize_list", "line_number": 175, "usage_type": "call" }, { "api_name": "converter.search_converter", "line_number": 179, "usage_type": "call" }, { "api_name": "converter.RiftConverter.search", "line_number": 192, "usage_type": "call" }, { "api_name": "converter.RiftConverter", "line_number": 192, "usage_type": "name" }, { "api_name": "redbot.core.utils.chat_formatting.pagify", "line_number": 202, "usage_type": "call" }, { "api_name": "discord.Guild", "line_number": 208, "usage_type": "attribute" }, { "api_name": "discord.Embed", "line_number": 237, "usage_type": "call" }, { "api_name": "discord.User", "line_number": 242, "usage_type": "attribute" }, { "api_name": "discord.Permissions", "line_number": 255, "usage_type": "call" }, { "api_name": "discord.Permissions.all", "line_number": 256, "usage_type": "call" }, { "api_name": "discord.Permissions", "line_number": 256, "usage_type": "attribute" }, { "api_name": "discord.Message", "line_number": 259, "usage_type": "attribute" }, { "api_name": "discord.DMChannel", "line_number": 264, "usage_type": "attribute" }, { "api_name": "discord.User", "line_number": 271, "usage_type": "attribute" }, { "api_name": "redbot.core.utils.common_filters.filter_invites", "line_number": 280, "usage_type": "call" }, { "api_name": "redbot.core.utils.common_filters", "line_number": 280, "usage_type": "name" }, { "api_name": "redbot.core.utils.common_filters.filter_mass_mentions", "line_number": 282, "usage_type": "call" }, { "api_name": "redbot.core.utils.common_filters", "line_number": 282, "usage_type": "name" }, { "api_name": "asyncio.gather", "line_number": 287, "usage_type": "call" }, { "api_name": "discord.Attachment", "line_number": 305, "usage_type": "attribute" }, { "api_name": "io.BytesIO", "line_number": 308, "usage_type": "call" }, { "api_name": "discord.File", "line_number": 310, "usage_type": "call" }, { "api_name": "discord.File", "line_number": 305, "usage_type": "attribute" }, { "api_name": "discord.DMChannel", "line_number": 329, "usage_type": "attribute" }, { "api_name": "contextlib.suppress", "line_number": 337, "usage_type": "call" }, { "api_name": "discord.HTTPException", "line_number": 337, "usage_type": "attribute" }, { "api_name": "discord.HTTPException", "line_number": 346, "usage_type": "attribute" }, { "api_name": "contextlib.suppress", "line_number": 362, "usage_type": "call" }, { "api_name": "discord.NotFound", "line_number": 362, "usage_type": "attribute" }, { "api_name": "discord.DMChannel", "line_number": 371, "usage_type": "attribute" }, { "api_name": "contextlib.suppress", "line_number": 375, "usage_type": "call" }, { "api_name": "discord.NotFound", "line_number": 375, "usage_type": "attribute" }, { "api_name": "contextlib.suppress", "line_number": 381, "usage_type": "call" }, { "api_name": "discord.NotFound", "line_number": 381, "usage_type": "attribute" } ]
359906849
import pyglet from game import star, bulk_load, player, meteorite game_window = pyglet.window.Window(800, 600) #pyglet的批量绘制 main_batch = pyglet.graphics.Batch() #设置文字标签,需要将batch对象传递给物体的构造函数(使用关键字 batch) level_label = pyglet.text.Label(text="It's a star Game ^。^!", x=400, y=575, anchor_x='center', batch=main_batch) game_over_label = pyglet.text.Label(text="GAME OVER", x=400, y=-300, anchor_x='center', batch=main_batch, font_size=48) score_label = pyglet.text.Label(text="Score: 0", x=10, y=575, batch=main_batch) time_label = pyglet.text.Label(text="Time: ", x=150, y=575, batch=main_batch) player_airship = None player_lives = [] score = 0 num_stars = 3 num_meteorites = 1 game_objects = [] time_left = 1200 count = 0 level = 0 # 事件栈的size event_stack_size = 0 def init(): global score, num_stars, num_meteorites, time_left, count score = 0 time_left = 1200 count = 0 score_label.text = "Score: " + str(score) time_label.text = "Time: " + str((time_left-count)//120) num_stars = 3 num_meteorites = 1 reset_level(2) def reset_level(num_lives=2): global player_airship, player_lives, game_objects, event_stack_size # 清空事件栈 while event_stack_size > 0: game_window.pop_handlers() event_stack_size -= 1 for life in player_lives: life.delete() # 创建Player的实例 player_airship = player.Player(x=400, y=300, batch=main_batch) # 加载小飞船图标 player_lives = bulk_load.player_lives(num_lives, main_batch) # 加载多个星星 stars = bulk_load.stars(num_stars,player_airship.position, main_batch) # 加载多个陨石 meteorites = bulk_load.meteorites(num_meteorites, player_airship.position, main_batch) # 为了调用每一个物体的update函数,需要一个列表来存放这些物体。 game_objects = [player_airship] + stars + meteorites ''' 告诉pyglet 哪些实例是事件句柄(event handler) 用game_window.push_handlers()函数把它压入事件栈中 ''' for obj in game_objects: for handler in obj.event_handlers: game_window.push_handlers(handler) event_stack_size += 1 #窗口绘制,在相同名字的函数上使用装饰器 @game_window.event def on_draw(): # 绘制前先清屏 game_window.clear() # 绘制 main_batch.draw() def update(dt): global score, num_stars, num_meteorites, count, time_left, level player_dead = False victory = False ''' 检查所有的物体对,物体两两之间要进行检查,两个for就搞定了 ''' for i in range(len(game_objects)): for j in range(i + 1, len(game_objects)): obj_1 = game_objects[i] obj_2 = game_objects[j] if not obj_1.dead and not obj_2.dead: if obj_1.collides_with(obj_2): #若发生 碰撞 obj_1.handle_collision_with(obj_2) obj_2.handle_collision_with(obj_1) to_add = [] stars_remaining = 0 # 记录还有多少星星 meteorites__remaining = 0 # 记录还有多少个陨石 for obj in game_objects: obj.update(dt) to_add.extend(obj.new_objects) obj.new_objects = [] if isinstance(obj, star.Star): stars_remaining += 1 if isinstance(obj, meteorite.Meteorite): meteorites__remaining += 1 if stars_remaining == 0 and meteorites__remaining == 0: victory = True # 删除死亡的对象 for to_remove in [obj for obj in game_objects if obj.dead]: if to_remove == player_airship: player_dead = True to_add.extend(to_remove.new_objects) to_remove.delete() game_objects.remove(to_remove) if isinstance(to_remove, star.Star): score += 1 score_label.text = "Score: " + str(score) if isinstance(to_remove, meteorite.Meteorite): score += 5 score_label.text = "Score: " + str(score) if count < time_left: count_now = (time_left - count)//120 time_label.text = "Time: " + str(count_now) count += 1 game_objects.extend(to_add) if player_dead or count >= time_left: if len(player_lives) > 0 and count <= time_left: if count == time_left: player_airship.delete() count = 0 reset_level(len(player_lives) - 1) else: game_over_label.y = 300 elif victory: level += 1 num_stars += 1 num_meteorites += 1 player_airship.delete() score += 10 count = 0 time_left += level*1440 reset_level(len(player_lives)) if __name__ == "__main__": init() # 将刷新频率设定为每秒钟120次,pyglet会传递经过的时间dt 作为唯一的参数给update函数 pyglet.clock.schedule_interval(update, 1 / 120.0) pyglet.app.run()
null
python_game2/version/stars.py
stars.py
py
5,108
python
en
code
null
code-starcoder2
83
[ { "api_name": "pyglet.window.Window", "line_number": 4, "usage_type": "call" }, { "api_name": "pyglet.window", "line_number": 4, "usage_type": "attribute" }, { "api_name": "pyglet.graphics.Batch", "line_number": 7, "usage_type": "call" }, { "api_name": "pyglet.graphics", "line_number": 7, "usage_type": "attribute" }, { "api_name": "pyglet.text.Label", "line_number": 11, "usage_type": "call" }, { "api_name": "pyglet.text", "line_number": 11, "usage_type": "attribute" }, { "api_name": "pyglet.text.Label", "line_number": 12, "usage_type": "call" }, { "api_name": "pyglet.text", "line_number": 12, "usage_type": "attribute" }, { "api_name": "pyglet.text.Label", "line_number": 15, "usage_type": "call" }, { "api_name": "pyglet.text", "line_number": 15, "usage_type": "attribute" }, { "api_name": "pyglet.text.Label", "line_number": 16, "usage_type": "call" }, { "api_name": "pyglet.text", "line_number": 16, "usage_type": "attribute" }, { "api_name": "game.player.Player", "line_number": 59, "usage_type": "call" }, { "api_name": "game.player", "line_number": 59, "usage_type": "name" }, { "api_name": "game.bulk_load.player_lives", "line_number": 61, "usage_type": "call" }, { "api_name": "game.bulk_load", "line_number": 61, "usage_type": "name" }, { "api_name": "game.bulk_load.stars", "line_number": 63, "usage_type": "call" }, { "api_name": "game.bulk_load", "line_number": 63, "usage_type": "name" }, { "api_name": "game.bulk_load.meteorites", "line_number": 65, "usage_type": "call" }, { "api_name": "game.bulk_load", "line_number": 65, "usage_type": "name" }, { "api_name": "game.star.Star", "line_number": 120, "usage_type": "attribute" }, { "api_name": "game.star", "line_number": 120, "usage_type": "name" }, { "api_name": "game.meteorite.Meteorite", "line_number": 122, "usage_type": "attribute" }, { "api_name": "game.meteorite", "line_number": 122, "usage_type": "name" }, { "api_name": "game.star.Star", "line_number": 139, "usage_type": "attribute" }, { "api_name": "game.star", "line_number": 139, "usage_type": "name" }, { "api_name": "game.meteorite.Meteorite", "line_number": 143, "usage_type": "attribute" }, { "api_name": "game.meteorite", "line_number": 143, "usage_type": "name" }, { "api_name": "pyglet.clock.schedule_interval", "line_number": 180, "usage_type": "call" }, { "api_name": "pyglet.clock", "line_number": 180, "usage_type": "attribute" }, { "api_name": "pyglet.app.run", "line_number": 182, "usage_type": "call" }, { "api_name": "pyglet.app", "line_number": 182, "usage_type": "attribute" } ]
579106880
from django.shortcuts import render from django.http import HttpResponse from django.http import response , request from listings.models import Listings from listings.models import Realtor from listings.choices import price_choices, bedroom_choices, state_choices # Create your views here. def index(request): listings = Listings.objects.order_by('-list_date').filter(is_published=True)[:3] context = { 'listings':listings, 'price_choices':price_choices, 'bedroom_choices':bedroom_choices, 'state_choices':state_choices } return render(request, 'pages/index.html',context) def about(request): realtors = Realtor.objects.order_by('-hire_date') mvp_realtor = Realtor.objects.all().filter(is_mvp =True) context = { 'realtors':realtors, 'mvps':mvp_realtor } return render(request, 'pages/about.html',context)
null
pages/views.py
views.py
py
895
python
en
code
null
code-starcoder2
83
[ { "api_name": "listings.models", "line_number": 10, "usage_type": "name" }, { "api_name": "listings.models.Listings.objects.order_by", "line_number": 10, "usage_type": "call" }, { "api_name": "listings.models.Listings.objects", "line_number": 10, "usage_type": "attribute" }, { "api_name": "listings.models.Listings", "line_number": 10, "usage_type": "name" }, { "api_name": "listings.models", "line_number": 13, "usage_type": "name" }, { "api_name": "listings.choices.price_choices", "line_number": 14, "usage_type": "name" }, { "api_name": "listings.choices.bedroom_choices", "line_number": 15, "usage_type": "name" }, { "api_name": "listings.choices.state_choices", "line_number": 16, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 18, "usage_type": "call" }, { "api_name": "django.http.request", "line_number": 18, "usage_type": "argument" }, { "api_name": "listings.models.Realtor.objects.order_by", "line_number": 22, "usage_type": "call" }, { "api_name": "listings.models.Realtor.objects", "line_number": 22, "usage_type": "attribute" }, { "api_name": "listings.models.Realtor", "line_number": 22, "usage_type": "name" }, { "api_name": "listings.models.Realtor.objects.all", "line_number": 24, "usage_type": "call" }, { "api_name": "listings.models.Realtor.objects", "line_number": 24, "usage_type": "attribute" }, { "api_name": "listings.models.Realtor", "line_number": 24, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 31, "usage_type": "call" }, { "api_name": "django.http.request", "line_number": 31, "usage_type": "argument" } ]
91458234
import gym from gym import error, spaces, utils import numpy as np import os from .agent import Agent import matplotlib.pyplot as plt ACTIONS = {'MOVE_LEFT': [0, -1], # Move left 'MOVE_RIGHT': [0, 1], # Move right 'MOVE_UP': [-1, 0], # Move up 'MOVE_DOWN': [1, 0], # Move down 'STAY': [0, 0] # don't move } ACTIONS_ORDERED_LIST = ['MOVE_LEFT', 'MOVE_RIGHT', 'MOVE_UP', 'MOVE_DOWN', 'STAY'] ACTIONS_DELTA_ORDERED_LIST = [ACTIONS[action] for action in ACTIONS_ORDERED_LIST] # bgr DEFAULT_COLOURS = {' ': [0, 0, 0], # Black background 'S': [101, 67, 254], # stag 'H': [178, 196, 47], # hare1 'G': [178, 196, 47], # hare2 'Y': [216, 30, 54], # young 'M': [159, 67, 255], # mature 'C': [238, 133, 114], # chonghe 'D': [238, 133, 114], # chonghe2 'E': [101, 67, 254], # ecalation # Colours for agents. R value is a unique identifier '1': [166, 90, 3], '2': [30, 191, 252], # Blue '3': [204, 168, 0], '4': [154, 157, 252]} TRUN_MATURE = 0.3 TRUN_DEATH = 0.3 SYMMETRIES = [None, "ROT1", "ROT2", "ROT3", "REF1", "REF2", "REF3", "REF4"] SYMMETRY_INDEX = {symmetry: SYMMETRIES.index(symmetry) for symmetry in SYMMETRIES} SYMMETRY_MAPPING = [(0, 2), (2, 1), (1, 3), (3, 0), (2, 0), (1, 2), (3, 1), (0, 3)] # [0, -0, 1, -1] def symmetry_mapping_to_matrix(mapping): mat = np.zeros((3, 2)) for dim in range(2): if mapping[dim] == 0: mat[0, dim] = 1 elif mapping[dim] == 1: mat[0, dim] = -1 mat[2, dim] = 1 elif mapping[dim] == 2: mat[1, dim] = 1 else: assert mapping[dim] == 3 mat[1, dim] = -1 mat[2, dim] = 1 return mat class GridWorldEnv(object): def __init__(self, args, choose=0, length=5, np_random=None): self.env_name = args.env_name self.num_agents = args.num_agents self.episode_length = args.episode_length self.length = length self.color_map = DEFAULT_COLOURS self.share_reward = args.share_reward self.shape_reward = args.shape_reward self.shape_beta = args.shape_beta self.symmetry_plan = args.symmetry_plan self.symmetries = [None, None] self.state_scaling = args.state_scaling self.num_steps = 0 if np_random is None: self.np_random = np.random.RandomState() else: self.np_random = np_random if self.env_name == "StagHuntGW": self.gore1_num = 0 self.gore2_num = 0 self.hare1_num = 0 self.hare2_num = 0 self.coop = args.coop if args.coop is not None else 5 self.defect = args.defect if args.defect is not None else 2 self.gore = args.gore if args.gore is not None else -2 # self.coop = 5 # self.defect = -2 # self.gore = 2 self.reward_randomization = args.reward_randomization if self.reward_randomization: # coop = [5,4,0,5,5,-5,-5,5] # defect = [1,2,5,0,0,5,0,-5] # gore = [-5,-2,0,5,0,-5,5,5] coop = [5] defect = [0] gore = [0] self.coop = coop[choose] self.defect = defect[choose] self.gore = gore[choose] ''' coef = 2*self.np_random.rand(3)-1 self.coop = self.coop * coef[0] self.defect = self.defect * coef[1] self.gore = self.gore * coef[2] ''' elif self.env_name == "HarvestGW": self.coop = 2 self.defect = 1 self.reward_randomization = args.reward_randomization if self.reward_randomization: coop = [5, 10, 0, -10, 10] defect = [1, -10, -5, 10, 1] self.coop = coop[choose] self.defect = defect[choose] ''' coef = 2*self.np_random.rand(2)-1 self.coop = self.coop * coef[0] self.defect = self.defect * coef[1] ''' elif self.env_name == "EscalationGW": self.coop = 1 self.coop_length = 0 self.defect_coef = args.defect_coef if args.defect_coef is not None else -0.9 self.reward_randomization = args.reward_randomization self.stop_after_split = True if args.stop_after_split is None else args.stop_after_split self.max_coop_steps = args.max_coop_steps if self.reward_randomization: coop = [1, 1, 0, 1, 1, 1] defect_coef = [0, -2, 1, -0.5, 1, 5] self.coop = coop[choose] self.defect_coef = defect_coef[choose] self.max_life = 20 self.coop_num = 0 self.realize_symmetry_plan() self.reset_map() self.setup_agents() self.action_symmetry_mapping = [] self.generate_action_symmetry_mapping() self.sym_trans_cache = dict() self.all_sym_trans_cache = dict() @property def action_space(self): action_space = [] for agent in self.agents: action_space.append(agent.action_space) return action_space @property def observation_space(self): observation_space = [] for agent in self.agents: observation_space.append(agent.observation_space) return observation_space @property def is_stag_hunt(self): return self.env_name == "StagHuntGW" @property def is_escalation(self): return self.env_name == "EscalationGW" @property def is_harvest(self): return self.env_name == "HarvestGW" @property def num_sym(self): return 8 def generate_action_symmetry_mapping(self): for symmetry in SYMMETRIES: action_mapping = np.zeros(5) for i in range(5): delta = ACTIONS_DELTA_ORDERED_LIST[i] sym_delta = self.apply_symmetry(symmetry, delta, True).tolist() # print(ACTIONS_DELTA_ORDERED_LIST) sym_i = ACTIONS_DELTA_ORDERED_LIST.index(sym_delta) action_mapping[i] = sym_i self.action_symmetry_mapping.append(action_mapping) # print(symmetry, action_mapping) def realize_symmetry_plan(self): if self.symmetry_plan in SYMMETRIES: self.symmetries = [self.symmetry_plan, self.symmetry_plan] elif type(self.symmetry_plan) == tuple or type(self.symmetry_plan) == list: self.symmetries = self.symmetry_plan elif self.symmetry_plan == "other-play": self.symmetries = [None, self.np_random.choice(SYMMETRIES[:self.num_sym])] elif self.symmetry_plan is None: self.symmetries = [None, None] else: raise NotImplementedError(self.symmetry_plan) def apply_symmetry(self, symmetry, pos, is_delta=False, reverse=False): z = 0 if is_delta else self.length - 1 p = [pos[0], z - pos[0], pos[1], z - pos[1]] assert symmetry in SYMMETRIES if reverse: if symmetry == "ROT1": symmetry = "ROT3" elif symmetry == "ROT3": symmetry = "ROT1" mapping = SYMMETRY_MAPPING[SYMMETRIES.index(symmetry)] return np.array([p[mapping[0]], p[mapping[1]]]) def get_obs_symmetry_trans_mat(self, symmetry, agent_id): cache_id = "{}-{}".format(symmetry, agent_id) if cache_id in self.sym_trans_cache: trans = self.sym_trans_cache[cache_id] else: symmetry_info = self.get_obs_symmetry_info_agent(agent_id) obs_length = 0 for s_type, s_num in symmetry_info: if s_type == "none": obs_length += s_num else: obs_length += 2 * s_num trans = np.zeros((obs_length + 1, obs_length)) pos = 0 mapping = SYMMETRY_MAPPING[SYMMETRIES.index(symmetry)] for s_type, s_num in symmetry_info: for _ in range(s_num): if s_type == "none": trans[pos, pos] = 1. pos += 1 else: sym_trans = symmetry_mapping_to_matrix(mapping) trans[pos: pos + 2, pos: pos + 2] = sym_trans[:2, :] if s_type == "absolute": trans[obs_length:, pos: pos + 2] = sym_trans[2:, :] pos += 2 # print(pos) self.sym_trans_cache[cache_id] = trans return trans def obs_to_symmetry_agent(self, obs, symmetry, agent_id): z = 1. if self.state_scaling else self.length - 1 batch_size = obs.shape[0] obs = np.concatenate((obs, np.ones((batch_size, 1)) * z), axis=1) trans_mat = self.get_obs_symmetry_trans_mat(symmetry, agent_id) return np.matmul(obs, trans_mat) def obs_to_all_symmetries_agent(self, obs, agent_id): new_obs = [] z = 1. if self.state_scaling else self.length - 1 batch_size = obs.shape[0] obs = np.concatenate((obs, np.ones((batch_size, 1)) * z), axis=1) for symmetry in SYMMETRIES[:self.num_sym]: trans_mat = self.get_obs_symmetry_trans_mat(symmetry, agent_id) new_obs.append(np.matmul(obs, trans_mat)) return new_obs def actions_to_symmetry_agent(self, actions, symmetry, agent_id): return self.action_symmetry_mapping[SYMMETRY_INDEX[symmetry]][actions] def actions_to_all_symmetries_agent(self, actions, agent_id): new_actions = [] for symmetry in SYMMETRIES[:self.num_sym]: new_actions.append(self.actions_to_symmetry_agent(actions, symmetry, agent_id)) return new_actions def StagHunt_setup_map(self): self.agents_start_pos = [] self.stag_points = 0 self.hare1_points = 0 self.hare2_points = 0 points = [] num_index = 0 while num_index < (self.num_agents + 3): index = self.np_random.randint(0, self.length, (2,)).tolist() if index in points: continue else: points.append(index) num_index += 1 for i in range(self.num_agents): self.agents_start_pos.append(points[i]) self.base_map[points[-3][0], points[-3][1]] = 'S' self.stag_points += 1 self.stag_pos = np.array(points[-3]) self.base_map[points[-2][0], points[-2][1]] = 'H' self.hare1_points += 1 self.hare1_pos = np.array(points[-2]) self.base_map[points[-1][0], points[-1][1]] = 'G' self.hare2_points += 1 self.hare2_pos = np.array(points[-1]) def Harvest_setup_map(self): self.agents_start_pos = [] self.life = np.zeros((self.length, self.length)) self.young_points = 0 self.young_pos = [] self.mature_points = 0 self.mature_pos = [] points = [] num_index = 0 while num_index < (self.num_agents + 1): index = self.np_random.randint(0, self.length, (2)).tolist() if index in points: continue else: points.append(index) num_index += 1 for i in range(self.num_agents): self.agents_start_pos.append(points[i]) self.base_map[points[-1][0], points[-1][1]] = 'Y' self.young_points += 1 self.young_pos.append(points[-1]) self.life[points[-1][0], points[-1][1]] += 1 def Escalation_setup_map(self): self.escalation_over = False self.agents_start_pos = [] points = [] num_index = 0 while num_index < (self.num_agents + 1): index = self.np_random.randint(0, self.length, (2,)).tolist() if index in points: continue else: points.append(index) num_index += 1 for i in range(self.num_agents): self.agents_start_pos.append(points[i]) self.base_map[points[-1][0], points[-1][1]] = 'E' self.escalation_points = 1 self.escalation_pos = np.array(points[-1]) def setup_agents(self): self.coop_num = 0 self.gore1_num = 0 self.gore2_num = 0 self.hare1_num = 0 self.hare2_num = 0 self.coop_length = 0 self.agents = [] for i in range(self.num_agents): agent = Agent(i, self.agents_start_pos[i], self.base_map, self.env_name) self.agents.append(agent) for i in range(self.num_agents): self.agents[i].observation_space = self.get_obs_agent(i).shape # print(i, self.agents[i].observation_space) def map_to_colors(self, base_map=None, color_map=None): """Converts a map to an array of RGB values. Parameters ---------- map: np.ndarray map to convert to colors color_map: dict mapping between array elements and desired colors Returns ------- arr: np.ndarray 3-dim numpy array consisting of color map """ if base_map is None: base_map = self.get_map_with_agents() if color_map is None: color_map = self.color_map rgb_arr = np.zeros((base_map.shape[0], base_map.shape[1], 3), dtype=int) for row_elem in range(base_map.shape[0]): for col_elem in range(base_map.shape[1]): rgb_arr[row_elem, col_elem, :] = color_map[base_map[row_elem, col_elem]] return rgb_arr def get_obs_agent(self, agent_id): """Returns observation for agent_id. NOTE: Agents should have access only to their local observations during decentralised execution. """ symmetry = self.symmetries[agent_id] if self.env_name == 'HarvestGW': assert symmetry is None rgb_arr = self.map_to_colors(self.get_map_with_agents(), self.color_map) return rgb_arr.transpose(2, 0, 1) elif self.env_name == 'StagHuntGW': # my pos # print(agent_id, len(self.agents)) my_pos = self.agents[agent_id].pos # other pos other_pos = self.apply_symmetry(symmetry, self.agents[1 - agent_id].pos - my_pos, True) # stag_pos stag_pos = self.apply_symmetry(symmetry, self.stag_pos - my_pos, True) # plant_pos hare1_pos = self.apply_symmetry(symmetry, self.hare1_pos - my_pos, True) hare2_pos = self.apply_symmetry(symmetry, self.hare2_pos - my_pos, True) poses = np.concatenate([self.apply_symmetry(symmetry, my_pos), other_pos, stag_pos, hare1_pos, hare2_pos]) if self.state_scaling: poses = poses / (self.length - 1) step_info = self.num_steps / self.episode_length return np.concatenate([[step_info], poses]) elif self.env_name == 'EscalationGW': # my pos my_pos = self.agents[agent_id].pos # other pos other_pos = self.apply_symmetry(symmetry, self.agents[1 - agent_id].pos - my_pos, True) # escalation pos escalation_pos = self.apply_symmetry(symmetry, self.escalation_pos - my_pos, True) # return np.concatenate([my_pos]+[other_pos]+[escalation_pos]+[[self.coop_length]]) step_info = self.num_steps / self.episode_length over_info = self.escalation_over coop_length = self.coop_length poses = np.concatenate([self.apply_symmetry(symmetry, my_pos), other_pos, escalation_pos]) if self.state_scaling: poses /= self.length - 1 return np.concatenate([[step_info, over_info, coop_length], poses]) def get_obs_symmetry_info_agent(self, agent_id): symmetry_info = list() if self.is_stag_hunt: symmetry_info.append(('none', 1)) symmetry_info.append(('absolute', 1)) symmetry_info.append(('relative', 4)) elif self.is_escalation: symmetry_info.append(('none', 3)) symmetry_info.append(('absolute', 1)) symmetry_info.append(('relative', 2)) else: raise NotImplementedError return symmetry_info def get_input_structure_agent(self, agent_id): input_structure = list() dim_p = 2 if self.env_name == 'StagHuntGW': input_structure.append(('self', 1 + dim_p)) input_structure.append(('other', dim_p)) input_structure.append(('stag', dim_p)) input_structure.append(('plant', dim_p)) input_structure.append(('plant', dim_p)) elif self.env_name == 'EscalationGW': input_structure.append(('self', 3 + dim_p)) input_structure.append(('other', dim_p)) input_structure.append(('escalation', dim_p)) else: raise NotImplementedError return input_structure def reset_map(self): """Resets the map to be empty as well as a custom reset set by subclasses""" self.base_map = np.full((self.length, self.length), ' ') if self.env_name == "StagHuntGW": self.StagHunt_setup_map() elif self.env_name == "HarvestGW": self.Harvest_setup_map() elif self.env_name == "EscalationGW": self.Escalation_setup_map() def get_map_with_agents(self): """Gets a version of the environment map where generic 'P' characters have been replaced with specific agent IDs. Returns: 2D array of strings representing the map. """ map_with_agents = np.copy(self.base_map) for i in range(self.num_agents): char_id = str(i + 1) # agent-i if map_with_agents[self.agents[i].pos[0], self.agents[i].pos[1]] == ' ': map_with_agents[self.agents[i].pos[0], self.agents[i].pos[1]] = char_id elif map_with_agents[self.agents[i].pos[0], self.agents[i].pos[1]] == 'E': map_with_agents[self.agents[i].pos[0], self.agents[i].pos[1]] = '4' else: map_with_agents[self.agents[i].pos[0], self.agents[i].pos[1]] = '3' return map_with_agents def update_moves(self, agent_actions): for agent_id, action in agent_actions.items(): symmetry = self.symmetries[agent_id] agent = self.agents[agent_id] selected_action = ACTIONS[action] # if self.is_escalation and self.escalation_over and selected_action == 'STAY': # self.agents[agent_id].reward_this_turn += 0.1 new_pos = agent.get_pos() + self.apply_symmetry(symmetry, selected_action, True, True) # allow the agents to confirm what position they can move to agent.update_agent_pos(new_pos) def update_stag(self): if self.stag_points > 0: minimum = -1 minimum_indices = [] for i in range(self.num_agents): x = self.agents[i].get_pos() - self.stag_pos dist = np.sum(np.square(x)) if dist < minimum or minimum == -1: minimum = dist minimum_indices = [i] elif dist == minimum: minimum_indices.append(i) minimum_index = self.np_random.choice(minimum_indices) # move x = self.agents[minimum_index].get_pos() - self.stag_pos sign_x = np.sign(x) if 0 in sign_x: if sign_x[0] == 0 and sign_x[1] == 0: pass else: temp_pos = self.stag_pos + sign_x if self.base_map[temp_pos[0], temp_pos[1]] == ' ': if self.base_map[self.stag_pos[0], self.stag_pos[1]] == 'C': self.base_map[self.stag_pos[0], self.stag_pos[1]] = 'H' elif self.base_map[self.stag_pos[0], self.stag_pos[1]] == 'D': self.base_map[self.stag_pos[0], self.stag_pos[1]] = 'G' else: self.base_map[self.stag_pos[0], self.stag_pos[1]] = ' ' self.stag_pos = temp_pos self.base_map[self.stag_pos[0], self.stag_pos[1]] = 'S' else: if self.base_map[self.stag_pos[0], self.stag_pos[1]] == 'C': self.base_map[self.stag_pos[0], self.stag_pos[1]] = 'H' elif self.base_map[self.stag_pos[0], self.stag_pos[1]] == 'D': self.base_map[self.stag_pos[0], self.stag_pos[1]] = 'G' else: self.base_map[self.stag_pos[0], self.stag_pos[1]] = ' ' self.stag_pos = temp_pos if self.base_map[self.stag_pos[0], self.stag_pos[1]] == 'H': self.base_map[self.stag_pos[0], self.stag_pos[1]] = 'C' elif self.base_map[self.stag_pos[0], self.stag_pos[1]] == 'G': self.base_map[self.stag_pos[0], self.stag_pos[1]] = 'D' else: temp_sign = np.copy(sign_x) choose = self.np_random.randint(0, 2) temp_sign[choose] = 0 temp_pos = self.stag_pos + temp_sign if self.base_map[temp_pos[0], temp_pos[1]] == 'H' or self.base_map[temp_pos[0], temp_pos[1]] == 'G': temp_sign1 = np.copy(sign_x) temp_sign1[1 - choose] = 0 temp_pos1 = self.stag_pos + temp_sign1 if self.base_map[temp_pos1[0], temp_pos1[1]] == ' ': if self.base_map[self.stag_pos[0], self.stag_pos[1]] == 'C': self.base_map[self.stag_pos[0], self.stag_pos[1]] = 'H' elif self.base_map[self.stag_pos[0], self.stag_pos[1]] == 'D': self.base_map[self.stag_pos[0], self.stag_pos[1]] = 'G' else: self.base_map[self.stag_pos[0], self.stag_pos[1]] = ' ' self.stag_pos = temp_pos1 self.base_map[self.stag_pos[0], self.stag_pos[1]] = 'S' else: if self.base_map[self.stag_pos[0], self.stag_pos[1]] == 'C': self.base_map[self.stag_pos[0], self.stag_pos[1]] = 'H' elif self.base_map[self.stag_pos[0], self.stag_pos[1]] == 'D': self.base_map[self.stag_pos[0], self.stag_pos[1]] = 'G' else: self.base_map[self.stag_pos[0], self.stag_pos[1]] = ' ' self.stag_pos = temp_pos1 if self.base_map[self.stag_pos[0], self.stag_pos[1]] == 'H': self.base_map[self.stag_pos[0], self.stag_pos[1]] = 'C' elif self.base_map[self.stag_pos[0], self.stag_pos[1]] == 'G': self.base_map[self.stag_pos[0], self.stag_pos[1]] = 'D' else: if self.base_map[self.stag_pos[0], self.stag_pos[1]] == 'C': self.base_map[self.stag_pos[0], self.stag_pos[1]] = 'H' elif self.base_map[self.stag_pos[0], self.stag_pos[1]] == 'D': self.base_map[self.stag_pos[0], self.stag_pos[1]] = 'G' else: self.base_map[self.stag_pos[0], self.stag_pos[1]] = ' ' self.stag_pos = temp_pos self.base_map[self.stag_pos[0], self.stag_pos[1]] = 'S' def StagHuntUpdateMap(self): while self.stag_points < 1: index = self.np_random.randint(0, self.length, (2)).tolist() map_with_agents = self.get_map_with_agents() if map_with_agents[index[0], index[1]] == ' ': self.base_map[index[0], index[1]] = 'S' self.stag_points += 1 self.stag_pos = np.array(index) while self.hare1_points < 1: index = self.np_random.randint(0, self.length, (2)).tolist() if self.get_map_with_agents()[index[0], index[1]] == ' ': self.base_map[index[0], index[1]] = 'H' self.hare1_points += 1 self.hare1_pos = np.array(index) while self.hare2_points < 1: index = self.np_random.randint(0, self.length, (2)).tolist() if self.get_map_with_agents()[index[0], index[1]] == ' ': self.base_map[index[0], index[1]] = 'G' self.hare2_points += 1 self.hare2_pos = np.array(index) def EscalationUpdateMap(self): actions = [[0, 1], [0, -1], [-1, 0], [1, 0]] last_pos = self.escalation_pos while self.escalation_points == 0: next_choose = self.np_random.randint(0, 4) next_pos = last_pos + actions[next_choose] next_row, next_col = next_pos if next_row < 0 or next_row >= self.length or next_col < 0 or next_col >= self.length: self.escalation_points = 0 else: self.base_map[last_pos[0], last_pos[1]] = ' ' self.escalation_points = 1 self.escalation_pos = next_pos self.base_map[next_pos[0], next_pos[1]] = 'E' def HarvestUpdateMap(self): for i in range(self.life.shape[0]): for j in range(self.life.shape[1]): if self.base_map[i, j] == 'Y' or self.base_map[i, j] == 'M': self.life[i][j] += 1 # mature to death old_mature_pos = np.copy(self.mature_pos) for i, mature in enumerate(old_mature_pos): if self.life[mature[0], mature[1]] >= self.max_life or self.np_random.rand(1)[0] <= TRUN_DEATH: self.mature_points -= 1 self.mature_pos.remove(mature.tolist()) self.base_map[mature[0], mature[1]] = ' ' self.life[mature[0], mature[1]] = 0 # young to mature old_young_pos = np.copy(self.young_pos) for i, young in enumerate(old_young_pos): if self.life[young[0], young[1]] >= (self.max_life - 1) or self.np_random.rand(1)[0] <= TRUN_MATURE: self.base_map[young[0], young[1]] = 'M' self.mature_points += 1 self.mature_pos.append(young.tolist()) self.young_points -= 1 self.young_pos.remove(young.tolist()) num_plants_old = self.young_points + self.mature_points map_with_agents = self.get_map_with_agents() # young born if num_plants_old < 4: while (self.young_points + self.mature_points) - num_plants_old < 1: index = self.np_random.randint(0, self.length, (2)).tolist() if map_with_agents[index[0], index[1]] == ' ': self.base_map[index[0], index[1]] = 'Y' self.young_points += 1 self.young_pos.append(index) self.life[index[0], index[1]] += 1 def HarvestConsume(self, pos0, pos1): """Defines how an agent interacts with the char it is standing on""" charA = self.base_map[pos0[0], pos0[1]] charB = self.base_map[pos1[0], pos1[1]] if pos0 == pos1: if charA == 'M': self.coop_num += 1 self.agents[0].reward_this_turn += self.coop self.agents[1].reward_this_turn += self.coop self.mature_points -= 1 self.mature_pos.remove(pos0) self.base_map[pos0[0], pos0[1]] = ' ' self.life[pos0[0], pos0[1]] = 0 elif charA == 'Y': index = self.np_random.randint(0, 2) self.agents[index].reward_this_turn += self.defect self.young_points -= 1 self.young_pos.remove(pos0) self.base_map[pos0[0], pos0[1]] = ' ' self.life[pos0[0], pos0[1]] = 0 else: if charA == 'M': self.coop_num += 1 self.agents[0].reward_this_turn += self.coop self.agents[1].reward_this_turn += self.coop self.mature_points -= 1 self.mature_pos.remove(pos0) self.base_map[pos0[0], pos0[1]] = ' ' self.life[pos0[0], pos0[1]] = 0 if charB == 'M': self.agents[0].reward_this_turn += self.coop self.agents[1].reward_this_turn += self.coop self.mature_points -= 1 self.mature_pos.remove(pos1) self.base_map[pos1[0], pos1[1]] = ' ' self.life[pos1[0], pos1[1]] = 0 elif charB == 'Y': self.agents[1].reward_this_turn += self.defect self.young_points -= 1 self.young_pos.remove(pos1) self.base_map[pos1[0], pos1[1]] = ' ' self.life[pos1[0], pos1[1]] = 0 elif charA == 'Y': self.agents[0].reward_this_turn += self.defect self.young_points -= 1 self.young_pos.remove(pos0) self.base_map[pos0[0], pos0[1]] = ' ' self.life[pos0[0], pos0[1]] = 0 if charB == 'M': self.coop_num += 1 self.agents[0].reward_this_turn += self.coop self.agents[1].reward_this_turn += self.coop self.mature_points -= 1 self.mature_pos.remove(pos1) self.base_map[pos1[0], pos1[1]] = ' ' self.life[pos1[0], pos1[1]] = 0 elif charB == 'Y': self.agents[1].reward_this_turn += self.defect self.young_points -= 1 self.young_pos.remove(pos1) self.base_map[pos1[0], pos1[1]] = ' ' self.life[pos1[0], pos1[1]] = 0 elif charA == ' ': if charB == 'M': self.coop_num += 1 self.agents[0].reward_this_turn += self.coop self.agents[1].reward_this_turn += self.coop self.mature_points -= 1 self.mature_pos.remove(pos1) self.base_map[pos1[0], pos1[1]] = ' ' self.life[pos1[0], pos1[1]] = 0 elif charB == 'Y': self.agents[1].reward_this_turn += self.defect self.young_points -= 1 self.young_pos.remove(pos1) self.base_map[pos1[0], pos1[1]] = ' ' self.life[pos1[0], pos1[1]] = 0 def EscalationConsume(self, pos0, pos1): if self.escalation_over: return # self.agents[0].reward_this_turn -= 0.1 # self.agents[1].reward_this_turn -= 0.1 charA = self.base_map[pos0[0], pos0[1]] charB = self.base_map[pos1[0], pos1[1]] if charA == 'E': if charB == 'E': self.agents[0].reward_this_turn += self.coop self.agents[1].reward_this_turn += self.coop self.coop_length += 1 self.coop_num += 1 self.escalation_points = 0 if self.max_coop_steps is not None and self.coop_length == self.max_coop_steps: self.escalation_over = True else: if self.coop_length > 0: self.agents[0].reward_this_turn = self.defect_coef * self.coop_length # self.agents[1].reward_this_turn += 2 # self.agents[0].done = True # self.agents[1].done = True self.escalation_over = True else: if charB == 'E' and self.coop_length > 0: self.agents[1].reward_this_turn = self.defect_coef * self.coop_length # self.agents[0].reward_this_turn += 2 # self.agents[0].done = True # self.agents[1].done = True self.escalation_over = True elif self.coop_length > 0: # if self.coop_length == 1: # p0 = np.array(pos0) # p1 = np.array(pos1) # if all(p0 == p1) and np.abs(p0 - self.escalation_pos).sum() == 1: # self.agents[0].reward_this_turn -= 5 # self.agents[1].reward_this_turn -= 5 # if pos0 != pos1: # self.agents[0].reward_this_turn += 2 # self.agents[1].reward_this_turn += 2 if self.stop_after_split: self.escalation_over = True else: self.coop_length = 0 last_pos = self.escalation_pos self.base_map[last_pos[0]][last_pos[1]] = ' ' new_pos = self.np_random.randint(self.length, size=(2,)) self.escalation_points = 1 self.escalation_pos = new_pos self.base_map[new_pos[0]][new_pos[1]] = 'E' # if self.coop_length == 0: # self.agents[0].reward_this_turn -= 0.1 # self.agents[1].reward_this_turn -= 0.1 def StagHuntConsume(self, pos0, pos1): """Defines how an agent interacts with the char it is standing on""" charA = self.base_map[pos0[0], pos0[1]] charB = self.base_map[pos1[0], pos1[1]] if charA == 'S': if charB == 'S': self.coop_num += 1 self.agents[0].reward_this_turn += self.coop self.agents[1].reward_this_turn += self.coop self.stag_points -= 1 self.base_map[pos0[0], pos0[1]] = ' ' elif charB == 'H': self.gore1_num += 1 self.agents[0].reward_this_turn += self.gore self.stag_points -= 1 self.base_map[pos0[0], pos0[1]] = ' ' self.agents[1].reward_this_turn += self.defect self.hare1_points -= 1 self.hare2_num += 1 self.base_map[pos1[0], pos1[1]] = ' ' elif charB == 'G': self.gore1_num += 1 self.agents[0].reward_this_turn += self.gore self.stag_points -= 1 self.base_map[pos0[0], pos0[1]] = ' ' self.agents[1].reward_this_turn += self.defect self.hare2_points -= 1 self.hare2_num += 1 self.base_map[pos1[0], pos1[1]] = ' ' else: self.gore1_num += 1 self.agents[0].reward_this_turn += self.gore self.stag_points -= 1 self.base_map[pos0[0], pos0[1]] = ' ' elif charA == 'H': if charB == 'S': self.gore2_num += 1 self.agents[0].reward_this_turn += self.defect self.hare1_num += 1 self.hare1_points -= 1 self.base_map[pos0[0], pos0[1]] = ' ' self.agents[1].reward_this_turn += self.gore self.stag_points -= 1 self.base_map[pos1[0], pos1[1]] = ' ' elif charB == 'D': self.gore2_num += 1 self.agents[0].reward_this_turn += self.defect self.hare1_num += 1 self.hare1_points -= 1 self.base_map[pos0[0], pos0[1]] = ' ' self.agents[1].reward_this_turn += self.gore self.agents[1].reward_this_turn += self.defect self.hare2_num += 1 self.stag_points -= 1 self.hare2_points -= 1 self.base_map[pos1[0], pos1[1]] = ' ' elif charB == 'G': self.agents[0].reward_this_turn += self.defect self.hare1_num += 1 self.hare1_points -= 1 self.base_map[pos0[0], pos0[1]] = ' ' self.agents[1].reward_this_turn += self.defect self.hare2_num += 1 self.hare2_points -= 1 self.base_map[pos1[0], pos1[1]] = ' ' elif charB == 'H': self.hare1_points -= 1 self.base_map[pos0[0], pos0[1]] = ' ' index = self.np_random.randint(0, 2) self.agents[index].reward_this_turn += self.defect if index == 0: self.hare1_num += 1 else: self.hare2_num += 1 else: self.agents[0].reward_this_turn += self.defect self.hare1_num += 1 self.hare1_points -= 1 self.base_map[pos0[0], pos0[1]] = ' ' elif charA == 'G': if charB == 'S': self.gore2_num += 1 self.agents[0].reward_this_turn += self.defect self.hare1_num += 1 self.hare2_points -= 1 self.base_map[pos0[0], pos0[1]] = ' ' self.agents[1].reward_this_turn += self.gore self.stag_points -= 1 self.base_map[pos1[0], pos1[1]] = ' ' elif charB == 'C': self.gore2_num += 1 self.agents[0].reward_this_turn += self.defect self.hare1_num += 1 self.hare2_points -= 1 self.base_map[pos0[0], pos0[1]] = ' ' self.agents[1].reward_this_turn += self.gore self.agents[1].reward_this_turn += self.defect self.hare2_num += 1 self.stag_points -= 1 self.hare1_points -= 1 self.base_map[pos1[0], pos1[1]] = ' ' elif charB == 'H': self.agents[0].reward_this_turn += self.defect self.hare1_num += 1 self.hare2_points -= 1 self.base_map[pos0[0], pos0[1]] = ' ' self.agents[1].reward_this_turn += self.defect self.hare2_num += 1 self.hare1_points -= 1 self.base_map[pos1[0], pos1[1]] = ' ' elif charB == 'G': self.hare2_points -= 1 self.base_map[pos0[0], pos0[1]] = ' ' index = self.np_random.randint(0, 2) self.agents[index].reward_this_turn += self.defect if index == 0: self.hare1_num += 1 else: self.hare2_num += 1 else: self.agents[0].reward_this_turn += self.defect self.hare1_num += 1 self.hare2_points -= 1 self.base_map[pos0[0], pos0[1]] = ' ' elif charA == 'C': if charB == 'C': self.coop_num += 1 self.agents[0].reward_this_turn += self.coop self.agents[1].reward_this_turn += self.coop index = self.np_random.randint(0, 2) self.agents[index].reward_this_turn += self.defect self.hare2_num += 1 self.stag_points -= 1 self.hare1_points -= 1 self.base_map[pos0[0], pos0[1]] = ' ' elif charB == 'G': self.gore1_num += 1 self.agents[0].reward_this_turn += self.gore self.agents[0].reward_this_turn += self.defect self.hare1_num += 1 self.stag_points -= 1 self.hare1_points -= 1 self.base_map[pos0[0], pos0[1]] = ' ' self.agents[1].reward_this_turn += self.defect self.hare2_num += 1 self.hare2_points -= 1 self.base_map[pos1[0], pos1[1]] = ' ' else: self.gore1_num += 1 self.agents[0].reward_this_turn += self.gore self.agents[0].reward_this_turn += self.defect self.hare1_num += 1 self.stag_points -= 1 self.hare1_points -= 1 self.base_map[pos0[0], pos0[1]] = ' ' elif charA == 'D': if charB == 'D': self.coop_num += 1 self.agents[0].reward_this_turn += self.coop self.agents[1].reward_this_turn += self.coop index = self.np_random.randint(0, 2) self.agents[index].reward_this_turn += self.defect if index == 0: self.hare1_num += 1 else: self.hare2_num += 1 self.stag_points -= 1 self.hare2_points -= 1 self.base_map[pos0[0], pos0[1]] = ' ' elif charB == 'H': self.gore1_num += 1 self.agents[0].reward_this_turn += self.gore self.agents[0].reward_this_turn += self.defect self.hare1_num += 1 self.stag_points -= 1 self.hare2_points -= 1 self.base_map[pos0[0], pos0[1]] = ' ' self.agents[1].reward_this_turn += self.defect self.hare2_num += 1 self.hare1_points -= 1 self.base_map[pos1[0], pos1[1]] = ' ' else: self.gore1_num += 1 self.agents[0].reward_this_turn += self.gore self.agents[0].reward_this_turn += self.defect self.hare1_num += 1 self.stag_points -= 1 self.hare2_points -= 1 self.base_map[pos0[0], pos0[1]] = ' ' elif charA == ' ': if charB == 'S': self.gore2_num += 1 self.agents[1].reward_this_turn += self.gore self.stag_points -= 1 self.base_map[pos1[0], pos1[1]] = ' ' elif charB == 'H': self.agents[1].reward_this_turn += self.defect self.hare2_num += 1 self.hare1_points -= 1 self.base_map[pos1[0], pos1[1]] = ' ' elif charB == 'G': self.agents[1].reward_this_turn += self.defect self.hare2_num += 1 self.hare2_points -= 1 self.base_map[pos1[0], pos1[1]] = ' ' elif charB == 'C': self.gore2_num += 1 self.agents[1].reward_this_turn += self.gore self.agents[1].reward_this_turn += self.defect self.hare2_num += 1 self.stag_points -= 1 self.hare1_points -= 1 self.base_map[pos1[0], pos1[1]] = ' ' elif charB == 'D': self.gore2_num += 1 self.agents[1].reward_this_turn += self.gore self.agents[1].reward_this_turn += self.defect self.hare2_num += 1 self.stag_points -= 1 self.hare2_points -= 1 self.base_map[pos1[0], pos1[1]] = ' ' def close(self): self.agents = [] return None def seed(self, seed): if seed is None: self.np_random.seed(1) else: self.np_random.seed(seed) def text_render(self): map_with_agents = self.get_map_with_agents() print(map_with_agents) def render(self, filename=None): """ Creates an image of the map to plot or save. Args: path: If a string is passed, will save the image to disk at this location. """ map_with_agents = self.get_map_with_agents() rgb_arr = self.map_to_colors(map_with_agents) plt.figure() plt.imshow(rgb_arr, interpolation='nearest') if 'StagHunt' in self.env_name: text = "#Coop.-Hunt = " + str(self.coop_num) + "/" + str(self.episode_length) plt.text(0, 0, text, fontdict={'size': 10, 'color': 'white'}) text = "#Single-Hunt = " + str(self.gore1_num + self.gore2_num) + "/" + str(self.episode_length) plt.text(0, 0.2, text, fontdict={'size': 10, 'color': 'white'}) text = "#Apple = " + str(self.hare1_num + self.hare2_num) + "/" + str(self.episode_length) plt.text(0, 0.4, text, fontdict={'size': 10, 'color': 'white'}) # text = "agent2_gore_num = " + str(self.gore2_num) + "/" + str(self.episode_length) # plt.text(0, 0.6, text, fontdict={'size': 10, 'color': 'white'}) # text = "agent2_hare_num = " + str(self.hare2_num) + "/" + str(self.episode_length) # plt.text(0, 0.8, text, fontdict={'size': 10, 'color': 'white'}) plt.title("Monster-Hunt") elif 'Escalation' in self.env_name: text = "#Coop. Length L = " + str(self.coop_num) + "/" + str(self.episode_length) plt.text(0, 0, text, fontdict={'size': 10, 'color': 'white'}) plt.title("Escalation") if filename is not None: plt.savefig(filename) return rgb_arr.astype(np.uint8) def step(self, actions): # action [1,2,4,3,7] """A single environment step. Returns reward, terminated, info.""" self.num_steps += 1 # actions = [np.argmax(a) for a in actions] agent_actions = {} for i in range(self.num_agents): agent_action = self.agents[i].action_map(actions[i]) agent_actions[i] = agent_action if self.env_name == 'StagHuntGW': self.update_stag() # move self.update_moves(agent_actions) pos0 = self.agents[0].get_pos().tolist() pos1 = self.agents[1].get_pos().tolist() if self.env_name == 'StagHuntGW': self.StagHuntConsume(pos0, pos1) self.StagHuntUpdateMap() elif self.env_name == 'HarvestGW': self.HarvestConsume(pos0, pos1) self.HarvestUpdateMap() elif self.env_name == 'EscalationGW': self.EscalationConsume(pos0, pos1) self.EscalationUpdateMap() observations = [] rewards = [] dones = [] infos = {0: {}, 1: {}, "global": {'collective_return': [], 'coop&coop_num': [], 'gore1_num': [], 'gore2_num': [], 'hare1_num': [], 'hare2_num': []}} for i in range(self.num_agents): observations.append(self.get_obs_agent(i)) reward = self.agents[i].compute_reward() * 0.1 rewards.append(reward) dones.append(self.agents[i].get_done()) collective_return = 0 for i in range(self.num_agents): collective_return += self.agents[i].collective_return infos['collective_return'] = collective_return infos['coop&coop_num'] = self.coop_num if self.env_name == 'StagHuntGW': infos['gore1_num'] = self.gore1_num infos['gore2_num'] = self.gore2_num infos['hare1_num'] = self.hare1_num infos['hare2_num'] = self.hare2_num global_reward = np.sum(rewards) if self.share_reward: rewards = [global_reward] * self.num_agents if self.shape_reward: rewards = list(map(lambda x: x[0] * self.shape_beta + x[1] * (1 - self.shape_beta), zip([global_reward] * self.num_agents, rewards))) return observations, rewards, dones, infos def reset(self): """Reset the environment. Required after each full episode. Returns initial observations and states. """ self.realize_symmetry_plan() self.reset_map() self.setup_agents() self.num_steps = 0 observations = [] for i in range(self.num_agents): observations.append(self.get_obs_agent(i)) return observations
null
pettingzoo/mappo_ssd/utils/grid_world.py
grid_world.py
py
48,912
python
en
code
null
code-starcoder2
83
[ { "api_name": "numpy.zeros", "line_number": 41, "usage_type": "call" }, { "api_name": "numpy.random.RandomState", "line_number": 74, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 74, "usage_type": "attribute" }, { "api_name": "agent.action_space", "line_number": 151, "usage_type": "attribute" }, { "api_name": "agent.observation_space", "line_number": 158, "usage_type": "attribute" }, { "api_name": "numpy.zeros", "line_number": 179, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 211, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 226, "usage_type": "call" }, { "api_name": "numpy.concatenate", "line_number": 248, "usage_type": "call" }, { "api_name": "numpy.ones", "line_number": 248, "usage_type": "call" }, { "api_name": "numpy.matmul", "line_number": 251, "usage_type": "call" }, { "api_name": "numpy.concatenate", "line_number": 257, "usage_type": "call" }, { "api_name": "numpy.ones", "line_number": 257, "usage_type": "call" }, { "api_name": "numpy.matmul", "line_number": 260, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 292, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 295, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 298, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 302, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 343, "usage_type": "call" }, { "api_name": "agent.Agent", "line_number": 354, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 378, "usage_type": "call" }, { "api_name": "numpy.concatenate", "line_number": 406, "usage_type": "call" }, { "api_name": "numpy.concatenate", "line_number": 410, "usage_type": "call" }, { "api_name": "numpy.concatenate", "line_number": 422, "usage_type": "call" }, { "api_name": "numpy.concatenate", "line_number": 425, "usage_type": "call" }, { "api_name": "numpy.full", "line_number": 462, "usage_type": "call" }, { "api_name": "numpy.copy", "line_number": 476, "usage_type": "call" }, { "api_name": "agent.get_pos", "line_number": 497, "usage_type": "call" }, { "api_name": "agent.update_agent_pos", "line_number": 499, "usage_type": "call" }, { "api_name": "numpy.sum", "line_number": 507, "usage_type": "call" }, { "api_name": "numpy.square", "line_number": 507, "usage_type": "call" }, { "api_name": "numpy.sign", "line_number": 516, "usage_type": "call" }, { "api_name": "numpy.copy", "line_number": 545, "usage_type": "call" }, { "api_name": "numpy.copy", "line_number": 550, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 591, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 597, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 603, "usage_type": "call" }, { "api_name": "numpy.copy", "line_number": 627, "usage_type": "call" }, { "api_name": "numpy.copy", "line_number": 636, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 1037, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 1037, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.imshow", "line_number": 1038, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 1038, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.text", "line_number": 1042, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 1042, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.text", "line_number": 1044, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 1044, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.text", "line_number": 1046, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 1046, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 1051, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 1051, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.text", "line_number": 1054, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 1054, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 1055, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 1055, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 1058, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 1058, "usage_type": "name" }, { "api_name": "numpy.uint8", "line_number": 1060, "usage_type": "attribute" }, { "api_name": "numpy.sum", "line_number": 1113, "usage_type": "call" } ]
508639267
from osgeo import gdal, gdalnumeric, ogr, gdal_array import sys sys.path.append(r'C:\Program Files\GDAL') # import ogr # import gdal_array from skimage import measure import numpy as np import json import os import datetime from shapely.geometry import Polygon # get all the fillpath in the directory include sub-directory def getfilepath(curDir, filelist, ext=('.TIF', '.tif', '.PNG', '.png', '.JPG', '.jpg')): if os.path.isfile(curDir): if curDir.lower().endswith(ext): filelist.append(curDir) else: dir_or_files = os.listdir(curDir) for dir_file in dir_or_files: dir_file_path = os.path.join(curDir, dir_file) # check is file or directory if os.path.isdir(dir_file_path): getfilepath(dir_file_path, filelist, ext) else: # extension_ = dir_file_path.split('.')[-1] # if (extension_.lower() in ext): if dir_file_path.endswith(ext): filelist.append(dir_file_path) # def raster2array(rasters,band_no=1): """ Arguments: rast A gdal Raster object band_no band numerical order Example : raster = gdal.Open(rasterfn) raster2array(raster,1) """ bands = rasters.RasterCount if band_no>0 and band_no <=bands: band = rasters.GetRasterBand(band_no) array = band.ReadAsArray() else: array = rasters.ReadAsArray() return array # This function will convert the rasterized clipper shapefile # to a mask for use within GDAL. def imageToArray(i): """ Converts a Python Imaging Library array to a gdalnumeric image. """ a=gdalnumeric.fromstring(i.tobytes(),'b') a.shape=i.im.size[1], i.im.size[0] return a # def coord2pixelOffset(geotransform, x, y): """ Arguments: geotransform A gdal transform object x world coordinate x y world coordinate y return pixel position in image Example : raster = gdal.Open(rasterfn) geotransform = raster.GetGeoTransform() coord2pixel(geotransform,xCoord,yCoord) """ #left top originX = geotransform[0] originY = geotransform[3] #pixel resolution pixelWidth = geotransform[1] pixelHeight = geotransform[5] #ax rotate (here not used) rotateX = geotransform[2] rotateY = geotransform[4] xOffset = int((x - originX) / pixelWidth) yOffset = int((y - originY) / pixelHeight) return xOffset, yOffset # def getUniqueValue(inL, column): # intilize a null list unique_list = [] if (len(inL) == 0): return unique_list count = len(inL[0]) if column > count: return unique_list # traverse for all elements for x in inL: # check if exists in unique_list or not if x[column - 1] not in unique_list: unique_list.append(x[column - 1]) return unique_list def pixeloffset2coord(geoTransform,pixel_xOffset,pixel_yOffset): """ geoTransform: a gdal geoTransform object pixel_xOffset: pixel_yOffset: return: coords """ #left top originX = geoTransform[0] originY = geoTransform[3] #pixel resolution pixelWidth = geoTransform[1] pixelHeight = geoTransform[5] # calculate coordinates coordX = originX+ pixelWidth*pixel_xOffset coordY = originY+pixelHeight*pixel_yOffset return coordX,coordY INFO = { "description": "sidewalk test Dataset", "url": "", "version": "0.1.0", "year": 2019, "contributor": "czh_njit", "date_created": datetime.datetime.utcnow().isoformat(' ') } LICENSES = [ { "id": 1, "name": "Attribution-NonCommercial-ShareAlike License", "url": "http://creativecommons.org/licenses/by-nc-sa/2.0/" } ] CATEGORIES = [ { 'id': 1, 'name': 'sidewalk', 'supercategory': '', }, # { # 'id': 2, # 'name': 'background', # 'supercategory': '', # }, ] class czhTiff2Json(): """ create annotation file from tiff file,used for satellite image or aerial image object detection/instance segmentation """ def __init__(self,tifFns,lbltiffPath,jsonFn,shpFn="",mode=0): """ geotiff? Arguments: tifFn: tif file name or path (in) jsonFn:json file name (out) shpFn: shapefile name (in) mode: two ways to get json file,one get from tiff file ,another from shape file """ self.tifFns = tifFns self.lbltiffPath = lbltiffPath self.jsonFn = jsonFn self.mode = mode if mode ==1 : self.shpFn = shpFn def createJson(self): ''' Creates the COCO-formatted annotation files ''' if self.mode ==1: self.createJsonFromShape() else: self.createJsonFromTiffs() def createJsonFromShape(self): pass def createJsonFromTiffs(self): #check self.tifFns if it's file open or traverse directory #no directory nest? lstTiff=[] if os.path.isdir(self.tifFns): getfilepath(self.tifFns, lstTiff) elif os.path.isfile(self.tifFns): # self.createJsonFromTiffFile(self.tifFns) lstTiff.append(self.tifFns) else: print("input path or directory is error!") if len(lstTiff)>0: print(lstTiff) self.createJsonFromTiffFiles(lstTiff) def createJsonFromTiffFiles(self,tiffFns): #check json if exist open else create # open json if os.path.exists(self.jsonFn): self.coco_output = json.load(self.jsonFn) else: self.coco_output = { "info": INFO, "licenses": LICENSES, "categories": CATEGORIES, "images": [], "annotations": [] } annotation_idx = 1 for img_idx, tiffn in enumerate(tiffFns): self.createJsonFromTiffFile(tiffn, img_idx+1, 1, annotation_idx + 10000 * img_idx) with open(self.jsonFn, 'w') as output_json_file: json.dump(self.coco_output, output_json_file) def createJsonFromTiffFile(self, tiff_filepath, img_idx, band_no=1, annotation_idx=1): print("Processing: ", tiff_filepath) rasters = gdal.Open(tiff_filepath) raster_array = raster2array(rasters,band_no) #get size of image img_Width = rasters.RasterXSize img_Height = rasters.RasterYSize img_size = [img_Width,img_Height] #create image_info tiff_filepath = os.path.join(self.lbltiffPath, os.path.basename(tiff_filepath)) image_info = self.create_image_info(img_idx,tiff_filepath,img_size) self.coco_output["images"].append(image_info) # create annotation polygons = self.binaryMask2Polygon(raster_array) for idx,polygon in enumerate(polygons): # print(type(polygon), polygon.size) if polygon.size > 7: category_info ={'id':1,"is_crowd":0} annotatin_info =self.create_annotation_info(idx+annotation_idx,img_idx,category_info,polygon,img_size) self.coco_output["annotations"].append(annotatin_info) def binaryMask2Polygon(self,binaryMask): polygons =[] padded_binary_mask = np.pad(binaryMask, pad_width=1, mode='constant', constant_values=0) contours = measure.find_contours(padded_binary_mask,0.5) contours = np.subtract(contours, 1) def closeContour(contour): if not np.array_equal(contour[0], contour[-1]): contour = np.vstack((contour, contour[0])) return contour for contour in contours: contour = closeContour(contour) contour = measure.approximate_polygon(contour, 1) if len(contour)<3: continue contour = np.flip(contour,axis =1) # segmentation = contour.ravel().tolist() # # # after padding and subtracting 1 we may get -0.5 points in our segmentation # segmentation = [0 if i < 0 else i for i in segmentation] # polygons.append(segmentation) polygons.append(contour) return polygons def create_image_info(self,image_id, file_name, image_size, date_captured=datetime.datetime.utcnow().isoformat(' '), license_id=1, coco_url="", flickr_url=""): image_info = { "id": image_id, "file_name": file_name, "width": image_size[0], "height": image_size[1], "date_captured": date_captured, "license": license_id, "coco_url": coco_url, "flickr_url": flickr_url } return image_info def create_annotation_info(self,annotation_id, image_id, category_info, segmentation, image_size=None, tolerance=2, bounding_box=None): try: polygon = Polygon(np.squeeze(segmentation)) # print(type(polygon)) area =polygon.area segmentation = segmentation.ravel().tolist() # # after padding and subtracting 1 we may get -0.5 points in our segmentation bbx =[0 if i < 0 else int(i) for i in list(polygon.bounds)] segmentation = [0 if i < 0 else int(i) for i in segmentation] annotation_info = { "id": annotation_id, "image_id": image_id, "category_id": category_info["id"], "iscrowd": category_info["is_crowd"], "area": area, "bbox": bbx, "segmentation": [segmentation], "width": image_size[0], "height": image_size[1], } except Exception as e: print("Error in create_annotation_info():", e) return annotation_info # test = czhTiff2Json("D:\\2019\\njit learning\\201909\\sidewalk extract\\czhSidewalkExtract\\val\\label","D:\\2019\\njit learning\\201909\\sidewalk extract\\czhSidewalkExtract\\val\\images\\","D:\\2019\\njit learning\\201909\\sidewalk extract\\czhSidewalkExtract\\val\\label\\sidewalk_val.json") test = czhTiff2Json(r"L:\Datasets\AIRS\val\labels", r"L:\Datasets\AIRS\val\images", r"L:\Datasets\AIRS\val\AIRS_val.json") # test.createJson()
null
czhUtils.py
czhUtils.py
py
10,600
python
en
code
null
code-starcoder2
83
[ { "api_name": "sys.path.append", "line_number": 3, "usage_type": "call" }, { "api_name": "sys.path", "line_number": 3, "usage_type": "attribute" }, { "api_name": "os.path.isfile", "line_number": 18, "usage_type": "call" }, { "api_name": "os.path", "line_number": 18, "usage_type": "attribute" }, { "api_name": "os.listdir", "line_number": 22, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 24, "usage_type": "call" }, { "api_name": "os.path", "line_number": 24, "usage_type": "attribute" }, { "api_name": "os.path.isdir", "line_number": 27, "usage_type": "call" }, { "api_name": "os.path", "line_number": 27, "usage_type": "attribute" }, { "api_name": "osgeo.gdalnumeric.fromstring", "line_number": 63, "usage_type": "call" }, { "api_name": "osgeo.gdalnumeric", "line_number": 63, "usage_type": "name" }, { "api_name": "datetime.datetime.utcnow", "line_number": 145, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 145, "usage_type": "attribute" }, { "api_name": "os.path.isdir", "line_number": 213, "usage_type": "call" }, { "api_name": "os.path", "line_number": 213, "usage_type": "attribute" }, { "api_name": "os.path.isfile", "line_number": 215, "usage_type": "call" }, { "api_name": "os.path", "line_number": 215, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 229, "usage_type": "call" }, { "api_name": "os.path", "line_number": 229, "usage_type": "attribute" }, { "api_name": "json.load", "line_number": 230, "usage_type": "call" }, { "api_name": "json.dump", "line_number": 245, "usage_type": "call" }, { "api_name": "osgeo.gdal.Open", "line_number": 251, "usage_type": "call" }, { "api_name": "osgeo.gdal", "line_number": 251, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 260, "usage_type": "call" }, { "api_name": "os.path", "line_number": 260, "usage_type": "attribute" }, { "api_name": "os.path.basename", "line_number": 260, "usage_type": "call" }, { "api_name": "numpy.pad", "line_number": 279, "usage_type": "call" }, { "api_name": "skimage.measure.find_contours", "line_number": 280, "usage_type": "call" }, { "api_name": "skimage.measure", "line_number": 280, "usage_type": "name" }, { "api_name": "numpy.subtract", "line_number": 281, "usage_type": "call" }, { "api_name": "numpy.array_equal", "line_number": 284, "usage_type": "call" }, { "api_name": "numpy.vstack", "line_number": 285, "usage_type": "call" }, { "api_name": "skimage.measure.approximate_polygon", "line_number": 290, "usage_type": "call" }, { "api_name": "skimage.measure", "line_number": 290, "usage_type": "name" }, { "api_name": "numpy.flip", "line_number": 294, "usage_type": "call" }, { "api_name": "datetime.datetime.utcnow", "line_number": 304, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 304, "usage_type": "attribute" }, { "api_name": "shapely.geometry.Polygon", "line_number": 324, "usage_type": "call" }, { "api_name": "numpy.squeeze", "line_number": 324, "usage_type": "call" } ]
453111214
#!/usr/bin/env python2.7 # -*- coding: utf-8 -*- import os, re import markdown as md from constants import places from utilities import indent, renderDate class Post(object): ''' Object that holds information about a post. Can render itself into HTML. ''' def __init__(self, filename, title, tags, kind, body): super(Post, self).__init__() self.title = title self.tags = tags self.kind = kind self.setBody(body) self.filename = filename self.template = None self.datePublished = None self.url = None self.link = None def setBody(self, body): self.body = body self.bodyHTML = md.markdown(self.body) def setTemplate(self, filename): templatePath = os.path.join('templates', filename) + '.html' if os.path.exists(templatePath): with open(templatePath) as templateFile: self.template = templateFile.readlines() else: raise Exception('Template file "%s" does not exist.'%(filename)) def markdown(self): md = '---\n' md += 'title: %s\n'%(self.title) md += 'tags: %s\n'%(', '.join(self.tags)) md += 'kind: %s\n'%(self.kind) if self.link: md += 'link: %s\n'%(self.link) if self.datePublished: md += 'published: %s\n'%(self.datePublished) md += '---\n\n' md += self.body return md def render(self): tagsHTML = ', '.join(['<a href="%s%s">%s</a>'%(places('tags'), t, t) for t in self.tags]) if len(self.tags) > 0 else '' if self.template: copy = [] + self.template if self.datePublished: publishDate = self.datePublished else: publishDate = renderDate() for i in range(len(self.template)): copy[i] = re.sub(r'::TITLE::', self.title, copy[i]) copy[i] = re.sub(r'::DATE::', publishDate, copy[i]) copy[i] = re.sub(r'::BASE_URL::', places('root'), copy[i]) url = self.url if self.url else '#' if self.link: copy[i] = re.sub(r'::LINK_URL::', self.link, copy[i]) else: copy[i] = re.sub(r'::LINK_URL::', r'::POST_URL::', copy[i]) copy[i] = re.sub(r'::POST_URL::', url, copy[i]) if re.search(r'::TAGS::', copy[i]): if len(tagsHTML) > 0: copy[i] = re.sub(r'::TAGS::', tagsHTML, copy[i]) else: copy[i] = '' if re.search(r'::BODY::', copy[i]): copy[i] = indent(self.bodyHTML, copy[i].count('\t')) html = ''.join(copy) copy = html.split('\n') for i in range(len(copy)): if re.search(r'<p><img alt=".*" src=".*" /></p>', copy[i]): numTabs = copy[i].count('\t') components = copy[i].split('"') altText = '"'.join(components[1:-3]) src = '"'.join(components[-2:-1]) figure = '<figure>\n\t<img alt="%s" src="%s" />\n\t<figcaption>%s</figcaption>\n</figure>'%(altText, src, altText) copy[i] = indent(figure, numTabs) return '\n'.join(copy) return self.bodyHTML def renderTo(self, folderName): fileDirectory = os.path.dirname(self.filename) fileNameMD = os.path.basename(self.filename) fileNameHTML = re.sub('md', 'html', fileNameMD) # fileNameHTML = re.sub(r'\s', r'-', self.title.encode('utf8').lower().strip('?')) + '.html' filePath = os.path.join(fileDirectory, folderName, fileNameHTML) if not os.path.exists(os.path.dirname(filePath)): raise Exception('Output folder "%s" does not exist.'%(os.path.dirname(filePath))) with open(filePath, 'w') as outfile: outfile.write(self.render()) def saveTo(self, folderName): fileDirectory = os.path.dirname(self.filename) fileName = os.path.basename(self.filename) filePath = os.path.join(folderName, fileName) if not os.path.exists(os.path.dirname(filePath)): raise Exception('Output folder "%s" does not exist.'%(os.path.dirname(filePath))) with open(filePath, 'w') as outfile: outfile.write(self.markdown())
null
engine/post.py
post.py
py
4,478
python
en
code
null
code-starcoder2
83
[ { "api_name": "markdown.markdown", "line_number": 28, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 31, "usage_type": "call" }, { "api_name": "os.path", "line_number": 31, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 32, "usage_type": "call" }, { "api_name": "os.path", "line_number": 32, "usage_type": "attribute" }, { "api_name": "constants.places", "line_number": 52, "usage_type": "call" }, { "api_name": "utilities.renderDate", "line_number": 58, "usage_type": "call" }, { "api_name": "re.sub", "line_number": 60, "usage_type": "call" }, { "api_name": "re.sub", "line_number": 61, "usage_type": "call" }, { "api_name": "re.sub", "line_number": 62, "usage_type": "call" }, { "api_name": "constants.places", "line_number": 62, "usage_type": "call" }, { "api_name": "re.sub", "line_number": 65, "usage_type": "call" }, { "api_name": "re.sub", "line_number": 67, "usage_type": "call" }, { "api_name": "re.sub", "line_number": 68, "usage_type": "call" }, { "api_name": "re.search", "line_number": 69, "usage_type": "call" }, { "api_name": "re.sub", "line_number": 71, "usage_type": "call" }, { "api_name": "re.search", "line_number": 74, "usage_type": "call" }, { "api_name": "utilities.indent", "line_number": 75, "usage_type": "call" }, { "api_name": "re.search", "line_number": 79, "usage_type": "call" }, { "api_name": "utilities.indent", "line_number": 85, "usage_type": "call" }, { "api_name": "os.path.dirname", "line_number": 90, "usage_type": "call" }, { "api_name": "os.path", "line_number": 90, "usage_type": "attribute" }, { "api_name": "os.path.basename", "line_number": 91, "usage_type": "call" }, { "api_name": "os.path", "line_number": 91, "usage_type": "attribute" }, { "api_name": "re.sub", "line_number": 92, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 94, "usage_type": "call" }, { "api_name": "os.path", "line_number": 94, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 95, "usage_type": "call" }, { "api_name": "os.path", "line_number": 95, "usage_type": "attribute" }, { "api_name": "os.path.dirname", "line_number": 95, "usage_type": "call" }, { "api_name": "os.path.dirname", "line_number": 96, "usage_type": "call" }, { "api_name": "os.path", "line_number": 96, "usage_type": "attribute" }, { "api_name": "os.path.dirname", "line_number": 101, "usage_type": "call" }, { "api_name": "os.path", "line_number": 101, "usage_type": "attribute" }, { "api_name": "os.path.basename", "line_number": 102, "usage_type": "call" }, { "api_name": "os.path", "line_number": 102, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 103, "usage_type": "call" }, { "api_name": "os.path", "line_number": 103, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 104, "usage_type": "call" }, { "api_name": "os.path", "line_number": 104, "usage_type": "attribute" }, { "api_name": "os.path.dirname", "line_number": 104, "usage_type": "call" }, { "api_name": "os.path.dirname", "line_number": 105, "usage_type": "call" }, { "api_name": "os.path", "line_number": 105, "usage_type": "attribute" } ]
338598408
import os import re import time import numpy as np from subprocess import Popen, PIPE from ipyparallel import Client from ram.aws.stream_reader import NonBlockingStreamReader as NBSR aws_data = os.path.join(os.getenv('DATA'), 'ram', 'aws') class ClusterController(object): configured_regions = ['us-west-1a', 'us-west-2b'] aws_config_base = os.path.join(os.getenv('GITHUB'), 'ram', 'ram', 'aws', 'config') def __init__(self): # check that starcluster is installed and connectivity assert self.verify_sc_setup() self.islive = False def verify_sc_setup(self): # verify base config exists assert os.path.exists(self.aws_config_base) # verify starcluster installed on host machine _ = self._star_cmd("starcluster --help") # verify aws connection with base config self.get_live_clusters() return True def set_config(self, n_nodes, region=None, inst_type='m3.medium'): ''' Create a config for a particular cluster instance. Fill in fields for instance_type, region, n_nodes, and spot bid. Write the config out to /data/ram/aws/configs. ''' self._n_nodes = n_nodes regionbid = self.get_region_bid(inst_type, region) if regionbid is None: return else: self._region = regionbid[0] bid = regionbid[1] # Read in base config with open(self.aws_config_base, 'r') as file: configdata = file.read() # Configure and save as new inst_config = os.path.join(aws_data, 'configs', 'config_{0}'.format(self._region)) instdata = re.sub(r'CLUSTER_SIZE\s=\s\d+', 'CLUSTER_SIZE = {0}'.format(n_nodes), configdata) instdata = re.sub(r'NODE_INSTANCE_TYPE.*?\n', 'NODE_INSTANCE_TYPE = {0}\n'.format(inst_type), instdata) instdata = re.sub(r'SPOT_BID.*?\n', 'SPOT_BID = {0}\n'.format(bid), instdata) with open(inst_config, 'w') as file: file.write(instdata) self._config = inst_config return def get_region_bid(self, inst_type, region=None): ''' Selects an available region based on configured_regions and any live clusters. Prompts user for confirmation and returns a spot bid ''' clusters = self.get_live_clusters() inuse = [c['Zone'] for c in clusters.itervalues()] avail = list(set(self.configured_regions) - set(inuse)) if len(avail) == 0: print('All available regions are in use') return region = region if region is not None else avail[0] if region not in avail: print('Unable to provision region {0}'.format(region)) return spot_info = self.get_spot_history(inst_type, region) conf = raw_input(('{0} in {1}: live={2}, avg={3}, max={4}.\n\n' 'Enter max bid, or enter x to exit: ').format( inst_type, region, spot_info['live'], spot_info['avg'], spot_info['max'])) if conf in ['n','x']: return return (region, str(float(conf))) def launch_cluster(self): ''' Launch cluster and wait for completion ''' assert os.path.exists(self._config) cmd = 'starcluster -c {0} -r {1} start -c {2} {2}'.format( self._config, self._region[:-1], self._region) print('Launching Cluster') stdout = self._star_cmd(cmd) print('Cluster Launched Successfully') self.islive = True # Setup parallel client ipy_json = re.findall(r"client\s=\sClient\('(.*?)'", stdout)[0] ipy_ssh = re.findall(r"sshkey='(.*?)'", stdout)[0] self._ipyconfig = (ipy_json, ipy_ssh) self.client = Client(ipy_json, sshkey=ipy_ssh) return def get_live_clusters(self): ''' Return information on currently running clusters. Outputs a dictionary keyed on cluster name ''' all_regions = np.unique([x[:-1] for x in self.configured_regions]) stdoutA = str() for region in all_regions: cmd = "starcluster -c {0} -r {1} lc".format(self.aws_config_base, region) stdout = self._star_cmd(cmd) stdoutA += '\r\n' + stdout # Select cluster info items Name = re.findall(r'-+\r\n(.*?)\s\(', stdoutA) LaunchTime = re.findall(r'Launch\stime:\s(.*?)\r\n', stdoutA) Uptime = re.findall(r'Uptime:\s(.*?)\r\n', stdoutA) VPC = re.findall(r'VPC:\s(.*?)\r\n', stdoutA) Subnet = re.findall(r'Subnet:\s(.*?)\r\n', stdoutA) Zone = re.findall(r'Zone:\s(.*?)\r\n', stdoutA) Keypair = re.findall(r'Keypair:\s(.*?)\r\n', stdoutA) EbsVolumes = re.findall(r'EBS\svolumes:([\s\S]*?)Spot\srequests', stdoutA) SpotRequests = re.findall(r'Spot\srequests:\s(.*?)\r\n', stdoutA) ClusterNodes = re.findall(r'Cluster\snodes:\r\n([\s\S]*?)' + 'Total\snodes', stdoutA) TotalNodes = re.findall(r'Total\snodes:\s(.*?)\r\n', stdoutA) # Package into dict clusters = {} for i, name in enumerate(Name): clusters[name] = {} clusters[name]['LaunchTime'] = LaunchTime[i] clusters[name]['Uptime'] = Uptime[i] clusters[name]['VPC'] = VPC[i] clusters[name]['Subnet'] = Subnet[i] clusters[name]['Zone'] = Zone[i] clusters[name]['Keypair'] = Keypair[i] clusters[name]['EbsVolumes'] = re.findall(r'\s+(.*)?\r\n', EbsVolumes[i]) clusters[name]['SpotRequests'] = SpotRequests[i] clusters[name]['ClusterNodes'] = re.findall(r'\s+(.*)?\r\n', ClusterNodes[i]) clusters[name]['TotalNodes'] = TotalNodes[i] return clusters def get_spot_history(self, inst_type, region): '''' Return spot price information for instance & region ''' cmd = "starcluster -c {0} -r {1} spothistory -z {2} -c {3}".format( self.aws_config_base, region[:-1], region, inst_type) stdout = self._star_cmd(cmd) pLive = re.findall(r'Current\sprice:\s\$([\.\d]*?)\r\n', stdout) pMax = re.findall(r'Max\sprice:\s\$([\.\d]*?)\r\n', stdout) pAvg = re.findall(r'Average\sprice:\s\$([\.\d]*?)\r\n', stdout) return {'region': region, 'instance': inst_type, 'live': float(pLive[0]), 'max': float(pMax[0]), 'avg': float(pAvg[0])} def run_parallel(self, function, iterable): ''' Run function across a live cluster. Iterable must be list-like variable whose items can be passed to function. ''' assert hasattr(self, 'client') lv = self.client.load_balanced_view() results = lv.map(function, iterable) p_ix = -1 # Report progress while not results.ready(): ix = float(results.progress) if ix > p_ix: print('{0}% Complete'.format( str(np.round(ix/len(iterable), 2) *100))) time.sleep(60) p_ix = ix return results def put_file(self, local_path, remote_path='/ramdata/temp'): ''' Copy file to cluster, default is /ramdata/temp ''' assert os.path.exists(local_path) assert self.islive cmd = 'starcluster -r {0} -c {1} put {2} {3} {4}'.format( self._region[:-1], self._config, self._region, local_path, remote_path) stdout = self._star_cmd(cmd) return def get_file(self, local_path, remote_path): ''' Copy file to cluster, will be placed under /ramdata ''' assert os.path.exists(local_path) assert self.islive cmd = 'starcluster -r {0} -c {1} get {2} {3} {4}'.format( self._region[:-1], self._config, self._region, remote_path, local_path) stdout = self._star_cmd(cmd) return def teardown(self): ''' Shutdown cluster and cleanup instance variables ''' if self.islive is False: print('No live cluster recognized. Please shutdown explicitly') return if hasattr(self, 'client'): self.client.close() self.shutdown_cluster(self._region) self._config = None self._region = None self._ipyconfig = None self._n_nodes = None return def restart_cluster(self): ''' Reboot cluster ''' assert self.islive self.client.close() cmd = 'starcluster -r {0} -c {1} restart {2}'.format( self._region[:-1], self._config, self._region) stdout = self._star_cmd(cmd) self.client = Client(self._ipyconfig[0], sshkey=self._ipyconfig[1]) return def shutdown_cluster(self, cluster_name): ''' Shutdown a cluster ''' cmd = 'starcluster -c {0} -r {1} terminate -f {2}'.format( self.aws_config_base, cluster_name[:-1], cluster_name) stdout = self._star_cmd(cmd, 'y') # Delete config if exists config_path = os.path.join(aws_data, 'configs', 'config_{0}'.format(cluster_name)) if os.path.exists(config_path): os.remove(config_path) print('Cluster shutdown complete') return def _star_cmd(self, cmd, stdin_txt=None): ''' Run a command in subprocess, handle errors and return output from stdout ''' proc = Popen(cmd, stdin=PIPE, stdout=PIPE, stderr=PIPE, shell=True) stdout, stderr = proc.communicate(stdin_txt) if proc.poll() != 0: print(stderr) raise return stdout def pull_git_branch(self, repo, branch): ''' Pulls a branch from github in the specified repository. Reboots cluster at end of function to ensure cluster is functioning. ''' assert self.islive nodes = self.get_live_clusters()[self._region]['ClusterNodes'] assert len(nodes) == self._n_nodes for i in range(self._n_nodes): nodei = 'master' if i == 0 else 'node00{0}'.format(i) cmd = 'starcluster -r {0} -c {1} sn {2} {3} -u ubuntu'.format( self._region[:-1], self._config, self._region, nodei) # Open subprocess ssh to cluster node proc = Popen(cmd, stdin=PIPE, stdout=PIPE, stderr=PIPE, shell=True) nbsr = NBSR(proc.stdout) nbsr.readuntil(timeout=10) # Change directory proc.stdin.write('cd ~/ramsrc/{} \n'.format(repo)) nbsr.readuntil(re_error=r'No\ssuch\sfile\sor\sdirectory') # /home is NFS shared accross cluster, pull only once on master if nodei == 'master': # Fetch new changes in repo proc.stdin.write('git fetch \n') nbsr.readuntil(timeout=7, re_error=r'error') # Checkout desired branch proc.stdin.write('git checkout {} \n'.format(branch)) nbsr.readuntil(re_error=r'error') # Pull latest changes proc.stdin.write('git pull \n') nbsr.readuntil(timeout=7, re_error=r'error') # Update python libs on all nodes proc.stdin.write('sudo python setup.py install \n') nbsr.readuntil(timeout=7, re_error=r'No\ssuch\sfile\sor\sdirectory') # Exit ssh session proc.stdin.write('exit \n') nbsr.readuntil() print('/{1}/{2} updated on node: {0}'.format(nodei, repo, branch)) print('Rebooting Cluster') self.restart_cluster() if __name__ == '__main__': cc = ClusterController() cc.set_config(2) # cc.launch_cluster() cc.teardown()
null
ram/aws/cluster.py
cluster.py
py
12,464
python
en
code
null
code-starcoder2
83
[ { "api_name": "os.path.join", "line_number": 9, "usage_type": "call" }, { "api_name": "os.path", "line_number": 9, "usage_type": "attribute" }, { "api_name": "os.getenv", "line_number": 9, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 15, "usage_type": "call" }, { "api_name": "os.path", "line_number": 15, "usage_type": "attribute" }, { "api_name": "os.getenv", "line_number": 15, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 25, "usage_type": "call" }, { "api_name": "os.path", "line_number": 25, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 54, "usage_type": "call" }, { "api_name": "os.path", "line_number": 54, "usage_type": "attribute" }, { "api_name": "re.sub", "line_number": 56, "usage_type": "call" }, { "api_name": "re.sub", "line_number": 59, "usage_type": "call" }, { "api_name": "re.sub", "line_number": 62, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 103, "usage_type": "call" }, { "api_name": "os.path", "line_number": 103, "usage_type": "attribute" }, { "api_name": "re.findall", "line_number": 112, "usage_type": "call" }, { "api_name": "re.findall", "line_number": 113, "usage_type": "call" }, { "api_name": "ipyparallel.Client", "line_number": 115, "usage_type": "call" }, { "api_name": "numpy.unique", "line_number": 123, "usage_type": "call" }, { "api_name": "re.findall", "line_number": 132, "usage_type": "call" }, { "api_name": "re.findall", "line_number": 133, "usage_type": "call" }, { "api_name": "re.findall", "line_number": 134, "usage_type": "call" }, { "api_name": "re.findall", "line_number": 135, "usage_type": "call" }, { "api_name": "re.findall", "line_number": 136, "usage_type": "call" }, { "api_name": "re.findall", "line_number": 137, "usage_type": "call" }, { "api_name": "re.findall", "line_number": 138, "usage_type": "call" }, { "api_name": "re.findall", "line_number": 139, "usage_type": "call" }, { "api_name": "re.findall", "line_number": 141, "usage_type": "call" }, { "api_name": "re.findall", "line_number": 142, "usage_type": "call" }, { "api_name": "re.findall", "line_number": 144, "usage_type": "call" }, { "api_name": "re.findall", "line_number": 156, "usage_type": "call" }, { "api_name": "re.findall", "line_number": 159, "usage_type": "call" }, { "api_name": "re.findall", "line_number": 173, "usage_type": "call" }, { "api_name": "re.findall", "line_number": 174, "usage_type": "call" }, { "api_name": "re.findall", "line_number": 175, "usage_type": "call" }, { "api_name": "numpy.round", "line_number": 195, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 196, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 204, "usage_type": "call" }, { "api_name": "os.path", "line_number": 204, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 216, "usage_type": "call" }, { "api_name": "os.path", "line_number": 216, "usage_type": "attribute" }, { "api_name": "ipyparallel.Client", "line_number": 249, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 260, "usage_type": "call" }, { "api_name": "os.path", "line_number": 260, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 262, "usage_type": "call" }, { "api_name": "os.path", "line_number": 262, "usage_type": "attribute" }, { "api_name": "os.remove", "line_number": 263, "usage_type": "call" }, { "api_name": "subprocess.Popen", "line_number": 272, "usage_type": "call" }, { "api_name": "subprocess.PIPE", "line_number": 272, "usage_type": "name" }, { "api_name": "subprocess.Popen", "line_number": 293, "usage_type": "call" }, { "api_name": "subprocess.PIPE", "line_number": 293, "usage_type": "name" }, { "api_name": "ram.aws.stream_reader.NonBlockingStreamReader", "line_number": 294, "usage_type": "call" } ]
128409060
from functools import lru_cache import boto3 import itertools from collections import defaultdict from operator import itemgetter from typing import List, MutableMapping from django.conf import settings from rest_framework.fields import ( BooleanField, CharField, ChoiceField, DateField, DecimalField, EmailField, IntegerField, UUIDField, ) from extended_choices import Choices import yaml from django.core.serializers import base from django.db import DEFAULT_DB_ALIAS, transaction def filter_key(dict_, key_to_remove): return {k: v for k, v in dict_.items() if k != key_to_remove} def group_by_key(l: List[MutableMapping], key: str, flatten: bool = False) -> MutableMapping: """ :param l: list of dicts .e.g [{'a': 1, 'b': 1}, {'b': 2, 'a': 2}] :param dict_key: the dict key to group by :return: a dict with keys and an object or list of objects in the format: {1: [{'b': 1}], 2: [{'b': 2}]} or if flatten=True {1: {'b': 1}, 2: {'b': 2}} """ key_getter = itemgetter(key) l.sort(key=key_getter) groups = defaultdict(list) for group, vals in itertools.groupby(l, key=key_getter): groups[group] = [filter_key(data, key) for data in vals] return {k: v[0] if flatten else v for k, v in groups.items()} def getitem_or_default(l, idx, default=None): """ gets the item at position idx or returns the default value :param list: list of things :param idx: position :param default: optional default value :return: thing at index idx or default """ try: return l[idx] except IndexError: return default class TrackedSupersetChoices(Choices): """ Same as a normal Choices object except subsets have access to their superset. """ def add_subset(self, name, constants): super(TrackedSupersetChoices, self).add_subset(name, constants) subset = getattr(self, name) subset.superset = self def get_bucket_credentials(bucket_id): """Get S3 credentials for bucket id.""" if bucket_id not in settings.DOCUMENT_BUCKETS: raise Exception(f'Bucket "{bucket_id}" not configured.') return settings.DOCUMENT_BUCKETS[bucket_id] def get_bucket_name(bucket_id): """Get bucket name for given bucket id.""" return get_bucket_credentials(bucket_id)['bucket'] @lru_cache() def get_s3_client_for_bucket(bucket_id): """Get S3 client for bucket id.""" credentials = get_bucket_credentials(bucket_id) return boto3.client( 's3', aws_access_key_id=credentials['aws_access_key_id'], aws_secret_access_key=credentials['aws_secret_access_key'], region_name=credentials['aws_region'], config=boto3.session.Config(signature_version='s3v4'), ) def parse_bool(value): """Parses a boolean value from a string.""" return _parse_value(value, BooleanField()) def parse_date(value): """Parses a date from a string.""" return _parse_value(value, DateField()) def parse_decimal(value, max_digits=19, decimal_places=2): """Parses a decimal from a string.""" return _parse_value(value, DecimalField(max_digits, decimal_places)) def parse_email(value): """Parses an email address from a string.""" return _parse_value(value, EmailField(), blank_value='') def parse_uuid(value): """Parses a UUID from a string.""" return _parse_value(value, UUIDField()) def parse_int(value): """Parses a integer from a string.""" return _parse_value(value, IntegerField()) def parse_uuid_list(value): """Parses a comma-separated list of UUIDs from a string.""" return _parse_list(value, UUIDField()) def parse_int_list(value): """Parses a comma-separated list of Integers from a string.""" return _parse_list(value, IntegerField()) def parse_choice(value, choices, blank_value=''): """Parses and validates a value from a list of choices.""" return _parse_value(value, ChoiceField(choices=choices), blank_value=blank_value) def parse_limited_string(value, max_length=settings.CHAR_FIELD_MAX_LENGTH): """Parses/validates a string.""" return _parse_value(value, CharField(max_length=max_length), blank_value='') def _parse_value(value, field, blank_value=None): if not value or value.lower().strip() == 'null': return blank_value field.run_validation(value) return field.to_internal_value(value) def _parse_list(value, field): """Parses a comma-separated list of UUIDs from a string.""" if not value or value.lower().strip() == 'null': return [] return [field.to_internal_value(item) for item in value.split(',')] def _build_model_data(model, obj_pk, fields_data, using): data = {} # Handle each field for (field_name, field_value) in fields_data.items(): field = model._meta.get_field(field_name) # Handle many-to-many relations if field.many_to_many: raise NotImplementedError('Many-to-many fields not supported') # Handle one-to-many relations if field.one_to_many: raise NotImplementedError('One-to-many fields not supported') # Handle fk fields if field.many_to_one: try: value = base.deserialize_fk_value(field, field_value, using, False) except Exception as exc: raise base.DeserializationError.WithData( exc, model._meta.model_name, obj_pk, field_value, ) from exc data[field.attname] = value # Handle all other fields else: try: data[field.name] = field.to_python(field_value) except Exception as exc: raise base.DeserializationError.WithData( exc, model._meta.model_name, obj_pk, field_value, ) from exc return data def _load_data_in_migration(apps, object_list, using=DEFAULT_DB_ALIAS): for list_item in object_list: obj_pk = list_item.get('pk') assert obj_pk, 'pk field required' model_label = list_item['model'] model = apps.get_model(model_label) fields_data = list_item['fields'] model_data = _build_model_data(model, obj_pk, fields_data, using) model.objects.update_or_create(pk=obj_pk, defaults=model_data) @transaction.atomic def load_yaml_data_in_migration(apps, fixture_file_path): """ Loads the content of the yaml file `fixture_file_path` into the database. This is similar to `loaddata` but: - it's safe to be used in migrations - it does not change the fields that are not present in the yaml Motivation: Calling `loaddata` from a data migration makes django use the latest version of the models instead of the version at the time of that particular migration. This causes problems e.g. adding a new field to a model which had a data migration in the past is okay but migrating from zero fails as the model in loaddata (the latest) has a field that did not exist at that migration time. Limitations: - Many-to-many fields are not supported yet - all items in the yaml have to include a pk field """ with open(fixture_file_path, 'rb') as fixture: object_list = yaml.safe_load(fixture) _load_data_in_migration(apps, object_list)
null
core/utils.py
utils.py
py
7,467
python
en
code
null
code-starcoder2
83
[ { "api_name": "typing.List", "line_number": 25, "usage_type": "name" }, { "api_name": "typing.MutableMapping", "line_number": 25, "usage_type": "name" }, { "api_name": "operator.itemgetter", "line_number": 32, "usage_type": "call" }, { "api_name": "collections.defaultdict", "line_number": 34, "usage_type": "call" }, { "api_name": "itertools.groupby", "line_number": 35, "usage_type": "call" }, { "api_name": "extended_choices.Choices", "line_number": 54, "usage_type": "name" }, { "api_name": "django.conf.settings.DOCUMENT_BUCKETS", "line_number": 68, "usage_type": "attribute" }, { "api_name": "django.conf.settings", "line_number": 68, "usage_type": "name" }, { "api_name": "django.conf.settings.DOCUMENT_BUCKETS", "line_number": 71, "usage_type": "attribute" }, { "api_name": "django.conf.settings", "line_number": 71, "usage_type": "name" }, { "api_name": "boto3.client", "line_number": 83, "usage_type": "call" }, { "api_name": "boto3.session.Config", "line_number": 88, "usage_type": "call" }, { "api_name": "boto3.session", "line_number": 88, "usage_type": "attribute" }, { "api_name": "functools.lru_cache", "line_number": 79, "usage_type": "call" }, { "api_name": "rest_framework.fields.BooleanField", "line_number": 94, "usage_type": "call" }, { "api_name": "rest_framework.fields.DateField", "line_number": 99, "usage_type": "call" }, { "api_name": "rest_framework.fields.DecimalField", "line_number": 104, "usage_type": "call" }, { "api_name": "rest_framework.fields.EmailField", "line_number": 109, "usage_type": "call" }, { "api_name": "rest_framework.fields.UUIDField", "line_number": 114, "usage_type": "call" }, { "api_name": "rest_framework.fields.IntegerField", "line_number": 119, "usage_type": "call" }, { "api_name": "rest_framework.fields.UUIDField", "line_number": 124, "usage_type": "call" }, { "api_name": "rest_framework.fields.IntegerField", "line_number": 129, "usage_type": "call" }, { "api_name": "rest_framework.fields.ChoiceField", "line_number": 134, "usage_type": "call" }, { "api_name": "django.conf.settings.CHAR_FIELD_MAX_LENGTH", "line_number": 137, "usage_type": "attribute" }, { "api_name": "django.conf.settings", "line_number": 137, "usage_type": "name" }, { "api_name": "rest_framework.fields.CharField", "line_number": 139, "usage_type": "call" }, { "api_name": "django.core.serializers.base.deserialize_fk_value", "line_number": 175, "usage_type": "call" }, { "api_name": "django.core.serializers.base", "line_number": 175, "usage_type": "name" }, { "api_name": "django.core.serializers.base.DeserializationError.WithData", "line_number": 177, "usage_type": "call" }, { "api_name": "django.core.serializers.base.DeserializationError", "line_number": 177, "usage_type": "attribute" }, { "api_name": "django.core.serializers.base", "line_number": 177, "usage_type": "name" }, { "api_name": "django.core.serializers.base.DeserializationError.WithData", "line_number": 189, "usage_type": "call" }, { "api_name": "django.core.serializers.base.DeserializationError", "line_number": 189, "usage_type": "attribute" }, { "api_name": "django.core.serializers.base", "line_number": 189, "usage_type": "name" }, { "api_name": "django.db.DEFAULT_DB_ALIAS", "line_number": 198, "usage_type": "name" }, { "api_name": "yaml.safe_load", "line_number": 231, "usage_type": "call" }, { "api_name": "django.db.transaction.atomic", "line_number": 211, "usage_type": "attribute" }, { "api_name": "django.db.transaction", "line_number": 211, "usage_type": "name" } ]
429678554
import random import json """ 1. Создать программно файл в текстовом формате, записать в него построчно данные, вводимые пользователем. Об окончании ввода данных свидетельствует пустая строка. """ print("*" * 50 + " 1 " + "*" * 50) with open('5_1.txt', 'w') as file: name = input('Введите свое имя: ') file.write(name + '\n') last_name = input('Введите свою фамилию: ') file.write(last_name + '\n') """ 2. Создать текстовый файл (не программно), сохранить в нем несколько строк, выполнить подсчет количества строк, количества слов в каждой строке. """ print("*" * 50 + " 2 " + "*" * 50) with open('5_2.txt', 'r', encoding='utf-8') as file_1: print(f"Количество строк в файле: {sum(1 for line in file_1)}") with open('5_2.txt', 'r', encoding='utf-8') as file_2: something_list = 0 for line in file_2: something_list += len(line.split()) print(f"Количество слов в файле: {something_list}") """ 3. Создать текстовый файл (не программно), построчно записать фамилии сотрудников и величину их окладов (не менее 10 строк). Определить, кто из сотрудников имеет оклад менее 20 тыс., вывести фамилии этих сотрудников. Выполнить подсчет средней величины дохода сотрудников. Пример файла: Иванов 23543.12 Петров 13749.32 """ print("*" * 50 + " 3 " + "*" * 50) empl_dict = {} with open('5_3.txt', 'r', encoding='utf-8') as file_3: for line in file_3: empl_dict[line.split()[0]] = float(line.split()[1]) if float(line.split()[1]) < 20000: print(f"Зарплата меньше 20000 у {line.split()[0]}: {float(line.split()[1])}") max_salary = max(empl_dict.values()) employee = {k:v for k, v in empl_dict.items() if v == max_salary} print(employee) """ 4. Создать (не программно) текстовый файл со следующим содержимым: One — 1 Two — 2 Three — 3 Four — 4 Необходимо написать программу, открывающую файл на чтение и считывающую построчно данные. При этом английские числительные должны заменяться на русские. Новый блок строк должен записываться в новый текстовый файл. """ print("*" * 50 + " 4 " + "*" * 50) f = open('5_result.txt', 'w') f.close() with open('5_4.txt', 'r', encoding='utf-8') as file_4: for line in file_4: if 'One' in line: line = line.replace('One', 'Один') elif 'Two' in line: line = line.replace('Two', 'Два') elif 'Three' in line: line = line.replace('Three', 'Три') elif 'Four' in line: line = line.replace('Four', 'Четые') with open('5_result.txt', 'a', encoding='utf-8') as file_4_: file_4_.write(line) """ 5. Создать (программно) текстовый файл, записать в него программно набор чисел, разделенных пробелами. Программа должна подсчитывать сумму чисел в файле и выводить ее на экран. """ print("*" * 50 + " 5 " + "*" * 50) f = open('5_5.txt', 'w') f.close() rand_line = [] for i in range(1, 21): rand_line.append(int(random.random() * 100)) with open('5_5.txt', 'a', encoding='utf-8') as file_5: for i in rand_line: file_5.write(str(i) + " ") file_5.close() with open('5_5.txt', 'r', encoding='utf-8') as file_5_2: list_from_file = [] for line in file_5_2: list_from_file += line.split() print(f"Сумма чисел в файле: {sum(int(i) for i in list_from_file)}") """ 6. Необходимо создать (не программно) текстовый файл, где каждая строка описывает учебный предмет и наличие лекционных, практических и лабораторных занятий по этому предмету и их количество. Важно, чтобы для каждого предмета не обязательно были все типы занятий. Сформировать словарь, содержащий название предмета и общее количество занятий по нему. Вывести словарь на экран. Примеры строк файла: Информатика: 100(л) 50(пр) 20(лаб). Физика: 30(л) — 10(лаб) Физкультура: — 30(пр) — Пример словаря: {“Информатика”: 170, “Физика”: 40, “Физкультура”: 30} """ print("*" * 50 + " 6 " + "*" * 50) lessons_dict = {} with open('5_6.txt', 'r', encoding='utf-8') as file_6: for line in file_6: sum = 0 for i in range(1, 4): line_new = 0 try: line_new = line.split()[i].split("(") sum += int(line_new[0]) except (ValueError, TypeError): pass lessons_dict[line.split()[0]] = sum print(lessons_dict) """ 7. Создать вручную и заполнить несколькими строками текстовый файл, в котором каждая строка должна содержать данные о фирме: название, форма собственности, выручка, издержки. Пример строки файла: firm_1 ООО 10000 5000. Необходимо построчно прочитать файл, вычислить прибыль каждой компании, а также среднюю прибыль. Если фирма получила убытки, в расчет средней прибыли ее не включать. Далее реализовать список. Он должен содержать словарь с фирмами и их прибылями, а также словарь со средней прибылью. Если фирма получила убытки, также добавить ее в словарь (со значением убытков). Пример списка: [{“firm_1”: 5000, “firm_2”: 3000, “firm_3”: 1000}, {“average_profit”: 2000}]. Итоговый список сохранить в виде json-объекта в соответствующий файл. Пример json-объекта: [{"firm_1": 5000, "firm_2": 3000, "firm_3": 1000}, {"average_profit": 2000}] Подсказка: использовать менеджер контекста. """ print("*" * 50 + " 7 " + "*" * 50) firm_dict = {} with open('5_7.txt', 'r', encoding='utf-8') as file_7: for line in file_7: firm_info = line.replace('\n', '').split(';') firm_dict[firm_info[0]] = float(firm_info[1]) - float(firm_info[2]) print(f"Прибыть кадой компании: {firm_dict}") print(f"Средняя прибыль компаний: {sum(firm_dict.values()) / len(firm_dict.keys())}") data_for_json = {'income': firm_dict, 'average_profit': sum(firm_dict.values()) / len(firm_dict.keys())} print(data_for_json) with open("my_file_.json", "w", encoding='utf-8') as write_f: json.dump(data_for_json, write_f)
null
lesson_5.py
lesson_5.py
py
7,956
python
en
code
null
code-starcoder2
83
[ { "api_name": "random.random", "line_number": 95, "usage_type": "call" }, { "api_name": "json.dump", "line_number": 167, "usage_type": "call" } ]
502123428
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import paho.mqtt.client as mqtt import subprocess import time import re import configparser as ConfigParser import threading import os # Default configuration config = { 'mqtt': { 'broker': 'localhost', 'port': 1883, 'prefix': 'media', 'user': os.environ.get('MQTT_USER'), 'password': os.environ.get('MQTT_PASSWORD'), }, 'cec': { 'enabled': 0, 'id': 1, 'port': 'RPI', 'devices': '0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15', } } def mqtt_send(topic, value, retain=False): mqtt_client.publish(topic, value, retain=retain) def cec_on_message(level, time, message): if level == cec.CEC_LOG_TRAFFIC: m = re.search('>> [0-9a-f]{2}:44:([0-9a-f]{2})', message) if m: handleKeyPress(m.group(1)) return m = re.search('>> [0-9a-f]{2}:8b:([0-9a-f]{2})', message) if m: handleKeyRelease(m.group(1)) return def cec_send(cmd, id=None): if id is None: cec_client.Transmit(cec_client.CommandFromString(cmd)) else: cec_client.Transmit(cec_client.CommandFromString('1%s:%s' % (hex(id)[2:], cmd))) def translateKey(key): localKey = None if key == "41": localKey = "volumeup" elif key == "42": localKey = "volumedown" elif key == "43": localKey = "volumemute" return localKey def handleKeyPress(key): remoteKey = translateKey(key) if remoteKey == None: return mqtt_send(config['mqtt']['prefix'] + '/cec/' + remoteKey, 'on', True) def handleKeyRelease(key): remoteKey = translateKey(key) if remoteKey == None: return mqtt_send(config['mqtt']['prefix'] + '/cec/' + remoteKey, 'off', True) def cec_refresh(): try: for id in config['cec']['devices'].split(','): cec_send('8F', id=int(id)) except Exception as e: print("Error during refreshing: ", str(e)) def cleanup(): mqtt_client.loop_stop() mqtt_client.disconnect() import signal import time class GracefulKiller: kill_now = False def __init__(self): signal.signal(signal.SIGINT, self.exit_gracefully) signal.signal(signal.SIGTERM, self.exit_gracefully) def exit_gracefully(self,signum, frame): self.kill_now = True try: ### Parse config ### killer = GracefulKiller() try: Config = ConfigParser.SafeConfigParser() if Config.read("/home/pi/scripts/config.ini"): # Load all sections and overwrite default configuration for section in Config.sections(): config[section].update(dict(Config.items(section))) # Environment variables for section in config: for key, value in config[section].items(): env = os.getenv(section.upper() + '_' + key.upper()); if env: config[section][key] = type(value)(env) # Do some checks if not int(config['cec']['enabled']) == 1: raise Exception('CEC is disabled. Can\'t continue.') except Exception as e: print("ERROR: Could not configure:", str(e)) exit(1) ### Setup CEC ### if int(config['cec']['enabled']) == 1: print("Initialising CEC...") try: import cec global repeatingKey repeatingKey = None cec_config = cec.libcec_configuration() cec_config.strDeviceName = "cec-audio" cec_config.bActivateSource = 0 cec_config.deviceTypes.Add(cec.CEC_DEVICE_TYPE_AUDIO_SYSTEM) cec_config.clientVersion = cec.LIBCEC_VERSION_CURRENT cec_config.SetLogCallback(cec_on_message) cec_client = cec.ICECAdapter.Create(cec_config) if not cec_client.Open(config['cec']['port']): raise Exception("Could not connect to cec adapter") cec_send("50:72:01:00") cec_send("50:7E:01:00") except Exception as e: print("ERROR: Could not initialise CEC:", str(e)) exit(1) ### Setup MQTT ### print("Initialising MQTT...") mqtt_client = mqtt.Client("cec-ir-mqtt") if config['mqtt']['user']: mqtt_client.username_pw_set(config['mqtt']['user'], password=config['mqtt']['password']); mqtt_client.connect(config['mqtt']['broker'], int(config['mqtt']['port']), 60) mqtt_client.loop_start() print("Starting main loop...") while True: time.sleep(10) if killer.kill_now: break except KeyboardInterrupt: cleanup() except RuntimeError: cleanup()
null
bridge.py
bridge.py
py
4,700
python
en
code
null
code-starcoder2
83
[ { "api_name": "os.environ.get", "line_number": 18, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 18, "usage_type": "attribute" }, { "api_name": "os.environ.get", "line_number": 19, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 19, "usage_type": "attribute" }, { "api_name": "re.search", "line_number": 34, "usage_type": "call" }, { "api_name": "re.search", "line_number": 39, "usage_type": "call" }, { "api_name": "signal.signal", "line_number": 97, "usage_type": "call" }, { "api_name": "signal.SIGINT", "line_number": 97, "usage_type": "attribute" }, { "api_name": "signal.signal", "line_number": 98, "usage_type": "call" }, { "api_name": "signal.SIGTERM", "line_number": 98, "usage_type": "attribute" }, { "api_name": "configparser.SafeConfigParser", "line_number": 106, "usage_type": "call" }, { "api_name": "os.getenv", "line_number": 116, "usage_type": "call" }, { "api_name": "cec.libcec_configuration", "line_number": 137, "usage_type": "call" }, { "api_name": "cec.CEC_DEVICE_TYPE_AUDIO_SYSTEM", "line_number": 140, "usage_type": "attribute" }, { "api_name": "cec.LIBCEC_VERSION_CURRENT", "line_number": 141, "usage_type": "attribute" }, { "api_name": "cec.ICECAdapter.Create", "line_number": 143, "usage_type": "call" }, { "api_name": "cec.ICECAdapter", "line_number": 143, "usage_type": "attribute" }, { "api_name": "paho.mqtt.client.Client", "line_number": 154, "usage_type": "call" }, { "api_name": "paho.mqtt.client", "line_number": 154, "usage_type": "name" }, { "api_name": "time.sleep", "line_number": 162, "usage_type": "call" } ]
288915456
import sys import os import time import datetime import redis import json # Smykowski takes the specifications from the customers and brings them down to # the software engineers. # XXX: maybe these should be to stdout instead of stderr, I dunno def debug(msg, force_debug=False): if DEBUG or force_debug: msg_output = u"{0}{1}\n".format(PID_PREFIX, msg) sys.stderr.write(msg_output.encode('utf8')) sys.stderr.flush() def mention(msg): msg_output = u"{0}{1}\n".format(PID_PREFIX, msg) sys.stderr.write(msg_output.encode('utf8')) sys.stderr.flush() DEBUG = os.environ.get('UMAD_SMYKOWSKI_DEBUG') PID_PREFIX = '[pid {0}] '.format(os.getpid()) def enqueue(dst_redis, queue_name, url): try: debug(u"About to insert {0} into {1}".format(url, queue_name)) pipeline = dst_redis.pipeline() pipeline.zadd(queue_name, time.time(), url) pipeline.lpush('barber', 'dummy_value') pipeline.execute() # will return something like: [ {0|1}, num_dummies ] mention(u"Successful insertion of {0} into {1}".format(url, queue_name)) except Exception as e: mention(u"Something went boom while inserting {0}: {1}".format(url, e)) raise def main(argv=None): debug("Debug logging is enabled") redis_server_host = os.environ.get('UMAD_REDIS_HOST', 'localhost') redis_server_port = os.environ.get('UMAD_REDIS_PORT', 6379) redis_server_db_src = os.environ.get('UMAD_REDIS_DB_SRC', 8) redis_server_db_dst = os.environ.get('UMAD_REDIS_DB_DST', 0) redis_server_src_key = os.environ.get('UMAD_REDIS_AWESANT_KEY', 'umad_event:queue') src_redis = redis.StrictRedis(host=redis_server_host, port=int(redis_server_port), db=redis_server_db_src) dst_redis = redis.StrictRedis(host=redis_server_host, port=int(redis_server_port), db=redis_server_db_dst) # Get URLs out of Redis, look for interesting ones, put them into the # indexing listener's queue. Make this very stupid, daemontools will # restart us if the world explodes. while True: log_entry_json = src_redis.blpop(redis_server_src_key)[1] # Disregard the popped keyname log_entry_dict = json.loads(log_entry_json) log_message = log_entry_dict[u'@message'] (request_method, request_url) = log_message.split(None, 1) #debug("Got a request with method {0} and URL of {1}".format(request_method, request_url)) # Skip junk if any([ '/moin_static' in request_url, # there may be a numeric suffix on this before the next slash '/gollum_static/' in request_url, request_url.endswith('.js'), request_url.endswith('.css'), request_url.endswith( ('.jpg','.png','.gif') ), request_url.endswith( ('.woff','.ttf','.otf') ), request_url.endswith( ('/create-a-new-page','/new-page') ), ]): continue # Throw it in the queue if request_url.startswith('https://docs.anchor.net.au/'): # Our gollum wikis are special (ie. annoying). Gollum # POSTs to URLs that don't really exists, so we have to # derive the actual pagename ourself and call a fake # POST on that. -_- To ensure we can tell the fakes # from the real ones, we use INDEX as the method # instesd. if request_method in ('INDEX',): enqueue(dst_redis, 'umad_indexing_queue', request_url) else: # nginx encodes URLs with backslash hex escapes, which # we need to clean up. Now it's a Unicode object. No # name-mangling is needed for docs.anchor because it's # Gollum, which only allows for plain filenames/URLs. request_url = request_url.decode('string_escape').decode('utf8') # When the Python3 revolution arrives we'll need to do this: # request_url = bytes(request_url, 'utf-8').decode('unicode_escape') # http://stackoverflow.com/a/4020824 if request_method in ('POST', 'PUT'): enqueue(dst_redis, 'umad_indexing_queue', request_url) if request_method in ('DELETE',): enqueue(dst_redis, 'umad_deletion_queue', request_url) # Make a note that we saw a heartbeat. We'd like to keep all # the hits we've seen in the last N minutes (eg. 5min), but # Redis doesn't export expiry of list elements, only the whole # key. Instead we use a sorted set to associate a timestamp # with each heartbeat ping, making it easy for us to grab only # recent pings for inspection, and delete old ones once their # usefulness has passed. if request_method == 'PING': # This is made somewhat harder because we want to keep # a numeric range of timestamps, not a quantity of # them. Sorted sets look like the only way to do it. # By way of example, assume that each backend pings # every 5min, and we'd like to keep the last 30min # worth of ping timestamps. We *could* keep a list of # ping timestamps and truncate to len=100 all the time, # but that doesn't assure a sane distribution of # timestamps and tell us what we *really* want to know. # Because sets are unique, I think I'll need to use # dummy key names, and keep the timestamps purely as # scores. # I'd like to do a proper conversion of URL-to-doctype, # but that would introduct a dependency on the # distillers. It'd be fine, but I think I'd rather # avoid it right now, so we'll leave it to be someone # else's problem when it's read back for monitoring. # Assume that the PING'd urls for each backend don't # change over time, we can still do pattern # recognition. current_time = datetime.datetime.utcnow() thirty_minutes = datetime.timedelta(minutes=30) thirty_minutes_ago = current_time - thirty_minutes current_timestamp = int(time.mktime(current_time.timetuple())) thirty_minutes_ago_timestamp = int(time.mktime(thirty_minutes_ago.timetuple())) dst_redis.zremrangebyscore('umad_backend_heartbeats', '-inf', thirty_minutes_ago_timestamp) dst_redis.zadd('umad_backend_heartbeats', current_timestamp, "{0} {1}".format(request_url, current_timestamp) ) mention(u"Logged heartbeat ping for {0} at {1}".format(request_url, current_timestamp)) # On readback we simply do: # dst_redis.zrangebyscore('umad_backend_heartbeats', thirty_minutes_ago_timestamp, '+inf') # Split each result, keep the ones for which the first # element is the backend we care about, then analyse # the numbers. return 0 if __name__ == "__main__": sys.exit(main())
null
smykowski/smykowski.py
smykowski.py
py
6,287
python
en
code
null
code-starcoder2
83
[ { "api_name": "sys.stderr.write", "line_number": 18, "usage_type": "call" }, { "api_name": "sys.stderr", "line_number": 18, "usage_type": "attribute" }, { "api_name": "sys.stderr.flush", "line_number": 19, "usage_type": "call" }, { "api_name": "sys.stderr", "line_number": 19, "usage_type": "attribute" }, { "api_name": "sys.stderr.write", "line_number": 23, "usage_type": "call" }, { "api_name": "sys.stderr", "line_number": 23, "usage_type": "attribute" }, { "api_name": "sys.stderr.flush", "line_number": 24, "usage_type": "call" }, { "api_name": "sys.stderr", "line_number": 24, "usage_type": "attribute" }, { "api_name": "os.environ.get", "line_number": 27, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 27, "usage_type": "attribute" }, { "api_name": "os.getpid", "line_number": 28, "usage_type": "call" }, { "api_name": "time.time", "line_number": 35, "usage_type": "call" }, { "api_name": "os.environ.get", "line_number": 47, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 47, "usage_type": "attribute" }, { "api_name": "os.environ.get", "line_number": 48, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 48, "usage_type": "attribute" }, { "api_name": "os.environ.get", "line_number": 49, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 49, "usage_type": "attribute" }, { "api_name": "os.environ.get", "line_number": 50, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 50, "usage_type": "attribute" }, { "api_name": "os.environ.get", "line_number": 51, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 51, "usage_type": "attribute" }, { "api_name": "redis.StrictRedis", "line_number": 52, "usage_type": "call" }, { "api_name": "redis.StrictRedis", "line_number": 53, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 60, "usage_type": "call" }, { "api_name": "datetime.datetime.utcnow", "line_number": 140, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 140, "usage_type": "attribute" }, { "api_name": "datetime.timedelta", "line_number": 141, "usage_type": "call" }, { "api_name": "time.mktime", "line_number": 144, "usage_type": "call" }, { "api_name": "time.mktime", "line_number": 145, "usage_type": "call" }, { "api_name": "sys.exit", "line_number": 161, "usage_type": "call" } ]
19777276
import pytest import numpy as np from os import path from astropy.io import fits from astropy import wcs from astropy.coordinates import SkyCoord import astropy.units as u from .utils_for_test import create_test_ffis from ..make_cube import CubeFactory from ..cube_cut import CutoutFactory from ..exceptions import InvalidQueryError, InputWarning def checkcutout(cutfile, pixcrd, world, csize, ecube, eps=1.e-7): """Check FITS cutout for correctness Checks RA_OBJ/DEC_OBJ in primary header, and TIME, FLUX, and FLUX_ERR in table. Inputs: cutfile Name of FITS cutout file pixcrd [2] pixel coordinates for cutout center [cy,cx] world [2] RA, Dec in degrees for cutout center csize Integer size of cutout (probably should be odd) ecube Simulated data cube eps Maximum allowed distance offset in degrees Returns True on success, False on failure """ ix = int(pixcrd[1]) iy = int(pixcrd[0]) x1 = ix - csize//2 x2 = x1 + csize - 1 y1 = iy - csize//2 y2 = y1 + csize - 1 hdulist = fits.open(cutfile) ra_obj = hdulist[0].header['RA_OBJ'] dec_obj = hdulist[0].header['DEC_OBJ'] pinput = SkyCoord(world[0], world[1], frame='icrs', unit='deg') poutput = SkyCoord(ra_obj, dec_obj, frame='icrs', unit='deg') dist = pinput.separation(poutput).degree assert dist <= eps, "{} separation in primary header {} too large".format(cutfile, dist) ntimes = ecube.shape[2] tab = hdulist[1].data assert len(tab) == ntimes, "{} expected {} entries, found {}".format(cutfile, ntimes, len(tab)) assert (tab['TIME'] == (np.arange(ntimes)+0.5)).all(), "{} some time values are incorrect".format(cutfile) check1(tab['FLUX'], x1, x2, y1, y2, ecube[:, :, :, 0], 'FLUX', cutfile) check1(tab['FLUX_ERR'], x1, x2, y1, y2, ecube[:, :, :, 1], 'FLUX_ERR', cutfile) # Regression test for PR #6 assert hdulist[2].data.dtype.type == np.int32 return def check1(flux, x1, x2, y1, y2, ecube, label, cutfile): """Test one of flux or error""" cx = ecube.shape[0] cy = ecube.shape[1] if x1 < 0: assert np.isnan(flux[:, :-x1, :]).all(), "{} {} x1 NaN failure".format(cutfile, label) if y1 < 0: assert np.isnan(flux[:, :, :-y1]).all(), "{} {} y1 NaN failure".format(cutfile, label) if x2 >= cx: assert np.isnan(flux[:, -(x2-cx+1):, :]).all(), "{} {} x2 NaN failure".format(cutfile, label) if y2 >= cy: assert np.isnan(flux[:, :, -(y2-cy+1):]).all(), "{} {} y2 NaN failure".format(cutfile, label) x1c = max(x1, 0) y1c = max(y1, 0) x2c = min(x2, cx-1) y2c = min(y2, cy-1) scube = ecube[x1c:x2c, y1c:y2c, :] sflux = np.moveaxis(flux[:, x1c-x1:x2c-x1, y1c-y1:y2c-y1], 0, -1) assert (scube == sflux).all(), "{} {} comparison failure".format(cutfile, label) return def test_cube_cutout(tmpdir): """ Testing the cube cutout functionality. """ # Making the test cube cube_maker = CubeFactory() img_sz = 10 num_im = 100 ffi_files = create_test_ffis(img_sz, num_im, dir_name=tmpdir) cube_file = cube_maker.make_cube(ffi_files, path.join(tmpdir, "test_cube.fits"), verbose=False) # Read one of the input images to get the WCS img_header = fits.getheader(ffi_files[0], 1) cube_wcs = wcs.WCS(img_header) # get pixel positions at edges and center of image # somewhat cryptic one-liner to get the grid of points pval = np.array([0, img_sz//2, img_sz-1], dtype=np.float) pixcrd = pval[np.transpose(np.reshape(np.mgrid[0:3, 0:3], (2, 9)))] # add one more giant cutout that goes off all 4 edges pixcrd = np.append(pixcrd, pixcrd[4].reshape(1, 2), axis=0) # getting the world coordinates world_coords = cube_wcs.all_pix2world(pixcrd, 0) # Getting the cutouts cutbasename = 'make_cube_cutout_{}.fits' cutlist = [path.join(tmpdir, cutbasename.format(i)) for i in range(len(world_coords))] csize = [img_sz//2]*len(world_coords) csize[-1] = img_sz+5 for i, v in enumerate(world_coords): coord = SkyCoord(v[0], v[1], frame='icrs', unit='deg') CutoutFactory().cube_cut(cube_file, coord, csize[i], target_pixel_file=cutlist[i], output_path=tmpdir, verbose=False) # expected values for cube ecube = np.zeros((img_sz, img_sz, num_im, 2)) plane = np.arange(img_sz*img_sz, dtype=np.float32).reshape((img_sz, img_sz)) for i in range(num_im): ecube[:, :, i, 0] = -plane ecube[:, :, i, 1] = plane plane += img_sz*img_sz # Doing the actual checking for i, cutfile in enumerate(cutlist): checkcutout(cutfile, pixcrd[i], world_coords[i], csize[i], ecube) def test_cutout_extras(tmpdir): # Making the test cube cube_maker = CubeFactory() img_sz = 10 num_im = 100 ffi_files = create_test_ffis(img_sz, num_im) cube_file = cube_maker.make_cube(ffi_files, path.join(tmpdir, "test_cube.fits"), verbose=False) # Making the cutout myfactory = CutoutFactory() coord = "256.88 6.38" ########################### # Test _parse_table_info # ########################### cutout_size = [5, 3] out_file = myfactory.cube_cut(cube_file, coord, cutout_size, output_path=path.join(tmpdir, "out_dir"), verbose=False) assert "256.880000_6.380000_5x3_astrocut.fits" in out_file assert isinstance(myfactory.cube_wcs, wcs.WCS) ra, dec = myfactory.cube_wcs.wcs.crval assert round(ra, 4) == 250.3497 assert round(dec, 4) == 2.2809 # checking on the center coordinate too coord = SkyCoord(256.88, 6.38, frame='icrs', unit='deg') assert myfactory.center_coord.separation(coord) == 0 ############################ # Test _get_cutout_limits # ############################ xmin, xmax = myfactory.cutout_lims[0] ymin, ymax = myfactory.cutout_lims[1] assert (xmax-xmin) == cutout_size[0] assert (ymax-ymin) == cutout_size[1] cutout_size = [5*u.pixel, 7*u.pixel] out_file = myfactory.cube_cut(cube_file, coord, cutout_size, verbose=False) assert "256.880000_6.380000_5x7_astrocut.fits" in out_file xmin, xmax = myfactory.cutout_lims[0] ymin, ymax = myfactory.cutout_lims[1] assert (xmax-xmin) == cutout_size[0].value assert (ymax-ymin) == cutout_size[1].value cutout_size = [3*u.arcmin, 5*u.arcmin] out_file = myfactory.cube_cut(cube_file, coord, cutout_size, verbose=False) assert "256.880000_6.380000_8x15_astrocut.fits" in out_file xmin, xmax = myfactory.cutout_lims[0] ymin, ymax = myfactory.cutout_lims[1] assert (xmax-xmin) == 8 assert (ymax-ymin) == 15 cutout_size = [1*u.arcsec, 5*u.arcsec] out_file = myfactory.cube_cut(cube_file, coord, cutout_size, verbose=False) assert "256.880000_6.380000_1x1_astrocut.fits" in out_file xmin, xmax = myfactory.cutout_lims[0] ymin, ymax = myfactory.cutout_lims[1] assert (xmax-xmin) == 1 assert (ymax-ymin) == 1 ############################# # Test _get_full_cutout_wcs # ############################# cutout_size = [5, 3] out_file = myfactory.cube_cut(cube_file, coord, cutout_size, verbose=False) cutout_wcs_full = myfactory._get_full_cutout_wcs(fits.getheader(cube_file, 2)) assert (cutout_wcs_full.wcs.crpix == [1045 - myfactory.cutout_lims[0, 0], 1001 - myfactory.cutout_lims[1, 0]]).all() ######################## # Test _fit_cutout_wcs # ######################## max_dist, sigma = myfactory._fit_cutout_wcs(cutout_wcs_full, (3, 5)) assert max_dist.deg < 1e-05 assert sigma < 1e-05 cry, crx = myfactory.cutout_wcs.wcs.crpix assert round(cry) == 3 assert round(crx) == 2 ########################## # Test target pixel file # ########################## # Testing the cutout content is in test_cube_cutout # this tests that the format of the tpf is what it should be tpf = fits.open(out_file) assert tpf[0].header["ORIGIN"] == 'STScI/MAST' tpf_table = tpf[1].data assert len(tpf_table.columns) == 12 assert "TIME" in tpf_table.columns.names assert "FLUX" in tpf_table.columns.names assert "FLUX_ERR" in tpf_table.columns.names assert "FFI_FILE" in tpf_table.columns.names cutout_img = tpf_table[0]['FLUX'] assert cutout_img.shape == (3, 5) assert cutout_img.dtype.name == 'float32' aperture = tpf[2].data assert aperture.shape == (3, 5) assert aperture.dtype.name == 'int32' tpf.close() def test_exceptions(tmpdir): """ Testing various error conditions. """ # Making the test cube cube_maker = CubeFactory() img_sz = 10 num_im = 100 ffi_files = create_test_ffis(img_sz, num_im) cube_file = cube_maker.make_cube(ffi_files, path.join(tmpdir, "test_cube.fits"), verbose=False) # Setting up myfactory = CutoutFactory() hdu = fits.open(cube_file) cube_table = hdu[2].data # Testing when none of the FFIs have good wcs info cube_table["WCSAXES"] = 0 with pytest.raises(Exception, match='No FFI rows contain valid WCS keywords.') as e: myfactory._parse_table_info(cube_table) assert e.type is wcs.NoWcsKeywordsFoundError cube_table["WCSAXES"] = 2 # Testing when nans are present myfactory._parse_table_info(cube_table) wcs_orig = myfactory.cube_wcs cube_table["BARYCORR"] = np.nan myfactory._parse_table_info(cube_table) assert wcs_orig.to_header_string() == myfactory.cube_wcs.to_header_string() hdu.close() # Testing various off the cube inputs myfactory.center_coord = SkyCoord("50.91092264 6.40588255", unit='deg') with pytest.raises(Exception, match='Cutout location is not in cube footprint!') as e: myfactory._get_cutout_limits(np.array([5, 5])) assert e.type is InvalidQueryError myfactory.center_coord = SkyCoord("257.91092264 6.40588255", unit='deg') with pytest.raises(Exception, match='Cutout location is not in cube footprint!') as e: myfactory._get_cutout_limits(np.array([5, 5])) assert e.type is InvalidQueryError # Testing the WCS fitting function distmax, sigma = myfactory._fit_cutout_wcs(myfactory.cube_wcs, (100, 100)) assert distmax.deg < 0.003 assert sigma < 0.03 distmax, sigma = myfactory._fit_cutout_wcs(myfactory.cube_wcs, (1, 100)) assert distmax.deg < 0.003 assert sigma < 0.03 distmax, sigma = myfactory._fit_cutout_wcs(myfactory.cube_wcs, (100, 2)) assert distmax.deg < 0.03 assert sigma < 0.03 myfactory.center_coord = SkyCoord("256.38994124 4.88986771", unit='deg') myfactory._get_cutout_limits(np.array([5, 500])) hdu = fits.open(cube_file) cutout_wcs = myfactory._get_full_cutout_wcs(hdu[2].header) hdu.close() distmax, sigma = myfactory._fit_cutout_wcs(cutout_wcs, (200, 200)) assert distmax.deg < 0.004 assert sigma < 0.2 distmax, sigma = myfactory._fit_cutout_wcs(cutout_wcs, (100, 5)) assert distmax.deg < 0.003 assert sigma < 0.003 distmax, sigma = myfactory._fit_cutout_wcs(cutout_wcs, (3, 100)) assert distmax.deg < 0.003 assert sigma < 0.003 def test_inputs(tmpdir, capsys): """ Testing with different user input types/combos. And verbose. """ # Making the test cube cube_maker = CubeFactory() img_sz = 10 num_im = 100 ffi_files = create_test_ffis(img_sz, num_im) cube_file = cube_maker.make_cube(ffi_files, path.join(tmpdir, "test_cube.fits"), verbose=False) # Setting up myfactory = CutoutFactory() coord = "256.88 6.38" cutout_size = [5, 3]*u.pixel cutout_file = myfactory.cube_cut(cube_file, coord, cutout_size, output_path=tmpdir, verbose=True) captured = capsys.readouterr() assert "Image cutout cube shape: (100, 3, 5)" in captured.out assert "Using WCS from row 50 out of 100" in captured.out assert "Cutout center coordinate: 256.88,6.38" in captured.out assert "5x3" in cutout_file cutout_size = [5, 3]*u.arcmin cutout_file = myfactory.cube_cut(cube_file, coord, cutout_size, output_path=tmpdir, verbose=False) assert "14x9" in cutout_file cutout_size = [5, 3, 9]*u.pixel with pytest.warns(InputWarning): cutout_file = myfactory.cube_cut(cube_file, coord, cutout_size, output_path=tmpdir, verbose=False) assert "5x3" in cutout_file assert "x9" not in cutout_file
null
astrocut/tests/test_cube_cut.py
test_cube_cut.py
py
12,764
python
en
code
null
code-starcoder2
83
[ { "api_name": "astropy.io.fits.open", "line_number": 38, "usage_type": "call" }, { "api_name": "astropy.io.fits", "line_number": 38, "usage_type": "name" }, { "api_name": "astropy.coordinates.SkyCoord", "line_number": 41, "usage_type": "call" }, { "api_name": "astropy.coordinates.SkyCoord", "line_number": 42, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 50, "usage_type": "call" }, { "api_name": "numpy.int32", "line_number": 56, "usage_type": "attribute" }, { "api_name": "numpy.isnan", "line_number": 66, "usage_type": "call" }, { "api_name": "numpy.isnan", "line_number": 69, "usage_type": "call" }, { "api_name": "numpy.isnan", "line_number": 72, "usage_type": "call" }, { "api_name": "numpy.isnan", "line_number": 75, "usage_type": "call" }, { "api_name": "numpy.moveaxis", "line_number": 82, "usage_type": "call" }, { "api_name": "make_cube.CubeFactory", "line_number": 94, "usage_type": "call" }, { "api_name": "utils_for_test.create_test_ffis", "line_number": 99, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 100, "usage_type": "call" }, { "api_name": "os.path", "line_number": 100, "usage_type": "name" }, { "api_name": "astropy.io.fits.getheader", "line_number": 103, "usage_type": "call" }, { "api_name": "astropy.io.fits", "line_number": 103, "usage_type": "name" }, { "api_name": "astropy.wcs.WCS", "line_number": 104, "usage_type": "call" }, { "api_name": "astropy.wcs", "line_number": 104, "usage_type": "name" }, { "api_name": "numpy.array", "line_number": 108, "usage_type": "call" }, { "api_name": "numpy.float", "line_number": 108, "usage_type": "attribute" }, { "api_name": "numpy.transpose", "line_number": 109, "usage_type": "call" }, { "api_name": "numpy.reshape", "line_number": 109, "usage_type": "call" }, { "api_name": "numpy.mgrid", "line_number": 109, "usage_type": "attribute" }, { "api_name": "numpy.append", "line_number": 112, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 119, "usage_type": "call" }, { "api_name": "os.path", "line_number": 119, "usage_type": "name" }, { "api_name": "astropy.coordinates.SkyCoord", "line_number": 123, "usage_type": "call" }, { "api_name": "cube_cut.CutoutFactory", "line_number": 124, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 128, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 129, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 129, "usage_type": "attribute" }, { "api_name": "make_cube.CubeFactory", "line_number": 144, "usage_type": "call" }, { "api_name": "utils_for_test.create_test_ffis", "line_number": 149, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 150, "usage_type": "call" }, { "api_name": "os.path", "line_number": 150, "usage_type": "name" }, { "api_name": "cube_cut.CutoutFactory", "line_number": 153, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 161, "usage_type": "call" }, { "api_name": "os.path", "line_number": 161, "usage_type": "name" }, { "api_name": "astropy.wcs.WCS", "line_number": 164, "usage_type": "attribute" }, { "api_name": "astropy.wcs", "line_number": 164, "usage_type": "name" }, { "api_name": "astropy.coordinates.SkyCoord", "line_number": 170, "usage_type": "call" }, { "api_name": "astropy.units.pixel", "line_number": 182, "usage_type": "attribute" }, { "api_name": "astropy.units", "line_number": 182, "usage_type": "name" }, { "api_name": "astropy.units.arcmin", "line_number": 192, "usage_type": "attribute" }, { "api_name": "astropy.units", "line_number": 192, "usage_type": "name" }, { "api_name": "astropy.units.arcsec", "line_number": 202, "usage_type": "attribute" }, { "api_name": "astropy.units", "line_number": 202, "usage_type": "name" }, { "api_name": "astropy.io.fits.getheader", "line_number": 218, "usage_type": "call" }, { "api_name": "astropy.io.fits", "line_number": 218, "usage_type": "name" }, { "api_name": "astropy.io.fits.open", "line_number": 240, "usage_type": "call" }, { "api_name": "astropy.io.fits", "line_number": 240, "usage_type": "name" }, { "api_name": "make_cube.CubeFactory", "line_number": 268, "usage_type": "call" }, { "api_name": "utils_for_test.create_test_ffis", "line_number": 273, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 274, "usage_type": "call" }, { "api_name": "os.path", "line_number": 274, "usage_type": "name" }, { "api_name": "cube_cut.CutoutFactory", "line_number": 277, "usage_type": "call" }, { "api_name": "astropy.io.fits.open", "line_number": 279, "usage_type": "call" }, { "api_name": "astropy.io.fits", "line_number": 279, "usage_type": "name" }, { "api_name": "pytest.raises", "line_number": 284, "usage_type": "call" }, { "api_name": "astropy.wcs.NoWcsKeywordsFoundError", "line_number": 286, "usage_type": "attribute" }, { "api_name": "astropy.wcs", "line_number": 286, "usage_type": "name" }, { "api_name": "numpy.nan", "line_number": 292, "usage_type": "attribute" }, { "api_name": "astropy.coordinates.SkyCoord", "line_number": 299, "usage_type": "call" }, { "api_name": "pytest.raises", "line_number": 300, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 301, "usage_type": "call" }, { "api_name": "exceptions.InvalidQueryError", "line_number": 302, "usage_type": "name" }, { "api_name": "astropy.coordinates.SkyCoord", "line_number": 304, "usage_type": "call" }, { "api_name": "pytest.raises", "line_number": 305, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 306, "usage_type": "call" }, { "api_name": "exceptions.InvalidQueryError", "line_number": 307, "usage_type": "name" }, { "api_name": "astropy.coordinates.SkyCoord", "line_number": 323, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 324, "usage_type": "call" }, { "api_name": "astropy.io.fits.open", "line_number": 326, "usage_type": "call" }, { "api_name": "astropy.io.fits", "line_number": 326, "usage_type": "name" }, { "api_name": "make_cube.CubeFactory", "line_number": 349, "usage_type": "call" }, { "api_name": "utils_for_test.create_test_ffis", "line_number": 354, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 355, "usage_type": "call" }, { "api_name": "os.path", "line_number": 355, "usage_type": "name" }, { "api_name": "cube_cut.CutoutFactory", "line_number": 358, "usage_type": "call" }, { "api_name": "astropy.units.pixel", "line_number": 361, "usage_type": "attribute" }, { "api_name": "astropy.units", "line_number": 361, "usage_type": "name" }, { "api_name": "astropy.units.arcmin", "line_number": 369, "usage_type": "attribute" }, { "api_name": "astropy.units", "line_number": 369, "usage_type": "name" }, { "api_name": "astropy.units.pixel", "line_number": 374, "usage_type": "attribute" }, { "api_name": "astropy.units", "line_number": 374, "usage_type": "name" }, { "api_name": "pytest.warns", "line_number": 375, "usage_type": "call" }, { "api_name": "exceptions.InputWarning", "line_number": 375, "usage_type": "argument" } ]
511985183
from threading import Thread import numpy as np import pandas as pd from flask import Flask, jsonify, request from clf import run, load_model from flask_swagger_ui import get_swaggerui_blueprint app = Flask(__name__) ### swagger specific ### SWAGGER_URL = '/swagger' API_URL = '/static/swagger.json' SWAGGERUI_BLUEPRINT = get_swaggerui_blueprint( SWAGGER_URL, API_URL, config={ 'app_name': "Credit-Card-Fraud-Detection-ML" } ) app.register_blueprint(SWAGGERUI_BLUEPRINT, url_prefix=SWAGGER_URL) ### end swagger specific ### @app.route("/") def index(): return "welcome to news clf" @app.route("/train") def train_new_model(): trainer_job = Thread(target=run) trainer_job.start() return "training started !!" @app.route("/load_model") def load_new_model(): cur_model = load_model() return "model updated !" @app.route("/clf", methods=['POST']) # for test use postman and in test tab put this [{"data":""}] def classify(): # load doc if request.is_json: print("Valid Json") else: return jsonify({ "Bad Request": "Not Valid Json Request , Please check the Keys and values numbers " }) data = request.json['data'] print(data) print(type(data)) cur_model = load_model() data = pd.DataFrame.from_dict(data, orient='index') data = data.values.reshape(-1, 30) pred = cur_model.predict(data) conf = cur_model.predict_proba(data) print(type(pred)) print(pred) # Replace every 0 with Valid and every 1 with Fraud in prediction mapping = {1: 'Fraud', 0: 'Valid'} map = lambda x: mapping.get(x, x) pred = np.vectorize(map)(pred) print(pred) # Converting the numpyArray to list so jsonify can convert it to json pred = pred.tolist() conf = conf.tolist() return jsonify({ "transaction": pred[0], "Confidence": {"Valid": conf[0][0], "Fraud": conf[0][1]} })
null
routes.py
routes.py
py
1,950
python
en
code
null
code-starcoder2
83
[ { "api_name": "flask.Flask", "line_number": 8, "usage_type": "call" }, { "api_name": "flask_swagger_ui.get_swaggerui_blueprint", "line_number": 13, "usage_type": "call" }, { "api_name": "threading.Thread", "line_number": 33, "usage_type": "call" }, { "api_name": "clf.run", "line_number": 33, "usage_type": "name" }, { "api_name": "clf.load_model", "line_number": 40, "usage_type": "call" }, { "api_name": "flask.request.is_json", "line_number": 47, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 47, "usage_type": "name" }, { "api_name": "flask.jsonify", "line_number": 50, "usage_type": "call" }, { "api_name": "flask.request.json", "line_number": 54, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 54, "usage_type": "name" }, { "api_name": "clf.load_model", "line_number": 58, "usage_type": "call" }, { "api_name": "pandas.DataFrame.from_dict", "line_number": 59, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 59, "usage_type": "attribute" }, { "api_name": "numpy.vectorize", "line_number": 69, "usage_type": "call" }, { "api_name": "flask.jsonify", "line_number": 75, "usage_type": "call" } ]
348820320
import json from io import BytesIO from unittest import mock import boto3 import numpy as np import pytest from PIL import Image from ..conftest import AWS_ENDPOINT_URI from ..fixtures.payloads import umd_glad_alerts_payload, umd_tree_cover_loss_payload @pytest.mark.e2e @pytest.mark.parametrize("x, y, multiplier", [(0, 0, 1), (1, 1, 4)]) def test_dynamic_tiles_no_params(x, y, multiplier, client): """ Test dynamic tile cache :param x: x block coordinate for tile :param y: y block coordinate for tile :param multiplier: the test tile has multiplier for each x, y block. This is used to check the expected result values. """ try: response = client.get( f"/wur_radd_alerts/v20201214/dynamic/14/{x}/{y}.png", params={"implementation": "default"}, stream=True, ) assert ( response.status_code == 200 ), f"Bad response for request {response.request.url}: {response.json()}" img = _response_to_img(response) _check_png(img, multiplier) # check if s3 file copied. It should now be accessible using the default endpoint. saved_bytes = BytesIO() s3_client = boto3.client("s3", endpoint_url=AWS_ENDPOINT_URI) s3_client.download_fileobj( "gfw-tiles-test", f"wur_radd_alerts/v20201214/default/14/{x}/{y}.png", saved_bytes, ) saved_bytes.seek(0) _check_png(saved_bytes, multiplier) finally: _get_logs() @pytest.mark.e2e @pytest.mark.parametrize("x, y, confirmed_only", [(0, 0, False), (0, 0, True)]) def test_dynamic_tiles_params(x, y, confirmed_only, client): """ Test dynamic tile cache end to end """ try: response = client.get( f"/wur_radd_alerts/v20201214/dynamic/14/{x}/{y}.png", params={"confirmed_only": confirmed_only}, stream=True, ) assert ( response.status_code == 200 ), f"Bad response for request {response.request.url}: {response.json()}" img = _response_to_img(response) _check_filtered_png(img, confirmed_only) # check if s3 file copied. It should now be accessible using the default endpoint. # saved_bytes = BytesIO() # s3_client = boto3.client("s3", endpoint_url=AWS_ENDPOINT_URI) # s3_client.download_fileobj( # "gfw-tiles-test", # f"wur_radd_alerts/v20201214/default/14/{x}/{y}.png", # saved_bytes, # ) # saved_bytes.seek(0) # _check_png(saved_bytes, multiplier) finally: _get_logs() @pytest.mark.parametrize( "params, payload", [ umd_tree_cover_loss_payload(), umd_glad_alerts_payload(), umd_tree_cover_loss_payload(z=13), umd_glad_alerts_payload(z=15), ], ) def test_dynamic_tiles_named(params, payload, client, mock_get_dynamic_tile): """Only testing if payload is correctly forwarded to lambda. Lambda execution should be handled by a separate test. """ dataset = payload["dataset"] version = payload["version"] x = payload["x"] y = payload["y"] z = payload["z"] print(payload) # This will mock the lambda function and return the payload if dataset == "umd_tree_cover_loss": mock_patch = f"app.routes.{dataset}.raster_tiles.get_cached_response" else: mock_patch = "app.routes.dynamic_deforestation_alerts_tile.get_cached_response" with mock.patch(mock_patch) as mck: mck.side_effect = mock_get_dynamic_tile response = client.get( f"/{dataset}/{version}/dynamic/{z}/{x}/{y}.png", params=params, stream=True ) assert ( response.status_code == 200 ), f"Bad response for request {response.request.url}: {response.json()}" expected_response = {"data": payload, "status": "success"} rsp = _response_to_img(response) assert json.loads(rsp.read()) == expected_response def _response_to_img(response): response.raw.decode_content = True image_bytes = BytesIO() for chunk in response: image_bytes.write(chunk) image_bytes.seek(0) return image_bytes def _check_png(image_bytes, multiplier): image = Image.open(image_bytes) rgb = np.array(image) assert rgb.shape == (256, 256, 3) assert np.all(rgb[:, :, 0] == 1 * multiplier) assert np.all(rgb[:, :, 1] == 2 * multiplier) assert np.all(rgb[:, :, 2] == 3 * multiplier) def _check_filtered_png(image_bytes, confirmed_only): image = Image.open(image_bytes) rgba = np.array(image) assert rgba.shape == (256, 256, 4) assert np.all(rgba[:, :, 0] == 228) assert np.all(rgba[:, :, 1] == 102) assert np.all(rgba[:, :, 2] == 153) if confirmed_only: assert np.all(rgba[:, :, 3] == 0) else: assert np.all(rgba[:, :, 3] == 150) def _get_logs(): log_client = boto3.client( "logs", region_name="us-east-1", endpoint_url=AWS_ENDPOINT_URI ) log_group_name = "/aws/lambda/test_project-lambda-tiler" for log_stream in log_client.describe_log_streams(logGroupName=log_group_name)[ "logStreams" ]: log_events = log_client.get_log_events( logGroupName=log_group_name, logStreamName=log_stream["logStreamName"], )["events"] for event in log_events: # for some reason stack traces come with carriage returns, # which overwrites the line instead of making a new line message = event["message"].replace("\r", "\n") print(f"{log_stream['logStreamName']}: {message}")
null
tests/routes/test_raster_tiles.py
test_raster_tiles.py
py
5,700
python
en
code
null
code-starcoder2
83
[ { "api_name": "io.BytesIO", "line_number": 38, "usage_type": "call" }, { "api_name": "boto3.client", "line_number": 39, "usage_type": "call" }, { "api_name": "conftest.AWS_ENDPOINT_URI", "line_number": 39, "usage_type": "name" }, { "api_name": "pytest.mark", "line_number": 14, "usage_type": "attribute" }, { "api_name": "pytest.mark.parametrize", "line_number": 15, "usage_type": "call" }, { "api_name": "pytest.mark", "line_number": 15, "usage_type": "attribute" }, { "api_name": "pytest.mark", "line_number": 51, "usage_type": "attribute" }, { "api_name": "pytest.mark.parametrize", "line_number": 52, "usage_type": "call" }, { "api_name": "pytest.mark", "line_number": 52, "usage_type": "attribute" }, { "api_name": "unittest.mock.patch", "line_number": 111, "usage_type": "call" }, { "api_name": "unittest.mock", "line_number": 111, "usage_type": "name" }, { "api_name": "json.loads", "line_number": 125, "usage_type": "call" }, { "api_name": "pytest.mark.parametrize", "line_number": 85, "usage_type": "call" }, { "api_name": "pytest.mark", "line_number": 85, "usage_type": "attribute" }, { "api_name": "fixtures.payloads.umd_tree_cover_loss_payload", "line_number": 88, "usage_type": "call" }, { "api_name": "fixtures.payloads.umd_glad_alerts_payload", "line_number": 89, "usage_type": "call" }, { "api_name": "fixtures.payloads.umd_tree_cover_loss_payload", "line_number": 90, "usage_type": "call" }, { "api_name": "fixtures.payloads.umd_glad_alerts_payload", "line_number": 91, "usage_type": "call" }, { "api_name": "io.BytesIO", "line_number": 130, "usage_type": "call" }, { "api_name": "PIL.Image.open", "line_number": 139, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 139, "usage_type": "name" }, { "api_name": "numpy.array", "line_number": 140, "usage_type": "call" }, { "api_name": "numpy.all", "line_number": 142, "usage_type": "call" }, { "api_name": "numpy.all", "line_number": 143, "usage_type": "call" }, { "api_name": "numpy.all", "line_number": 144, "usage_type": "call" }, { "api_name": "PIL.Image.open", "line_number": 148, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 148, "usage_type": "name" }, { "api_name": "numpy.array", "line_number": 149, "usage_type": "call" }, { "api_name": "numpy.all", "line_number": 151, "usage_type": "call" }, { "api_name": "numpy.all", "line_number": 152, "usage_type": "call" }, { "api_name": "numpy.all", "line_number": 153, "usage_type": "call" }, { "api_name": "numpy.all", "line_number": 155, "usage_type": "call" }, { "api_name": "numpy.all", "line_number": 157, "usage_type": "call" }, { "api_name": "boto3.client", "line_number": 161, "usage_type": "call" }, { "api_name": "conftest.AWS_ENDPOINT_URI", "line_number": 162, "usage_type": "name" } ]
48830805
#!/usr/bin/env python import os import pytest from gluon.contrib.webclient import WebClient import copy """ These tests run based on webclient and need web2py server running. """ new_innovation_data = dict(name='This is an innovation generated from automated tests', overview='This is an innovation generated from automated tests', type="Managerial", level_1="Crops", level_2="All crops", level_3="All crops", enterprise_size="Small", value_chain="Other", location="This is an innovation generated from automated tests", application_id="1", ipr_protection_id="2", impacts="This is an innovation generated from automated tests", requirements="This is an innovation generated from automated tests", innovator="This is an innovation generated from automated tests", researcher="This is an innovation generated from automated tests", contact="This is an innovation generated from automated tests", keywords="This is an innovation generated from automated tests", list_of_publications="This is an innovation generated from automated tests" ) def test_index_exists(client): client.get('/index') assert client.status == 200 assert "PARI" in client.text # # In case of widgets, I recommend you use re.findall() or re.search() to # # see if your field was rendered using the right HTML tag. # # Examples: <input type="text"...>, <input type="checkbox"...>, # # <textarea...>, etc. def test_validate_show_existing_in_db(client, web2py): """when accessing an existing in DB innovation we should show this innovation""" pytest.skip("long test") for row in web2py.db(web2py.db.innovation.id).select(): innovation_id = str(row.id) client.get('/show/' + innovation_id) assert client.status == 200 assert "Overview" in client.text def test_validate_show_non_existing_innov(client, web2py): """when accessing a non-existing innovation we should get a redirect to home page""" pytest.skip("long test") assert isinstance(client, WebClient) innovation_id = set(row.id for row in web2py.db(web2py.db.innovation.id).select()) non_existing_ids = set(list(range(1, max(innovation_id)))) - innovation_id for id in list(non_existing_ids): client.get('/show/' + str(id)) assert client.status == 200 assert "PARI" in client.text assert client.history != list() client.history = list() def test_validate_new(client, web2py): """access a page that requires login""" data = dict(email=os.environ['WEB2PY_LOGIN'], password=os.environ['WEB2PY_PASSWORD'], _formname='login') client.post('/user/login', data=data) client.get('/new') assert client.status == 200 assert "Create New Innovation" in client.text def test_save_new_innovation_should_create_new_innovation(client, web2py): """create new innovation""" client.post('/new', data=new_innovation_data) assert client.status == 200 assert "Download as PDF" in client.text # assert web2py.db(web2py.db.people).count() == 1 # assert web2py.db(web2py.db.people.name == data['name']).count() == 1 def test_save_new_innovation_without_application_id_should_fail(client, web2py): """ if one of the values is missing from data that means we don't have enough info to submit new innovation therefore we stay on the page /new """ for f in new_innovation_data.keys(): data = copy.deepcopy(new_innovation_data) del data[f] client.post('/new', data=data) assert client.status == 200 assert "Create New Innovation" in client.text # # def test_get_person_by_creation_date(client, web2py): # """Is my filter working? # """ # # from gluon.contrib.populate import populate # populate(web2py.db.people, 3) # insert 3 persons with random data # web2py.db.commit() # assert web2py.db(web2py.db.people).count() == 3 # # data = dict( # name='John Smith', # phone='3322-4455', # created_at='1999-04-03 18:00:00') # # web2py.db.people.insert(**data) # insert my controlled person # web2py.db.commit() # # client.get('/people/get_by_creation_date.json/' + # data['created_at'].split()[0]) # assert client.status == 200 # assert 'application/json' in client.headers['content-type'] # # import json # person = json.loads(client.text) # assert person['name'] == data['name']
null
tests/controllers/test_default_controller_webclient.py
test_default_controller_webclient.py
py
4,962
python
en
code
null
code-starcoder2
83
[ { "api_name": "pytest.skip", "line_number": 47, "usage_type": "call" }, { "api_name": "pytest.skip", "line_number": 58, "usage_type": "call" }, { "api_name": "gluon.contrib.webclient.WebClient", "line_number": 59, "usage_type": "argument" }, { "api_name": "os.environ", "line_number": 73, "usage_type": "attribute" }, { "api_name": "os.environ", "line_number": 74, "usage_type": "attribute" }, { "api_name": "copy.deepcopy", "line_number": 99, "usage_type": "call" } ]
304140543
# coding: utf-8 # Copyright (c) Max-Planck-Institut für Eisenforschung GmbH - Computational Materials Design (CM) Department # Distributed under the terms of "New BSD License", see the LICENSE file. from ctypes import c_double, c_int from mpi4py import MPI import numpy as np import sys from lammps import lammps from pympipool import ( interface_connect, interface_send, interface_shutdown, interface_receive, ) __author__ = "Sarath Menon, Jan Janssen" __copyright__ = ( "Copyright 2020, Max-Planck-Institut für Eisenforschung GmbH - " "Computational Materials Design (CM) Department" ) __version__ = "1.0" __maintainer__ = "Jan Janssen" __email__ = "[email protected]" __status__ = "production" __date__ = "Feb 28, 2020" # dict for extract atom methods atom_properties = { "x": {"type": 3, "gtype": 1, "dim": 3}, "mass": {"type": 2, "gtype": 1, "dim": 1}, "id": {"type": 0, "gtype": 0, "dim": 1}, "type": {"type": 0, "gtype": 0, "dim": 1}, "mask": {"type": 0, "gtype": 0, "dim": 1}, "v": {"type": 3, "gtype": 1, "dim": 3}, "f": {"type": 3, "gtype": 1, "dim": 3}, "molecule": {"type": 0, "gtype": 0, "dim": 1}, "q": {"type": 2, "gtype": 1, "dim": 1}, "mu": {"type": 3, "gtype": 1, "dim": 3}, "omega": {"type": 3, "gtype": 1, "dim": 3}, "angmom": {"type": 3, "gtype": 1, "dim": 3}, "torque": {"type": 3, "gtype": 1, "dim": 3}, "radius": {"type": 2, "gtype": 1, "dim": 1}, "image": {"type": 2, "gtype": 0, "dim": 3}, # we can add more quantities as needed # taken directly from atom.cpp -> extract() } def extract_compute(job, funct_args): def convert_data(val, type, length, width): data = [] if type == 2: for i in range(length): dummy = [] for j in range(width): dummy.append(val[i][j]) data.append(np.array(dummy)) data = np.array(data) elif type == 1: for i in range(length): data.append(val[i]) data = np.array(data) else: data = val return data id = funct_args[0] style = funct_args[1] type = funct_args[2] length = funct_args[3] width = funct_args[4] filtered_args = [id, style, type] if style == 0: val = job.extract_compute(*filtered_args) return convert_data(val=val, type=type, length=length, width=width) elif style == 1: # per atom property val = _gather_data_from_all_processors( data=job.numpy.extract_compute(*filtered_args) ) if MPI.COMM_WORLD.rank == 0: length = job.get_natoms() return convert_data(val=val, type=type, length=length, width=width) else: # Todo raise ValueError("Local style is currently not supported") def get_version(job, funct_args): if MPI.COMM_WORLD.rank == 0: return job.version() def get_file(job, funct_args): job.file(*funct_args) return 1 def commands_list(job, funct_args): job.commands_list(*funct_args) return 1 def commands_string(job, funct_args): job.commands_string(*funct_args) return 1 def extract_setting(job, funct_args): if MPI.COMM_WORLD.rank == 0: return job.extract_setting(*funct_args) def extract_global(job, funct_args): if MPI.COMM_WORLD.rank == 0: return job.extract_global(*funct_args) def extract_box(job, funct_args): if MPI.COMM_WORLD.rank == 0: return job.extract_box(*funct_args) def extract_atom(job, funct_args): if MPI.COMM_WORLD.rank == 0: # extract atoms return an internal data type # this has to be reformatted name = str(funct_args[0]) if not name in atom_properties.keys(): return [] # this block prevents error when trying to access values # that do not exist try: val = job.extract_atom(name, atom_properties[name]["type"]) except ValueError: return [] # this is per atom quantity - so get # number of atoms - first dimension natoms = job.get_natoms() # second dim is from dict dim = atom_properties[name]["dim"] data = [] if dim > 1: for i in range(int(natoms)): dummy = [val[i][x] for x in range(dim)] data.append(dummy) else: data = [val[x] for x in range(int(natoms))] return np.array(data) def extract_fix(job, funct_args): if MPI.COMM_WORLD.rank == 0: return job.extract_fix(*funct_args) def extract_variable(job, funct_args): # in the args - if the third one, # which is the type is 1 - a lammps array is returned if funct_args[2] == 1: data = _gather_data_from_all_processors( data=job.numpy.extract_variable(*funct_args) ) if MPI.COMM_WORLD.rank == 0: return np.array(data) else: if MPI.COMM_WORLD.rank == 0: # if type is 1 - reformat file try: data = job.extract_variable(*funct_args) except ValueError: return [] return data def get_natoms(job, funct_args): if MPI.COMM_WORLD.rank == 0: return job.get_natoms() def set_variable(job, funct_args): return job.set_variable(*funct_args) def reset_box(job, funct_args): job.reset_box(*funct_args) return 1 def gather_atoms(job, funct_args): # extract atoms return an internal data type # this has to be reformatted name = str(funct_args[0]) if name not in atom_properties.keys(): return [] # this block prevents error when trying to access values # that do not exist try: val = job.gather_atoms( name, atom_properties[name]["gtype"], atom_properties[name]["dim"] ) except ValueError: return [] # this is per atom quantity - so get # number of atoms - first dimension val = list(val) dim = atom_properties[name]["dim"] if dim > 1: data = [val[x : x + dim] for x in range(0, len(val), dim)] else: data = list(val) return np.array(data) def gather_atoms_concat(job, funct_args): # extract atoms return an internal data type # this has to be reformatted name = str(funct_args[0]) if not name in atom_properties.keys(): return [] # this block prevents error when trying to access values # that do not exist try: val = job.gather_atoms_concat( name, atom_properties[name]["gtype"], atom_properties[name]["dim"] ) except ValueError: return [] # this is per atom quantity - so get # number of atoms - first dimension val = list(val) dim = atom_properties[name]["dim"] if dim > 1: data = [val[x : x + dim] for x in range(0, len(val), dim)] else: data = list(val) return np.array(data) def gather_atoms_subset(job, funct_args): # convert to ctypes name = str(funct_args[0]) lenids = int(funct_args[1]) ids = funct_args[2] # prep ids cids = (lenids * c_int)() for i in range(lenids): cids[i] = ids[i] if not name in atom_properties.keys(): return [] # this block prevents error when trying to access values # that do not exist try: val = job.gather_atoms_subset( name, atom_properties[name]["gtype"], atom_properties[name]["dim"], lenids, cids, ) except ValueError: return [] # this is per atom quantity - so get # number of atoms - first dimension val = list(val) dim = atom_properties[name]["dim"] if dim > 1: data = [val[x : x + dim] for x in range(0, len(val), dim)] else: data = list(val) return np.array(data) def create_atoms(job, funct_args): job.create_atoms(*funct_args) return 1 def has_exceptions(job, funct_args): return job.has_exceptions def has_gzip_support(job, funct_args): return job.has_gzip_support def has_png_support(job, funct_args): return job.has_png_support def has_jpeg_support(job, funct_args): return job.has_jpeg_support def has_ffmpeg_support(job, funct_args): return job.has_ffmpeg_support def installed_packages(job, funct_args): return job.installed_packages def set_fix_external_callback(job, funct_args): job.set_fix_external_callback(*funct_args) return 1 def get_neighlist(job, funct_args): if MPI.COMM_WORLD.rank == 0: return job.get_neighlist(*funct_args) def find_pair_neighlist(job, funct_args): if MPI.COMM_WORLD.rank == 0: return job.find_pair_neighlist(*funct_args) def find_fix_neighlist(job, funct_args): if MPI.COMM_WORLD.rank == 0: return job.find_fix_neighlist(*funct_args) def find_compute_neighlist(job, funct_args): if MPI.COMM_WORLD.rank == 0: return job.find_compute_neighlist(*funct_args) def get_neighlist_size(job, funct_args): if MPI.COMM_WORLD.rank == 0: return job.get_neighlist_size(*funct_args) def get_neighlist_element_neighbors(job, funct_args): if MPI.COMM_WORLD.rank == 0: return job.get_neighlist_element_neighbors(*funct_args) def get_thermo(job, funct_args): if MPI.COMM_WORLD.rank == 0: return np.array(job.get_thermo(*funct_args)) def scatter_atoms(job, funct_args): name = str(funct_args[0]) py_vector = funct_args[1] # now see if its an integer or double type- but before flatten py_vector = np.array(py_vector).flatten() if atom_properties[name]["gtype"] == 0: c_vector = (len(py_vector) * c_int)(*py_vector) else: c_vector = (len(py_vector) * c_double)(*py_vector) job.scatter_atoms( name, atom_properties[name]["gtype"], atom_properties[name]["dim"], c_vector ) return 1 def scatter_atoms_subset(job, funct_args): name = str(funct_args[0]) lenids = int(funct_args[2]) ids = funct_args[3] # prep ids cids = (lenids * c_int)() for i in range(lenids): cids[i] = ids[i] py_vector = funct_args[1] # now see if its an integer or double type- but before flatten py_vector = np.array(py_vector).flatten() if atom_properties[name]["gtype"] == 0: c_vector = (len(py_vector) * c_int)(*py_vector) else: c_vector = (len(py_vector) * c_double)(*py_vector) job.scatter_atoms_subset( name, atom_properties[name]["gtype"], atom_properties[name]["dim"], lenids, cids, c_vector, ) return 1 def command(job, funct_args): job.command(funct_args) return 1 def select_cmd(argument): """ Select a lammps command Args: argument (str): [close, extract_compute, get_thermo, scatter_atoms, command, gather_atoms] Returns: function: the selected function """ switcher = { f.__name__: f for f in [ extract_compute, get_version, get_file, commands_list, commands_string, extract_setting, extract_global, extract_box, extract_atom, extract_fix, extract_variable, get_natoms, set_variable, reset_box, gather_atoms_concat, gather_atoms_subset, scatter_atoms_subset, create_atoms, has_exceptions, has_gzip_support, has_png_support, has_jpeg_support, has_ffmpeg_support, installed_packages, set_fix_external_callback, get_neighlist, find_pair_neighlist, find_fix_neighlist, find_compute_neighlist, get_neighlist_size, get_neighlist_element_neighbors, get_thermo, scatter_atoms, command, gather_atoms, ] } return switcher.get(argument) def _gather_data_from_all_processors(data): data_gather = MPI.COMM_WORLD.gather(data, root=0) if MPI.COMM_WORLD.rank == 0: data = [] for vl in data_gather: for v in vl: data.append(v) return data def _run_lammps_mpi(argument_lst): index_selected = argument_lst.index("--zmqport") port_selected = argument_lst[index_selected + 1] if "--host" in argument_lst: index_selected = argument_lst.index("--host") host = argument_lst[index_selected + 1] else: host = "localhost" argument_red_lst = argument_lst[:index_selected] if MPI.COMM_WORLD.rank == 0: context, socket = interface_connect(host=host, port=port_selected) else: context, socket = None, None # Lammps executable args = ["-screen", "none"] if len(argument_red_lst) > 1: args.extend(argument_red_lst[1:]) job = lammps(cmdargs=args) while True: if MPI.COMM_WORLD.rank == 0: input_dict = interface_receive(socket=socket) else: input_dict = None input_dict = MPI.COMM_WORLD.bcast(input_dict, root=0) if "shutdown" in input_dict.keys() and input_dict["shutdown"]: job.close() if MPI.COMM_WORLD.rank == 0: interface_send(socket=socket, result_dict={"result": True}) interface_shutdown(socket=socket, context=context) break output = select_cmd(input_dict["command"])( job=job, funct_args=input_dict["args"] ) if MPI.COMM_WORLD.rank == 0 and output is not None: interface_send(socket=socket, result_dict={"result": output}) if __name__ == "__main__": _run_lammps_mpi(argument_lst=sys.argv)
null
pylammpsmpi/mpi/lmpmpi.py
lmpmpi.py
py
13,911
python
en
code
null
code-starcoder2
83
[ { "api_name": "numpy.array", "line_number": 58, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 59, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 63, "usage_type": "call" }, { "api_name": "mpi4py.MPI.COMM_WORLD", "line_number": 82, "usage_type": "attribute" }, { "api_name": "mpi4py.MPI", "line_number": 82, "usage_type": "name" }, { "api_name": "mpi4py.MPI.COMM_WORLD", "line_number": 90, "usage_type": "attribute" }, { "api_name": "mpi4py.MPI", "line_number": 90, "usage_type": "name" }, { "api_name": "mpi4py.MPI.COMM_WORLD", "line_number": 110, "usage_type": "attribute" }, { "api_name": "mpi4py.MPI", "line_number": 110, "usage_type": "name" }, { "api_name": "mpi4py.MPI.COMM_WORLD", "line_number": 115, "usage_type": "attribute" }, { "api_name": "mpi4py.MPI", "line_number": 115, "usage_type": "name" }, { "api_name": "mpi4py.MPI.COMM_WORLD", "line_number": 120, "usage_type": "attribute" }, { "api_name": "mpi4py.MPI", "line_number": 120, "usage_type": "name" }, { "api_name": "mpi4py.MPI.COMM_WORLD", "line_number": 125, "usage_type": "attribute" }, { "api_name": "mpi4py.MPI", "line_number": 125, "usage_type": "name" }, { "api_name": "numpy.array", "line_number": 151, "usage_type": "call" }, { "api_name": "mpi4py.MPI.COMM_WORLD", "line_number": 155, "usage_type": "attribute" }, { "api_name": "mpi4py.MPI", "line_number": 155, "usage_type": "name" }, { "api_name": "mpi4py.MPI.COMM_WORLD", "line_number": 166, "usage_type": "attribute" }, { "api_name": "mpi4py.MPI", "line_number": 166, "usage_type": "name" }, { "api_name": "numpy.array", "line_number": 167, "usage_type": "call" }, { "api_name": "mpi4py.MPI.COMM_WORLD", "line_number": 169, "usage_type": "attribute" }, { "api_name": "mpi4py.MPI", "line_number": 169, "usage_type": "name" }, { "api_name": "mpi4py.MPI.COMM_WORLD", "line_number": 179, "usage_type": "attribute" }, { "api_name": "mpi4py.MPI", "line_number": 179, "usage_type": "name" }, { "api_name": "numpy.array", "line_number": 215, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 241, "usage_type": "call" }, { "api_name": "ctypes.c_int", "line_number": 251, "usage_type": "name" }, { "api_name": "numpy.array", "line_number": 278, "usage_type": "call" }, { "api_name": "mpi4py.MPI.COMM_WORLD", "line_number": 316, "usage_type": "attribute" }, { "api_name": "mpi4py.MPI", "line_number": 316, "usage_type": "name" }, { "api_name": "mpi4py.MPI.COMM_WORLD", "line_number": 321, "usage_type": "attribute" }, { "api_name": "mpi4py.MPI", "line_number": 321, "usage_type": "name" }, { "api_name": "mpi4py.MPI.COMM_WORLD", "line_number": 326, "usage_type": "attribute" }, { "api_name": "mpi4py.MPI", "line_number": 326, "usage_type": "name" }, { "api_name": "mpi4py.MPI.COMM_WORLD", "line_number": 331, "usage_type": "attribute" }, { "api_name": "mpi4py.MPI", "line_number": 331, "usage_type": "name" }, { "api_name": "mpi4py.MPI.COMM_WORLD", "line_number": 336, "usage_type": "attribute" }, { "api_name": "mpi4py.MPI", "line_number": 336, "usage_type": "name" }, { "api_name": "mpi4py.MPI.COMM_WORLD", "line_number": 341, "usage_type": "attribute" }, { "api_name": "mpi4py.MPI", "line_number": 341, "usage_type": "name" }, { "api_name": "mpi4py.MPI.COMM_WORLD", "line_number": 346, "usage_type": "attribute" }, { "api_name": "mpi4py.MPI", "line_number": 346, "usage_type": "name" }, { "api_name": "numpy.array", "line_number": 347, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 354, "usage_type": "call" }, { "api_name": "ctypes.c_int", "line_number": 357, "usage_type": "name" }, { "api_name": "ctypes.c_double", "line_number": 359, "usage_type": "name" }, { "api_name": "ctypes.c_int", "line_number": 373, "usage_type": "name" }, { "api_name": "numpy.array", "line_number": 379, "usage_type": "call" }, { "api_name": "ctypes.c_int", "line_number": 382, "usage_type": "name" }, { "api_name": "ctypes.c_double", "line_number": 384, "usage_type": "name" }, { "api_name": "mpi4py.MPI.COMM_WORLD.gather", "line_number": 456, "usage_type": "call" }, { "api_name": "mpi4py.MPI.COMM_WORLD", "line_number": 456, "usage_type": "attribute" }, { "api_name": "mpi4py.MPI", "line_number": 456, "usage_type": "name" }, { "api_name": "mpi4py.MPI.COMM_WORLD", "line_number": 457, "usage_type": "attribute" }, { "api_name": "mpi4py.MPI", "line_number": 457, "usage_type": "name" }, { "api_name": "mpi4py.MPI.COMM_WORLD", "line_number": 474, "usage_type": "attribute" }, { "api_name": "mpi4py.MPI", "line_number": 474, "usage_type": "name" }, { "api_name": "pympipool.interface_connect", "line_number": 475, "usage_type": "call" }, { "api_name": "lammps.lammps", "line_number": 482, "usage_type": "call" }, { "api_name": "mpi4py.MPI.COMM_WORLD", "line_number": 484, "usage_type": "attribute" }, { "api_name": "mpi4py.MPI", "line_number": 484, "usage_type": "name" }, { "api_name": "pympipool.interface_receive", "line_number": 485, "usage_type": "call" }, { "api_name": "mpi4py.MPI.COMM_WORLD.bcast", "line_number": 488, "usage_type": "call" }, { "api_name": "mpi4py.MPI.COMM_WORLD", "line_number": 488, "usage_type": "attribute" }, { "api_name": "mpi4py.MPI", "line_number": 488, "usage_type": "name" }, { "api_name": "mpi4py.MPI.COMM_WORLD", "line_number": 491, "usage_type": "attribute" }, { "api_name": "mpi4py.MPI", "line_number": 491, "usage_type": "name" }, { "api_name": "pympipool.interface_send", "line_number": 492, "usage_type": "call" }, { "api_name": "pympipool.interface_shutdown", "line_number": 493, "usage_type": "call" }, { "api_name": "mpi4py.MPI.COMM_WORLD", "line_number": 498, "usage_type": "attribute" }, { "api_name": "mpi4py.MPI", "line_number": 498, "usage_type": "name" }, { "api_name": "pympipool.interface_send", "line_number": 499, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 503, "usage_type": "attribute" } ]
227304193
import os from unittest import mock import pytest from django.conf import settings from django.test import TestCase from metaci.build.management.commands.run_build import Command from metaci.build.models import Build from metaci.conftest import ( BranchFactory, OrgFactory, PlanFactory, PlanRepositoryFactory, RepositoryFactory, UserFactory, ) BUILD_TIMEOUT = 100 @mock.patch("metaci.build.management.commands.run_build.scratch_org_limits") @mock.patch("metaci.build.management.commands.run_build.run_build") @pytest.mark.django_db class TestRunBuild(TestCase): def test_run_build_persistent(self, run_build, scratch_org_limits): self._testrun_build(run_build, scratch_org_limits, False, False) def test_run_build_scratch(self, run_build, scratch_org_limits): self._testrun_build(run_build, scratch_org_limits, True, False) def _testrun_build(self, run_build, scratch_org_limits, org_is_scratch, no_lock): repo = RepositoryFactory(name="myrepo") branch = BranchFactory(name="mybranch", repo=repo) plan = PlanFactory(name="myplan", org="myorg", build_timeout=BUILD_TIMEOUT) PlanRepositoryFactory(repo=repo, plan=plan) user = UserFactory(username="username") org = OrgFactory(name="myorg", repo=repo, scratch=org_is_scratch) os.environ["DYNO"] = "worker.42" build_pk = None def side_effect(build_id): nonlocal build_pk build_pk = build_id run_build.side_effect = side_effect scratch_org_limits.return_value = mock.Mock() scratch_org_limits.return_value.remaining = settings.SCRATCH_ORG_RESERVE + 5 c = Command() c.handle("myrepo", "mybranch", "commit", "myplan", "username", no_lock=no_lock) assert build_pk build = Build.objects.get(pk=build_pk) assert not build.task_id_check # wasn't queued assert build.build_type == "manual-command" assert build.user == user assert build.repo == repo assert build.branch == branch assert build.plan == plan assert build.org == org @mock.patch("metaci.build.management.commands.run_build.lock_org") def test_run_build_sets_lock(self, lock_org, run_build, scratch_org_limits): self._testrun_build(run_build, scratch_org_limits, False, False) assert lock_org.mock_calls[0][1][2] == 100 @mock.patch("metaci.build.management.commands.run_build.lock_org") def test_run_build_can_skip_lock(self, lock_org, run_build, scratch_org_limits): self._testrun_build(run_build, scratch_org_limits, False, True) assert not lock_org.mock_calls
null
metaci/build/management/commands/tests/test_run_build.py
test_run_build.py
py
2,683
python
en
code
null
code-starcoder2
83
[ { "api_name": "django.test.TestCase", "line_number": 25, "usage_type": "name" }, { "api_name": "metaci.conftest.RepositoryFactory", "line_number": 33, "usage_type": "call" }, { "api_name": "metaci.conftest.BranchFactory", "line_number": 34, "usage_type": "call" }, { "api_name": "metaci.conftest.PlanFactory", "line_number": 35, "usage_type": "call" }, { "api_name": "metaci.conftest.PlanRepositoryFactory", "line_number": 36, "usage_type": "call" }, { "api_name": "metaci.conftest.UserFactory", "line_number": 37, "usage_type": "call" }, { "api_name": "metaci.conftest.OrgFactory", "line_number": 38, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 39, "usage_type": "attribute" }, { "api_name": "unittest.mock.Mock", "line_number": 47, "usage_type": "call" }, { "api_name": "unittest.mock", "line_number": 47, "usage_type": "name" }, { "api_name": "django.conf.settings.SCRATCH_ORG_RESERVE", "line_number": 48, "usage_type": "attribute" }, { "api_name": "django.conf.settings", "line_number": 48, "usage_type": "name" }, { "api_name": "metaci.build.management.commands.run_build.Command", "line_number": 49, "usage_type": "call" }, { "api_name": "metaci.build.models.Build.objects.get", "line_number": 52, "usage_type": "call" }, { "api_name": "metaci.build.models.Build.objects", "line_number": 52, "usage_type": "attribute" }, { "api_name": "metaci.build.models.Build", "line_number": 52, "usage_type": "name" }, { "api_name": "unittest.mock.patch", "line_number": 61, "usage_type": "call" }, { "api_name": "unittest.mock", "line_number": 61, "usage_type": "name" }, { "api_name": "unittest.mock.patch", "line_number": 66, "usage_type": "call" }, { "api_name": "unittest.mock", "line_number": 66, "usage_type": "name" }, { "api_name": "unittest.mock.patch", "line_number": 22, "usage_type": "call" }, { "api_name": "unittest.mock", "line_number": 22, "usage_type": "name" }, { "api_name": "unittest.mock.patch", "line_number": 23, "usage_type": "call" }, { "api_name": "unittest.mock", "line_number": 23, "usage_type": "name" }, { "api_name": "pytest.mark", "line_number": 24, "usage_type": "attribute" } ]
117448425
# Name: Renacin Matadeen # Date: 04/20/2020 # Title Open CV Research # # ---------------------------------------------------------------------------------------------------------------------- import cv2 import pandas as pd import numpy as np # ---------------------------------------------------------------------------------------------------------------------- """ Notes: + Resizing Will Destroy Detail, But Can Help With Processing Speed - Be careful when resizing images, 1/2x Smaller, 2x Bigger """ def process_image(image): # Convert To GrayScale | Resize Image, Make 1/32 Version scale_factor = 2 im_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) im_small = cv2.resize(im, (0,0), fx= 1/scale_factor, fy= 1/scale_factor) # Remove Noise From Image | Must Be Bigger Than 3, & Support A Middle Origin Point | Uneven Numbers Only? blur_kern_size = 3 img_blurred = cv2.GaussianBlur(im_small,(blur_kern_size, blur_kern_size), 0) # Calculate Edge Detection img_edge = cv2.Laplacian(img_blurred, cv2.CV_64F) # Resize Image To Original Dimensions processed_image = cv2.resize(img_edge, (0,0), fx= scale_factor, fy= scale_factor) # Return Image return processed_image # ---------------------------------------------------------------------------------------------------------------------- if __name__ == "__main__": # Choose Image To Work On in_path = r"C:\Users\renac\Documents\Programming\Python\CanadianCensus_DataCleaning\Research\Images\Image.jpg" im = cv2.imread(in_path) # Process Image proc_img = process_image(im) # Write Image cv2.imwrite(r"C:\Users\renac\Documents\Programming\Python\CanadianCensus_DataCleaning\Research\Images\Processed_Image.jpg", proc_img)
null
Misc/OpenCv_Research.py
OpenCv_Research.py
py
1,952
python
en
code
null
code-starcoder2
83
[ { "api_name": "cv2.cvtColor", "line_number": 19, "usage_type": "call" }, { "api_name": "cv2.COLOR_BGR2GRAY", "line_number": 19, "usage_type": "attribute" }, { "api_name": "cv2.resize", "line_number": 20, "usage_type": "call" }, { "api_name": "cv2.GaussianBlur", "line_number": 24, "usage_type": "call" }, { "api_name": "cv2.Laplacian", "line_number": 27, "usage_type": "call" }, { "api_name": "cv2.CV_64F", "line_number": 27, "usage_type": "attribute" }, { "api_name": "cv2.resize", "line_number": 30, "usage_type": "call" }, { "api_name": "cv2.imread", "line_number": 40, "usage_type": "call" }, { "api_name": "cv2.imwrite", "line_number": 46, "usage_type": "call" } ]
442793660
from django.shortcuts import render from django.http import HttpResponse, HttpResponseRedirect, JsonResponse from django.urls import reverse from . models import * from django.template.loader import render_to_string from json import loads, dumps from django.core.paginator import Paginator from django.db.models import F, Value, Q from .forms import ShippingAddressForm, RegisterForm, LoginForm, CustomUserCreationForm from django.contrib.auth.decorators import login_required from django.contrib import messages # Create your views here. def index(request): render_context = {} topbar = TopBar.objects.filter( Active=True).prefetch_related('Images').first() topbar_html = render_to_string( 'store/components/Topbar/topbar.html', {'topbar_images': topbar.Images.all()}) slider = Slider.objects.filter(Active=True).prefetch_related( 'Slide_pc', 'Slide_mob').first() slider_html = render_to_string('store/components/slider/slider.html', {'slides_pc': slider.Slide_pc.all(), 'slides_mob': slider.Slide_mob.all( ), 'sliderCount_pc': range(0, slider.SliderCount_pc), 'sliderCount_mob': range(0, slider.SliderCount_mob)}) collection = Collection.objects.get(pk=1) collection_html = render_to_string( 'store/components/collection/collection.html', {'collection': collection}) categories = Categorey.objects.all() # categorey_html = render_to_string('store/components/section/section.html',{'categorey':categorey.All_products.all(),'categorey_name':categorey.Name}) render_context['topbar'] = topbar_html render_context['slider'] = slider_html render_context['collection'] = collection_html render_context['categories'] = categories render_context['brands'] = Brand.objects.all() return render(request, 'store/index.html', render_context) def product_view(request, ptype, p_id, v_id=None): render_context = {} if request.method == 'POST': print('POST Request') else: if 'query' in request.GET: last_variant = None all_variants = Variant.objects.filter(Product__id=p_id) for param in request.GET: if param != 'query': if last_variant == None: a = all_variants.filter(Attributevalue__Attribute__Name__contains=param.lower( )).filter(Attributevalue__Value__contains=request.GET[param].lower()) last_variant = a else: a = last_variant.filter(Attributevalue__Attribute__Name__contains=param.lower( )).filter(Attributevalue__Value__contains=request.GET[param].lower()) last_variant = a # print(last_variant[0].Name) # print(len(last_variant)) if last_variant.exists(): return HttpResponseRedirect(reverse('product_view', kwargs={'ptype': 'variable', 'p_id': p_id, 'v_id': last_variant[0].pk})) else: messages.warning( request, f"sorry! we current don't have that variant") return HttpResponseRedirect(request.path) else: # if normal product if ptype == 'normal': query_product = Product.objects.filter( pk=p_id).prefetch_related('Its_images') render_context['product'] = query_product[0] render_context['ptype'] = 'normal' render_context['attributes_detail'] = None # CHECK IF PRODUCT EXISTS IN CART IF AUTHENTICATED USER if request.user.is_authenticated: if request.user.Customer.Cart.Cartproduct.filter(Product_id=p_id).exists(): render_context['In_cart'] = True else: render_context['In_cart'] = False else: render_context['In_cart'] = False return render(request, 'store/components/view/product/productView.html', render_context) # if product with Variant elif ptype == 'variable': query_product = ProductWithVariant.objects.filter( pk=p_id).prefetch_related('Variants__Attributevalue__Attribute').first() # Prepare Attribute Details render_context['attributes_detail'] = {} allVars = query_product.Variants.all() for variant in allVars: variant_id = variant.id for attribute_val in variant.Attributevalue.all(): attr = attribute_val.Attribute.Name val = attribute_val.Value if attr in render_context['attributes_detail'].keys(): if val not in render_context['attributes_detail'][attr]: render_context['attributes_detail'][attr].append( val) else: render_context['attributes_detail'][attr] = [val] # render_context['attributes_detail'][attr].append(val) render_context['product'] = query_product render_context['variant'] = query_product.Variants.filter( pk=v_id).prefetch_related('Images').first() render_context['ptype'] = 'variable' render_context['variant_vals'] = [] for attrValue in render_context['variant'].Attributevalue.all(): render_context['variant_vals'].append(attrValue.Value) # CHECK IF VARIANT EXISTS IN CART IF AUTHENTICATED USER if request.user.is_authenticated: if request.user.Customer.Cart.Cartvariant.filter(Variant_id=v_id).exists(): render_context['In_cart'] = True else: render_context['In_cart'] = False else: render_context['In_cart'] = False # print(f'---------------{render_context["In_cart"]}-------------') # USE DJANGO SIGNAL TO CACHE THIS ATTRIBUTE DETAILS # print(render_context['attributes_detail']) return render(request, 'store/components/view/product/productView.html', render_context) def get_meta_data(request): if request.method == 'POST': recived_data = loads(request.body) print(recived_data) if recived_data['page'] == 'product' or 'productwithvariant': if recived_data['for'] == 'add': questions = Product_type.objects.get( pk=recived_data['pk']).Meta_data return HttpResponse(dumps({'list': questions})) else: productMetaData = Product.objects.get( pk=recived_data['pk']).Meta_data return HttpResponse(dumps(productMetaData)) elif recived_data['page'] == 'product_type': questions = Product_type.objects.get( pk=recived_data['pk']).Meta_data return HttpResponse(dumps({'list': questions})) def handle_product_search(request): if request.method == 'GET': render_context = {} if 'productquery' in request.GET and request.GET['productquery'] != '': # first check normal product match print('Searching Name') productquery = request.GET['productquery'] all_normal_prods = Product.objects.filter( Name__icontains=productquery) all_variants = Variant.objects.filter(Name__icontains=productquery) if all_normal_prods.exists() or all_variants.exists(): print('Name Exists') normal_prod_detail = all_normal_prods.values( 'Name', 'id', 'Cost_to_customer', 'Crossed_price', 'Thumb_path', 'Highlights', 'Discount', 'Categorey_id', 'Is_normal_product') variable_prod_details = all_variants.values( 'Name', 'id', 'Cost_to_customer', 'Crossed_price', 'Thumb_path', 'Highlights', 'Discount', 'Product_id', 'Is_normal_product') final_ordered_qs = variable_prod_details.union( normal_prod_detail, all=True).order_by('Cost_to_customer') # print(normal_prod_detail.union(variable_prod_details,all=True)) # print(all_normal_prods.values('id','Categorey_id','Is_normal_product').union(all_variants.values('id','Product_id','Is_normal_product'))) try: page_no = request.GET['page'] except: page_no = 1 try: perpage = request.GET['perpage'] except: perpage = 2 paginator = Paginator(final_ordered_qs, perpage, orphans=1) render_context['product_data'] = paginator.get_page(page_no) # only necassary in via text search (When searched through nav input) # only to let me know if there was any search result at all render_context['msg'] = True # only necassary in via text search (When searched through nav input) render_context['result_for'] = 'Name' render_context['productquery'] = productquery return render(request, 'store/components/view/search/searchView.html', render_context) else: # No Match in Name # now match tags print('Searching Tags') all_tagged_normal_products = Product.objects.filter(Tags__Name__icontains=productquery).distinct().values( 'Name', 'id', 'Cost_to_customer', 'Crossed_price', 'Thumb_path', 'Highlights', 'Discount', 'Categorey_id', 'Is_normal_product') all_tagged_variable_products = ProductWithVariant.objects.values('Variants').filter( Tags__Name__icontains=productquery).distinct().prefetch_related('Variants') prod_vars = None for product in all_tagged_variable_products: p_vars = product.Variants.all().values('Name', 'id', 'Cost_to_customer', 'Crossed_price', 'Thumb_path', 'Highlights', 'Discount', 'Product_id', 'Is_normal_product') if prod_vars != None: prod_vars = p_vars.union(prod_vars) else: prod_vars = p_vars prod_vars.union(all_tagged_normal_products).order_by( 'Cost_to_customer') if all_tagged_normal_products.exists(): print('Tags Exists') render_context['product_data'] = all_tagged_normal_products render_context['msg'] = True render_context['result_for'] = 'Tags' return render(request, 'store/components/view/search/searchView.html', render_context) # return Render else: # No Match in Name and Tags # search Description print('Searching Description') all_tagged_normal_products = Product.objects.filter(Description__icontains=productquery).values( 'Name', 'id', 'Cost_to_customer', 'Crossed_price', 'Thumb_path', 'Highlights', 'Discount', 'Categorey_id', 'Is_normal_product') all_tagged_variable_products = ProductWithVariant.objects.filter( Description__icontains=productquery).prefetch_related('Variants') prod_vars = None for product in all_tagged_variable_products: p_vars = product.Variants.all().values('Name', 'id', 'Cost_to_customer', 'Crossed_price', 'Thumb_path', 'Highlights', 'Discount', 'Product_id', 'Is_normal_product') if prod_vars != None: prod_vars = p_vars.union(prod_vars) else: prod_vars = p_vars prod_vars.union(all_tagged_normal_products).order_by( 'Cost_to_customer') if all_tagged_normal_products.exists(): print('Description Exists') render_context['product_data'] = all_tagged_normal_products render_context['variant_details'] = prod_vars render_context['msg'] = True render_context['result_for'] = 'Description' return render(request, 'store/components/view/search/searchView.html', render_context) else: print('Final No result') render_context['msg'] = False render_context['result_for'] = None return render(request, 'store/components/view/search/searchView.html', render_context) elif request.GET['for'] == 'brandfilter': print(f'--------ID: {request.GET["querybrandId"]}---------') brandId = request.GET["querybrandId"] # BELOW TWO ARE FOR TESTING PURPOSES # all_normal_prods = Product.objects.filter(Brand_id=request.GET['querybrandId']).values('Is_normal_product','id') # all_variants = Variant.objects.filter(Product__Brand_id=request.GET['querybrandId']).select_related('Product').values('Is_normal_product','id') all_normal_prods = Product.objects.filter(Brand_id=request.GET['querybrandId']).values( 'Is_normal_product', 'id', 'Name', 'Cost_to_customer', 'Crossed_price', 'Thumb_path', 'Highlights', 'Discount', 'Categorey_id', 'Meta_data') all_variants = Variant.objects.filter(Product__Brand_id=request.GET['querybrandId']).select_related('Product').values( 'Is_normal_product', 'id', 'Name', 'Cost_to_customer', 'Crossed_price', 'Thumb_path', 'Highlights', 'Discount', 'Product_id', 'AttrCache') if all_normal_prods.exists() and all_variants.exists(): # render_context['product_data'] contans # all Items (product+variant) details render_context['product_data'] = all_variants.union( all_normal_prods, all=True) else: if not all_normal_prods.exists() and not all_variants.exists(): # Just any Empty Queryset render_context['product_data'] = all_normal_prods elif not all_normal_prods.exists() and all_variants.exists(): render_context['product_data'] = all_variants elif all_normal_prods.exists() and not all_variants.exists(): render_context['product_data'] = all_normal_prods print(render_context['product_data']) render_context['msg'] = True render_context['result_for'] = 'brandfilter' # print(dfd) return render(request, 'store/components/view/search/searchView.html', render_context) else: print('No Valid query!') render_context['msg'] = False render_context['result_for'] = None return render(request, 'store/components/view/search/searchView.html', render_context) else: print('Error') return HttpResponse('<h1>Forbbiden</h1>') def selected_variant(request, p_id, v_id): pass def handleCart(request): if request.method == 'POST': print(request.POST) def addItemToCart(request): if request.method == 'POST': recivedData = loads(request.body) print(recivedData) if(recivedData['ptype'] == 'variable'): # Implies have to add an Varinat to the cart # add items in variant if request.user.Customer.Cart.Cartvariant.all().filter(Variant_id=recivedData['variantId']).count() == 0: from datetime import datetime CartVariant.objects.create( Variant=Variant.objects.get(pk=recivedData['variantId']), Quantity=recivedData['quantity'], Added=datetime.fromtimestamp(int(recivedData['time'])), Cart=request.user.Customer.Cart ) return HttpResponse('added', status=200) else: print('dublicate') return HttpResponse('dublicate') elif (recivedData['ptype'] == 'normal'): if Cart.objects.get(pk=request.user.Customer.Cart_id).Cartproduct.all().filter(Product_id=recivedData['productId']).count() == 0: from datetime import datetime CartProduct.objects.create( Product=Product.objects.get(pk=recivedData['productId']), Quantity=recivedData['quantity'], Cart=request.user.Customer.Cart, Added=datetime.fromtimestamp(int(recivedData['time'])) ) return HttpResponse('added', status=200) else: print('dublicate') return HttpResponse('dublicate') @login_required def viewCart(request): if request.method == "POST": data = loads(request.body) print(data) if data['ptype'] == 'normal': CartProduct.objects.filter(id=data['itemId']).delete() else: CartVariant.objects.filter(id=data['itemId']).delete() render_context = {} cartId = request.user.Customer.Cart_id # VERSION 1 # cart = Cart.objects.prefetch_related('Cartproduct__Product','Cartvariant__Variant').get(pk = request.user.Customer.Cart_id) # allCartproducts = CartProduct.objects.filter(Cart_id = cart.id).select_related('Product') # allCartvariants = CartVariant.objects.filter(Cart_id = cart.id).select_related('Variant') # VERSION 2 # allCartproducts = cart.Cartproduct.all().order_by('Added') # allCartvariants = cart.Cartvariant.all().order_by('Added') # VERSION 3 # required to do annotation because Attrcache does not exist # on product therfore tricked to get attrcache through "attributes" annotation allCartproducts = CartProduct.objects.annotate(attributes=F('Product__Meta_data')).filter(Cart_id=cartId).select_related('Product').values( 'id', 'Product__Is_variant', 'Product__Name', 'Product__Thumb_path', 'Product__Crossed_price', 'Product__Cost_to_customer', 'Quantity', 'Product__Discount', 'attributes', 'Added', 'Product_id', 'Product__id') allCartvariants = CartVariant.objects.annotate(attributes=F('Variant__AttrCache')).filter(Cart_id=cartId).select_related('Variant').values( 'id', 'Variant__Is_variant', 'Variant__Name', 'Variant__Thumb_path', 'Variant__Crossed_price', 'Variant__Cost_to_customer', 'Quantity', 'Variant__Discount', 'attributes', 'Added', 'Variant__id', 'Variant__Product_id') # allCartProd = CartProduct.objects.Product.all() # for product in allCartProd: # product # allCartVar = CartVariant.objects.Variant.all() # TESTING VERSION # allCartproducts = CartProduct.objects.annotate(ptype='product').filter(Cart_id = cartId).select_related('Products').values('Product__Is_variant','Added') # allCartvariants = CartVariant.objects.annotate(ptype='variant').filter(Cart_id = cartId).select_related('Variant').values('Variant__Is_variant','Added') # allProds = [] # allVars = [] # for cartprod in allCartproducts: # product = cartprod.Product # allProds.append(product) # for cartvar in allCartvariants: # variant = cartvar.Variant # allVars.append(variant) # allItems = allCartproducts.union(allCartvariants,all=True).order_by('Added') render_context['allItems'] = allCartvariants.union( allCartproducts, all=True).order_by('-Added') try: render_context['total_amt_customer'] = sum( [Item['Variant__Cost_to_customer'] for Item in render_context['allItems']]) render_context['total_amt_crossed'] = sum( [Item['Variant__Crossed_price'] for Item in render_context['allItems']]) render_context['saved_amt'] = render_context['total_amt_crossed'] - \ render_context['total_amt_customer'] render_context['saved_amt_percent'] = round( ((render_context['saved_amt'])/render_context['total_amt_crossed'])*100) except: render_context['total_amt_customer'] = 0 render_context['total_amt_crossed'] = 0 render_context['saved_amt_percent'] = 0 render_context['numItems'] = render_context['allItems'].count() # print(allItems) return render(request, 'store/components/view/cart/baseCart.html', render_context) @login_required def orderpage(request): if request.user.is_authenticated: cartId = request.user.Customer.Cart_id print(cartId) allCartprods = CartProduct.objects.filter(Cart_id=cartId).exists() allCartvars = CartVariant.objects.filter(Cart_id=cartId).exists() if allCartprods or allCartvars: # proceed as normal, start address selection process render_context = {} allCartproducts = CartProduct.objects.filter(Cart_id=cartId).select_related( 'Product').values('Product__Crossed_price', 'Product__Cost_to_customer') allCartvariants = CartVariant.objects.filter(Cart_id=cartId).select_related( 'Variant').values('Variant__Crossed_price', 'Variant__Cost_to_customer') render_context['allItems'] = allCartvariants.union( allCartproducts, all=True) render_context['total_amt_customer'] = sum( [Item['Variant__Cost_to_customer'] for Item in render_context['allItems']]) render_context['total_amt_crossed'] = sum( [Item['Variant__Crossed_price'] for Item in render_context['allItems']]) render_context['saved_amt'] = render_context['total_amt_crossed'] - \ render_context['total_amt_customer'] render_context['saved_amt_percent'] = round( ((render_context['saved_amt'])/render_context['total_amt_crossed'])*100) else: render_context = {} render_context['allItems'] = [] render_context['total_amt_customer'] = 0 render_context['total_amt_crossed'] = 0 render_context['saved_amt_percent'] = 0 render_context['numItems'] = 0 if request.method == 'POST': form = ShippingAddressForm(request.POST) if form.is_valid(): savedInstance = form.save(commit=False) savedInstance.Owner = request.user.Customer savedInstance.save() # MORE LOGIC WILL BE WRITTEN return HttpResponse('SUCCESS') else: render_context['form'] = form return render(request, 'store/components/order/orderPage.html', render_context) else: render_context['form'] = ShippingAddressForm() return render(request, 'store/components/order/orderPage.html', render_context) else: # redirect to the login page return HttpResponse('<h1>Forbidden Page,No Logged In</h1>') def asyncsearch(request): if request.method == 'POST': allVariants = Variant.objects.all().values_list('id', 'Name') varList = [] for variant in allVariants: varList.append( {'id': variant[0], 'name': variant[1], 'ptype': 'variable'}) return JsonResponse({"matchedItems": varList}) else: allVariants = Variant.objects.all().values_list('id', 'Name', 'Product_id') varList = [] for variant in allVariants: varList.append( {'v_id': variant[0], 'name': f'{variant[1]}....', 'p_id': variant[2], 'ptype': 'variable'}) return JsonResponse({"matchedItems": varList}) @login_required() def logout_view(request): logout(request) return HttpResponseRedirect(reverse("customer_login")) def handle_login(request): if request.method == 'POST': formData = LoginForm(request.POST) if formData.is_valid(): from django.contrib.auth import login, authenticate user = authenticate( username=formData.cleaned_data['Username'], password=formData.cleaned_data.get('Password')) if user != None: login(request, user) messages.success(request, 'Login Successful') return HttpResponseRedirect(reverse('viewcart')) else: render_context = {} render_context['form'] = LoginForm() messages.error(request, 'Invalid Details!') return render(request, 'store/components/user/login.html', render_context) else: render_context = {} render_context['form'] = LoginForm() return render(request, 'store/components/user/login.html', render_context) def handle_register(request): if request.method == 'POST': formData = CustomUserCreationForm(request.POST) if formData.is_valid(): new_user = formData.save() new_user.refresh_from_db() new_user.Customer.PhoneNumber = formData.cleaned_data.get( 'PhoneNumber') new_user.save() raw_pass = formData.clean_password2() from django.contrib.auth import login, authenticate user = authenticate( username=formData.cleaned_data['username'], password=formData.clean_password2()) login(request, user) messages.info( request, f'You have registered successfully With username: {formData.cleaned_data.get("username")}') return HttpResponseRedirect(reverse('login')) # new_user.save() #signal will automatically create and attach customer instance # # new_user.refresh_from_db() #now will be able to acess Customer profile else: return render(request, 'store/components/user/register.html', {'form': formData}) print('got POST') print(request.POST) else: return render(request, 'store/components/user/register.html', {'form': CustomUserCreationForm()}) # -------------------------------------------------------------------------------------------------- # -------------------------------------------------------------------------------------------------- # OLD SEARCH IMPLEMENTATIONS SAVED SNIPPETS # only necassary in via text search (When searched through nav input) # all_normal_prods = Product.objects.filter(Name__icontains = productquery) # all_variants = Variant.objects.filter(Name__icontains = productquery) # if all_normal_prods.exists() or all_variants.exists(): # print('Name Exists') # normal_prod_detail = all_normal_prods.values('Name','id','Cost_to_customer','Crossed_price','Thumb_path','Highlights','Discount','Brand_id','Is_normal_product') # variable_prod_details = all_variants.values('Name','id','Cost_to_customer','Crossed_price','Thumb_path','Highlights','Discount','Product_id','Is_normal_product') # final_ordered_qs = variable_prod_details.union(normal_prod_detail,all=True).order_by('Cost_to_customer') # # print(normal_prod_detail.union(variable_prod_details,all=True)) # # print(all_normal_prods.values('id','Brand_id','Is_normal_product').union(all_variants.values('id','Product_id','Is_normal_product'))) # try: # page_no = request.GET['page'] # except: # page_no = 1 # try: # perpage = request.GET['perpage'] # except: # perpage = 2 # paginator = Paginator(final_ordered_qs, perpage,orphans=1) # render_context['product_data'] = paginator.get_page(page_no) # # only necassary in via text search (When searched through nav input) # # only to let me know if there was any search result at all # render_context['msg'] = True # # only necassary in via text search (When searched through nav input) # render_context['result_for'] = 'Name' # render_context['productquery'] = productquery # return render(request,'store/components/view/search/searchView.html',render_context) # else: # # No Match in Name and Tags # # search Description # print('Searching Description') # all_tagged_normal_products = Product.objects.filter(Description__icontains = productquery).values('Name','id','Cost_to_customer','Crossed_price','Thumb_path','Highlights','Discount','Brand_id','Is_normal_product') # all_tagged_variable_products = ProductWithVariant.objects.filter(Description__icontains = productquery).prefetch_related('Variants') # prod_vars = None # for product in all_tagged_variable_products: # p_vars = product.Variants.all().values('Name','id','Cost_to_customer','Crossed_price','Thumb_path','Highlights','Discount','Product_id','Is_normal_product') # if prod_vars != None: # prod_vars = p_vars.union(prod_vars) # else: # prod_vars = p_vars # prod_vars.union(all_tagged_normal_products).order_by('Cost_to_customer') # if all_tagged_normal_products.exists(): # print('Description Exists') # render_context['product_data'] = all_tagged_normal_products # render_context['variant_details'] = prod_vars # render_context['msg'] = True # render_context['result_for'] = 'Description' # return render(request,'store/components/view/search/searchView.html',render_context) # else: # print('Final No result') # render_context['msg'] = False # render_context['result_for'] = None # return render(request,'store/components/view/search/searchView.html',render_context)
null
store/comented_view.py
comented_view.py
py
30,668
python
en
code
null
code-starcoder2
83
[ { "api_name": "django.template.loader.render_to_string", "line_number": 19, "usage_type": "call" }, { "api_name": "django.template.loader.render_to_string", "line_number": 23, "usage_type": "call" }, { "api_name": "django.template.loader.render_to_string", "line_number": 26, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 35, "usage_type": "call" }, { "api_name": "django.http.HttpResponseRedirect", "line_number": 60, "usage_type": "call" }, { "api_name": "django.urls.reverse", "line_number": 60, "usage_type": "call" }, { "api_name": "django.contrib.messages.warning", "line_number": 62, "usage_type": "call" }, { "api_name": "django.contrib.messages", "line_number": 62, "usage_type": "name" }, { "api_name": "django.http.HttpResponseRedirect", "line_number": 64, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 81, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 119, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 124, "usage_type": "call" }, { "api_name": "django.http.HttpResponse", "line_number": 130, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 130, "usage_type": "call" }, { "api_name": "django.http.HttpResponse", "line_number": 134, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 134, "usage_type": "call" }, { "api_name": "django.http.HttpResponse", "line_number": 138, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 138, "usage_type": "call" }, { "api_name": "django.core.paginator.Paginator", "line_number": 171, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 179, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 203, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 229, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 234, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 262, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 268, "usage_type": "call" }, { "api_name": "django.http.HttpResponse", "line_number": 271, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 285, "usage_type": "call" }, { "api_name": "datetime.datetime.fromtimestamp", "line_number": 295, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 295, "usage_type": "name" }, { "api_name": "django.http.HttpResponse", "line_number": 298, "usage_type": "call" }, { "api_name": "django.http.HttpResponse", "line_number": 301, "usage_type": "call" }, { "api_name": "datetime.datetime.fromtimestamp", "line_number": 309, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 309, "usage_type": "name" }, { "api_name": "django.http.HttpResponse", "line_number": 311, "usage_type": "call" }, { "api_name": "django.http.HttpResponse", "line_number": 314, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 320, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 338, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 340, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 377, "usage_type": "call" }, { "api_name": "django.contrib.auth.decorators.login_required", "line_number": 317, "usage_type": "name" }, { "api_name": "forms.ShippingAddressForm", "line_number": 412, "usage_type": "call" }, { "api_name": "django.http.HttpResponse", "line_number": 418, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 421, "usage_type": "call" }, { "api_name": "forms.ShippingAddressForm", "line_number": 423, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 424, "usage_type": "call" }, { "api_name": "django.http.HttpResponse", "line_number": 427, "usage_type": "call" }, { "api_name": "django.contrib.auth.decorators.login_required", "line_number": 380, "usage_type": "name" }, { "api_name": "django.http.JsonResponse", "line_number": 437, "usage_type": "call" }, { "api_name": "django.http.JsonResponse", "line_number": 444, "usage_type": "call" }, { "api_name": "django.http.HttpResponseRedirect", "line_number": 450, "usage_type": "call" }, { "api_name": "django.urls.reverse", "line_number": 450, "usage_type": "call" }, { "api_name": "django.contrib.auth.decorators.login_required", "line_number": 447, "usage_type": "call" }, { "api_name": "forms.LoginForm", "line_number": 455, "usage_type": "call" }, { "api_name": "django.contrib.auth.authenticate", "line_number": 458, "usage_type": "call" }, { "api_name": "django.contrib.auth.login", "line_number": 461, "usage_type": "call" }, { "api_name": "django.contrib.messages.success", "line_number": 462, "usage_type": "call" }, { "api_name": "django.contrib.messages", "line_number": 462, "usage_type": "name" }, { "api_name": "django.http.HttpResponseRedirect", "line_number": 463, "usage_type": "call" }, { "api_name": "django.urls.reverse", "line_number": 463, "usage_type": "call" }, { "api_name": "forms.LoginForm", "line_number": 466, "usage_type": "call" }, { "api_name": "django.contrib.messages.error", "line_number": 467, "usage_type": "call" }, { "api_name": "django.contrib.messages", "line_number": 467, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 468, "usage_type": "call" }, { "api_name": "forms.LoginForm", "line_number": 471, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 472, "usage_type": "call" }, { "api_name": "forms.CustomUserCreationForm", "line_number": 477, "usage_type": "call" }, { "api_name": "django.contrib.auth.authenticate", "line_number": 486, "usage_type": "call" }, { "api_name": "django.contrib.auth.login", "line_number": 488, "usage_type": "call" }, { "api_name": "django.contrib.messages.info", "line_number": 489, "usage_type": "call" }, { "api_name": "django.contrib.messages", "line_number": 489, "usage_type": "name" }, { "api_name": "django.http.HttpResponseRedirect", "line_number": 491, "usage_type": "call" }, { "api_name": "django.urls.reverse", "line_number": 491, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 495, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 499, "usage_type": "call" }, { "api_name": "forms.CustomUserCreationForm", "line_number": 499, "usage_type": "call" } ]
308327852
import scrapy from scrapy.http import HtmlResponse from leroyparser.items import LeroyparserItem from scrapy.loader import ItemLoader class LeroymerlinSpider(scrapy.Spider): name = 'leroymerlin' allowed_domains = ['leroymerlin.ru'] def __init__(self, text): self.start_urls = [f'https://leroymerlin.ru/search/?q={text}'] def parse(self, response: HtmlResponse): links_on_product = response.xpath("//div[@class='hover-image-buttons']/a/@href").extract() for link in links_on_product: if 'product' in link: yield response.follow(link, callback=self.parse_product) next_page = response.xpath("//div[@class='next-paginator-button-wrapper']/a/@href").extract_first() yield response.follow(next_page, callback=self.parse) def parse_product(self, response: HtmlResponse): loader = ItemLoader(item=LeroyparserItem(), response=response) loader.add_value('_id', str(response)) loader.add_xpath('name', "//h1/text()") loader.add_xpath('photos', "//source[@media=' only screen and (min-width: 1024px)']/@srcset") loader.add_xpath('terms', "//dt/text()") loader.add_xpath('definitions', "//dd/text()") loader.add_xpath('price', "//meta[@itemprop='price']/@content") loader.add_value('link', str(response)) yield loader.load_item()
null
Lesson 7/leroyparser/spiders/leroymerlin.py
leroymerlin.py
py
1,386
python
en
code
null
code-starcoder2
83
[ { "api_name": "scrapy.Spider", "line_number": 7, "usage_type": "attribute" }, { "api_name": "scrapy.http.HtmlResponse", "line_number": 14, "usage_type": "name" }, { "api_name": "scrapy.http.HtmlResponse", "line_number": 23, "usage_type": "name" }, { "api_name": "scrapy.loader.ItemLoader", "line_number": 24, "usage_type": "call" }, { "api_name": "leroyparser.items.LeroyparserItem", "line_number": 24, "usage_type": "call" } ]
96833340
from django.db import models import os import graphene from modelcluster.fields import ParentalKey from modelcluster.models import ClusterableModel from wagtail.utils.decorators import cached_classmethod from wagtail.admin.edit_handlers import FieldPanel, InlinePanel, MultiFieldPanel, ObjectList, StreamFieldPanel, TabbedInterface, HelpPanel from wagtail.core.blocks import TextBlock, RichTextBlock, ListBlock, StreamBlock, StructBlock, URLBlock, PageChooserBlock, CharBlock from wagtail.core.fields import StreamField, RichTextField from wagtail.core.models import Page, Orderable from wagtail.snippets.edit_handlers import SnippetChooserPanel from wagtail.images.edit_handlers import ImageChooserPanel from wagtail.images.models import Image, AbstractImage, AbstractRendition from wagtail.images.blocks import ImageChooserBlock from wagtail.snippets.models import register_snippet from wagtail.search import index from wagtail.admin.edit_handlers import PageChooserPanel from . import blocks as custom_blocks from . import forms as custom_forms WYSIWYG_GENERAL = ['h1', 'h2', 'h3', 'h4', 'bold', 'link', 'ul', 'ol', 'code'] WYSIWYG_SERVICE_STEP = ['ul', 'ol', 'link'] DEFAULT_MAX_LENGTH = 255 SHORT_DESCRIPTION_LENGTH = 300 class TranslatedImage(AbstractImage): admin_form_fields = Image.admin_form_fields def __str__(self): return self.title or self.title_en class TranslatedImageRendition(AbstractRendition): image = models.ForeignKey(TranslatedImage, related_name='renditions', on_delete=models.CASCADE) class Meta: unique_together = ( ('image', 'filter_spec', 'focal_point_key'), ) @register_snippet class ThreeOneOne(ClusterableModel): title = models.CharField(max_length=DEFAULT_MAX_LENGTH) url = models.URLField() def __str__(self): return self.title class HomePage(Page): parent_page_types = [] # subpage_types = ['base.ServicePage', 'base.ProcessPage', 'base.InformationPage', 'base.DepartmentPage'] subpage_types = ['base.ServicePage', 'base.ProcessPage', 'base.InformationPage', 'base.DepartmentPage', 'base.TopicPage'] image = models.ForeignKey(TranslatedImage, null=True, on_delete=models.SET_NULL, related_name='+') class JanisBasePage(Page): parent_page_types = ['base.HomePage'] subpage_types = [] search_fields = Page.search_fields + [ index.RelatedFields('owner', [ index.SearchField('last_name', partial_match=True), index.FilterField('last_name'), ]) ] created_at = models.DateTimeField(auto_now_add=True) updated_at = models.DateTimeField(auto_now=True) author_notes = RichTextField( # max_length=DEFAULT_MAX_LENGTH, features=['ul', 'ol', 'link'], blank=True, verbose_name='Notes for authors (Not visible on the resident facing site)' ) def janis_url(self): url_page_type = self.janis_url_page_type page_slug = self.slug # TODO: Add other languages return os.environ["JANIS_URL"] + "/en/" + url_page_type + "/" + page_slug def janis_preview_url(self): revision = self.get_latest_revision() url_page_type = self.janis_url_page_type global_id = graphene.Node.to_global_id('PageRevisionNode', revision.id) return os.environ["JANIS_URL"] + "/en/preview/" + url_page_type + "/" + global_id # Default preview_url before janis_preview_url gets set def fallback_preview_url(self): return "https://alpha.austin.gov" # data needed to construct preview URLs for any language # [janis_url_base]/[lang]/preview/[url_page_type]/[global_id] # ex: http://localhost:3000/es/preview/information/UGFnZVJldmlzaW9uTm9kZToyMjg= def preview_url_data(self): revision = self.get_latest_revision() global_id = graphene.Node.to_global_id('PageRevisionNode', revision.id) return { "janis_url_base": os.environ["JANIS_URL"], "url_page_type": self.janis_url_page_type, "global_id": global_id } class Meta: abstract = True class JanisPage(JanisBasePage): @cached_classmethod def get_edit_handler(cls): if hasattr(cls, 'edit_handler'): return cls.edit_handler.bind_to_model(cls) edit_handler = TabbedInterface([ ObjectList(cls.content_panels + [ FieldPanel('author_notes') ], heading='Content'), ObjectList(Page.promote_panels + cls.promote_panels, heading='Search Info') ]) return edit_handler.bind_to_model(cls) class Meta: abstract = True class ServicePage(JanisPage): janis_url_page_type = "services" department = models.ForeignKey( 'base.DepartmentPage', on_delete=models.PROTECT, verbose_name='Select a Department', blank=True, null=True, ) steps = StreamField( [ ('basic_step', RichTextBlock( features=WYSIWYG_SERVICE_STEP, label='Basic Step' )), ('step_with_options_accordian', StructBlock( [ ('options_description', TextBlock('Describe the set of options')), ('options', ListBlock( StructBlock([ ('option_name', TextBlock( label='Option name. (When clicked, this name will expand the content for this option' )), ('option_description', RichTextBlock( features=WYSIWYG_SERVICE_STEP, label='Option Content', )), ]), )), ], label="Step With Options" )), ], verbose_name='Write out the steps a resident needs to take to use the service', # this gets called in the help panel help_text='A step may have a basic text step or an options accordian which reveals two or more options', blank=True ) dynamic_content = StreamField( [ ('map_block', custom_blocks.SnippetChooserBlockWithAPIGoodness('base.Map', icon='site')), ('what_do_i_do_with_block', custom_blocks.WhatDoIDoWithBlock()), ('collection_schedule_block', custom_blocks.CollectionScheduleBlock()), ('recollect_block', custom_blocks.RecollectBlock()), ], verbose_name='Add any maps or apps that will help the resident use the service', blank=True ) additional_content = RichTextField( features=WYSIWYG_GENERAL, verbose_name='Write any additional content describing the service', help_text='Section header: What else do I need to know?', blank=True ) base_form_class = custom_forms.ServicePageForm short_description = models.TextField( max_length=SHORT_DESCRIPTION_LENGTH, blank=True, verbose_name='Write a description of this service' ) content_panels = [ FieldPanel('title_en'), FieldPanel('title_es'), FieldPanel('title_ar'), FieldPanel('title_vi'), FieldPanel('short_description'), InlinePanel('topics', label='Topics'), FieldPanel('department'), MultiFieldPanel( [ HelpPanel(steps.help_text, classname="coa-helpPanel"), StreamFieldPanel('steps') ], heading=steps.verbose_name, classname='coa-multiField-nopadding' ), StreamFieldPanel('dynamic_content'), MultiFieldPanel( [ HelpPanel(additional_content.help_text, classname="coa-helpPanel"), FieldPanel('additional_content') ], heading=additional_content.verbose_name, classname='coa-multiField-nopadding' ) , InlinePanel('contacts', label='Contacts'), ] class ProcessPage(JanisPage): janis_url_page_type = "processes" department = models.ForeignKey( 'base.DepartmentPage', on_delete=models.PROTECT, verbose_name='Select a Department', blank=True, null=True, ) description = models.TextField(blank=True) image = models.ForeignKey(TranslatedImage, null=True, blank=True, on_delete=models.SET_NULL, related_name='+') # TODO: Add images array field base_form_class = custom_forms.ProcessPageForm content_panels = [ InlinePanel('topics', label='Topics'), FieldPanel('department'), FieldPanel('description'), ImageChooserPanel('image'), InlinePanel('contacts', label='Contacts'), InlinePanel('process_steps', label="Process steps"), ] class InformationPage(JanisPage): janis_url_page_type = "information" department = models.ForeignKey( 'base.DepartmentPage', on_delete=models.PROTECT, verbose_name='Select a Department', blank=True, null=True, ) description = models.TextField(blank=True, verbose_name='Write a description of this page') options = StreamField( [ ('option', RichTextBlock( features=WYSIWYG_GENERAL, label='Option' )) ], verbose_name='Add option sections as needed.', help_text='Options are needed when the reader needs to make a choice between a few options, such as ways to fill out a form (online, by phone, in person, etc.).', blank=True ) additional_content = RichTextField( features=WYSIWYG_GENERAL, verbose_name='Write any additional content describing the service', blank=True ) # TODO: Add images array field base_form_class = custom_forms.InformationPageForm content_panels = [ FieldPanel('title_en'), FieldPanel('title_es'), FieldPanel('title_ar'), FieldPanel('title_vi'), InlinePanel('topics', label='Topics'), FieldPanel('department'), FieldPanel('description'), StreamFieldPanel('options'), FieldPanel('additional_content'), InlinePanel('contacts', label='Contacts'), ] class TopicCollectionPage(JanisPage): janis_url_page_type = "topiccollection" description = models.TextField(blank=True) theme = models.ForeignKey( 'base.Theme', on_delete=models.PROTECT, related_name='topicCollectionPages', null=True, blank=True, ) image = models.ForeignKey(TranslatedImage, null=True, blank=True, on_delete=models.SET_NULL, related_name='+') base_form_class = custom_forms.TopicCollectionPageForm content_panels = [ FieldPanel('title_en'), FieldPanel('title_es'), FieldPanel('title_ar'), FieldPanel('title_vi'), FieldPanel('description'), FieldPanel('theme'), ImageChooserPanel('image'), InlinePanel('topiccollections', label='Topic Collections this page belongs to'), ] class TopicPage(JanisPage): janis_url_page_type = "topic" description = models.TextField(blank=True) image = models.ForeignKey(TranslatedImage, null=True, blank=True, on_delete=models.SET_NULL, related_name='+') external_services = StreamField( [ ('link_en', StructBlock([ ('url', URLBlock()), ('title', CharBlock()), ], icon='link', label='Link [EN]')), ('link_es', StructBlock([ ('url', URLBlock()), ('title', CharBlock()), ], icon='link', label='Link [ES]')), ('link_ar', StructBlock([ ('url', URLBlock()), ('title', CharBlock()), ], icon='link', label='Link [AR]')), ('link_vi', StructBlock([ ('url', URLBlock()), ('title', CharBlock()), ], icon='link', label='Link [VI]')), ], verbose_name='External links to services', blank=True ) base_form_class = custom_forms.TopicPageForm content_panels = [ FieldPanel('title_en'), FieldPanel('title_es'), FieldPanel('title_ar'), FieldPanel('title_vi'), FieldPanel('description'), ImageChooserPanel('image'), StreamFieldPanel('external_services'), InlinePanel('topiccollections', label='Topic Collections this page belongs to'), ] class DepartmentPage(JanisPage): janis_url_page_type = "department" def __str__(self): return self.title_en what_we_do = RichTextField( features=WYSIWYG_GENERAL, verbose_name='What we do', blank=True ) image = models.ForeignKey(TranslatedImage, null=True, blank=True, on_delete=models.SET_NULL, related_name='+') mission = models.TextField( verbose_name='Mission', ) job_listings = models.URLField( verbose_name='Job listings url', help_text='Link to a page with job listings.', blank=True ) top_services = StreamField( [ ('link_en', StructBlock([ ('url', URLBlock()), ('title', CharBlock()), ], icon='link', label='Link [EN]')), ('link_es', StructBlock([ ('url', URLBlock()), ('title', CharBlock()), ], icon='link', label='Link [ES]')), ('link_ar', StructBlock([ ('url', URLBlock()), ('title', CharBlock()), ], icon='link', label='Link [AR]')), ('link_vi', StructBlock([ ('url', URLBlock()), ('title', CharBlock()), ], icon='link', label='Link [VI]')), # ('page', PageChooserBlock( # label='Choose a page', # icon='doc-full' # )) ], verbose_name='Links to top services', blank=True ) base_form_class = custom_forms.DepartmentPageForm content_panels = [ FieldPanel('title_en'), FieldPanel('title_es'), FieldPanel('title_ar'), FieldPanel('title_vi'), FieldPanel('what_we_do'), ImageChooserPanel('image'), FieldPanel('mission'), InlinePanel('contacts', label='Contacts'), InlinePanel('department_directors', label="Department Directors"), FieldPanel('job_listings'), StreamFieldPanel('top_services'), ] class DepartmentPageDirector(Orderable): page = ParentalKey(DepartmentPage, related_name='department_directors') name = models.CharField(max_length=DEFAULT_MAX_LENGTH) title = models.CharField(max_length=DEFAULT_MAX_LENGTH, default='Director') photo = models.ForeignKey(TranslatedImage, null=True, blank=True, on_delete=models.SET_NULL, related_name='+') about = models.TextField(blank=True) panels = [ FieldPanel('name'), FieldPanel('title'), ImageChooserPanel('photo'), FieldPanel('about'), ] class ProcessPageStep(Orderable): page = ParentalKey(ProcessPage, related_name='process_steps') title = models.CharField(max_length=DEFAULT_MAX_LENGTH) short_title = models.CharField(max_length=DEFAULT_MAX_LENGTH) link_title = models.CharField(max_length=DEFAULT_MAX_LENGTH) description = models.TextField(blank=True) image = models.ForeignKey(TranslatedImage, null=True, blank=True, on_delete=models.SET_NULL, related_name='+') overview_steps = RichTextField(features=WYSIWYG_GENERAL, verbose_name='Write out the steps a resident needs to take to use the service', blank=True) detailed_content = RichTextField(features=WYSIWYG_GENERAL, verbose_name='Write any detailed content describing the process', blank=True) quote = models.TextField(blank=True) panels = [ FieldPanel('title'), FieldPanel('short_title'), FieldPanel('link_title'), FieldPanel('description'), ImageChooserPanel('image'), FieldPanel('overview_steps'), FieldPanel('detailed_content'), FieldPanel('quote'), ] @register_snippet class Theme(ClusterableModel): slug = models.SlugField() text = models.CharField(max_length=DEFAULT_MAX_LENGTH) description = models.TextField() def __str__(self): return self.text @register_snippet class Map(ClusterableModel): description = models.TextField() location = models.ForeignKey('base.Location', on_delete=models.CASCADE, related_name='+') def __str__(self): return self.description def serializable_data(self): data = { 'location': self.location.serializable_data(), 'description': self.description, } data['location'].pop('pk') return data @register_snippet class Location(ClusterableModel): TX = 'TX' STATE_CHOICES = ( (TX, 'Texas'), ) USA = 'United States' COUNTRY_CHOICES = ( (USA, 'United States'), ) name = models.CharField(max_length=DEFAULT_MAX_LENGTH) street = models.TextField() city = models.CharField(max_length=DEFAULT_MAX_LENGTH, default='Austin') state = models.CharField(max_length=2, choices=STATE_CHOICES, default=TX) country = models.CharField(max_length=100, choices=COUNTRY_CHOICES, default=USA) zip = models.CharField(max_length=50) panels = [ FieldPanel('name'), MultiFieldPanel(children=[ FieldPanel('street'), FieldPanel('city', classname='col5'), FieldPanel('state', classname='col4'), FieldPanel('zip', classname='col2'), FieldPanel('country', classname='col5'), ], heading='Location'), ] def __str__(self): return self.name class DayAndDuration(ClusterableModel): MONDAY = 'Monday' TUESDAY = 'Tuesday' WEDNESDAY = 'Wednesday' THURSDAY = 'Thursday' FRIDAY = 'Friday' SATURDAY = 'Saturday' SUNDAY = 'Sunday' DAY_OF_WEEK_CHOICES = ( (MONDAY, 'Monday'), (TUESDAY, 'Tuesday'), (WEDNESDAY, 'Wednesday'), (THURSDAY, 'Thursday'), (FRIDAY, 'Friday'), (SATURDAY, 'Saturday'), (SUNDAY, 'Sunday'), ) day_of_week = models.CharField(max_length=20, choices=DAY_OF_WEEK_CHOICES) start_time = models.TimeField() end_time = models.TimeField() content_panels = [ FieldPanel('day_of_week'), FieldPanel('start_time'), FieldPanel('end_time'), ] def __str__(self): return f'{self.day_of_week} {self.start_time} - {self.end_time}' @register_snippet class Contact(ClusterableModel): name = models.CharField(max_length=DEFAULT_MAX_LENGTH) email = models.EmailField() phone = models.CharField(max_length=DEFAULT_MAX_LENGTH) location = models.ForeignKey(Location, null=True, blank=True, related_name='+', on_delete=models.SET_NULL) social_media = StreamField( [ ('url', URLBlock( label='Social media url' )) ], verbose_name='Links to any social media pages', help_text='For example: https://www.facebook.com/atxpoliceoversight/', blank=True ) panels = [ FieldPanel('name'), FieldPanel('email'), FieldPanel('phone'), SnippetChooserPanel('location'), InlinePanel('hours', label='Hours'), StreamFieldPanel('social_media'), ] def __str__(self): return self.name class ContactDayAndDuration(Orderable, DayAndDuration): contact = ParentalKey(Contact, related_name='hours') content_panels = [ SnippetChooserPanel('day_and_duration'), ] class ProcessPageContact(ClusterableModel): process = ParentalKey(ProcessPage, related_name='contacts') contact = models.ForeignKey(Contact, related_name='+', on_delete=models.CASCADE) panels = [ SnippetChooserPanel('contact'), ] def __str__(self): return self.contact.name class ProcessPageTopic(ClusterableModel): page = ParentalKey(ProcessPage, related_name='topics') topic = models.ForeignKey('base.TopicPage', verbose_name='Select a Topic', related_name='+', on_delete=models.CASCADE) panels = [ PageChooserPanel('topic'), ] def __str__(self): return self.topic.text class ServicePageContact(ClusterableModel): page = ParentalKey(ServicePage, related_name='contacts') contact = models.ForeignKey(Contact, related_name='+', on_delete=models.CASCADE) panels = [ SnippetChooserPanel('contact'), ] def __str__(self): return self.contact.name class TopicCollectionPageTopicCollection(ClusterableModel): page = ParentalKey(TopicCollectionPage, related_name='topiccollections') topiccollection = models.ForeignKey('base.TopicCollectionPage', verbose_name='Select a Topic Collection', related_name='+', on_delete=models.CASCADE) panels = [ PageChooserPanel('topiccollection'), ] def __str__(self): return self.topiccollection.text class TopicPageTopicCollection(ClusterableModel): page = ParentalKey(TopicPage, related_name='topiccollections') topiccollection = models.ForeignKey('base.TopicCollectionPage', verbose_name='Select a Topic Collection', related_name='+', on_delete=models.CASCADE) panels = [ PageChooserPanel('topiccollection'), ] def __str__(self): return self.topiccollection.text class ServicePageTopic(ClusterableModel): page = ParentalKey(ServicePage, related_name='topics') topic = models.ForeignKey('base.TopicPage', verbose_name='Select a Topic', related_name='+', on_delete=models.CASCADE) toplink = models.BooleanField(default=False, verbose_name='Make this service a top link for this topic') panels = [ MultiFieldPanel( [ PageChooserPanel('topic'), FieldPanel('toplink'), ] ), ] def __str__(self): return self.topic.text class InformationPageContact(ClusterableModel): page = ParentalKey(InformationPage, related_name='contacts') contact = models.ForeignKey(Contact, related_name='+', on_delete=models.CASCADE) panels = [ SnippetChooserPanel('contact'), ] def __str__(self): return self.contact.name class InformationPageTopic(ClusterableModel): page = ParentalKey(InformationPage, related_name='topics') topic = models.ForeignKey('base.TopicPage', verbose_name='Select a Topic', related_name='+', on_delete=models.CASCADE) toplink = models.BooleanField(default=False, verbose_name='Make this page a top link for this topic') panels = [ MultiFieldPanel( [ PageChooserPanel('topic'), FieldPanel('toplink'), ] ), ] def __str__(self): return self.topic.text class DepartmentPageContact(ClusterableModel): page = ParentalKey(DepartmentPage, related_name='contacts') contact = models.ForeignKey(Contact, related_name='+', on_delete=models.CASCADE) panels = [ SnippetChooserPanel('contact'), ] def __str__(self): return self.contact.name @register_snippet class Department(ClusterableModel): slug = models.SlugField() name = models.CharField(max_length=DEFAULT_MAX_LENGTH) mission = models.TextField() image = models.ForeignKey(TranslatedImage, null=True, on_delete=models.SET_NULL, related_name='+') panels = [ FieldPanel('name'), FieldPanel('mission'), InlinePanel('contacts', label='Contacts'), ImageChooserPanel('image'), ] def __str__(self): return self.name class DepartmentContact(ClusterableModel): department = ParentalKey(Department, related_name='contacts') contact = models.ForeignKey(Contact, related_name='+', on_delete=models.CASCADE) panels = [ SnippetChooserPanel('contact'), ] def __str__(self): return self.department.name
null
joplin/base/models.py
models.py
py
24,194
python
en
code
null
code-starcoder2
83
[ { "api_name": "wagtail.images.models.AbstractImage", "line_number": 29, "usage_type": "name" }, { "api_name": "wagtail.images.models.Image.admin_form_fields", "line_number": 30, "usage_type": "attribute" }, { "api_name": "wagtail.images.models.Image", "line_number": 30, "usage_type": "name" }, { "api_name": "wagtail.images.models.AbstractRendition", "line_number": 36, "usage_type": "name" }, { "api_name": "django.db.models.ForeignKey", "line_number": 37, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 37, "usage_type": "name" }, { "api_name": "django.db.models.CASCADE", "line_number": 37, "usage_type": "attribute" }, { "api_name": "modelcluster.models.ClusterableModel", "line_number": 46, "usage_type": "name" }, { "api_name": "django.db.models.CharField", "line_number": 47, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 47, "usage_type": "name" }, { "api_name": "django.db.models.URLField", "line_number": 48, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 48, "usage_type": "name" }, { "api_name": "wagtail.snippets.models.register_snippet", "line_number": 45, "usage_type": "name" }, { "api_name": "wagtail.core.models.Page", "line_number": 54, "usage_type": "name" }, { "api_name": "django.db.models.ForeignKey", "line_number": 59, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 59, "usage_type": "name" }, { "api_name": "django.db.models.SET_NULL", "line_number": 59, "usage_type": "attribute" }, { "api_name": "wagtail.core.models.Page", "line_number": 62, "usage_type": "name" }, { "api_name": "wagtail.core.models.Page.search_fields", "line_number": 65, "usage_type": "attribute" }, { "api_name": "wagtail.core.models.Page", "line_number": 65, "usage_type": "name" }, { "api_name": "wagtail.search.index.RelatedFields", "line_number": 66, "usage_type": "call" }, { "api_name": "wagtail.search.index", "line_number": 66, "usage_type": "name" }, { "api_name": "wagtail.search.index.SearchField", "line_number": 67, "usage_type": "call" }, { "api_name": "wagtail.search.index", "line_number": 67, "usage_type": "name" }, { "api_name": "wagtail.search.index.FilterField", "line_number": 68, "usage_type": "call" }, { "api_name": "wagtail.search.index", "line_number": 68, "usage_type": "name" }, { "api_name": "django.db.models.DateTimeField", "line_number": 72, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 72, "usage_type": "name" }, { "api_name": "django.db.models.DateTimeField", "line_number": 73, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 73, "usage_type": "name" }, { "api_name": "wagtail.core.fields.RichTextField", "line_number": 75, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 87, "usage_type": "attribute" }, { "api_name": "graphene.Node.to_global_id", "line_number": 92, "usage_type": "call" }, { "api_name": "graphene.Node", "line_number": 92, "usage_type": "attribute" }, { "api_name": "os.environ", "line_number": 94, "usage_type": "attribute" }, { "api_name": "graphene.Node.to_global_id", "line_number": 105, "usage_type": "call" }, { "api_name": "graphene.Node", "line_number": 105, "usage_type": "attribute" }, { "api_name": "os.environ", "line_number": 108, "usage_type": "attribute" }, { "api_name": "wagtail.admin.edit_handlers.TabbedInterface", "line_number": 122, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.ObjectList", "line_number": 123, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.FieldPanel", "line_number": 124, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.ObjectList", "line_number": 126, "usage_type": "call" }, { "api_name": "wagtail.core.models.Page.promote_panels", "line_number": 126, "usage_type": "attribute" }, { "api_name": "wagtail.core.models.Page", "line_number": 126, "usage_type": "name" }, { "api_name": "wagtail.utils.decorators.cached_classmethod", "line_number": 117, "usage_type": "name" }, { "api_name": "django.db.models.ForeignKey", "line_number": 137, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 137, "usage_type": "name" }, { "api_name": "django.db.models.PROTECT", "line_number": 139, "usage_type": "attribute" }, { "api_name": "django.db.models", "line_number": 139, "usage_type": "name" }, { "api_name": "wagtail.core.fields.StreamField", "line_number": 145, "usage_type": "call" }, { "api_name": "wagtail.core.blocks.RichTextBlock", "line_number": 147, "usage_type": "call" }, { "api_name": "wagtail.core.blocks.StructBlock", "line_number": 151, "usage_type": "call" }, { "api_name": "wagtail.core.blocks.TextBlock", "line_number": 153, "usage_type": "call" }, { "api_name": "wagtail.core.blocks.ListBlock", "line_number": 154, "usage_type": "call" }, { "api_name": "wagtail.core.blocks.StructBlock", "line_number": 155, "usage_type": "call" }, { "api_name": "wagtail.core.blocks.TextBlock", "line_number": 156, "usage_type": "call" }, { "api_name": "wagtail.core.blocks.RichTextBlock", "line_number": 159, "usage_type": "call" }, { "api_name": "wagtail.core.fields.StreamField", "line_number": 175, "usage_type": "call" }, { "api_name": "wagtail.core.fields.RichTextField", "line_number": 185, "usage_type": "call" }, { "api_name": "django.db.models.TextField", "line_number": 194, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 194, "usage_type": "name" }, { "api_name": "wagtail.admin.edit_handlers.FieldPanel", "line_number": 201, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.FieldPanel", "line_number": 202, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.FieldPanel", "line_number": 203, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.FieldPanel", "line_number": 204, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.FieldPanel", "line_number": 205, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.InlinePanel", "line_number": 206, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.FieldPanel", "line_number": 207, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.MultiFieldPanel", "line_number": 208, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.HelpPanel", "line_number": 210, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.StreamFieldPanel", "line_number": 211, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.StreamFieldPanel", "line_number": 216, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.MultiFieldPanel", "line_number": 217, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.HelpPanel", "line_number": 219, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.FieldPanel", "line_number": 220, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.InlinePanel", "line_number": 226, "usage_type": "call" }, { "api_name": "django.db.models.ForeignKey", "line_number": 233, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 233, "usage_type": "name" }, { "api_name": "django.db.models.PROTECT", "line_number": 235, "usage_type": "attribute" }, { "api_name": "django.db.models", "line_number": 235, "usage_type": "name" }, { "api_name": "django.db.models.TextField", "line_number": 241, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 241, "usage_type": "name" }, { "api_name": "django.db.models.ForeignKey", "line_number": 242, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 242, "usage_type": "name" }, { "api_name": "django.db.models.SET_NULL", "line_number": 242, "usage_type": "attribute" }, { "api_name": "wagtail.admin.edit_handlers.InlinePanel", "line_number": 248, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.FieldPanel", "line_number": 249, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.FieldPanel", "line_number": 250, "usage_type": "call" }, { "api_name": "wagtail.images.edit_handlers.ImageChooserPanel", "line_number": 251, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.InlinePanel", "line_number": 252, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.InlinePanel", "line_number": 253, "usage_type": "call" }, { "api_name": "django.db.models.ForeignKey", "line_number": 259, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 259, "usage_type": "name" }, { "api_name": "django.db.models.PROTECT", "line_number": 261, "usage_type": "attribute" }, { "api_name": "django.db.models", "line_number": 261, "usage_type": "name" }, { "api_name": "django.db.models.TextField", "line_number": 267, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 267, "usage_type": "name" }, { "api_name": "wagtail.core.fields.StreamField", "line_number": 268, "usage_type": "call" }, { "api_name": "wagtail.core.blocks.RichTextBlock", "line_number": 270, "usage_type": "call" }, { "api_name": "wagtail.core.fields.RichTextField", "line_number": 280, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.FieldPanel", "line_number": 291, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.FieldPanel", "line_number": 292, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.FieldPanel", "line_number": 293, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.FieldPanel", "line_number": 294, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.InlinePanel", "line_number": 295, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.FieldPanel", "line_number": 296, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.FieldPanel", "line_number": 297, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.StreamFieldPanel", "line_number": 298, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.FieldPanel", "line_number": 299, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.InlinePanel", "line_number": 300, "usage_type": "call" }, { "api_name": "django.db.models.TextField", "line_number": 306, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 306, "usage_type": "name" }, { "api_name": "django.db.models.ForeignKey", "line_number": 309, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 309, "usage_type": "name" }, { "api_name": "django.db.models.PROTECT", "line_number": 311, "usage_type": "attribute" }, { "api_name": "django.db.models", "line_number": 311, "usage_type": "name" }, { "api_name": "django.db.models.ForeignKey", "line_number": 316, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 316, "usage_type": "name" }, { "api_name": "django.db.models.SET_NULL", "line_number": 316, "usage_type": "attribute" }, { "api_name": "wagtail.admin.edit_handlers.FieldPanel", "line_number": 321, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.FieldPanel", "line_number": 322, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.FieldPanel", "line_number": 323, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.FieldPanel", "line_number": 324, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.FieldPanel", "line_number": 325, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.FieldPanel", "line_number": 326, "usage_type": "call" }, { "api_name": "wagtail.images.edit_handlers.ImageChooserPanel", "line_number": 327, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.InlinePanel", "line_number": 328, "usage_type": "call" }, { "api_name": "django.db.models.TextField", "line_number": 334, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 334, "usage_type": "name" }, { "api_name": "django.db.models.ForeignKey", "line_number": 336, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 336, "usage_type": "name" }, { "api_name": "django.db.models.SET_NULL", "line_number": 336, "usage_type": "attribute" }, { "api_name": "wagtail.core.fields.StreamField", "line_number": 338, "usage_type": "call" }, { "api_name": "wagtail.core.blocks.StructBlock", "line_number": 340, "usage_type": "call" }, { "api_name": "wagtail.core.blocks.URLBlock", "line_number": 341, "usage_type": "call" }, { "api_name": "wagtail.core.blocks.CharBlock", "line_number": 342, "usage_type": "call" }, { "api_name": "wagtail.core.blocks.StructBlock", "line_number": 344, "usage_type": "call" }, { "api_name": "wagtail.core.blocks.URLBlock", "line_number": 345, "usage_type": "call" }, { "api_name": "wagtail.core.blocks.CharBlock", "line_number": 346, "usage_type": "call" }, { "api_name": "wagtail.core.blocks.StructBlock", "line_number": 348, "usage_type": "call" }, { "api_name": "wagtail.core.blocks.URLBlock", "line_number": 349, "usage_type": "call" }, { "api_name": "wagtail.core.blocks.CharBlock", "line_number": 350, "usage_type": "call" }, { "api_name": "wagtail.core.blocks.StructBlock", "line_number": 352, "usage_type": "call" }, { "api_name": "wagtail.core.blocks.URLBlock", "line_number": 353, "usage_type": "call" }, { "api_name": "wagtail.core.blocks.CharBlock", "line_number": 354, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.FieldPanel", "line_number": 364, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.FieldPanel", "line_number": 365, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.FieldPanel", "line_number": 366, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.FieldPanel", "line_number": 367, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.FieldPanel", "line_number": 368, "usage_type": "call" }, { "api_name": "wagtail.images.edit_handlers.ImageChooserPanel", "line_number": 369, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.StreamFieldPanel", "line_number": 370, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.InlinePanel", "line_number": 371, "usage_type": "call" }, { "api_name": "wagtail.core.fields.RichTextField", "line_number": 380, "usage_type": "call" }, { "api_name": "django.db.models.ForeignKey", "line_number": 386, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 386, "usage_type": "name" }, { "api_name": "django.db.models.SET_NULL", "line_number": 386, "usage_type": "attribute" }, { "api_name": "django.db.models.TextField", "line_number": 387, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 387, "usage_type": "name" }, { "api_name": "django.db.models.URLField", "line_number": 391, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 391, "usage_type": "name" }, { "api_name": "wagtail.core.fields.StreamField", "line_number": 397, "usage_type": "call" }, { "api_name": "wagtail.core.blocks.StructBlock", "line_number": 399, "usage_type": "call" }, { "api_name": "wagtail.core.blocks.URLBlock", "line_number": 400, "usage_type": "call" }, { "api_name": "wagtail.core.blocks.CharBlock", "line_number": 401, "usage_type": "call" }, { "api_name": "wagtail.core.blocks.StructBlock", "line_number": 403, "usage_type": "call" }, { "api_name": "wagtail.core.blocks.URLBlock", "line_number": 404, "usage_type": "call" }, { "api_name": "wagtail.core.blocks.CharBlock", "line_number": 405, "usage_type": "call" }, { "api_name": "wagtail.core.blocks.StructBlock", "line_number": 407, "usage_type": "call" }, { "api_name": "wagtail.core.blocks.URLBlock", "line_number": 408, "usage_type": "call" }, { "api_name": "wagtail.core.blocks.CharBlock", "line_number": 409, "usage_type": "call" }, { "api_name": "wagtail.core.blocks.StructBlock", "line_number": 411, "usage_type": "call" }, { "api_name": "wagtail.core.blocks.URLBlock", "line_number": 412, "usage_type": "call" }, { "api_name": "wagtail.core.blocks.CharBlock", "line_number": 413, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.FieldPanel", "line_number": 427, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.FieldPanel", "line_number": 428, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.FieldPanel", "line_number": 429, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.FieldPanel", "line_number": 430, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.FieldPanel", "line_number": 431, "usage_type": "call" }, { "api_name": "wagtail.images.edit_handlers.ImageChooserPanel", "line_number": 432, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.FieldPanel", "line_number": 433, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.InlinePanel", "line_number": 434, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.InlinePanel", "line_number": 435, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.FieldPanel", "line_number": 436, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.StreamFieldPanel", "line_number": 437, "usage_type": "call" }, { "api_name": "wagtail.core.models.Orderable", "line_number": 440, "usage_type": "name" }, { "api_name": "modelcluster.fields.ParentalKey", "line_number": 441, "usage_type": "call" }, { "api_name": "django.db.models.CharField", "line_number": 442, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 442, "usage_type": "name" }, { "api_name": "django.db.models.CharField", "line_number": 443, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 443, "usage_type": "name" }, { "api_name": "django.db.models.ForeignKey", "line_number": 444, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 444, "usage_type": "name" }, { "api_name": "django.db.models.SET_NULL", "line_number": 444, "usage_type": "attribute" }, { "api_name": "django.db.models.TextField", "line_number": 445, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 445, "usage_type": "name" }, { "api_name": "wagtail.admin.edit_handlers.FieldPanel", "line_number": 448, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.FieldPanel", "line_number": 449, "usage_type": "call" }, { "api_name": "wagtail.images.edit_handlers.ImageChooserPanel", "line_number": 450, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.FieldPanel", "line_number": 451, "usage_type": "call" }, { "api_name": "wagtail.core.models.Orderable", "line_number": 454, "usage_type": "name" }, { "api_name": "modelcluster.fields.ParentalKey", "line_number": 455, "usage_type": "call" }, { "api_name": "django.db.models.CharField", "line_number": 456, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 456, "usage_type": "name" }, { "api_name": "django.db.models.CharField", "line_number": 457, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 457, "usage_type": "name" }, { "api_name": "django.db.models.CharField", "line_number": 458, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 458, "usage_type": "name" }, { "api_name": "django.db.models.TextField", "line_number": 459, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 459, "usage_type": "name" }, { "api_name": "django.db.models.ForeignKey", "line_number": 460, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 460, "usage_type": "name" }, { "api_name": "django.db.models.SET_NULL", "line_number": 460, "usage_type": "attribute" }, { "api_name": "wagtail.core.fields.RichTextField", "line_number": 461, "usage_type": "call" }, { "api_name": "wagtail.core.fields.RichTextField", "line_number": 462, "usage_type": "call" }, { "api_name": "django.db.models.TextField", "line_number": 463, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 463, "usage_type": "name" }, { "api_name": "wagtail.admin.edit_handlers.FieldPanel", "line_number": 466, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.FieldPanel", "line_number": 467, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.FieldPanel", "line_number": 468, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.FieldPanel", "line_number": 469, "usage_type": "call" }, { "api_name": "wagtail.images.edit_handlers.ImageChooserPanel", "line_number": 470, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.FieldPanel", "line_number": 471, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.FieldPanel", "line_number": 472, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.FieldPanel", "line_number": 473, "usage_type": "call" }, { "api_name": "modelcluster.models.ClusterableModel", "line_number": 478, "usage_type": "name" }, { "api_name": "django.db.models.SlugField", "line_number": 479, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 479, "usage_type": "name" }, { "api_name": "django.db.models.CharField", "line_number": 480, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 480, "usage_type": "name" }, { "api_name": "django.db.models.TextField", "line_number": 481, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 481, "usage_type": "name" }, { "api_name": "wagtail.snippets.models.register_snippet", "line_number": 477, "usage_type": "name" }, { "api_name": "modelcluster.models.ClusterableModel", "line_number": 488, "usage_type": "name" }, { "api_name": "django.db.models.TextField", "line_number": 489, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 489, "usage_type": "name" }, { "api_name": "django.db.models.ForeignKey", "line_number": 490, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 490, "usage_type": "name" }, { "api_name": "django.db.models.CASCADE", "line_number": 490, "usage_type": "attribute" }, { "api_name": "wagtail.snippets.models.register_snippet", "line_number": 487, "usage_type": "name" }, { "api_name": "modelcluster.models.ClusterableModel", "line_number": 507, "usage_type": "name" }, { "api_name": "django.db.models.CharField", "line_number": 518, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 518, "usage_type": "name" }, { "api_name": "django.db.models.TextField", "line_number": 519, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 519, "usage_type": "name" }, { "api_name": "django.db.models.CharField", "line_number": 520, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 520, "usage_type": "name" }, { "api_name": "django.db.models.CharField", "line_number": 521, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 521, "usage_type": "name" }, { "api_name": "django.db.models.CharField", "line_number": 522, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 522, "usage_type": "name" }, { "api_name": "django.db.models.CharField", "line_number": 523, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 523, "usage_type": "name" }, { "api_name": "wagtail.admin.edit_handlers.FieldPanel", "line_number": 526, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.MultiFieldPanel", "line_number": 527, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.FieldPanel", "line_number": 528, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.FieldPanel", "line_number": 529, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.FieldPanel", "line_number": 530, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.FieldPanel", "line_number": 531, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.FieldPanel", "line_number": 532, "usage_type": "call" }, { "api_name": "wagtail.snippets.models.register_snippet", "line_number": 506, "usage_type": "name" }, { "api_name": "modelcluster.models.ClusterableModel", "line_number": 540, "usage_type": "name" }, { "api_name": "django.db.models.CharField", "line_number": 558, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 558, "usage_type": "name" }, { "api_name": "django.db.models.TimeField", "line_number": 559, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 559, "usage_type": "name" }, { "api_name": "django.db.models.TimeField", "line_number": 560, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 560, "usage_type": "name" }, { "api_name": "wagtail.admin.edit_handlers.FieldPanel", "line_number": 563, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.FieldPanel", "line_number": 564, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.FieldPanel", "line_number": 565, "usage_type": "call" }, { "api_name": "modelcluster.models.ClusterableModel", "line_number": 573, "usage_type": "name" }, { "api_name": "django.db.models.CharField", "line_number": 574, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 574, "usage_type": "name" }, { "api_name": "django.db.models.EmailField", "line_number": 575, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 575, "usage_type": "name" }, { "api_name": "django.db.models.CharField", "line_number": 576, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 576, "usage_type": "name" }, { "api_name": "django.db.models.ForeignKey", "line_number": 577, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 577, "usage_type": "name" }, { "api_name": "django.db.models.SET_NULL", "line_number": 577, "usage_type": "attribute" }, { "api_name": "wagtail.core.fields.StreamField", "line_number": 579, "usage_type": "call" }, { "api_name": "wagtail.core.blocks.URLBlock", "line_number": 581, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.FieldPanel", "line_number": 591, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.FieldPanel", "line_number": 592, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.FieldPanel", "line_number": 593, "usage_type": "call" }, { "api_name": "wagtail.snippets.edit_handlers.SnippetChooserPanel", "line_number": 594, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.InlinePanel", "line_number": 595, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.StreamFieldPanel", "line_number": 596, "usage_type": "call" }, { "api_name": "wagtail.snippets.models.register_snippet", "line_number": 572, "usage_type": "name" }, { "api_name": "wagtail.core.models.Orderable", "line_number": 603, "usage_type": "name" }, { "api_name": "modelcluster.fields.ParentalKey", "line_number": 604, "usage_type": "call" }, { "api_name": "wagtail.snippets.edit_handlers.SnippetChooserPanel", "line_number": 607, "usage_type": "call" }, { "api_name": "modelcluster.models.ClusterableModel", "line_number": 611, "usage_type": "name" }, { "api_name": "modelcluster.fields.ParentalKey", "line_number": 612, "usage_type": "call" }, { "api_name": "django.db.models.ForeignKey", "line_number": 613, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 613, "usage_type": "name" }, { "api_name": "django.db.models.CASCADE", "line_number": 613, "usage_type": "attribute" }, { "api_name": "wagtail.snippets.edit_handlers.SnippetChooserPanel", "line_number": 616, "usage_type": "call" }, { "api_name": "modelcluster.models.ClusterableModel", "line_number": 622, "usage_type": "name" }, { "api_name": "modelcluster.fields.ParentalKey", "line_number": 623, "usage_type": "call" }, { "api_name": "django.db.models.ForeignKey", "line_number": 624, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 624, "usage_type": "name" }, { "api_name": "django.db.models.CASCADE", "line_number": 624, "usage_type": "attribute" }, { "api_name": "wagtail.admin.edit_handlers.PageChooserPanel", "line_number": 627, "usage_type": "call" }, { "api_name": "modelcluster.models.ClusterableModel", "line_number": 633, "usage_type": "name" }, { "api_name": "modelcluster.fields.ParentalKey", "line_number": 634, "usage_type": "call" }, { "api_name": "django.db.models.ForeignKey", "line_number": 635, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 635, "usage_type": "name" }, { "api_name": "django.db.models.CASCADE", "line_number": 635, "usage_type": "attribute" }, { "api_name": "wagtail.snippets.edit_handlers.SnippetChooserPanel", "line_number": 638, "usage_type": "call" }, { "api_name": "modelcluster.models.ClusterableModel", "line_number": 644, "usage_type": "name" }, { "api_name": "modelcluster.fields.ParentalKey", "line_number": 645, "usage_type": "call" }, { "api_name": "django.db.models.ForeignKey", "line_number": 646, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 646, "usage_type": "name" }, { "api_name": "django.db.models.CASCADE", "line_number": 646, "usage_type": "attribute" }, { "api_name": "wagtail.admin.edit_handlers.PageChooserPanel", "line_number": 649, "usage_type": "call" }, { "api_name": "modelcluster.models.ClusterableModel", "line_number": 655, "usage_type": "name" }, { "api_name": "modelcluster.fields.ParentalKey", "line_number": 656, "usage_type": "call" }, { "api_name": "django.db.models.ForeignKey", "line_number": 657, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 657, "usage_type": "name" }, { "api_name": "django.db.models.CASCADE", "line_number": 657, "usage_type": "attribute" }, { "api_name": "wagtail.admin.edit_handlers.PageChooserPanel", "line_number": 660, "usage_type": "call" }, { "api_name": "modelcluster.models.ClusterableModel", "line_number": 666, "usage_type": "name" }, { "api_name": "modelcluster.fields.ParentalKey", "line_number": 667, "usage_type": "call" }, { "api_name": "django.db.models.ForeignKey", "line_number": 668, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 668, "usage_type": "name" }, { "api_name": "django.db.models.CASCADE", "line_number": 668, "usage_type": "attribute" }, { "api_name": "django.db.models.BooleanField", "line_number": 669, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 669, "usage_type": "name" }, { "api_name": "wagtail.admin.edit_handlers.MultiFieldPanel", "line_number": 672, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.PageChooserPanel", "line_number": 674, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.FieldPanel", "line_number": 675, "usage_type": "call" }, { "api_name": "modelcluster.models.ClusterableModel", "line_number": 683, "usage_type": "name" }, { "api_name": "modelcluster.fields.ParentalKey", "line_number": 684, "usage_type": "call" }, { "api_name": "django.db.models.ForeignKey", "line_number": 685, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 685, "usage_type": "name" }, { "api_name": "django.db.models.CASCADE", "line_number": 685, "usage_type": "attribute" }, { "api_name": "wagtail.snippets.edit_handlers.SnippetChooserPanel", "line_number": 688, "usage_type": "call" }, { "api_name": "modelcluster.models.ClusterableModel", "line_number": 694, "usage_type": "name" }, { "api_name": "modelcluster.fields.ParentalKey", "line_number": 695, "usage_type": "call" }, { "api_name": "django.db.models.ForeignKey", "line_number": 696, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 696, "usage_type": "name" }, { "api_name": "django.db.models.CASCADE", "line_number": 696, "usage_type": "attribute" }, { "api_name": "django.db.models.BooleanField", "line_number": 697, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 697, "usage_type": "name" }, { "api_name": "wagtail.admin.edit_handlers.MultiFieldPanel", "line_number": 700, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.PageChooserPanel", "line_number": 702, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.FieldPanel", "line_number": 703, "usage_type": "call" }, { "api_name": "modelcluster.models.ClusterableModel", "line_number": 711, "usage_type": "name" }, { "api_name": "modelcluster.fields.ParentalKey", "line_number": 712, "usage_type": "call" }, { "api_name": "django.db.models.ForeignKey", "line_number": 713, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 713, "usage_type": "name" }, { "api_name": "django.db.models.CASCADE", "line_number": 713, "usage_type": "attribute" }, { "api_name": "wagtail.snippets.edit_handlers.SnippetChooserPanel", "line_number": 716, "usage_type": "call" }, { "api_name": "modelcluster.models.ClusterableModel", "line_number": 723, "usage_type": "name" }, { "api_name": "django.db.models.SlugField", "line_number": 724, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 724, "usage_type": "name" }, { "api_name": "django.db.models.CharField", "line_number": 725, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 725, "usage_type": "name" }, { "api_name": "django.db.models.TextField", "line_number": 726, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 726, "usage_type": "name" }, { "api_name": "django.db.models.ForeignKey", "line_number": 727, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 727, "usage_type": "name" }, { "api_name": "django.db.models.SET_NULL", "line_number": 727, "usage_type": "attribute" }, { "api_name": "wagtail.admin.edit_handlers.FieldPanel", "line_number": 730, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.FieldPanel", "line_number": 731, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.InlinePanel", "line_number": 732, "usage_type": "call" }, { "api_name": "wagtail.images.edit_handlers.ImageChooserPanel", "line_number": 733, "usage_type": "call" }, { "api_name": "wagtail.snippets.models.register_snippet", "line_number": 722, "usage_type": "name" }, { "api_name": "modelcluster.models.ClusterableModel", "line_number": 740, "usage_type": "name" }, { "api_name": "modelcluster.fields.ParentalKey", "line_number": 741, "usage_type": "call" }, { "api_name": "django.db.models.ForeignKey", "line_number": 742, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 742, "usage_type": "name" }, { "api_name": "django.db.models.CASCADE", "line_number": 742, "usage_type": "attribute" }, { "api_name": "wagtail.snippets.edit_handlers.SnippetChooserPanel", "line_number": 745, "usage_type": "call" } ]
163490273
from src.platform.tomcat.authenticate import checkAuth from src.platform.tomcat.interfaces import TINTERFACES from requests import exceptions from cprint import FingerPrint from re import findall from log import LOG import utility class FPrint(FingerPrint): def __init__(self): self.platform = "tomcat" self.version = "4.0" self.title = TINTERFACES.APP self.uri = "/index.jsp" self.port = 8080 self.hash = None def check(self, ip, port=None): """ """ try: rport = self.port if port is None else port url = "http://{0}:{1}{2}".format(ip, rport, self.uri) response = utility.requests_get(url) found = findall("Apache Tomcat/(.*?)\n", response.content) if len(found) > 0 and self.version in found[0]: return True except exceptions.Timeout: utility.Msg("{0} timeout to {1}:{2}".format(self.platform, ip, rport), LOG.DEBUG) except exceptions.ConnectionError: utility.Msg("{0} connection error to {1}:{2}".format(self.platform, ip, rport), LOG.DEBUG) return False
null
src/platform/tomcat/fingerprints/Tomcat4.py
Tomcat4.py
py
1,402
python
en
code
null
code-starcoder2
83
[ { "api_name": "cprint.FingerPrint", "line_number": 9, "usage_type": "name" }, { "api_name": "src.platform.tomcat.interfaces.TINTERFACES.APP", "line_number": 14, "usage_type": "attribute" }, { "api_name": "src.platform.tomcat.interfaces.TINTERFACES", "line_number": 14, "usage_type": "name" }, { "api_name": "utility.requests_get", "line_number": 27, "usage_type": "call" }, { "api_name": "re.findall", "line_number": 28, "usage_type": "call" }, { "api_name": "requests.exceptions.Timeout", "line_number": 32, "usage_type": "attribute" }, { "api_name": "requests.exceptions", "line_number": 32, "usage_type": "name" }, { "api_name": "utility.Msg", "line_number": 33, "usage_type": "call" }, { "api_name": "log.LOG.DEBUG", "line_number": 35, "usage_type": "attribute" }, { "api_name": "log.LOG", "line_number": 35, "usage_type": "name" }, { "api_name": "requests.exceptions.ConnectionError", "line_number": 36, "usage_type": "attribute" }, { "api_name": "requests.exceptions", "line_number": 36, "usage_type": "name" }, { "api_name": "utility.Msg", "line_number": 37, "usage_type": "call" }, { "api_name": "log.LOG.DEBUG", "line_number": 39, "usage_type": "attribute" }, { "api_name": "log.LOG", "line_number": 39, "usage_type": "name" } ]
333349377
from pathlib import Path import os import os.path as osp import logging # set up directories HOME = str(Path.home()) CACHE = osp.join(HOME, '.dbinspector') LOGS = osp.join(CACHE, 'logs') # parsed UNIPROT = osp.join(CACHE, 'uniprot') REFSEQ = osp.join(CACHE, 'refseq') # downloads DATA = osp.join(CACHE, 'data') REFSEQ_FASTA = osp.join(DATA, 'refseq_fasta') for folder in [CACHE, LOGS, UNIPROT, REFSEQ, DATA, REFSEQ_FASTA]: os.makedirs(folder, exist_ok=True) # logging logging.basicConfig(filename=osp.join(LOGS, 'dbinspection.log'), filemode='a', format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', datefmt='%d/%m/%Y %I:%M:%S %p') logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG)
null
dbi_pkg/dbinspector/startup.py
startup.py
py
777
python
en
code
null
code-starcoder2
83
[ { "api_name": "pathlib.Path.home", "line_number": 7, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 7, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 8, "usage_type": "call" }, { "api_name": "os.path", "line_number": 8, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 9, "usage_type": "call" }, { "api_name": "os.path", "line_number": 9, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 11, "usage_type": "call" }, { "api_name": "os.path", "line_number": 11, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 12, "usage_type": "call" }, { "api_name": "os.path", "line_number": 12, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 14, "usage_type": "call" }, { "api_name": "os.path", "line_number": 14, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 15, "usage_type": "call" }, { "api_name": "os.path", "line_number": 15, "usage_type": "name" }, { "api_name": "os.makedirs", "line_number": 18, "usage_type": "call" }, { "api_name": "logging.basicConfig", "line_number": 21, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 21, "usage_type": "call" }, { "api_name": "os.path", "line_number": 21, "usage_type": "name" }, { "api_name": "logging.getLogger", "line_number": 25, "usage_type": "call" }, { "api_name": "logging.DEBUG", "line_number": 26, "usage_type": "attribute" } ]
471852386
import os import socket import unittest import subprocess import dbma.checkings as checkings from datetime import datetime class CheckingsTeestCase(unittest.TestCase): """ """ @classmethod def setUpClass(cls): super().setUpClass() # create a socket server cls.ip = '127.0.0.1' cls.port = 65321 cls.user = 'unittest' cls.now = datetime.now().isoformat() cls.t_file = f"/tmp/unittest-{cls.now}" try: cls.sock = socket.socket(socket.AF_INET,socket.SOCK_STREAM) cls.sock.bind((cls.ip,cls.port)) cls.sock.listen(2) except Exception : pass # create a user subprocess.run(f"groupadd {cls.user}",shell=True) subprocess.run(f"useradd -g {cls.user} {cls.user}",shell=True) with open(cls.t_file,'w') as fd: fd.write('unittest.') @classmethod def tearDownClass(cls): super().tearDownClass() if cls.sock and hasattr(cls.sock,'close'): cls.sock.close() subprocess.run(f"userdel {cls.user}",shell=True) os.remove(cls.t_file) def test_01_is_port_in_use(self): self.assertTrue(checkings.is_port_in_use(self.ip,self.port)) def test_02_is_user_exists(self): self.assertTrue(checkings.is_user_exists('unittest')) def test_03_is_file_exists(self): self.assertTrue(checkings.is_file_exists(self.t_file)) def test_04_is_group_exists(self): self.assertTrue(checkings.is_group_exists('unittest')) def test_05_is_directory_exists(self): self.assertTrue(checkings.is_directory_exists('/tmp/')) def test_06_is_an_supported_mysql_version(self): self.assertTrue(checkings.is_an_supported_mysql_version('mysql-8.0.17-linux-glibc2.12-x86_64.tar.xz')) self.assertFalse(checkings.is_an_supported_mysql_version('mysql-8.0.16-linux-glibc2.12-x86_64.tar.xz')) self.assertFalse(checkings.is_an_supported_mysql_version('mysql-5.7.26-linux-glibc2.12-x86_64.tar.gz')) def test_07_is_local_ip(self): """ """ self.assertTrue(checkings.is_local_ip('127.0.0.1')) self.assertFalse(checkings.is_local_ip('127.0.0.1111')) def test_08_is_template_file_exists(self): """ 检查安装包中是否包涵配置文件模板 """ project_dir = os.path.dirname(os.path.dirname(__file__)) # 查询 mysql-8.0.17 的配置文件版本要在 cnf_tmpl_file_17 = os.path.join(project_dir,'dbma/static/cnfs/','mysql-8.0.17.cnf.jinja') self.assertTrue(os.path.isfile(cnf_tmpl_file_17)) # 查询 mysql-8.0.18 的配置文件版本要在 cnf_tmpl_file_18 = os.path.join(project_dir,'dbma/static/cnfs/','mysql-8.0.17.cnf.jinja') self.assertTrue(os.path.isfile(cnf_tmpl_file_18)) # init 专用的配置文件模板存在 cnf_tmpl_init_only = os.path.join(project_dir,'dbma/static/cnfs/','mysql-8.0-init-only.jinja') self.assertTrue(os.path.isfile(cnf_tmpl_init_only))
null
tests/test_checkings.py
test_checkings.py
py
3,126
python
en
code
null
code-starcoder2
83
[ { "api_name": "unittest.TestCase", "line_number": 10, "usage_type": "attribute" }, { "api_name": "datetime.datetime.now", "line_number": 20, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 20, "usage_type": "name" }, { "api_name": "socket.socket", "line_number": 23, "usage_type": "call" }, { "api_name": "socket.AF_INET", "line_number": 23, "usage_type": "attribute" }, { "api_name": "socket.SOCK_STREAM", "line_number": 23, "usage_type": "attribute" }, { "api_name": "subprocess.run", "line_number": 29, "usage_type": "call" }, { "api_name": "subprocess.run", "line_number": 30, "usage_type": "call" }, { "api_name": "subprocess.run", "line_number": 40, "usage_type": "call" }, { "api_name": "os.remove", "line_number": 41, "usage_type": "call" }, { "api_name": "dbma.checkings.is_port_in_use", "line_number": 44, "usage_type": "call" }, { "api_name": "dbma.checkings", "line_number": 44, "usage_type": "name" }, { "api_name": "dbma.checkings.is_user_exists", "line_number": 47, "usage_type": "call" }, { "api_name": "dbma.checkings", "line_number": 47, "usage_type": "name" }, { "api_name": "dbma.checkings.is_file_exists", "line_number": 50, "usage_type": "call" }, { "api_name": "dbma.checkings", "line_number": 50, "usage_type": "name" }, { "api_name": "dbma.checkings.is_group_exists", "line_number": 53, "usage_type": "call" }, { "api_name": "dbma.checkings", "line_number": 53, "usage_type": "name" }, { "api_name": "dbma.checkings.is_directory_exists", "line_number": 56, "usage_type": "call" }, { "api_name": "dbma.checkings", "line_number": 56, "usage_type": "name" }, { "api_name": "dbma.checkings.is_an_supported_mysql_version", "line_number": 59, "usage_type": "call" }, { "api_name": "dbma.checkings", "line_number": 59, "usage_type": "name" }, { "api_name": "dbma.checkings.is_an_supported_mysql_version", "line_number": 60, "usage_type": "call" }, { "api_name": "dbma.checkings", "line_number": 60, "usage_type": "name" }, { "api_name": "dbma.checkings.is_an_supported_mysql_version", "line_number": 61, "usage_type": "call" }, { "api_name": "dbma.checkings", "line_number": 61, "usage_type": "name" }, { "api_name": "dbma.checkings.is_local_ip", "line_number": 66, "usage_type": "call" }, { "api_name": "dbma.checkings", "line_number": 66, "usage_type": "name" }, { "api_name": "dbma.checkings.is_local_ip", "line_number": 67, "usage_type": "call" }, { "api_name": "dbma.checkings", "line_number": 67, "usage_type": "name" }, { "api_name": "os.path.dirname", "line_number": 73, "usage_type": "call" }, { "api_name": "os.path", "line_number": 73, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 76, "usage_type": "call" }, { "api_name": "os.path", "line_number": 76, "usage_type": "attribute" }, { "api_name": "os.path.isfile", "line_number": 77, "usage_type": "call" }, { "api_name": "os.path", "line_number": 77, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 79, "usage_type": "call" }, { "api_name": "os.path", "line_number": 79, "usage_type": "attribute" }, { "api_name": "os.path.isfile", "line_number": 80, "usage_type": "call" }, { "api_name": "os.path", "line_number": 80, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 83, "usage_type": "call" }, { "api_name": "os.path", "line_number": 83, "usage_type": "attribute" }, { "api_name": "os.path.isfile", "line_number": 84, "usage_type": "call" }, { "api_name": "os.path", "line_number": 84, "usage_type": "attribute" } ]
387581399
# -*- coding: utf-8 -*- import pytz from pytest import raises, approx import astral.geocoder def location_count(name, locations): return len(list(filter(lambda item: item.name == name, locations))) class TestDatabase: """Test database access functions""" def test_all_locations(self, test_database): for loc in astral.geocoder.all_locations(test_database): assert loc.name location_list = astral.geocoder.all_locations(test_database) all_locations = list(location_list) assert location_count("London", all_locations) == 1 assert location_count("Abu Dhabi", all_locations) == 2 def test_lookup(self, test_database): loc = astral.geocoder.lookup("London", test_database) assert loc.name == "London" assert loc.region == "England" assert loc.latitude == approx(51.4733, abs=0.001) assert loc.longitude == approx(-0.0008333, abs=0.000001) tz = pytz.timezone("Europe/London") tzl = pytz.timezone(loc.timezone) assert tz == tzl def test_city_in_db(self, test_database): astral.geocoder.lookup("london", test_database) def test_group_in_db(self, test_database): astral.geocoder.lookup("africa", test_database) def test_location_not_in_db(self, test_database): with raises(KeyError): astral.geocoder.lookup("Nowhere", test_database) def test_group_not_in_db(self, test_database): with raises(KeyError): astral.geocoder.group("wallyland", test_database) def test_lookup_city_and_region(self, test_database): city_name = "Birmingham,England" city = astral.geocoder.lookup(city_name, test_database) assert city.name == "Birmingham" assert city.region == "England" def test_country_with_multiple_entries_no_country(self, test_database): city = astral.geocoder.lookup("Abu Dhabi", test_database) assert city.name == "Abu Dhabi" def test_country_with_multiple_entries_with_country(self, test_database): """Test for fix made due to bug report from Klaus Alexander Seistrup""" city = astral.geocoder.lookup("Abu Dhabi,United Arab Emirates", test_database) assert city.name == "Abu Dhabi" city = astral.geocoder.lookup("Abu Dhabi,UAE", test_database) assert city.name == "Abu Dhabi" class TestBugReports: """Test for bug report fixes""" def test_Adelaide(self, test_database): """Test for fix made due to bug report from Klaus Alexander Seistrup""" astral.geocoder.lookup("Adelaide", test_database) def test_CandianCities(self, test_database): astral.geocoder.lookup("Fredericton", test_database) class TestDatabaseAddLocations: """Test adding locations to database""" def test_newline_at_end(self, test_database): count = astral.geocoder._location_count(test_database) astral.geocoder.add_locations( "A Place,A Region,Asia/Nicosia,35°10'N,33°25'E,162.0\n", test_database ) assert astral.geocoder._location_count(test_database) == count + 1 def test_from_list_of_strings(self, test_database): count = astral.geocoder._location_count(test_database) astral.geocoder.add_locations( [ "A Place,A Region,Asia/Nicosia,35°10'N,33°25'E,162.0", "Another Place,Somewhere else,Asia/Nicosia,35°10'N,33°25'E,162.0", ], test_database, ) assert astral.geocoder._location_count(test_database) == count + 2 def test_from_list_of_lists(self, test_database): count = astral.geocoder._location_count(test_database) astral.geocoder.add_locations( [ ["A Place", "A Region", "Asia/Nicosia", "35°10'N", "33°25'E", "162.0"], [ "Another Place", "Somewhere else", "Asia/Nicosia", "35°10'N", "33°25'E", "162.0", ], ], test_database, ) assert astral.geocoder._location_count(test_database) == count + 2 def test_SanitizeKey(): assert astral.geocoder._sanitize_key("Los Angeles") == "los_angeles"
null
src/test/test_geocoder.py
test_geocoder.py
py
4,330
python
en
code
null
code-starcoder2
83
[ { "api_name": "astral.geocoder.geocoder.all_locations", "line_number": 16, "usage_type": "call" }, { "api_name": "astral.geocoder.geocoder", "line_number": 16, "usage_type": "attribute" }, { "api_name": "astral.geocoder", "line_number": 16, "usage_type": "name" }, { "api_name": "astral.geocoder.geocoder.all_locations", "line_number": 19, "usage_type": "call" }, { "api_name": "astral.geocoder.geocoder", "line_number": 19, "usage_type": "attribute" }, { "api_name": "astral.geocoder", "line_number": 19, "usage_type": "name" }, { "api_name": "astral.geocoder.geocoder.lookup", "line_number": 25, "usage_type": "call" }, { "api_name": "astral.geocoder.geocoder", "line_number": 25, "usage_type": "attribute" }, { "api_name": "astral.geocoder", "line_number": 25, "usage_type": "name" }, { "api_name": "pytest.approx", "line_number": 28, "usage_type": "call" }, { "api_name": "pytest.approx", "line_number": 29, "usage_type": "call" }, { "api_name": "pytz.timezone", "line_number": 30, "usage_type": "call" }, { "api_name": "pytz.timezone", "line_number": 31, "usage_type": "call" }, { "api_name": "astral.geocoder.geocoder.lookup", "line_number": 35, "usage_type": "call" }, { "api_name": "astral.geocoder.geocoder", "line_number": 35, "usage_type": "attribute" }, { "api_name": "astral.geocoder", "line_number": 35, "usage_type": "name" }, { "api_name": "astral.geocoder.geocoder.lookup", "line_number": 38, "usage_type": "call" }, { "api_name": "astral.geocoder.geocoder", "line_number": 38, "usage_type": "attribute" }, { "api_name": "astral.geocoder", "line_number": 38, "usage_type": "name" }, { "api_name": "pytest.raises", "line_number": 41, "usage_type": "call" }, { "api_name": "astral.geocoder.geocoder.lookup", "line_number": 42, "usage_type": "call" }, { "api_name": "astral.geocoder.geocoder", "line_number": 42, "usage_type": "attribute" }, { "api_name": "astral.geocoder", "line_number": 42, "usage_type": "name" }, { "api_name": "pytest.raises", "line_number": 45, "usage_type": "call" }, { "api_name": "astral.geocoder.geocoder.group", "line_number": 46, "usage_type": "call" }, { "api_name": "astral.geocoder.geocoder", "line_number": 46, "usage_type": "attribute" }, { "api_name": "astral.geocoder", "line_number": 46, "usage_type": "name" }, { "api_name": "astral.geocoder.geocoder.lookup", "line_number": 51, "usage_type": "call" }, { "api_name": "astral.geocoder.geocoder", "line_number": 51, "usage_type": "attribute" }, { "api_name": "astral.geocoder", "line_number": 51, "usage_type": "name" }, { "api_name": "astral.geocoder.geocoder.lookup", "line_number": 56, "usage_type": "call" }, { "api_name": "astral.geocoder.geocoder", "line_number": 56, "usage_type": "attribute" }, { "api_name": "astral.geocoder", "line_number": 56, "usage_type": "name" }, { "api_name": "astral.geocoder.geocoder.lookup", "line_number": 62, "usage_type": "call" }, { "api_name": "astral.geocoder.geocoder", "line_number": 62, "usage_type": "attribute" }, { "api_name": "astral.geocoder", "line_number": 62, "usage_type": "name" }, { "api_name": "astral.geocoder.geocoder.lookup", "line_number": 65, "usage_type": "call" }, { "api_name": "astral.geocoder.geocoder", "line_number": 65, "usage_type": "attribute" }, { "api_name": "astral.geocoder", "line_number": 65, "usage_type": "name" }, { "api_name": "astral.geocoder.geocoder.lookup", "line_number": 75, "usage_type": "call" }, { "api_name": "astral.geocoder.geocoder", "line_number": 75, "usage_type": "attribute" }, { "api_name": "astral.geocoder", "line_number": 75, "usage_type": "name" }, { "api_name": "astral.geocoder.geocoder.lookup", "line_number": 78, "usage_type": "call" }, { "api_name": "astral.geocoder.geocoder", "line_number": 78, "usage_type": "attribute" }, { "api_name": "astral.geocoder", "line_number": 78, "usage_type": "name" }, { "api_name": "astral.geocoder.geocoder._location_count", "line_number": 85, "usage_type": "call" }, { "api_name": "astral.geocoder.geocoder", "line_number": 85, "usage_type": "attribute" }, { "api_name": "astral.geocoder", "line_number": 85, "usage_type": "name" }, { "api_name": "astral.geocoder.geocoder.add_locations", "line_number": 86, "usage_type": "call" }, { "api_name": "astral.geocoder.geocoder", "line_number": 86, "usage_type": "attribute" }, { "api_name": "astral.geocoder", "line_number": 86, "usage_type": "name" }, { "api_name": "astral.geocoder.geocoder._location_count", "line_number": 89, "usage_type": "call" }, { "api_name": "astral.geocoder.geocoder", "line_number": 89, "usage_type": "attribute" }, { "api_name": "astral.geocoder", "line_number": 89, "usage_type": "name" }, { "api_name": "astral.geocoder.geocoder._location_count", "line_number": 92, "usage_type": "call" }, { "api_name": "astral.geocoder.geocoder", "line_number": 92, "usage_type": "attribute" }, { "api_name": "astral.geocoder", "line_number": 92, "usage_type": "name" }, { "api_name": "astral.geocoder.geocoder.add_locations", "line_number": 93, "usage_type": "call" }, { "api_name": "astral.geocoder.geocoder", "line_number": 93, "usage_type": "attribute" }, { "api_name": "astral.geocoder", "line_number": 93, "usage_type": "name" }, { "api_name": "astral.geocoder.geocoder._location_count", "line_number": 100, "usage_type": "call" }, { "api_name": "astral.geocoder.geocoder", "line_number": 100, "usage_type": "attribute" }, { "api_name": "astral.geocoder", "line_number": 100, "usage_type": "name" }, { "api_name": "astral.geocoder.geocoder._location_count", "line_number": 103, "usage_type": "call" }, { "api_name": "astral.geocoder.geocoder", "line_number": 103, "usage_type": "attribute" }, { "api_name": "astral.geocoder", "line_number": 103, "usage_type": "name" }, { "api_name": "astral.geocoder.geocoder.add_locations", "line_number": 104, "usage_type": "call" }, { "api_name": "astral.geocoder.geocoder", "line_number": 104, "usage_type": "attribute" }, { "api_name": "astral.geocoder", "line_number": 104, "usage_type": "name" }, { "api_name": "astral.geocoder.geocoder._location_count", "line_number": 118, "usage_type": "call" }, { "api_name": "astral.geocoder.geocoder", "line_number": 118, "usage_type": "attribute" }, { "api_name": "astral.geocoder", "line_number": 118, "usage_type": "name" }, { "api_name": "astral.geocoder.geocoder._sanitize_key", "line_number": 122, "usage_type": "call" }, { "api_name": "astral.geocoder.geocoder", "line_number": 122, "usage_type": "attribute" }, { "api_name": "astral.geocoder", "line_number": 122, "usage_type": "name" } ]
194736369
import re from pylatex import (Alignat, Center, Document, LargeText, LineBreak, Math, MediumText, PageStyle, Section, Subsection) from pylatex.utils import NoEscape, bold, italic class EquationsGenerator: def __init__(self, equations): geometry_options = { "head": "2.5cm", "left": "3cm", "right": "3cm", "bottom": "2.5cm" } doc = Document(geometry_options = geometry_options, inputenc = 'utf8') self.doc = doc equations = self.Read(equations) self.Create(equations) self.doc.generate_pdf(filepath = 'Equations', clean_tex = False, compiler = 'pdflatex') def Read(self, equations): eqs = [] for key in equations: value = ' '.join([line.strip() for line in equations.get(key).strip().splitlines()]) equation = key + " &= " + value eqs.append(equation) return eqs def Create(self, equations): with self.doc.create(Center()) as Centered: with Centered.create(Section(title='', numbering='')) as Title: Title.append(LargeText(bold('Generalized model'))) with self.doc.create(Section(title='Equations', numbering='1.')) as Intro: Intro.append(MediumText(('These are the equations for the model:'))) for eq in equations: with self.doc.create(Alignat(numbering = True, escape = False)) as math_eq: math_eq.append(eq)
null
SIRModel/EquationsGenerator.py
EquationsGenerator.py
py
1,510
python
en
code
null
code-starcoder2
83
[ { "api_name": "pylatex.Document", "line_number": 16, "usage_type": "call" }, { "api_name": "pylatex.Center", "line_number": 31, "usage_type": "call" }, { "api_name": "pylatex.Section", "line_number": 32, "usage_type": "call" }, { "api_name": "pylatex.LargeText", "line_number": 33, "usage_type": "call" }, { "api_name": "pylatex.utils.bold", "line_number": 33, "usage_type": "call" }, { "api_name": "pylatex.Section", "line_number": 35, "usage_type": "call" }, { "api_name": "pylatex.MediumText", "line_number": 36, "usage_type": "call" }, { "api_name": "pylatex.Alignat", "line_number": 39, "usage_type": "call" } ]