seq_id
string | text
string | repo_name
string | sub_path
string | file_name
string | file_ext
string | file_size_in_byte
int64 | program_lang
string | lang
string | doc_type
string | stars
int64 | dataset
string | pt
string | api
list |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
276138230
|
import asyncio
import sys
import socket
import os
import time
port = sys.argv[1]
dirs = '/Users/mario/IdeaProjects/pythonLearn/pytest/file/p1/server/'
if not os.path.exists(dirs):
os.makedirs(dirs)
async def echo(r, w):
msg = await r.read(1024)
addr = w.get_extra_info('peername')
print("Received %r from %r" % (msg.decode("UTF-8"), addr))
if msg.decode("UTF-8") == "__EXIT__":
print("client ask closing the connection")
w.close()
return
if msg:
count = len(os.listdir(dirs))
newText = dirs + "echo_message_" + str(count + 1) + '.txt'
content = str(time.time()) + "\n" + str(addr[0]) + ":" + str(addr[1]) + "\n" + str(msg.decode("UTF-8"))
with open(newText, 'w') as f:
f.write(content)
w.write(msg)
await w.drain()
w.close()
print(socket.gethostname())
loop = asyncio.get_event_loop()
server_listen = asyncio.start_server(echo, socket.gethostname(), port, loop=loop)
server = loop.run_until_complete(server_listen)
try:
loop.run_forever()
except KeyboardInterrupt:
pass
# Close the server
server.close()
loop.run_until_complete(server.wait_closed())
loop.close()
| null |
pytest/pytest_echoserver.py
|
pytest_echoserver.py
|
py
| 1,187 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "sys.argv",
"line_number": 7,
"usage_type": "attribute"
},
{
"api_name": "os.path.exists",
"line_number": 9,
"usage_type": "call"
},
{
"api_name": "os.path",
"line_number": 9,
"usage_type": "attribute"
},
{
"api_name": "os.makedirs",
"line_number": 10,
"usage_type": "call"
},
{
"api_name": "os.listdir",
"line_number": 24,
"usage_type": "call"
},
{
"api_name": "time.time",
"line_number": 26,
"usage_type": "call"
},
{
"api_name": "socket.gethostname",
"line_number": 36,
"usage_type": "call"
},
{
"api_name": "asyncio.get_event_loop",
"line_number": 38,
"usage_type": "call"
},
{
"api_name": "asyncio.start_server",
"line_number": 39,
"usage_type": "call"
},
{
"api_name": "socket.gethostname",
"line_number": 39,
"usage_type": "call"
}
] |
641150022
|
from django.contrib import admin
from django.urls import path
from . import views
urlpatterns = [
path('<int:blog_id>',views.detail,name='detail'),
path('edit/<int:blog_id>',views.edit, name="edit"),
path('delete/<int:blog_id>',views.delete, name="delete"),
path('newblog/', views.blogpost, name="newblog"),
path('search', views.search, name="search"),
]
#name์ html์์ ์ด๋ฆ์ผ๋ก ์ฌ์ฉํ๊ธฐ์ํด ์์ฑ.
| null |
blog/urls.py
|
urls.py
|
py
| 436 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "django.urls.path",
"line_number": 5,
"usage_type": "call"
},
{
"api_name": "django.urls.path",
"line_number": 6,
"usage_type": "call"
},
{
"api_name": "django.urls.path",
"line_number": 7,
"usage_type": "call"
},
{
"api_name": "django.urls.path",
"line_number": 8,
"usage_type": "call"
},
{
"api_name": "django.urls.path",
"line_number": 9,
"usage_type": "call"
}
] |
522417123
|
#!/usr/bin/env python3
from pydarknet import Detector, Image
import argparse
import cv2
import os
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Process an image.')
parser.add_argument('path', metavar='image_path', type=str, help='Path to source image')
parser.add_argument('output', metavar='output_path', type=str, help='Data file for output')
args = parser.parse_args()
darknet_path = os.environ['DARKNET_HOME']
config = os.path.join(darknet_path, 'cfg/yolov3.cfg')
weights = os.path.join(darknet_path, 'yolov3.weights')
coco = os.path.join(darknet_path, 'cfg/coco.data')
net = Detector(bytes(config, encoding="utf-8"), bytes(weights, encoding="utf-8"), 0, bytes(coco, encoding="utf-8"))
img = cv2.imread(args.path)
img2 = Image(img)
# r = net.classify(img2)
results = net.detect(img2)
output = open(args.output, 'w')
for cat, score, bounds in results:
x, y, w, h = bounds
output.write("%s at X: %d\tY: %d\n" % (str(cat), x, y))
cv2.rectangle(img, (int(x - w / 2), int(y - h / 2)), (int(x + w / 2), int(y + h / 2)), (255, 0, 0), thickness=2)
cv2.putText(img,str(cat.decode("utf-8")),(int(x),int(y)),cv2.FONT_HERSHEY_COMPLEX,1,(255,255,0))
print('%d Detections logged in %s' % (len(results), args.output))
cv2.imshow("output", img)
cv2.imwrite("output.jpg", img)
cv2.waitKey(0)
| null |
yolo_image.py
|
yolo_image.py
|
py
| 1,423 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "argparse.ArgumentParser",
"line_number": 8,
"usage_type": "call"
},
{
"api_name": "os.environ",
"line_number": 13,
"usage_type": "attribute"
},
{
"api_name": "os.path.join",
"line_number": 14,
"usage_type": "call"
},
{
"api_name": "os.path",
"line_number": 14,
"usage_type": "attribute"
},
{
"api_name": "os.path.join",
"line_number": 15,
"usage_type": "call"
},
{
"api_name": "os.path",
"line_number": 15,
"usage_type": "attribute"
},
{
"api_name": "os.path.join",
"line_number": 16,
"usage_type": "call"
},
{
"api_name": "os.path",
"line_number": 16,
"usage_type": "attribute"
},
{
"api_name": "pydarknet.Detector",
"line_number": 18,
"usage_type": "call"
},
{
"api_name": "cv2.imread",
"line_number": 20,
"usage_type": "call"
},
{
"api_name": "pydarknet.Image",
"line_number": 22,
"usage_type": "call"
},
{
"api_name": "cv2.rectangle",
"line_number": 32,
"usage_type": "call"
},
{
"api_name": "cv2.putText",
"line_number": 33,
"usage_type": "call"
},
{
"api_name": "cv2.FONT_HERSHEY_COMPLEX",
"line_number": 33,
"usage_type": "attribute"
},
{
"api_name": "cv2.imshow",
"line_number": 36,
"usage_type": "call"
},
{
"api_name": "cv2.imwrite",
"line_number": 37,
"usage_type": "call"
},
{
"api_name": "cv2.waitKey",
"line_number": 38,
"usage_type": "call"
}
] |
601122953
|
import logging
from backbone_server.errors.missing_key_exception import MissingKeyException
from backbone_server.errors.integrity_exception import IntegrityException
from backbone_server.study.gets import StudiesGet
from backbone_server.study.get import StudyGet
from backbone_server.study.put import StudyPut
from backbone_server.controllers.base_controller import BaseController
from backbone_server.controllers.decorators import apply_decorators
@apply_decorators
class StudyController(BaseController):
def download_studies(self, start=None, count=None, user=None, auths=None):
"""
fetches studies
:param start: for pagination start the result set at a record x
:type start: int
:param count: for pagination the number of entries to return
:type count: int
:rtype: Studies
"""
get = StudiesGet(self.get_connection())
studies = get.get()
return studies, 200
def download_study(self, study_name, user=None, auths=None):
"""
fetches a study
:param study_name: ID of study to fetch
:type study_name: str
:rtype: Study
"""
get = StudyGet(self.get_connection())
study = None
retcode = 200
try:
study = get.get(study_name)
except MissingKeyException as dme:
logging.getLogger(__name__).debug(
"update_study: {}".format(repr(dme)))
retcode = 404
study = str(dme)
return study, retcode
def update_study(self, study_name, study, user=None, auths=None):
"""
updates a study
:param study_name: ID of study to update
:type study_name: str
:param study:
:type study: dict | bytes
:rtype: Study
"""
retcode = 200
updated_study = None
try:
put = StudyPut(self.get_connection())
updated_study = put.put(study_name, study)
except IntegrityException as dme:
logging.getLogger(__name__).debug(
"update_study: {}".format(repr(dme)))
retcode = 422
updated_study = str(dme)
except MissingKeyException as dme:
logging.getLogger(__name__).debug(
"update_study: {}".format(repr(dme)))
retcode = 404
updated_study = str(dme)
return updated_study, retcode
| null |
server/backbone_server/controllers/study_controller.py
|
study_controller.py
|
py
| 2,455 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "backbone_server.controllers.base_controller.BaseController",
"line_number": 15,
"usage_type": "name"
},
{
"api_name": "backbone_server.study.gets.StudiesGet",
"line_number": 29,
"usage_type": "call"
},
{
"api_name": "backbone_server.study.get.StudyGet",
"line_number": 45,
"usage_type": "call"
},
{
"api_name": "backbone_server.errors.missing_key_exception.MissingKeyException",
"line_number": 51,
"usage_type": "name"
},
{
"api_name": "logging.getLogger",
"line_number": 52,
"usage_type": "call"
},
{
"api_name": "backbone_server.study.put.StudyPut",
"line_number": 75,
"usage_type": "call"
},
{
"api_name": "backbone_server.errors.integrity_exception.IntegrityException",
"line_number": 78,
"usage_type": "name"
},
{
"api_name": "logging.getLogger",
"line_number": 79,
"usage_type": "call"
},
{
"api_name": "backbone_server.errors.missing_key_exception.MissingKeyException",
"line_number": 83,
"usage_type": "name"
},
{
"api_name": "logging.getLogger",
"line_number": 84,
"usage_type": "call"
},
{
"api_name": "backbone_server.controllers.decorators.apply_decorators",
"line_number": 14,
"usage_type": "name"
}
] |
386613464
|
import django_tables2 as tables
from django.utils.safestring import mark_safe
from website.models import Instancia, Estudiante
class AsignaturasTable(tables.Table):
nombre = tables.Column(empty_values=())
carrera = tables.Column(accessor='asignatura.malla.carrera.nombre',
verbose_name='Carrera')
def render_nombre(self, record):
return mark_safe('<a href="/curso/{0}">{1}</a>'
.format(record.pk, record.asignatura.nombre))
class Meta:
model = Instancia
row_attrs = {
'class': "teal-text",
'href': lambda record: '/curso/' + str(record.pk)
}
attrs = {'class': 'stripped'}
fields = ('nombre',
'carrera',
'ano',
'semestre',
'estado')
class EstudiantesTable(tables.Table):
nombre = tables.Column(empty_values=())
estado = tables.Column(empty_values=())
def render_nombre(self, record):
return mark_safe('<a href="/ficha/{0}">{1}</a>'
.format(record.pk, record.nombre))
def render_estado(self, record):
pk = self.context['request'].path.rsplit('/')[2]
print(pk)
return record.inscripciones.get(instancia__pk=pk).estado.nombre
class Meta:
model = Estudiante
row_attrs = {
'class': "teal-text"
}
attrs = {'class': 'stripped'}
fields = ('nombre',
'paterno',
'materno',
'estado')
class EstudianteCursos(tables.Table):
nombre = tables.Column(empty_values=())
estado = tables.Column(empty_values=())
carrera = tables.Column(accessor='asignatura.malla.carrera.nombre',
verbose_name='Carrera')
def render_nombre(self, record):
return record.asignatura.nombre
def render_estado(self, record):
user = self.context['request'].user.estudiante
return record.inscripciones.get(estudiante=user).estado.nombre
class Meta:
model = Instancia
row_attrs = {
'class': "teal-text",
'href': lambda record: '/curso/' + str(record.pk)
}
attrs = {'class': 'stripped'}
fields = ('nombre',
'carrera',
'ano',
'semestre',
'estado')
| null |
website/tables.py
|
tables.py
|
py
| 2,420 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "django_tables2.Table",
"line_number": 6,
"usage_type": "attribute"
},
{
"api_name": "django_tables2.Column",
"line_number": 7,
"usage_type": "call"
},
{
"api_name": "django_tables2.Column",
"line_number": 8,
"usage_type": "call"
},
{
"api_name": "django.utils.safestring.mark_safe",
"line_number": 12,
"usage_type": "call"
},
{
"api_name": "website.models.Instancia",
"line_number": 16,
"usage_type": "name"
},
{
"api_name": "django_tables2.Table",
"line_number": 29,
"usage_type": "attribute"
},
{
"api_name": "django_tables2.Column",
"line_number": 30,
"usage_type": "call"
},
{
"api_name": "django_tables2.Column",
"line_number": 31,
"usage_type": "call"
},
{
"api_name": "django.utils.safestring.mark_safe",
"line_number": 34,
"usage_type": "call"
},
{
"api_name": "website.models.Estudiante",
"line_number": 43,
"usage_type": "name"
},
{
"api_name": "django_tables2.Table",
"line_number": 54,
"usage_type": "attribute"
},
{
"api_name": "django_tables2.Column",
"line_number": 55,
"usage_type": "call"
},
{
"api_name": "django_tables2.Column",
"line_number": 56,
"usage_type": "call"
},
{
"api_name": "django_tables2.Column",
"line_number": 57,
"usage_type": "call"
},
{
"api_name": "website.models.Instancia",
"line_number": 68,
"usage_type": "name"
}
] |
3053519
|
import numpy as np
from sklearn.datasets import load_boston
#1 ๋ฐ์ดํฐ
dataset = load_boston()
x = dataset.data
y = dataset.target
# print(x.shape) # (506, 13)
# print(y.shape) # (506,)
# print('===================')
# print(x[:5])
# print(y[:10])
# print(np.max(x), np.min(x))
# print(dataset.feature_names)
# print(dataset.DESCR)
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, train_size=0.8, random_state= 104, shuffle=True)
#2 ๋ชจ๋ธ๊ตฌ์ฑ
from tensorflow.keras.models import Sequential,Model
from tensorflow.keras.layers import Input,Dense
input1 = Input(shape=(13,))
dense1 = Dense(120, activation='relu')(input1)
dense1 = Dense(80)(dense1)
dense1 = Dense(60)(dense1)
dense1 = Dense(30)(dense1)
dense1 = Dense(7)(dense1)
dense1 = Dense(7)(dense1)
dense1 = Dense(5)(dense1)
dense1 = Dense(4)(dense1)
output1 = Dense(1)(dense1)
model = Model(inputs = input1, outputs = output1)
#3 ์ปดํ์ผ ํ๋ จ
model.compile(loss='mse', optimizer='adam', metrics=['mae'])
model.fit(x_train, y_train, epochs=1000, batch_size=4, validation_split=0.2, verbose=1)
#4ํ๊ฐ ์์ธก
loss, mae = model.evaluate(x_test, y_test, batch_size=4)
print('loss,mae : ', loss, mae)
y_predict = model.predict(x_test)
from sklearn.metrics import mean_squared_error
def RMSE(y_test, y_predict):
return np.sqrt(mean_squared_error(y_test, y_predict))
print('RMSE : ', RMSE(y_test, y_predict ))
from sklearn.metrics import r2_score
r2 = r2_score(y_test, y_predict)
print('R2: ', r2)
# loss,mae : 10.771950721740723 2.4755585193634033
# RMSE : 3.2820651926340183
# R2: 0.8723619073719358
| null |
keras/keras18_boston1.py
|
keras18_boston1.py
|
py
| 1,640 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "sklearn.datasets.load_boston",
"line_number": 6,
"usage_type": "call"
},
{
"api_name": "sklearn.model_selection.train_test_split",
"line_number": 19,
"usage_type": "call"
},
{
"api_name": "tensorflow.keras.layers.Input",
"line_number": 25,
"usage_type": "call"
},
{
"api_name": "tensorflow.keras.layers.Dense",
"line_number": 26,
"usage_type": "call"
},
{
"api_name": "tensorflow.keras.layers.Dense",
"line_number": 27,
"usage_type": "call"
},
{
"api_name": "tensorflow.keras.layers.Dense",
"line_number": 28,
"usage_type": "call"
},
{
"api_name": "tensorflow.keras.layers.Dense",
"line_number": 29,
"usage_type": "call"
},
{
"api_name": "tensorflow.keras.layers.Dense",
"line_number": 30,
"usage_type": "call"
},
{
"api_name": "tensorflow.keras.layers.Dense",
"line_number": 31,
"usage_type": "call"
},
{
"api_name": "tensorflow.keras.layers.Dense",
"line_number": 32,
"usage_type": "call"
},
{
"api_name": "tensorflow.keras.layers.Dense",
"line_number": 33,
"usage_type": "call"
},
{
"api_name": "tensorflow.keras.layers.Dense",
"line_number": 34,
"usage_type": "call"
},
{
"api_name": "tensorflow.keras.models.Model",
"line_number": 35,
"usage_type": "call"
},
{
"api_name": "numpy.sqrt",
"line_number": 49,
"usage_type": "call"
},
{
"api_name": "sklearn.metrics.mean_squared_error",
"line_number": 49,
"usage_type": "call"
},
{
"api_name": "sklearn.metrics.r2_score",
"line_number": 53,
"usage_type": "call"
}
] |
465589001
|
import json
import sys, urllib.request as url
from html.parser import HTMLParser
#https://www.youtube.com/watch?v=ulzlXMZa8ak
#http://stackoverflow.com/questions/753052/strip-html-from-strings-in-python
#answer submitted by stackoverflow user eloff
class MLStripper(HTMLParser):
def __init__(self):
self.reset()
self.strict = False
self.convert_charrefs= True
self.fed = []
def handle_data(self, d):
self.fed.append(d)
def get_data(self):
return ''.join(self.fed)
def strip_tags(html):
s = MLStripper()
s.feed(html)
return s.get_data()
try:
#Addresslist=[]
#Source=sys.argv[1]
Source="ForestRd"
destination="UniversityofNewHaven"
#destination=sys.argv[1]
except ValueError:
print("Error in command line arguments")
apicode = "AIzaSyD5Fqole2qOY6R9j5vJ-shLZY2ZYAlvAEE"
#urlquery="http://maps.googleapis.com/maps/api/directions/json?origin=Jackson+Av&destination=Prospect+Av"+"&APPID="+apicode
urlquery="http://maps.googleapis.com/maps/api/directions/json?origin="+Source+"&destination="+destination+"&APPID="+apicode
page = url.urlopen(urlquery)
if page.getcode() == 200 :
DirectionString =page.read()
DirectionString = DirectionString.decode("utf-8")
Directiondata = json.loads(DirectionString)
for i in range(0, len(Directiondata['routes'][0]['legs'][0]['steps'])):
j = Directiondata['routes'][0]['legs'][0]['steps'][i]['html_instructions']
#strip_tags[j]
print(strip_tags(j))
| null |
Python/GetMapDirection.py
|
GetMapDirection.py
|
py
| 1,522 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "html.parser.HTMLParser",
"line_number": 8,
"usage_type": "name"
},
{
"api_name": "html.parser",
"line_number": 21,
"usage_type": "argument"
},
{
"api_name": "urllib.request.urlopen",
"line_number": 34,
"usage_type": "call"
},
{
"api_name": "urllib.request",
"line_number": 34,
"usage_type": "name"
},
{
"api_name": "json.loads",
"line_number": 41,
"usage_type": "call"
}
] |
111141535
|
import operator
from flask import abort, jsonify
from sqlalchemy.sql import func, case
from . import bp
from app import db
from app.models import (
Acceptance,
Author,
Barrel,
Batch,
Boil,
Btproduct,
Container,
Doctype,
Document,
Load,
Lot,
Manufacturer,
Manufacturerlot,
Product,
Seller,
Trademark,
Weighting,
)
@bp.route("/api/v1/boils/summary/<int:batchid>", methods=['GET'])
def boil_summary_data(batchid):
batch_data = Batch.get_name_date_plant_by_id(batchid)
boil_subqry = db.session.query(
Boil.BatchPK.label('batch_id'),
Boil.ProductId.label('product_id'),
Boil.Quantity.label('plan'),
Product.ProductName.label('product_name')
).join(
Product, Boil.ProductId == Product.ProductId
).filter(
Boil.BatchPK == batchid
).subquery()
wght_subqry = db.session.query(
Weighting.BatchPK,
Weighting.ProductId.label('product_id'),
Product.ProductName.label('product_name'),
func.sum(Weighting.Quantity).label('fact')
).join(
Product, Weighting.ProductId == Product.ProductId
).filter(
Weighting.BatchPK == batchid
).group_by(
Weighting.BatchPK,
Weighting.ProductId,
Product.ProductName
).subquery()
boil_qry = db.session.query(
boil_subqry.c.product_id.label('b_product_id'),
boil_subqry.c.product_name.label('b_product_name'),
boil_subqry.c.plan.label('plan'),
wght_subqry.c.product_id.label('w_product_id'),
wght_subqry.c.product_name.label('w_product_name'),
wght_subqry.c.fact.label('fact')
).join(
wght_subqry,
boil_subqry.c.product_id == wght_subqry.c.product_id,
full=True
).order_by(case(
[(boil_subqry.c.product_name != '', boil_subqry.c.product_name), ],
else_=wght_subqry.c.product_name
) .asc())
boil_rows = boil_qry.all()
if boil_rows is None:
abort(404)
data = []
for row in boil_rows:
product_id = row.b_product_id if row.b_product_id\
else row.w_product_id
product_name = row.b_product_name if row.b_product_name\
else row.w_product_name
state = (row.plan is not None) and (row.fact is not None)
data.append({
'product_id': product_id,
'product_name': product_name,
'state': state,
'plan': str(row.plan),
'fact': str(row.fact)
})
response = {'boil': {'name': batch_data['name'],
'date': batch_data['date'],
'plant': batch_data['plant'],
'data': data}
}
return jsonify(response)
@bp.route("/api/v1/boils/weighting/<int:batchid>", methods=['GET'])
def boil_weighting_data(batchid):
batch_data = Batch.get_name_date_plant_by_id(batchid)
wght_qry = db.session.query(
Weighting.ProductId.label('product_id'),
Product.ProductName.label('product_name'),
Weighting.Quantity.label('quantity'),
Lot.LotPK.label('lot_id'),
Lot.LotName.label('lot'),
Author.AuthorName.label('user'),
Document.CreateDate.label('date')
).join(
Product, Weighting.ProductId == Product.ProductId
).join(
Lot, Weighting.LotPK == Lot.LotPK
).join(
Document, Weighting.DocumentPK == Document.DocumentPK
).join(
Author, Document.AuthorPK == Author.AuthorPK
).filter(
Weighting.BatchPK == batchid
).order_by((Product.ProductName).asc())
weighting_rows = wght_qry.all()
if weighting_rows is None:
abort(404)
data = []
for row in weighting_rows:
data.append({
'product_id': row.product_id,
'product_name': row.product_name,
'quantity': str(row.quantity),
'lot_id': row.lot_id,
'lot': row.lot,
'user': row.user,
'date':
row.date.strftime("%d-%m-%Y %H:%M:%S") if row.date else None,
# 'time': r.date.strftime("%H:%M:%S") if r.date else None,
})
response = {'boil': {'name': batch_data['name'],
'date': batch_data['date'],
'plant': batch_data['plant'],
'data': data}
}
return jsonify(response)
@bp.route("/api/v1/boils/load/<int:batchid>", methods=['GET'])
def boil_load_data(batchid):
batch_data = Batch.get_name_date_plant_by_id(batchid)
dist_cont_subqry = db.session.query(
Load.ContainerPK
).filter(
Load.BatchPK == batchid
).distinct().subquery()
cont_subqry = db.session.query(
Load.ContainerPK.label('container_id'),
Author.AuthorPK.label('user'),
Document.CreateDate.label('date')
).distinct(
Load.ContainerPK
).join(
Document, Load.DocumentPK == Document.DocumentPK
).join(
Author, Document.AuthorPK == Author.AuthorPK
).filter(
Load.BatchPK == batchid
).subquery()
wght_subqry = db.session.query(
Weighting.ContainerPK.label('container_id'),
Weighting.ProductId.label('product_id'),
Product.ProductName.label('product_name')
).join(
Product, Weighting.ProductId == Product.ProductId
).filter(
Weighting.ContainerPK.in_(dist_cont_subqry)
).subquery()
load_qry = db.session.query(
cont_subqry.c.user.label('user'),
cont_subqry.c.date.label('date'),
wght_subqry.c.product_id.label('product_id'),
wght_subqry.c.product_name.label('product_name')
).join(
wght_subqry,
cont_subqry.c.container_id == wght_subqry.c.container_id
).order_by(
wght_subqry.c.product_name
)
load_data = load_qry.all()
data = []
for row in load_data:
data.append({
'product_id': row.product_id,
'product_name': row.product_name,
'user': row.user,
'date': row.date.strftime("%d-%m-%Y %H:%M:%S") if row.date else None,
})
response = {'boil': {'name': batch_data['name'],
'date': batch_data['date'],
'plant': batch_data['plant'],
'data': data}
}
return jsonify(response)
| null |
web/app/api/routes.py
|
routes.py
|
py
| 6,422 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "app.models.Batch.get_name_date_plant_by_id",
"line_number": 31,
"usage_type": "call"
},
{
"api_name": "app.models.Batch",
"line_number": 31,
"usage_type": "name"
},
{
"api_name": "app.models.Product",
"line_number": 39,
"usage_type": "argument"
},
{
"api_name": "app.db.session.query",
"line_number": 33,
"usage_type": "call"
},
{
"api_name": "app.db.session",
"line_number": 33,
"usage_type": "attribute"
},
{
"api_name": "app.db",
"line_number": 33,
"usage_type": "name"
},
{
"api_name": "app.models.Boil.BatchPK.label",
"line_number": 34,
"usage_type": "call"
},
{
"api_name": "app.models.Boil.BatchPK",
"line_number": 34,
"usage_type": "attribute"
},
{
"api_name": "app.models.Boil",
"line_number": 34,
"usage_type": "name"
},
{
"api_name": "app.models.Boil.ProductId.label",
"line_number": 35,
"usage_type": "call"
},
{
"api_name": "app.models.Boil.ProductId",
"line_number": 35,
"usage_type": "attribute"
},
{
"api_name": "app.models.Boil",
"line_number": 35,
"usage_type": "name"
},
{
"api_name": "app.models.Boil.Quantity.label",
"line_number": 36,
"usage_type": "call"
},
{
"api_name": "app.models.Boil.Quantity",
"line_number": 36,
"usage_type": "attribute"
},
{
"api_name": "app.models.Boil",
"line_number": 36,
"usage_type": "name"
},
{
"api_name": "app.models.Product.ProductName.label",
"line_number": 37,
"usage_type": "call"
},
{
"api_name": "app.models.Product.ProductName",
"line_number": 37,
"usage_type": "attribute"
},
{
"api_name": "app.models.Product",
"line_number": 37,
"usage_type": "name"
},
{
"api_name": "app.models.Boil.ProductId",
"line_number": 39,
"usage_type": "attribute"
},
{
"api_name": "app.models.Boil",
"line_number": 39,
"usage_type": "name"
},
{
"api_name": "app.models.Product.ProductId",
"line_number": 39,
"usage_type": "attribute"
},
{
"api_name": "app.models.Boil.BatchPK",
"line_number": 41,
"usage_type": "attribute"
},
{
"api_name": "app.models.Boil",
"line_number": 41,
"usage_type": "name"
},
{
"api_name": "app.models.Product",
"line_number": 50,
"usage_type": "argument"
},
{
"api_name": "app.db.session.query",
"line_number": 44,
"usage_type": "call"
},
{
"api_name": "app.db.session",
"line_number": 44,
"usage_type": "attribute"
},
{
"api_name": "app.db",
"line_number": 44,
"usage_type": "name"
},
{
"api_name": "app.models.Weighting.BatchPK",
"line_number": 45,
"usage_type": "attribute"
},
{
"api_name": "app.models.Weighting",
"line_number": 45,
"usage_type": "name"
},
{
"api_name": "app.models.Weighting.ProductId.label",
"line_number": 46,
"usage_type": "call"
},
{
"api_name": "app.models.Weighting.ProductId",
"line_number": 46,
"usage_type": "attribute"
},
{
"api_name": "app.models.Weighting",
"line_number": 46,
"usage_type": "name"
},
{
"api_name": "app.models.Product.ProductName.label",
"line_number": 47,
"usage_type": "call"
},
{
"api_name": "app.models.Product.ProductName",
"line_number": 47,
"usage_type": "attribute"
},
{
"api_name": "app.models.Product",
"line_number": 47,
"usage_type": "name"
},
{
"api_name": "sqlalchemy.sql.func.sum",
"line_number": 48,
"usage_type": "call"
},
{
"api_name": "sqlalchemy.sql.func",
"line_number": 48,
"usage_type": "name"
},
{
"api_name": "app.models.Weighting.Quantity",
"line_number": 48,
"usage_type": "attribute"
},
{
"api_name": "app.models.Weighting",
"line_number": 48,
"usage_type": "name"
},
{
"api_name": "app.models.Weighting.ProductId",
"line_number": 50,
"usage_type": "attribute"
},
{
"api_name": "app.models.Weighting",
"line_number": 50,
"usage_type": "name"
},
{
"api_name": "app.models.Product.ProductId",
"line_number": 50,
"usage_type": "attribute"
},
{
"api_name": "app.models.Weighting.BatchPK",
"line_number": 52,
"usage_type": "attribute"
},
{
"api_name": "app.models.Weighting",
"line_number": 52,
"usage_type": "name"
},
{
"api_name": "app.models.Weighting.BatchPK",
"line_number": 54,
"usage_type": "attribute"
},
{
"api_name": "app.models.Weighting",
"line_number": 54,
"usage_type": "name"
},
{
"api_name": "app.models.Weighting.ProductId",
"line_number": 55,
"usage_type": "attribute"
},
{
"api_name": "app.models.Weighting",
"line_number": 55,
"usage_type": "name"
},
{
"api_name": "app.models.Product.ProductName",
"line_number": 56,
"usage_type": "attribute"
},
{
"api_name": "app.models.Product",
"line_number": 56,
"usage_type": "name"
},
{
"api_name": "app.db.session.query",
"line_number": 59,
"usage_type": "call"
},
{
"api_name": "app.db.session",
"line_number": 59,
"usage_type": "attribute"
},
{
"api_name": "app.db",
"line_number": 59,
"usage_type": "name"
},
{
"api_name": "sqlalchemy.sql.case",
"line_number": 70,
"usage_type": "call"
},
{
"api_name": "flask.abort",
"line_number": 78,
"usage_type": "call"
},
{
"api_name": "flask.jsonify",
"line_number": 102,
"usage_type": "call"
},
{
"api_name": "app.models.Batch.get_name_date_plant_by_id",
"line_number": 108,
"usage_type": "call"
},
{
"api_name": "app.models.Batch",
"line_number": 108,
"usage_type": "name"
},
{
"api_name": "app.models.Author",
"line_number": 125,
"usage_type": "argument"
},
{
"api_name": "app.models.Document",
"line_number": 123,
"usage_type": "argument"
},
{
"api_name": "app.models.Lot",
"line_number": 121,
"usage_type": "argument"
},
{
"api_name": "app.models.Product",
"line_number": 119,
"usage_type": "argument"
},
{
"api_name": "app.db.session.query",
"line_number": 110,
"usage_type": "call"
},
{
"api_name": "app.db.session",
"line_number": 110,
"usage_type": "attribute"
},
{
"api_name": "app.db",
"line_number": 110,
"usage_type": "name"
},
{
"api_name": "app.models.Weighting.ProductId.label",
"line_number": 111,
"usage_type": "call"
},
{
"api_name": "app.models.Weighting.ProductId",
"line_number": 111,
"usage_type": "attribute"
},
{
"api_name": "app.models.Weighting",
"line_number": 111,
"usage_type": "name"
},
{
"api_name": "app.models.Product.ProductName.label",
"line_number": 112,
"usage_type": "call"
},
{
"api_name": "app.models.Product.ProductName",
"line_number": 112,
"usage_type": "attribute"
},
{
"api_name": "app.models.Product",
"line_number": 112,
"usage_type": "name"
},
{
"api_name": "app.models.Weighting.Quantity.label",
"line_number": 113,
"usage_type": "call"
},
{
"api_name": "app.models.Weighting.Quantity",
"line_number": 113,
"usage_type": "attribute"
},
{
"api_name": "app.models.Weighting",
"line_number": 113,
"usage_type": "name"
},
{
"api_name": "app.models.Lot.LotPK.label",
"line_number": 114,
"usage_type": "call"
},
{
"api_name": "app.models.Lot.LotPK",
"line_number": 114,
"usage_type": "attribute"
},
{
"api_name": "app.models.Lot",
"line_number": 114,
"usage_type": "name"
},
{
"api_name": "app.models.Lot.LotName.label",
"line_number": 115,
"usage_type": "call"
},
{
"api_name": "app.models.Lot.LotName",
"line_number": 115,
"usage_type": "attribute"
},
{
"api_name": "app.models.Lot",
"line_number": 115,
"usage_type": "name"
},
{
"api_name": "app.models.Author.AuthorName.label",
"line_number": 116,
"usage_type": "call"
},
{
"api_name": "app.models.Author.AuthorName",
"line_number": 116,
"usage_type": "attribute"
},
{
"api_name": "app.models.Author",
"line_number": 116,
"usage_type": "name"
},
{
"api_name": "app.models.Document.CreateDate.label",
"line_number": 117,
"usage_type": "call"
},
{
"api_name": "app.models.Document.CreateDate",
"line_number": 117,
"usage_type": "attribute"
},
{
"api_name": "app.models.Document",
"line_number": 117,
"usage_type": "name"
},
{
"api_name": "app.models.Weighting.ProductId",
"line_number": 119,
"usage_type": "attribute"
},
{
"api_name": "app.models.Weighting",
"line_number": 119,
"usage_type": "name"
},
{
"api_name": "app.models.Product.ProductId",
"line_number": 119,
"usage_type": "attribute"
},
{
"api_name": "app.models.Weighting.LotPK",
"line_number": 121,
"usage_type": "attribute"
},
{
"api_name": "app.models.Weighting",
"line_number": 121,
"usage_type": "name"
},
{
"api_name": "app.models.Lot.LotPK",
"line_number": 121,
"usage_type": "attribute"
},
{
"api_name": "app.models.Weighting.DocumentPK",
"line_number": 123,
"usage_type": "attribute"
},
{
"api_name": "app.models.Weighting",
"line_number": 123,
"usage_type": "name"
},
{
"api_name": "app.models.Document.DocumentPK",
"line_number": 123,
"usage_type": "attribute"
},
{
"api_name": "app.models.Document.AuthorPK",
"line_number": 125,
"usage_type": "attribute"
},
{
"api_name": "app.models.Document",
"line_number": 125,
"usage_type": "name"
},
{
"api_name": "app.models.Author.AuthorPK",
"line_number": 125,
"usage_type": "attribute"
},
{
"api_name": "app.models.Weighting.BatchPK",
"line_number": 127,
"usage_type": "attribute"
},
{
"api_name": "app.models.Weighting",
"line_number": 127,
"usage_type": "name"
},
{
"api_name": "app.models.Product.ProductName.asc",
"line_number": 128,
"usage_type": "call"
},
{
"api_name": "app.models.Product.ProductName",
"line_number": 128,
"usage_type": "attribute"
},
{
"api_name": "app.models.Product",
"line_number": 128,
"usage_type": "name"
},
{
"api_name": "flask.abort",
"line_number": 133,
"usage_type": "call"
},
{
"api_name": "flask.jsonify",
"line_number": 156,
"usage_type": "call"
},
{
"api_name": "app.models.Batch.get_name_date_plant_by_id",
"line_number": 162,
"usage_type": "call"
},
{
"api_name": "app.models.Batch",
"line_number": 162,
"usage_type": "name"
},
{
"api_name": "app.db.session.query",
"line_number": 164,
"usage_type": "call"
},
{
"api_name": "app.db.session",
"line_number": 164,
"usage_type": "attribute"
},
{
"api_name": "app.db",
"line_number": 164,
"usage_type": "name"
},
{
"api_name": "app.models.Load.ContainerPK",
"line_number": 165,
"usage_type": "attribute"
},
{
"api_name": "app.models.Load",
"line_number": 165,
"usage_type": "name"
},
{
"api_name": "app.models.Load.BatchPK",
"line_number": 167,
"usage_type": "attribute"
},
{
"api_name": "app.models.Load",
"line_number": 167,
"usage_type": "name"
},
{
"api_name": "app.models.Author",
"line_number": 179,
"usage_type": "argument"
},
{
"api_name": "app.models.Document",
"line_number": 177,
"usage_type": "argument"
},
{
"api_name": "app.db.session.query",
"line_number": 170,
"usage_type": "call"
},
{
"api_name": "app.db.session",
"line_number": 170,
"usage_type": "attribute"
},
{
"api_name": "app.db",
"line_number": 170,
"usage_type": "name"
},
{
"api_name": "app.models.Load.ContainerPK.label",
"line_number": 171,
"usage_type": "call"
},
{
"api_name": "app.models.Load.ContainerPK",
"line_number": 171,
"usage_type": "attribute"
},
{
"api_name": "app.models.Load",
"line_number": 171,
"usage_type": "name"
},
{
"api_name": "app.models.Author.AuthorPK.label",
"line_number": 172,
"usage_type": "call"
},
{
"api_name": "app.models.Author.AuthorPK",
"line_number": 172,
"usage_type": "attribute"
},
{
"api_name": "app.models.Author",
"line_number": 172,
"usage_type": "name"
},
{
"api_name": "app.models.Document.CreateDate.label",
"line_number": 173,
"usage_type": "call"
},
{
"api_name": "app.models.Document.CreateDate",
"line_number": 173,
"usage_type": "attribute"
},
{
"api_name": "app.models.Document",
"line_number": 173,
"usage_type": "name"
},
{
"api_name": "app.models.Load.ContainerPK",
"line_number": 175,
"usage_type": "attribute"
},
{
"api_name": "app.models.Load",
"line_number": 175,
"usage_type": "name"
},
{
"api_name": "app.models.Load.DocumentPK",
"line_number": 177,
"usage_type": "attribute"
},
{
"api_name": "app.models.Load",
"line_number": 177,
"usage_type": "name"
},
{
"api_name": "app.models.Document.DocumentPK",
"line_number": 177,
"usage_type": "attribute"
},
{
"api_name": "app.models.Document.AuthorPK",
"line_number": 179,
"usage_type": "attribute"
},
{
"api_name": "app.models.Document",
"line_number": 179,
"usage_type": "name"
},
{
"api_name": "app.models.Author.AuthorPK",
"line_number": 179,
"usage_type": "attribute"
},
{
"api_name": "app.models.Load.BatchPK",
"line_number": 181,
"usage_type": "attribute"
},
{
"api_name": "app.models.Load",
"line_number": 181,
"usage_type": "name"
},
{
"api_name": "app.models.Product",
"line_number": 189,
"usage_type": "argument"
},
{
"api_name": "app.db.session.query",
"line_number": 184,
"usage_type": "call"
},
{
"api_name": "app.db.session",
"line_number": 184,
"usage_type": "attribute"
},
{
"api_name": "app.db",
"line_number": 184,
"usage_type": "name"
},
{
"api_name": "app.models.Weighting.ContainerPK.label",
"line_number": 185,
"usage_type": "call"
},
{
"api_name": "app.models.Weighting.ContainerPK",
"line_number": 185,
"usage_type": "attribute"
},
{
"api_name": "app.models.Weighting",
"line_number": 185,
"usage_type": "name"
},
{
"api_name": "app.models.Weighting.ProductId.label",
"line_number": 186,
"usage_type": "call"
},
{
"api_name": "app.models.Weighting.ProductId",
"line_number": 186,
"usage_type": "attribute"
},
{
"api_name": "app.models.Weighting",
"line_number": 186,
"usage_type": "name"
},
{
"api_name": "app.models.Product.ProductName.label",
"line_number": 187,
"usage_type": "call"
},
{
"api_name": "app.models.Product.ProductName",
"line_number": 187,
"usage_type": "attribute"
},
{
"api_name": "app.models.Product",
"line_number": 187,
"usage_type": "name"
},
{
"api_name": "app.models.Weighting.ProductId",
"line_number": 189,
"usage_type": "attribute"
},
{
"api_name": "app.models.Weighting",
"line_number": 189,
"usage_type": "name"
},
{
"api_name": "app.models.Product.ProductId",
"line_number": 189,
"usage_type": "attribute"
},
{
"api_name": "app.models.Weighting.ContainerPK.in_",
"line_number": 191,
"usage_type": "call"
},
{
"api_name": "app.models.Weighting.ContainerPK",
"line_number": 191,
"usage_type": "attribute"
},
{
"api_name": "app.models.Weighting",
"line_number": 191,
"usage_type": "name"
},
{
"api_name": "app.db.session.query",
"line_number": 194,
"usage_type": "call"
},
{
"api_name": "app.db.session",
"line_number": 194,
"usage_type": "attribute"
},
{
"api_name": "app.db",
"line_number": 194,
"usage_type": "name"
},
{
"api_name": "flask.jsonify",
"line_number": 224,
"usage_type": "call"
}
] |
150331567
|
"""
???+ note "Child classes which are `functionality`-by-`feature` products."
This could resemble template specialization in C++.
"""
from .functionality import (
BokehDataAnnotator,
)
from .feature import BokehForText
class BokehTextAnnotator(BokehDataAnnotator, BokehForText):
"""
???+ note "The text flavor of `BokehDataAnnotator`.""
"""
TOOLTIP_KWARGS = BokehForText.TOOLTIP_KWARGS
MANDATORY_COLUMNS = BokehForText.MANDATORY_COLUMNS
SUBSET_GLYPH_KWARGS = BokehDataAnnotator.SUBSET_GLYPH_KWARGS
def _layout_widgets(self):
"""Define the layout of widgets."""
from bokeh.layouts import column, row
layout_rows = (
row(self.search_pos, self.search_neg),
# row(self.data_key_button_group),
row(self.annotator_input, self.annotator_apply, self.annotator_export),
)
return column(*layout_rows)
| null |
hover/core/explorer/specialization.py
|
specialization.py
|
py
| 910 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "functionality.BokehDataAnnotator",
"line_number": 11,
"usage_type": "name"
},
{
"api_name": "feature.BokehForText",
"line_number": 11,
"usage_type": "name"
},
{
"api_name": "feature.BokehForText.TOOLTIP_KWARGS",
"line_number": 16,
"usage_type": "attribute"
},
{
"api_name": "feature.BokehForText",
"line_number": 16,
"usage_type": "name"
},
{
"api_name": "feature.BokehForText.MANDATORY_COLUMNS",
"line_number": 17,
"usage_type": "attribute"
},
{
"api_name": "feature.BokehForText",
"line_number": 17,
"usage_type": "name"
},
{
"api_name": "functionality.BokehDataAnnotator.SUBSET_GLYPH_KWARGS",
"line_number": 18,
"usage_type": "attribute"
},
{
"api_name": "functionality.BokehDataAnnotator",
"line_number": 18,
"usage_type": "name"
},
{
"api_name": "bokeh.layouts.row",
"line_number": 25,
"usage_type": "call"
},
{
"api_name": "bokeh.layouts.row",
"line_number": 27,
"usage_type": "call"
},
{
"api_name": "bokeh.layouts.column",
"line_number": 29,
"usage_type": "call"
}
] |
418054407
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# BabyNames python coding exercise.
# Copyright 2010 Google Inc.
# Licensed under the Apache License, Version 2.0
# http://www.apache.org/licenses/LICENSE-2.0
# Google's Python Class
# http://code.google.com/edu/languages/google-python-class/
import sys
import re
import argparse
def extract_names(filename):
names = []
birth_year = re.findall(r'\d+', filename)[0]
names.append(birth_year)
with open(filename, 'r') as file:
reg_ex = r'<td>(\d+)</td><td>(\w+)</td><td>(\w+)</td>'
ranked_names = re.findall(reg_ex, file.read())
for name_tup in ranked_names:
boy_name = name_tup[1]
girl_name = name_tup[2]
name_rank = str(name_tup[0])
if boy_name not in ' '.join(names):
names.append(boy_name + ' ' + name_rank)
if girl_name not in ' '.join(names):
names.append(girl_name + ' ' + name_rank)
return sorted(names)
def create_parser():
parser = argparse.ArgumentParser(
description="Extracts and alphabetizes baby names from html.")
parser.add_argument(
'--summaryfile', help='creates a summary file', action='store_true')
parser.add_argument('files', help='filename(s) to parse', nargs='+')
return parser
def main(args):
# Implement command-line parser
parser = create_parser()
ns = parser.parse_args(args)
if not ns:
parser.print_usage()
sys.exit(1)
file_list = ns.files
create_summary = ns.summaryfile
# Get names list for all files supplied and either print to shell or
# write summary file
for file in file_list:
names = '\n'.join(extract_names(file)) + '\n'
if create_summary:
output_file = file + '.summary'
with open(output_file, 'w') as summary_file:
summary_file.write(names)
else:
print(names)
if __name__ == '__main__':
main(sys.argv[1:])
| null |
babynames.py
|
babynames.py
|
py
| 1,980 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "re.findall",
"line_number": 21,
"usage_type": "call"
},
{
"api_name": "re.findall",
"line_number": 26,
"usage_type": "call"
},
{
"api_name": "argparse.ArgumentParser",
"line_number": 42,
"usage_type": "call"
},
{
"api_name": "sys.exit",
"line_number": 58,
"usage_type": "call"
},
{
"api_name": "sys.argv",
"line_number": 76,
"usage_type": "attribute"
}
] |
506055926
|
import random
import json
from websocket import create_connection
import time
import os
import stomper
from datetime import date
import timeout_decorator
import uuid
mac_address = '_'.join(['{:02x}'.format((uuid.getnode() >> ele) & 0xff) for ele in range(0,8*6,8)][::-1])
print(mac_address)
# import FakeRPi.GPIO as GPIO
import RPi.GPIO as GPIO
GPIO.setmode(GPIO.BCM)
GPIO.setup(17, GPIO.OUT)
GPIO.setup(27, GPIO.OUT)
GPIO.setup(22, GPIO.OUT)
GPIO.output(17,1)
GPIO.output(27,1)
GPIO.output(22,1)
import multiprocessing.pool
import functools
# hostname = "192.168.0.202"
#
# while True:
# response = os.system("ping -c 1 " + hostname)
#
# if response == 0:
# print(hostname, 'Reboot successful!')
# time.sleep(10)
# os.system("/usr/bin/chromium-browser --disable-session-crashed-bubble --disable-features=InfiniteSessionRestore --disable-infobars --kiosk http://192.168.0.202:9001/#/signin-token?token=2e981186e7d75f194ca9ef82e2b1f441edb5b42254ea14d3e725b03a1ebb29b7c570af39eefbab78e59588be18e1c6f41756ed0e9c192957dfd3cfce121a5b6b")
# break
# else:
# continue
def Logging(string, response, server):
line = (string + ' - ' + str(time.strftime("%m/%d/%Y, %H:%M:%S", time.localtime()))
+ " - studenId: " + str(response['studentId'])
+ " - roomId: " + str(response['roomId'])
+ " - shiftCode: " + str(response['shiftCode'])
+ " - nvrId: " + str(response['nvrId'])
+ " - cameraId: " + str(response['cameraId'])
+ " - Server Websocket: " + str(server['server_websocket']))
print(line)
f = open('/home/pi/Scripts/Logs/'+ date.today().strftime("%d-%m-%y")+ '.log','a') # Ghi log theo tung ngay
f.writelines(line + "\n")
f.close()
# Log ngแบฏn gแปn hฦกn
def Log1(string, response, server):
line = (string + ' - ' + str(time.strftime("%m/%d/%Y, %H:%M:%S", time.localtime()))
+ " - studenId: " + str(response['studentId'])
+ " - roomId: " + str(response['roomId'])
+ " - shiftCode: " + str(response['shiftCode'])
+ " - nvrId: " + str(response['nvrId'])
+ " - cameraId: " + str(response['cameraId']))
print(line)
f = open('/home/pi/Scripts/Logs/'+ date.today().strftime("%d-%m-%y")+ '.log','a') # Ghi log theo tung ngay
f.writelines(line + "\n")
f.close()
def Log2(string):
line = (string)
print(line)
# f = open('/home/pi/Scripts/Logs/'+ date.today().strftime("%d-%m-%y")+ '.log','a') # Ghi log theo tung ngay
# f.writelines(line + "\n")
# f.close()
def Connect(server):
Log2("Connecting SmartAccess: "+ server['server_websocket'] + "....")
ws = create_connection("ws://"+server['server_websocket'])
sub = stomper.subscribe(server['topic1'], str(random.randint(0, 1000)), ack='auto')
ws.send(sub)
sub = stomper.subscribe(server['topic2'], str(random.randint(0, 1000)), ack='auto')
ws.send(sub)
Log2("--------------- Connect Successfully!")
return ws
def Receive(ws):
Log2("+ Waiting for data ....")
response = str(ws.recv())
return json.loads(response[response.find("{"):-1])
def Open_door(response, server):
GPIO.output(17,0)
GPIO.output(27,0)
GPIO.output(22,0)
Logging("-- OPENED DOOR", response, server)
def Close_door(response, server):
GPIO.output(17,1)
GPIO.output(27,1)
GPIO.output(22,1)
Log2("-- CLOSED DOOR")
def Get_config_file():
while True:
try:
with open('/home/pi/Scripts/server.txt') as f:
server = json.load(f)
with open('/home/pi/Scripts/dc_a6_32_1a_88_39.txt') as f:
data = json.load(f)
return server, data
except:
Log2("Updating config file...")
continue
if __name__ == '__main__':
server, data = old_server, old_data = Get_config_file()
while True:
try:
ws = Connect(server)
break
except:
time.sleep(int(data['wait_error']))
continue
def Open_Check(ws, response, data, server):
print('Data received: cameraId: ' + response['cameraId'] + ' - shiftCode: ' + str(response['shiftCode']))
if response['shiftCode'] == None or 1:
if response['cameraId'] in data['cameraId'].replace(" ","").split(","):
Open_door(response, server)
start = time.time()
person = True
while person:
try:
person = Check(ws)
except:
person = False
print("Total time open door: ", time.time() - start, " seconds")
while True:
server, data = Get_config_file()
@timeout_decorator.timeout(int(data['door_open']))
def Check(ws):
print("Wait " + data['door_open'] + "sec for data ....")
response = str(ws.recv())
response = json.loads(response[response.find("{"):-1])
if response['shiftCode'] == None or 1:
if response['cameraId'] in data['cameraId'].replace(" ","").split(","):
Log1("More 5sec for: ", response, server)
return True
return False
@timeout_decorator.timeout(int(data['safe_time']))
def Safe():
Log2("Thแปi gian ฤรณng an toร n " + data['safe_time'] + "s bแบฏt ฤแบงu ....")
while True:
response = str(ws.recv())
response = json.loads(response[response.find("{"):-1])
if response['shift Code'] == None or 1:
if response['cameraId'] in data['cameraId'].replace(" ","").split(","):
Log1('ฤรณng an toร n khรดng mแป: ', response, server)
@timeout_decorator.timeout(int(data['update_config'])) # Nแบฟu cแปญa khรดng mแป Sau 5min * 60sec = 300sec chแบกy lแบกi 1 kแบฟt nแปi
def main(ws, wss):
try:
response = Receive(wss)
except:
ws = Connect(server)
response = Receive(ws)
Open_Check(ws, response, data, server)
Close_door(response, server)
try:
Safe()
except:
print("* * *")
if server == old_server and data == old_data:
try:
main(ws, ws)
except:
Log2(" >>> Cแบญp nhแบญt lแบกi config sau 5 phรบt")
else:
old_server, old_data = server, data # Cแบญp nhแบญt lแบกi thรดng sแป config chแป so sรกnh lแบงn sau
ws = Connect(server)
| null |
Scripts/ServiceScript.py
|
ServiceScript.py
|
py
| 6,779 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "uuid.getnode",
"line_number": 10,
"usage_type": "call"
},
{
"api_name": "RPi.GPIO.setmode",
"line_number": 16,
"usage_type": "call"
},
{
"api_name": "RPi.GPIO",
"line_number": 16,
"usage_type": "name"
},
{
"api_name": "RPi.GPIO.BCM",
"line_number": 16,
"usage_type": "attribute"
},
{
"api_name": "RPi.GPIO.setup",
"line_number": 17,
"usage_type": "call"
},
{
"api_name": "RPi.GPIO",
"line_number": 17,
"usage_type": "name"
},
{
"api_name": "RPi.GPIO.OUT",
"line_number": 17,
"usage_type": "attribute"
},
{
"api_name": "RPi.GPIO.setup",
"line_number": 18,
"usage_type": "call"
},
{
"api_name": "RPi.GPIO",
"line_number": 18,
"usage_type": "name"
},
{
"api_name": "RPi.GPIO.OUT",
"line_number": 18,
"usage_type": "attribute"
},
{
"api_name": "RPi.GPIO.setup",
"line_number": 19,
"usage_type": "call"
},
{
"api_name": "RPi.GPIO",
"line_number": 19,
"usage_type": "name"
},
{
"api_name": "RPi.GPIO.OUT",
"line_number": 19,
"usage_type": "attribute"
},
{
"api_name": "RPi.GPIO.output",
"line_number": 21,
"usage_type": "call"
},
{
"api_name": "RPi.GPIO",
"line_number": 21,
"usage_type": "name"
},
{
"api_name": "RPi.GPIO.output",
"line_number": 22,
"usage_type": "call"
},
{
"api_name": "RPi.GPIO",
"line_number": 22,
"usage_type": "name"
},
{
"api_name": "RPi.GPIO.output",
"line_number": 23,
"usage_type": "call"
},
{
"api_name": "RPi.GPIO",
"line_number": 23,
"usage_type": "name"
},
{
"api_name": "time.strftime",
"line_number": 43,
"usage_type": "call"
},
{
"api_name": "time.localtime",
"line_number": 43,
"usage_type": "call"
},
{
"api_name": "datetime.date.today",
"line_number": 51,
"usage_type": "call"
},
{
"api_name": "datetime.date",
"line_number": 51,
"usage_type": "name"
},
{
"api_name": "time.strftime",
"line_number": 57,
"usage_type": "call"
},
{
"api_name": "time.localtime",
"line_number": 57,
"usage_type": "call"
},
{
"api_name": "datetime.date.today",
"line_number": 64,
"usage_type": "call"
},
{
"api_name": "datetime.date",
"line_number": 64,
"usage_type": "name"
},
{
"api_name": "websocket.create_connection",
"line_number": 78,
"usage_type": "call"
},
{
"api_name": "stomper.subscribe",
"line_number": 79,
"usage_type": "call"
},
{
"api_name": "random.randint",
"line_number": 79,
"usage_type": "call"
},
{
"api_name": "stomper.subscribe",
"line_number": 81,
"usage_type": "call"
},
{
"api_name": "random.randint",
"line_number": 81,
"usage_type": "call"
},
{
"api_name": "json.loads",
"line_number": 89,
"usage_type": "call"
},
{
"api_name": "RPi.GPIO.output",
"line_number": 92,
"usage_type": "call"
},
{
"api_name": "RPi.GPIO",
"line_number": 92,
"usage_type": "name"
},
{
"api_name": "RPi.GPIO.output",
"line_number": 93,
"usage_type": "call"
},
{
"api_name": "RPi.GPIO",
"line_number": 93,
"usage_type": "name"
},
{
"api_name": "RPi.GPIO.output",
"line_number": 94,
"usage_type": "call"
},
{
"api_name": "RPi.GPIO",
"line_number": 94,
"usage_type": "name"
},
{
"api_name": "RPi.GPIO.output",
"line_number": 98,
"usage_type": "call"
},
{
"api_name": "RPi.GPIO",
"line_number": 98,
"usage_type": "name"
},
{
"api_name": "RPi.GPIO.output",
"line_number": 99,
"usage_type": "call"
},
{
"api_name": "RPi.GPIO",
"line_number": 99,
"usage_type": "name"
},
{
"api_name": "RPi.GPIO.output",
"line_number": 100,
"usage_type": "call"
},
{
"api_name": "RPi.GPIO",
"line_number": 100,
"usage_type": "name"
},
{
"api_name": "json.load",
"line_number": 108,
"usage_type": "call"
},
{
"api_name": "json.load",
"line_number": 110,
"usage_type": "call"
},
{
"api_name": "time.sleep",
"line_number": 125,
"usage_type": "call"
},
{
"api_name": "time.time",
"line_number": 134,
"usage_type": "call"
},
{
"api_name": "time.time",
"line_number": 142,
"usage_type": "call"
},
{
"api_name": "json.loads",
"line_number": 151,
"usage_type": "call"
},
{
"api_name": "timeout_decorator.timeout",
"line_number": 147,
"usage_type": "call"
},
{
"api_name": "json.loads",
"line_number": 163,
"usage_type": "call"
},
{
"api_name": "timeout_decorator.timeout",
"line_number": 158,
"usage_type": "call"
},
{
"api_name": "timeout_decorator.timeout",
"line_number": 168,
"usage_type": "call"
}
] |
434556586
|
from functools import partial
import torch
from torch import nn as nn
from torch.nn import functional as F
def conv3d(in_channels, out_channels, kernel_size, bias, padding):
"""
Create convolution layer
Inputs:
:param in_channels:
:param out_channels:
:param kernel_size:
:param bias:
:param padding:
Return : a 3d convolution
"""
return nn.Conv3d(in_channels, out_channels, kernel_size, padding=padding, bias=bias)
def create_conv(in_channels, out_channels, kernel_size, order, num_groups, padding):
"""
Create single convolution block with non-linearity and optional batchnorm/groupnorm.
Input:
:param in_channels (int): number of input channels
:param out_channels (int): number of output channels
:param kernel_size (int or tuple): size of the convolving kernel
:param order (string): order of the layers in the convolution block
'cr' -> conv + ReLU
'cl' -> conv + LeakyReLU
'gcr' -> groupnorm + conv + ReLU
'bcr' -> batchnorm + conv + ReLU
:param num_groups (int): number of groups for the GroupNorm
:param padding (int or tuple): add zero-padding added to all three sides of the input
Return: list of tuple (name, module)
"""
assert 'c' in order, "Conv layer MUST be present"
assert order[0] not in 'rl', 'Non-linearity cannot be the first operation in the layer'
# Build up the convolution block
modules = []
for i, char in enumerate(order): # Append layers accoring to the order of the chars
# add ReLU activation layer
if char == 'r':
modules.append(('ReLU', nn.ReLU(inplace=True)))
# add LeakyReLU activation layer
elif char == 'l':
modules.append(('LeakyReLU', nn.LeakyReLU(negative_slope=0.1, inplace=True)))
# add convolution layer
elif char == 'c':
# add learnable bias only in the absence of batchnorm/groupnorm
bias = not ('g' in order or 'b' in order)
modules.append(('conv', conv3d(in_channels, out_channels, kernel_size, bias, padding=padding)))
# add gourp normalization (better in small batches)
elif char == 'g':
is_before_conv = i < order.index('c')
if is_before_conv:
num_channels = in_channels
else:
num_channels = out_channels
# use only one group if the given number of groups is greater than the number of channels
if num_channels < num_groups:
num_groups = 1
assert num_channels % num_groups == 0, f'Expected number of channels in input to be divisible by num_groups. num_channels={num_channels}, num_groups={num_groups}'
modules.append(('groupnorm', nn.GroupNorm(num_groups=num_groups, num_channels=num_channels)))
# add batch normalization (better in bigger batches)
elif char == 'b':
is_before_conv = i < order.index('c')
if is_before_conv:
modules.append(('batchnorm', nn.BatchNorm3d(in_channels)))
else:
modules.append(('batchnorm', nn.BatchNorm3d(out_channels)))
# if the order does not include these layers
else:
raise ValueError(f"Unsupported layer type '{char}'. MUST be one of ['b', 'g', 'r', 'l', 'e', 'c']")
return modules
class SingleConv(nn.Sequential):
"""
Basic convolutional module consisting of a Conv3d, non-linearity and optional batchnorm/groupnorm.
Inputs:
:param in_channels (int): number of input channels
:param out_channels (int): number of output channels
:param kernel_size (int or tuple): size of the convolving kernel
:param order (string): order of the layers in the convolution block
'cr' -> conv + ReLU
'cl' -> conv + LeakyReLU
'gcr' -> groupnorm + conv + ReLU
'bcr' -> batchnorm + conv + ReLU
:param num_groups (int): number of groups for the GroupNorm
:param padding (int or tuple): add zero-padding added to all three sides of the input
"""
def __init__(self, in_channels, out_channels, kernel_size=3, order='gcr', num_groups=8, padding=1):
super(SingleConv, self).__init__()
for name, module in create_conv(in_channels, out_channels, kernel_size, order, num_groups, padding=padding):
self.add_module(name, module)
class DoubleConv(nn.Sequential):
"""
Class for two consecutive convolution layers (e.g. BatchNorm3d+ReLU+Conv3d).
We use (Conv3d+ReLU+GroupNorm3d) by default, however, This can be changed however by providing the order argument, e.g. in order
to change to Conv3d+BatchNorm3d+ELU use order='cbe'.
Inputs:
:param in_channels (int): number of input channels
:param out_channels (int): number of output channels
:param encoder (bool): if True we're in the encoder path, otherwise we're in the decoder
:param kernel_size (int or tuple): size of the convolving kernel
:param order (string): order of the layers in the convolution block
'cr' -> conv + ReLU
'cl' -> conv + LeakyReLU
'gcr' -> groupnorm + conv + ReLU
'bcr' -> batchnorm + conv + ReLU
:param num_groups (int): number of groups for the GroupNorm
:param padding (int or tuple): add zero-padding added to all three sides of the input
"""
def __init__(self, in_channels, out_channels, encoder, kernel_size=3, order='gcr', num_groups=8, padding=1):
super(DoubleConv, self).__init__()
if encoder:
# ENCODER BLOCK
conv1_in_channels = in_channels
conv1_out_channels = out_channels // 2
if conv1_out_channels < in_channels:
conv1_out_channels = in_channels
conv2_in_channels, conv2_out_channels = conv1_out_channels, out_channels
else:
# DECODER BLOCK (decrease the number of channels in the 1st convolution)
conv1_in_channels, conv1_out_channels = in_channels, out_channels
conv2_in_channels, conv2_out_channels = out_channels, out_channels
# conv1
self.add_module('SingleConv1',
SingleConv(conv1_in_channels, conv1_out_channels, kernel_size, order, num_groups,
padding=padding))
# conv2
self.add_module('SingleConv2',
SingleConv(conv2_in_channels, conv2_out_channels, kernel_size, order, num_groups,
padding=padding))
class Encoder(nn.Module):
"""
Single ENCODER module consisting of the optional max/avg pooling layer.
Inputs:
:param in_channels (int): number of input channels
:param out_channels (int): number of output channels
:param conv_kernel_size (int or tuple): size of the convolving kernel
:param apply_pooling (bool): if True use MaxPool3d before DoubleConv
:param pool_kernel_size (int or tuple): the size of the window
:param pool_type (str): pooling layer: 'max' or 'avg'
:param conv_layer_order (string): determines the order of layers
:param num_groups (int): number of groups for the GroupNorm
:param padding (int or tuple): add zero-padding added to all three sides of the input
"""
def __init__(self, in_channels, out_channels, conv_kernel_size=3, apply_pooling=True,
pool_kernel_size=2, pool_type='max', conv_layer_order='gcr',
num_groups=2, padding=1):
super(Encoder, self).__init__()
assert pool_type in ['max', 'avg']
# Pooling layer
if apply_pooling:
if pool_type == 'max':
self.pooling = nn.MaxPool3d(kernel_size=pool_kernel_size)
else:
self.pooling = nn.AvgPool3d(kernel_size=pool_kernel_size)
else:
self.pooling = None
# Encoder module
self.basic_module = DoubleConv(in_channels, out_channels,
encoder=True,
kernel_size=conv_kernel_size,
order=conv_layer_order,
num_groups=num_groups,
padding=padding)
def forward(self, x):
if self.pooling is not None:
x = self.pooling(x)
x = self.basic_module(x)
return x
class Decoder(nn.Module):
"""
One level of the decoder module with the upsampling layer followed by a basic module (DoubleConv).
Input:
:param in_channels (int): number of input channels
:param out_channels (int): number of output channels
:param conv_kernel_size (int or tuple): size of the convolving kernel
:param scale_factor (tuple): used as the multiplier for the image H/W/D in case of nn.Upsample or as stride
in case of ConvTranspose3d, must reverse the MaxPool3d operation from the corresponding encoder
:param conv_layer_order (string): determines the order of layers
:param num_groups (int): number of groups for the GroupNorm
:param mode (string): algorithm used for upsampling the options are the following...
'nearest' | 'linear' | 'bilinear' | 'trilinear' | 'area'
:param padding (int or tuple): add zero-padding added to all three sides of the input
"""
def __init__(self, in_channels, out_channels, conv_kernel_size=3,
conv_layer_order='gcr', num_groups=8, mode='nearest', padding=1):
super(Decoder, self).__init__()
# interpolation for upsampling and concatenation joining
self.upsampling = Upsampling(mode=mode)
# concat joining
self.joining = partial(self._joining, concat=True)
self.basic_module = DoubleConv(in_channels, out_channels,
encoder=False,
kernel_size=conv_kernel_size,
order=conv_layer_order,
num_groups=num_groups,
padding=padding)
def forward(self, encoder_features, x):
x = self.upsampling(encoder_features=encoder_features, x=x)
x = self.joining(encoder_features, x)
x = self.basic_module(x)
return x
@staticmethod
def _joining(encoder_features, x, concat):
if concat:
return torch.cat((encoder_features, x), dim=1)
else:
return encoder_features + x
class Upsampling(nn.Module):
"""
Upsamples a given multi-channel 3D data using interpolation.
Input:
:param mode (string): algorithm used for upsampling the options are the following... 'nearest' | 'linear' | 'bilinear' | 'trilinear' | 'area'
"""
def __init__(self, mode='nearest'):
super(Upsampling, self).__init__()
self.upsample = partial(self._interpolate, mode=mode)
def forward(self, encoder_features, x):
output_size = encoder_features.size()[2:]
return self.upsample(x, output_size)
@staticmethod
def _interpolate(x, size, mode):
return F.interpolate(x, size=size, mode=mode)
| null |
model/layers.py
|
layers.py
|
py
| 11,548 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "torch.nn.Conv3d",
"line_number": 20,
"usage_type": "call"
},
{
"api_name": "torch.nn",
"line_number": 20,
"usage_type": "name"
},
{
"api_name": "torch.nn.ReLU",
"line_number": 51,
"usage_type": "call"
},
{
"api_name": "torch.nn",
"line_number": 51,
"usage_type": "name"
},
{
"api_name": "torch.nn.LeakyReLU",
"line_number": 55,
"usage_type": "call"
},
{
"api_name": "torch.nn",
"line_number": 55,
"usage_type": "name"
},
{
"api_name": "torch.nn.GroupNorm",
"line_number": 75,
"usage_type": "call"
},
{
"api_name": "torch.nn",
"line_number": 75,
"usage_type": "name"
},
{
"api_name": "torch.nn.BatchNorm3d",
"line_number": 81,
"usage_type": "call"
},
{
"api_name": "torch.nn",
"line_number": 81,
"usage_type": "name"
},
{
"api_name": "torch.nn.BatchNorm3d",
"line_number": 83,
"usage_type": "call"
},
{
"api_name": "torch.nn",
"line_number": 83,
"usage_type": "name"
},
{
"api_name": "torch.nn.Sequential",
"line_number": 92,
"usage_type": "attribute"
},
{
"api_name": "torch.nn",
"line_number": 92,
"usage_type": "name"
},
{
"api_name": "torch.nn.Sequential",
"line_number": 117,
"usage_type": "attribute"
},
{
"api_name": "torch.nn",
"line_number": 117,
"usage_type": "name"
},
{
"api_name": "torch.nn.Module",
"line_number": 169,
"usage_type": "attribute"
},
{
"api_name": "torch.nn",
"line_number": 169,
"usage_type": "name"
},
{
"api_name": "torch.nn.MaxPool3d",
"line_number": 196,
"usage_type": "call"
},
{
"api_name": "torch.nn",
"line_number": 196,
"usage_type": "name"
},
{
"api_name": "torch.nn.AvgPool3d",
"line_number": 198,
"usage_type": "call"
},
{
"api_name": "torch.nn",
"line_number": 198,
"usage_type": "name"
},
{
"api_name": "torch.nn.Module",
"line_number": 217,
"usage_type": "attribute"
},
{
"api_name": "torch.nn",
"line_number": 217,
"usage_type": "name"
},
{
"api_name": "functools.partial",
"line_number": 245,
"usage_type": "call"
},
{
"api_name": "torch.cat",
"line_number": 263,
"usage_type": "call"
},
{
"api_name": "torch.nn.Module",
"line_number": 268,
"usage_type": "attribute"
},
{
"api_name": "torch.nn",
"line_number": 268,
"usage_type": "name"
},
{
"api_name": "functools.partial",
"line_number": 280,
"usage_type": "call"
},
{
"api_name": "torch.nn.functional.interpolate",
"line_number": 288,
"usage_type": "call"
},
{
"api_name": "torch.nn.functional",
"line_number": 288,
"usage_type": "name"
}
] |
258592833
|
#!/usr/bin/env python
import pystache
import os
import json
import codecs
import HTMLParser
API_DIR = "apis"
OUT_DIR = "aws-sdk"
def parse_operations(iterator_fn):
operations = []
for op_name, operation in iterator_fn():
if operation.get("deprecated") is not True:
doc = operation.get("documentation", " ")
operation.update({"documentation": doc})
inp = operation.get("input")
if inp:
operation.update({"input_shape_or_empty": inp})
else:
operation.update({"input_shape_or_empty": {"shape": "{}"}})
operations.append(operation)
return operations
def parse_shapes(iterator_fn):
shapes = {
"string": [],
"structure": [],
"list": [],
"double": [],
"integer": [],
"long": [],
"boolean": [],
"map": [],
"blob": [],
"timestamp": [],
"float": []}
for shape_name, shape in iterator_fn():
shape_type = str(shape["type"])
shape["name"] = shape_name
# ensure empty documentation if none exists (otherwise mustache will start searching recursively)
shape.update({"documentation": shape.get("documentation", " ")})
# remove patterns
if shape.get("pattern"):
shape.pop("pattern", None)
if shape_type == "structure":
members = []
query_string_members = []
uri_members = []
header_members = []
for member_name, member in shape["members"].iteritems():
member["name"] = member_name
member["locationName"] = member.get("locationName", member_name)
member["documentation"] = member.get("documentation", "").replace("\n", "")
if member.get("location") == "querystring":
query_string_members.append(member)
elif member.get("location") == "uri":
uri_members.append(member)
elif member.get("location") == "header":
header_members.append(member)
members.append(member)
shape["member_names"] = ",".join(shape["members"].keys())
shape["members"] = members
shape["query_string_members"] = query_string_members
shape["uri_members"] = uri_members
shape["header_members"] = header_members
if shape.get("required"):
required = []
for required_name in shape["required"]:
required.append({"name": required_name})
shape.update({"required": required})
shapes[shape_type].append(shape)
return shapes
def generate():
with open("operations.mtl", 'r') as f:
op_mtl = f.read()
for filename in os.listdir(API_DIR):
if filename.endswith(".normal.json"):
print("Parsing " + filename)
j = json.load(open(os.path.join(API_DIR, filename)))
j["operations"] = parse_operations(j["operations"].iteritems)
j["shapes"] = parse_shapes(j["shapes"].iteritems)
out_filename = j["metadata"]["endpointPrefix"].replace(".", "_") + ".lua"
print("Writing " + out_filename)
lua = pystache.render(op_mtl, j)
with codecs.open(os.path.join(OUT_DIR, out_filename), 'wb', "utf-8") as f:
f.write(HTMLParser.HTMLParser().unescape(lua))
if __name__ == "__main__":
generate()
| null |
generate.py
|
generate.py
|
py
| 3,533 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "os.listdir",
"line_number": 85,
"usage_type": "call"
},
{
"api_name": "json.load",
"line_number": 88,
"usage_type": "call"
},
{
"api_name": "os.path.join",
"line_number": 88,
"usage_type": "call"
},
{
"api_name": "os.path",
"line_number": 88,
"usage_type": "attribute"
},
{
"api_name": "pystache.render",
"line_number": 96,
"usage_type": "call"
},
{
"api_name": "codecs.open",
"line_number": 97,
"usage_type": "call"
},
{
"api_name": "os.path.join",
"line_number": 97,
"usage_type": "call"
},
{
"api_name": "os.path",
"line_number": 97,
"usage_type": "attribute"
},
{
"api_name": "HTMLParser.HTMLParser",
"line_number": 98,
"usage_type": "call"
}
] |
368755387
|
import numpy
import os
import shutil
import av
def load_video(
path=os.path.expanduser('/data/lisatmp4/dejoieti/data_colo/polyp_video_frames'),
crop=False,
data_augment=False,
split=[.5, .25],
normalize=False,
whiten=False,
rng=None,
nImg=None):
im_path = os.path.join(path, 'Original',)
mask_path = os.path.join(path, 'Ground Truth',)
training_set_path = "/data/lisatmp4/dejoieti/data_colo/TrainingSet"
for video_index, test_directory in enumerate(os.listdir(training_set_path)):
directory_path = os.path.join(training_set_path, test_directory)
if os.path.isdir(directory_path):
image_frames = filter(lambda l: l.endswith(".tiff"),
os.listdir(os.path.join(directory_path, "GT")))
image_frames = list(map(lambda l: os.path.join(directory_path, "GT", l),
image_frames))
for frame_index, frame in enumerate(image_frames):
shutil.copyfile(frame, mask_path + str(video_index)
+ "_" + str(frame_index) + ".tiff")
video_file_path = list(filter(lambda l: l.endswith(".wmv"),
os.listdir(directory_path)))[0]
video_file_path = os.path.join(directory_path, video_file_path)
container = av.open(video_file_path)
# number_of_frames_in_video = 0
frame_index = 0
for packet in container.demux():
for frame in packet.decode():
if type(frame) == av.video.frame.VideoFrame:
frame.to_image().save("Original/"+ video_index +"_" + ".tiff")
frame_index += 1
| null |
utils/VideoReading.py
|
VideoReading.py
|
py
| 1,793 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "os.path.expanduser",
"line_number": 7,
"usage_type": "call"
},
{
"api_name": "os.path",
"line_number": 7,
"usage_type": "attribute"
},
{
"api_name": "os.path.join",
"line_number": 17,
"usage_type": "call"
},
{
"api_name": "os.path",
"line_number": 17,
"usage_type": "attribute"
},
{
"api_name": "os.path.join",
"line_number": 18,
"usage_type": "call"
},
{
"api_name": "os.path",
"line_number": 18,
"usage_type": "attribute"
},
{
"api_name": "os.listdir",
"line_number": 22,
"usage_type": "call"
},
{
"api_name": "os.path.join",
"line_number": 23,
"usage_type": "call"
},
{
"api_name": "os.path",
"line_number": 23,
"usage_type": "attribute"
},
{
"api_name": "os.path.isdir",
"line_number": 24,
"usage_type": "call"
},
{
"api_name": "os.path",
"line_number": 24,
"usage_type": "attribute"
},
{
"api_name": "os.listdir",
"line_number": 26,
"usage_type": "call"
},
{
"api_name": "os.path.join",
"line_number": 26,
"usage_type": "call"
},
{
"api_name": "os.path",
"line_number": 26,
"usage_type": "attribute"
},
{
"api_name": "os.path.join",
"line_number": 27,
"usage_type": "call"
},
{
"api_name": "os.path",
"line_number": 27,
"usage_type": "attribute"
},
{
"api_name": "shutil.copyfile",
"line_number": 31,
"usage_type": "call"
},
{
"api_name": "os.listdir",
"line_number": 36,
"usage_type": "call"
},
{
"api_name": "os.path.join",
"line_number": 37,
"usage_type": "call"
},
{
"api_name": "os.path",
"line_number": 37,
"usage_type": "attribute"
},
{
"api_name": "av.open",
"line_number": 38,
"usage_type": "call"
},
{
"api_name": "av.video",
"line_number": 44,
"usage_type": "attribute"
}
] |
466058833
|
#!/usr/bin/python
import urllib2
import xml.etree.ElementTree as ElementTree
import re
def refine_table(table):
result = table
result = re.sub(r"<td.*?>", "<td>", result)
result = re.sub(r"<tr.*?>", "<tr>", result)
result = re.sub(r"<a.*?>(.*?)</a>", "\\1", result)
result = re.sub(r"<span.*?>(.*?)</span>", "\\1", result)
result = re.sub(r"<b.*?>(.*?)</b>", "\\1", result)
result = re.sub(r"<br\s?/>", "", result)
result = re.sub(r"<sup.*?/sup>", "", result)
result = re.sub(r"<sub.*?/sub>", "", result)
result = re.sub(r"<caption.*?/caption>", "", result)
result = re.sub(r"</abbr>", "", result)
result = re.sub(r"\n", "", result)
result = re.sub(r"<div.*?>.*?<li>(.*?)</li>.*?</div>", "\\1", result, re.M | re.S)
return result
def main():
response = urllib2.urlopen("https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers")
content = response.read()
tables = re.findall(r"<table class=\"wikitable sortable collapsible\">(.*?)</table>", content, re.M | re.S)
table_well_known = refine_table(tables[0])
table_registered_known = refine_table(tables[1])
whole_table = "<table>" + table_well_known + table_registered_known + "</table>"
tree = ElementTree.fromstring(whole_table)
port_info = {}
for child in tree:
port = child[0].text
tcp = child[1].text
udp = child[2].text
desc = (child[3][0].text if len(child[3]) > 0 else child[3].text).replace(",", "").replace(".", "")
# skip invalid entries
if not port:
continue
if ("Reserved" in [tcp, udp]) or ("N/A" in [tcp, udp]):
continue
# defaulting to TCP
if (not tcp and not udp):
tcp = "TCP"
elif tcp and tcp.lower() in ["yes", "assigned", "?"]:
tcp = "TCP"
if udp and udp.lower() in ["yes", "assigned", "?"]:
tcp = "TCP"
# check if given is port range
try:
port_range = map(int, port.split("-"))
except:
continue
port_range = [int(port)] if port.isdigit() else map(int, port.split("-"))
for p in port_range:
if p not in port_info:
port_info[p] = [set(),[]]
if tcp == "TCP":
port_info[p][0].add("tcp")
if udp == "UDP":
port_info[p][0].add("udp")
port_info[p][1].append(desc)
with open("services.list", "w") as fsvcs:
for port, info in sorted(port_info.items()):
for proto in sorted(info[0]):
svc = (" | ".join(info[1])).replace(u"\u00e9", "e").replace(u"\u2013", "-").replace(u"\u2014", "-")
fsvcs.write(("%s,%s,%s" % (proto, port, svc)))
fsvcs.write("\n")
if __name__ == "__main__":
main()
| null |
MMLanScan/Data/build_port_services_list.py
|
build_port_services_list.py
|
py
| 2,845 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "re.sub",
"line_number": 9,
"usage_type": "call"
},
{
"api_name": "re.sub",
"line_number": 10,
"usage_type": "call"
},
{
"api_name": "re.sub",
"line_number": 11,
"usage_type": "call"
},
{
"api_name": "re.sub",
"line_number": 12,
"usage_type": "call"
},
{
"api_name": "re.sub",
"line_number": 13,
"usage_type": "call"
},
{
"api_name": "re.sub",
"line_number": 14,
"usage_type": "call"
},
{
"api_name": "re.sub",
"line_number": 15,
"usage_type": "call"
},
{
"api_name": "re.sub",
"line_number": 16,
"usage_type": "call"
},
{
"api_name": "re.sub",
"line_number": 17,
"usage_type": "call"
},
{
"api_name": "re.sub",
"line_number": 18,
"usage_type": "call"
},
{
"api_name": "re.sub",
"line_number": 19,
"usage_type": "call"
},
{
"api_name": "re.sub",
"line_number": 20,
"usage_type": "call"
},
{
"api_name": "re.M",
"line_number": 20,
"usage_type": "attribute"
},
{
"api_name": "re.S",
"line_number": 20,
"usage_type": "attribute"
},
{
"api_name": "urllib2.urlopen",
"line_number": 26,
"usage_type": "call"
},
{
"api_name": "re.findall",
"line_number": 29,
"usage_type": "call"
},
{
"api_name": "re.M",
"line_number": 29,
"usage_type": "attribute"
},
{
"api_name": "re.S",
"line_number": 29,
"usage_type": "attribute"
},
{
"api_name": "xml.etree.ElementTree.fromstring",
"line_number": 34,
"usage_type": "call"
},
{
"api_name": "xml.etree.ElementTree",
"line_number": 34,
"usage_type": "name"
}
] |
413003560
|
from datetime import datetime, timedelta
from decimal import Decimal
from casexml.apps.stock.models import StockTransaction, StockReport
from corehq.apps.commtrack.models import StockState
from corehq.apps.locations.tests.util import make_loc
from corehq.apps.products.models import SQLProduct, Product
from corehq.apps.sms.models import SMS
from corehq.apps.sms.tests.util import setup_default_sms_test_backend, delete_domain_phone_numbers
from custom.ewsghana.models import FacilityInCharge, EWSExtension
from custom.ewsghana.reminders import STOCK_ON_HAND_REMINDER, SECOND_STOCK_ON_HAND_REMINDER, \
SECOND_INCOMPLETE_SOH_REMINDER, STOCKOUT_REPORT, THIRD_STOCK_ON_HAND_REMINDER, INCOMPLETE_SOH_TO_SUPER
from custom.ewsghana.reminders.second_soh_reminder import SecondSOHReminder
from custom.ewsghana.tasks import first_soh_reminder, second_soh_reminder, third_soh_to_super, \
stockout_notification_to_web_supers, reminder_to_visit_website, reminder_to_submit_rrirv
from custom.ewsghana.tests.handlers.utils import EWSTestCase
from custom.ewsghana.utils import prepare_domain, bootstrap_user, bootstrap_web_user, \
set_sms_notifications, user_needs_reminders
TEST_DOMAIN = 'ews-reminders-test-domain'
def create_stock_report(location, products_quantities, date=None):
date = date or datetime.utcnow()
sql_location = location.sql_location
report = StockReport.objects.create(
form_id='ews-reminders-test',
domain=sql_location.domain,
type='balance',
date=date,
server_date=date
)
for product_code, quantity in products_quantities.iteritems():
StockTransaction(
stock_on_hand=Decimal(quantity),
report=report,
type='stockonhand',
section_id='stock',
case_id=sql_location.supply_point_id,
product_id=SQLProduct.objects.get(domain=sql_location.domain, code=product_code).product_id
).save()
class TestReminders(EWSTestCase):
@classmethod
def setUpClass(cls):
super(TestReminders, cls).setUpClass()
cls.backend, cls.sms_backend_mapping = setup_default_sms_test_backend()
cls.domain = prepare_domain(TEST_DOMAIN)
cls.loc1 = make_loc(code="garms", name="Test RMS", type="Regional Medical Store", domain=TEST_DOMAIN)
cls.loc2 = make_loc(code="tf", name="Test Facility", type="Hospital", domain=TEST_DOMAIN)
cls.region = make_loc(code="region", name="Test Region", type="region", domain=TEST_DOMAIN)
cls.user1 = bootstrap_user(
username='test1', phone_number='1111', home_loc=cls.loc2, domain=TEST_DOMAIN,
first_name='test', last_name='test1',
user_data={
'role': []
}
)
cls.user2 = bootstrap_user(
username='test2', phone_number='2222', home_loc=cls.loc1, domain=TEST_DOMAIN,
first_name='test', last_name='test2',
user_data={
'role': ['Other'],
'needs_reminders': "False"
}
)
cls.user3 = bootstrap_user(
username='test3', phone_number='3333', home_loc=cls.loc2, domain=TEST_DOMAIN,
first_name='test', last_name='test3',
user_data={
'role': ['Nurse'],
'needs_reminders': "True"
}
)
cls.in_charge = bootstrap_user(
username='test4', phone_number='4444', home_loc=cls.loc2, domain=TEST_DOMAIN,
first_name='test', last_name='test4',
user_data={
'role': ['In Charge']
}
)
cls.web_user = bootstrap_web_user(
domain=TEST_DOMAIN,
username='testwebuser',
password='dummy',
email='[email protected]',
location=cls.loc2,
phone_number='5555'
)
EWSExtension.objects.create(
domain=TEST_DOMAIN,
user_id=cls.web_user.get_id,
sms_notifications=True,
location_id=cls.loc2.get_id
)
cls.web_user2 = bootstrap_web_user(
domain=TEST_DOMAIN,
username='testwebuser2',
password='dummy',
email='[email protected]',
location=cls.region,
phone_number='6666'
)
set_sms_notifications(TEST_DOMAIN, cls.web_user2, True)
FacilityInCharge.objects.create(
user_id=cls.in_charge.get_id,
location=cls.loc2.sql_location
)
cls.product = Product(
domain=TEST_DOMAIN,
name='Test Product',
code_='tp',
unit='each'
)
cls.product.save()
cls.product2 = Product(
domain=TEST_DOMAIN,
name='Test Product2',
code_='tp2',
unit='each'
)
cls.product2.save()
sql_product = SQLProduct.objects.get(product_id=cls.product.get_id)
sql_product2 = SQLProduct.objects.get(product_id=cls.product2.get_id)
sql_location1 = cls.loc1.sql_location
sql_location2 = cls.loc2.sql_location
sql_location1.products = [sql_product]
sql_location2.products = [sql_product, sql_product2]
sql_location1.save()
sql_location2.save()
def tearDown(self):
SMS.objects.all().delete()
StockState.objects.all().delete()
StockReport.objects.all().delete()
super(TestReminders, self).tearDown()
@classmethod
def tearDownClass(cls):
delete_domain_phone_numbers(TEST_DOMAIN)
cls.user1.delete()
cls.user2.delete()
cls.user3.delete()
cls.domain.delete()
FacilityInCharge.objects.all().delete()
super(TestReminders, cls).tearDownClass()
def test_needs_reminders_flag(self):
self.assertFalse('needs_reminders' in self.user1.user_data)
self.assertFalse(user_needs_reminders(self.user1))
self.assertEqual(self.user2.user_data['needs_reminders'], 'False')
self.assertFalse(user_needs_reminders(self.user2))
self.assertEqual(self.user3.user_data['needs_reminders'], 'True')
self.assertTrue(user_needs_reminders(self.user3))
def test_first_soh_reminder(self):
first_soh_reminder()
smses = SMS.objects.all()
self.assertEqual(smses.count(), 1)
self.assertEqual(
smses[0].text,
STOCK_ON_HAND_REMINDER % {'name': self.user3.full_name}
)
def test_second_soh_reminder(self):
second_soh_reminder()
smses = SMS.objects.all().order_by('-date')
self.assertEqual(smses.count(), 2)
self.assertEqual(
smses[0].text,
SECOND_STOCK_ON_HAND_REMINDER % {'name': self.user3.full_name}
)
self.assertEqual(
smses[1].text,
SECOND_STOCK_ON_HAND_REMINDER % {'name': self.user2.full_name}
)
create_stock_report(self.loc1, {
'tp': 100
})
now = datetime.utcnow()
second_soh_reminder()
smses = smses.filter(date__gte=now)
self.assertEqual(smses.count(), 1)
self.assertEqual(
smses[0].text,
SECOND_STOCK_ON_HAND_REMINDER % {'name': self.user3.full_name}
)
create_stock_report(self.loc2, {
'tp': 100
})
now = datetime.utcnow()
second_soh_reminder()
smses = SMS.objects.filter(date__gte=now)
self.assertEqual(smses.count(), 1)
self.assertEqual(
smses[0].text,
SECOND_INCOMPLETE_SOH_REMINDER % {'name': self.user3.full_name, 'products': 'Test Product2'}
)
create_stock_report(self.loc2, {
'tp2': 100
})
now = datetime.utcnow()
SecondSOHReminder(TEST_DOMAIN).send()
smses = SMS.objects.filter(date__gte=now)
self.assertEqual(smses.count(), 0)
def test_third_soh_reminder(self):
third_soh_to_super()
smses = SMS.objects.all()
self.assertEqual(smses.count(), 2)
self.assertEqual(smses[0].text, THIRD_STOCK_ON_HAND_REMINDER % {
'name': self.web_user2.full_name,
'facility': self.loc2.name,
})
self.assertEqual(smses[1].text, THIRD_STOCK_ON_HAND_REMINDER % {
'name': self.in_charge.full_name,
'facility': self.loc2.name,
})
create_stock_report(self.loc2, {
'tp': 100
})
now = datetime.utcnow()
third_soh_to_super()
smses = SMS.objects.filter(date__gte=now)
self.assertEqual(smses.count(), 2)
self.assertEqual(
smses[0].text,
INCOMPLETE_SOH_TO_SUPER % {
'name': self.web_user2.full_name,
'facility': self.loc2.name,
'products': 'Test Product2'
}
)
self.assertEqual(
smses[1].text,
INCOMPLETE_SOH_TO_SUPER % {
'name': self.in_charge.full_name,
'facility': self.loc2.name,
'products': 'Test Product2'
}
)
create_stock_report(self.loc2, {
'tp2': 100
})
now = datetime.utcnow()
third_soh_to_super()
smses = SMS.objects.filter(date__gte=now)
self.assertEqual(smses.count(), 0)
def test_stockout_reminder(self):
stockout_notification_to_web_supers()
smses = SMS.objects.all()
self.assertEqual(smses.count(), 0)
create_stock_report(
self.loc2, {
'tp': 0
}
)
stockout_notification_to_web_supers()
smses = SMS.objects.all()
self.assertEqual(smses.count(), 1)
last_modified_date = StockState.objects.latest('last_modified_date').last_modified_date.strftime('%b %d')
self.assertEqual(
smses[0].text,
STOCKOUT_REPORT % {
'name': self.web_user.full_name,
'facility': self.loc2.name,
'products': 'Test Product',
'date': last_modified_date
}
)
set_sms_notifications(TEST_DOMAIN, self.web_user, False)
self.web_user.save()
now = datetime.utcnow()
stockout_notification_to_web_supers()
smses = SMS.objects.filter(date__gte=now)
self.assertEqual(smses.count(), 0)
def test_rrirv_reminder(self):
reminder_to_submit_rrirv()
smses = SMS.objects.all()
self.assertEqual(smses.count(), 2)
def test_visit_reminder(self):
now = datetime.utcnow()
self.web_user2.last_login = now - timedelta(weeks=1)
self.web_user2.save()
reminder_to_visit_website()
smses = SMS.objects.all()
self.assertEqual(smses.count(), 0)
self.web_user2.last_login = now - timedelta(weeks=14)
self.web_user2.save()
reminder_to_visit_website()
smses = SMS.objects.filter(date__gte=now)
self.assertEqual(smses.count(), 1)
set_sms_notifications(TEST_DOMAIN, self.web_user2, False)
self.web_user2.save()
now = datetime.utcnow()
reminder_to_visit_website()
smses = SMS.objects.filter(date__gte=now)
self.assertEqual(smses.count(), 0)
| null |
custom/ewsghana/tests/test_reminders.py
|
test_reminders.py
|
py
| 11,416 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "datetime.datetime.utcnow",
"line_number": 26,
"usage_type": "call"
},
{
"api_name": "datetime.datetime",
"line_number": 26,
"usage_type": "name"
},
{
"api_name": "casexml.apps.stock.models.StockReport.objects.create",
"line_number": 28,
"usage_type": "call"
},
{
"api_name": "casexml.apps.stock.models.StockReport.objects",
"line_number": 28,
"usage_type": "attribute"
},
{
"api_name": "casexml.apps.stock.models.StockReport",
"line_number": 28,
"usage_type": "name"
},
{
"api_name": "casexml.apps.stock.models.StockTransaction",
"line_number": 36,
"usage_type": "call"
},
{
"api_name": "decimal.Decimal",
"line_number": 37,
"usage_type": "call"
},
{
"api_name": "corehq.apps.products.models.SQLProduct.objects.get",
"line_number": 42,
"usage_type": "call"
},
{
"api_name": "corehq.apps.products.models.SQLProduct.objects",
"line_number": 42,
"usage_type": "attribute"
},
{
"api_name": "corehq.apps.products.models.SQLProduct",
"line_number": 42,
"usage_type": "name"
},
{
"api_name": "custom.ewsghana.tests.handlers.utils.EWSTestCase",
"line_number": 46,
"usage_type": "name"
},
{
"api_name": "corehq.apps.sms.tests.util.setup_default_sms_test_backend",
"line_number": 51,
"usage_type": "call"
},
{
"api_name": "custom.ewsghana.utils.prepare_domain",
"line_number": 52,
"usage_type": "call"
},
{
"api_name": "corehq.apps.locations.tests.util.make_loc",
"line_number": 53,
"usage_type": "call"
},
{
"api_name": "corehq.apps.locations.tests.util.make_loc",
"line_number": 54,
"usage_type": "call"
},
{
"api_name": "corehq.apps.locations.tests.util.make_loc",
"line_number": 55,
"usage_type": "call"
},
{
"api_name": "custom.ewsghana.utils.bootstrap_user",
"line_number": 57,
"usage_type": "call"
},
{
"api_name": "custom.ewsghana.utils.bootstrap_user",
"line_number": 64,
"usage_type": "call"
},
{
"api_name": "custom.ewsghana.utils.bootstrap_user",
"line_number": 73,
"usage_type": "call"
},
{
"api_name": "custom.ewsghana.utils.bootstrap_user",
"line_number": 82,
"usage_type": "call"
},
{
"api_name": "custom.ewsghana.utils.bootstrap_web_user",
"line_number": 90,
"usage_type": "call"
},
{
"api_name": "custom.ewsghana.models.EWSExtension.objects.create",
"line_number": 99,
"usage_type": "call"
},
{
"api_name": "custom.ewsghana.models.EWSExtension.objects",
"line_number": 99,
"usage_type": "attribute"
},
{
"api_name": "custom.ewsghana.models.EWSExtension",
"line_number": 99,
"usage_type": "name"
},
{
"api_name": "custom.ewsghana.utils.bootstrap_web_user",
"line_number": 106,
"usage_type": "call"
},
{
"api_name": "custom.ewsghana.utils.set_sms_notifications",
"line_number": 115,
"usage_type": "call"
},
{
"api_name": "custom.ewsghana.models.FacilityInCharge.objects.create",
"line_number": 117,
"usage_type": "call"
},
{
"api_name": "custom.ewsghana.models.FacilityInCharge.objects",
"line_number": 117,
"usage_type": "attribute"
},
{
"api_name": "custom.ewsghana.models.FacilityInCharge",
"line_number": 117,
"usage_type": "name"
},
{
"api_name": "corehq.apps.products.models.Product",
"line_number": 122,
"usage_type": "call"
},
{
"api_name": "corehq.apps.products.models.Product",
"line_number": 130,
"usage_type": "call"
},
{
"api_name": "corehq.apps.products.models.SQLProduct.objects.get",
"line_number": 138,
"usage_type": "call"
},
{
"api_name": "corehq.apps.products.models.SQLProduct.objects",
"line_number": 138,
"usage_type": "attribute"
},
{
"api_name": "corehq.apps.products.models.SQLProduct",
"line_number": 138,
"usage_type": "name"
},
{
"api_name": "corehq.apps.products.models.SQLProduct.objects.get",
"line_number": 139,
"usage_type": "call"
},
{
"api_name": "corehq.apps.products.models.SQLProduct.objects",
"line_number": 139,
"usage_type": "attribute"
},
{
"api_name": "corehq.apps.products.models.SQLProduct",
"line_number": 139,
"usage_type": "name"
},
{
"api_name": "corehq.apps.sms.models.SMS.objects.all",
"line_number": 150,
"usage_type": "call"
},
{
"api_name": "corehq.apps.sms.models.SMS.objects",
"line_number": 150,
"usage_type": "attribute"
},
{
"api_name": "corehq.apps.sms.models.SMS",
"line_number": 150,
"usage_type": "name"
},
{
"api_name": "corehq.apps.commtrack.models.StockState.objects.all",
"line_number": 151,
"usage_type": "call"
},
{
"api_name": "corehq.apps.commtrack.models.StockState.objects",
"line_number": 151,
"usage_type": "attribute"
},
{
"api_name": "corehq.apps.commtrack.models.StockState",
"line_number": 151,
"usage_type": "name"
},
{
"api_name": "casexml.apps.stock.models.StockReport.objects.all",
"line_number": 152,
"usage_type": "call"
},
{
"api_name": "casexml.apps.stock.models.StockReport.objects",
"line_number": 152,
"usage_type": "attribute"
},
{
"api_name": "casexml.apps.stock.models.StockReport",
"line_number": 152,
"usage_type": "name"
},
{
"api_name": "corehq.apps.sms.tests.util.delete_domain_phone_numbers",
"line_number": 157,
"usage_type": "call"
},
{
"api_name": "custom.ewsghana.models.FacilityInCharge.objects.all",
"line_number": 162,
"usage_type": "call"
},
{
"api_name": "custom.ewsghana.models.FacilityInCharge.objects",
"line_number": 162,
"usage_type": "attribute"
},
{
"api_name": "custom.ewsghana.models.FacilityInCharge",
"line_number": 162,
"usage_type": "name"
},
{
"api_name": "custom.ewsghana.utils.user_needs_reminders",
"line_number": 168,
"usage_type": "call"
},
{
"api_name": "custom.ewsghana.utils.user_needs_reminders",
"line_number": 171,
"usage_type": "call"
},
{
"api_name": "custom.ewsghana.utils.user_needs_reminders",
"line_number": 174,
"usage_type": "call"
},
{
"api_name": "custom.ewsghana.tasks.first_soh_reminder",
"line_number": 177,
"usage_type": "call"
},
{
"api_name": "corehq.apps.sms.models.SMS.objects.all",
"line_number": 178,
"usage_type": "call"
},
{
"api_name": "corehq.apps.sms.models.SMS.objects",
"line_number": 178,
"usage_type": "attribute"
},
{
"api_name": "corehq.apps.sms.models.SMS",
"line_number": 178,
"usage_type": "name"
},
{
"api_name": "custom.ewsghana.reminders.STOCK_ON_HAND_REMINDER",
"line_number": 183,
"usage_type": "name"
},
{
"api_name": "custom.ewsghana.tasks.second_soh_reminder",
"line_number": 187,
"usage_type": "call"
},
{
"api_name": "corehq.apps.sms.models.SMS.objects.all",
"line_number": 188,
"usage_type": "call"
},
{
"api_name": "corehq.apps.sms.models.SMS.objects",
"line_number": 188,
"usage_type": "attribute"
},
{
"api_name": "corehq.apps.sms.models.SMS",
"line_number": 188,
"usage_type": "name"
},
{
"api_name": "custom.ewsghana.reminders.SECOND_STOCK_ON_HAND_REMINDER",
"line_number": 193,
"usage_type": "name"
},
{
"api_name": "custom.ewsghana.reminders.SECOND_STOCK_ON_HAND_REMINDER",
"line_number": 198,
"usage_type": "name"
},
{
"api_name": "datetime.datetime.utcnow",
"line_number": 205,
"usage_type": "call"
},
{
"api_name": "datetime.datetime",
"line_number": 205,
"usage_type": "name"
},
{
"api_name": "custom.ewsghana.tasks.second_soh_reminder",
"line_number": 206,
"usage_type": "call"
},
{
"api_name": "custom.ewsghana.reminders.SECOND_STOCK_ON_HAND_REMINDER",
"line_number": 212,
"usage_type": "name"
},
{
"api_name": "datetime.datetime.utcnow",
"line_number": 218,
"usage_type": "call"
},
{
"api_name": "datetime.datetime",
"line_number": 218,
"usage_type": "name"
},
{
"api_name": "custom.ewsghana.tasks.second_soh_reminder",
"line_number": 219,
"usage_type": "call"
},
{
"api_name": "corehq.apps.sms.models.SMS.objects.filter",
"line_number": 220,
"usage_type": "call"
},
{
"api_name": "corehq.apps.sms.models.SMS.objects",
"line_number": 220,
"usage_type": "attribute"
},
{
"api_name": "corehq.apps.sms.models.SMS",
"line_number": 220,
"usage_type": "name"
},
{
"api_name": "custom.ewsghana.reminders.SECOND_INCOMPLETE_SOH_REMINDER",
"line_number": 224,
"usage_type": "name"
},
{
"api_name": "datetime.datetime.utcnow",
"line_number": 230,
"usage_type": "call"
},
{
"api_name": "datetime.datetime",
"line_number": 230,
"usage_type": "name"
},
{
"api_name": "custom.ewsghana.reminders.second_soh_reminder.SecondSOHReminder",
"line_number": 231,
"usage_type": "call"
},
{
"api_name": "corehq.apps.sms.models.SMS.objects.filter",
"line_number": 232,
"usage_type": "call"
},
{
"api_name": "corehq.apps.sms.models.SMS.objects",
"line_number": 232,
"usage_type": "attribute"
},
{
"api_name": "corehq.apps.sms.models.SMS",
"line_number": 232,
"usage_type": "name"
},
{
"api_name": "custom.ewsghana.tasks.third_soh_to_super",
"line_number": 236,
"usage_type": "call"
},
{
"api_name": "corehq.apps.sms.models.SMS.objects.all",
"line_number": 237,
"usage_type": "call"
},
{
"api_name": "corehq.apps.sms.models.SMS.objects",
"line_number": 237,
"usage_type": "attribute"
},
{
"api_name": "corehq.apps.sms.models.SMS",
"line_number": 237,
"usage_type": "name"
},
{
"api_name": "custom.ewsghana.reminders.THIRD_STOCK_ON_HAND_REMINDER",
"line_number": 240,
"usage_type": "name"
},
{
"api_name": "custom.ewsghana.reminders.THIRD_STOCK_ON_HAND_REMINDER",
"line_number": 244,
"usage_type": "name"
},
{
"api_name": "datetime.datetime.utcnow",
"line_number": 252,
"usage_type": "call"
},
{
"api_name": "datetime.datetime",
"line_number": 252,
"usage_type": "name"
},
{
"api_name": "custom.ewsghana.tasks.third_soh_to_super",
"line_number": 253,
"usage_type": "call"
},
{
"api_name": "corehq.apps.sms.models.SMS.objects.filter",
"line_number": 254,
"usage_type": "call"
},
{
"api_name": "corehq.apps.sms.models.SMS.objects",
"line_number": 254,
"usage_type": "attribute"
},
{
"api_name": "corehq.apps.sms.models.SMS",
"line_number": 254,
"usage_type": "name"
},
{
"api_name": "custom.ewsghana.reminders.INCOMPLETE_SOH_TO_SUPER",
"line_number": 258,
"usage_type": "name"
},
{
"api_name": "custom.ewsghana.reminders.INCOMPLETE_SOH_TO_SUPER",
"line_number": 266,
"usage_type": "name"
},
{
"api_name": "datetime.datetime.utcnow",
"line_number": 276,
"usage_type": "call"
},
{
"api_name": "datetime.datetime",
"line_number": 276,
"usage_type": "name"
},
{
"api_name": "custom.ewsghana.tasks.third_soh_to_super",
"line_number": 277,
"usage_type": "call"
},
{
"api_name": "corehq.apps.sms.models.SMS.objects.filter",
"line_number": 278,
"usage_type": "call"
},
{
"api_name": "corehq.apps.sms.models.SMS.objects",
"line_number": 278,
"usage_type": "attribute"
},
{
"api_name": "corehq.apps.sms.models.SMS",
"line_number": 278,
"usage_type": "name"
},
{
"api_name": "custom.ewsghana.tasks.stockout_notification_to_web_supers",
"line_number": 282,
"usage_type": "call"
},
{
"api_name": "corehq.apps.sms.models.SMS.objects.all",
"line_number": 283,
"usage_type": "call"
},
{
"api_name": "corehq.apps.sms.models.SMS.objects",
"line_number": 283,
"usage_type": "attribute"
},
{
"api_name": "corehq.apps.sms.models.SMS",
"line_number": 283,
"usage_type": "name"
},
{
"api_name": "custom.ewsghana.tasks.stockout_notification_to_web_supers",
"line_number": 292,
"usage_type": "call"
},
{
"api_name": "corehq.apps.sms.models.SMS.objects.all",
"line_number": 293,
"usage_type": "call"
},
{
"api_name": "corehq.apps.sms.models.SMS.objects",
"line_number": 293,
"usage_type": "attribute"
},
{
"api_name": "corehq.apps.sms.models.SMS",
"line_number": 293,
"usage_type": "name"
},
{
"api_name": "corehq.apps.commtrack.models.StockState.objects.latest",
"line_number": 296,
"usage_type": "call"
},
{
"api_name": "corehq.apps.commtrack.models.StockState.objects",
"line_number": 296,
"usage_type": "attribute"
},
{
"api_name": "corehq.apps.commtrack.models.StockState",
"line_number": 296,
"usage_type": "name"
},
{
"api_name": "custom.ewsghana.reminders.STOCKOUT_REPORT",
"line_number": 300,
"usage_type": "name"
},
{
"api_name": "custom.ewsghana.utils.set_sms_notifications",
"line_number": 308,
"usage_type": "call"
},
{
"api_name": "datetime.datetime.utcnow",
"line_number": 311,
"usage_type": "call"
},
{
"api_name": "datetime.datetime",
"line_number": 311,
"usage_type": "name"
},
{
"api_name": "custom.ewsghana.tasks.stockout_notification_to_web_supers",
"line_number": 312,
"usage_type": "call"
},
{
"api_name": "corehq.apps.sms.models.SMS.objects.filter",
"line_number": 313,
"usage_type": "call"
},
{
"api_name": "corehq.apps.sms.models.SMS.objects",
"line_number": 313,
"usage_type": "attribute"
},
{
"api_name": "corehq.apps.sms.models.SMS",
"line_number": 313,
"usage_type": "name"
},
{
"api_name": "custom.ewsghana.tasks.reminder_to_submit_rrirv",
"line_number": 317,
"usage_type": "call"
},
{
"api_name": "corehq.apps.sms.models.SMS.objects.all",
"line_number": 319,
"usage_type": "call"
},
{
"api_name": "corehq.apps.sms.models.SMS.objects",
"line_number": 319,
"usage_type": "attribute"
},
{
"api_name": "corehq.apps.sms.models.SMS",
"line_number": 319,
"usage_type": "name"
},
{
"api_name": "datetime.datetime.utcnow",
"line_number": 323,
"usage_type": "call"
},
{
"api_name": "datetime.datetime",
"line_number": 323,
"usage_type": "name"
},
{
"api_name": "datetime.timedelta",
"line_number": 324,
"usage_type": "call"
},
{
"api_name": "custom.ewsghana.tasks.reminder_to_visit_website",
"line_number": 326,
"usage_type": "call"
},
{
"api_name": "corehq.apps.sms.models.SMS.objects.all",
"line_number": 327,
"usage_type": "call"
},
{
"api_name": "corehq.apps.sms.models.SMS.objects",
"line_number": 327,
"usage_type": "attribute"
},
{
"api_name": "corehq.apps.sms.models.SMS",
"line_number": 327,
"usage_type": "name"
},
{
"api_name": "datetime.timedelta",
"line_number": 329,
"usage_type": "call"
},
{
"api_name": "custom.ewsghana.tasks.reminder_to_visit_website",
"line_number": 332,
"usage_type": "call"
},
{
"api_name": "corehq.apps.sms.models.SMS.objects.filter",
"line_number": 334,
"usage_type": "call"
},
{
"api_name": "corehq.apps.sms.models.SMS.objects",
"line_number": 334,
"usage_type": "attribute"
},
{
"api_name": "corehq.apps.sms.models.SMS",
"line_number": 334,
"usage_type": "name"
},
{
"api_name": "custom.ewsghana.utils.set_sms_notifications",
"line_number": 337,
"usage_type": "call"
},
{
"api_name": "datetime.datetime.utcnow",
"line_number": 340,
"usage_type": "call"
},
{
"api_name": "datetime.datetime",
"line_number": 340,
"usage_type": "name"
},
{
"api_name": "custom.ewsghana.tasks.reminder_to_visit_website",
"line_number": 341,
"usage_type": "call"
},
{
"api_name": "corehq.apps.sms.models.SMS.objects.filter",
"line_number": 343,
"usage_type": "call"
},
{
"api_name": "corehq.apps.sms.models.SMS.objects",
"line_number": 343,
"usage_type": "attribute"
},
{
"api_name": "corehq.apps.sms.models.SMS",
"line_number": 343,
"usage_type": "name"
}
] |
32215700
|
# coding=utf-8
"""Search SoundCloud playlists for audio."""
from __future__ import absolute_import
import os
import string
import sys
import requests
import soundcloud
from tqdm import tqdm
def sanitize(s):
valid = '-_.() {}{}'.format(string.ascii_letters, string.digits)
return ''.join(c for c in s if c in valid)
if 'SOUNDCLOUD_API_KEY' in os.environ:
API_KEY = os.environ['SOUNDCLOUD_API_KEY']
else:
API_KEY = "81f430860ad96d8170e3bf1639d4e072"
def scrape(query, include, exclude, quiet, overwrite):
"""Search SoundCloud and download audio from discovered playlists."""
# Launch SoundCloud client.
client = soundcloud.Client(client_id=API_KEY)
# Generator for yielding all results pages.
def pagination(x):
yield x
while x.next_href:
x = client.get(x.next_href)
yield x
# Search SoundCloud for playlists.
for playlists in pagination(
client.get(
'/playlists',
q=query,
tags=','.join(include) if include else '',
linked_partitioning=1,
representation='compact')):
# Download playlists.
for playlist in playlists.collection:
# Skip playlists containing filter terms.
metadata = [playlist.title]
if playlist.description:
metadata.append(playlist.description)
haystack = ' '.join(metadata).lower()
if any(needle in haystack for needle in exclude):
continue
# Create directory for playlist.
directory = sanitize(playlist.title)
if directory == '':
continue
if not os.path.exists(directory):
os.mkdir(directory)
# Download tracks in playlist.
for track in client.get(playlist.tracks_uri):
file = os.path.join(directory, sanitize(track.title) + '.mp3')
# Skip existing files.
if os.path.exists(file) and not overwrite:
continue
# Skip tracks that are not allowed to be streamed.
if not track.streamable:
continue
# Skip tracks named with filter terms.
haystack = (track.title + ' ' + track.description + ' ' +
track.tag_list).lower()
if any(needle in haystack for needle in exclude):
continue
# Download track.
r = requests.get(
client.get(track.stream_url,
allow_redirects=False).location,
stream=True)
total_size = int(r.headers['content-length'])
chunk_size = 1000000 # 1 MB chunks
with open(file, 'wb') as f:
for data in tqdm(
r.iter_content(chunk_size),
desc=track.title,
total=total_size / chunk_size,
unit='MB',
file=sys.stdout):
f.write(data)
| null |
audioscrape/soundcloud.py
|
soundcloud.py
|
py
| 3,206 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "string.ascii_letters",
"line_number": 15,
"usage_type": "attribute"
},
{
"api_name": "string.digits",
"line_number": 15,
"usage_type": "attribute"
},
{
"api_name": "os.environ",
"line_number": 19,
"usage_type": "attribute"
},
{
"api_name": "os.environ",
"line_number": 20,
"usage_type": "attribute"
},
{
"api_name": "soundcloud.Client",
"line_number": 29,
"usage_type": "call"
},
{
"api_name": "os.path.exists",
"line_number": 62,
"usage_type": "call"
},
{
"api_name": "os.path",
"line_number": 62,
"usage_type": "attribute"
},
{
"api_name": "os.mkdir",
"line_number": 63,
"usage_type": "call"
},
{
"api_name": "os.path.join",
"line_number": 67,
"usage_type": "call"
},
{
"api_name": "os.path",
"line_number": 67,
"usage_type": "attribute"
},
{
"api_name": "os.path.exists",
"line_number": 70,
"usage_type": "call"
},
{
"api_name": "os.path",
"line_number": 70,
"usage_type": "attribute"
},
{
"api_name": "requests.get",
"line_number": 84,
"usage_type": "call"
},
{
"api_name": "tqdm.tqdm",
"line_number": 91,
"usage_type": "call"
},
{
"api_name": "sys.stdout",
"line_number": 96,
"usage_type": "attribute"
}
] |
25071322
|
import os
import kmeans
from setuptools import setup
from distutils.extension import Extension
here = os.path.abspath(os.path.dirname(__file__))
ckmeans = Extension(
'lib',
sources=['lib.c'],
extra_compile_args=['-O3', '-std=c99']
)
def read(*filenames, **kwargs):
encoding = kwargs.get('encoding', 'utf-8')
sep = kwargs.get('sep', '\n\n')
contents = []
for filename in filenames:
with open(filename, encoding=encoding) as f:
contents.append(f.read())
return sep.join(contents)
long_description = read('README.rst', 'LICENSE')
setup(
name='kmeans',
version=kmeans.version,
url='http://github.com/numberoverzero/kmeans/',
license='MIT',
author='Joe Cross',
install_requires=[],
author_email='[email protected]',
description='python wrapper for basic c implementation of kmeans',
long_description=long_description,
include_package_data=True,
platforms='any',
classifiers=[
'Programming Language :: Python',
'Development Status :: 3 - Alpha',
'Natural Language :: English',
'Intended Audience :: Developers',
'License :: OSI Approved :: MIT License',
'Operating System :: OS Independent',
'Topic :: Software Development :: Libraries :: Python Modules',
],
extras_require={
'testing': ['pytest'],
},
ext_modules=[ckmeans]
)
| null |
setup.py
|
setup.py
|
py
| 1,413 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "os.path.abspath",
"line_number": 6,
"usage_type": "call"
},
{
"api_name": "os.path",
"line_number": 6,
"usage_type": "attribute"
},
{
"api_name": "os.path.dirname",
"line_number": 6,
"usage_type": "call"
},
{
"api_name": "distutils.extension.Extension",
"line_number": 7,
"usage_type": "call"
},
{
"api_name": "setuptools.setup",
"line_number": 26,
"usage_type": "call"
},
{
"api_name": "kmeans.version",
"line_number": 28,
"usage_type": "attribute"
}
] |
574155818
|
from __future__ import print_function
import sys
from itertools import combinations
__author__ = 'Joshua'
def opendata(data):
transfordata = []
input_data = data.readlines()
for data_line in input_data:
tmp = data_line.strip().split(',')
transfordata.append(tmp)
return transfordata # [['d', 'e', 'a'], ['d', 'b', 'e', 'f']]
def count_items(data, support):
frequent_items = {}
for each_line in data:
for each_items in each_line:
frequent_items[each_items] = frequent_items.get(each_items, 0) + 1
for each in frequent_items.keys():
if frequent_items[each] < support:
del (frequent_items[each])
print(sorted(list(frequent_items)), '\n')
return sorted(list(frequent_items)) # ['a', 'b', 'c', 'd', 'e', 'f', 'g']
def find_pairs(data, num):
return list(combinations(data, num)) # [('a', 'b'), ('a', 'c')]
def count_more_pairs(data, raw_data, num):
candidate_raw_morepairs = list(combinations(data, num))
candidate_items_3 = []
for i in range(len(candidate_raw_morepairs)):
count = 0
for j in range(len(raw_data)):
if set(candidate_raw_morepairs[i]).issuperset(set(raw_data[j])):
count += 1
if count > (num - 1):
candidate_items_3.append(sorted(candidate_raw_morepairs[i]))
return candidate_items_3
def hash_function(data, raw_data, buckets, support):
temp_list = []
for each in data:
num = 0
for items in range(len(raw_data)):
if set(each).issubset(set(raw_data[items])):
num += 1
temp_list.append([each, num]) # ('a', 'b'), 8
pairsoutput = [temp_list[i][0] for i in range(len(temp_list)) if temp_list[i][1] >= support]
output = [[temp_list.index(temp_list[each]) % buckets, temp_list[each][1]] for each in range(len(temp_list))]
pairs_tmv = [[temp_list.index(temp_list[each]) % buckets, temp_list[each][0]] for each in range(len(temp_list))]
# [0, ('a', 'b')
for j in range(len(output)):
for k in range(j + 1, len(output) - 1):
if output[j][0] == output[k][0]:
output[k][1] = output[j][1] + output[k][1]
del (output[j])
output1 = []
for each in range(len(output)):
if output[each][1] >= support:
bitmap = 1
output1.append((output[each][0], bitmap)) # bitmap output
pairs_output = []
for each in dict(output1):
for i in range(len(pairs_tmv)):
if pairs_tmv[i][0] == each:
pairs_output.append(list(pairs_tmv[i][1]))
if len(pairsoutput) == 0:
return pairs_output, dict(output)
else:
print(dict(output), '\n', sorted(pairsoutput), '\n')
return pairs_output, dict(output)
if __name__ == '__main__':
# inputdata = open(sys.argv[1])
inputdata = open('input.txt')
# support = int(sys.argv[2])
support = 4
# buckets = int(sys.argv[3])
buckets = 20
raw_data = opendata(inputdata)
sorted_items = count_items(raw_data, support)
candidate_raw_pairs = find_pairs(sorted_items, 2)
for num in range(3, len(sorted_items)):
candidate_pairs, bitmap = hash_function(candidate_raw_pairs, raw_data, buckets, support)
if len(candidate_pairs) == 0:
break
else:
candidate_raw_pairs = count_more_pairs(sorted_items, candidate_raw_pairs, num)
| null |
Code2_Hash/bozhao_li_pcy.py
|
bozhao_li_pcy.py
|
py
| 3,059 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "itertools.combinations",
"line_number": 30,
"usage_type": "call"
},
{
"api_name": "itertools.combinations",
"line_number": 34,
"usage_type": "call"
}
] |
425579551
|
# MODEL m15_4M_01 - NN CLASS
import torch
import torch.nn as nn
import numpy as np
import pandas as pd
# artificial neural network
class ANN(nn.Module):
def __init__(self, input_size_swl, input_size, hidden_size, output_size, num_lstm_layers, bias = True):
super(ANN, self).__init__()
self.num_lstm_layers = num_lstm_layers
self.input_size_swl = input_size_swl
self.input_size = input_size
self.hidden_size = hidden_size
self.output_size = output_size
# lstm layer with the swl in the inout --> input_size = 15
self.lstm_swl = nn.LSTM(input_size_swl, hidden_size, num_lstm_layers, batch_first = True)
# lstm layer without the swl in the inout --> input_size = 14
self.lstm = nn.LSTM(input_size, hidden_size, num_lstm_layers, batch_first = True)
# readout layer
self.fc1 = nn.Linear(hidden_size * output_size, output_size)
nn.init.normal_(self.fc1.bias, mean=0.0, std=1.0)
self.Sigmoid = nn.Sigmoid()
def forward(self, input_swl, input):
# set initial hidden and cell state
h_0 = torch.zeros(self.num_lstm_layers, input.size(0), self.hidden_size)
c_0 = torch.zeros(self.num_lstm_layers, input.size(0), self.hidden_size)
# forward propagate
out_swl, (hn_swl, cn_swl) = self.lstm_swl(input_swl, (h_0, c_0))
out_lstm, (hn, cn) = self.lstm(input, (hn_swl, cn_swl))
out = torch.cat((out_swl, out_lstm), 1)
out = out.reshape(input.size(0), 1, self.hidden_size * self.output_size)
out = self.fc1(out)
out = self.Sigmoid(out)
return out
| null |
m15_4M_01/m15_4M_01_03_nn_class.py
|
m15_4M_01_03_nn_class.py
|
py
| 1,537 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "torch.nn.Module",
"line_number": 9,
"usage_type": "attribute"
},
{
"api_name": "torch.nn",
"line_number": 9,
"usage_type": "name"
},
{
"api_name": "torch.nn.LSTM",
"line_number": 19,
"usage_type": "call"
},
{
"api_name": "torch.nn",
"line_number": 19,
"usage_type": "name"
},
{
"api_name": "torch.nn.LSTM",
"line_number": 22,
"usage_type": "call"
},
{
"api_name": "torch.nn",
"line_number": 22,
"usage_type": "name"
},
{
"api_name": "torch.nn.Linear",
"line_number": 25,
"usage_type": "call"
},
{
"api_name": "torch.nn",
"line_number": 25,
"usage_type": "name"
},
{
"api_name": "torch.nn.init.normal_",
"line_number": 26,
"usage_type": "call"
},
{
"api_name": "torch.nn.init",
"line_number": 26,
"usage_type": "attribute"
},
{
"api_name": "torch.nn",
"line_number": 26,
"usage_type": "name"
},
{
"api_name": "torch.nn.Sigmoid",
"line_number": 27,
"usage_type": "call"
},
{
"api_name": "torch.nn",
"line_number": 27,
"usage_type": "name"
},
{
"api_name": "torch.zeros",
"line_number": 31,
"usage_type": "call"
},
{
"api_name": "torch.zeros",
"line_number": 32,
"usage_type": "call"
},
{
"api_name": "torch.cat",
"line_number": 37,
"usage_type": "call"
}
] |
646526005
|
import argparse
import csv
from pathlib import Path
def read_csv(src_file, output_file):
with open(src_file) as file_object:
reader = csv.reader(file_object)
header_row = next(reader)
if output_file:
f = open(output_file, "w")
for row in reader:
f.write(str(row))
else:
for row in reader:
print(row)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Description of your app.')
parser.add_argument('inDir', type=Path,
help='Path to the file to be read from.')
parser.add_argument('-d', '--destination', type=Path,
help='The name of the file to store the read file in')
args = parser.parse_args()
result = read_csv(args.inDir, args.destination)
print("You have written from: "+str(args.inDir) +
" to file: "+str(args.destination))
| null |
modules/ex2.py
|
ex2.py
|
py
| 944 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "csv.reader",
"line_number": 8,
"usage_type": "call"
},
{
"api_name": "argparse.ArgumentParser",
"line_number": 20,
"usage_type": "call"
},
{
"api_name": "pathlib.Path",
"line_number": 21,
"usage_type": "name"
},
{
"api_name": "pathlib.Path",
"line_number": 23,
"usage_type": "name"
}
] |
415903220
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""desc"""
import torch.nn as nn
import torch.nn.functional as F
from .attention import MultiHeadedAttention
from .utils import PositionwiseFeedForward
class TransformerEncoderLayer(nn.Module):
"""
Bidirectional Encoder = Transformer (self-attention)
Transformer = MultiHead_Attention + Feed_Forward with sublayer connection
Args:
d_model:
head_count: number of heads in multi-head attention
dim_feed_forward: dim_feed_forward, usually 4*d_model_size
dropout: dropout rate
"""
def __init__(self, d_model, head_count, dim_feed_forward, dropout):
super().__init__()
self.d_model = d_model
self.head_count = head_count
self.dim_feed_forward = dim_feed_forward
self.dropout = dropout
self.self_attention = MultiHeadedAttention(head_count=head_count, d_model=d_model, dropout=dropout)
self.feed_forward = PositionwiseFeedForward(d_model=d_model, d_ff=dim_feed_forward, dropout=dropout)
self.layer_norm_attn = nn.LayerNorm(normalized_shape=d_model, eps=1e-6)
self.layer_norm_ff = nn.LayerNorm(normalized_shape=d_model, eps=1e-6)
def forward(self, x, mask):
"""
Add/Norm ๅจ่ฟ้ๅผๅ
ฅ
args:
x: (B, Tx, d_model)
mask: (B, 1, Tx)?
"""
x_norm = self.layer_norm_attn(x)
context, _ = self.self_attention(x_norm, x_norm, x_norm, mask)
context = F.dropout(context, p=self.dropout, training=self.training)
x = x + context # Residual
x_norm = self.layer_norm_ff(x)
output = self.feed_forward(x_norm)
output = F.dropout(x, p=self.dropout, training=self.training)
output = output + x
return output
| null |
bert_pytorch/model/transformer.py
|
transformer.py
|
py
| 1,805 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "torch.nn.Module",
"line_number": 12,
"usage_type": "attribute"
},
{
"api_name": "torch.nn",
"line_number": 12,
"usage_type": "name"
},
{
"api_name": "attention.MultiHeadedAttention",
"line_number": 32,
"usage_type": "call"
},
{
"api_name": "utils.PositionwiseFeedForward",
"line_number": 33,
"usage_type": "call"
},
{
"api_name": "torch.nn.LayerNorm",
"line_number": 34,
"usage_type": "call"
},
{
"api_name": "torch.nn",
"line_number": 34,
"usage_type": "name"
},
{
"api_name": "torch.nn.LayerNorm",
"line_number": 35,
"usage_type": "call"
},
{
"api_name": "torch.nn",
"line_number": 35,
"usage_type": "name"
},
{
"api_name": "torch.nn.functional.dropout",
"line_number": 48,
"usage_type": "call"
},
{
"api_name": "torch.nn.functional",
"line_number": 48,
"usage_type": "name"
},
{
"api_name": "torch.nn.functional.dropout",
"line_number": 53,
"usage_type": "call"
},
{
"api_name": "torch.nn.functional",
"line_number": 53,
"usage_type": "name"
}
] |
424472261
|
from configparser import ConfigParser
def config(filename, section):
parser = ConfigParser()
parser.read(filename)
configs = {}
if parser.has_section(section):
params = parser.items(section)
for param in params:
configs[param[0]] = param[1]
else:
raise Exception('Section {} not found in {} file.'.format(section, filename))
return configs
| null |
config.py
|
config.py
|
py
| 407 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "configparser.ConfigParser",
"line_number": 4,
"usage_type": "call"
}
] |
629166725
|
##############################################################################80
# #
# Raw-data Reader #
# #
# (2020) Nicolo Fabbiane #
# #
################################################################################
class RawData:
"""
"""
def __init__(self, path='data', git_url=None, git_env={}, data_fmt='jhu'):
"""
"""
# store data
self.path = path
self.git_url = git_url
self.git_env = git_env
self.data_fmt = data_fmt
self.time = {}
self.confirmed = {}
self.recovered = {}
self.deaths = {}
self.active = {}
self.intensive = {}
# initialize
self.update_git()
# read data
self.read_data()
#___________________________________________________________________________
#
def update_git(self):
"""
"""
# modules
import os
from git import Repo
# does the repo exists?
if os.path.isdir(self.path):
# get repo origin
origin = Repo(self.path).remote()
# update (pull)
origin.pull(env=self.git_env)
elif not(self.git_url is None):
# clone repo from url
repo = Repo.clone_from(self.git_url, self.path, env=self.git_env)
#___________________________________________________________________________
#
def read_data(self):
"""
"""
# select reader
if self.data_fmt is 'jhu': # John Hopkins University
data = read_data_jhu(self)
elif self.data_fmt is 'dpc': # Dipartimento della protezione Civile
data = read_data_dpc(self)
elif self.data_fmt is 'ofr': # OpenCoVid19-fr
data = read_data_ofr(self)
else: # default (John Hopkins University)
data = read_data_jhu(self)
# unpack data
self.time = data[0]
self.confirmed = data[1]
self.recovered = data[2]
self.deaths = data[3]
self.active = data[4]
self.intensive = data[5]
#___________________________________________________________________________
#
def get_time(self):
"""
"""
return self.time
#___________________________________________________________________________
#
def get_data_for_regions(self, regions):
"""
"""
# check inputs
if not(isinstance(regions, list)):
regions = list(self.confirmed.keys())
regions+= list(self.recovered.keys())
regions+= list(self.deaths.keys())
regions = list(set(regions))
# initialize output
confirmed = [0]*len(self.time)
recovered = [0]*len(self.time)
deaths = [0]*len(self.time)
active = [0]*len(self.time)
intensive = [0]*len(self.time)
# loop on regions
for region in regions:
if region in self.confirmed.keys():
for i, data in enumerate(self.confirmed[region]):
confirmed[i]+= data
else: print('WARNING! %s not found in confirmed' %(region))
if region in self.recovered.keys():
for i, data in enumerate(self.recovered[region]):
recovered[i]+= data
else: print('WARNING! %s not found in recovered' %(region))
if region in self.deaths.keys():
for i, data in enumerate(self.deaths[region]):
deaths[i]+= data
else: print('WARNING! %s not found in deaths' %(region))
if region in self.active.keys():
for i, data in enumerate(self.active[region]):
active[i]+= data
else: print('WARNING! %s not found in active' %(region))
if region in self.intensive.keys():
for i, data in enumerate(self.intensive[region]):
intensive[i]+= data
else: print('WARNING! %s not found in intensive' %(region))
# output
return confirmed, recovered, deaths, active, intensive
#___________________________________________________________________________
#
################################################################################
# Support functions
#_______________________________________________________________________________
#
def read_data_jhu(rawdata):
"""
"""
# modules
import os
# path to time-series files
timeseries_path = os.path.join(rawdata.path, 'csse_covid_19_data', 'csse_covid_19_time_series')
# read confirmed cases
timeseries_file = os.path.join(timeseries_path, 'time_series_19-covid-Confirmed.csv')
time, confirmed = read_file_jhu(timeseries_file)
# read recovered cases
timeseries_file = os.path.join(timeseries_path, 'time_series_19-covid-Recovered.csv')
time, recovered = read_file_jhu(timeseries_file)
# read deaths
timeseries_file = os.path.join(timeseries_path, 'time_series_19-covid-Deaths.csv')
time, deaths = read_file_jhu(timeseries_file)
# compute active cases (and dummy intensive care)
active = {}; intensive = {}
for region in confirmed.keys():
active[region] = [0]*len(confirmed[region])
intensive[region] = [0]*len(confirmed[region])
for i in range(len(confirmed[region])):
active[region][i] = confirmed[region][i]
active[region][i]-= recovered[region][i] + deaths[region][i]
# output
return time, confirmed, recovered, deaths, active, intensive
#_______________________________________________________________________________
#
def read_file_jhu(filename):
"""
"""
# modules
import datetime as dt
# open file
f = open(filename, 'r')
# read header (time-stamps)
line = f.readline().rstrip('\r\n').split(',')
time = [dt.datetime.strptime(t, '%m/%d/%y') for t in line[4:]]
# loop on entries
data_by_region={}
for l in f:
# split line
line = l.rstrip('\r\n').rsplit(',', len(time)+3)
# get region
region = line[1]
# initialize region if needed
if not(region in data_by_region.keys()):
data_by_region[region] = [0]*len(time)
# add data to region
for i, data in enumerate(line[4:]):
try: data_by_region[region][i]+= int(data)
except: data_by_region[region][i]+= 0
# output
return time, data_by_region
#_______________________________________________________________________________
#
def read_data_dpc(rawdata):
"""
"""
# modules
import os
import datetime as dt
# path to time-series files
timeseries_path = os.path.join(rawdata.path, 'dati-regioni')
# read confirmed cases
timeseries_file = os.path.join(timeseries_path, 'dpc-covid19-ita-regioni.csv')
# initilize output
time = []
confirmed = {}
recovered = {}
deaths = {}
active = {}
intensive = {}
# open file
f = open(timeseries_file, 'r')
# skip header
f.readline()
# loop on entries
for l in f:
# split line
line = l.rstrip('\r\n').rsplit(',')
# get time
t = dt.datetime.strptime(line[0], '%Y-%m-%d %H:%M:%S')
t = dt.datetime(*t.timetuple()[:3])
if not(t in time): time.append(t)
# get region name
region = line[3]
# get confirmed
if not(region in confirmed.keys()): confirmed[region]=[0]*(len(time)-1)
confirmed[region]+= [int(line[14])]
# get recovered
if not(region in recovered.keys()): recovered[region]=[0]*(len(time)-1)
recovered[region]+= [int(line[12])]
# get deaths
if not(region in deaths.keys()): deaths[region]=[0]*(len(time)-1)
deaths[region]+= [int(line[13])]
# get active
if not(region in active.keys()): active[region]=[0]*(len(time)-1)
active[region]+= [int(line[10])]
# get intensive
if not(region in intensive.keys()): intensive[region]=[0]*(len(time)-1)
intensive[region]+= [int(line[7])]
# output
return time, confirmed, recovered, deaths, active, intensive
#_______________________________________________________________________________
#
def read_data_ofr(rawdata):
"""
"""
# modules
import os
import datetime as dt
# path to time-series files
timeseries_path = os.path.join(rawdata.path, 'dist')
# read confirmed cases
timeseries_file = os.path.join(timeseries_path, 'chiffres-cles.csv')
# initilize output
time = []
confirmed = {}
recovered = {}
deaths = {}
active = {}
intensive = {}
# open file
f = open(timeseries_file, 'r')
# skip header
f.readline()
# loop on entries
for l in f:
# split line
line = l.rstrip('\r\n').rsplit(',')
line = ['0' if c == '' else c for c in line]
if ('REG' in line[2])|('FRA' in line[2]):
if ('et de la Sant' in line[9])|('ARS' in line[9]):
# get time
t = dt.datetime.strptime(line[0], '%Y-%m-%d')
t = dt.datetime(*t.timetuple()[:3])
if not(t in time): time.append(t)
# get region name
region = line[3]
# get confirmed
if not(region in confirmed.keys()): confirmed[region]=[]
confirmed[region]+= [0]*(len(time)-len(confirmed[region])-1)
confirmed[region]+= [int(line[4])]
# get deaths
if not(region in deaths.keys()): deaths[region]=[]
deaths[region]+= [0]*(len(time)-len(deaths[region])-1)
deaths[region]+= [int(line[5])]
# get intensive
if not(region in intensive.keys()): intensive[region]=[]
intensive[region]+= [0]*(len(time)-len(intensive[region])-1)
intensive[region]+= [int(line[6])]
# get recovered
if not(region in recovered.keys()): recovered[region]=[]
recovered[region]+= [0]*(len(time)-len(recovered[region])-1)
recovered[region]+= [int(line[8])]
# initialize active
if not(region in active.keys()): active[region]=[]
# fix_data
fix_data_ofr(time, confirmed)
fix_data_ofr(time, deaths)
fix_data_ofr(time, recovered)
# compute active
for region, data in active.iteritems():
active[region] = [c-r-d for c, r, d in zip(confirmed[region], deaths[region], recovered[region])]
# output
return time, confirmed, recovered, deaths, active, intensive
#_______________________________________________________________________________
#
def fix_data_ofr(time, data_dict):
for region, data in data_dict.iteritems():
for i, point in enumerate(data):
if i == 0: mindata = point
elif point < mindata:
data_dict[region][i]=mindata
else: mindata = point
return data
#_______________________________________________________________________________
#
| null |
libpy/rawdata.py
|
rawdata.py
|
py
| 9,915 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "os.path.isdir",
"line_number": 39,
"usage_type": "call"
},
{
"api_name": "os.path",
"line_number": 39,
"usage_type": "attribute"
},
{
"api_name": "git.Repo",
"line_number": 41,
"usage_type": "call"
},
{
"api_name": "git.Repo.clone_from",
"line_number": 46,
"usage_type": "call"
},
{
"api_name": "git.Repo",
"line_number": 46,
"usage_type": "name"
},
{
"api_name": "os.path.join",
"line_number": 131,
"usage_type": "call"
},
{
"api_name": "os.path",
"line_number": 131,
"usage_type": "attribute"
},
{
"api_name": "os.path.join",
"line_number": 133,
"usage_type": "call"
},
{
"api_name": "os.path",
"line_number": 133,
"usage_type": "attribute"
},
{
"api_name": "os.path.join",
"line_number": 136,
"usage_type": "call"
},
{
"api_name": "os.path",
"line_number": 136,
"usage_type": "attribute"
},
{
"api_name": "os.path.join",
"line_number": 139,
"usage_type": "call"
},
{
"api_name": "os.path",
"line_number": 139,
"usage_type": "attribute"
},
{
"api_name": "datetime.datetime.strptime",
"line_number": 162,
"usage_type": "call"
},
{
"api_name": "datetime.datetime",
"line_number": 162,
"usage_type": "attribute"
},
{
"api_name": "os.path.join",
"line_number": 188,
"usage_type": "call"
},
{
"api_name": "os.path",
"line_number": 188,
"usage_type": "attribute"
},
{
"api_name": "os.path.join",
"line_number": 190,
"usage_type": "call"
},
{
"api_name": "os.path",
"line_number": 190,
"usage_type": "attribute"
},
{
"api_name": "datetime.datetime.strptime",
"line_number": 207,
"usage_type": "call"
},
{
"api_name": "datetime.datetime",
"line_number": 207,
"usage_type": "attribute"
},
{
"api_name": "datetime.datetime",
"line_number": 208,
"usage_type": "call"
},
{
"api_name": "os.path.join",
"line_number": 238,
"usage_type": "call"
},
{
"api_name": "os.path",
"line_number": 238,
"usage_type": "attribute"
},
{
"api_name": "os.path.join",
"line_number": 240,
"usage_type": "call"
},
{
"api_name": "os.path",
"line_number": 240,
"usage_type": "attribute"
},
{
"api_name": "datetime.datetime.strptime",
"line_number": 260,
"usage_type": "call"
},
{
"api_name": "datetime.datetime",
"line_number": 260,
"usage_type": "attribute"
},
{
"api_name": "datetime.datetime",
"line_number": 261,
"usage_type": "call"
}
] |
366246319
|
from BugTracker.models import BugScreenShots, Bug
from django.http import HttpResponse
import logging
import json
import shutil
from TeamTrack.settings import STATIC_URL
log = logging.getLogger(__name__)
def UpdateScreenshots(sender, instance, **kwargs):
try:
BugScreenShotsObj = BugScreenShots.objects.filter(imageId=instance.id)
with open("%s%s" % (STATIC_URL, "Config/BugTrackerConfig.json"), 'r') as BugPathObj:
BugPathObj = json.loads(BugPathObj)
TempDestination = "%s" % BugPathObj.BugScreenshotTempFolder
FinalDestination = instance.imagePath
for screenshot in BugScreenShotsObj:
newtempDestination = "%s%s" % (TempDestination, screenshot.imageName)
shutil.move(FinalDestination, newtempDestination)
return HttpResponse("Success")
except Exception as ex:
log.exception(ex)
return HttpResponse(ex)
| null |
BugTracker/Signals.py
|
Signals.py
|
py
| 922 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "logging.getLogger",
"line_number": 7,
"usage_type": "call"
},
{
"api_name": "BugTracker.models.BugScreenShots.objects.filter",
"line_number": 11,
"usage_type": "call"
},
{
"api_name": "BugTracker.models.BugScreenShots.objects",
"line_number": 11,
"usage_type": "attribute"
},
{
"api_name": "BugTracker.models.BugScreenShots",
"line_number": 11,
"usage_type": "name"
},
{
"api_name": "TeamTrack.settings.STATIC_URL",
"line_number": 12,
"usage_type": "name"
},
{
"api_name": "json.loads",
"line_number": 13,
"usage_type": "call"
},
{
"api_name": "shutil.move",
"line_number": 18,
"usage_type": "call"
},
{
"api_name": "django.http.HttpResponse",
"line_number": 20,
"usage_type": "call"
},
{
"api_name": "django.http.HttpResponse",
"line_number": 23,
"usage_type": "call"
}
] |
32506196
|
#!/usr/local/bin/python3
# coding: UTF-8
# Author: David
# Email: [email protected]
# Created: 2017-05-09 18:43
# Last modified: 2017-05-09 18:51
# Filename: subprocess_streams.py
# Description:
import asyncio
import asyncio.subprocess
import sys
async def get_date():
code = 'import datetime; print(datetime.datetime.now())'
create = asyncio.create_subprocess_exec(sys.executable, '-c', code,
stdout=asyncio.subprocess.PIPE)
proc = await create
data = await proc.stdout.readline()
line = data.decode('ascii').rstrip()
await proc.wait()
return line
if sys.platform == 'win32':
loop = asyncio.ProactorEventLoop()
asyncio.set_event_loop(loop)
else:
loop = asyncio.get_event_loop()
date = loop.run_until_complete(get_date())
print('Current date: {}'.format(date))
loop.close()
| null |
Python/asyncio/subprocess_streams.py
|
subprocess_streams.py
|
py
| 874 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "asyncio.create_subprocess_exec",
"line_number": 17,
"usage_type": "call"
},
{
"api_name": "sys.executable",
"line_number": 17,
"usage_type": "attribute"
},
{
"api_name": "asyncio.subprocess",
"line_number": 18,
"usage_type": "attribute"
},
{
"api_name": "sys.platform",
"line_number": 29,
"usage_type": "attribute"
},
{
"api_name": "asyncio.ProactorEventLoop",
"line_number": 30,
"usage_type": "call"
},
{
"api_name": "asyncio.set_event_loop",
"line_number": 31,
"usage_type": "call"
},
{
"api_name": "asyncio.get_event_loop",
"line_number": 33,
"usage_type": "call"
}
] |
182488865
|
from websocket import create_connection
import threading
import asyncio
active = True
server_message = ''
#variables from server:
#encounter_state (WAITING, IN_PROGRESS, ENDED_FAIL, ENDED_WIN, UDEAD)
#boss_balance (integer - balance remaining)
#num_musos (integer - how many musos are connected)
#muso_list (list - from json - of muso dicts)
#Listener thread receives responses from the server
#It writes to global variables for access via other functions
def listener(server):
global server_message
while active:
server_message = server.recv()
print(server_message, end='\n> ')
def send(message):
global server
server.send(message)
def disconnect():
global server
global active
active = False
server.close()
#Usernames are sent using ||: as a delimiter
#For robustness in future, should be base64 encoded or similar
def connect(name, ip, port=8765):
global server
server = create_connection(f'ws://{ip}:{port}')
server.send(f'||:{name}')
conn_id = server.recv()
print(conn_id)
message = ''
listener_thread = threading.Thread(target = listener, args=(server,))
listener_thread.start()
| null |
Client/lib_chestral.py
|
lib_chestral.py
|
py
| 1,132 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "websocket.create_connection",
"line_number": 37,
"usage_type": "call"
},
{
"api_name": "threading.Thread",
"line_number": 42,
"usage_type": "call"
}
] |
529343989
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# combinator.py
#
# Copyright 2017 Bruno S <[email protected]>
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
# MA 02110-1301, USA.
#
"""combinator module from ProperImage,
for coadding astronomical images.
Written by Bruno SANCHEZ
PhD of Astromoy - UNC
[email protected]
Instituto de Astronomia Teorica y Experimental (IATE) UNC
Cordoba - Argentina
Of 301
"""
import numpy as np
from multiprocessing import Process
try:
import cPickle as pickle # noqa
except ImportError:
import pickle
try:
import pyfftw # noqa
_fftwn = pyfftw.interfaces.numpy_fft.fftn # noqa
_ifftwn = pyfftw.interfaces.numpy_fft.ifftn # noqa
except ImportError:
_fftwn = np.fft.fft2
_ifftwn = np.fft.ifft2
class StackCombinator(Process):
"""Combination engine.
An engine for image combination in parallel, using multiprocessing.Process
class.
Uses an ensemble of images and a queue to calculate the propercoadd of
the list of images.
Parameters
----------
img_list: list or tuple
list of SingleImage instances used in the combination process
queue: multiprocessing.Queue instance
an instance of multiprocessing.Queue class where to pickle the
intermediate results.
shape: shape of the images being coadded.
stack: boolean, default True
Whether to stack the results for coadd or just obtain individual
image calculations.
If True it will pickle in queue a coadded image of the chunk's images.
If False it will pickle in queue a list of individual matched filtered
images.
fourier: boolean, default False.
Whether to calculate individual fourier transform of each s_component
image.
If stack is True this parameter will be ignored.
If stack is False, and fourier is True, the pickled object will be a
tuple of two values, with the first one containing the list of
s_components, and the second one containing the list of fourier
transformed s_components.
Returns
-------
Combinator process
An instance of Combinator.
This can be launched like a multiprocessing.Process
Example
-------
queue1 = multiprocessing.Queue()
queue2 = multiprocessing.Queue()
p1 = Combinator(list1, queue1)
p2 = Combinator(list2, queue2)
p1.start()
p2.start()
#results are in queues
result1 = queue1.get()
result2 = queue2.get()
p1.join()
p2.join()
"""
def __init__(self, img_list, queue, shape, stack=True, fourier=False,
*args, **kwargs):
super(StackCombinator, self).__init__(*args, **kwargs)
self.list_to_combine = img_list
self.queue = queue
self.global_shape = shape
print(self.global_shape)
# self.zps = ensemble.transparencies
def run(self):
S_hat = np.zeros(self.global_shape).astype(np.complex128)
psf_hat_sum = np.zeros(self.global_shape).astype(np.complex128)
mix_mask = self.list_to_combine[0].pixeldata.mask
for an_img in self.list_to_combine:
np.add(an_img.s_hat_comp, S_hat, out=S_hat, casting='same_kind')
np.add(((an_img.zp/an_img.var)**2)*an_img.psf_hat_sqnorm(),
psf_hat_sum, out=psf_hat_sum) # , casting='same_kind')
# psf_hat_sum = ((an_img.zp/an_img.var)**2)*an_img.psf_hat_sqnorm()
mix_mask = np.ma.mask_or(mix_mask, an_img.pixeldata.mask)
serialized = pickle.dumps([S_hat, psf_hat_sum, mix_mask])
self.queue.put(serialized)
return
| null |
properimage/combinator.py
|
combinator.py
|
py
| 4,312 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "pyfftw.interfaces",
"line_number": 48,
"usage_type": "attribute"
},
{
"api_name": "pyfftw.interfaces",
"line_number": 49,
"usage_type": "attribute"
},
{
"api_name": "numpy.fft",
"line_number": 51,
"usage_type": "attribute"
},
{
"api_name": "numpy.fft",
"line_number": 52,
"usage_type": "attribute"
},
{
"api_name": "multiprocessing.Process",
"line_number": 55,
"usage_type": "name"
},
{
"api_name": "numpy.zeros",
"line_number": 123,
"usage_type": "call"
},
{
"api_name": "numpy.complex128",
"line_number": 123,
"usage_type": "attribute"
},
{
"api_name": "numpy.zeros",
"line_number": 124,
"usage_type": "call"
},
{
"api_name": "numpy.complex128",
"line_number": 124,
"usage_type": "attribute"
},
{
"api_name": "numpy.add",
"line_number": 128,
"usage_type": "call"
},
{
"api_name": "numpy.add",
"line_number": 129,
"usage_type": "call"
},
{
"api_name": "numpy.ma.mask_or",
"line_number": 132,
"usage_type": "call"
},
{
"api_name": "numpy.ma",
"line_number": 132,
"usage_type": "attribute"
},
{
"api_name": "pickle.dumps",
"line_number": 134,
"usage_type": "call"
}
] |
227421340
|
import datetime
from dateutil import parser
months = {1: 'January', 2: 'February', 3: 'March', 4: 'April', 5: 'May', 6: 'June', 7: 'July', 8: 'August', 9: 'September', 10: 'October', 11: 'November', 12: 'December'}
endings = {1: 'st', 2: 'nd', 3: 'rd'}
def toDate(date):
date = parser.parse(date)
ending = "th"
if date.day == 1:
ending = endings[1]
elif date.day == 2:
ending = endings[2]
elif date.day == 3:
ending = endings[3]
outputText = months[date.month] + " " + str(date.day) + ending + ", " + str(date.year) + " " + amOrPm(date.hour, date.minute)
return outputText
def amOrPm(hour, minute):
hourMinuteString = "{}:{}".format(hour, minute)
d = datetime.datetime.strptime(hourMinuteString, "%H:%M")
return d.strftime("%I:%M %p")
| null |
toDate.py
|
toDate.py
|
py
| 803 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "dateutil.parser.parse",
"line_number": 8,
"usage_type": "call"
},
{
"api_name": "dateutil.parser",
"line_number": 8,
"usage_type": "name"
},
{
"api_name": "datetime.datetime.strptime",
"line_number": 22,
"usage_type": "call"
},
{
"api_name": "datetime.datetime",
"line_number": 22,
"usage_type": "attribute"
}
] |
309026448
|
#Import
import cv2
import pdb
import numpy as np
import matplotlib.pyplot as plt
#Function:
def isColor(pixel, color):
if pixel[0] != color[0]:
return False
if pixel[1] != color[1]:
return False
if pixel[2] != color[2]:
return False
return True
def imgEdges(img, write = 0):
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(gray, 50, 100, apertureSize = 3)
return edges
def detectLines(img):
height, width = img.shape
# Encontra todas as pequenas linhas
lines = cv2.HoughLinesP(img, 1, np.pi/180, 250, minLineLenght, maxLineGap)
# Expande as linhas para o comeco e fim da img
lines2 = [0] * len(lines)
for i in range(len(lines)):
for x1, y1, x2, y2 in lines[i]:
a = (y2 - y1)/(x2 - x1)
b = (y1*(x2 - x1) - x1*(y2 - y1))/(x2 - x1)
yZero = int(b)
yWidth = int(a*width + b)
lines2[i] = (0, yZero, width, yWidth, a, b)
# Faz a projecao horizontal
sss = set()
for x1, y1, x2, y2, a, b in lines2:
for x in range(x1, x2):
y = int(a*x + b)
sss.add( (x, y) )
projections = [0] * height
for x, y in sss:
projections[y] += 1
projections = [v/float(width) for v in projections]
# Detecta as linhas utilizando a projecao encontrada
linesCut = []
line = 0
noGreenGap = 0
firstLine = 0
for i in range(len(projections)):
if firstLine == 0:
if projections[i] > .7:
firstLine = 1
line = i
noGreenGap = 0
else:
if projections[i] > .7:
line = i
noGreenGap = 0
else: noGreenGap += 1
if noGreenGap == 30:
linesCut.append(line)
firstLine = 0
return linesCut, projections, lines2
def projectionInX(img, height, width):
blur = cv2.GaussianBlur(img,(5,5),0)
ret3,th3 = cv2.threshold(blur,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
kernel = np.ones((5,5),np.uint8)
dilation = cv2.dilate(th3,kernel,iterations = 1)
projection = [0]*width
for i in range(width):
for j in range(height):
if (dilation[j,i] == 255):
projection[i] += 1
return projection
def smooth(projection, window_sizen = 3):
filtered_projection = []
for i in range(len(projection)):
summ = 0
for j in range(window_size):
summ += projection[i-j-1]
summ += projection[(i+j+1)%len(projection)]
summ /= window_size * 2
filtered_projection.append(summ)
return filtered_projection
#--------------------------------------------
#HoughLinesP:
minLineLenght = 50
maxLineGap = 10
offset = 5
#--------------------------------------------
img = cv2.imread('1-simpleImage.png')
height, width, _ = img.shape
edges = imgEdges(img)
lines, projection, candidates = detectLines(edges)
#Gerar todas as linhas cortadas:
#for i in range(len(lines)):
# roi = img[lines[i-1] - offset:lines[i] + offset, 0:width]
# cv2.imwrite(str(i) + ".png", roi)
#Gerar apenas uma linha cortada:
roi = img[0:lines[0] + offset, 0:width]
cv2.imwrite(str(1) + ".png", roi)
img = cv2.imread("1.png")
height, width, _ = img.shape
edges = imgEdges(img)
projection = projectionInX(edges, height, width)
plt.plot(projection)
plt.show()
#gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#edges = cv2.Canny(gray, 50, 100, apertureSize=3)
#cv2.imwrite("edgesImage.png", edges)
#img = cv2.imread("edgesImage.png")
#height, width, null = img.shape
#print ("Cรกlcular as projeรงรตes.")
#projection = [0] * width
#for i in range(width):
# for j in range(height):
# if iswhite(img[j,i]):
# projection[i] += sum(img[j,i]) * j
#print (projection)
#plt.plot(smooth(projection, 1))
def platos(projection, min_size=7, max_difference=10000):
last = 0
y = []
x = []
for i in range(1, len(projection)):
if abs(projection[i]-projection[last]) > max_difference:
if i-last > min_size:
pos = int((i+last)/2)
x.append(pos)
y.append(projection[pos])
last = i
return x, y
#x, y = platos(projection)
#print(x,y)
#plt.plot(projection)
#plt.plot(x, y, 'ro')
#plt.show()
| null |
DetectWords/DetectLinesManyLines.py
|
DetectLinesManyLines.py
|
py
| 4,421 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "cv2.cvtColor",
"line_number": 19,
"usage_type": "call"
},
{
"api_name": "cv2.COLOR_BGR2GRAY",
"line_number": 19,
"usage_type": "attribute"
},
{
"api_name": "cv2.Canny",
"line_number": 20,
"usage_type": "call"
},
{
"api_name": "cv2.HoughLinesP",
"line_number": 27,
"usage_type": "call"
},
{
"api_name": "numpy.pi",
"line_number": 27,
"usage_type": "attribute"
},
{
"api_name": "cv2.GaussianBlur",
"line_number": 75,
"usage_type": "call"
},
{
"api_name": "cv2.threshold",
"line_number": 76,
"usage_type": "call"
},
{
"api_name": "cv2.THRESH_BINARY",
"line_number": 76,
"usage_type": "attribute"
},
{
"api_name": "cv2.THRESH_OTSU",
"line_number": 76,
"usage_type": "attribute"
},
{
"api_name": "numpy.ones",
"line_number": 77,
"usage_type": "call"
},
{
"api_name": "numpy.uint8",
"line_number": 77,
"usage_type": "attribute"
},
{
"api_name": "cv2.dilate",
"line_number": 78,
"usage_type": "call"
},
{
"api_name": "cv2.imread",
"line_number": 103,
"usage_type": "call"
},
{
"api_name": "cv2.imwrite",
"line_number": 118,
"usage_type": "call"
},
{
"api_name": "cv2.imread",
"line_number": 120,
"usage_type": "call"
},
{
"api_name": "matplotlib.pyplot.plot",
"line_number": 126,
"usage_type": "call"
},
{
"api_name": "matplotlib.pyplot",
"line_number": 126,
"usage_type": "name"
},
{
"api_name": "matplotlib.pyplot.show",
"line_number": 127,
"usage_type": "call"
},
{
"api_name": "matplotlib.pyplot",
"line_number": 127,
"usage_type": "name"
}
] |
587584537
|
import copy
from ..parser import ast
from .definitions import Class
from .definitions import Function
from .utils import CompileError
from .utils import GenericType
from .utils import make_name
from .utils import make_types_string_parts
from .utils import mys_to_cpp_type_param
from .utils import split_dict_mys_type
def replace_generic_types(generic_types, mys_type, chosen_types):
if isinstance(mys_type, str):
for generic_type, chosen_type in zip(generic_types, chosen_types):
if mys_type == generic_type:
return chosen_type
return mys_type
class SpecializeGenericType:
def __init__(self, generic_type, chosen_type, node=None):
self.generic_type = generic_type
self.chosen_type = chosen_type
self.node = node
def replace(self, mys_type):
"""Replaces all occurrences of generic types with chosen types.
"""
if isinstance(mys_type, str):
if mys_type == self.generic_type:
mys_type = self.chosen_type
elif isinstance(mys_type, dict):
key_mys_type, value_mys_type = split_dict_mys_type(mys_type)
mys_type = {self.replace(key_mys_type): self.replace(value_mys_type)}
elif isinstance(mys_type, list):
mys_type = [self.replace(mys_type[0])]
elif isinstance(mys_type, tuple):
mys_type = tuple(self.replace(item_mys_type)
for item_mys_type in mys_type)
else:
raise Exception('generic type not supported')
return mys_type
class SpecializeTypeTransformer(ast.NodeTransformer):
"""Traverses given generic node and replaces given generic types with
given chosen types.
"""
def __init__(self, generic_types, chosen_types):
self.generic_to_specialized_type = dict(zip(generic_types, chosen_types))
def visit_Name(self, node):
node.id = self.generic_to_specialized_type.get(node.id, node.id)
return node
def specialize_function(function, specialized_full_name, chosen_types, node):
"""Returns a copy of the function object with all generic types
replaced with chosen types.
"""
returns = function.returns
args = copy.deepcopy(function.args)
actual_ntypes = len(chosen_types)
expected_ntypes = len(function.generic_types)
if actual_ntypes != expected_ntypes:
raise CompileError(
f'expected {expected_ntypes} type, got {actual_ntypes}',
node.func.slice)
for generic_type, chosen_type in zip(function.generic_types, chosen_types):
if returns is not None:
returns = SpecializeGenericType(generic_type,
chosen_type,
function.node).replace(returns)
for param, _ in args:
param.type = SpecializeGenericType(generic_type,
chosen_type,
function.node).replace(param.type)
node = copy.deepcopy(function.node)
node.name = specialized_full_name
node = SpecializeTypeTransformer(function.generic_types,
chosen_types).visit(node)
return Function(specialized_full_name,
[],
function.raises,
function.is_test,
args,
returns,
node,
function.module_name)
def specialize_class(definitions, specialized_name, chosen_types, node):
"""Returns a copy of the class object with all generic types replaced
with chosen types.
"""
members = copy.deepcopy(definitions.members)
methods = copy.deepcopy(definitions.methods)
actual_ntypes = len(chosen_types)
expected_ntypes = len(definitions.generic_types)
if actual_ntypes != expected_ntypes:
raise CompileError(
f'expected {expected_ntypes} type, got {actual_ntypes}',
node.slice)
for generic_type, chosen_type in zip(definitions.generic_types, chosen_types):
for member in members.values():
member.type = SpecializeGenericType(generic_type,
chosen_type).replace(member.type)
for class_methods in methods.values():
for method in class_methods:
if method.returns is not None:
method.returns = SpecializeGenericType(
generic_type,
chosen_type).replace(method.returns)
for param, _node in method.args:
param.type = SpecializeGenericType(
generic_type,
chosen_type).replace(param.type)
method.node = SpecializeTypeTransformer(
definitions.generic_types,
chosen_types).visit(method.node)
return Class(specialized_name,
[],
members,
methods,
definitions.functions,
definitions.implements,
definitions.node,
definitions.module_name)
def add_generic_class(node, context):
name = node.value.id
full_name = context.make_full_name(name)
chosen_types = find_chosen_types(node, context)
specialized_name, specialized_full_name = make_generic_name(
name,
full_name,
chosen_types)
definitions = context.get_class_definitions(full_name)
if context.is_specialized_class_defined(specialized_full_name):
specialized_class = context.get_specialized_class(
specialized_full_name)
else:
specialized_class = specialize_class(definitions,
specialized_name,
chosen_types,
node)
context.define_specialized_class(specialized_full_name,
specialized_class,
node)
context.define_class(specialized_name,
specialized_full_name,
specialized_class)
return specialized_class, specialized_full_name
def make_generic_name(name, full_name, chosen_types):
joined_chosen_types = '_'.join(make_types_string_parts(chosen_types))
specialized_name = f'{name}_{joined_chosen_types}'
specialized_full_name = f'{full_name}_{joined_chosen_types}'
return specialized_name, specialized_full_name
def find_chosen_types(node, context):
types_slice = node.slice
chosen_types = [
TypeVisitor(context).visit(type_node)
for type_node in fix_chosen_types(types_slice, context.source_lines)
]
return chosen_types
def format_parameters(args, context):
parameters = []
for param, _ in args:
if isinstance(param.type, GenericType):
param_type = add_generic_class(param.type.node, context)[1]
else:
param_type = param.type
cpp_type = mys_to_cpp_type_param(param_type, context)
parameters.append(f'{cpp_type} {make_name(param.name)}')
if parameters:
return ', '.join(parameters)
else:
return 'void'
def fix_chosen_types(slice_node, source_lines):
"""Returns a list of nodes that represents the chosen types.
"""
if isinstance(slice_node, ast.Tuple):
first = slice_node.elts[0]
second = slice_node.elts[1]
if slice_node.lineno != second.lineno:
raise Exception('internal error')
source = source_lines[slice_node.lineno - 1]
opening = source[slice_node.col_offset:first.col_offset]
closing = source[first.end_col_offset:second.col_offset]
if opening.count('(') > closing.count(')'):
types = [slice_node]
else:
types = slice_node.elts
else:
types = [slice_node]
return types
class TypeVisitor(ast.NodeVisitor):
def __init__(self, context):
self.context = context
def visit_Name(self, node):
name = node.id
if self.context.is_class_defined(name):
name = self.context.make_full_name(name)
elif self.context.is_enum_defined(name):
name = self.context.make_full_name(name)
elif self.context.is_trait_defined(name):
name = self.context.make_full_name(name)
return name
def visit_List(self, node):
nitems = len(node.elts)
if nitems != 1:
raise CompileError(f"expected 1 type in list, got {nitems}", node)
return [self.visit(elem) for elem in node.elts]
def visit_Tuple(self, node):
return tuple([self.visit(elem) for elem in node.elts])
def visit_Dict(self, node):
return {node.keys[0].id: self.visit(node.values[0])}
def visit_Subscript(self, node):
return add_generic_class(node, self.context)[1]
| null |
mys/transpiler/generics.py
|
generics.py
|
py
| 9,088 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "utils.split_dict_mys_type",
"line_number": 39,
"usage_type": "call"
},
{
"api_name": "parser.ast.NodeTransformer",
"line_number": 52,
"usage_type": "attribute"
},
{
"api_name": "parser.ast",
"line_number": 52,
"usage_type": "name"
},
{
"api_name": "copy.deepcopy",
"line_number": 74,
"usage_type": "call"
},
{
"api_name": "utils.CompileError",
"line_number": 79,
"usage_type": "call"
},
{
"api_name": "copy.deepcopy",
"line_number": 94,
"usage_type": "call"
},
{
"api_name": "definitions.Function",
"line_number": 99,
"usage_type": "call"
},
{
"api_name": "copy.deepcopy",
"line_number": 115,
"usage_type": "call"
},
{
"api_name": "definitions.members",
"line_number": 115,
"usage_type": "attribute"
},
{
"api_name": "copy.deepcopy",
"line_number": 116,
"usage_type": "call"
},
{
"api_name": "definitions.methods",
"line_number": 116,
"usage_type": "attribute"
},
{
"api_name": "definitions.generic_types",
"line_number": 118,
"usage_type": "attribute"
},
{
"api_name": "utils.CompileError",
"line_number": 121,
"usage_type": "call"
},
{
"api_name": "definitions.generic_types",
"line_number": 125,
"usage_type": "attribute"
},
{
"api_name": "definitions.generic_types",
"line_number": 143,
"usage_type": "attribute"
},
{
"api_name": "definitions.Class",
"line_number": 146,
"usage_type": "call"
},
{
"api_name": "definitions.functions",
"line_number": 150,
"usage_type": "attribute"
},
{
"api_name": "definitions.implements",
"line_number": 151,
"usage_type": "attribute"
},
{
"api_name": "definitions.node",
"line_number": 152,
"usage_type": "attribute"
},
{
"api_name": "definitions.module_name",
"line_number": 153,
"usage_type": "attribute"
},
{
"api_name": "utils.make_types_string_parts",
"line_number": 186,
"usage_type": "call"
},
{
"api_name": "utils.GenericType",
"line_number": 207,
"usage_type": "argument"
},
{
"api_name": "utils.mys_to_cpp_type_param",
"line_number": 212,
"usage_type": "call"
},
{
"api_name": "utils.make_name",
"line_number": 213,
"usage_type": "call"
},
{
"api_name": "parser.ast.Tuple",
"line_number": 226,
"usage_type": "attribute"
},
{
"api_name": "parser.ast",
"line_number": 226,
"usage_type": "name"
},
{
"api_name": "parser.ast.NodeVisitor",
"line_number": 247,
"usage_type": "attribute"
},
{
"api_name": "parser.ast",
"line_number": 247,
"usage_type": "name"
},
{
"api_name": "utils.CompileError",
"line_number": 268,
"usage_type": "call"
}
] |
138964636
|
import os
import datetime
from collections import namedtuple
SourceResult = namedtuple('SourceResult', ['path', 'size', 'modified'])
"""Named Tuple containing a sources path, size, and modified time."""
class Sources:
"""
File relationship manager for App instances. Source files must be registered, as well as what files they generate
and what files they depend on to do so.
"""
def __init__(self, app):
"""
Initialize a new Source instance for the given App.
:param app: App to manage source pathsfor.
:type app: pydgeot.app.App
"""
self.app = app
self.cursor = self.app.db_cursor
self.cursor.execute('''
CREATE TABLE IF NOT EXISTS sources (
id INTEGER PRIMARY KEY AUTOINCREMENT,
path TEXT NOT NULL,
size INTEGER NOT NULL,
modified INTEGER NOT NULL,
UNIQUE(path))
''')
# File map tables
self.cursor.execute('''
CREATE TABLE IF NOT EXISTS source_targets (
id INTEGER PRIMARY KEY AUTOINCREMENT,
source_id INTEGER NOT NULL,
path TEXT NOT NULL,
FOREIGN KEY(source_id) REFERENCES sources(id)
ON DELETE CASCADE
ON UPDATE CASCADE)
''')
self.cursor.execute('''
CREATE TABLE IF NOT EXISTS source_dependencies (
id INTEGER PRIMARY KEY AUTOINCREMENT,
source_id INTEGER NOT NULL,
dependency_id INTEGER NOT NULL,
FOREIGN KEY(source_id) REFERENCES sources(id)
ON DELETE CASCADE
ON UPDATE CASCADE,
FOREIGN KEY(dependency_id) REFERENCES sources(id)
ON DELETE CASCADE
ON UPDATE CASCADE)
''')
def _source_result(self, *row):
"""
Get a SourceResult from a path, size, modified query from the sources table, with the path transformed in to a
source path.
:param row: Tuple or Sqlite Row object with at least three elements representing path, size, and modified time,
in that order.
:type row: tuple[str, int, int] | sqlite3.Row
:return: SourceResult with the path as a source path.
:rtype: pydgeot.app.sources.SourceResult
"""
return SourceResult(self.app.source_path(row[0]), row[1], datetime.datetime.fromtimestamp(row[2]))
def _target_result(self, *row):
"""
Get a SourceResult from a path query from the sources table, with the path transformed in to a target path.
:param row: Tuple or Sqlite Row object with at least one element representing path as the first element.
:type row: tuple[str] | sqlite3.Row
:return: SourceResult with the path as a target path.
:rtype: pydgeot.app.sources.SourceResult
"""
return SourceResult(self.app.target_path(row[0]), None, None)
def clean(self, paths):
"""
Delete entries under the given source directories and their subdirectories.
:param paths: List of content directory paths to delete entries for.
:type paths: list[str]
"""
for path in paths:
regex = self.app.path_regex(path, recursive=True)
self.cursor.execute('SELECT id FROM sources WHERE path REGEXP ?', (regex, ))
ids = [result[0] for result in self.cursor.fetchall()]
if len(ids) > 0:
id_query = '(' + ','.join('?' * len(ids)) + ')'
self.cursor.execute('''
DELETE FROM source_dependencies
WHERE
source_id IN {0} OR
dependency_id IN {0}
'''.format(id_query), (ids + ids))
self.cursor.execute('DELETE FROM source_targets WHERE source_id IN {0}'.format(id_query), ids)
self.cursor.execute('DELETE FROM sources WHERE id IN {0}'.format(id_query), ids)
def add_source(self, source):
"""
Add a source entry to the database. Updates file information if the entry already exists.
:param source: Source path to add.
:type source: str
:return: Entries database id.
:rtype: int
"""
rel = self.app.relative_path(source)
try:
stats = os.stat(source)
size = stats.st_size
mtime = stats.st_mtime
except FileNotFoundError:
size = 0
mtime = 0
self.cursor.execute('SELECT id, size, modified FROM sources WHERE path = ?', (rel, ))
result = self.cursor.fetchone()
if result is not None:
if size != result[1] or mtime != result[2]:
self.cursor.execute('UPDATE sources SET size = ?, modified = ? WHERE id = ?', (size, mtime, result[0]))
return result[0]
self.cursor.execute('''
INSERT INTO sources
(path, size, modified)
VALUES (?, ?, ?)
''', (rel, size, mtime))
return self.cursor.lastrowid
def get_source(self, source):
"""
Get a SourceResult for the given path.
:param source: Source file path.
:type source: str
:return: SourceResult for the given path, or None if the path does not exist.
:rtype: pydgeot.app.sources.SourceResult | None
"""
rel = self.app.relative_path(source)
results = list(self.cursor.execute('SELECT path, size, modified FROM sources WHERE path = ?', (rel, )))
return self._source_result(*results[0]) if len(results) > 0 else None
def get_sources(self, source_dir='', recursive=True):
"""
Get a list SourceResults for sources in the given directory.
:param source_dir: Source directory to get files for.
:type source_dir: str
:param recursive: Return results in subdirectories of source_dir.
:type recursive: bool
:return: Set of SourceResults.
:rtype: set[pydgeot.app.sources.SourceResult]
"""
regex = self.app.path_regex(source_dir, recursive)
results = self.cursor.execute('SELECT path, size, modified FROM sources WHERE path REGEXP ?', (regex, ))
return set([self._source_result(*result) for result in results])
def remove_source(self, source):
"""
Remove a source entry, and any associated source dependencies and target files.
:param source: Source file path to remove.
:type source: str
"""
rel = self.app.relative_path(source)
self.cursor.execute('SELECT id FROM sources WHERE path = ?', (rel, ))
result = self.cursor.fetchone()
if result is not None:
sid = result[0]
self.cursor.execute('DELETE FROM source_targets WHERE source_id = ?', (sid, ))
self.cursor.execute('DELETE FROM source_dependencies WHERE source_id = ? OR dependency_id = ?', (sid, sid))
self.cursor.execute('DELETE FROM sources WHERE id = ?', (sid, ))
def get_targets(self, source, reverse=False):
"""
Get a list of target paths that a source path has generated.
:param source: Source path to get targets path for.
:type source: str
:param reverse: Perform a reverse lookup instead. Returning source paths for a given target path. The source
argument should be given a target path.
:type reverse: bool
:return: Set of SourceResults for target paths (where size and modified time will be None.) If reverse is True,
a set of SourceResults for source paths.
:rtype: set[pydgeot.app.sources.SourceResult]
"""
rel = self.app.relative_path(source)
if reverse:
results = self.cursor.execute('''
SELECT s.path, s.size, s.modified
FROM source_targets AS st
INNER JOIN sources s ON s.id = st.source_id
WHERE st.path = ?
''', (rel, ))
return set([self._source_result(*result) for result in results])
else:
results = self.cursor.execute('''
SELECT st.path
FROM source_targets AS st
INNER JOIN sources s ON s.id = st.source_id
WHERE s.path = ?
''', (rel, ))
return set([self._target_result(*result) for result in results])
def set_targets(self, source, values):
"""
Set target paths for a source path.
:param source: Source path to set target paths for.
:type source: str
:param values: List of target paths.
:type values: list[str]
"""
rel = self.app.relative_path(source)
self.cursor.execute('''
DELETE
FROM source_targets
WHERE id IN (
SELECT st.id
FROM source_targets st
INNER JOIN sources s ON s.id = st.source_id
WHERE s.path = ?)
''', (rel, ))
sid = self.add_source(source)
self.cursor.executemany('''
INSERT INTO source_targets
(source_id, path)
VALUES (?, ?)
''', ([(sid, self.app.relative_path(value)) for value in values]))
def get_dependencies(self, source, reverse=False, recursive=False):
"""
Get a list of source paths that a source path depends on to generate.
If 'fileA.html' and 'fileB.html' are both templates that depend on 'base.html', then:
get_dependencies('fileA.html') => ['base.html']
get_dependencies('base.html') => []
get_dependencies('base.html', reverse=True) => ['fileA.html', 'fileB.html']
:param source: Source path to get dependency paths for.
:type source: str
:param reverse: Perform a reverse lookup instead. Return source paths that depend on the given source path to
generate.
:type reverse: bool
:param recursive: Include dependencies of dependencies. It's turtles all the way down.
:type recursive: bool
:return: Set of SourceResults.
:rtype: set[pydgeot.app.sources.SourceResult]
"""
if recursive:
return self._get_dependencies_recursive(source, reverse)
rel = self.app.relative_path(source)
if reverse:
results = self.cursor.execute('''
SELECT s.path, s.size, s.modified
FROM source_dependencies AS sd
INNER JOIN sources s ON s.id = sd.source_id
INNER JOIN sources d ON d.id = sd.dependency_id
WHERE d.path = ?
''', (rel, ))
else:
results = self.cursor.execute('''
SELECT d.path, d.size, d.modified
FROM source_dependencies AS sd
INNER JOIN sources s ON s.id = sd.source_id
INNER JOIN sources d ON d.id = sd.dependency_id
WHERE s.path = ?
''', (rel, ))
return set([self._source_result(*result) for result in results])
def _get_dependencies_recursive(self, source, reverse, _parent_deps=set()):
"""
Get a list of all dependencies for a file, cascading in dependencies of dependencies.
:param source: Source path to get dependency paths for.
:type source: str
:param reverse: Perform a reverse lookup instead. Return source paths that depend on the given source path to
generate.
:type reverse: bool
:return: Set of SourceResults.
:rtype: set[pydgeot.app.sources.SourceResult]
"""
dependencies = self.get_dependencies(source, reverse=reverse)
for dependency in list(dependencies):
if dependency not in _parent_deps:
dependencies |= self._get_dependencies_recursive(dependency.path, reverse, _parent_deps=dependencies)
return dependencies
def set_dependencies(self, source, values):
"""
Set source dependencies for a source path.
:param source: Source path to set dependency paths for.
:type source: str
:param values: List of source dependency paths.
:type values: list[str]
"""
sid = self.add_source(source)
self.cursor.execute('DELETE FROM source_dependencies WHERE source_id = ?', (sid, ))
value_ids = [self.add_source(value) for value in values]
self.cursor.executemany('''
INSERT INTO source_dependencies
(source_id, dependency_id)
VALUES (?, ?)
''', [(sid, value_id) for value_id in value_ids])
| null |
pydgeot/app/sources.py
|
sources.py
|
py
| 12,939 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "collections.namedtuple",
"line_number": 6,
"usage_type": "call"
},
{
"api_name": "datetime.datetime.fromtimestamp",
"line_number": 68,
"usage_type": "call"
},
{
"api_name": "datetime.datetime",
"line_number": 68,
"usage_type": "attribute"
},
{
"api_name": "os.stat",
"line_number": 114,
"usage_type": "call"
}
] |
309736655
|
from __future__ import annotations
import hashlib
from neo3 import vm, contracts, settings
from neo3.network import payloads
from neo3.core import cryptography
from neo3.contracts.interop import register
from typing import cast, List
def stackitem_to_hash_data(engine: contracts.ApplicationEngine, stack_item: vm.StackItem) -> bytes:
if isinstance(stack_item, vm.InteropStackItem):
item = stack_item.get_object()
if not issubclass(type(item), payloads.IVerifiable):
raise ValueError("Invalid type")
item = cast(payloads.IVerifiable, item)
value = item.get_hash_data(settings.network.magic)
elif isinstance(stack_item, vm.NullStackItem):
value = engine.script_container.get_hash_data(settings.network.magic)
else:
value = stack_item.to_array()
return value
@register("Neo.Crypto.RIPEMD160", 1000000, contracts.native.CallFlags.NONE, True, [vm.StackItem])
def do_ripemd160(engine: contracts.ApplicationEngine, stack_item: vm.StackItem) -> bytes:
value = stackitem_to_hash_data(engine, stack_item)
return hashlib.new('ripemd160', value).digest()
@register("Neo.Crypto.SHA256", 1000000, contracts.native.CallFlags.NONE, True, [vm.StackItem])
def do_sha256(engine: contracts.ApplicationEngine, stack_item: vm.StackItem) -> bytes:
value = stackitem_to_hash_data(engine, stack_item)
return hashlib.sha256(value).digest()
@register("Neo.Crypto.VerifyWithECDsaSecp256r1", 1000000, contracts.native.CallFlags.NONE, True,
[vm.StackItem, bytes, bytes])
def verify_with_ECDSA_Secp256r1(engine: contracts.ApplicationEngine,
stack_item: vm.StackItem,
public_key: bytes,
signature: bytes) -> bool:
value = stackitem_to_hash_data(engine, stack_item)
return cryptography.verify_signature(value, signature, public_key, cryptography.ECCCurve.SECP256R1)
@register("Neo.Crypto.VerifyWithECDsaSecp256k1", 1000000, contracts.native.CallFlags.NONE, True,
[vm.StackItem, bytes, bytes])
def verify_with_ECDSA_Secp256k1(engine: contracts.ApplicationEngine,
stack_item: vm.StackItem,
public_key: bytes,
signature: bytes) -> bool:
value = stackitem_to_hash_data(engine, stack_item)
return cryptography.verify_signature(value, signature, public_key, cryptography.ECCCurve.SECP256K1)
def _check_multisig(engine: contracts.ApplicationEngine,
stack_item: vm.StackItem,
public_keys: List[bytes],
signatures: List[bytes],
curve: cryptography.ECCCurve) -> bool:
len_pub_keys = len(public_keys)
len_sigs = len(signatures)
if len_sigs == 0:
raise ValueError("No signatures supplied")
if len_pub_keys == 0:
raise ValueError("No public keys supplied")
if len_sigs > len_pub_keys:
raise ValueError(f"Verification requires {len_sigs} public keys, got only {len_pub_keys}")
message = stackitem_to_hash_data(engine, stack_item)
engine.add_gas(len_pub_keys * 1000000)
i = 0
j = 0
try:
while i < len_sigs and j < len_pub_keys:
if cryptography.verify_signature(message, signatures[i], public_keys[j], curve):
i += 1
j += 1
if len_sigs - i > len_pub_keys - j:
return False
except cryptography.ECCException as e:
return False
return True
@register("Neo.Crypto.CheckMultisigWithECDsaSecp256r1", 0, contracts.native.CallFlags.NONE, True,
[vm.StackItem, List[bytes], List[bytes]])
def check_multisig_with_ECDSA_Secp256r1(engine: contracts.ApplicationEngine,
stack_item: vm.StackItem,
public_keys: List[bytes],
signatures: List[bytes]) -> bool:
return _check_multisig(engine, stack_item, public_keys, signatures, cryptography.ECCCurve.SECP256R1)
@register("Neo.Crypto.CheckMultisigWithECDsaSecp256k1", 0, contracts.native.CallFlags.NONE, True,
[vm.StackItem, List[bytes], List[bytes]])
def check_multisig_with_ECDSA_Secp256k1(engine: contracts.ApplicationEngine,
stack_item: vm.StackItem,
public_keys: List[bytes],
signatures: List[bytes]) -> bool:
return _check_multisig(engine, stack_item, public_keys, signatures, cryptography.ECCCurve.SECP256K1)
| null |
neo3/contracts/interop/crypto.py
|
crypto.py
|
py
| 4,640 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "neo3.contracts.ApplicationEngine",
"line_number": 10,
"usage_type": "attribute"
},
{
"api_name": "neo3.contracts",
"line_number": 10,
"usage_type": "name"
},
{
"api_name": "neo3.vm.StackItem",
"line_number": 10,
"usage_type": "attribute"
},
{
"api_name": "neo3.vm",
"line_number": 10,
"usage_type": "name"
},
{
"api_name": "neo3.vm.InteropStackItem",
"line_number": 11,
"usage_type": "attribute"
},
{
"api_name": "neo3.vm",
"line_number": 11,
"usage_type": "name"
},
{
"api_name": "neo3.network.payloads.IVerifiable",
"line_number": 13,
"usage_type": "attribute"
},
{
"api_name": "neo3.network.payloads",
"line_number": 13,
"usage_type": "name"
},
{
"api_name": "typing.cast",
"line_number": 15,
"usage_type": "call"
},
{
"api_name": "neo3.network.payloads.IVerifiable",
"line_number": 15,
"usage_type": "attribute"
},
{
"api_name": "neo3.network.payloads",
"line_number": 15,
"usage_type": "name"
},
{
"api_name": "neo3.settings.network",
"line_number": 16,
"usage_type": "attribute"
},
{
"api_name": "neo3.settings",
"line_number": 16,
"usage_type": "name"
},
{
"api_name": "neo3.vm.NullStackItem",
"line_number": 17,
"usage_type": "attribute"
},
{
"api_name": "neo3.vm",
"line_number": 17,
"usage_type": "name"
},
{
"api_name": "neo3.settings.network",
"line_number": 18,
"usage_type": "attribute"
},
{
"api_name": "neo3.settings",
"line_number": 18,
"usage_type": "name"
},
{
"api_name": "neo3.contracts.ApplicationEngine",
"line_number": 25,
"usage_type": "attribute"
},
{
"api_name": "neo3.contracts",
"line_number": 25,
"usage_type": "name"
},
{
"api_name": "neo3.vm.StackItem",
"line_number": 25,
"usage_type": "attribute"
},
{
"api_name": "neo3.vm",
"line_number": 25,
"usage_type": "name"
},
{
"api_name": "hashlib.new",
"line_number": 27,
"usage_type": "call"
},
{
"api_name": "neo3.contracts.interop.register",
"line_number": 24,
"usage_type": "call"
},
{
"api_name": "neo3.contracts.native",
"line_number": 24,
"usage_type": "attribute"
},
{
"api_name": "neo3.contracts",
"line_number": 24,
"usage_type": "name"
},
{
"api_name": "neo3.vm.StackItem",
"line_number": 24,
"usage_type": "attribute"
},
{
"api_name": "neo3.vm",
"line_number": 24,
"usage_type": "name"
},
{
"api_name": "neo3.contracts.ApplicationEngine",
"line_number": 31,
"usage_type": "attribute"
},
{
"api_name": "neo3.contracts",
"line_number": 31,
"usage_type": "name"
},
{
"api_name": "neo3.vm.StackItem",
"line_number": 31,
"usage_type": "attribute"
},
{
"api_name": "neo3.vm",
"line_number": 31,
"usage_type": "name"
},
{
"api_name": "hashlib.sha256",
"line_number": 33,
"usage_type": "call"
},
{
"api_name": "neo3.contracts.interop.register",
"line_number": 30,
"usage_type": "call"
},
{
"api_name": "neo3.contracts.native",
"line_number": 30,
"usage_type": "attribute"
},
{
"api_name": "neo3.contracts",
"line_number": 30,
"usage_type": "name"
},
{
"api_name": "neo3.vm.StackItem",
"line_number": 30,
"usage_type": "attribute"
},
{
"api_name": "neo3.vm",
"line_number": 30,
"usage_type": "name"
},
{
"api_name": "neo3.contracts.ApplicationEngine",
"line_number": 38,
"usage_type": "attribute"
},
{
"api_name": "neo3.contracts",
"line_number": 38,
"usage_type": "name"
},
{
"api_name": "neo3.vm.StackItem",
"line_number": 39,
"usage_type": "attribute"
},
{
"api_name": "neo3.vm",
"line_number": 39,
"usage_type": "name"
},
{
"api_name": "neo3.core.cryptography.verify_signature",
"line_number": 43,
"usage_type": "call"
},
{
"api_name": "neo3.core.cryptography",
"line_number": 43,
"usage_type": "name"
},
{
"api_name": "neo3.core.cryptography.ECCCurve",
"line_number": 43,
"usage_type": "attribute"
},
{
"api_name": "neo3.contracts.interop.register",
"line_number": 36,
"usage_type": "call"
},
{
"api_name": "neo3.contracts.native",
"line_number": 36,
"usage_type": "attribute"
},
{
"api_name": "neo3.contracts",
"line_number": 36,
"usage_type": "name"
},
{
"api_name": "neo3.vm.StackItem",
"line_number": 37,
"usage_type": "attribute"
},
{
"api_name": "neo3.vm",
"line_number": 37,
"usage_type": "name"
},
{
"api_name": "neo3.contracts.ApplicationEngine",
"line_number": 48,
"usage_type": "attribute"
},
{
"api_name": "neo3.contracts",
"line_number": 48,
"usage_type": "name"
},
{
"api_name": "neo3.vm.StackItem",
"line_number": 49,
"usage_type": "attribute"
},
{
"api_name": "neo3.vm",
"line_number": 49,
"usage_type": "name"
},
{
"api_name": "neo3.core.cryptography.verify_signature",
"line_number": 53,
"usage_type": "call"
},
{
"api_name": "neo3.core.cryptography",
"line_number": 53,
"usage_type": "name"
},
{
"api_name": "neo3.core.cryptography.ECCCurve",
"line_number": 53,
"usage_type": "attribute"
},
{
"api_name": "neo3.contracts.interop.register",
"line_number": 46,
"usage_type": "call"
},
{
"api_name": "neo3.contracts.native",
"line_number": 46,
"usage_type": "attribute"
},
{
"api_name": "neo3.contracts",
"line_number": 46,
"usage_type": "name"
},
{
"api_name": "neo3.vm.StackItem",
"line_number": 47,
"usage_type": "attribute"
},
{
"api_name": "neo3.vm",
"line_number": 47,
"usage_type": "name"
},
{
"api_name": "neo3.contracts.ApplicationEngine",
"line_number": 56,
"usage_type": "attribute"
},
{
"api_name": "neo3.contracts",
"line_number": 56,
"usage_type": "name"
},
{
"api_name": "neo3.vm.StackItem",
"line_number": 57,
"usage_type": "attribute"
},
{
"api_name": "neo3.vm",
"line_number": 57,
"usage_type": "name"
},
{
"api_name": "typing.List",
"line_number": 58,
"usage_type": "name"
},
{
"api_name": "typing.List",
"line_number": 59,
"usage_type": "name"
},
{
"api_name": "neo3.core.cryptography.ECCCurve",
"line_number": 60,
"usage_type": "attribute"
},
{
"api_name": "neo3.core.cryptography",
"line_number": 60,
"usage_type": "name"
},
{
"api_name": "neo3.core.cryptography.verify_signature",
"line_number": 78,
"usage_type": "call"
},
{
"api_name": "neo3.core.cryptography",
"line_number": 78,
"usage_type": "name"
},
{
"api_name": "neo3.core.cryptography.ECCException",
"line_number": 84,
"usage_type": "attribute"
},
{
"api_name": "neo3.core.cryptography",
"line_number": 84,
"usage_type": "name"
},
{
"api_name": "neo3.contracts.ApplicationEngine",
"line_number": 91,
"usage_type": "attribute"
},
{
"api_name": "neo3.contracts",
"line_number": 91,
"usage_type": "name"
},
{
"api_name": "neo3.vm.StackItem",
"line_number": 92,
"usage_type": "attribute"
},
{
"api_name": "neo3.vm",
"line_number": 92,
"usage_type": "name"
},
{
"api_name": "typing.List",
"line_number": 93,
"usage_type": "name"
},
{
"api_name": "typing.List",
"line_number": 94,
"usage_type": "name"
},
{
"api_name": "neo3.core.cryptography.ECCCurve",
"line_number": 95,
"usage_type": "attribute"
},
{
"api_name": "neo3.core.cryptography",
"line_number": 95,
"usage_type": "name"
},
{
"api_name": "neo3.contracts.interop.register",
"line_number": 89,
"usage_type": "call"
},
{
"api_name": "neo3.contracts.native",
"line_number": 89,
"usage_type": "attribute"
},
{
"api_name": "neo3.contracts",
"line_number": 89,
"usage_type": "name"
},
{
"api_name": "neo3.vm.StackItem",
"line_number": 90,
"usage_type": "attribute"
},
{
"api_name": "neo3.vm",
"line_number": 90,
"usage_type": "name"
},
{
"api_name": "typing.List",
"line_number": 90,
"usage_type": "name"
},
{
"api_name": "neo3.contracts.ApplicationEngine",
"line_number": 100,
"usage_type": "attribute"
},
{
"api_name": "neo3.contracts",
"line_number": 100,
"usage_type": "name"
},
{
"api_name": "neo3.vm.StackItem",
"line_number": 101,
"usage_type": "attribute"
},
{
"api_name": "neo3.vm",
"line_number": 101,
"usage_type": "name"
},
{
"api_name": "typing.List",
"line_number": 102,
"usage_type": "name"
},
{
"api_name": "typing.List",
"line_number": 103,
"usage_type": "name"
},
{
"api_name": "neo3.core.cryptography.ECCCurve",
"line_number": 104,
"usage_type": "attribute"
},
{
"api_name": "neo3.core.cryptography",
"line_number": 104,
"usage_type": "name"
},
{
"api_name": "neo3.contracts.interop.register",
"line_number": 98,
"usage_type": "call"
},
{
"api_name": "neo3.contracts.native",
"line_number": 98,
"usage_type": "attribute"
},
{
"api_name": "neo3.contracts",
"line_number": 98,
"usage_type": "name"
},
{
"api_name": "neo3.vm.StackItem",
"line_number": 99,
"usage_type": "attribute"
},
{
"api_name": "neo3.vm",
"line_number": 99,
"usage_type": "name"
},
{
"api_name": "typing.List",
"line_number": 99,
"usage_type": "name"
}
] |
240252817
|
from . import ForecastMixin
from datetime import timedelta, datetime
import xml.etree.ElementTree as ET
class Forecast(ForecastMixin):
url = 'https://geoservices.atmosud.org/geoserver/ind_sudpaca/ows?service=WFS&version=1.1.0'
fr_date_format = '%d-%m-%Y 00:00:00'
@classmethod
def params(cls, date, insee):
parsed_date = datetime.strptime(date, '%Y-%m-%d')
tomorrow_date = parsed_date + timedelta(days=1)
fr_date = parsed_date.strftime(cls.fr_date_format)
fr_tomorrow = tomorrow_date.strftime(cls.fr_date_format)
return {
'service': 'WFS',
'version': '1.1.0',
'request': 'GetFeature',
'typeName': 'ind_sudpaca:ind_sudpaca_agglo',
'CQL_FILTER': f"code_zone='{insee}' AND (date_ech='{fr_date}' OR date_ech='{fr_tomorrow}')"
}
@classmethod
def features(cls, r):
root = ET.fromstring(r.text)
return filter(lambda el: el.tag == '{http://ind_sudpaca}ind_sudpaca_agglo', root[0])
@classmethod
def getter(cls, feature):
feature_dict = {f.tag: f.text for f in feature}
return {
'indice': feature_dict['{http://ind_sudpaca}valeur'],
'date': datetime.strptime(
feature_dict['{http://ind_sudpaca}date_ech'], cls.fr_date_format
).strftime('%Y-%m-%d')
}
@classmethod
def insee_list(cls):
return ['06029', '06088', '13001', '13055', '83137', '84007']
| null |
indice_pollution/regions/Sud.py
|
Sud.py
|
py
| 1,500 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "datetime.datetime.strptime",
"line_number": 11,
"usage_type": "call"
},
{
"api_name": "datetime.datetime",
"line_number": 11,
"usage_type": "name"
},
{
"api_name": "datetime.timedelta",
"line_number": 12,
"usage_type": "call"
},
{
"api_name": "xml.etree.ElementTree.fromstring",
"line_number": 27,
"usage_type": "call"
},
{
"api_name": "xml.etree.ElementTree",
"line_number": 27,
"usage_type": "name"
},
{
"api_name": "datetime.datetime.strptime",
"line_number": 37,
"usage_type": "call"
},
{
"api_name": "datetime.datetime",
"line_number": 37,
"usage_type": "name"
}
] |
277185451
|
import numpy as np
from sklearn.datasets import load_iris
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
dataset = load_iris()
print(dataset.DESCR)
print(dataset.feature_names)
x = dataset.data
y = dataset.target
print(x.shape , y.shape)
'''
from tensorflow.keras.utils import to_categorical
y = to_categorical(y)
๋จธ์ ๋ฌ๋์์ ์ํซ์ธ์ฝ๋ฉ ์ ์ฉ์ํด๋ ํด์ค
ValueError: y should be a 1d array, got an array of shape (142, 3) instead.
1์ฐจ์์ ์ค์ผํ๋๋ฐ 2์ฐจ์์์คซ์ ์ํซ์ธ์ฝ๋ฉ ๋๋ฌธ
๋๋ถ๋ถ์ ๋จธ์ ๋ฌ๋๋ค์ y๋ฅผ 1์ฐจ์์ผ๋ก ๋ฐ์๋ค์ฌ์ ์ค๋ฅ๊ฐ๋๊ณ ๋ฐ๋ก ์ํด์ค๋๋จ
'''
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x,y,
train_size = 0.95, random_state=66)
from sklearn.preprocessing import MinMaxScaler, StandardScaler
scaler = MinMaxScaler()
scaler.fit(x_train)
x_train = scaler.transform(x_train)
x_test = scaler.transform(x_test)
from sklearn.svm import LinearSVC # ์ํํธ ๋ฐฑํฐ ๋จธ์ ์์ ๋ฆฌ๋์ดsvc, ์ ์ ๊ทธ์ด์ ๋ถ๋ฅ
model = LinearSVC()
model.fit(x_train,y_train)
from sklearn.metrics import r2_score,accuracy_score # r2 ํ๊ธฐ๋ชจ๋ธ ํ๊ฐ acc ๋ถ๋ฅ๋ชจ๋ธํ๊ฐ
y_predic = model.predict(x_test)
acc = accuracy_score(y_test,y_predic) # ๋ฅ๋ฌ๋์์ acc์ ๊ฒฐ๊ณผ๊ฐ ๊ฐ๋ค ๋ฅ๋ฌ๋evaluate์์ xtest๋ฅผ predicํด์ ytest์ ๋น๊ตํ๊ธฐ๋๋ฌธ์ด๋ค.
print('acc : ',acc)
results = model.score(x_test, y_test)
print('results : ',results)
y_predic2 = model.predict(x_test[:5])
print('y_predic : ',y_predic)
'''
์ํซ ์ธ์ฝ๋ฉ ์ ์ฉํ
Epoch 00166: early stopping
1/1 [==============================] - 0s 13ms/step - loss: 1.4669e-04 - accuracy: 1.0000
loss : 0.00014668621588498354
accuracy : 1.0
loss : 0.0
accuracy : 0.625
ML
results : 1.0
y_predic : [1 1 1 0 1]
acc : 1.0
results : 1.0
y_predic : [1 1 1 0 1 1 0 0]
'''
| null |
ML/m01.py
|
m01.py
|
py
| 1,931 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "sklearn.datasets.load_iris",
"line_number": 5,
"usage_type": "call"
},
{
"api_name": "sklearn.model_selection.train_test_split",
"line_number": 22,
"usage_type": "call"
},
{
"api_name": "sklearn.preprocessing.MinMaxScaler",
"line_number": 26,
"usage_type": "call"
},
{
"api_name": "sklearn.svm.LinearSVC",
"line_number": 32,
"usage_type": "call"
},
{
"api_name": "sklearn.metrics.accuracy_score",
"line_number": 37,
"usage_type": "call"
}
] |
579980692
|
#!/usr/bin/python
from pymatgen.util.testing import PymatgenTest
from pymatgen.core.operations import SymmOp
import numpy as np
class SymmOpTestCase(PymatgenTest):
def setUp(self):
self.op = SymmOp.from_axis_angle_and_translation([0, 0, 1], 30, False,
[0, 0, 1])
def test_properties(self):
rot = self.op.rotation_matrix
vec = self.op.translation_vector
self.assertArrayAlmostEqual(rot, [[0.8660254, -0.5, 0.],
[0.5, 0.8660254, 0.],
[0., 0., 1.]], 2)
self.assertArrayAlmostEqual(vec, [0, 0, 1], 2)
def test_operate(self):
point = np.array([1, 2, 3])
newcoord = self.op.operate(point)
self.assertArrayAlmostEqual(newcoord, [-0.1339746, 2.23205081, 4.], 2)
def test_inverse(self):
point = np.random.rand(3)
newcoord = self.op.operate(point)
self.assertArrayAlmostEqual(self.op.inverse.operate(newcoord),
point, 2)
def test_reflection(self):
normal = np.random.rand(3)
origin = np.random.rand(3)
refl = SymmOp.reflection(normal, origin)
point = np.random.rand(3)
newcoord = refl.operate(point)
#Distance to the plane should be negatives of each other.
self.assertAlmostEqual(np.dot(newcoord - origin, normal),
-np.dot(point - origin, normal))
def test_apply_rotation_only(self):
point = np.random.rand(3)
newcoord = self.op.operate(point)
rotate_only = self.op.apply_rotation_only(point)
self.assertArrayAlmostEqual(
rotate_only + self.op.translation_vector, newcoord, 2)
def test_are_symmetrically_related(self):
point = np.random.rand(3)
newcoord = self.op.operate(point)
self.assertTrue(self.op.are_symmetrically_related(point, newcoord))
self.assertTrue(self.op.are_symmetrically_related(newcoord, point))
def test_to_from_dict(self):
d = self.op.to_dict
op = SymmOp.from_dict(d)
point = np.random.rand(3)
newcoord = self.op.operate(point)
self.assertTrue(op.are_symmetrically_related(point, newcoord))
def test_inversion(self):
origin = np.random.rand(3)
op = SymmOp.inversion(origin)
pt = np.random.rand(3)
inv_pt = op.operate(pt)
self.assertArrayAlmostEqual(pt - origin, origin - inv_pt)
if __name__ == '__main__':
import unittest
unittest.main()
| null |
pymatgen/core/tests/test_operations.py
|
test_operations.py
|
py
| 2,616 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "pymatgen.util.testing.PymatgenTest",
"line_number": 8,
"usage_type": "name"
},
{
"api_name": "pymatgen.core.operations.SymmOp.from_axis_angle_and_translation",
"line_number": 11,
"usage_type": "call"
},
{
"api_name": "pymatgen.core.operations.SymmOp",
"line_number": 11,
"usage_type": "name"
},
{
"api_name": "numpy.array",
"line_number": 23,
"usage_type": "call"
},
{
"api_name": "numpy.random.rand",
"line_number": 28,
"usage_type": "call"
},
{
"api_name": "numpy.random",
"line_number": 28,
"usage_type": "attribute"
},
{
"api_name": "numpy.random.rand",
"line_number": 34,
"usage_type": "call"
},
{
"api_name": "numpy.random",
"line_number": 34,
"usage_type": "attribute"
},
{
"api_name": "numpy.random.rand",
"line_number": 35,
"usage_type": "call"
},
{
"api_name": "numpy.random",
"line_number": 35,
"usage_type": "attribute"
},
{
"api_name": "pymatgen.core.operations.SymmOp.reflection",
"line_number": 36,
"usage_type": "call"
},
{
"api_name": "pymatgen.core.operations.SymmOp",
"line_number": 36,
"usage_type": "name"
},
{
"api_name": "numpy.random.rand",
"line_number": 37,
"usage_type": "call"
},
{
"api_name": "numpy.random",
"line_number": 37,
"usage_type": "attribute"
},
{
"api_name": "numpy.dot",
"line_number": 40,
"usage_type": "call"
},
{
"api_name": "numpy.dot",
"line_number": 41,
"usage_type": "call"
},
{
"api_name": "numpy.random.rand",
"line_number": 45,
"usage_type": "call"
},
{
"api_name": "numpy.random",
"line_number": 45,
"usage_type": "attribute"
},
{
"api_name": "numpy.random.rand",
"line_number": 52,
"usage_type": "call"
},
{
"api_name": "numpy.random",
"line_number": 52,
"usage_type": "attribute"
},
{
"api_name": "pymatgen.core.operations.SymmOp.from_dict",
"line_number": 59,
"usage_type": "call"
},
{
"api_name": "pymatgen.core.operations.SymmOp",
"line_number": 59,
"usage_type": "name"
},
{
"api_name": "numpy.random.rand",
"line_number": 60,
"usage_type": "call"
},
{
"api_name": "numpy.random",
"line_number": 60,
"usage_type": "attribute"
},
{
"api_name": "numpy.random.rand",
"line_number": 65,
"usage_type": "call"
},
{
"api_name": "numpy.random",
"line_number": 65,
"usage_type": "attribute"
},
{
"api_name": "pymatgen.core.operations.SymmOp.inversion",
"line_number": 66,
"usage_type": "call"
},
{
"api_name": "pymatgen.core.operations.SymmOp",
"line_number": 66,
"usage_type": "name"
},
{
"api_name": "numpy.random.rand",
"line_number": 67,
"usage_type": "call"
},
{
"api_name": "numpy.random",
"line_number": 67,
"usage_type": "attribute"
},
{
"api_name": "unittest.main",
"line_number": 73,
"usage_type": "call"
}
] |
114038595
|
from math import sqrt
from scipy.stats import t
from math_helper.mean import mean
from math_helper.variance import variance
def ttest(column,population_mean):
"""Calculates a two-way t-test
Args:
column: column to test
population_mean: the mean to test agains
Returns:
A list of test statistics
"""
data = column['data']
data_mean = mean(data)
data_var = variance(data)
observations = len(data)
standard_err = sqrt(data_var/observations)
degrees_of_freedom = observations - 1
t_statistic = ( data_mean - population_mean ) / standard_err
p_stat = t.cdf(t_statistic,degrees_of_freedom)
p_value = ( 1 - p_stat ) * 2
if data_mean < population_mean:
p_value = p_stat * 2
return [
data_mean,
population_mean,
t_statistic,
p_value,
degrees_of_freedom
]
| null |
src/analyses/ttest.py
|
ttest.py
|
py
| 916 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "math_helper.mean.mean",
"line_number": 21,
"usage_type": "call"
},
{
"api_name": "math_helper.variance.variance",
"line_number": 22,
"usage_type": "call"
},
{
"api_name": "math.sqrt",
"line_number": 24,
"usage_type": "call"
},
{
"api_name": "scipy.stats.t.cdf",
"line_number": 28,
"usage_type": "call"
},
{
"api_name": "scipy.stats.t",
"line_number": 28,
"usage_type": "name"
}
] |
637120121
|
#!/usr/bin/python3
"""
Sample usage:
$ TEGAKI_API_KEY='xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx' python delete_request.py request_id
"""
import os
import sys
import requests
TEGAKI_DELETE_REQUEST_ENDPOINT = ('delete', 'https://api.tegaki.ai/hwr/v2/request')
MY_API_KEY = os.getenv('TEGAKI_API_KEY')
# delete results from a completed request using the id
def delete_result(request_id):
# Build the endpoint with the request id
method, endpoint = TEGAKI_DELETE_REQUEST_ENDPOINT
endpoint += "/{}".format(request_id)
# Send DELETE request
response = requests.request(method, endpoint,
headers={'Authorization': 'apikey {}'.format(MY_API_KEY)})
return response.json()
if __name__ == '__main__':
request_id, *_ = sys.argv[1:]
delete_result(request_id)
| null |
delete_request.py
|
delete_request.py
|
py
| 820 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "os.getenv",
"line_number": 14,
"usage_type": "call"
},
{
"api_name": "requests.request",
"line_number": 24,
"usage_type": "call"
},
{
"api_name": "sys.argv",
"line_number": 30,
"usage_type": "attribute"
}
] |
608133939
|
import pandas as pd
import numpy as np
from plotly.subplots import make_subplots
import plotly.graph_objects as go
def conversion(path):
"""
Converts a tij.dat file into a np.array.
:param path: path of the tij.dat file
:type path: str
:return: np.array of the tij data
:rtype: np.array
"""
df = pd.read_csv(path, sep='\t')
tij_array = df.to_numpy()
return tij_array
def unique(ar):
"""
This function gives each unique value of an array and the number of occurrence of the value
:param ar: Array that is studied
:type ar: np.array
:return: Unique values of ar and the number of occurrences
:rtype: tuple of np.array
"""
values, counts = np.unique(ar, return_counts=True)
return values, counts
def common(ar1, ar2):
"""
This functions returns the common rows of ar1 and ar2
:param ar1: First array
:type ar1: np.array
:param ar2: Second array
:type ar2: np.array
:return: array of common rows
:rtype: np.array
"""
common_array = np.array([x for x in set(tuple(x) for x in ar1) & set(tuple(x) for x in ar2)])
return common_array
def lost(ar1, ar2):
"""
This function finds the rows that are in ar1 but not in ar2. These rows are called the lost rows.
:param ar1: First array
:type ar1: np.array
:param ar2: Second array
:type ar2: np.array
:return: array of the lost rows
:rtype: np.array
"""
set1 = {tuple(x) for x in ar1}
set2 = {tuple(x) for x in ar2}
lost_set = (set1 ^ set2) & set1
if len(lost_set) != 0:
lost_array = np.array(list(lost_set))
else:
lost_array = np.empty((0, 2), dtype=int)
return lost_array
def new(ar1, ar2):
"""
This function finds the rows that are in ar2 but not in ar1. These rows are called the new rows.
:param ar1: First array
:type ar1: np.array
:param ar2: Second array
:type ar2: np.array
:return: array of the lost rows
:rtype: np.array
"""
set1 = {tuple(x) for x in ar1}
set2 = {tuple(x) for x in ar2}
new_set = set2 - set1
if len(new_set) != 0:
new_array = np.array(list(new_set))
else:
new_array = np.empty((0, 2), dtype=int)
return new_array
def add_time(time, couples, timeline_array):
"""
This function adds
:param time:
:param couples:
:param timeline_array:
:return:
"""
for elt in couples:
i = elt[0]
j = elt[1]
if i < j:
timeline_array[i, j].append(time)
else:
timeline_array[j, i].append(time)
return timeline_array
def timeline(tij_array, dt):
"""
This function returns an array of timelines of interactions between all the particles. A timeline between particle
i and j has the following form [t1, t2, t3, t4 ...] with all the odd elements the time of the beginning of an
interaction and all the even elements the time of the end of an interaction. As the interaction between i and j is
strictly the same as the interaction between j and i the array should be symmetric, with all the diagonal elements
equal to 0 (no interaction between i and i). In our case the array is strictly upper triangular (no need to keep in
memory all the elements).
:param tij_array: Array of the tij elements, that are needed to create the timeline array
:type tij_array: np.array
:param dt: Increment of time for each step
:type dt: float or int
:return: Array of timelines.
:rtype: np.array of lists
"""
time_array, counts = unique(tij_array[:, 0])
ij_array = tij_array[:, 1:]
ij_array = np.int64(ij_array)
i_min = np.min(ij_array)
i_max = np.max(ij_array)
ij_array = ij_array - i_min
timeline_size = (i_max - i_min + 1,) * 2
timeline_array = np.frompyfunc(list, 0, 1)(np.empty(timeline_size, dtype=object))
count = counts[0]
couples = ij_array[0:count]
old_time = time_array[0]
timeline_array = add_time(old_time, couples, timeline_array)
for step, time in enumerate(time_array[1:]):
if time - old_time > dt:
timeline_array = add_time(old_time + dt, couples, timeline_array)
couples = []
new_count = count + counts[step + 1]
couples1 = ij_array[count: new_count, :]
new_couples = new(couples, couples1)
lost_couples = lost(couples, couples1)
if new_couples.size > 0:
timeline_array = add_time(time, new_couples, timeline_array)
if lost_couples.size > 0:
timeline_array = add_time(old_time + dt, lost_couples, timeline_array)
couples = couples1
count = new_count
old_time = time
return timeline_array
def quantities_calculator(timeline_array, dec=1):
"""
Calculates 4 different quantities - contact time, inter-contact time, number of contacts and weight - that are
needed to compare and validate different models with real data.
:param timeline_array: Array of timelines.
:type timeline_array: np.array of lists
:param dec: decimals to which we around the quantities. Default is equal to 1
:type dec: int, optional
"""
contact_time_array = []
inter_contact_time_array = []
number_contact_array = []
link_weight_array = []
for elt in timeline_array:
for elt1 in elt:
if len(elt1) % 2 == 1:
elt1.pop()
if len(elt1) > 0:
number_contact_array.append(len(elt1) // 2)
contact_time = [b - a for a, b in tuple(zip(elt1, elt1[1:]))[::2]]
contact_time_array.extend(contact_time)
link_weight_array.append(sum(contact_time))
inter_contact_time = [b - a for a, b in tuple(zip(elt1[1:], elt1[2:]))[::2]]
inter_contact_time_array.extend(inter_contact_time)
contact_time_array, inter_contact_time_array = np.array(contact_time_array), np.array(inter_contact_time_array)
number_contact_array, link_weight_array = np.array(number_contact_array, dtype=int), np.array(link_weight_array)
contact_time_array = np.around(contact_time_array, decimals=dec)
inter_contact_time_array = np.around(inter_contact_time_array, decimals=dec)
link_weight_array = np.around(link_weight_array, decimals=dec)
return contact_time_array, inter_contact_time_array, number_contact_array, link_weight_array
def regroup_data(ar):
"""
This function regroups the quantities with the same value and calculates the number of occurrence of the value.
The results are then put in a array where for all i, the first element of row i is value i and the second element
of row i is its number of occurrences.
:param ar: Array of all the values, of shape (n, )
:type ar: np.array
:return: array of shape (n', 2) of values and counts
:rtype: np.array
"""
values, counts = unique(ar)
return np.concatenate((values.reshape((-1, 1)), counts.reshape((-1, 1))), axis=1)
def representation(quantities, title, scale='linear'):
"""
Represents 4 different quantities - contact time, inter-contact time, number of contacts and weight - in histograms.
:param quantities: tuple of the 4 quantities that are represented
:type quantities: tuple of np.arrays
:param title: Title of the figure
:type title: str
:param scale: Scale of the plot. Can be 'linear' (default), 'log' or 'semi-log'
:type scale: str, optional
"""
fig = make_subplots(rows=2, cols=2)
index = [[1, 1], [1, 2], [2, 1], [2, 2]]
if scale == 'log':
scale_x, scale_y = scale, scale
elif scale == 'linear':
scale_x, scale_y = scale, scale
else:
scale_x, scale_y = 'linear', 'log'
# Update xaxis properties
fig.update_xaxes(title_text="Contact duration", type=scale_x, row=1, col=1)
fig.update_xaxes(title_text="Intercontact duration", type=scale_x, row=1, col=2)
fig.update_xaxes(title_text="Number of contacts", type=scale_x, row=2, col=1)
fig.update_xaxes(title_text="weight", type=scale_x, row=2, col=2)
# Update yaxis properties
fig.update_yaxes(title_text="Distribution of contact duration", type=scale_y, row=1, col=1)
fig.update_yaxes(title_text="Distribution of intercontact duration", type=scale_y, row=1, col=2)
fig.update_yaxes(title_text="Distribution of number of contacts", type=scale_y, row=2, col=1)
fig.update_yaxes(title_text="Distribution of weight", type=scale_y, row=2, col=2)
for i, data in enumerate(quantities):
a = index[i][0]
b = index[i][1]
if scale == 'log':
counts, bins = np.histogram(data, bins=np.logspace(np.log10(np.min(data - 0.5)),
np.log10(np.max(data + 0.5))), density=True)
else:
counts, bins = np.histogram(data, bins='auto', density=True)
bins = 0.5 * (bins[:-1] + bins[1:])
fig.add_trace(go.Scatter(x=bins, y=counts, mode='markers', showlegend=False), row=a, col=b)
fig.show()
def make_hist(quantities, title, scale='linear'):
"""
Represents 4 different quantities - contact time, inter-contact time, number of contacts and weight - in histograms.
:param quantities: tuple of the 4 quantities that are represented
:type quantities: tuple of np.arrays
:param title: Title of the figure
:type title: str
:param scale: Scale of the plot. Can be 'linear' (default), 'log' or 'semi-log'
:type scale: str, optional
"""
fig = make_subplots(rows=2, cols=2)
index = [[1, 1], [1, 2], [2, 1], [2, 2]]
if scale == 'log':
scale_x, scale_y = scale, scale
elif scale == 'linear':
scale_x, scale_y = scale, scale
else:
scale_x, scale_y = 'linear', 'log'
# Update x axis properties
fig.update_xaxes(title_text="Contact duration", type=scale_x, row=1, col=1)
fig.update_xaxes(title_text="Inter contact duration", type=scale_x, row=1, col=2)
fig.update_xaxes(title_text="Number of contacts", type=scale_x, row=2, col=1)
fig.update_xaxes(title_text="weight", type=scale_x, row=2, col=2)
# Update y axis properties
fig.update_yaxes(title_text="Contact duration distribution", type=scale_y, row=1, col=1)
fig.update_yaxes(title_text="Inter contact duration distribution", type=scale_y, row=1, col=2)
fig.update_yaxes(title_text="Number of contacts distribution", type=scale_y, row=2, col=1)
fig.update_yaxes(title_text="Weight distribution", type=scale_y, row=2, col=2)
for i, data in enumerate(quantities):
a = index[i][0]
b = index[i][1]
if scale == 'log':
counts, bins = np.histogram(data, bins=np.logspace(np.log10(min(data - 0.5)), np.log10(max(data + 0.5))),
density=True)
else:
counts, bins = np.histogram(data, bins='auto', density=True)
bins = 0.5 * (bins[:-1] + bins[1:])
fig.add_trace(go.Histogram(x=bins, y=counts, showlegend=False), row=a, col=b)
fig.show()
def compare_quantities(quantities_array, label_array, title='Comparison tij data', scale='linear'):
fig = make_subplots(rows=2, cols=2)
index = [[1, 1], [1, 2], [2, 1], [2, 2]]
colors = ['rgb(31, 119, 180)', 'rgb(255, 127, 14)',
'rgb(44, 160, 44)', 'rgb(214, 39, 40)',
'rgb(148, 103, 189)', 'rgb(140, 86, 75)',
'rgb(227, 119, 194)', 'rgb(127, 127, 127)',
'rgb(188, 189, 34)', 'rgb(23, 190, 207)']
markers = ['star-triangle-up', 'circle', 'x', 'diamond']
if scale == 'log':
scale_x, scale_y = scale, scale
elif scale == 'linear':
scale_x, scale_y = scale, scale
else:
scale_x, scale_y = 'linear', 'log'
# Update xaxis properties
fig.update_xaxes(title_text="Contact duration", type=scale_x, row=1, col=1)
fig.update_xaxes(title_text="Intercontact duration", type=scale_x, row=1, col=2)
fig.update_xaxes(title_text="Number of contacts", type=scale_x, row=2, col=1)
fig.update_xaxes(title_text="weight", type=scale_x, row=2, col=2)
# Update yaxis properties
fig.update_yaxes(title_text="Contact duration distribution", type=scale_y, row=1, col=1)
fig.update_yaxes(title_text="Inter contact duration distribution", type=scale_y, row=1, col=2)
fig.update_yaxes(title_text="Number of contacts distribution", type=scale_y, row=2, col=1)
fig.update_yaxes(title_text="Weight distribution", type=scale_y, row=2, col=2)
for j, data in reversed(list(enumerate(quantities_array))):
data_label = label_array[j]
for i in range(4):
a = index[i][0]
b = index[i][1]
data = quantities_array[j][i]
if scale == 'log':
counts, bins = np.histogram(data, bins=np.logspace(np.log10(np.min(data - 0.5)),
np.log10(np.max(data + 0.5))), density=True)
else:
counts, bins = np.histogram(data, bins='auto', density=True)
bins = np.array([(elt + bins[i + 1]) / 2 for i, elt in enumerate(bins[:-1])])
non_null_index = np.where(counts != 0)[0]
bins, counts = bins[non_null_index], counts[non_null_index]
if j == 0:
if i == 0:
fig.add_trace(
go.Scatter(x=bins, y=counts, mode='lines', marker={'color': colors[j]}, fillcolor=colors[j],
name=data_label), row=a, col=b)
else:
fig.add_trace(
go.Scatter(x=bins, y=counts, mode='lines', marker={'color': colors[j]}, fillcolor=colors[j],
name=data_label, showlegend=False), row=a, col=b)
else:
if i == 0:
fig.add_trace(go.Scatter(x=bins, y=counts, marker={'color': colors[j], 'symbol': markers[j - 1]},
name=data_label, mode='markers'), row=a, col=b)
else:
fig.add_trace(go.Scatter(x=bins, y=counts, marker={'color': colors[j], 'symbol': markers[j - 1]},
name=data_label, mode='markers', showlegend=False), row=a, col=b)
fig.show()
| null |
tij.py
|
tij.py
|
py
| 14,440 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "pandas.read_csv",
"line_number": 16,
"usage_type": "call"
},
{
"api_name": "numpy.unique",
"line_number": 30,
"usage_type": "call"
},
{
"api_name": "numpy.array",
"line_number": 44,
"usage_type": "call"
},
{
"api_name": "numpy.array",
"line_number": 63,
"usage_type": "call"
},
{
"api_name": "numpy.empty",
"line_number": 65,
"usage_type": "call"
},
{
"api_name": "numpy.array",
"line_number": 83,
"usage_type": "call"
},
{
"api_name": "numpy.empty",
"line_number": 85,
"usage_type": "call"
},
{
"api_name": "numpy.int64",
"line_number": 125,
"usage_type": "call"
},
{
"api_name": "numpy.min",
"line_number": 126,
"usage_type": "call"
},
{
"api_name": "numpy.max",
"line_number": 127,
"usage_type": "call"
},
{
"api_name": "numpy.frompyfunc",
"line_number": 130,
"usage_type": "call"
},
{
"api_name": "numpy.empty",
"line_number": 130,
"usage_type": "call"
},
{
"api_name": "numpy.array",
"line_number": 188,
"usage_type": "call"
},
{
"api_name": "numpy.array",
"line_number": 189,
"usage_type": "call"
},
{
"api_name": "numpy.around",
"line_number": 190,
"usage_type": "call"
},
{
"api_name": "numpy.around",
"line_number": 191,
"usage_type": "call"
},
{
"api_name": "numpy.around",
"line_number": 192,
"usage_type": "call"
},
{
"api_name": "numpy.concatenate",
"line_number": 209,
"usage_type": "call"
},
{
"api_name": "plotly.subplots.make_subplots",
"line_number": 223,
"usage_type": "call"
},
{
"api_name": "numpy.histogram",
"line_number": 251,
"usage_type": "call"
},
{
"api_name": "numpy.logspace",
"line_number": 251,
"usage_type": "call"
},
{
"api_name": "numpy.log10",
"line_number": 251,
"usage_type": "call"
},
{
"api_name": "numpy.min",
"line_number": 251,
"usage_type": "call"
},
{
"api_name": "numpy.log10",
"line_number": 252,
"usage_type": "call"
},
{
"api_name": "numpy.max",
"line_number": 252,
"usage_type": "call"
},
{
"api_name": "numpy.histogram",
"line_number": 255,
"usage_type": "call"
},
{
"api_name": "plotly.graph_objects.Scatter",
"line_number": 257,
"usage_type": "call"
},
{
"api_name": "plotly.graph_objects",
"line_number": 257,
"usage_type": "name"
},
{
"api_name": "plotly.subplots.make_subplots",
"line_number": 273,
"usage_type": "call"
},
{
"api_name": "numpy.histogram",
"line_number": 301,
"usage_type": "call"
},
{
"api_name": "numpy.logspace",
"line_number": 301,
"usage_type": "call"
},
{
"api_name": "numpy.log10",
"line_number": 301,
"usage_type": "call"
},
{
"api_name": "numpy.histogram",
"line_number": 305,
"usage_type": "call"
},
{
"api_name": "plotly.graph_objects.Histogram",
"line_number": 307,
"usage_type": "call"
},
{
"api_name": "plotly.graph_objects",
"line_number": 307,
"usage_type": "name"
},
{
"api_name": "plotly.subplots.make_subplots",
"line_number": 313,
"usage_type": "call"
},
{
"api_name": "numpy.histogram",
"line_number": 352,
"usage_type": "call"
},
{
"api_name": "numpy.logspace",
"line_number": 352,
"usage_type": "call"
},
{
"api_name": "numpy.log10",
"line_number": 352,
"usage_type": "call"
},
{
"api_name": "numpy.min",
"line_number": 352,
"usage_type": "call"
},
{
"api_name": "numpy.log10",
"line_number": 353,
"usage_type": "call"
},
{
"api_name": "numpy.max",
"line_number": 353,
"usage_type": "call"
},
{
"api_name": "numpy.histogram",
"line_number": 356,
"usage_type": "call"
},
{
"api_name": "numpy.array",
"line_number": 358,
"usage_type": "call"
},
{
"api_name": "numpy.where",
"line_number": 359,
"usage_type": "call"
},
{
"api_name": "plotly.graph_objects.Scatter",
"line_number": 365,
"usage_type": "call"
},
{
"api_name": "plotly.graph_objects",
"line_number": 365,
"usage_type": "name"
},
{
"api_name": "plotly.graph_objects.Scatter",
"line_number": 369,
"usage_type": "call"
},
{
"api_name": "plotly.graph_objects",
"line_number": 369,
"usage_type": "name"
},
{
"api_name": "plotly.graph_objects.Scatter",
"line_number": 374,
"usage_type": "call"
},
{
"api_name": "plotly.graph_objects",
"line_number": 374,
"usage_type": "name"
},
{
"api_name": "plotly.graph_objects.Scatter",
"line_number": 377,
"usage_type": "call"
},
{
"api_name": "plotly.graph_objects",
"line_number": 377,
"usage_type": "name"
}
] |
375335507
|
#!/usr/bin/env python3
#
# Cyrius: CYP2D6 genotyper
# Copyright (c) 2019-2020 Illumina, Inc.
#
# Author: Xiao Chen <[email protected]>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
from collections import namedtuple
import pysam
from .utilities import open_alignment_file
COMPLEMENT = {"A": "T", "T": "A", "C": "G", "G": "C", "N": "N"}
SITES_STRINGENT = [] # consider being more stringent for exon8 site for SMN
def reverse_complement(sequence):
"""Return the reverse complement of a sequence."""
return "".join(COMPLEMENT[b] for b in sequence[::-1])
def get_nm(ltag):
"""Return the value of the NM tag."""
for tag in ltag:
if tag[0] == "NM":
return tag[1]
return None
def get_snp_position(pos_file):
"""Get all base differences listed in the SNP location file."""
dsnp1 = {}
dsnp2 = {}
dindex = {}
with open(pos_file) as read_pos:
counter = -1
for line in read_pos:
if line[0] != "#" and line[0] != "\n":
counter += 1
split_line = line.strip().split()
reg1_name = split_line[1] + "_" + str(counter)
reg2_name = split_line[3] + "_" + str(counter)
reg1_base = split_line[2].upper()
reg2_base = split_line[4].upper()
if split_line[-1] != "-":
dsnp1.setdefault(reg1_name, "_".join([reg1_base, reg2_base]))
dsnp2.setdefault(reg2_name, "_".join([reg1_base, reg2_base]))
else:
dsnp1.setdefault(
reg1_name, "_".join([reg1_base, reverse_complement(reg2_base)])
)
dsnp2.setdefault(
reg2_name, "_".join([reverse_complement(reg1_base), reg2_base])
)
dindex.setdefault(reg1_name, counter)
dindex.setdefault(reg2_name, counter)
nchr = split_line[0]
snp_lookup = namedtuple("snp_lookup", "dsnp1 dsnp2 nchr dindex")
dbsnp = snp_lookup(dsnp1, dsnp2, nchr, dindex)
return dbsnp
def passing_read(pileupread):
"""Return whether a read passes filter."""
return (
not pileupread.is_del
and not pileupread.is_refskip
and pileupread.alignment.is_secondary == 0
and pileupread.alignment.is_supplementary == 0
and pileupread.alignment.is_duplicate == 0
)
def passing_read_stringent(pileupread):
"""Return whether a read passes more stringent filter."""
number_mismatch = get_nm(pileupread.alignment.tags)
align_len = pileupread.alignment.query_alignment_length
read_len = len(pileupread.alignment.query_sequence)
return (
number_mismatch <= float(align_len) * 0.08
and pileupread.query_position > 0
and pileupread.query_position < read_len - 1
)
def get_reads_by_region(bamfile_handle, nchr, dsnp, dindex, min_mapq=0):
"""
Return the number of reads supporting region1 and region2.
"""
lsnp1 = []
lsnp2 = []
for _ in dsnp:
lsnp1.append(set())
lsnp2.append(set())
for snp_position_ori in dsnp:
snp_position = int(snp_position_ori.split("_")[0])
for pileupcolumn in bamfile_handle.pileup(
nchr,
snp_position - 1,
snp_position + 1,
truncate=True,
stepper="nofilter",
ignore_overlaps=False,
ignore_orphan=False,
):
site_position = pileupcolumn.pos + 1
if site_position == snp_position:
reg1_allele, reg2_allele = dsnp[snp_position_ori].split("_")
for read in pileupcolumn.pileups:
if (
passing_read(read)
and read.alignment.mapping_quality >= min_mapq
):
dsnp_index = dindex[snp_position_ori]
read_name = read.alignment.query_name
read_seq = read.alignment.query_sequence
if (
site_position not in SITES_STRINGENT
or passing_read_stringent(read)
):
reg1_allele_split = reg1_allele.split(",")
reg2_allele_split = reg2_allele.split(",")
start_pos = read.query_position
for allele in reg1_allele_split:
end_pos = start_pos + len(allele)
if read_seq[start_pos:end_pos] == allele:
lsnp1[dsnp_index].add(read_name)
for allele in reg2_allele_split:
end_pos = start_pos + len(allele)
if read_seq[start_pos:end_pos] == allele:
lsnp2[dsnp_index].add(read_name)
return [len(a) for a in lsnp1], [len(a) for a in lsnp2]
def get_fraction(lsnp1, lsnp2):
"""Return the fraction of reads supporting region1."""
reg1_fraction = []
for index in range(len(lsnp1)):
sumdepth = lsnp1[index] + lsnp2[index]
if sumdepth == 0:
reg1_fraction.append(0)
else:
reg1_fraction.append(float(lsnp1[index]) / float(sumdepth))
return reg1_fraction
def get_supporting_reads(bamf, dsnp1, dsnp2, nchr, dindex, reference=None):
"""
Return the number of supporting reads at each position in
both region1 and region2.
"""
bamfile_handle = open_alignment_file(bamf, reference)
assert len(dsnp1) == len(dsnp2)
# Go through SNP sites in both regions,
# and count the number of reads supporting each gene.
lsnp1_reg1, lsnp2_reg1 = get_reads_by_region(bamfile_handle, nchr, dsnp1, dindex)
lsnp1_reg2, lsnp2_reg2 = get_reads_by_region(bamfile_handle, nchr, dsnp2, dindex)
lsnp1 = [sum(x) for x in zip(lsnp1_reg1, lsnp1_reg2)]
lsnp2 = [sum(x) for x in zip(lsnp2_reg1, lsnp2_reg2)]
bamfile_handle.close()
return lsnp1, lsnp2
def get_supporting_reads_single_region(bamf, dsnp1, nchr, dindex, reference=None):
"""
Return the number of supporting reads at each position only in region1.
"""
bamfile_handle = open_alignment_file(bamf, reference)
lsnp1, lsnp2 = get_reads_by_region(bamfile_handle, nchr, dsnp1, dindex, 10)
bamfile_handle.close()
return lsnp1, lsnp2
| null |
depth_calling/snp_count.py
|
snp_count.py
|
py
| 7,095 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "collections.namedtuple",
"line_number": 73,
"usage_type": "call"
},
{
"api_name": "utilities.open_alignment_file",
"line_number": 168,
"usage_type": "call"
},
{
"api_name": "utilities.open_alignment_file",
"line_number": 184,
"usage_type": "call"
}
] |
482229088
|
# uncompyle6 version 3.7.4
# Python bytecode 2.7 (62211)
# Decompiled from: Python 3.6.9 (default, Apr 18 2020, 01:56:04)
# [GCC 8.4.0]
# Embedded file name: /home/gyst/plonesocial.buildout/src/plonesocial.microblog/plonesocial/microblog/utils.py
# Compiled at: 2014-01-17 08:56:06
import time
from BTrees import LLBTree
from .interfaces import IMicroblogContext
def get_microblog_context(context):
if context is None:
return
else:
if IMicroblogContext.providedBy(context):
return context
try:
chain = context.aq_inner.aq_chain
except AttributeError:
return
for item in chain:
if IMicroblogContext.providedBy(item):
return item
else:
return
return
def longkeysortreverse(btreeish, minv=None, maxv=None, limit=None):
"""Performance optimized keyspace accessor.
Returns an iterable of btreeish keys, reverse sorted by key.
Expects a btreeish with long(microsec) keys.
"""
try:
accessor = btreeish.keys
except AttributeError:
accessor = LLBTree.TreeSet(btreeish).keys
i = 0
if minv or maxv:
keys = [ x for x in accessor(min=minv, max=maxv) ]
keys.sort()
keys.reverse()
for key in keys:
yield key
i += 1
if i == limit:
return
else:
tmax = long(time.time() * 1000000.0)
tmin = long(tmax - 3600000000.0)
keys = [ x for x in accessor(min=tmin, max=tmax) ]
keys.sort()
keys.reverse()
for key in keys:
yield key
i += 1
if i == limit:
return
tmax = tmin
tmin = long(tmax - 82800000000.0)
keys = [ x for x in accessor(min=tmin, max=tmax) ]
keys.sort()
keys.reverse()
for key in keys:
yield key
i += 1
if i == limit:
return
tmax = tmin
keys = [ x for x in accessor(max=tmax) ]
keys.sort()
keys.reverse()
for key in keys:
yield key
i += 1
if i == limit:
return
| null |
pycfiles/plonesocial.microblog-0.5.3/utils.py
|
utils.py
|
py
| 2,225 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "interfaces.IMicroblogContext.providedBy",
"line_number": 15,
"usage_type": "call"
},
{
"api_name": "interfaces.IMicroblogContext",
"line_number": 15,
"usage_type": "name"
},
{
"api_name": "interfaces.IMicroblogContext.providedBy",
"line_number": 23,
"usage_type": "call"
},
{
"api_name": "interfaces.IMicroblogContext",
"line_number": 23,
"usage_type": "name"
},
{
"api_name": "BTrees.LLBTree.TreeSet",
"line_number": 39,
"usage_type": "call"
},
{
"api_name": "BTrees.LLBTree",
"line_number": 39,
"usage_type": "name"
},
{
"api_name": "time.time",
"line_number": 53,
"usage_type": "call"
}
] |
446145063
|
import time
from threading import Thread
import json
import requests
from pprint import pprint
def parse(json1):
data = json1['data']
# data_id
return data
def gogo(page_idx, results):
url = 'https://data.mafra.go.kr/opendata/data/open/getDataListPage.do'
data = requests.post(url, data={
'cur_page':page_idx,
'rows':10
})
res = parse(data.json())
results[page_idx] = res
print('thread {} finished'.format(page_idx))
total_pages = 107 + 1 # index๋ 0๋ฒ๋ถํฐ page๋ 1๋ฒ๋ถํฐ
# global์ variable์ ์์ฑ ํด์ค๋ค
threads = [None] * total_pages
results = [None] * total_pages
start = time.time()
for i in range(1, total_pages):
threads[i] = Thread(target=gogo, args=(i, results))
threads[i].start()
print('thread {} started'.format(i))
for i in range(1, total_pages):
threads[i].join()
# time.sleep(total_pages / 3)
'''
for i in range(1, total_pages):
gogo(i, results)
'''
cnt = 0
result_total = []
for result in results:
cnt += 1
# print(cnt, end='')
if result != None:
#print(len(result), result)
result_total += result
print(len(result_total[1]))
print(time.time()-start)
with open("test.json", "w", encoding="utf-8") as make_file:
json.dump(results, make_file, ensure_ascii=False, indent="\t")
# json_save(result_total, 'mafra_total_data.json')
| null |
ver.4/1_multithread_example_code.py
|
1_multithread_example_code.py
|
py
| 1,368 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "requests.post",
"line_number": 14,
"usage_type": "call"
},
{
"api_name": "time.time",
"line_number": 28,
"usage_type": "call"
},
{
"api_name": "threading.Thread",
"line_number": 31,
"usage_type": "call"
},
{
"api_name": "time.time",
"line_number": 51,
"usage_type": "call"
},
{
"api_name": "json.dump",
"line_number": 54,
"usage_type": "call"
}
] |
308262569
|
from argparse import ArgumentParser
import test_method1 as TM1
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument('--addr', type=str, default='http://lando.sytes.net', help='Server domain name/ip address')
parser.add_argument('--port', type=int, default=8888, help='Server port number')
parser.add_argument('--end_point', type=str, default='status', help='API Endpoint')
parser.add_argument('--verbose', action='store_true', help='Print verbosity')
parser.add_argument('--conc', type=int, default=1, help='Number of concurrent requests')
parser.add_argument('--req_num', type=int, default=1, help='Number of requests')
parser.add_argument('--test_mode', type=str, default='STATUS', choices=['STATUS', 'FILE'],
help='Select the mode of testing')
args = parser.parse_args()
if args.test_mode == 'STATUS':
TM1.test1("%s:%s/%s" % (args.addr, args.port, args.end_point), args.verbose,
args.conc, args.req_num)
elif args.test_mode == 'FILE':
TM1.test2("%s:%s/test/file" % (args.addr, args.port), args.verbose, args.conc, args.req_num)
| null |
client/server-benchmark.py
|
server-benchmark.py
|
py
| 1,166 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "argparse.ArgumentParser",
"line_number": 6,
"usage_type": "call"
},
{
"api_name": "test_method1.test1",
"line_number": 18,
"usage_type": "call"
},
{
"api_name": "test_method1.test2",
"line_number": 21,
"usage_type": "call"
}
] |
385399490
|
from selenium import webdriver
from selenium.webdriver.chrome.options import Options
import logging
import argparse
import time
def writeTofile(str, filename="novel.txt"):
with open(filename, 'a') as f:
f.write(str)
f.write("\n\n")
def log(logger):
logger.setLevel(logging.DEBUG)
fh = logging.StreamHandler()
fh.setLevel(logging.DEBUG)
fmt = "%(asctime)s %(lineno)d %(message)s"
datefmt = "%H:%M:%s"
formatter = logging.Formatter(fmt, datefmt)
fh.setFormatter(formatter)
logger.addHandler(fh)
def nextPage(driver, next_id, end_id, content_id, num):
driver.set_window_size(1280, 800)
logger.debug(num)
chapter = "Chapter"
content = chapter + str(num) + "\n" + driver.find_element_by_id(content_id).text
writeTofile(content)
time.sleep(2)
next_element_div = driver.find_element_by_id(next_id)
next_element = next_element_div.find_elements_by_xpath("a")[-1]
href = str(next_element.get_attribute("href"))
if end_id in href:
return
else:
next_element.click()
num += 1
nextPage(driver, next_id, end_id, content_id,num)
def main():
chrome_option = Options()
chrome_option.add_argument("--headless")
driver = webdriver.Chrome(chrome_options=chrome_option)
driver.get("http://www.wutuxs.com/html/3/3740/2576260.html")
content_id = "contents"
next_id = "footlink"
end_id = "index.html"
nextPage(driver, next_id, end_id, content_id, 1)
logger_name = "novel"
logger = logging.getLogger(logger_name)
log(logger)
logger.debug("test")
main()
| null |
novel/panlong.py
|
panlong.py
|
py
| 1,606 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "logging.DEBUG",
"line_number": 15,
"usage_type": "attribute"
},
{
"api_name": "logging.StreamHandler",
"line_number": 16,
"usage_type": "call"
},
{
"api_name": "logging.DEBUG",
"line_number": 17,
"usage_type": "attribute"
},
{
"api_name": "logging.Formatter",
"line_number": 20,
"usage_type": "call"
},
{
"api_name": "time.sleep",
"line_number": 32,
"usage_type": "call"
},
{
"api_name": "selenium.webdriver.chrome.options.Options",
"line_number": 49,
"usage_type": "call"
},
{
"api_name": "selenium.webdriver.Chrome",
"line_number": 52,
"usage_type": "call"
},
{
"api_name": "selenium.webdriver",
"line_number": 52,
"usage_type": "name"
},
{
"api_name": "logging.getLogger",
"line_number": 64,
"usage_type": "call"
}
] |
291315932
|
#!/usr/bin/env python
# -*- coding: iso-8859-1 -*-
#
# Copylefth (c) 2009, Grudejo:
# Aline Grazielle Silva Reis
# Julia Carmona Almeida Chaves
# Luziany Maria de Oliveira
# Joyce Karoline Dare
# Prof. Douglas Machado Tavares
#
import pygame
from pygame.constants import *
class Ator(pygame.sprite.Sprite):
""" Classe Ator """
def __init__(self, pos_x=0, pos_y=0):
""" Construtor: __init__()) -> instancia de ator """
pygame.sprite.Sprite.__init__(self)
self.poses = []
self.__pt_pose = 0 # ponteiro para pose atual.
self.__pos_x = pos_x
self.__pos_y = pos_y
def inserir_pose(self, nome_arq_img):
""" Armazena uma 'surface' dentro da lista poses """
self.poses.append(pygame.image.load(nome_arq_img))
self.image = self.poses[self.__pt_pose]
self.rect = self.image.get_rect()
self.rect.x = self.__pos_x
self.rect.y = self.__pos_y
def update(self):
""" Reimplementa updade() """
self.__pt_pose = self.__pt_pose % len(self.poses)
self.image = self.poses[self.__pt_pose]
self.__pt_pose += 1
class Jogo:
""" Classe Jogo """
def __init__(self):
""" Construtor: __init__() -> instancia de jogo """
pygame.init()
self.tela = pygame.display.set_mode((800, 600))
def criar_atores(self):
""" Cria os atores """
self.paola = Ator(0, 100)
for x in range(1, 5):
self.paola.inserir_pose("paola_ED_%02i.png" % x)
self.grupo_atores = pygame.sprite.RenderPlain((self.paola))
def atualizar_atores(self):
""" Atualiza os atores """
ret_tela = self.tela.get_rect()
if (self.paola.rect.x < ret_tela.width - self.paola.rect.width):
self.paola.rect.x += 6
def repintar_tela(self):
""" Repinta a tela """
self.tela.fill((180, 180, 180))
self.grupo_atores.update()
self.grupo_atores.draw(self.tela)
pygame.display.flip()
def tratar_eventos_teclado(self, evento):
""" Observa e trata os eventos """
tecla = evento.key
if ((tecla == K_ESCAPE) or (tecla == K_q)):
raise SystemExit
def tratar_eventos(self):
""" Observa e trata os eventos """
for evento in pygame.event.get():
if (evento.type == QUIT):
raise SystemExit
if (evento.type == KEYDOWN):
self.tratar_eventos_teclado(evento)
def rodar(self):
""" Roda o jogo """
self.criar_atores()
FPS = 8
relogio = pygame.time.Clock()
while (True):
self.tratar_eventos()
self.atualizar_atores()
self.repintar_tela()
relogio.tick(FPS)
if (__name__ == "__main__"):
jogo = Jogo()
jogo.rodar()
| null |
src/etapa_03/jogo_v03.py
|
jogo_v03.py
|
py
| 2,984 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "pygame.sprite",
"line_number": 17,
"usage_type": "attribute"
},
{
"api_name": "pygame.sprite.Sprite.__init__",
"line_number": 22,
"usage_type": "call"
},
{
"api_name": "pygame.sprite",
"line_number": 22,
"usage_type": "attribute"
},
{
"api_name": "pygame.image.load",
"line_number": 31,
"usage_type": "call"
},
{
"api_name": "pygame.image",
"line_number": 31,
"usage_type": "attribute"
},
{
"api_name": "pygame.init",
"line_number": 52,
"usage_type": "call"
},
{
"api_name": "pygame.display.set_mode",
"line_number": 53,
"usage_type": "call"
},
{
"api_name": "pygame.display",
"line_number": 53,
"usage_type": "attribute"
},
{
"api_name": "pygame.sprite.RenderPlain",
"line_number": 61,
"usage_type": "call"
},
{
"api_name": "pygame.sprite",
"line_number": 61,
"usage_type": "attribute"
},
{
"api_name": "pygame.display.flip",
"line_number": 76,
"usage_type": "call"
},
{
"api_name": "pygame.display",
"line_number": 76,
"usage_type": "attribute"
},
{
"api_name": "pygame.event.get",
"line_number": 88,
"usage_type": "call"
},
{
"api_name": "pygame.event",
"line_number": 88,
"usage_type": "attribute"
},
{
"api_name": "pygame.time.Clock",
"line_number": 99,
"usage_type": "call"
},
{
"api_name": "pygame.time",
"line_number": 99,
"usage_type": "attribute"
}
] |
141813354
|
import bpy
# Comprimentos (x, y e z) do degrau superior
length1 = 3
length2 = 2
length3 = 1
# Quantidade de degraus
steps = 5
def criaDegrau(length1, length2, length3, times):
if times == 0:
return times
# Replica o andar imediatamente superior e faz as translaรงรตes necessรกrias para o degrau seguinte
bpy.ops.object.duplicate_move(OBJECT_OT_duplicate={"linked":False, "mode":"TRANSLATION"}, TRANSFORM_OT_translate={"value":(0,0,-length3)})
bpy.ops.transform.translate(value=(length1/2,0,0))
bpy.ops.transform.translate(value=(0,length2/2,0))
bpy.ops.object.duplicate_move(OBJECT_OT_duplicate={"linked":False, "mode":"TRANSLATION"}, TRANSFORM_OT_translate={"value":(-length1,0,0)})
bpy.ops.object.duplicate_move(OBJECT_OT_duplicate={"linked":False, "mode":"TRANSLATION"}, TRANSFORM_OT_translate={"value":(0,-length2,0)})
bpy.ops.object.duplicate_move(OBJECT_OT_duplicate={"linked":False, "mode":"TRANSLATION"}, TRANSFORM_OT_translate={"value":(length1,0,0)})
# Une os elementos em um MESH
bpy.ops.object.select_by_type(type='MESH')
bpy.ops.object.join()
# Elimina eventuais repetiรงรตes de elementos, para evitar sobrecarregar o peso do programa
bpy.ops.object.editmode_toggle()
bpy.ops.mesh.select_all(action='TOGGLE')
bpy.ops.mesh.remove_doubles()
bpy.ops.mesh.select_all(action='TOGGLE')
bpy.ops.object.editmode_toggle()
# Repete o processo para o degrau seguinte
times = times - 1
criaDegrau(length1, length2, length3, times)
# Define os vรฉrtices e faces
verts = [(0,0,0),(0,length2,0),(length1,length2,0),(length1,0,0),(0,0,length3),(0,length2,length3),(length1,length2,length3),(length1,0,length3)]
faces = [(0,1,2,3), (4,5,6,7), (0,4,5,1), (1,5,6,2), (2,6,7,3), (3,7,4,0)]
# Define o mesh e o objeto
mesh = bpy.data.meshes.new("Paralelepipedo")
object = bpy.data.objects.new("Paralelepipedo", mesh)
#Set location and scene of object
object.location = bpy.context.scene.cursor_location
bpy.context.scene.objects.link(object)
# Cria o mesh
mesh.from_pydata(verts,[],faces)
mesh.update(calc_edges=True)
# Ativa o objeto, para ser usado nas seguintes recursรตes
bpy.context.scene.objects.active = object
criaDegrau(length1, length2, length3, steps)
| null |
tower-recursion.py
|
tower-recursion.py
|
py
| 2,278 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "bpy.ops.object.duplicate_move",
"line_number": 16,
"usage_type": "call"
},
{
"api_name": "bpy.ops",
"line_number": 16,
"usage_type": "attribute"
},
{
"api_name": "bpy.ops.transform.translate",
"line_number": 17,
"usage_type": "call"
},
{
"api_name": "bpy.ops",
"line_number": 17,
"usage_type": "attribute"
},
{
"api_name": "bpy.ops.transform.translate",
"line_number": 18,
"usage_type": "call"
},
{
"api_name": "bpy.ops",
"line_number": 18,
"usage_type": "attribute"
},
{
"api_name": "bpy.ops.object.duplicate_move",
"line_number": 19,
"usage_type": "call"
},
{
"api_name": "bpy.ops",
"line_number": 19,
"usage_type": "attribute"
},
{
"api_name": "bpy.ops.object.duplicate_move",
"line_number": 20,
"usage_type": "call"
},
{
"api_name": "bpy.ops",
"line_number": 20,
"usage_type": "attribute"
},
{
"api_name": "bpy.ops.object.duplicate_move",
"line_number": 21,
"usage_type": "call"
},
{
"api_name": "bpy.ops",
"line_number": 21,
"usage_type": "attribute"
},
{
"api_name": "bpy.ops.object.select_by_type",
"line_number": 24,
"usage_type": "call"
},
{
"api_name": "bpy.ops",
"line_number": 24,
"usage_type": "attribute"
},
{
"api_name": "bpy.ops.object.join",
"line_number": 25,
"usage_type": "call"
},
{
"api_name": "bpy.ops",
"line_number": 25,
"usage_type": "attribute"
},
{
"api_name": "bpy.ops.object.editmode_toggle",
"line_number": 28,
"usage_type": "call"
},
{
"api_name": "bpy.ops",
"line_number": 28,
"usage_type": "attribute"
},
{
"api_name": "bpy.ops.mesh.select_all",
"line_number": 29,
"usage_type": "call"
},
{
"api_name": "bpy.ops",
"line_number": 29,
"usage_type": "attribute"
},
{
"api_name": "bpy.ops.mesh.remove_doubles",
"line_number": 30,
"usage_type": "call"
},
{
"api_name": "bpy.ops",
"line_number": 30,
"usage_type": "attribute"
},
{
"api_name": "bpy.ops.mesh.select_all",
"line_number": 31,
"usage_type": "call"
},
{
"api_name": "bpy.ops",
"line_number": 31,
"usage_type": "attribute"
},
{
"api_name": "bpy.ops.object.editmode_toggle",
"line_number": 32,
"usage_type": "call"
},
{
"api_name": "bpy.ops",
"line_number": 32,
"usage_type": "attribute"
},
{
"api_name": "bpy.data.meshes.new",
"line_number": 45,
"usage_type": "call"
},
{
"api_name": "bpy.data",
"line_number": 45,
"usage_type": "attribute"
},
{
"api_name": "bpy.data.objects.new",
"line_number": 46,
"usage_type": "call"
},
{
"api_name": "bpy.data",
"line_number": 46,
"usage_type": "attribute"
},
{
"api_name": "bpy.context",
"line_number": 49,
"usage_type": "attribute"
},
{
"api_name": "bpy.context.scene.objects.link",
"line_number": 50,
"usage_type": "call"
},
{
"api_name": "bpy.context",
"line_number": 50,
"usage_type": "attribute"
},
{
"api_name": "bpy.context",
"line_number": 57,
"usage_type": "attribute"
}
] |
186141521
|
import argparse as arg
parser = arg.ArgumentParser()
parser.add_argument("--way", type=str, help="ะะผั/ะััั ัะฐะนะปะฐ ะดะปั ัะพััะธัะพะฒะบะธ", default=None)
args = parser.parse_args()
def MergeSort(text:list)->None:
"""This function sorted something"""
if len(text) > 1:
half = len(text)//2
left_part = text[:half]
right_part = text[half:]
MergeSort(left_part)
MergeSort(right_part)
i = 0
kley = text[:]
while i < len(text):
my_min = min(kley)
text[i]=my_min
del kley[kley.index(my_min)]
i+=1
if not args.way:
print("ะะฒะตะดะธัะต ะฟััั ะบ ัะฐะนะปั ")
way = input()
else:
way = args.way
new_way = ''.join(way.split('\\')[:-1]) + "out_file"
file = open(way, 'r', encoding="utf-8")
new_file = open(new_way, 'w', encoding="utf-8")
for line in file:
temp_line = line.split(' ')
MergeSort(temp_line)
new_file.write(' '.join(temp_line)+'\n')
| null |
lab_2/17_lab_2_3.py
|
17_lab_2_3.py
|
py
| 999 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "argparse.ArgumentParser",
"line_number": 2,
"usage_type": "call"
}
] |
397896335
|
# Copyright 2019 Regents of the University of Minnesota.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
from pathlib import Path
from tempfile import TemporaryFile
from mtap.io.serialization import JsonSerializer
import mtap
from mtap import GenericLabel
from mtap.events import Event, Document
def test_json_serializer():
event = Event(event_id='1')
event.metadata['foo'] = "bar"
document = Document('plaintext', text='Some text.')
event.add_document(document)
document.add_labels('one', [mtap.GenericLabel(start_index=0, end_index=5, x=10),
mtap.GenericLabel(start_index=6, end_index=10, x=15)])
document.add_labels('two', [mtap.GenericLabel(start_index=0, end_index=25, a='b'),
mtap.GenericLabel(start_index=26, end_index=42, a='c')])
document.add_labels('three', [
mtap.GenericLabel(start_index=0, end_index=10, foo=True),
mtap.GenericLabel(start_index=11, end_index=15, foo=False)
], distinct=True)
with TemporaryFile('w+') as tf:
JsonSerializer.event_to_file(event, tf)
tf.flush()
tf.seek(0)
o = json.load(tf)
assert o['event_id'] == '1'
assert o['metadata']['foo'] == 'bar'
d = o['documents']['plaintext']
assert d['text'] == 'Some text.'
assert len(d['label_indices']) == 3
assert d['label_indices']['one'] == {
'json_labels': [
{
'start_index': 0,
'end_index': 5,
'x': 10
},
{
'start_index': 6,
'end_index': 10,
'x': 15
}
],
'distinct': False
}
assert d['label_indices']['two'] == {
'json_labels': [
{
'start_index': 0,
'end_index': 25,
'a': 'b'
},
{
'start_index': 26,
'end_index': 42,
'a': 'c'
}
],
'distinct': False
}
assert d['label_indices']['three'] == {
'json_labels': [
{
'start_index': 0,
'end_index': 10,
'foo': True
},
{
'start_index': 11,
'end_index': 15,
'foo': False
}
],
'distinct': True
}
def test_deserialization():
f = Path(__file__).parent / 'event.json'
event = JsonSerializer.file_to_event(f)
assert event.event_id == '12345'
assert event.metadata['foo'] == 'bar'
d = event.documents['plaintext']
assert d.text == "The quick brown fox jumps over the lazy dog."
assert len(d.get_label_indices_info()) == 3
assert d.get_label_index("one") == [
GenericLabel(start_index=0, end_index=10, a="b"),
GenericLabel(start_index=12, end_index=25, a="c"),
GenericLabel(start_index=26, end_index=52, a="d"),
GenericLabel(start_index=53, end_index=85, a="e"),
]
assert d.get_label_index("two") == [
GenericLabel(start_index=0, end_index=10, x=1),
GenericLabel(start_index=3, end_index=9, x=3),
GenericLabel(start_index=4, end_index=25, x=2),
GenericLabel(start_index=5, end_index=25, x=4),
]
assert d.get_label_index("three") == [
GenericLabel(start_index=0, end_index=10, x=True),
GenericLabel(start_index=3, end_index=9, x=True),
GenericLabel(start_index=4, end_index=25, x=False),
GenericLabel(start_index=5, end_index=25, x=False),
]
| null |
python/tests/io/test_json.py
|
test_json.py
|
py
| 4,116 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "mtap.events.Event",
"line_number": 26,
"usage_type": "call"
},
{
"api_name": "mtap.events.Document",
"line_number": 28,
"usage_type": "call"
},
{
"api_name": "mtap.GenericLabel",
"line_number": 30,
"usage_type": "call"
},
{
"api_name": "mtap.GenericLabel",
"line_number": 31,
"usage_type": "call"
},
{
"api_name": "mtap.GenericLabel",
"line_number": 32,
"usage_type": "call"
},
{
"api_name": "mtap.GenericLabel",
"line_number": 33,
"usage_type": "call"
},
{
"api_name": "mtap.GenericLabel",
"line_number": 35,
"usage_type": "call"
},
{
"api_name": "mtap.GenericLabel",
"line_number": 36,
"usage_type": "call"
},
{
"api_name": "tempfile.TemporaryFile",
"line_number": 39,
"usage_type": "call"
},
{
"api_name": "mtap.io.serialization.JsonSerializer.event_to_file",
"line_number": 40,
"usage_type": "call"
},
{
"api_name": "mtap.io.serialization.JsonSerializer",
"line_number": 40,
"usage_type": "name"
},
{
"api_name": "json.load",
"line_number": 43,
"usage_type": "call"
},
{
"api_name": "pathlib.Path",
"line_number": 98,
"usage_type": "call"
},
{
"api_name": "mtap.io.serialization.JsonSerializer.file_to_event",
"line_number": 99,
"usage_type": "call"
},
{
"api_name": "mtap.io.serialization.JsonSerializer",
"line_number": 99,
"usage_type": "name"
},
{
"api_name": "mtap.GenericLabel",
"line_number": 106,
"usage_type": "call"
},
{
"api_name": "mtap.GenericLabel",
"line_number": 107,
"usage_type": "call"
},
{
"api_name": "mtap.GenericLabel",
"line_number": 108,
"usage_type": "call"
},
{
"api_name": "mtap.GenericLabel",
"line_number": 109,
"usage_type": "call"
},
{
"api_name": "mtap.GenericLabel",
"line_number": 112,
"usage_type": "call"
},
{
"api_name": "mtap.GenericLabel",
"line_number": 113,
"usage_type": "call"
},
{
"api_name": "mtap.GenericLabel",
"line_number": 114,
"usage_type": "call"
},
{
"api_name": "mtap.GenericLabel",
"line_number": 115,
"usage_type": "call"
},
{
"api_name": "mtap.GenericLabel",
"line_number": 118,
"usage_type": "call"
},
{
"api_name": "mtap.GenericLabel",
"line_number": 119,
"usage_type": "call"
},
{
"api_name": "mtap.GenericLabel",
"line_number": 120,
"usage_type": "call"
},
{
"api_name": "mtap.GenericLabel",
"line_number": 121,
"usage_type": "call"
}
] |
464394400
|
from mpl_toolkits.basemap import Basemap, cm, shiftgrid,interp
from netCDF4 import Dataset as NetCDFFile
import numpy as N
import matplotlib.pyplot as plt
import glob
import numpy.ma as ma
from scipy.interpolate import griddata
import scipy.stats
from matplotlib.dates import DateFormatter
import datetime
country=NetCDFFile('/scratch2/scratchdirs/tslin2/plot/globalcrop/data/Ctry_halfdeg.nc','r')
#print iizumi
coun = country.variables['MASK_Country'][:,:]
region1=NetCDFFile('/scratch2/scratchdirs/tslin2/plot/globalcrop/data/clm/HistoricalGLM_crop_150901.nc','r')
maitrop = region1.variables['maize_trop'][:,:,:]
maitemp = region1.variables['maize_temp'][:,:,:]
maitropi=region1.variables['maize_trop_irrig'][:,:,:]
maitempi=region1.variables['maize_temp_irrig'][:,:,:]
gridarea = region1.variables['area'][:,:]
maitrop=ma.masked_where(maitrop<=0,maitrop)
maitrop=ma.filled(maitrop, fill_value=0.)
maitemp=ma.masked_where(maitemp<=0,maitemp)
maitemp=ma.filled(maitemp, fill_value=0.)
maitropi=ma.masked_where(maitropi<=0,maitropi)
maitropi=ma.filled(maitropi, fill_value=0.)
maitempi=ma.masked_where(maitempi<=0,maitempi)
maitempi=ma.filled(maitempi, fill_value=0.)
maizetor=maitrop+maitemp
maizetoi=maitropi+maitempi
maizeto = maitrop+maitemp+maitropi+maitempi
clm3n2=NetCDFFile('/scratch2/scratchdirs/tslin2/isam/cheyenne/plot/finalyield/isam/heat/fertfao/new1/isamhiscru_maiscaleiyield_fertfao_new1.nc','r')
isamcrumai2 = clm3n2.variables['yield'][:,:,:]
isamcrumai2= ma.masked_where(isamcrumai2<=0,isamcrumai2)
isamcrumai2=ma.filled(isamcrumai2, fill_value=0.)
isamcrumai2[N.isnan(isamcrumai2)] = 0
#isamcrumai2= ma.masked_where(isamcrumai2<=0,isamcrumai2)
isamcrumai2=ma.filled(isamcrumai2, fill_value=0.)
yynew=N.zeros((105,360))
for t1 in range(0,105):
for xx in range(0,360):
harea=0
yieldic2=0
for yy in range(0,720):
if maizeto[t1,xx,yy]>0.0:
harea=maizeto[t1,xx,yy]*gridarea[xx,yy]+ harea
yieldic2=(isamcrumai2[t1,xx,yy]*maizeto[t1,xx,yy]*gridarea[xx,yy])+yieldic2
if harea>0.0:
yynew[t1,xx]=yieldic2/harea
yynew[N.isnan(yynew)] = -1
yynew= ma.masked_where(yynew<=0,yynew)
#print yynew[99,:].shape
#print yynew[99,:]
fig = plt.figure(figsize=(15,6))
tt = N.arange(-89.75, 90., 0.5)
ax = fig.add_subplot(111)
plt.plot(tt,N.average(yynew[90:100,:],axis=0),'r-')
plt.plot(tt,N.average(yynew[60:70,:],axis=0),'k-')
plt.plot(tt,N.average(yynew[10:20,:],axis=0),'b-')
leg=plt.legend(['1991-2000','1961-1970','1911-1920'],fontsize=18)
leg.get_frame().set_alpha(0.5)
#plt.xticks(N.arange(tt.min(), tt.max(), 30))
plt.axis([-90, 90, 0, 15])
ax.set_xticks((-75,-60,-45,-30,-15,0,15,30,45,60,75))
my_xticks = ['-75 S','-60 S','-45 S','-30 S','-15 S', 'EQ','15 N','30 N','45 N','60 N','75 N']
#plt.xticks(x, my_xticks)
ax.set_xticklabels(my_xticks, fontsize=18)
plt.xlabel("Latitude ",fontsize=18)
plt.ylabel("Maize yields (t/ha)",fontsize=18)
plt.tick_params(axis='both',labelsize=18)
plt.savefig('maize_1961_2016_lat.png',dpi=600,bbox_inches='tight')
plt.show()
| null |
plot/detrend/mai_ann_globe_p3.py
|
mai_ann_globe_p3.py
|
py
| 3,013 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "netCDF4.Dataset",
"line_number": 13,
"usage_type": "call"
},
{
"api_name": "netCDF4.Dataset",
"line_number": 18,
"usage_type": "call"
},
{
"api_name": "numpy.ma.masked_where",
"line_number": 24,
"usage_type": "call"
},
{
"api_name": "numpy.ma",
"line_number": 24,
"usage_type": "name"
},
{
"api_name": "numpy.ma.filled",
"line_number": 25,
"usage_type": "call"
},
{
"api_name": "numpy.ma",
"line_number": 25,
"usage_type": "name"
},
{
"api_name": "numpy.ma.masked_where",
"line_number": 26,
"usage_type": "call"
},
{
"api_name": "numpy.ma",
"line_number": 26,
"usage_type": "name"
},
{
"api_name": "numpy.ma.filled",
"line_number": 27,
"usage_type": "call"
},
{
"api_name": "numpy.ma",
"line_number": 27,
"usage_type": "name"
},
{
"api_name": "numpy.ma.masked_where",
"line_number": 29,
"usage_type": "call"
},
{
"api_name": "numpy.ma",
"line_number": 29,
"usage_type": "name"
},
{
"api_name": "numpy.ma.filled",
"line_number": 30,
"usage_type": "call"
},
{
"api_name": "numpy.ma",
"line_number": 30,
"usage_type": "name"
},
{
"api_name": "numpy.ma.masked_where",
"line_number": 31,
"usage_type": "call"
},
{
"api_name": "numpy.ma",
"line_number": 31,
"usage_type": "name"
},
{
"api_name": "numpy.ma.filled",
"line_number": 32,
"usage_type": "call"
},
{
"api_name": "numpy.ma",
"line_number": 32,
"usage_type": "name"
},
{
"api_name": "netCDF4.Dataset",
"line_number": 38,
"usage_type": "call"
},
{
"api_name": "numpy.ma.masked_where",
"line_number": 40,
"usage_type": "call"
},
{
"api_name": "numpy.ma",
"line_number": 40,
"usage_type": "name"
},
{
"api_name": "numpy.ma.filled",
"line_number": 41,
"usage_type": "call"
},
{
"api_name": "numpy.ma",
"line_number": 41,
"usage_type": "name"
},
{
"api_name": "numpy.isnan",
"line_number": 42,
"usage_type": "call"
},
{
"api_name": "numpy.ma.filled",
"line_number": 44,
"usage_type": "call"
},
{
"api_name": "numpy.ma",
"line_number": 44,
"usage_type": "name"
},
{
"api_name": "numpy.zeros",
"line_number": 46,
"usage_type": "call"
},
{
"api_name": "numpy.isnan",
"line_number": 59,
"usage_type": "call"
},
{
"api_name": "numpy.ma.masked_where",
"line_number": 60,
"usage_type": "call"
},
{
"api_name": "numpy.ma",
"line_number": 60,
"usage_type": "name"
},
{
"api_name": "matplotlib.pyplot.figure",
"line_number": 66,
"usage_type": "call"
},
{
"api_name": "matplotlib.pyplot",
"line_number": 66,
"usage_type": "name"
},
{
"api_name": "numpy.arange",
"line_number": 68,
"usage_type": "call"
},
{
"api_name": "matplotlib.pyplot.plot",
"line_number": 70,
"usage_type": "call"
},
{
"api_name": "matplotlib.pyplot",
"line_number": 70,
"usage_type": "name"
},
{
"api_name": "numpy.average",
"line_number": 70,
"usage_type": "call"
},
{
"api_name": "matplotlib.pyplot.plot",
"line_number": 71,
"usage_type": "call"
},
{
"api_name": "matplotlib.pyplot",
"line_number": 71,
"usage_type": "name"
},
{
"api_name": "numpy.average",
"line_number": 71,
"usage_type": "call"
},
{
"api_name": "matplotlib.pyplot.plot",
"line_number": 72,
"usage_type": "call"
},
{
"api_name": "matplotlib.pyplot",
"line_number": 72,
"usage_type": "name"
},
{
"api_name": "numpy.average",
"line_number": 72,
"usage_type": "call"
},
{
"api_name": "matplotlib.pyplot.legend",
"line_number": 74,
"usage_type": "call"
},
{
"api_name": "matplotlib.pyplot",
"line_number": 74,
"usage_type": "name"
},
{
"api_name": "matplotlib.pyplot.axis",
"line_number": 77,
"usage_type": "call"
},
{
"api_name": "matplotlib.pyplot",
"line_number": 77,
"usage_type": "name"
},
{
"api_name": "matplotlib.pyplot.xlabel",
"line_number": 83,
"usage_type": "call"
},
{
"api_name": "matplotlib.pyplot",
"line_number": 83,
"usage_type": "name"
},
{
"api_name": "matplotlib.pyplot.ylabel",
"line_number": 84,
"usage_type": "call"
},
{
"api_name": "matplotlib.pyplot",
"line_number": 84,
"usage_type": "name"
},
{
"api_name": "matplotlib.pyplot.tick_params",
"line_number": 85,
"usage_type": "call"
},
{
"api_name": "matplotlib.pyplot",
"line_number": 85,
"usage_type": "name"
},
{
"api_name": "matplotlib.pyplot.savefig",
"line_number": 88,
"usage_type": "call"
},
{
"api_name": "matplotlib.pyplot",
"line_number": 88,
"usage_type": "name"
},
{
"api_name": "matplotlib.pyplot.show",
"line_number": 89,
"usage_type": "call"
},
{
"api_name": "matplotlib.pyplot",
"line_number": 89,
"usage_type": "name"
}
] |
554968815
|
#!/usr/bin/env python
# coding: utf-8
import argparse
import json
import os
import random
import cv2
import pandas as pd
from tqdm import tqdm
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--deciding_only", action="store_true")
parser.add_argument("--bandwidth", type=int, default=66)
parser.add_argument("--weight_clusters", action="store_true")
return parser.parse_args()
def main():
args = parse_args()
data_dir = os.path.join(
"correspondence_matching", "data", f"BW{args.bandwidth}_DecidingOnly{args.deciding_only}"
)
weighted_str = "weighted" if args.weight_clusters else "nonweighted"
for outcome in ["FP", "FN", "TP", "TN", "Inc"]:
os.makedirs(os.path.join(data_dir, weighted_str, outcome))
with open(os.path.join(data_dir, weighted_str, "matched_cluster_data.json"), "r") as f:
matched_cluster_data = json.load(f)
trial_stats = pd.read_csv(
os.path.join("data", "CwCeTrialStats_20200324.csv"),
usecols=["ImagePair", "Examiner", "Outcome"],
)
for image_pair in tqdm(matched_cluster_data):
pair_data = matched_cluster_data[image_pair]
for examiner in pair_data:
trial_data = pair_data[examiner]
# Pull outcome from trial_stats
outcome = trial_stats[
(trial_stats["ImagePair"] == image_pair) & (trial_stats["Examiner"] == examiner)
]["Outcome"]
assert outcome.shape[0] == 1
outcome = outcome.iloc[0]
left_img = cv2.imread(os.path.join("WBeyeDataset105", f"{image_pair}_Left.png"))
right_img = cv2.imread(os.path.join("WBeyeDataset105", f"{image_pair}_Right.png"))
images = {"Left": left_img, "Right": right_img}
assert len(trial_data["Left"]) == len(trial_data["Right"])
num_points = len(trial_data["Left"])
colors = dict()
for i in range(num_points):
colors[i] = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))
for side in images:
for i in range(num_points):
coord = trial_data[side][i]
x = int(coord[0])
y = int(coord[1])
cv2.circle(
img=images[side],
center=(x, y),
radius=10,
color=colors[i],
thickness=-1,
)
cv2.imwrite(
os.path.join(
data_dir, weighted_str, outcome, f"{image_pair}_{examiner}_{side}.jpg"
),
images[side],
)
if __name__ == "__main__":
main()
| null |
python/correspondence_matching/draw_matchings.py
|
draw_matchings.py
|
py
| 2,810 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "argparse.ArgumentParser",
"line_number": 15,
"usage_type": "call"
},
{
"api_name": "os.path.join",
"line_number": 26,
"usage_type": "call"
},
{
"api_name": "os.path",
"line_number": 26,
"usage_type": "attribute"
},
{
"api_name": "os.makedirs",
"line_number": 32,
"usage_type": "call"
},
{
"api_name": "os.path.join",
"line_number": 32,
"usage_type": "call"
},
{
"api_name": "os.path",
"line_number": 32,
"usage_type": "attribute"
},
{
"api_name": "os.path.join",
"line_number": 34,
"usage_type": "call"
},
{
"api_name": "os.path",
"line_number": 34,
"usage_type": "attribute"
},
{
"api_name": "json.load",
"line_number": 35,
"usage_type": "call"
},
{
"api_name": "pandas.read_csv",
"line_number": 37,
"usage_type": "call"
},
{
"api_name": "os.path.join",
"line_number": 38,
"usage_type": "call"
},
{
"api_name": "os.path",
"line_number": 38,
"usage_type": "attribute"
},
{
"api_name": "tqdm.tqdm",
"line_number": 42,
"usage_type": "call"
},
{
"api_name": "cv2.imread",
"line_number": 54,
"usage_type": "call"
},
{
"api_name": "os.path.join",
"line_number": 54,
"usage_type": "call"
},
{
"api_name": "os.path",
"line_number": 54,
"usage_type": "attribute"
},
{
"api_name": "cv2.imread",
"line_number": 55,
"usage_type": "call"
},
{
"api_name": "os.path.join",
"line_number": 55,
"usage_type": "call"
},
{
"api_name": "os.path",
"line_number": 55,
"usage_type": "attribute"
},
{
"api_name": "random.randint",
"line_number": 62,
"usage_type": "call"
},
{
"api_name": "cv2.circle",
"line_number": 69,
"usage_type": "call"
},
{
"api_name": "cv2.imwrite",
"line_number": 77,
"usage_type": "call"
},
{
"api_name": "os.path.join",
"line_number": 78,
"usage_type": "call"
},
{
"api_name": "os.path",
"line_number": 78,
"usage_type": "attribute"
}
] |
497243580
|
from datetime import datetime
from GA import GA
from Colorharmony import ColorHarmony
import cv2
import numpy
import PIL as PIL
from PIL import ImageDraw,Image
from skimage.color import lab2rgb
import numpy as np
from sklearn.cluster import MeanShift, estimate_bandwidth
import time
class Solver:
##ganti nama jadi solver
def get_num_pixels(filepath):
width, height = PIL.Image.open(filepath).size
return width * height
def Skripsi (PosterInput,ScoreSebelum):
t0 = time.time()
#######################################################################################################
### Meanshif the image using OpenCV to reduce colors ###
#######################################################################################################
# PosterInput = cv2.imread(Poster)
Shape = PosterInput.shape
flatImg=np.reshape(PosterInput, [-1, 3])
bandwidth = estimate_bandwidth(flatImg, quantile=0.2, n_samples=100)
ms = MeanShift(bandwidth = bandwidth, bin_seeding=True)
ms.fit(flatImg)
labels=ms.labels_
cluster_centers = ms.cluster_centers_
labels_unique = np.unique(labels)
n_clusters_ = len(labels_unique)
segmentedImg = cluster_centers[np.reshape(labels, Shape[:2])]
cv2.imwrite("hasilmean.jpg", segmentedImg.astype(np.uint8))
image = PIL.Image.open("hasilmean.jpg")
color_count = {}
width, height = image.size
rgb_image = image.convert('RGB')
imgtemp = cv2.imread("hasilmean.jpg")
rows, cols, depth = imgtemp.shape
# buat R,G,B sama posisi X dan Y
temps = np.zeros((rows * cols, 5))
k = 0
# masukin warna prtama R kedua G ketiga B keempat posisi X kelima posisi Y
for p in range(0, rows):
for f in range(0, cols):
temps[k][0] = imgtemp[p][f][0]
temps[k][1] = imgtemp[p][f][1]
temps[k][2] = imgtemp[p][f][2]
temps[k][3] = p
temps[k][4] = f
k = k + 1
for x in range(width):
for y in range(height):
rgb = rgb_image.getpixel((x, y))
if rgb in color_count:
color_count[rgb] += 1
else:
color_count[rgb] = 1
jumlahpixel = Solver.get_num_pixels("hasilmean.jpg")
# *************************************
# ******** MAIN ALGORITHM CODE ********
# *************************************
maximum_generation = 1
s,b,dom,domsmall = ColorHarmony.region(color_count,jumlahpixel)
scoreawal = ColorHarmony.calculate_fitness(b, s)/2
#GENERATE BIG COLOR
for generation in range(maximum_generation):
new_population = []
new_populationsmall=[]
# new_populationsmall.append(rgb2lab(domsmall))
new_population.append(ColorHarmony.rgb2lab(dom))
i=0
x=0
temp = False
while i < 4:
color = GA.select_initial_population(dom)
new_population.append(color)
i+=1
pop=GA.bigGA(new_population,0.5,dom)
while x<5:
color = GA.select_initial_population(domsmall)
new_populationsmall.append(color)
x += 1
poop=GA.smallGA(new_populationsmall,1,domsmall)
FitnessScore= ColorHarmony.calculate_fitness(pop,poop)
ct = 0
while FitnessScore <1.5 and FitnessScore > ScoreSebelum or ct>10:
poop = GA.smallGA(new_populationsmall,0.5,domsmall)
FitnessScore=ColorHarmony.calculate_fitness(pop,poop)
ct+=1
w=0
rgb=[]
rgbBig=[]
v=0
while w < 5:
color = (lab2rgb(poop[w],illuminant='D65', observer='2')* 254).astype(numpy.uint8)
rgb.append(color)
w+=1
while v < 5:
colorbig = (lab2rgb(pop[v],illuminant='D65', observer='2')* 254).astype(numpy.uint8)
rgbBig.append(colorbig)
v+=1
im = PIL.Image.new('RGB', (300, 450), (255, 255, 255))
draw = ImageDraw.Draw(im)
s = 0
while s < 5:
draw.text((100, 10), "Your Primary Color", fill=(0, 0, 0))
if (len(pop) > 0):
draw.rectangle((120, 50, 180, 120), fill=(tuple(dom)))
else:
draw.rectangle((120, 50, 180, 120), fill=(tuple(domsmall)))
draw.text((100, 130), "Primary Selection", fill=(0, 0, 0))
draw.rectangle((s * 60, 150, 60 + (s * 60), 280), fill=(tuple(rgbBig[s])))
temp = ColorHarmony.rgb2hex(rgbBig[s][0],rgbBig[s][1],rgbBig[s][2])
draw.text((s*60+10, 260), temp, fill=(0, 0, 0))
draw.text((100, 300), "Secondary Selection", fill=(0, 0, 0))
draw.rectangle((s * 60, 320, 60 + (s * 60), 450), fill=(tuple(rgb[s])))
temps = ColorHarmony.rgb2hex(rgb[s][0], rgb[s][1], rgb[s][2])
draw.text((s * 60+10, 430), temps, fill=(0, 0, 0))
s+=1
timestamp = datetime.timestamp(datetime.now())
filename = 'web'+str(timestamp)+'.png'
im.save('static/web'+str(timestamp)+'.png')
print('Selesai')
t1 = time.time()
total = t1 - t0
return filename,FitnessScore,total,scoreawal
| null |
Solver.py
|
Solver.py
|
py
| 5,526 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "PIL.Image.open",
"line_number": 19,
"usage_type": "call"
},
{
"api_name": "PIL.Image",
"line_number": 19,
"usage_type": "attribute"
},
{
"api_name": "time.time",
"line_number": 23,
"usage_type": "call"
},
{
"api_name": "numpy.reshape",
"line_number": 33,
"usage_type": "call"
},
{
"api_name": "sklearn.cluster.estimate_bandwidth",
"line_number": 35,
"usage_type": "call"
},
{
"api_name": "sklearn.cluster.MeanShift",
"line_number": 36,
"usage_type": "call"
},
{
"api_name": "numpy.unique",
"line_number": 44,
"usage_type": "call"
},
{
"api_name": "numpy.reshape",
"line_number": 47,
"usage_type": "call"
},
{
"api_name": "cv2.imwrite",
"line_number": 49,
"usage_type": "call"
},
{
"api_name": "numpy.uint8",
"line_number": 49,
"usage_type": "attribute"
},
{
"api_name": "PIL.Image.open",
"line_number": 51,
"usage_type": "call"
},
{
"api_name": "PIL.Image",
"line_number": 51,
"usage_type": "attribute"
},
{
"api_name": "cv2.imread",
"line_number": 56,
"usage_type": "call"
},
{
"api_name": "numpy.zeros",
"line_number": 61,
"usage_type": "call"
},
{
"api_name": "Colorharmony.ColorHarmony.region",
"line_number": 98,
"usage_type": "call"
},
{
"api_name": "Colorharmony.ColorHarmony",
"line_number": 98,
"usage_type": "name"
},
{
"api_name": "Colorharmony.ColorHarmony.calculate_fitness",
"line_number": 101,
"usage_type": "call"
},
{
"api_name": "Colorharmony.ColorHarmony",
"line_number": 101,
"usage_type": "name"
},
{
"api_name": "Colorharmony.ColorHarmony.rgb2lab",
"line_number": 108,
"usage_type": "call"
},
{
"api_name": "Colorharmony.ColorHarmony",
"line_number": 108,
"usage_type": "name"
},
{
"api_name": "GA.GA.select_initial_population",
"line_number": 113,
"usage_type": "call"
},
{
"api_name": "GA.GA",
"line_number": 113,
"usage_type": "name"
},
{
"api_name": "GA.GA.bigGA",
"line_number": 117,
"usage_type": "call"
},
{
"api_name": "GA.GA",
"line_number": 117,
"usage_type": "name"
},
{
"api_name": "GA.GA.select_initial_population",
"line_number": 119,
"usage_type": "call"
},
{
"api_name": "GA.GA",
"line_number": 119,
"usage_type": "name"
},
{
"api_name": "GA.GA.smallGA",
"line_number": 123,
"usage_type": "call"
},
{
"api_name": "GA.GA",
"line_number": 123,
"usage_type": "name"
},
{
"api_name": "Colorharmony.ColorHarmony.calculate_fitness",
"line_number": 124,
"usage_type": "call"
},
{
"api_name": "Colorharmony.ColorHarmony",
"line_number": 124,
"usage_type": "name"
},
{
"api_name": "GA.GA.smallGA",
"line_number": 127,
"usage_type": "call"
},
{
"api_name": "GA.GA",
"line_number": 127,
"usage_type": "name"
},
{
"api_name": "Colorharmony.ColorHarmony.calculate_fitness",
"line_number": 128,
"usage_type": "call"
},
{
"api_name": "Colorharmony.ColorHarmony",
"line_number": 128,
"usage_type": "name"
},
{
"api_name": "skimage.color.lab2rgb",
"line_number": 135,
"usage_type": "call"
},
{
"api_name": "numpy.uint8",
"line_number": 135,
"usage_type": "attribute"
},
{
"api_name": "skimage.color.lab2rgb",
"line_number": 140,
"usage_type": "call"
},
{
"api_name": "numpy.uint8",
"line_number": 140,
"usage_type": "attribute"
},
{
"api_name": "PIL.Image.new",
"line_number": 145,
"usage_type": "call"
},
{
"api_name": "PIL.Image",
"line_number": 145,
"usage_type": "attribute"
},
{
"api_name": "PIL.ImageDraw.Draw",
"line_number": 146,
"usage_type": "call"
},
{
"api_name": "PIL.ImageDraw",
"line_number": 146,
"usage_type": "name"
},
{
"api_name": "Colorharmony.ColorHarmony.rgb2hex",
"line_number": 157,
"usage_type": "call"
},
{
"api_name": "Colorharmony.ColorHarmony",
"line_number": 157,
"usage_type": "name"
},
{
"api_name": "Colorharmony.ColorHarmony.rgb2hex",
"line_number": 161,
"usage_type": "call"
},
{
"api_name": "Colorharmony.ColorHarmony",
"line_number": 161,
"usage_type": "name"
},
{
"api_name": "datetime.datetime.timestamp",
"line_number": 164,
"usage_type": "call"
},
{
"api_name": "datetime.datetime",
"line_number": 164,
"usage_type": "name"
},
{
"api_name": "datetime.datetime.now",
"line_number": 164,
"usage_type": "call"
},
{
"api_name": "time.time",
"line_number": 168,
"usage_type": "call"
}
] |
8599063
|
#! python3
import openpyxl, smtplib, sys
wb = openpyxl.load_workbook('duesRecords.xlsx')
sheet = wb.get_sheet_by_name('Sheet1')
lastCol = sheet.get_highest_column()
latestMonth = sheet.cell(row=1, column=lastCol).value
for r in range(2, sheet.get_highest_row() + 1):
payment = sheet.cell(row=r, column=lastCol).value
if payment != 'paid':
name = sheet.cell(row=r, column = 1).value
email = sheet.cell(row=r,column=2).value
unpaidMembers[name] = email
smtpObj = smtplib.SMTP('smtp.gmail.com',587)
smtpObj.ehlo()
smtpObj.login('[email protected]', sys.argv[1])
for name, email in unpaidMembers.items():
body = "Subject: %s dues upaid. \nDear %s, \nRecords show that you have not paid dues for %s. Please make this payment." %(latestMonth, name, latestMonth)
print('Seinding email to %s...' % email)
sendmailstatus = smtpObj.sendmail('[email protected]', email,body)
if sendmailstatus != {}:
print("there was a problem sending email to %s: %s" % (email, sendmailstatus))
smtpObj.quit()
| null |
Automatetheboringstuff/email.py
|
email.py
|
py
| 1,010 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "openpyxl.load_workbook",
"line_number": 5,
"usage_type": "call"
},
{
"api_name": "smtplib.SMTP",
"line_number": 20,
"usage_type": "call"
},
{
"api_name": "sys.argv",
"line_number": 22,
"usage_type": "attribute"
}
] |
284830231
|
from django.shortcuts import render, redirect
from django.http import HttpResponse
from street_biter_app.models import Street_biter
from django.contrib.auth.decorators import login_required
@login_required
def home(request):
if request.method == 'POST':
form = Street_biter(request.POST)
else:
return render(request, 'street_biter_app/home.html')
@login_required
def about(request):
return render(request, 'street_biter_app/about.html')
@login_required
def details(request, id):
# sweetspot = Street_biter.objects.filter(user = request.user, latitude=request.latitude, longitude=request.longitude).first()
sweetspot = Street_biter.objects.get(id = id)
return render(request, 'street_biter_app/details.html', {
'sweetspot': sweetspot,
})
def save_details(request):
if request.method == 'POST':
user = request.user
latitude = request.POST['lat']
longitude = request.POST['long']
details = request.POST['details']
species = request.POST['species-list']
print(latitude)
sweetspot = Street_biter.objects.create(
user = user,
latitude = latitude,
longitude = longitude,
details = details,
species = species,
)
return redirect('details-view', sweetspot.id)
else:
return render(request, 'street_biter_app/app-home')
@login_required
def my_sweetspots(request):
sweetspots = Street_biter.objects.filter(user = request.user)
context = {
'sweetspots' : sweetspots
}
return render(request, 'street_biter_app/sweetspots.html', context)
| null |
street_biter_app/views.py
|
views.py
|
py
| 1,668 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "street_biter_app.models.Street_biter",
"line_number": 9,
"usage_type": "call"
},
{
"api_name": "django.shortcuts.render",
"line_number": 11,
"usage_type": "call"
},
{
"api_name": "django.contrib.auth.decorators.login_required",
"line_number": 6,
"usage_type": "name"
},
{
"api_name": "django.shortcuts.render",
"line_number": 15,
"usage_type": "call"
},
{
"api_name": "django.contrib.auth.decorators.login_required",
"line_number": 13,
"usage_type": "name"
},
{
"api_name": "street_biter_app.models.Street_biter.objects.get",
"line_number": 20,
"usage_type": "call"
},
{
"api_name": "street_biter_app.models.Street_biter.objects",
"line_number": 20,
"usage_type": "attribute"
},
{
"api_name": "street_biter_app.models.Street_biter",
"line_number": 20,
"usage_type": "name"
},
{
"api_name": "django.shortcuts.render",
"line_number": 21,
"usage_type": "call"
},
{
"api_name": "django.contrib.auth.decorators.login_required",
"line_number": 17,
"usage_type": "name"
},
{
"api_name": "street_biter_app.models.Street_biter.objects.create",
"line_number": 33,
"usage_type": "call"
},
{
"api_name": "street_biter_app.models.Street_biter.objects",
"line_number": 33,
"usage_type": "attribute"
},
{
"api_name": "street_biter_app.models.Street_biter",
"line_number": 33,
"usage_type": "name"
},
{
"api_name": "django.shortcuts.redirect",
"line_number": 40,
"usage_type": "call"
},
{
"api_name": "django.shortcuts.render",
"line_number": 42,
"usage_type": "call"
},
{
"api_name": "street_biter_app.models.Street_biter.objects.filter",
"line_number": 47,
"usage_type": "call"
},
{
"api_name": "street_biter_app.models.Street_biter.objects",
"line_number": 47,
"usage_type": "attribute"
},
{
"api_name": "street_biter_app.models.Street_biter",
"line_number": 47,
"usage_type": "name"
},
{
"api_name": "django.shortcuts.render",
"line_number": 51,
"usage_type": "call"
},
{
"api_name": "django.contrib.auth.decorators.login_required",
"line_number": 45,
"usage_type": "name"
}
] |
213842796
|
import sys, os
import pandas as pd
os.environ.setdefault("DJANGO_SETTINGS_MODULE", "tfn.settings")
import django
django.setup()
from review.models import Whiskey,Distillery
def load_from_csv(row_of_csv):
whiskey=Whiskey()
whiskey.id=row_of_csv[0]
whiskey.distillery=Distillery.objects.get(id=row_of_csv[0])
whiskey.save()
if __name__ == "__main__":
if len(sys.argv) == 2:
print ("Loading from file" + str(sys.argv[1]))
base_df = pd.read_csv(sys.argv[1])
print (base_df)
base_df.apply(
load_from_csv,
axis=1
)
print ("There are {} reviews in DB".format(Whiskey.objects.count()))
else:
print ("Please, provide Reviews file path")
| null |
load_whiskey_base.py
|
load_whiskey_base.py
|
py
| 742 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "os.environ.setdefault",
"line_number": 4,
"usage_type": "call"
},
{
"api_name": "os.environ",
"line_number": 4,
"usage_type": "attribute"
},
{
"api_name": "django.setup",
"line_number": 7,
"usage_type": "call"
},
{
"api_name": "review.models.Whiskey",
"line_number": 13,
"usage_type": "call"
},
{
"api_name": "review.models.Distillery.objects.get",
"line_number": 15,
"usage_type": "call"
},
{
"api_name": "review.models.Distillery.objects",
"line_number": 15,
"usage_type": "attribute"
},
{
"api_name": "review.models.Distillery",
"line_number": 15,
"usage_type": "name"
},
{
"api_name": "sys.argv",
"line_number": 20,
"usage_type": "attribute"
},
{
"api_name": "sys.argv",
"line_number": 21,
"usage_type": "attribute"
},
{
"api_name": "pandas.read_csv",
"line_number": 22,
"usage_type": "call"
},
{
"api_name": "sys.argv",
"line_number": 22,
"usage_type": "attribute"
},
{
"api_name": "review.models.Whiskey.objects.count",
"line_number": 30,
"usage_type": "call"
},
{
"api_name": "review.models.Whiskey.objects",
"line_number": 30,
"usage_type": "attribute"
},
{
"api_name": "review.models.Whiskey",
"line_number": 30,
"usage_type": "name"
}
] |
524017942
|
import json
from collections import Counter
import requests
from bs4 import BeautifulSoup
GOOGLE_SCHOLAR = 'Google scholar'
HTTPS_SCHOLAR_GOOGLE_RU = 'https://scholar.google.ru'
EMPLOYERS_JSON = 'employers.json'
HTML_PARSER = 'html.parser'
JSON_INDENT = 2
LINKS = 'ะกััะปะบะธ'
def parse_scholar_articles():
with open(EMPLOYERS_JSON, 'r', encoding='utf-8') as fp:
employers = json.load(fp)
employers_with_scholar_names = [
employer
for employer, employer_info in employers.items()
if GOOGLE_SCHOLAR in employer_info[LINKS]
]
for employer in employers_with_scholar_names:
employer_scholar_link = employers[employer][LINKS][GOOGLE_SCHOLAR]
scholar_response = requests.get(employer_scholar_link)
bs = BeautifulSoup(scholar_response.text, HTML_PARSER)
bs_articles = bs.select("#gsc_a_t .gsc_a_tr")
articles = [parse_article(bs_article) for bs_article in
bs_articles]
co_authors = Counter(co_author for article in articles
for co_author in article['authors'])
employers[employer][GOOGLE_SCHOLAR] = articles
employers[employer]['co-authors'] = co_authors
with open(EMPLOYERS_JSON, 'w', encoding='utf-8') as fp:
json.dump(employers, fp, ensure_ascii=False, indent=JSON_INDENT)
def parse_article(bs_article):
try:
bs_article_title = bs_article.select_one('.gsc_a_t a')
bs_article_cited_by = bs_article.select_one('.gsc_a_c a')
bs_article_year = bs_article.select_one('.gsc_a_y span')
return {
'title': str(bs_article_title.string),
'link': HTTPS_SCHOLAR_GOOGLE_RU + bs_article_title['data-href'],
'cited_by': int(bs_article_cited_by.string)
if bs_article_cited_by.string is not None else 0,
'year': int(bs_article_year.string)
if bs_article_year.string is not None else -1,
'authors': parse_authors(bs_article_title),
}
except AttributeError as e:
print(e)
def parse_authors(bs_article):
link = bs_article['data-href']
article = requests.get(f'{HTTPS_SCHOLAR_GOOGLE_RU}{link}')
bs_article = BeautifulSoup(article.text, HTML_PARSER)
bs_authors = bs_article.select_one('.gsc_vcd_value')
return bs_authors.string.split(', ')
if __name__ == '__main__':
parse_scholar_articles()
| null |
parse_scholar_articles.py
|
parse_scholar_articles.py
|
py
| 2,417 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "json.load",
"line_number": 17,
"usage_type": "call"
},
{
"api_name": "requests.get",
"line_number": 27,
"usage_type": "call"
},
{
"api_name": "bs4.BeautifulSoup",
"line_number": 28,
"usage_type": "call"
},
{
"api_name": "collections.Counter",
"line_number": 32,
"usage_type": "call"
},
{
"api_name": "json.dump",
"line_number": 37,
"usage_type": "call"
},
{
"api_name": "requests.get",
"line_number": 60,
"usage_type": "call"
},
{
"api_name": "bs4.BeautifulSoup",
"line_number": 61,
"usage_type": "call"
}
] |
621016804
|
import requests
from bs4 import BeautifulSoup
from tqdm import tqdm
to_process = []
with open("errors.txt", "r") as infile:
to_process = [int(l.strip()) for l in infile.read().splitlines()]
for i in tqdm(to_process): # latest document as of Feb 2 2018
# try:
tqdm.write("Processing document #" + str(i))
document = requests.get("http://www.presidency.ucsb.edu/ws/print.php?pid=" + str(i)).text
soup = BeautifulSoup(document, 'html.parser')
title = soup.title.contents[0].replace("\xa0", " ").replace("/", ":")
if len(title) > 200:
title = title[:97] + "..." + title[-100:]
content = soup.find('span', {'class': 'style9'}).text
with open(title + "." + str(i) + ".txt", "w") as outfile:
outfile.write(content)
# except Exception as e:
# print(e)
# with open("errors2.txt", "a") as outfile:
# outfile.write(str(i) + "\n")
# continue
| null |
website/static/css/scrape.py
|
scrape.py
|
py
| 963 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "tqdm.tqdm",
"line_number": 10,
"usage_type": "call"
},
{
"api_name": "tqdm.tqdm.write",
"line_number": 12,
"usage_type": "call"
},
{
"api_name": "tqdm.tqdm",
"line_number": 12,
"usage_type": "name"
},
{
"api_name": "requests.get",
"line_number": 13,
"usage_type": "call"
},
{
"api_name": "bs4.BeautifulSoup",
"line_number": 14,
"usage_type": "call"
}
] |
653602125
|
import discord
from discord.ext import commands, tasks
from transformers import AutoModelForCausalLM, AutoTokenizer, BigBirdForQuestionAnswering, BigBirdTokenizer
import torch
token = ''
client = commands.Bot(command_prefix='>')
channel = client.get_channel()
# GPT MODEL
#tokenizer = AutoTokenizer.from_pretrained("Poly-Pixel/shrek-medium-full")
#model = AutoModelForCausalLM.from_pretrained("Poly-Pixel/shrek-medium-full")
# BIGBIRD MODEL
tokenizer = BigBirdTokenizer.from_pretrained("vasudevgupta/bigbird-roberta-natural-questions")
# BIGBIRD MODEL by default its in `block_sparse` mode with num_random_blocks=3, block_size=64
model = BigBirdForQuestionAnswering.from_pretrained("vasudevgupta/bigbird-roberta-natural-questions")
@tasks.loop(seconds=300.0)
async def my_background_task():
"""Will loop every 60 seconds and change the bots presence"""
await client.change_presence(activity=discord.Game(name='About to 360 no scope outta here'))
@client.event
async def on_ready():
print(f'Logged in as {client.user} (ID: {client.user.id})')
print('------')
# Waiting until the bot is ready
await client.wait_until_ready()
# Starting the loop
my_background_task.start()
@client.event
async def on_message(message):
if message.author == client.user:
return
#step = 1
# GPT MODEL encode the new user input, add the eos_token and return a tensor in Pytorch
#new_user_input_ids = tokenizer.encode(message.content + tokenizer.eos_token, return_tensors='pt')
# GPT MODEL append the new user input tokens to the chat history
#bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids
# GPT MODEL generated a response while limiting the total chat history to 1000 tokens
#chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id)
# GPT MODEL pretty print last ouput tokens from bot
#response = "{}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))
print(message.content)
# BIGBIRD MODEL
encoded_input = tokenizer(message.content, return_tensors='pt')
response = model(**encoded_input)
await message.channel.send(response)
return
client.run(token)
| null |
Argo.py
|
Argo.py
|
py
| 2,230 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "discord.ext.commands.Bot",
"line_number": 7,
"usage_type": "call"
},
{
"api_name": "discord.ext.commands",
"line_number": 7,
"usage_type": "name"
},
{
"api_name": "transformers.BigBirdTokenizer.from_pretrained",
"line_number": 14,
"usage_type": "call"
},
{
"api_name": "transformers.BigBirdTokenizer",
"line_number": 14,
"usage_type": "name"
},
{
"api_name": "transformers.BigBirdForQuestionAnswering.from_pretrained",
"line_number": 16,
"usage_type": "call"
},
{
"api_name": "transformers.BigBirdForQuestionAnswering",
"line_number": 16,
"usage_type": "name"
},
{
"api_name": "discord.Game",
"line_number": 21,
"usage_type": "call"
},
{
"api_name": "discord.ext.tasks.loop",
"line_number": 18,
"usage_type": "call"
},
{
"api_name": "discord.ext.tasks",
"line_number": 18,
"usage_type": "name"
}
] |
151796368
|
'''
Created on Jul 21, 2020
@author: vladislavkargin
'''
import numpy as np
from scipy import linalg as la
import matplotlib.pyplot as plt
import os
import rgs.pmaps.OrderedTree as ot
import rgs.mndrpy.Pairing as pg
import rgs.mndrpy.Meander as mr
import rgs.mndrpy.DyckPaths as dp
import rgs.mndrpy.Combinatorics as cmb
#from rgs.mndrpy.Meander import Meander
def genPairings(n):
'''This is a generator that yields all (non-crossing) Pairings on [2n].
Not all of them are different. The algorithm simply generates 2^{2n + 1}
walks on Z, chooses those that sum to -1 (bridges)
and rotate each of them to a Dyck path.
Then it converts the path to a pairing.
Of course it will be difficult to exhaust all paths for large n.
'''
y = 0
width = 2 * n + 1
while y < 2 ** width:
walk = [2 * int(x) - 1 for x in '{:0{size}b}'.format(y,size=width)]
if sum(walk) != -1:
y = y + 1
continue
else:
y = y + 1
#do a cyclic shift.
#Find the first occurrence of the minimum
S = np.cumsum(np.array([0] + walk))
m = np.min(S)
positions = np.where(S == m)[0]
pos = positions[0]
walk1 = walk[pos:] + walk[:pos]
del walk1[-1]
yield pg.Pairing(path = walk1)
def allPairings(n):
'''returns a list of all pairings of length 2n'''
A = set([])
for pairing in genPairings(n):
A.add(pairing)
return list(A)
def allMeanders(n):
''' returns all meander systems of length 2n. '''
B = []
A = allPairings(n)
for p in A:
for q in A:
mndr = mr.Meander(p, q)
B.append(mndr)
return B
def dot(p, q):
''' calculates the dot product of two pairings, which is
the number of cycles in the resulting meander.
Parameters: p and q - pairings'''
mndr = mr.Meander(p, q)
cycles, _ = mndr.findCycles()
c = len(cycles)
return c
def dotMatrix(n):
''' calculate the matrix of all dot products among non-crossing pairings of
length 2n.'''
A = allPairings(n)
N = len(A)
M = np.zeros((N, N))
for i in range(N):
for j in range(N):
M[i,j] = dot(A[i], A[j])
return M
def randomTree(n, w, seed = None):
'''
creates a random planar tree with weight sequence w
'''
if seed == None:
seed = 0 #OrderedTree uses different convention
# about the seed of Random Generator
tree = ot.randomTree(n, w, SEED = seed)
return tree
def randomCrossMeander(n, seed = None):
'''generate a random crossing meander'''
if seed != None:
np.random.seed(seed)
uP = pg.randomCrossPairing(n)
dP = pg.randomCrossPairing(n)
mndr = mr.Meander(uP, dP)
return mndr
def treeToDyckPath(tree):
'''converts a planar rooted tree to a Dyck path'''
A = [-1]* tree.graph.V
dyckPath = []
v = tree.graph.root
stack = [v]
A[v] = 0
#dfsPath = []
n = 1
while (len(stack) > 0):
#print("stack = " + str(stack));
v = stack[-1]; #peaking at the top of the stack
#print("processing v = " + str(v))
flag = False #can we find unprocessed neighbors?
d = tree.graph.degree(v)
for i in range(d):
w = tree.graph.adj[v][i]
if (A[w] < 0): #this neighbor has not been explored previously
A[w] = n
n = n + 1
stack.append(w)
#print(dfsPath)
dyckPath.append(1)
flag = True
break #stop searching for an uexplored neighbor
else:
continue
if (not flag):
stack.pop() #no unexplored neighbor around v. Remove it from consideration.
dyckPath.append(-1)
del dyckPath[-1]
return dyckPath
def findQuasiClusters(mndr, max_gap_size = 3):
''' finds all quasi-cluster cycle in a meander
parameter: meander
returns: list of cluster cycles'''
cycles, _ = mndr.findCycles()
clusters = []
for cycle in cycles:
support = cycle.copy()
support.sort()
isQuasiCluster = True
for i, x in enumerate(support):
if i != len(support) - 1:
gap = support[i + 1] - x
if gap > max_gap_size:
isQuasiCluster = False
break
if isQuasiCluster:
clusters.append(cycle)
return clusters
def largestCluster(mndr, max_gap_size = 3):
''' finds the largest quasi-cluster cycle in a meander. If there are several,
finds and returns one of them'''
clusters = findQuasiClusters(mndr, max_gap_size = max_gap_size)
if clusters == []:
return []
lengths = [len(cycle) for cycle in clusters]
i = lengths.index(max(lengths))
largest = clusters[i]
return largest
def largestClusterLength(mndr, max_gap_size = 3):
largestCycle = largestCluster(mndr, max_gap_size = max_gap_size)
return len(largestCycle)
def plotRandomProperMeander(n):
'''gets a random proper meander and plots it'''
max_iter = 100000 #maximum number of attempts to get a meander
counter = 0
while counter < max_iter:
mndr = mr.randomMeander(n)
if mndr.isProper():
mndr.draw()
return mndr
else:
counter = counter + 1
print("Max number of attempts: ", max_iter, " exceeded.")
print("Proper meander is not found")
return None
def makeMeanderFromCycle(cycle):
''' creates a (crossing) meander from a cycle.
For example, given a cycle (0, 5, 3, 2, 1, 4), which corresponds to upper arcs
(0, 5), (3, 2) and (1, 4) and lower arcs (5, 3) (2, 1) and (4, 0)
creates pairings
[5 4 3 2 1 0] and [4 2 1 5 0 3] and the (crossing) meander based on these pairings.
parameter: cycle, a list of permuted numbers from 0 to 2n - 1 that starts from 0
returns: a meander
'''
if len(cycle)%2 != 0:
print("Error: the length of the cycle must be even.")
return
n = int(len(cycle)/2)
uprng = [0] * 2 * n
dprng = [0] * 2 * n
for i in range(n):
uprng[cycle[2 * i]] = cycle[2 * i + 1]
uprng[cycle[2 * i + 1]] = cycle[2 * i]
dprng[cycle[2 * i + 1]] = cycle[(2 * i + 2)%(2 * n)]
dprng[cycle[(2 * i + 2)%(2 * n)]] = cycle[2 * i + 1]
mndr = mr.Meander(None, None, uprngArray = uprng, dprngArray = dprng)
return mndr
'''
For testing methods
'''
def main():
'''
#Generate and prints a random tree (weighted)
n = 100
w = [1, 1, 1]
tree = randomTree(n, w)
print(tree)
tree.draw(drawLabels = True)
#Creates a random Dyck path and plot it
#path = randomDyckPath(n)
path = treeToDyckPath(tree)
#print(path)
S = np.cumsum([0] + path)
fig1, ax1 = plt.subplots(nrows=1, ncols=1)
ax1.plot(S)
ax1.grid(True)
ax1.xaxis.set_ticks(np.arange(0,S.shape[0]))
ax1.yaxis.set_ticks(np.arange(0, np.max(S) + 1))
#Generates a random meander, finds a random cluster cycle (all
#point in the cycle are near each other and prints them.
n = 100
mndr = mr.randomMeander(n)
fig, ax = mndr.draw()
clusters = findQuasiClusters(mndr)
print("clusters = \n", clusters)
#here it looks for the largest quasi cluster cycle -- some gaps are allowed.
mgs = 9
cycle = largestCluster(mndr, max_gap_size = mgs)
print("Largest quasi cluster cycle is ", cycle)
print("Its length is ", largestClusterLength(mndr, max_gap_size= mgs))
mndr.drawCycle(cycle, ax = ax)
'''
#let us generate all non-crossing pairings of length n
n = 6
A = allPairings(n)
print(len(A))
'''
p = [3, 2, 1, 0, 5, 4]
q = [1, 0, 3, 2, 5, 4]
mndr = Meander(p, q)
mndr.draw()
x = dot(p, q)
print(x)
'''
M = dotMatrix(n)
print(type(M))
print(M)
path = "/Users/vladislavkargin/Dropbox/Programs/forPapers/Meanders/"
print(os.path.isdir(path))
np.savetxt(path + "Matrix" + str(n) + ".csv",
M.astype(int), delimiter = ',')
w = la.eigvalsh(M)
print(w)
q = 0.5
#q = 7/8
Mq = q ** (n - M)
print(Mq)
w = la.eigvalsh(Mq)
print("Eigenvalues: ", w)
print("Maximum eigenvalue: ", max(w))
print("Minimal Eigenvalue: ", min(w))
print("Minimal Eigenvalue * C_n^2: ", min(w) * (Mq.shape[0]**2))
print("Number of Negative Eigenvalues: ", (w[w < 0]).shape[0])
print("Index: ", (w[w > 0]).shape[0] - (w[w < 0]).shape[0])
plt.plot(w)
plt.grid()
''' I used this for an example in my Math 447 class.
plotRandomProperMeander(5)
plt.grid(True)
'''
'''This is for paper. It is now available as a notebook in Colab'''
'''
seed = 3
n = 5
path1 = randomDyckPath(n, seed = seed)
plotDyckPath(path1)
prng1 = pg.Pairing(path = path1)
prng1.draw()
area = areaDyckPath(path1)
print("Area of path1 is ", area)
path2 = randomDyckPath(n, seed = seed + 2)
#plotDyckPath(path2, method = "lowerLatticePath")
area = areaDyckPath(path2)
print("Area of path2 is ", area)
prng2 = pg.Pairing(path = path2)
mndr = Meander(prng1, prng2)
mndr.draw(drawCycles=True)
mr.drawAsPolygon(mndr)
'''
seed = 3
n = 10
path1 = dp.randomDyckPath(n, seed = seed)
dp.plotDyckPath(path1)
area = dp.areaDyckPath(path1)
print("Area of path1 is ", area)
nvalleys = len(dp.valleys(path1))
print("Number of valleys is ", nvalleys)
n = 4
np.random.seed()
perm = np.random.permutation(n)
print(perm)
cycles = cmb.cyclesOfPerm(perm)
print(cycles)
plt.show()
if __name__ == '__main__':
main()
| null |
rgs/mndrpy/Utility.py
|
Utility.py
|
py
| 10,004 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "numpy.cumsum",
"line_number": 40,
"usage_type": "call"
},
{
"api_name": "numpy.array",
"line_number": 40,
"usage_type": "call"
},
{
"api_name": "numpy.min",
"line_number": 41,
"usage_type": "call"
},
{
"api_name": "numpy.where",
"line_number": 42,
"usage_type": "call"
},
{
"api_name": "rgs.mndrpy.Pairing.Pairing",
"line_number": 46,
"usage_type": "call"
},
{
"api_name": "rgs.mndrpy.Pairing",
"line_number": 46,
"usage_type": "name"
},
{
"api_name": "rgs.mndrpy.Meander.Meander",
"line_number": 61,
"usage_type": "call"
},
{
"api_name": "rgs.mndrpy.Meander",
"line_number": 61,
"usage_type": "name"
},
{
"api_name": "rgs.mndrpy.Meander.Meander",
"line_number": 69,
"usage_type": "call"
},
{
"api_name": "rgs.mndrpy.Meander",
"line_number": 69,
"usage_type": "name"
},
{
"api_name": "numpy.zeros",
"line_number": 79,
"usage_type": "call"
},
{
"api_name": "rgs.pmaps.OrderedTree.randomTree",
"line_number": 92,
"usage_type": "call"
},
{
"api_name": "rgs.pmaps.OrderedTree",
"line_number": 92,
"usage_type": "name"
},
{
"api_name": "numpy.random.seed",
"line_number": 98,
"usage_type": "call"
},
{
"api_name": "numpy.random",
"line_number": 98,
"usage_type": "attribute"
},
{
"api_name": "rgs.mndrpy.Pairing.randomCrossPairing",
"line_number": 99,
"usage_type": "call"
},
{
"api_name": "rgs.mndrpy.Pairing",
"line_number": 99,
"usage_type": "name"
},
{
"api_name": "rgs.mndrpy.Pairing.randomCrossPairing",
"line_number": 100,
"usage_type": "call"
},
{
"api_name": "rgs.mndrpy.Pairing",
"line_number": 100,
"usage_type": "name"
},
{
"api_name": "rgs.mndrpy.Meander.Meander",
"line_number": 101,
"usage_type": "call"
},
{
"api_name": "rgs.mndrpy.Meander",
"line_number": 101,
"usage_type": "name"
},
{
"api_name": "rgs.mndrpy.Meander.randomMeander",
"line_number": 178,
"usage_type": "call"
},
{
"api_name": "rgs.mndrpy.Meander",
"line_number": 178,
"usage_type": "name"
},
{
"api_name": "rgs.mndrpy.Meander.Meander",
"line_number": 209,
"usage_type": "call"
},
{
"api_name": "rgs.mndrpy.Meander",
"line_number": 209,
"usage_type": "name"
},
{
"api_name": "os.path.isdir",
"line_number": 274,
"usage_type": "call"
},
{
"api_name": "os.path",
"line_number": 274,
"usage_type": "attribute"
},
{
"api_name": "numpy.savetxt",
"line_number": 275,
"usage_type": "call"
},
{
"api_name": "scipy.linalg.eigvalsh",
"line_number": 277,
"usage_type": "call"
},
{
"api_name": "scipy.linalg",
"line_number": 277,
"usage_type": "name"
},
{
"api_name": "scipy.linalg.eigvalsh",
"line_number": 285,
"usage_type": "call"
},
{
"api_name": "scipy.linalg",
"line_number": 285,
"usage_type": "name"
},
{
"api_name": "matplotlib.pyplot.plot",
"line_number": 292,
"usage_type": "call"
},
{
"api_name": "matplotlib.pyplot",
"line_number": 292,
"usage_type": "name"
},
{
"api_name": "matplotlib.pyplot.grid",
"line_number": 293,
"usage_type": "call"
},
{
"api_name": "matplotlib.pyplot",
"line_number": 293,
"usage_type": "name"
},
{
"api_name": "rgs.mndrpy.DyckPaths.randomDyckPath",
"line_number": 324,
"usage_type": "call"
},
{
"api_name": "rgs.mndrpy.DyckPaths",
"line_number": 324,
"usage_type": "name"
},
{
"api_name": "rgs.mndrpy.DyckPaths.plotDyckPath",
"line_number": 325,
"usage_type": "call"
},
{
"api_name": "rgs.mndrpy.DyckPaths",
"line_number": 325,
"usage_type": "name"
},
{
"api_name": "rgs.mndrpy.DyckPaths.areaDyckPath",
"line_number": 326,
"usage_type": "call"
},
{
"api_name": "rgs.mndrpy.DyckPaths",
"line_number": 326,
"usage_type": "name"
},
{
"api_name": "rgs.mndrpy.DyckPaths.valleys",
"line_number": 328,
"usage_type": "call"
},
{
"api_name": "rgs.mndrpy.DyckPaths",
"line_number": 328,
"usage_type": "name"
},
{
"api_name": "numpy.random.seed",
"line_number": 332,
"usage_type": "call"
},
{
"api_name": "numpy.random",
"line_number": 332,
"usage_type": "attribute"
},
{
"api_name": "numpy.random.permutation",
"line_number": 333,
"usage_type": "call"
},
{
"api_name": "numpy.random",
"line_number": 333,
"usage_type": "attribute"
},
{
"api_name": "rgs.mndrpy.Combinatorics.cyclesOfPerm",
"line_number": 335,
"usage_type": "call"
},
{
"api_name": "rgs.mndrpy.Combinatorics",
"line_number": 335,
"usage_type": "name"
},
{
"api_name": "matplotlib.pyplot.show",
"line_number": 338,
"usage_type": "call"
},
{
"api_name": "matplotlib.pyplot",
"line_number": 338,
"usage_type": "name"
}
] |
115812409
|
import pytest
from ptera import BaseOverlay, Overlay, Recurrence, select, tag, tooled
from ptera.core import Capture, Tap
from ptera.selector import Element, parse
from ptera.selfless import default
from ptera.tools import every
from .common import one_test_per_assert
@tooled
def brie(x, y) -> tag.Fromage:
"""Brie is a sort of cheese."""
a: tag.Bouffe = x * x
b: "@Bouffe & @Agrement" = y * y
return a + b
@tooled
def extra(cheese):
return cheese + 1
@tooled
@tooled
@tooled
def double_brie(x1, y1):
a = brie[[1]](x1, x1 + 1)
b = brie[[2]](y1, y1 + 1)
aa = extra[[1]](a)
bb = extra[[2]](b)
return aa + bb
@one_test_per_assert
def test_normal_call():
assert brie(3, 4) == 25
assert double_brie(3, 4) == 68
class GrabAll:
def __init__(self, pattern):
self.results = []
pattern = select(pattern)
def listener(**kwargs):
self.results.append(
{name: cap.values for name, cap in kwargs.items()}
)
self.rules = {pattern: {"listeners": listener}}
def _test(f, args, pattern):
store = GrabAll(pattern)
with BaseOverlay(store.rules):
f(*args)
return store.results
def _dbrie(pattern):
return _test(double_brie, (2, 10), pattern)
@one_test_per_assert
def test_patterns():
# Simple, test focus
assert _dbrie("*(x)") == [{"x": [2]}, {"x": [10]}]
assert _dbrie("*(!x)") == [{"x": [2]}, {"x": [10]}]
assert _dbrie("*(!x, y)") == [{"x": [2], "y": [3]}, {"x": [10], "y": [11]}]
assert _dbrie("*(x, y)") == [{"x": [2], "y": [3]}, {"x": [10], "y": [11]}]
# Simple
assert _dbrie("*(!a)") == [{"a": [4]}, {"a": [100]}, {"a": [13]}]
assert _dbrie("brie(!a)") == [{"a": [4]}, {"a": [100]}]
# Indirect
assert _dbrie("a") == [{"a": [4]}, {"a": [100]}, {"a": [13]}]
assert _dbrie("double_brie >> a") == [{"a": [13]}, {"a": [4]}, {"a": [100]}]
assert _dbrie("double_brie >> x") == [{"x": [2]}, {"x": [10]}]
# Multi-level
assert _dbrie("double_brie(a) > brie(x)") == [{"a": [13], "x": [2, 10]}]
assert _dbrie("double_brie(a) > brie(!x)") == [
{"a": [13], "x": [2]},
{"a": [13], "x": [10]},
]
# Accumulate values across calls
assert _dbrie("double_brie(extra(cheese), brie(x))") == [
{"cheese": [13, 221], "x": [2, 10]}
]
assert _dbrie("double_brie(extra(!cheese), brie(x))") == [
{"cheese": [13], "x": [2, 10]},
{"cheese": [221], "x": [2, 10]},
]
# Indexing
assert _dbrie("brie[[$i]](!a)") == [
{"a": [4], "i": [1]},
{"a": [100], "i": [2]},
]
assert _dbrie("brie[[1]](!a)") == [{"a": [4]}]
assert _dbrie("brie[[1.0]](!a)") == [{"a": [4]}]
assert _dbrie("brie[[2]](!a)") == [{"a": [100]}]
# Parameter
assert _dbrie("brie($v:tag.Bouffe)") == [{"v": [4, 9]}, {"v": [100, 121]}]
assert _dbrie("brie($v:@Bouffe)") == [{"v": [4, 9]}, {"v": [100, 121]}]
assert _dbrie("brie(!$v:tag.Bouffe)") == [
{"v": [4]},
{"v": [9]},
{"v": [100]},
{"v": [121]},
]
assert _dbrie("*(a) >> brie(!$v:tag.Bouffe)") == [
{"a": [13], "v": [4]},
{"a": [13], "v": [9]},
{"a": [13], "v": [100]},
{"a": [13], "v": [121]},
]
# Function category
assert _dbrie("*:tag.Fromage(a)") == [{"a": [4]}, {"a": [100]}]
# Inexistent category
assert _dbrie("brie > $x:tag.Xylophone") == []
# Filter on value
assert _dbrie("brie(!x, y, a=4)") == [{"x": [2], "y": [3]}]
assert _dbrie("double_brie(x1=2) > brie > x") == [{"x": [2]}, {"x": [10]}]
assert _dbrie("double_brie(#value=1234) > brie > x") == []
@tooled
def snapple(x):
a = cabanana(x + 1)
b = cabanana(x + 2)
return a + b
@tooled
def cabanana(y):
return peacherry(y + 1)
@tooled
def peacherry(z):
return z + 1
def test_deep():
assert _test(snapple, [5], "snapple > cabanana(y) > peacherry > z") == [
{"y": [6], "z": [7]},
{"y": [7], "z": [8]},
]
@tooled
def fib(n):
f = Recurrence(2)
f[0] = 1
f[1] = 1
for i in range(2, n + 1):
f[i] = f[i - 1] + f[i - 2]
return f[n]
even = every(2)
def test_match():
res, fs = fib.using("f[~even] as x")(5)
assert fs.map("x") == [1, 2, 5]
res, fs = fib.using("f[$i ~ every(2)] as x")(5)
assert fs.map("x") == [1, 2, 5]
res, fs = fib.using("f[$i ~ every(2, start=1)] as x")(5)
assert fs.map("x") == [1, 3, 8]
res, fs = fib.using("f[$i ~ even] as x")(5)
assert fs.map("i", "x") == [(0, 1), (2, 2), (4, 5)]
def test_indexing():
assert fib(5) == 8
res, fs = fib.using("f[0] as x")(5)
assert fs.map("x") == [1]
res, fs = fib.using("'f'(#key=0) as x")(5)
assert fs.map("x") == [1]
res, fs = fib.using("f[$i] as x")(5)
intermediates = [1, 1, 2, 3, 5, 8]
indices = list(range(6))
assert fs.map("x") == intermediates
assert fs.map("i") == indices
assert fs.map("i", "x") == list(zip(indices, intermediates))
def test_indexing_2():
res, fs = fib.full_tapping("fib(!n, f[3] as x)")(5)
assert res == 8
assert fs.map("n") == [5]
assert fs.map("x") == [3]
def test_attach():
_brie = brie.attach(hello=12).using("brie > #hello")
res, hello = _brie(5, 6)
assert hello.map("hello") == [12]
@tooled
def superbrie(n):
result = 0
k = 0
for i in range(n):
for j in range(n):
result += brie[[i, j]](k, 2)
k = k + 1
return result
def test_function_indexing():
assert superbrie(10) == 328750
_, x = superbrie.using("brie[[1, $j]] > x")(10)
assert x.map("j") == list(range(10))
assert x.map("x") == list(range(10, 20))
_, x = superbrie.using("brie[[1, $j ~ every(3)]] > x")(10)
assert x.map("x") == list(range(10, 20, 3))
def test_immediate_evaluation():
# This uses a GetterAccumulator
ss = superbrie.rewriting({"superbrie(k=7) > brie > x": (lambda: 0)})
assert ss(10) == 328701
# This uses a GetterAccumulator
ss = superbrie.rewriting({"superbrie(i=9) > brie > x": (lambda: 0)})
assert ss(10) == 239365
# By default this uses a TotalAccumulator, which requires every
# value of i to be 1 and every j to be a multiple of 3
_, x = superbrie.full_tapping("superbrie(i=1, j~every(3)) > brie > x")(10)
assert x.map("x") == []
# Creates a SetterAccumulator which only takes into account the values
# of i and j at the moment the focus variable x is triggered
_, x = superbrie.using(
Tap("superbrie(i=1, j~every(3)) > brie > x", immediate=True)
)(10)
assert x.map("x") == list(range(10, 20, 3))
def test_nested_overlay():
expectedx = [{"x": [2]}, {"x": [10]}]
expectedy = [{"y": [3]}, {"y": [11]}]
storex = GrabAll("brie > x")
storey = GrabAll("brie > y")
with BaseOverlay({**storex.rules, **storey.rules}):
assert double_brie(2, 10) == 236
assert storex.results == expectedx
assert storey.results == expectedy
storex = GrabAll("brie > x")
storey = GrabAll("brie > y")
with BaseOverlay(storex.rules):
with BaseOverlay(storey.rules):
assert double_brie(2, 10) == 236
assert storex.results == expectedx
assert storey.results == expectedy
@tooled
def mystery(hat):
surprise: tag.MyStErY
return surprise * hat
def test_provide_var():
with BaseOverlay({"mystery(!surprise)": {"value": lambda surprise: 4}}):
assert mystery(10) == 40
with BaseOverlay(
{"mystery(hat, !surprise)": {"value": lambda hat, surprise: hat.value}}
):
assert mystery(8) == 64
def test_missing_var():
try:
mystery(3)
except NameError as err:
assert err.varname == "surprise"
assert err.function == mystery
info = err.info()
assert info["annotation"] == tag.MyStErY
with pytest.raises(NameError):
mystery.tweaking({"mystery(hat=10) > surprise": 0})(3)
def test_tap_map():
rval, acoll = double_brie.full_tapping("brie(!a, b)")(2, 10)
assert acoll.map("a") == [4, 100]
assert acoll.map("b") == [9, 121]
assert acoll.map(lambda a, b: a + b) == [13, 221]
assert acoll.map() == [{"a": 4, "b": 9}, {"a": 100, "b": 121}]
assert acoll.map(lambda **kwargs: kwargs["a"] + kwargs["b"]) == [13, 221]
def test_tap_map_all():
rval, acoll = double_brie.full_tapping("double_brie(!x1) >> brie(x)")(2, 10)
with pytest.raises(ValueError):
acoll.map("x1", "x")
assert acoll.map_all("x1", "x") == [([2], [2, 10])]
assert acoll.map_all() == [{"x1": [2], "x": [2, 10]}]
def test_tap_map_named():
rval = double_brie.using(data="brie(!a, b)")(2, 10)
assert rval.value == 236
assert rval.data.map("a") == [4, 100]
def test_tap_map_full():
rval, acoll = double_brie.using("brie > $param:tag.Bouffe")(2, 10)
assert acoll.map_full(lambda param: param.value) == [4, 9, 100, 121]
assert acoll.map_full(lambda param: param.name) == ["a", "b", "a", "b"]
def test_on():
dbrie = double_brie.clone(return_object=True)
@dbrie.on("brie > x")
def minx(x):
return -x
@dbrie.on("brie > x", all=True)
def minx_all(x):
return [-v for v in x]
@dbrie.on("brie > x", full=True)
def minx_full(x):
assert x.name == "x"
return -x.value
results = dbrie(2, 10)
assert results.minx == [-2, -10]
assert results.minx_all == [[-2], [-10]]
assert results.minx_full == [-2, -10]
def test_use():
dbrie = double_brie.clone(return_object=True)
dbrie.use(data="brie(!a, b)")
rval = dbrie(2, 10)
assert rval.value == 236
assert rval.data.map() == [{"a": 4}, {"a": 100}]
def test_full_tap():
dbrie = double_brie.clone(return_object=True)
dbrie.full_tap(data="brie(!a, b)")
rval = dbrie(2, 10)
assert rval.value == 236
assert rval.data.map("a") == [4, 100]
assert rval.data.map("b") == [9, 121]
def test_tweak():
dbrie = double_brie.clone()
dbrie.tweak({"brie > x": 10})
assert dbrie(2, 10) == 332
def test_rewrite():
dbrie = double_brie.clone()
dbrie.rewrite({"brie(x, !y)": lambda x: x})
assert dbrie(2, 10) == 210
def test_collect():
dbrie = double_brie.clone(return_object=True)
@dbrie.collect("brie > x")
def sumx(xs):
return sum(xs.map("x"))
results = dbrie(2, 10)
assert results.sumx == 12
@tooled
def square(x):
rval = x * x
return rval
@tooled
def sumsquares(x, y):
xx = square(x)
yy = square(y)
rval = xx + yy
return rval
def test_readme():
results = sumsquares.using(q="x")(3, 4)
assert results.q.map("x") == [3, 3, 4]
results = sumsquares.using(q="square > x")(3, 4)
assert results.q.map("x") == [3, 4]
results = sumsquares.full_tapping(q="square(rval) > x")(3, 4)
assert results.q.map("x", "rval") == [(3, 9), (4, 16)]
results = sumsquares.full_tapping(
q="sumsquares(x as ssx, y as ssy) > square(rval) > x"
)(3, 4)
assert results.q.map("ssx", "ssy", "x", "rval") == [
(3, 4, 3, 9),
(3, 4, 4, 16),
]
results = sumsquares.full_tapping(
q="sumsquares(!x as ssx, y as ssy) > square(rval, x)"
)(3, 4)
assert results.q.map_all("ssx", "ssy", "x", "rval") == [
([3], [4], [3, 4], [9, 16])
]
result = sumsquares.tweaking({"square > rval": 0})(3, 4)
assert result == 0
result = sumsquares.rewriting({"square(x) > rval": lambda x: x + 1})(3, 4)
assert result == 9
@tooled.defaults(x=10, y=20)
def vanilla(x, y):
return x * y
def test_ptera_defaults():
assert vanilla() == 200
assert vanilla(4, 5) == 20
def test_capture():
cap = Capture(parse("x"))
assert cap.name == "x"
with pytest.raises(ValueError):
cap.value
cap.accum("x", 1)
assert cap.name == "x"
assert cap.value == 1
cap.accum("x", 2)
with pytest.raises(ValueError):
cap.value
assert str(cap) == "Capture(sel(\"!x\"), ['x', 'x'], [1, 2])"
cap = Capture(Element(name=None))
with pytest.raises(ValueError):
cap.name
cap.accum("y", 7)
assert cap.name == "y"
assert cap.value == 7
cap.accum("z", 31)
with pytest.raises(ValueError):
cap.name
with pytest.raises(ValueError):
cap.value
@tooled
def cake():
flavour: tag.Flavour
return f"This is a {flavour} cake"
@tooled
def fruitcake():
my_cake = cake.new(flavour="fruit").clone(return_object=True)
@my_cake.on("flavour")
def yum(flavour):
return flavour * 2
return my_cake()
def test_listener_within_ptera():
res = fruitcake()
assert res.value == "This is a fruit cake"
assert res.yum == ["fruitfruit"]
def test_doc():
assert brie.__doc__ == """Brie is a sort of cheese."""
class Matou:
def __init__(self, species):
self.species = species
@tooled
def meow(self, repeat=1):
ms = "m"
es = "e"
os = "o" * repeat
ws = "w" * len(self.species)
cry = ms + es + os + ws
meows = [cry] * repeat
return " ".join(meows)
def meow_nodeco(self, repeat=1):
ms = "m"
es = "e"
os = "o" * repeat
ws = "w" * len(self.species)
cry = ms + es + os + ws
meows = [cry] * repeat
return " ".join(meows)
def test_method():
siamese = Matou("siamese")
assert siamese.meow() == "meowwwwwww"
assert siamese.meow.tweaking({"Matou.meow > es": "eee"})() == "meeeowwwwwww"
with Overlay.tweaking({"Matou.meow > es": "eee"}):
assert siamese.meow() == "meeeowwwwwww"
with Overlay.tweaking({"Matou.meow > repeat": 2}):
assert siamese.meow() == "meoowwwwwww meoowwwwwww"
store = GrabAll("Matou.meow(repeat) > os")
with BaseOverlay(store.rules):
for i in range(3):
siamese.meow(i)
assert store.results == [
{"os": [""], "repeat": [0]},
{"os": ["o"], "repeat": [1]},
{"os": ["oo"], "repeat": [2]},
]
def test_redirect_method():
siamese = Matou("siamese")
tooled.inplace(Matou.meow_nodeco)
assert siamese.meow_nodeco() == "meowwwwwww"
with Overlay.tweaking({"Matou.meow_nodeco > es": "eee"}):
assert siamese.meow_nodeco() == "meeeowwwwwww"
store = GrabAll("Matou.meow_nodeco(repeat) > os")
with BaseOverlay(store.rules):
for i in range(3):
siamese.meow_nodeco(i)
assert store.results == [
{"os": [""], "repeat": [0]},
{"os": ["o"], "repeat": [1]},
{"os": ["oo"], "repeat": [2]},
]
def test_overlay():
def twice_mystery(x):
return mystery(x), mystery(x + 1)
ov = Overlay()
ov.tweak({"surprise": 2})
@ov.on("mystery > hat")
def hats(hat):
return hat * hat
@ov.on("mystery(hat) > surprise")
def shats(surprise, hat):
return (surprise, hat)
with ov as results:
assert twice_mystery(10) == (20, 22)
assert results.hats == [100, 121]
assert results.shats == [(2, 10), (2, 11)]
@tooled
def brooms(xs):
rval = 0
for i, x in enumerate(xs):
rval = rval + (i + 1) * x
return rval
def test_for_loop():
assert brooms([1, 2, 3]) == 14
assert brooms.tweaking({"i": 0})([1, 2, 3]) == 6
@tooled
def multitag():
y: tag.Bouffe = default(10)
y = y * y
return y
def test_samevar_multitag():
assert multitag() == 100
with Overlay.tweaking({"y:tag.Bouffe": 5}):
assert multitag() == 25
with Overlay.tweaking({"y:tag.Irrelevant": 5}):
assert multitag() == 100
def test_redirect():
def funkykong(x):
surf: tag.Surfboard = True
return x * x if surf else x
orig_funky = funkykong
new_funky = tooled.inplace(funkykong)
assert funkykong is orig_funky
assert funkykong is new_funky
assert funkykong(10) == 100
with Overlay.tweaking({"surf:tag.Surfboard": False}):
assert funkykong(10) == 10
assert funkykong(10) == 100
def test_redirect_noclobber():
def one():
x = 1
return x
def two():
x = 1
return x * 2
tooled.inplace(one)
tooled.inplace(two)
assert one() == 1
assert two() == 2
with Overlay.tweaking({"x": 7}):
assert one() == 7
assert two() == 14
def exposure(n):
x = 2
return n ** x
def test_redirect_global():
old_exposure = exposure
tooled.inplace(exposure)
assert exposure(8) == 64
with Overlay.tweaking({"x": 3}):
assert exposure(8) == 512
assert old_exposure is exposure
| null |
tests/test_core.py
|
test_core.py
|
py
| 16,697 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "ptera.tag.Bouffe",
"line_number": 15,
"usage_type": "attribute"
},
{
"api_name": "ptera.tag",
"line_number": 15,
"usage_type": "name"
},
{
"api_name": "ptera.tooled",
"line_number": 12,
"usage_type": "name"
},
{
"api_name": "ptera.tag.Fromage",
"line_number": 13,
"usage_type": "attribute"
},
{
"api_name": "ptera.tag",
"line_number": 13,
"usage_type": "name"
},
{
"api_name": "ptera.tooled",
"line_number": 20,
"usage_type": "name"
},
{
"api_name": "ptera.tooled",
"line_number": 25,
"usage_type": "name"
},
{
"api_name": "ptera.tooled",
"line_number": 26,
"usage_type": "name"
},
{
"api_name": "ptera.tooled",
"line_number": 27,
"usage_type": "name"
},
{
"api_name": "common.one_test_per_assert",
"line_number": 36,
"usage_type": "name"
},
{
"api_name": "ptera.select",
"line_number": 45,
"usage_type": "call"
},
{
"api_name": "ptera.BaseOverlay",
"line_number": 57,
"usage_type": "call"
},
{
"api_name": "common.one_test_per_assert",
"line_number": 66,
"usage_type": "name"
},
{
"api_name": "ptera.tooled",
"line_number": 136,
"usage_type": "name"
},
{
"api_name": "ptera.tooled",
"line_number": 143,
"usage_type": "name"
},
{
"api_name": "ptera.tooled",
"line_number": 148,
"usage_type": "name"
},
{
"api_name": "ptera.Recurrence",
"line_number": 162,
"usage_type": "call"
},
{
"api_name": "ptera.tooled",
"line_number": 160,
"usage_type": "name"
},
{
"api_name": "ptera.tools.every",
"line_number": 170,
"usage_type": "call"
},
{
"api_name": "ptera.tooled",
"line_number": 217,
"usage_type": "name"
},
{
"api_name": "ptera.core.Tap",
"line_number": 256,
"usage_type": "call"
},
{
"api_name": "ptera.BaseOverlay",
"line_number": 267,
"usage_type": "call"
},
{
"api_name": "ptera.BaseOverlay",
"line_number": 274,
"usage_type": "call"
},
{
"api_name": "ptera.BaseOverlay",
"line_number": 275,
"usage_type": "call"
},
{
"api_name": "ptera.tag.MyStErY",
"line_number": 283,
"usage_type": "attribute"
},
{
"api_name": "ptera.tag",
"line_number": 283,
"usage_type": "name"
},
{
"api_name": "ptera.tooled",
"line_number": 281,
"usage_type": "name"
},
{
"api_name": "ptera.BaseOverlay",
"line_number": 288,
"usage_type": "call"
},
{
"api_name": "ptera.BaseOverlay",
"line_number": 291,
"usage_type": "call"
},
{
"api_name": "ptera.tag.MyStErY",
"line_number": 304,
"usage_type": "attribute"
},
{
"api_name": "ptera.tag",
"line_number": 304,
"usage_type": "name"
},
{
"api_name": "pytest.raises",
"line_number": 306,
"usage_type": "call"
},
{
"api_name": "pytest.raises",
"line_number": 321,
"usage_type": "call"
},
{
"api_name": "ptera.tooled",
"line_number": 401,
"usage_type": "name"
},
{
"api_name": "ptera.tooled",
"line_number": 407,
"usage_type": "name"
},
{
"api_name": "ptera.tooled.defaults",
"line_number": 447,
"usage_type": "call"
},
{
"api_name": "ptera.tooled",
"line_number": 447,
"usage_type": "name"
},
{
"api_name": "ptera.core.Capture",
"line_number": 458,
"usage_type": "call"
},
{
"api_name": "ptera.selector.parse",
"line_number": 458,
"usage_type": "call"
},
{
"api_name": "pytest.raises",
"line_number": 460,
"usage_type": "call"
},
{
"api_name": "pytest.raises",
"line_number": 466,
"usage_type": "call"
},
{
"api_name": "ptera.core.Capture",
"line_number": 471,
"usage_type": "call"
},
{
"api_name": "ptera.selector.Element",
"line_number": 471,
"usage_type": "call"
},
{
"api_name": "pytest.raises",
"line_number": 472,
"usage_type": "call"
},
{
"api_name": "pytest.raises",
"line_number": 478,
"usage_type": "call"
},
{
"api_name": "pytest.raises",
"line_number": 480,
"usage_type": "call"
},
{
"api_name": "ptera.tag.Flavour",
"line_number": 486,
"usage_type": "attribute"
},
{
"api_name": "ptera.tag",
"line_number": 486,
"usage_type": "name"
},
{
"api_name": "ptera.tooled",
"line_number": 484,
"usage_type": "name"
},
{
"api_name": "ptera.tooled",
"line_number": 490,
"usage_type": "name"
},
{
"api_name": "ptera.tooled",
"line_number": 515,
"usage_type": "name"
},
{
"api_name": "ptera.Overlay.tweaking",
"line_number": 541,
"usage_type": "call"
},
{
"api_name": "ptera.Overlay",
"line_number": 541,
"usage_type": "name"
},
{
"api_name": "ptera.Overlay.tweaking",
"line_number": 544,
"usage_type": "call"
},
{
"api_name": "ptera.Overlay",
"line_number": 544,
"usage_type": "name"
},
{
"api_name": "ptera.BaseOverlay",
"line_number": 548,
"usage_type": "call"
},
{
"api_name": "ptera.tooled.inplace",
"line_number": 561,
"usage_type": "call"
},
{
"api_name": "ptera.tooled",
"line_number": 561,
"usage_type": "name"
},
{
"api_name": "ptera.Overlay.tweaking",
"line_number": 565,
"usage_type": "call"
},
{
"api_name": "ptera.Overlay",
"line_number": 565,
"usage_type": "name"
},
{
"api_name": "ptera.BaseOverlay",
"line_number": 569,
"usage_type": "call"
},
{
"api_name": "ptera.Overlay",
"line_number": 583,
"usage_type": "call"
},
{
"api_name": "ptera.tooled",
"line_number": 601,
"usage_type": "name"
},
{
"api_name": "ptera.tag.Bouffe",
"line_number": 616,
"usage_type": "attribute"
},
{
"api_name": "ptera.tag",
"line_number": 616,
"usage_type": "name"
},
{
"api_name": "ptera.selfless.default",
"line_number": 616,
"usage_type": "call"
},
{
"api_name": "ptera.tooled",
"line_number": 614,
"usage_type": "name"
},
{
"api_name": "ptera.Overlay.tweaking",
"line_number": 623,
"usage_type": "call"
},
{
"api_name": "ptera.Overlay",
"line_number": 623,
"usage_type": "name"
},
{
"api_name": "ptera.Overlay.tweaking",
"line_number": 625,
"usage_type": "call"
},
{
"api_name": "ptera.Overlay",
"line_number": 625,
"usage_type": "name"
},
{
"api_name": "ptera.tag.Surfboard",
"line_number": 631,
"usage_type": "attribute"
},
{
"api_name": "ptera.tag",
"line_number": 631,
"usage_type": "name"
},
{
"api_name": "ptera.tooled.inplace",
"line_number": 635,
"usage_type": "call"
},
{
"api_name": "ptera.tooled",
"line_number": 635,
"usage_type": "name"
},
{
"api_name": "ptera.Overlay.tweaking",
"line_number": 641,
"usage_type": "call"
},
{
"api_name": "ptera.Overlay",
"line_number": 641,
"usage_type": "name"
},
{
"api_name": "ptera.tooled.inplace",
"line_number": 655,
"usage_type": "call"
},
{
"api_name": "ptera.tooled",
"line_number": 655,
"usage_type": "name"
},
{
"api_name": "ptera.tooled.inplace",
"line_number": 656,
"usage_type": "call"
},
{
"api_name": "ptera.tooled",
"line_number": 656,
"usage_type": "name"
},
{
"api_name": "ptera.Overlay.tweaking",
"line_number": 661,
"usage_type": "call"
},
{
"api_name": "ptera.Overlay",
"line_number": 661,
"usage_type": "name"
},
{
"api_name": "ptera.tooled.inplace",
"line_number": 674,
"usage_type": "call"
},
{
"api_name": "ptera.tooled",
"line_number": 674,
"usage_type": "name"
},
{
"api_name": "ptera.Overlay.tweaking",
"line_number": 677,
"usage_type": "call"
},
{
"api_name": "ptera.Overlay",
"line_number": 677,
"usage_type": "name"
}
] |
279687301
|
#!/usr/bin/env python
import time
import numpy as np
from mujoco_py import load_model_from_xml, MjSim, MjViewer
XML = '''
<mujoco>
<worldbody>
<geom name='floor' pos='0 0 0' size='5 5 .125' type='plane' condim='3'/>
<body name='ball' pos='0 0 1'>
<joint type='free'/>
<geom name='ball' pos='0 0 0' size='.1' type='sphere' rgba='1 0 0 1'/>
</body>
</worldbody>
</mujoco>
'''
model = load_model_from_xml(XML)
sim = MjSim(model)
viewer = MjViewer(sim)
import pdb; pdb.set_trace()
while True:
sim.model.opt.gravity[0] = np.sin(time.time())
sim.model.opt.gravity[1] = np.cos(time.time())
sim.step()
viewer.render()
| null |
spinup/algos/ddpg_n_step/change_gravity_on_the_fly.py
|
change_gravity_on_the_fly.py
|
py
| 685 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "mujoco_py.load_model_from_xml",
"line_number": 20,
"usage_type": "call"
},
{
"api_name": "mujoco_py.MjSim",
"line_number": 21,
"usage_type": "call"
},
{
"api_name": "mujoco_py.MjViewer",
"line_number": 22,
"usage_type": "call"
},
{
"api_name": "pdb.set_trace",
"line_number": 23,
"usage_type": "call"
},
{
"api_name": "numpy.sin",
"line_number": 25,
"usage_type": "call"
},
{
"api_name": "time.time",
"line_number": 25,
"usage_type": "call"
},
{
"api_name": "numpy.cos",
"line_number": 26,
"usage_type": "call"
},
{
"api_name": "time.time",
"line_number": 26,
"usage_type": "call"
}
] |
29648438
|
from datetime import datetime
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Table, Column, Integer, String, DateTime, Sequence, ForeignKey, UniqueConstraint
from sqlalchemy.orm import relationship, backref
from sqlalchemy import event
from sqlalchemy import DDL
from ev_site import EVSite
Base = declarative_base()
class EVJPActress(Base):
__tablename__ = 'ev_jp_actress'
ev_actress_id = Column(Integer, Sequence('ev_actress_id_seq', start=10000001), primary_key=True)
name = Column(String(30), index=True, unique=True, nullable=False)
#name = Column(String(30), index=True, nullable=False)
#name_kana = Column(String(30), default=None, nullable=False)
#name_kana = Column(String(30), index=True, nullable=True)
name_hiragana = Column(String(30), index=True, nullable=True)
name_katakana = Column(String(30), index=True, nullable=True)
#name_index = Column(String(1), index=True, nullable=True)
name_index_hiragana = Column(String(1), index=True, nullable=True)
name_index_katakana = Column(String(1), index=True, nullable=True)
created = Column(DateTime(), default=datetime.now(), nullable=False)
updated = Column(DateTime(), default=datetime.now(), nullable=False)
#def __init__(self, name, name_hiragana, name_katakana, name_index_hiragana, name_index_katakana):
# self.name = name
# self.name_hiragana = name_hiragana
# self.name_katakana = name_katakana
# self.name_index_hiragana = name_index_hiragana
# self.name_index_katakana = name_index_katakana
event.listen(
EVJPActress.__table__,
'after_create',
DDL("ALTER TABLE %(table)s AUTO_INCREMENT = 10000001;")
)
#event.listen(
# EVJPActress.__table__,
# 'after_create',
# DDL("ALTER TABLE %(table)s ADD UNIQUE (name, name_kana, name_index);")
#)
class EVJPActressImage(Base):
__tablename__ = 'ev_jp_actress_image'
ev_actress_image_id = Column(Integer, Sequence('ev_actress_image_id_seq', start=10000001), primary_key=True)
#name = Column(String(50), index=True, unique=True, nullable=False)
name = Column(String(50), index=True, nullable=False)
ev_actress_id = Column(Integer, ForeignKey(EVJPActress.ev_actress_id), nullable=False)
#ev_actress = relationship(EVJPActress, backref='ev_actress_images')
ev_actress = relationship(EVJPActress, backref='images')
def __init__(self, name):
self.name = name
event.listen(
EVJPActressImage.__table__,
'after_create',
DDL("ALTER TABLE %(table)s AUTO_INCREMENT = 10000001;")
)
event.listen(
EVJPActressImage.__table__,
'after_create',
DDL("ALTER TABLE %(table)s ADD UNIQUE (name, ev_actress_id);")
)
class SiteJPActress(Base):
__tablename__ = 'site_jp_actress'
""" ev_actress_id cannot be primary key because same actress names might be inserted """
site_actress_id = Column(Integer, Sequence('site_actress_id_seq', start=10000001), primary_key=True)
ev_actress_id = Column(Integer, ForeignKey(EVJPActress.ev_actress_id), index=True, nullable=False)
name = Column(String(30), ForeignKey(EVJPActress.name), index=True, nullable=False)
#name_kana = Column(String(30), ForeignKey(EVJPActress.name_kana), nullable=True)
#name_kana = Column(String(30), ForeignKey(EVJPActress.name_kana), index=True, nullable=True)
name_hiragana = Column(String(30), ForeignKey(EVJPActress.name_hiragana), index=True, nullable=True)
name_katakana = Column(String(30), ForeignKey(EVJPActress.name_katakana), index=True, nullable=True)
#name_index = Column(String(1), ForeignKey(EVJPActress.name_index), index=True, nullable=True)
name_index_hiragana = Column(String(1), ForeignKey(EVJPActress.name_index_hiragana), index=True, nullable=True)
name_index_katakana = Column(String(1), ForeignKey(EVJPActress.name_index_katakana), index=True, nullable=True)
#site_id = Column(Integer, nullable=False)
site_id = Column(Integer, ForeignKey(EVSite.site_id), nullable=False)
created = Column(DateTime(), default=datetime.now(), nullable=False)
updated = Column(DateTime(), default=datetime.now(), nullable=False)
__mapper_args__ = {'polymorphic_on': site_id}
ev_actress = relationship(EVJPActress,
primaryjoin='and_(EVJPActress.ev_actress_id==SiteJPActress.ev_actress_id, \
EVJPActress.name==SiteJPActress.name, \
EVJPActress.name_hiragana==SiteJPActress.name_hiragana, \
EVJPActress.name_katakana==SiteJPActress.name_katakana, \
EVJPActress.name_index_hiragana==SiteJPActress.name_index_hiragana, \
EVJPActress.name_index_katakana==SiteJPActress.name_index_katakana)',
backref='site_actresses')
def __init__(self, site_id):
self.site_id = site_id
event.listen(
SiteJPActress.__table__,
'after_create',
DDL("ALTER TABLE %(table)s AUTO_INCREMENT = 10000001;")
)
event.listen(
SiteJPActress.__table__,
'after_create',
DDL("ALTER TABLE %(table)s ADD UNIQUE (name, site_id);")
)
#event.listen(
# SiteJPActress.__table__,
# 'after_create',
# DDL("ALTER TABLE %(table)s ADD UNIQUE (name, name_kana, name_index);")
#)
from erovideo.models.engine import engine
Base.metadata.create_all(engine)
| null |
erovideo/old/models.012013/old/ev_actress.010913.py
|
ev_actress.010913.py
|
py
| 5,524 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "sqlalchemy.ext.declarative.declarative_base",
"line_number": 9,
"usage_type": "call"
},
{
"api_name": "sqlalchemy.Column",
"line_number": 15,
"usage_type": "call"
},
{
"api_name": "sqlalchemy.Integer",
"line_number": 15,
"usage_type": "argument"
},
{
"api_name": "sqlalchemy.Sequence",
"line_number": 15,
"usage_type": "call"
},
{
"api_name": "sqlalchemy.Column",
"line_number": 16,
"usage_type": "call"
},
{
"api_name": "sqlalchemy.String",
"line_number": 16,
"usage_type": "call"
},
{
"api_name": "sqlalchemy.Column",
"line_number": 20,
"usage_type": "call"
},
{
"api_name": "sqlalchemy.String",
"line_number": 20,
"usage_type": "call"
},
{
"api_name": "sqlalchemy.Column",
"line_number": 21,
"usage_type": "call"
},
{
"api_name": "sqlalchemy.String",
"line_number": 21,
"usage_type": "call"
},
{
"api_name": "sqlalchemy.Column",
"line_number": 23,
"usage_type": "call"
},
{
"api_name": "sqlalchemy.String",
"line_number": 23,
"usage_type": "call"
},
{
"api_name": "sqlalchemy.Column",
"line_number": 24,
"usage_type": "call"
},
{
"api_name": "sqlalchemy.String",
"line_number": 24,
"usage_type": "call"
},
{
"api_name": "sqlalchemy.Column",
"line_number": 25,
"usage_type": "call"
},
{
"api_name": "sqlalchemy.DateTime",
"line_number": 25,
"usage_type": "call"
},
{
"api_name": "datetime.datetime.now",
"line_number": 25,
"usage_type": "call"
},
{
"api_name": "datetime.datetime",
"line_number": 25,
"usage_type": "name"
},
{
"api_name": "sqlalchemy.Column",
"line_number": 26,
"usage_type": "call"
},
{
"api_name": "sqlalchemy.DateTime",
"line_number": 26,
"usage_type": "call"
},
{
"api_name": "datetime.datetime.now",
"line_number": 26,
"usage_type": "call"
},
{
"api_name": "datetime.datetime",
"line_number": 26,
"usage_type": "name"
},
{
"api_name": "sqlalchemy.event.listen",
"line_number": 36,
"usage_type": "call"
},
{
"api_name": "sqlalchemy.event",
"line_number": 36,
"usage_type": "name"
},
{
"api_name": "sqlalchemy.DDL",
"line_number": 39,
"usage_type": "call"
},
{
"api_name": "sqlalchemy.Column",
"line_number": 52,
"usage_type": "call"
},
{
"api_name": "sqlalchemy.Integer",
"line_number": 52,
"usage_type": "argument"
},
{
"api_name": "sqlalchemy.Sequence",
"line_number": 52,
"usage_type": "call"
},
{
"api_name": "sqlalchemy.Column",
"line_number": 54,
"usage_type": "call"
},
{
"api_name": "sqlalchemy.String",
"line_number": 54,
"usage_type": "call"
},
{
"api_name": "sqlalchemy.Column",
"line_number": 55,
"usage_type": "call"
},
{
"api_name": "sqlalchemy.Integer",
"line_number": 55,
"usage_type": "argument"
},
{
"api_name": "sqlalchemy.ForeignKey",
"line_number": 55,
"usage_type": "call"
},
{
"api_name": "sqlalchemy.orm.relationship",
"line_number": 58,
"usage_type": "call"
},
{
"api_name": "sqlalchemy.event.listen",
"line_number": 64,
"usage_type": "call"
},
{
"api_name": "sqlalchemy.event",
"line_number": 64,
"usage_type": "name"
},
{
"api_name": "sqlalchemy.DDL",
"line_number": 67,
"usage_type": "call"
},
{
"api_name": "sqlalchemy.event.listen",
"line_number": 70,
"usage_type": "call"
},
{
"api_name": "sqlalchemy.event",
"line_number": 70,
"usage_type": "name"
},
{
"api_name": "sqlalchemy.DDL",
"line_number": 73,
"usage_type": "call"
},
{
"api_name": "sqlalchemy.Column",
"line_number": 81,
"usage_type": "call"
},
{
"api_name": "sqlalchemy.Integer",
"line_number": 81,
"usage_type": "argument"
},
{
"api_name": "sqlalchemy.Sequence",
"line_number": 81,
"usage_type": "call"
},
{
"api_name": "sqlalchemy.Column",
"line_number": 82,
"usage_type": "call"
},
{
"api_name": "sqlalchemy.Integer",
"line_number": 82,
"usage_type": "argument"
},
{
"api_name": "sqlalchemy.ForeignKey",
"line_number": 82,
"usage_type": "call"
},
{
"api_name": "sqlalchemy.Column",
"line_number": 83,
"usage_type": "call"
},
{
"api_name": "sqlalchemy.String",
"line_number": 83,
"usage_type": "call"
},
{
"api_name": "sqlalchemy.ForeignKey",
"line_number": 83,
"usage_type": "call"
},
{
"api_name": "sqlalchemy.Column",
"line_number": 86,
"usage_type": "call"
},
{
"api_name": "sqlalchemy.String",
"line_number": 86,
"usage_type": "call"
},
{
"api_name": "sqlalchemy.ForeignKey",
"line_number": 86,
"usage_type": "call"
},
{
"api_name": "sqlalchemy.Column",
"line_number": 87,
"usage_type": "call"
},
{
"api_name": "sqlalchemy.String",
"line_number": 87,
"usage_type": "call"
},
{
"api_name": "sqlalchemy.ForeignKey",
"line_number": 87,
"usage_type": "call"
},
{
"api_name": "sqlalchemy.Column",
"line_number": 89,
"usage_type": "call"
},
{
"api_name": "sqlalchemy.String",
"line_number": 89,
"usage_type": "call"
},
{
"api_name": "sqlalchemy.ForeignKey",
"line_number": 89,
"usage_type": "call"
},
{
"api_name": "sqlalchemy.Column",
"line_number": 90,
"usage_type": "call"
},
{
"api_name": "sqlalchemy.String",
"line_number": 90,
"usage_type": "call"
},
{
"api_name": "sqlalchemy.ForeignKey",
"line_number": 90,
"usage_type": "call"
},
{
"api_name": "sqlalchemy.Column",
"line_number": 92,
"usage_type": "call"
},
{
"api_name": "sqlalchemy.Integer",
"line_number": 92,
"usage_type": "argument"
},
{
"api_name": "sqlalchemy.ForeignKey",
"line_number": 92,
"usage_type": "call"
},
{
"api_name": "ev_site.EVSite.site_id",
"line_number": 92,
"usage_type": "attribute"
},
{
"api_name": "ev_site.EVSite",
"line_number": 92,
"usage_type": "name"
},
{
"api_name": "sqlalchemy.Column",
"line_number": 93,
"usage_type": "call"
},
{
"api_name": "sqlalchemy.DateTime",
"line_number": 93,
"usage_type": "call"
},
{
"api_name": "datetime.datetime.now",
"line_number": 93,
"usage_type": "call"
},
{
"api_name": "datetime.datetime",
"line_number": 93,
"usage_type": "name"
},
{
"api_name": "sqlalchemy.Column",
"line_number": 94,
"usage_type": "call"
},
{
"api_name": "sqlalchemy.DateTime",
"line_number": 94,
"usage_type": "call"
},
{
"api_name": "datetime.datetime.now",
"line_number": 94,
"usage_type": "call"
},
{
"api_name": "datetime.datetime",
"line_number": 94,
"usage_type": "name"
},
{
"api_name": "sqlalchemy.orm.relationship",
"line_number": 98,
"usage_type": "call"
},
{
"api_name": "sqlalchemy.event.listen",
"line_number": 111,
"usage_type": "call"
},
{
"api_name": "sqlalchemy.event",
"line_number": 111,
"usage_type": "name"
},
{
"api_name": "sqlalchemy.DDL",
"line_number": 114,
"usage_type": "call"
},
{
"api_name": "sqlalchemy.event.listen",
"line_number": 117,
"usage_type": "call"
},
{
"api_name": "sqlalchemy.event",
"line_number": 117,
"usage_type": "name"
},
{
"api_name": "sqlalchemy.DDL",
"line_number": 120,
"usage_type": "call"
},
{
"api_name": "erovideo.models.engine.engine",
"line_number": 131,
"usage_type": "argument"
}
] |
293415917
|
from gensim.models import KeyedVectors
import pandas as pd
from sklearn.manifold import TSNE
import numpy as np
import matplotlib.pyplot as plt
def show_words(words_list,lang_type): #่ฏๆ ็ญพ๏ผ่ฏๅ้
# ๅ ่ฝฝ่ฝฌๆขๆไปถ
model = KeyedVectors.load_word2vec_format("./Word2Vec/%s_word2vec.txt"%lang_type, binary=False)
# ่พๅบ่ฏๅ้
word_vectors = []
for word in words_list:
word_vectors.append(model.wv[word]) #ๅ ่ฝฝ่ฏๅ้
# TSE้็ปด
tsne = TSNE(n_components=2,perplexity=5,early_exaggeration=100,learning_rate=50,random_state=0,n_iter=10000,verbose=1)
# ้็ปดๆไฝ
low_dim_embs = tsne.fit_transform(np.array(word_vectors))
print(low_dim_embs.shape) # ่ฝฌๆขๅ็่ฏๅ้
assert low_dim_embs.shape[0] == len(words_list)
# ็ปๅพๆไฝ
plt.figure(figsize=(6,6))
# ็ปๅพ
for i, label in enumerate(words_list):
x, y = low_dim_embs[i, :]
plt.scatter(x, y)
plt.annotate(label, xy=(x,y), xytext=(2,4), textcoords='offset points', ha='right', va='bottom', fontsize=8)
plt.savefig('%s_tsne.png'%lang_type)
print('%s่ฏๅ้ๅฏ่งๅๅฎๆฏ๏ผ'%lang_type)
#-------------------------ๅๆฐ้
็ฝฎ----------------------------------
sqlang_type = 'sqlang' # 93515ๆก
# ้็่ฏ่ฏญๅ่กจ
sqlang_words=[
'row','column','table','group','tagstr','tagint','codint','value','data','server','sql','database','if','with','from','for','to','on','in','into','between','or','and','but','where','what','when','which','order','by','of','as','like','set','select','insert','update','delete','join','inner','create','check','view','use','get','*','(',')',':','=']
csharp_type = 'csharp' # 10548ๆก
# ้็่ฏ่ฏญๅ่กจ
csharp_words=[
'or','and','if','else','use','public','static','get','class','void','string','return','var','private','int','type','list','false','true','method','system','number','str','convert','sender','select','add','length','write','read','row','column','like','change','call','need','item','create','find','look','tagstr','codstr','tagint','codint','{','}','<','>','(',')']
javang_type = 'javang' # 10548ๆก
# ้็่ฏ่ฏญๅ่กจ
javang_words=['abstract','assert','boolean','break','byte','case','catch','char','class','const','continue','default','do','double','else','enum','final','finally','float','for','goto','if','import','int','interface','long','native','new','package','private','public','return','short','static','super','switch','this','try','void','while','tagstr','codstr','tagint','codint','{','}','<','>','(',')']
python_type = 'python' # 10548ๆก
# ้็่ฏ่ฏญๅ่กจ
python_words=[
'or','and','not','as','if','else','elif','str','int','float','list','tuple','dict','bool','set','false','none','true','assert', 'break', 'class', 'continue','del', 'for', 'range', 'in','global', 'from','import', 'is', 'lambda', 'nonlocal', 'pass', 'raise','def','return', 'try','except','finally', 'while', 'with', 'yield','tagstr','tagint','{','}','<','>','(',')']
#-------------------------ๅๆฐ้
็ฝฎ----------------------------------
if __name__ == '__main__':
show_words(sqlang_words,sqlang_type)
#show_words(csharp_words,csharp_type)
#show_words(javang_words,javang_type)
#show_words(python_words,python_type)
| null |
data/token_embed/visualization.py
|
visualization.py
|
py
| 3,285 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "gensim.models.KeyedVectors.load_word2vec_format",
"line_number": 10,
"usage_type": "call"
},
{
"api_name": "gensim.models.KeyedVectors",
"line_number": 10,
"usage_type": "name"
},
{
"api_name": "sklearn.manifold.TSNE",
"line_number": 17,
"usage_type": "call"
},
{
"api_name": "numpy.array",
"line_number": 19,
"usage_type": "call"
},
{
"api_name": "matplotlib.pyplot.figure",
"line_number": 26,
"usage_type": "call"
},
{
"api_name": "matplotlib.pyplot",
"line_number": 26,
"usage_type": "name"
},
{
"api_name": "matplotlib.pyplot.scatter",
"line_number": 30,
"usage_type": "call"
},
{
"api_name": "matplotlib.pyplot",
"line_number": 30,
"usage_type": "name"
},
{
"api_name": "matplotlib.pyplot.annotate",
"line_number": 31,
"usage_type": "call"
},
{
"api_name": "matplotlib.pyplot",
"line_number": 31,
"usage_type": "name"
},
{
"api_name": "matplotlib.pyplot.savefig",
"line_number": 32,
"usage_type": "call"
},
{
"api_name": "matplotlib.pyplot",
"line_number": 32,
"usage_type": "name"
}
] |
247955028
|
# load projection and helper functions
import numpy as np
import skymapper as skm
import matplotlib.pylab as plt
class Point:
def __init__(self,x,y):
self.x = x
self.y = y
def __getitem__(self, i):
if i == 0:
return self.x
elif i == 1:
return self.y
raise NotImplementedError
def getCatalog(size=10000, surveyname=None):
# dummy catalog: uniform on sphere
# Marsaglia (1972)
xyz = np.random.normal(size=(size, 3))
r = np.sqrt((xyz**2).sum(axis=1))
dec = np.arccos(xyz[:,2]/r) / skm.DEG2RAD - 90
ra = - np.arctan2(xyz[:,0], xyz[:,1]) / skm.DEG2RAD
if surveyname is not None:
from matplotlib.patches import Polygon
# construct survey polygon
ra_fp, dec_fp = skm.survey_register[surveyname].getFootprint()
poly = Polygon(np.dstack((ra_fp,dec_fp))[0], closed=True)
inside = [poly.get_path().contains_point(Point(ra_,dec_)) for (ra_,dec_) in zip(ra,dec)]
ra = ra[inside]
dec = dec[inside]
return ra, dec
def makeHealpixMap(ra, dec, nside=1024, nest=False):
# convert a ra/dec catalog into healpix map with counts per cell
import healpy as hp
ipix = hp.ang2pix(nside, (90-dec)/180*np.pi, ra/180*np.pi, nest=nest)
return np.bincount(ipix, minlength=hp.nside2npix(nside))
def getHealpixCoords(pixels, nside, nest=False):
# convert healpix cell indices to center ra/dec
import healpy as hp
theta, phi = hp.pix2ang(nside, pixels, nest=nest)
return phi * 180. / np.pi, 90 - theta * 180. / np.pi
if __name__ == "__main__":
# load RA/Dec from catalog
size = 100000
ra, dec = getCatalog(size, surveyname="DES")
# define the best Albers projection for the footprint
# minimizing the variation in distortion
crit = skm.stdDistortion
proj = skm.Albers.optimize(ra, dec, crit=crit)
# construct map: will hold figure and projection
# the outline of the sphere can be styled with kwargs for matplotlib Polygon
map = skm.Map(proj)
# add graticules, separated by 15 deg
# the lines can be styled with kwargs for matplotlib Line2D
# additional arguments for formatting the graticule labels
sep=15
map.grid(sep=sep)
# alter position of default labels at the outer meridians
for m in [proj.ra_0 + 180, proj.ra_0 - 180]:
map.labelParallelAtMeridian(m, verticalalignment='top', horizontalalignment='center')
# remove labels at the south pole
map.labelMeridianAtParallel(-90, meridians=[])
# add footprint, retain the polygon for clipping
footprint = map.footprint("DES", zorder=20, edgecolor='#2222B2', facecolor='None', lw=1)
#### 1. plot density in healpix cells ####
nside = 32
mappable = map.density(ra, dec, nside=nside, clip_path=footprint)
cb = map.colorbar(mappable, cb_label="$n$ [arcmin$^{-2}$]")
# add random scatter plot
len = 10
size = 100*np.random.rand(len)
map.scatter(ra[:len], dec[:len], s=size, edgecolor='k', facecolor='None')
# focus on relevant region
map.focus(ra, dec)
# entitle: access mpl figure
map.fig.suptitle('Density with random scatter')
# copy map without data contents
map2 = map.clone()
footprint2 = map2.footprint("DES", zorder=20, edgecolor='#2222B2', facecolor='None', lw=1)
#### 2. show map distortion over the survey ####
a,b = proj.distortion(ra, dec)
mappable2 = map2.interpolate(ra, dec, 1-np.abs(b/a), vmin=0, vmax=0.3, clip_path=footprint2)
cb2 = map2.colorbar(mappable2, cb_label='Distortion')
map2.fig.suptitle('Projection distortion')
#### 3. extrapolate RA over all sky ####
map3 = skm.Map(proj)
# show with 45 deg graticules
sep=45
map3.grid(sep=sep)
# alter position of default labels at the outer meridians
for m in [proj.ra_0 + 180, proj.ra_0 - 180]:
map3.labelParallelAtMeridian(m, verticalalignment='top', horizontalalignment='center')
# alter number of labels at the south pole
map3.labelMeridianAtParallel(-90, size=8, meridians=np.arange(0,360,90))
footprint3 = map3.footprint("DES", zorder=20, edgecolor='#2222B2', facecolor='None', lw=1)
# this is slow when working with lots of samples...
mappable3 = map3.extrapolate(ra[::10], dec[::10], dec[::10])
cb3 = map3.colorbar(mappable3, cb_label='Dec')
map3.fig.suptitle('Extrapolation on the sphere')
#### 4. test Healpix map functions ####
try:
# simply bin the counts of ra/dec
m = makeHealpixMap(ra, dec, nside=nside)
map4 = map.clone()
footprint4 = map4.footprint("DES", zorder=20, edgecolor='#2222B2', facecolor='None', lw=1)
mappable4 = map4.healpix(m, clip_path=footprint4, cmap="YlOrRd")
cb4 = map4.colorbar(mappable2, cb_label="Healpix cell count")
map4.fig.suptitle('Healpix map')
except ImportError:
pass
| null |
examples/example1.py
|
example1.py
|
py
| 4,929 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "numpy.random.normal",
"line_number": 20,
"usage_type": "call"
},
{
"api_name": "numpy.random",
"line_number": 20,
"usage_type": "attribute"
},
{
"api_name": "numpy.sqrt",
"line_number": 21,
"usage_type": "call"
},
{
"api_name": "numpy.arccos",
"line_number": 22,
"usage_type": "call"
},
{
"api_name": "skymapper.DEG2RAD",
"line_number": 22,
"usage_type": "attribute"
},
{
"api_name": "numpy.arctan2",
"line_number": 23,
"usage_type": "call"
},
{
"api_name": "skymapper.DEG2RAD",
"line_number": 23,
"usage_type": "attribute"
},
{
"api_name": "skymapper.survey_register",
"line_number": 28,
"usage_type": "attribute"
},
{
"api_name": "matplotlib.patches.Polygon",
"line_number": 29,
"usage_type": "call"
},
{
"api_name": "numpy.dstack",
"line_number": 29,
"usage_type": "call"
},
{
"api_name": "healpy.ang2pix",
"line_number": 39,
"usage_type": "call"
},
{
"api_name": "numpy.pi",
"line_number": 39,
"usage_type": "attribute"
},
{
"api_name": "numpy.bincount",
"line_number": 40,
"usage_type": "call"
},
{
"api_name": "healpy.nside2npix",
"line_number": 40,
"usage_type": "call"
},
{
"api_name": "healpy.pix2ang",
"line_number": 45,
"usage_type": "call"
},
{
"api_name": "numpy.pi",
"line_number": 46,
"usage_type": "attribute"
},
{
"api_name": "skymapper.stdDistortion",
"line_number": 57,
"usage_type": "attribute"
},
{
"api_name": "skymapper.Albers.optimize",
"line_number": 58,
"usage_type": "call"
},
{
"api_name": "skymapper.Albers",
"line_number": 58,
"usage_type": "attribute"
},
{
"api_name": "skymapper.Map",
"line_number": 62,
"usage_type": "call"
},
{
"api_name": "numpy.random.rand",
"line_number": 87,
"usage_type": "call"
},
{
"api_name": "numpy.random",
"line_number": 87,
"usage_type": "attribute"
},
{
"api_name": "numpy.abs",
"line_number": 102,
"usage_type": "call"
},
{
"api_name": "skymapper.Map",
"line_number": 107,
"usage_type": "call"
},
{
"api_name": "numpy.arange",
"line_number": 118,
"usage_type": "call"
}
] |
418785973
|
#
# Copyright (c) 2017-2021, The Storage Networking Industry Association.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# Neither the name of The Storage Networking Industry Association (SNIA) nor
# the names of its contributors may be used to endorse or promote products
# derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
# THE POSSIBILITY OF SUCH DAMAGE.
#
#fa_ports_api.py
import json, os
import shutil
import traceback
import logging
import g
import urllib3
from flask import jsonify, request
from flask_restful import Resource
from api_emulator.utils import update_collections_json, create_path, get_json_data, create_and_patch_object, delete_object, patch_object, put_object, delete_collection, create_collection
from .constants import *
from .templates.fabric_adapter_port import get_FabricAdapterPorts_instance
members =[]
member_ids = []
config = {}
INTERNAL_ERROR = 500
# FabricAdapterPorts API
class FabricAdapterPortsAPI(Resource):
def __init__(self, **kwargs):
logging.info('FabricAdapterPortsAPI init called')
self.root = PATHS['Root']
self.systems = PATHS['Systems']['path']
self.fabric_adapters = PATHS['Systems']['fabric_adapters']
self.fabric_adapter_ports = PATHS['Systems']['fabric_adapter_ports']
# HTTP GET
def get(self, system, fabric_adapter, fabric_adapter_port):
path = create_path(self.root, self.systems, system, self.fabric_adapters, fabric_adapter, self.fabric_adapter_ports, fabric_adapter_port, 'index.json')
return get_json_data (path)
# HTTP POST
# - Create the resource (since URI variables are available)
# - Update the members and members.id lists
# - Attach the APIs of subordinate resources (do this only once)
# - Finally, create an instance of the subordiante resources
def post(self, system, fabric_adapter, fabric_adapter_port):
logging.info('FabricAdapterPortsAPI PUT called')
path = create_path(self.root, self.systems, system, self.fabric_adapters, fabric_adapter, self.fabric_adapter_ports, fabric_adapter_port)
collection_path = os.path.join(self.root, self.systems, system, self.fabric_adapters, fabric_adapter, self.fabric_adapter_ports, 'index.json')
# Check if collection exists:
if not os.path.exists(collection_path):
FabricAdapterPortsCollectionAPI.post (self, system, fabric_adapter)
if fabric_adapter in members:
resp = 404
return resp
try:
global config
wildcards = {'s_id': system, 'fa_id': fabric_adapter, 'fap_id': fabric_adapter_port, 'rb': g.rest_base}
config=get_FabricAdapterPorts_instance(wildcards)
config = create_and_patch_object (config, members, member_ids, path, collection_path)
#Add default placeholder collections to instance.
FabricAdapterPortsCollectionAPI.post (self, system, fabric_adapter)
resp = config, 200
except Exception:
traceback.print_exc()
resp = INTERNAL_ERROR
logging.info('FabricAdapterPortsAPI put exit')
return resp
# HTTP PATCH
def patch(self, system, fabric_adapter, fabric_adapter_port):
path = os.path.join(self.root, self.systems, system, self.fabric_adapters, fabric_adapter, self.fabric_adapter_ports, fabric_adapter_port, 'index.json')
patch_object(path)
return self.get(system, fabric_adapter)
# HTTP PUT
def put(self, system, fabric_adapter, fabric_adapter_port):
path = os.path.join(self.root, self.systems, system, self.fabric_adapters, fabric_adapter, self.fabric_adapter_ports, fabric_adapter_port, 'index.json')
put_object(path)
return self.get(system, fabric_adapter)
# HTTP DELETE
def delete(self, system, fabric_adapter, fabric_adapter_port):
path = create_path(self.root, self.systems, system, self.fabric_adapters, fabric_adapter, self.fabric_adapter_ports, fabric_adapter_port)
base_path = create_path(self.root, self.systems, system, self.fabric_adapters, fabric_adapter, self.fabric_adapter_ports)
return delete_object(path, base_path)
# FabricAdapterPorts Collection API
class FabricAdapterPortsCollectionAPI(Resource):
def __init__(self):
self.root = PATHS['Root']
self.systems = PATHS['Systems']['path']
self.fabric_adapters = PATHS['Systems']['fabric_adapters']
self.fabric_adapter_ports = PATHS['Systems']['fabric_adapter_ports']
def get(self, system, fabric_adapter):
path = os.path.join(self.root, self.systems, system, self.fabric_adapters, fabric_adapter, self.fabric_adapter_ports, 'index.json')
return get_json_data (path)
def verify(self, config):
# TODO: Implement a method to verify that the POST body is valid
return True,{}
# HTTP POST
# POST should allow adding multiple instances to a collection.
# For now, this only adds one instance.
# TODO: 'id' should be obtained from the request data.
def post(self, system, fabric_adapter):
logging.info('FabricAdapterPortsCollectionAPI POST called')
self.root = PATHS['Root']
self.systems = PATHS['Systems']['path']
self.fabric_adapters = PATHS['Systems']['fabric_adapters']
self.fabric_adapter_ports = PATHS['Systems']['fabric_adapter_ports']
if fabric_adapter in members:
resp = 404
return resp
path = create_path(self.root, self.systems, system, self.fabric_adapters, fabric_adapter, self.fabric_adapter_ports)
return create_collection (path, 'Port')
# HTTP PUT
def put(self, system, fabric_adapter):
path = os.path.join(self.root, self.systems, system, self.fabric_adapters, fabric_adapter, self.fabric_adapter_ports, 'index.json')
put_object(path)
return self.get(system)
# HTTP DELETE
def delete(self, system, fabric_adapter):
#Set path to object, then call delete_object:
path = create_path(self.root, self.systems, system, self.fabric_adapters, fabric_adapter, self.fabric_adapter_ports)
base_path = create_path(self.root, self.systems, system, self.fabric_adapters, fabric_adapter)
return delete_collection(path, base_path)
class CreateFabricAdapterPorts (Resource):
def __init__(self):
self.root = PATHS['Root']
self.systems = PATHS['Systems']['path']
self.fabric_adapters = PATHS['Systems']['fabric_adapters']
self.fabric_adapter_ports = PATHS['Systems']['fabric_adapter_ports']
# Attach APIs for subordinate resource(s). Attach the APIs for a resource collection and its singletons
def put(self,system, fabric_adapter):
logging.info('CreateFabricAdapterPorts put started.')
try:
path = create_path(self.root, self.systems, system, self.fabric_adapters, fabric_adapter, self.fabric_adapter_ports)
if not os.path.exists(path):
os.mkdir(path)
else:
logging.info('The given path : {} already exists.'.format(path))
config={
"@Redfish.Copyright": "Copyright 2015-2021 SNIA. All rights reserved.",
"@odata.id": "/redfish/v1/Systems/{system}/FabricAdapters/{fabric_adapter}/Ports",
"@odata.type": "#PortCollection.PortCollection",
"Name": "Port Collection",
"[email protected]": 0,
"Members": [
]
}
with open(os.path.join(path, "index.json"), "w") as fd:
fd.write(json.dumps(config, indent=4, sort_keys=True))
resp = config, 200
except Exception:
traceback.print_exc()
resp = INTERNAL_ERROR
logging.info('CreateFabricAdapterPorts put exit.')
return resp
| null |
api_emulator/redfish/fa_ports_api.py
|
fa_ports_api.py
|
py
| 9,153 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "flask_restful.Resource",
"line_number": 53,
"usage_type": "name"
},
{
"api_name": "logging.info",
"line_number": 55,
"usage_type": "call"
},
{
"api_name": "api_emulator.utils.create_path",
"line_number": 63,
"usage_type": "call"
},
{
"api_name": "api_emulator.utils.get_json_data",
"line_number": 64,
"usage_type": "call"
},
{
"api_name": "logging.info",
"line_number": 72,
"usage_type": "call"
},
{
"api_name": "api_emulator.utils.create_path",
"line_number": 73,
"usage_type": "call"
},
{
"api_name": "os.path.join",
"line_number": 74,
"usage_type": "call"
},
{
"api_name": "os.path",
"line_number": 74,
"usage_type": "attribute"
},
{
"api_name": "os.path.exists",
"line_number": 77,
"usage_type": "call"
},
{
"api_name": "os.path",
"line_number": 77,
"usage_type": "attribute"
},
{
"api_name": "g.rest_base",
"line_number": 85,
"usage_type": "attribute"
},
{
"api_name": "templates.fabric_adapter_port.get_FabricAdapterPorts_instance",
"line_number": 86,
"usage_type": "call"
},
{
"api_name": "api_emulator.utils.create_and_patch_object",
"line_number": 87,
"usage_type": "call"
},
{
"api_name": "traceback.print_exc",
"line_number": 93,
"usage_type": "call"
},
{
"api_name": "logging.info",
"line_number": 95,
"usage_type": "call"
},
{
"api_name": "os.path.join",
"line_number": 100,
"usage_type": "call"
},
{
"api_name": "os.path",
"line_number": 100,
"usage_type": "attribute"
},
{
"api_name": "api_emulator.utils.patch_object",
"line_number": 101,
"usage_type": "call"
},
{
"api_name": "os.path.join",
"line_number": 106,
"usage_type": "call"
},
{
"api_name": "os.path",
"line_number": 106,
"usage_type": "attribute"
},
{
"api_name": "api_emulator.utils.put_object",
"line_number": 107,
"usage_type": "call"
},
{
"api_name": "api_emulator.utils.create_path",
"line_number": 112,
"usage_type": "call"
},
{
"api_name": "api_emulator.utils.create_path",
"line_number": 113,
"usage_type": "call"
},
{
"api_name": "api_emulator.utils.delete_object",
"line_number": 114,
"usage_type": "call"
},
{
"api_name": "flask_restful.Resource",
"line_number": 118,
"usage_type": "name"
},
{
"api_name": "os.path.join",
"line_number": 127,
"usage_type": "call"
},
{
"api_name": "os.path",
"line_number": 127,
"usage_type": "attribute"
},
{
"api_name": "api_emulator.utils.get_json_data",
"line_number": 128,
"usage_type": "call"
},
{
"api_name": "logging.info",
"line_number": 139,
"usage_type": "call"
},
{
"api_name": "api_emulator.utils.create_path",
"line_number": 148,
"usage_type": "call"
},
{
"api_name": "api_emulator.utils.create_collection",
"line_number": 149,
"usage_type": "call"
},
{
"api_name": "os.path.join",
"line_number": 153,
"usage_type": "call"
},
{
"api_name": "os.path",
"line_number": 153,
"usage_type": "attribute"
},
{
"api_name": "api_emulator.utils.put_object",
"line_number": 154,
"usage_type": "call"
},
{
"api_name": "api_emulator.utils.create_path",
"line_number": 160,
"usage_type": "call"
},
{
"api_name": "api_emulator.utils.create_path",
"line_number": 161,
"usage_type": "call"
},
{
"api_name": "api_emulator.utils.delete_collection",
"line_number": 162,
"usage_type": "call"
},
{
"api_name": "flask_restful.Resource",
"line_number": 164,
"usage_type": "name"
},
{
"api_name": "logging.info",
"line_number": 173,
"usage_type": "call"
},
{
"api_name": "api_emulator.utils.create_path",
"line_number": 175,
"usage_type": "call"
},
{
"api_name": "os.path.exists",
"line_number": 176,
"usage_type": "call"
},
{
"api_name": "os.path",
"line_number": 176,
"usage_type": "attribute"
},
{
"api_name": "os.mkdir",
"line_number": 177,
"usage_type": "call"
},
{
"api_name": "logging.info",
"line_number": 179,
"usage_type": "call"
},
{
"api_name": "os.path.join",
"line_number": 190,
"usage_type": "call"
},
{
"api_name": "os.path",
"line_number": 190,
"usage_type": "attribute"
},
{
"api_name": "json.dumps",
"line_number": 191,
"usage_type": "call"
},
{
"api_name": "traceback.print_exc",
"line_number": 195,
"usage_type": "call"
},
{
"api_name": "logging.info",
"line_number": 197,
"usage_type": "call"
}
] |
217053346
|
import json
import time
from itertools import product
from random import randint
from pprint import pprint
import multiprocessing
def build_machines(m=3):
# Create machines
A = []
for i in range(m):
A.append([])
return A
def generate_jobs(n=10, min_time=1, max_time=10):
# Generate a list of random jobs
J = []
for i in range(n):
t = randint(min_time, max_time)
J.append(t)
return J
# Utilities
def makespan(A):
return max(sum(Ai) for Ai in A)
def find_least_busy_machine(A):
# First, get totals
totals = (sum(Ai) for Ai in A)
val, idx = min((val, idx) for (idx, val) in enumerate(totals))
return idx
# online
def online(m, J):
# Create machines and jobs
A = build_machines(m)
# pprint("Machines: {}".format(A))
# pprint("Jobs: {}".format(J))
# pprint("Makespan: {}".format(makespan(A)))
# Let's assume we take one job at a time
for j in J:
# Find the least busy machine
lbm = find_least_busy_machine(A)
# pprint("Least busy machine: {}".format(lbm))
# And assign the job there
A[lbm].append(j)
# pprint("Result Machines: {}".format(A))
# pprint("Final Makespan: {}".format(makespan(A)))
return A
def offline(m, J):
# Now, we need to explore all combinations
def find_combinations(n_machines, n_jobs):
# Create iterables
ms = range(n_machines)
js = range(n_jobs)
# Create combinations between each machine and
# job
combs = [product(ms, [ji]) for ji in js]
# And yield combinations
i = 0
for c in product(*combs):
i += 1
# if i == 100:
# break
# print c
yield c
# Get the generator
gen = find_combinations(m, len(J))
# Now, keep track of the best makespan found
best = float('inf')
best_comb = None
# Generate machine counters
m_range = range(m)
M = [0 for _ in m_range]
# Iterate over all combinations
for c in gen:
# print c
# Pick each assignment
for machine, job in c:
# Add the value to the matrix
M[machine] += J[job]
# Makespan
m = max(M)
# Keep if better
if m < best:
best = m
best_comb = c
# Reset M
for i in m_range:
M[i] = 0
# Generate A
A = [[] for _ in m_range]
for machine, job in best_comb:
A[machine].append(J[job])
return A
def show(A):
for i, Ai in enumerate(A):
print("{}: {}".format(i, '|' * sum(Ai)))
def run(p):
m, n = p
J = generate_jobs(n)
online_A = online(m, J)
offline_A = offline(m, J)
return (makespan(online_A), makespan(offline_A))
def test(m, n):
m = 2
n = 10
J = generate_jobs(n)
print("Number of machines: {}".format(m))
print("Number of jobs: {}".format(n))
print("Jobs: {}".format(J))
online_A = online(m, J)
offline_A = offline(m, J)
print("Offline Makespan: {}".format(makespan(offline_A)))
print(offline_A)
show(offline_A)
print("Online Makespan: {}".format(makespan(online_A)))
print(online_A)
show(online_A)
assert makespan(offline_A) <= makespan(online_A)
if __name__ == '__main__':
m = 3
n = 10
N = 10000
# Use None to pick the max number
# of processors
processors = None
# processors = 4
# Print info
print("Number of machines: {}".format(m))
print("Number of jobs: {}".format(n))
print("Executions: {}".format(N))
# Crete a pool of workers
p = multiprocessing.Pool(processes=processors)
# And collect results
results = p.map(run, ((m, n) for _ in xrange(N)))
# pprint(results)
# Dump results
dump_folder = 'dumps/'
file_name = 'results-%s.json' % time.time()
r = {
'm': m,
'n': n,
'N': N,
'data': results
}
with open(dump_folder + file_name, 'w') as f:
json.dump(r, f, indent=2)
| null |
main.py
|
main.py
|
py
| 3,551 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "random.randint",
"line_number": 22,
"usage_type": "call"
},
{
"api_name": "itertools.product",
"line_number": 69,
"usage_type": "call"
},
{
"api_name": "itertools.product",
"line_number": 73,
"usage_type": "call"
},
{
"api_name": "multiprocessing.Pool",
"line_number": 170,
"usage_type": "call"
},
{
"api_name": "time.time",
"line_number": 180,
"usage_type": "call"
},
{
"api_name": "json.dump",
"line_number": 190,
"usage_type": "call"
}
] |
10072179
|
import tkinter as tk
from tkinter import *
from tkinter import messagebox
from tkinter.filedialog import askopenfilename
from keras.models import model_from_json
import cv2
import numpy as np
from PIL import Image, ImageTk
top = tk.Tk()
top.minsize(100,100)
top.geometry('500x500')
top.maxsize(600,600)
top.configure(bg='black')
def OpenFile():
name = askopenfilename(initialdir="C:/Users/Ketan Ingale/Documents/SDL_Project/Dataset/test",
filetypes =(("JPG File", "*.jpg"),("All Files","*.*")),
title = "Choose a file."
)
print (name)
json_file = open('C:/Users/Ketan Ingale/Documents/SDL_Project/model.json', 'r')
loaded_model_json = json_file.read()
json_file.close()
loaded_model = model_from_json(loaded_model_json)
loaded_model.load_weights("C:/Users/Ketan Ingale/Documents/SDL_Project/model.h5")
loaded_model.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])
img = cv2.imread(name)
img = cv2.resize(img, (50,50))
img = img.reshape(1, 50, 50, 3)
image = ImageTk.PhotoImage(Image.open(name))
if loaded_model.predict(img) == 1:
helloCallBack("It's a dog.", name)
elif loaded_model.predict(img) == 0:
helloCallBack("It's a cat", name)
else:
helloCallBack("It's nothing like from the dataset.", name)
def helloCallBack(str, name):
image = ImageTk.PhotoImage(Image.open(name))
tk.Label(top, image=image).pack()
msg = messagebox.showinfo("Result : ",str)
B = tk.Button(top, text = "Upload Image", command = OpenFile, highlightthickness = 0, bd = 0, fg = 'white', bg = 'black')
B.place(relx = 0.5, rely = 0.5, anchor = CENTER)
top.mainloop()
| null |
Cat_and_Dog_Classifier.py
|
Cat_and_Dog_Classifier.py
|
py
| 1,770 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "tkinter.Tk",
"line_number": 12,
"usage_type": "call"
},
{
"api_name": "tkinter.filedialog.askopenfilename",
"line_number": 20,
"usage_type": "call"
},
{
"api_name": "keras.models.model_from_json",
"line_number": 29,
"usage_type": "call"
},
{
"api_name": "cv2.imread",
"line_number": 35,
"usage_type": "call"
},
{
"api_name": "cv2.resize",
"line_number": 36,
"usage_type": "call"
},
{
"api_name": "PIL.ImageTk.PhotoImage",
"line_number": 38,
"usage_type": "call"
},
{
"api_name": "PIL.ImageTk",
"line_number": 38,
"usage_type": "name"
},
{
"api_name": "PIL.Image.open",
"line_number": 38,
"usage_type": "call"
},
{
"api_name": "PIL.Image",
"line_number": 38,
"usage_type": "name"
},
{
"api_name": "PIL.ImageTk.PhotoImage",
"line_number": 48,
"usage_type": "call"
},
{
"api_name": "PIL.ImageTk",
"line_number": 48,
"usage_type": "name"
},
{
"api_name": "PIL.Image.open",
"line_number": 48,
"usage_type": "call"
},
{
"api_name": "PIL.Image",
"line_number": 48,
"usage_type": "name"
},
{
"api_name": "tkinter.Label",
"line_number": 49,
"usage_type": "call"
},
{
"api_name": "tkinter.messagebox.showinfo",
"line_number": 50,
"usage_type": "call"
},
{
"api_name": "tkinter.messagebox",
"line_number": 50,
"usage_type": "name"
},
{
"api_name": "tkinter.Button",
"line_number": 52,
"usage_type": "call"
}
] |
288256488
|
import numpy as np
import regreg.api as rr
import pandas as pd
import selection.api as sel
from selection.tests.instance import gaussian_instance
from selection.algorithms.lasso import lasso
import selection.tests.reports as reports
from selection.tests.flags import SMALL_SAMPLES, SET_SEED
from selection.tests.decorators import wait_for_return_value, set_seed_iftrue, set_sampling_params_iftrue, register_report
from statsmodels.sandbox.stats.multicomp import multipletests
from selection.randomized.cv_view import CV_view
from scipy.stats import norm as ndist
from scipy.optimize import bisect
from selection.randomized.query import (naive_pvalues, naive_confidence_intervals)
def compute_projection_parameters(n, p, s, signal, rho, sigma, active):
multiple = 10**2
n_large = multiple*n
X_large = np.zeros((n_large,p))
y_large = np.zeros(n_large)
for i in range(multiple):
X_large[(i*n):((i+1)*n), :], y_large[(i*n):((i+1)*n)], _, _, _ = \
gaussian_instance(n=n, p=p, s=s, signal=signal, rho=rho, sigma=sigma, scale=True, center=True)
proj_param = np.linalg.lstsq(X_large[:, active], y_large)[0]
print(proj_param)
return proj_param
@register_report(['naive_pvalues', 'covered_naive', 'ci_length_naive', 'active_var'])
@set_seed_iftrue(SET_SEED)
@set_sampling_params_iftrue(SMALL_SAMPLES, burnin=10, ndraw=10)
@wait_for_return_value()
def test_naive(n=300,
p=100,
s=10,
signal = 3.5,
rho = 0.,
sigma = 1.,
cross_validation=True,
condition_on_CVR=False,
lam_frac = 1.,
X = None,
check_screen = False,
check_projection_param = False,
check_selected_param = True,
intervals = False):
print(n, p, s)
if X is None:
X, y, beta, truth, sigma = gaussian_instance(n=n, p=p, s=s, signal=signal, rho=rho, \
sigma=sigma, scale=True, center=True)
else:
beta = np.zeros(p)
beta[:s] = signal
y = X.dot(beta) + np.random.standard_normal(n)*sigma
truth = np.nonzero(beta != 0)[0]
if cross_validation:
cv = CV_view(rr.glm.gaussian(X,y), loss_label="gaussian", lasso_randomization=None, epsilon=None,
scale1=None, scale2=None)
cv.solve(glmnet=True)
lam = cv.lam_CVR
if condition_on_CVR:
cv.condition_on_opt_state()
lam = cv.one_SD_rule(direction="up")
else:
lam = lam_frac*np.fabs(X.T.dot(np.random.normal(1, 1. / 2, (n, 1000)))).max()
L = lasso.gaussian(X, y, lam, sigma=sigma)
soln = L.fit()
active = soln != 0
nactive = active.sum()
print("nactive", nactive)
if nactive==0:
return None
active_signs = np.sign(soln[active])
active_set = np.nonzero(active)[0]
if (check_screen==False):
if check_projection_param==True:
true_vec = compute_projection_parameters(n, p, s, signal, rho, sigma, active)
else:
true_vec = signal*np.array([active_set[i] in truth for i in range(nactive)], int)
print(true_vec)
else:
true_vec = beta[active]
if (check_screen == False) or (set(truth).issubset(np.nonzero(active)[0])):
print("active set", active_set)
active_var = np.zeros(nactive, np.bool)
naive_pvalues = np.zeros(nactive)
naive_length = np.zeros(nactive)
naive_covered = np.zeros(nactive)
C = L.constraints
if C is not None:
one_step = L.onestep_estimator
for i in range(one_step.shape[0]):
eta = np.zeros_like(one_step)
eta[i] = active_signs[i]
alpha = 0.1
def naive_inference():
obs = (eta * one_step).sum()
sd = np.sqrt(np.dot(eta.T, C.covariance.dot(eta)))
Z = obs / sd
# use Phi truncated to [-5,5]
_pval = ndist.cdf(Z)
_pval = 2 * min(_pval, 1 - _pval)
_interval = (obs - ndist.ppf(1 - alpha / 2) * sd,
obs + ndist.ppf(1 - alpha / 2) * sd)
return _pval, _interval
naive_pvalues[i], _naive_interval = naive_inference()
def coverage(LU):
L, U = LU[0], LU[1]
_length = U - L
_covered = 0
if (L <= true_vec[i]) and (U >= true_vec[i]):
_covered = 1
return _covered, _length
naive_covered[i], naive_length[i] = coverage(_naive_interval)
active_var[i] = active_set[i] in truth
else:
return None
print("naive pvalues",naive_pvalues)
return naive_pvalues, naive_covered, naive_length, active_var
def report(niter=50, design="random", **kwargs):
if design=="fixed":
X, _, _, _, _ = gaussian_instance(**kwargs)
kwargs.update({'X':X})
kwargs.update({'cross_validation':True, 'condition_on_CVR':False})
intervals_report = reports.reports['test_naive']
screened_results = reports.collect_multiple_runs(intervals_report['test'],
intervals_report['columns'],
niter,
reports.summarize_all,
**kwargs)
screened_results.to_pickle("naive.pkl")
results = pd.read_pickle("naive.pkl")
fig = reports.naive_pvalue_plot(results)
#fig = reports.pvalue_plot(results, label="Naive p-values")
fig.suptitle("Naive p-values", fontsize=20)
fig.savefig('naive_pvalues.pdf')
if __name__ == '__main__':
np.random.seed(500)
kwargs = {'s': 0, 'n': 100, 'p': 50, 'signal': 3.5, 'sigma': 1, 'rho': 0., 'intervals':True}
report(niter=100, **kwargs)
| null |
selection/randomized/tests/test_naive.py
|
test_naive.py
|
py
| 6,088 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "numpy.zeros",
"line_number": 19,
"usage_type": "call"
},
{
"api_name": "numpy.zeros",
"line_number": 20,
"usage_type": "call"
},
{
"api_name": "selection.tests.instance.gaussian_instance",
"line_number": 24,
"usage_type": "call"
},
{
"api_name": "numpy.linalg.lstsq",
"line_number": 26,
"usage_type": "call"
},
{
"api_name": "numpy.linalg",
"line_number": 26,
"usage_type": "attribute"
},
{
"api_name": "selection.tests.instance.gaussian_instance",
"line_number": 55,
"usage_type": "call"
},
{
"api_name": "numpy.zeros",
"line_number": 58,
"usage_type": "call"
},
{
"api_name": "numpy.random.standard_normal",
"line_number": 60,
"usage_type": "call"
},
{
"api_name": "numpy.random",
"line_number": 60,
"usage_type": "attribute"
},
{
"api_name": "numpy.nonzero",
"line_number": 62,
"usage_type": "call"
},
{
"api_name": "selection.randomized.cv_view.CV_view",
"line_number": 65,
"usage_type": "call"
},
{
"api_name": "regreg.api.glm.gaussian",
"line_number": 65,
"usage_type": "call"
},
{
"api_name": "regreg.api.glm",
"line_number": 65,
"usage_type": "attribute"
},
{
"api_name": "regreg.api",
"line_number": 65,
"usage_type": "name"
},
{
"api_name": "numpy.fabs",
"line_number": 75,
"usage_type": "call"
},
{
"api_name": "numpy.random.normal",
"line_number": 75,
"usage_type": "call"
},
{
"api_name": "numpy.random",
"line_number": 75,
"usage_type": "attribute"
},
{
"api_name": "selection.algorithms.lasso.lasso.gaussian",
"line_number": 77,
"usage_type": "call"
},
{
"api_name": "selection.algorithms.lasso.lasso",
"line_number": 77,
"usage_type": "name"
},
{
"api_name": "numpy.sign",
"line_number": 86,
"usage_type": "call"
},
{
"api_name": "numpy.nonzero",
"line_number": 87,
"usage_type": "call"
},
{
"api_name": "numpy.array",
"line_number": 94,
"usage_type": "call"
},
{
"api_name": "numpy.nonzero",
"line_number": 100,
"usage_type": "call"
},
{
"api_name": "numpy.zeros",
"line_number": 103,
"usage_type": "call"
},
{
"api_name": "numpy.bool",
"line_number": 103,
"usage_type": "attribute"
},
{
"api_name": "selection.randomized.query.naive_pvalues",
"line_number": 105,
"usage_type": "name"
},
{
"api_name": "numpy.zeros",
"line_number": 105,
"usage_type": "call"
},
{
"api_name": "numpy.zeros",
"line_number": 106,
"usage_type": "call"
},
{
"api_name": "numpy.zeros",
"line_number": 107,
"usage_type": "call"
},
{
"api_name": "numpy.zeros_like",
"line_number": 114,
"usage_type": "call"
},
{
"api_name": "numpy.sqrt",
"line_number": 120,
"usage_type": "call"
},
{
"api_name": "numpy.dot",
"line_number": 120,
"usage_type": "call"
},
{
"api_name": "scipy.stats.norm.cdf",
"line_number": 123,
"usage_type": "call"
},
{
"api_name": "scipy.stats.norm",
"line_number": 123,
"usage_type": "name"
},
{
"api_name": "scipy.stats.norm.ppf",
"line_number": 125,
"usage_type": "call"
},
{
"api_name": "scipy.stats.norm",
"line_number": 125,
"usage_type": "name"
},
{
"api_name": "scipy.stats.norm.ppf",
"line_number": 126,
"usage_type": "call"
},
{
"api_name": "scipy.stats.norm",
"line_number": 126,
"usage_type": "name"
},
{
"api_name": "selection.randomized.query.naive_pvalues",
"line_number": 129,
"usage_type": "name"
},
{
"api_name": "selection.randomized.query.naive_pvalues",
"line_number": 144,
"usage_type": "argument"
},
{
"api_name": "selection.randomized.query.naive_pvalues",
"line_number": 146,
"usage_type": "name"
},
{
"api_name": "selection.tests.decorators.register_report",
"line_number": 33,
"usage_type": "call"
},
{
"api_name": "selection.tests.decorators.set_seed_iftrue",
"line_number": 34,
"usage_type": "call"
},
{
"api_name": "selection.tests.flags.SET_SEED",
"line_number": 34,
"usage_type": "argument"
},
{
"api_name": "selection.tests.decorators.set_sampling_params_iftrue",
"line_number": 35,
"usage_type": "call"
},
{
"api_name": "selection.tests.flags.SMALL_SAMPLES",
"line_number": 35,
"usage_type": "argument"
},
{
"api_name": "selection.tests.decorators.wait_for_return_value",
"line_number": 36,
"usage_type": "call"
},
{
"api_name": "selection.tests.instance.gaussian_instance",
"line_number": 152,
"usage_type": "call"
},
{
"api_name": "selection.tests.reports.reports",
"line_number": 156,
"usage_type": "attribute"
},
{
"api_name": "selection.tests.reports",
"line_number": 156,
"usage_type": "name"
},
{
"api_name": "selection.tests.reports.collect_multiple_runs",
"line_number": 157,
"usage_type": "call"
},
{
"api_name": "selection.tests.reports",
"line_number": 157,
"usage_type": "name"
},
{
"api_name": "selection.tests.reports.summarize_all",
"line_number": 160,
"usage_type": "attribute"
},
{
"api_name": "selection.tests.reports",
"line_number": 160,
"usage_type": "name"
},
{
"api_name": "pandas.read_pickle",
"line_number": 164,
"usage_type": "call"
},
{
"api_name": "selection.tests.reports.naive_pvalue_plot",
"line_number": 166,
"usage_type": "call"
},
{
"api_name": "selection.tests.reports",
"line_number": 166,
"usage_type": "name"
},
{
"api_name": "numpy.random.seed",
"line_number": 174,
"usage_type": "call"
},
{
"api_name": "numpy.random",
"line_number": 174,
"usage_type": "attribute"
}
] |
149849138
|
import numpy
from datetime import datetime
import random
from scipy.spatial import distance as scipy_dist
class HierarchicalClustering():
"""This class will create an object with which has the necessary attributes and functions to perform bottom-up agglomerative hierarchical clustering on a set of provided ligand objects."""
def __init__(self,distance_paradigm,cluster_number):
self.dist_prdgm = distance_paradigm
self.dendogram = []
self.cluster_number = cluster_number
def update_cluster(self,cluster_number):
"""This function resets the number of clusters to find in the algorithm by the number given by the user here"""
self.cluster_number = cluster_number
def get_data(self,objects_to_cluster):
"""This function takes the list of ligand objects to cluster given by the user and assigns them to the internal variable to_cluster.
This function also uses the given ligands to populate the expanded data_expanded matrix"""
self.to_cluster = objects_to_cluster
self.data_expanded = numpy.zeros((len(self.to_cluster),1024))
i = 0
for x in self.to_cluster:
self.data_expanded[i,x.OnBits] = 1
i = i + 1
def calculate_distances(self):
"""This function is called internally when the cluster function is called by the user. It calls the distance fuction for each ligand pair.
It populates this data into the all_data internal attribute."""
num_data = int(len(self.to_cluster))
print(num_data)
self.all_distances = numpy.full((num_data,num_data),100)
for i in range(num_data):
for j in range(i+1,num_data):
self.all_distances[i,j] = self.distance(i,j)
#print(i, j)
if i%100 == 0:
print("i is ",i,end = '\r')
def single_linkage(self,dendogram_level):
"""function to determine distance between clusters for single linkage returns the indices of the current dendogram level to be lumped together"""
unique_cluster_list = numpy.unique(self.dendogram[dendogram_level,:]) #get the list of unique clusters at this level of the dendogram
num_unique_clusters = len(unique_cluster_list) #get the number of unique clusters at this level of the dendogram
for i in range(num_unique_clusters):
for j in range(i+1,num_unique_clusters):
entries_i = numpy.where(self.dendogram[dendogram_level,:] == unique_cluster_list[i])[0]
entries_j = numpy.where(self.dendogram[dendogram_level,:] == unique_cluster_list[j])[0]
single_distance = 100
for z in entries_i:
for zed in entries_j:
single_temp_distance = self.all_distances[z,zed]
if single_temp_distance < single_distance:
single_distance = single_temp_distance
self.temp_distances[i,j] = single_distance
smallest_temp_distance = numpy.amin(self.temp_distances)
first_cluster_index = numpy.where(self.temp_distances == smallest_temp_distance)[0][0]
second_cluster_index = numpy.where(self.temp_distances == smallest_temp_distance)[1][0]
return numpy.hstack((numpy.where(self.dendogram[dendogram_level,:] == unique_cluster_list[first_cluster_index])[0],numpy.where(self.dendogram[dendogram_level,:] == unique_cluster_list[second_cluster_index])[0]))
def distance(self,object_1_index,object_2_index):
"""function to determine distance between two ligands, uses euclidian distance"""
total_distance = len(self.to_cluster[object_1_index].OnBits) + len(self.to_cluster[object_2_index].OnBits) - 2*numpy.sum(self.to_cluster[object_1_index].OnBits == self.to_cluster[object_2_index].OnBits)
euclid_dist = numpy.sqrt(total_distance)
#print(euclid_dist)
return euclid_dist
def cluster(self):
"""function to determine clusters"""
self.calculate_distances()
print('Distances_Done')
self.dendogram = numpy.zeros((len(self.to_cluster),len(self.to_cluster)))
self.dendogram[0,:] = numpy.arange(len(self.to_cluster)) #every object gets its own cluster number
## goes through agglomeration procedure
for zed in range(1,len(self.to_cluster)-self.cluster_number+1):
self.temp_distances = numpy.full((len(self.to_cluster),len(self.to_cluster)),100) # square matrix to find distance between all existing clusters
indices_to_lump = self.single_linkage(zed-1) #return an array of indices in the dendogram to lump together
lowest_previous_cluster = numpy.amin(self.dendogram[zed-1,indices_to_lump])
self.dendogram[zed,:] = self.dendogram[zed-1,:]
self.dendogram[zed,indices_to_lump] = lowest_previous_cluster
now = datetime.now()
current_time = now.strftime("%H:%M:%S")
print("Current Time 2 =", current_time, "zed is ", zed,end='\r')
class PartitionClustering():
"""This class implements vanilla K-means clustering"""
def __init__(self,cluster_number,OnBit_Dim):
"""Two parameters must be passed upon class initialization
cluster_number: int, determines the number of clusters to find
OnBit_Dim: int, indicate the dimension space of the OnBits so they can be appropriately unpacked
"""
self.cluster_number = cluster_number
self.Bit_Num = OnBit_Dim
def get_data(self,objects_to_cluster):
"""This function reads in the ligand objects and sets up essential class attributes to be used in clustering
"""
self.to_cluster = objects_to_cluster
self.total_objects = len(self.to_cluster)
self.cluster_assignments = numpy.zeros((self.total_objects,1))
self.data_expanded = numpy.zeros((self.total_objects,self.Bit_Num))
i = 0
for x in self.to_cluster:
self.data_expanded[i,x.OnBits] = 1
i = i + 1
self.create_similarity_matrix()
print('Data Imported')
def create_similarity_matrix(self):
"""This function goes through each pair of ligands in to_cluster and calculates their similarity by the tanimoto coefficient and assigns this
to the internal similarity matrix attribute."""
self.similarity_matrix = numpy.zeros((self.total_objects,self.total_objects))
for i in range(self.total_objects):
for j in range(self.total_objects):
self.similarity_matrix[i,j] = self.tanamota_coeff(self.to_cluster[i],self.to_cluster[j])
print('i is',i,end='\r')
def tanamota_coeff(self,object_1,object_2):
"""This function determines the similarity of two ligand objects by calculating their tanimoto coefficient."""
intersection = numpy.sum(object_1.OnBits == object_2.OnBits)
union = len(object_1.OnBits) + len(object_2.OnBits) - numpy.sum(object_1.OnBits == object_2.OnBits)
return intersection/union
def distance(self,object_1,object_2):
"""function to determine distance between two ligands, uses euclidian distance, expects 1D arrays of numerical values"""
total_distance = 0
obj_dimension = object_1.shape[0]
for i in range(obj_dimension):
total_distance = total_distance + (object_1[i]-object_2[i])**2
euclid_dist = numpy.sqrt(total_distance)
return euclid_dist
def initialize_centroids(self):
"""This function initializes the number of centroids indicated by cluster_number as random ligands in the similarity space"""
self.centroids = numpy.zeros((self.cluster_number,self.total_objects))
available_indices = list(range(self.total_objects)) #used to make sure centroids aren't initialized to the same ligand
for i in range(self.cluster_number):
rand_location = random.randrange(len(available_indices))
self.centroids[i,:] = self.similarity_matrix[available_indices[rand_location],:]
available_indices.remove(available_indices[rand_location])
def update_centroids(self):
"""This function finds the average location of ligands assigned to a given cluster and re-assigns the centroid to that location.
If there is an emtpy cluster the centriod is reassigned to a random ligand in the data set."""
for i in range(self.cluster_number):
cluster_data_expanded = self.similarity_matrix[numpy.where(self.cluster_assignments == i)[0],:]
self.centroids[i,:] = cluster_data_expanded.mean(axis=0)
if numpy.isnan(self.centroids[i,:]).any():
rand_location = random.randrange(self.total_objects)
self.centroids[i,:] = self.similarity_matrix[rand_location,:]
print("Na fixed")
def assign_cluster(self):
"""This function finds the closest centroid to each ligand. It then assigns that centroid number as the cluster for that ligand"""
temp_center_distances = numpy.zeros((self.total_objects,self.cluster_number))
for i in range(self.total_objects):
for j in range(self.cluster_number):
temp_center_distances[i,j] = self.distance(self.similarity_matrix[i,:],self.centroids[j,:])
self.cluster_assignments[i] = numpy.argmin(temp_center_distances[i,:])
unique, counts = numpy.unique(self.cluster_assignments, return_counts=True)
print(dict(zip(unique, counts)))
def update_cluster_number(self,cluster_number):
"""This function updates the number of clusters to find"""
self.cluster_number = cluster_number
def is_cluster_over(self):
"""This function determines whether to stop the clustering procedure. If the current centroids are the same as either the previous
or 2nd back set of centroids then clustering stops."""
if numpy.array_equal(self.centroids,self.centroids_1back) or numpy.array_equal(self.centroids,self.centroids_2back):
self.keep_clustering = False
def cluster(self):
"""This function performs all the necessary steps to execute k-means clustering"""
self.initialize_centroids()
self.keep_clustering = True
self.centroids_1back = numpy.zeros((self.cluster_number,self.total_objects))
self.centroids_2back = numpy.zeros((self.cluster_number,self.total_objects))
i = 1
while self.keep_clustering:
self.assign_cluster()
self.centroids_2back = numpy.copy(self.centroids_1back)
self.centroids_1back = numpy.copy(self.centroids)
self.update_centroids()
self.is_cluster_over()
print('Iterrations Completed:',i,end='\r')
i = i +1
class ligand():
"""This simple class organizes all the import attributes for a ligand into a single object with each held as an attribute"""
def __init__(self,ligand_string):
import numpy
first_comma = ligand_string.find(",")
second_comma = ligand_string.find(",",first_comma+1)
third_comma = ligand_string.find(",",second_comma+1)
final_n = ligand_string.find("\n",second_comma+1)
self.ID = ligand_string[0:first_comma]
self.score = float(ligand_string[first_comma+1:second_comma])
self.smiles = ligand_string[second_comma+1:third_comma]
onBits = ligand_string[third_comma+2:final_n-1]
self.OnBits = numpy.array([int(i) for i in onBits.split(',')])
##below are functions that are useful for evaluating clusters
def silhouette_score(distance_matrix,cluster_list,POI):
"""this defines the silhouette score for a given point"""
a_temp = 0
b_temp = 0
score = 0
close_cluster = closest_cluster(distance_matrix,cluster_list,POI) #first find the closest cluster
parent_cluster_indices = numpy.where(cluster_list == cluster_list[POI])[0] #get the ligand indices for the ligands in the same cluster
close_cluster_indices = numpy.where(cluster_list == close_cluster)[0] #get the ligand indices for the ligands in the closest cluster
num_parent_cluster = len(parent_cluster_indices)
num_close_cluster = len(close_cluster_indices)
#find the average distance to ligands in the same cluster
for i in range(num_parent_cluster):
if parent_cluster_indices[i] != POI:
a_temp = a_temp + distance_matrix[parent_cluster_indices[i],POI]
if num_parent_cluster > 1:
a_final = a_temp/(num_parent_cluster-1)
#if cluster is a single ligand define as 0
else:
a_final = 0
#find the average distance to all the ligands in the closest cluster
for j in range(num_close_cluster):
b_temp = b_temp + distance_matrix[close_cluster_indices[j],POI]
b_final = b_temp/num_close_cluster
score = (b_final - a_final)/max(a_final,b_final)
return score
def Jaccard_Index(cluster_list_1,cluster_list_2):
"""Compares the similarity in clustering results by calculating the jaccard index"""
num_ligand = len(cluster_list_1)
f_11 = 0 # same in both
f_01 = 0 # same in 1 not in 2
f_10 = 0 # same in 2 not in 1
f_00 = 0 # diff in both
for i in range(0,num_ligand):
for j in range(i+1,num_ligand):
ligand_1_clust_1 = cluster_list_1[i]
ligand_1_clust_2 = cluster_list_2[i]
ligand_2_clust_1 = cluster_list_1[j]
ligand_2_clust_2 = cluster_list_2[j]
if ligand_1_clust_1 == ligand_2_clust_1 and ligand_1_clust_2 == ligand_2_clust_2:
f_11 = f_11 + 1
if ligand_1_clust_1 == ligand_2_clust_1 and ligand_1_clust_2 != ligand_2_clust_2:
f_01 = f_01 + 1
if ligand_1_clust_1 != ligand_2_clust_1 and ligand_1_clust_2 == ligand_2_clust_2:
f_10 = f_10 + 1
if ligand_1_clust_1 != ligand_2_clust_1 and ligand_1_clust_2 != ligand_2_clust_2:
f_00 = f_00 + 1
print(f_11,f_01,f_10,f_00)
jaccard_index = f_11/(f_01+f_10+f_11)
return jaccard_index
def euclid_distance(similarity_matrix):
"""This function takes a similarity matrix and creates a euclidean distance matrix based upon that
"""
obj_dimension = similarity_matrix.shape[0]
print(obj_dimension)
distance_matrix = numpy.zeros((obj_dimension,obj_dimension))
for m in range(obj_dimension):
for n in range(obj_dimension):
distance_matrix[m,n] = scipy_dist.euclidean(similarity_matrix[m,:],similarity_matrix[n,:])
print(m,end='\r')
return distance_matrix
def closest_cluster(distance_matrix,cluster_list,ligand_index):
"""This function finds the cluster that is closest to the given ligand that is not contained within the ligands home cluster"""
num_ligands = distance_matrix.shape[0]
current_cluster = cluster_list[ligand_index]
closest_distance = num_ligands #similarity scores are bounded at 1. So max euclidean distance is sqrt(num_ligands). Therefore, num_ligands linearly should always exceed
close_cluster = -1 #no cluster is ever called -1, so returning -1 indicates an error
for i in range(num_ligands):
temp_distance = distance_matrix[ligand_index,i]
if temp_distance < closest_distance and cluster_list[i] != current_cluster:
closest_distance = temp_distance
close_cluster = cluster_list[i]
return close_cluster
| null |
clusters/algs.py
|
algs.py
|
py
| 15,992 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "numpy.zeros",
"line_number": 22,
"usage_type": "call"
},
{
"api_name": "numpy.full",
"line_number": 33,
"usage_type": "call"
},
{
"api_name": "numpy.unique",
"line_number": 45,
"usage_type": "call"
},
{
"api_name": "numpy.where",
"line_number": 52,
"usage_type": "call"
},
{
"api_name": "numpy.where",
"line_number": 53,
"usage_type": "call"
},
{
"api_name": "numpy.amin",
"line_number": 65,
"usage_type": "call"
},
{
"api_name": "numpy.where",
"line_number": 66,
"usage_type": "call"
},
{
"api_name": "numpy.where",
"line_number": 67,
"usage_type": "call"
},
{
"api_name": "numpy.hstack",
"line_number": 70,
"usage_type": "call"
},
{
"api_name": "numpy.where",
"line_number": 70,
"usage_type": "call"
},
{
"api_name": "numpy.sum",
"line_number": 75,
"usage_type": "call"
},
{
"api_name": "numpy.sqrt",
"line_number": 76,
"usage_type": "call"
},
{
"api_name": "numpy.zeros",
"line_number": 84,
"usage_type": "call"
},
{
"api_name": "numpy.arange",
"line_number": 85,
"usage_type": "call"
},
{
"api_name": "numpy.full",
"line_number": 90,
"usage_type": "call"
},
{
"api_name": "numpy.amin",
"line_number": 93,
"usage_type": "call"
},
{
"api_name": "datetime.datetime.now",
"line_number": 98,
"usage_type": "call"
},
{
"api_name": "datetime.datetime",
"line_number": 98,
"usage_type": "name"
},
{
"api_name": "numpy.zeros",
"line_number": 123,
"usage_type": "call"
},
{
"api_name": "numpy.zeros",
"line_number": 124,
"usage_type": "call"
},
{
"api_name": "numpy.zeros",
"line_number": 136,
"usage_type": "call"
},
{
"api_name": "numpy.sum",
"line_number": 144,
"usage_type": "call"
},
{
"api_name": "numpy.sum",
"line_number": 145,
"usage_type": "call"
},
{
"api_name": "numpy.sqrt",
"line_number": 155,
"usage_type": "call"
},
{
"api_name": "numpy.zeros",
"line_number": 160,
"usage_type": "call"
},
{
"api_name": "random.randrange",
"line_number": 163,
"usage_type": "call"
},
{
"api_name": "numpy.where",
"line_number": 171,
"usage_type": "call"
},
{
"api_name": "numpy.isnan",
"line_number": 173,
"usage_type": "call"
},
{
"api_name": "random.randrange",
"line_number": 174,
"usage_type": "call"
},
{
"api_name": "numpy.zeros",
"line_number": 180,
"usage_type": "call"
},
{
"api_name": "numpy.argmin",
"line_number": 184,
"usage_type": "call"
},
{
"api_name": "numpy.unique",
"line_number": 185,
"usage_type": "call"
},
{
"api_name": "numpy.array_equal",
"line_number": 198,
"usage_type": "call"
},
{
"api_name": "numpy.zeros",
"line_number": 206,
"usage_type": "call"
},
{
"api_name": "numpy.zeros",
"line_number": 207,
"usage_type": "call"
},
{
"api_name": "numpy.copy",
"line_number": 211,
"usage_type": "call"
},
{
"api_name": "numpy.copy",
"line_number": 212,
"usage_type": "call"
},
{
"api_name": "numpy.array",
"line_number": 235,
"usage_type": "call"
},
{
"api_name": "numpy.where",
"line_number": 247,
"usage_type": "call"
},
{
"api_name": "numpy.where",
"line_number": 248,
"usage_type": "call"
},
{
"api_name": "numpy.zeros",
"line_number": 308,
"usage_type": "call"
},
{
"api_name": "scipy.spatial.distance.euclidean",
"line_number": 311,
"usage_type": "call"
},
{
"api_name": "scipy.spatial.distance",
"line_number": 311,
"usage_type": "name"
}
] |
327779012
|
from flask import Blueprint, request, jsonify, make_response
from app import db
from dotenv import load_dotenv
from app.models.card import Card
from app.models.board import Board
load_dotenv()
cards_bp = Blueprint('cards', __name__)
boards_bp = Blueprint('boards', __name__)
@boards_bp.route('/')
def root():
return ('''<h1>Mango Mania</h1>''')
@boards_bp.route('/boards', methods=["GET", "POST"], strict_slashes = False)
def handle_boards():
if request.method == "GET":
boards = Board.query.all()
boards_response = []
for board in boards:
boards_response.append({
"board_id": board.board_id,
"title": board.title,
"owner": board.owner,
})
return jsonify(boards_response)
elif request.method == "POST":
request_body = request.get_json()
title = request_body.get("title")
owner=request_body.get("owner")
if "title" not in request_body or "owner" not in request_body:
return jsonify({"details": "Invalid data"}), 400
new_board = Board(title=title,
owner=owner)
db.session.add(new_board)
db.session.commit()
commited_board = {"board":
{"board_id": new_board.board_id,
"title": new_board.title,
"owner": new_board.owner
}}
return jsonify(commited_board), 201
@boards_bp.route("/boards/<board_id>", methods=["GET", "DELETE"])
def handle_board(board_id):
board = Board.query.get_or_404(board_id)
if request.method == "GET":
selected_board = {"board":
{"board_id": board.board_id,
"title": board.title,
"owner": board.owner,
}}
return jsonify(selected_board),200
elif request.method == "DELETE":
db.session.delete(board)
db.session.commit()
board_response_body = {"details": f'Board number {board.board_id} "{board.title}" successfully deleted'}
return jsonify(board_response_body),200
@cards_bp.route("/boards/<board_id>/cards", methods=["GET","POST"])
def handle_cards(board_id):
board = Board.query.get(board_id)
if request.method == "GET":
cards = board.cards
cards_response = []
for card in cards:
cards_response.append({
"card_id": card.card_id,
"message": card.message,
"votes": card.like_count,
})
return jsonify(cards_response)
elif request.method == "POST":
request_body = request.get_json()
if "message" not in request_body:
return jsonify({"details": "Invalid data"}), 400
new_card = Card(message=request_body["message"], like_count=0, board_id=board.board_id)
db.session.add(new_card)
db.session.commit()
commited_card = {"card": {
"card_id": new_card.card_id,
"message": new_card.message,
"votes": new_card.like_count,
"board_id": new_card.board_id
}}
return jsonify(commited_card), 201
@cards_bp.route("/<card_id>/votes", methods=["PATCH"])
def handle_card_like(card_id):
card = Card.query.get_or_404(card_id)
vote = request.args.get("like_count")
card.like_count += int(vote)
db.session.commit()
response_body = {
"card": {
"card_id": card.card_id,
"message": card.message,
"votes": card.like_count,
}
}
return jsonify(response_body), 200
@cards_bp.route("/<card_id>", methods=["DELETE"])
def handle_card_del(card_id):
card = Card.query.get_or_404(card_id)
db.session.delete(card)
db.session.commit()
cards_response_body = {"details": f'card {card.card_id} "{card.message}" successfully deleted'}
return jsonify(cards_response_body),200
| null |
app/routes.py
|
routes.py
|
py
| 3,857 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "dotenv.load_dotenv",
"line_number": 7,
"usage_type": "call"
},
{
"api_name": "flask.Blueprint",
"line_number": 9,
"usage_type": "call"
},
{
"api_name": "flask.Blueprint",
"line_number": 10,
"usage_type": "call"
},
{
"api_name": "flask.request.method",
"line_number": 18,
"usage_type": "attribute"
},
{
"api_name": "flask.request",
"line_number": 18,
"usage_type": "name"
},
{
"api_name": "app.models.board.Board.query.all",
"line_number": 19,
"usage_type": "call"
},
{
"api_name": "app.models.board.Board.query",
"line_number": 19,
"usage_type": "attribute"
},
{
"api_name": "app.models.board.Board",
"line_number": 19,
"usage_type": "name"
},
{
"api_name": "flask.jsonify",
"line_number": 28,
"usage_type": "call"
},
{
"api_name": "flask.request.method",
"line_number": 30,
"usage_type": "attribute"
},
{
"api_name": "flask.request",
"line_number": 30,
"usage_type": "name"
},
{
"api_name": "flask.request.get_json",
"line_number": 31,
"usage_type": "call"
},
{
"api_name": "flask.request",
"line_number": 31,
"usage_type": "name"
},
{
"api_name": "flask.jsonify",
"line_number": 35,
"usage_type": "call"
},
{
"api_name": "app.models.board.Board",
"line_number": 36,
"usage_type": "call"
},
{
"api_name": "app.db.session.add",
"line_number": 38,
"usage_type": "call"
},
{
"api_name": "app.db.session",
"line_number": 38,
"usage_type": "attribute"
},
{
"api_name": "app.db",
"line_number": 38,
"usage_type": "name"
},
{
"api_name": "app.db.session.commit",
"line_number": 39,
"usage_type": "call"
},
{
"api_name": "app.db.session",
"line_number": 39,
"usage_type": "attribute"
},
{
"api_name": "app.db",
"line_number": 39,
"usage_type": "name"
},
{
"api_name": "flask.jsonify",
"line_number": 45,
"usage_type": "call"
},
{
"api_name": "app.models.board.Board.query.get_or_404",
"line_number": 49,
"usage_type": "call"
},
{
"api_name": "app.models.board.Board.query",
"line_number": 49,
"usage_type": "attribute"
},
{
"api_name": "app.models.board.Board",
"line_number": 49,
"usage_type": "name"
},
{
"api_name": "flask.request.method",
"line_number": 50,
"usage_type": "attribute"
},
{
"api_name": "flask.request",
"line_number": 50,
"usage_type": "name"
},
{
"api_name": "flask.jsonify",
"line_number": 56,
"usage_type": "call"
},
{
"api_name": "flask.request.method",
"line_number": 57,
"usage_type": "attribute"
},
{
"api_name": "flask.request",
"line_number": 57,
"usage_type": "name"
},
{
"api_name": "app.db.session.delete",
"line_number": 58,
"usage_type": "call"
},
{
"api_name": "app.db.session",
"line_number": 58,
"usage_type": "attribute"
},
{
"api_name": "app.db",
"line_number": 58,
"usage_type": "name"
},
{
"api_name": "app.db.session.commit",
"line_number": 59,
"usage_type": "call"
},
{
"api_name": "app.db.session",
"line_number": 59,
"usage_type": "attribute"
},
{
"api_name": "app.db",
"line_number": 59,
"usage_type": "name"
},
{
"api_name": "flask.jsonify",
"line_number": 61,
"usage_type": "call"
},
{
"api_name": "app.models.board.Board.query.get",
"line_number": 65,
"usage_type": "call"
},
{
"api_name": "app.models.board.Board.query",
"line_number": 65,
"usage_type": "attribute"
},
{
"api_name": "app.models.board.Board",
"line_number": 65,
"usage_type": "name"
},
{
"api_name": "flask.request.method",
"line_number": 67,
"usage_type": "attribute"
},
{
"api_name": "flask.request",
"line_number": 67,
"usage_type": "name"
},
{
"api_name": "flask.jsonify",
"line_number": 76,
"usage_type": "call"
},
{
"api_name": "flask.request.method",
"line_number": 78,
"usage_type": "attribute"
},
{
"api_name": "flask.request",
"line_number": 78,
"usage_type": "name"
},
{
"api_name": "flask.request.get_json",
"line_number": 79,
"usage_type": "call"
},
{
"api_name": "flask.request",
"line_number": 79,
"usage_type": "name"
},
{
"api_name": "flask.jsonify",
"line_number": 82,
"usage_type": "call"
},
{
"api_name": "app.models.card.Card",
"line_number": 84,
"usage_type": "call"
},
{
"api_name": "app.db.session.add",
"line_number": 85,
"usage_type": "call"
},
{
"api_name": "app.db.session",
"line_number": 85,
"usage_type": "attribute"
},
{
"api_name": "app.db",
"line_number": 85,
"usage_type": "name"
},
{
"api_name": "app.db.session.commit",
"line_number": 86,
"usage_type": "call"
},
{
"api_name": "app.db.session",
"line_number": 86,
"usage_type": "attribute"
},
{
"api_name": "app.db",
"line_number": 86,
"usage_type": "name"
},
{
"api_name": "flask.jsonify",
"line_number": 93,
"usage_type": "call"
},
{
"api_name": "app.models.card.Card.query.get_or_404",
"line_number": 97,
"usage_type": "call"
},
{
"api_name": "app.models.card.Card.query",
"line_number": 97,
"usage_type": "attribute"
},
{
"api_name": "app.models.card.Card",
"line_number": 97,
"usage_type": "name"
},
{
"api_name": "flask.request.args.get",
"line_number": 98,
"usage_type": "call"
},
{
"api_name": "flask.request.args",
"line_number": 98,
"usage_type": "attribute"
},
{
"api_name": "flask.request",
"line_number": 98,
"usage_type": "name"
},
{
"api_name": "app.db.session.commit",
"line_number": 101,
"usage_type": "call"
},
{
"api_name": "app.db.session",
"line_number": 101,
"usage_type": "attribute"
},
{
"api_name": "app.db",
"line_number": 101,
"usage_type": "name"
},
{
"api_name": "flask.jsonify",
"line_number": 109,
"usage_type": "call"
},
{
"api_name": "app.models.card.Card.query.get_or_404",
"line_number": 113,
"usage_type": "call"
},
{
"api_name": "app.models.card.Card.query",
"line_number": 113,
"usage_type": "attribute"
},
{
"api_name": "app.models.card.Card",
"line_number": 113,
"usage_type": "name"
},
{
"api_name": "app.db.session.delete",
"line_number": 114,
"usage_type": "call"
},
{
"api_name": "app.db.session",
"line_number": 114,
"usage_type": "attribute"
},
{
"api_name": "app.db",
"line_number": 114,
"usage_type": "name"
},
{
"api_name": "app.db.session.commit",
"line_number": 115,
"usage_type": "call"
},
{
"api_name": "app.db.session",
"line_number": 115,
"usage_type": "attribute"
},
{
"api_name": "app.db",
"line_number": 115,
"usage_type": "name"
},
{
"api_name": "flask.jsonify",
"line_number": 117,
"usage_type": "call"
}
] |
392552580
|
from rest_framework.viewsets import ModelViewSet
from api import permissions
class BaseModelViewSet(ModelViewSet):
http_method_names = ('get', 'post', 'put', 'delete')
lookup_field = 'id'
authentication_required = True
default_serializer_class = None
action_serializers = dict()
default_permission_classes = tuple()
action_permissions = dict()
list_filters = dict()
def get_list_filters(self) -> dict:
result = dict()
for url_filter_key, query_filter_key in self.list_filters.items():
filter_val = self.request.GET.get(url_filter_key, None)
if filter_val:
result[query_filter_key] = filter_val
return result
def get_serializer_class(self, *args, **kwargs):
serializer = self.action_serializers.get(
self.action,
self.default_serializer_class
)
if not serializer:
err = _(f'error getting serializer class for "{self.action}" action.')
err += _('\n"default_serializer_class" also set to None')
raise Exception(err)
return serializer
def get_permissions(self) -> tuple:
result_permissions = list()
if self.authentication_required:
result_permissions.append(permissions.IsLoggedIn)
if self.default_permission_classes:
result_permissions = list(self.default_permission_classes)
action_permissions = self.action_permissions.get(self.action, None)
if action_permissions:
result_permissions = list(action_permissions)
return tuple([p() for p in result_permissions])
def get_queryset(self, *args, **kwargs):
ordering = self.request.GET.get('ordering', None)
if ordering:
queryset = (
self.get_serializer()
.Meta.model.objects
.filter(**self.get_list_filters(*args, **kwargs))
.order_by(*ordering.split(','))
)
else:
queryset = (
self.get_serializer()
.Meta.model.objects
.filter(**self.get_list_filters(*args, **kwargs))
)
return queryset
| null |
api/base_viewset.py
|
base_viewset.py
|
py
| 2,217 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "rest_framework.viewsets.ModelViewSet",
"line_number": 4,
"usage_type": "name"
},
{
"api_name": "api.permissions.IsLoggedIn",
"line_number": 37,
"usage_type": "attribute"
},
{
"api_name": "api.permissions",
"line_number": 37,
"usage_type": "name"
}
] |
277816006
|
"""PASCAL DOTA dataset."""
import os
import xml.etree.ElementTree
import tensorflow as tf
import tensorflow_datasets.public_api as tfds
_VOC_CITATION = """\
@misc{ding2021object,
title={Object Detection in Aerial Images: A Large-Scale Benchmark and Challenges},
author={Jian Ding and Nan Xue and Gui-Song Xia and Xiang Bai and Wen Yang and Micheal Ying Yang and Serge Belongie and Jiebo Luo and Mihai Datcu and Marcello Pelillo and Liangpei Zhang},
year={2021},
eprint={2102.12219},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
"""
_VOC_DESCRIPTION = """
This dataset contains the data from the PASCAL Visual Object Classes Challenge,
corresponding to the Classification and Detection competitions.
In the Classification competition, the goal is to predict the set of labels
contained in the image, while in the Detection competition the goal is to
predict the bounding box and label of each individual object.
WARNING: As per the official dataset, the test set of VOC2012 does not contain
annotations.
"""
_VOC_CONFIG_DESCRIPTION = """
Created by Crowley
"""
_VOC_URL = "Oh Mr.Crowley"
# Original site, it is down very often.
# _VOC_DATA_URL = "http://host.robots.ox.ac.uk/pascal/VOC/voc{year}/"
# Data mirror:
_VOC_LABELS = (
"sv",
"lv",
"boat",
"plane",
)
def _get_example_objects(annon_filepath):
"""Function to get all the objects from the annotation XML file."""
with tf.io.gfile.GFile(annon_filepath, "r") as f:
root = xml.etree.ElementTree.parse(f).getroot()
# Disable pytype to avoid attribute-error due to find returning
# Optional[Element]
# pytype: disable=attribute-error
size = root.find("size")
width = float(size.find("width").text)
height = float(size.find("height").text)
for obj in root.findall("object"):
# Get object's label name.
label = obj.find("name").text.lower()
# Get object's bounding box
bndbox = obj.find("bndbox")
xmax = float(bndbox.find("xmax").text)
xmin = float(bndbox.find("xmin").text)
ymax = float(bndbox.find("ymax").text)
ymin = float(bndbox.find("ymin").text)
yield {
"label": label,
"bbox": tfds.features.BBox(
ymin / height, xmin / width, ymax / height, xmax / width),
}
class Dota_VocConfig(tfds.core.BuilderConfig):
"""BuilderConfig for Voc."""
def __init__(self, year=None, filenames=None, has_test_annotations=True, **kwargs):
self.year = '2020'
self.filenames = filenames
self.has_test_annotations = has_test_annotations
super(Dota_VocConfig, self).__init__(
name='DOTA',
version=tfds.core.Version("1.0.0"),
**kwargs)
class Dota_Voc(tfds.core.GeneratorBasedBuilder):
"""DOTA dataset."""
MANUAL_DOWNLOAD_INSTRUCTIONS = """
Register into https://example.org/login to get the data. Place the `data.zip`
file in the `manual_dir/`.
"""
BUILDER_CONFIGS = [
Dota_VocConfig(
description=_VOC_CONFIG_DESCRIPTION.format(
num_images=4771, num_objects=24640),
filenames={
"dota_train": "dota_train.zip",
"dota_test": "dota_test.zip",
},
),
]
def _info(self):
return tfds.core.DatasetInfo(
builder=self,
description=_VOC_DESCRIPTION,
features=tfds.features.FeaturesDict({
"image": tfds.features.Image(),
"image/filename": tfds.features.Text(),
"objects": tfds.features.Sequence({
"label": tfds.features.ClassLabel(names=_VOC_LABELS),
"bbox": tfds.features.BBoxFeature(),
}),
"labels": tfds.features.Sequence(
tfds.features.ClassLabel(names=_VOC_LABELS)),
}),
# homepage=_VOC_URL.format(year=self.builder_config.year),
# citation=_VOC_CITATION.format(year=self.builder_config.year),
)
def _split_generators(self, dl_manager):
archive_path = dl_manager.manual_dir / "data.tar"
extracted_path = dl_manager.extract(archive_path)
return{
'train' : self._generate_examples(
images_path=extracted_path / 'train_imgs',
label_path=extracted_path / 'train_labels',
),
'test' : self._generate_examples(
images_path=extracted_path / 'test_imgs',
labels_path=extracted_path / 'test_labels',
),
}
def _generate_examples(self, images_path, labels_path):
for labels_file in tf.io.gfile.listdir(labels_path):
image_id = labels_file[:-4]
image_path = os.path.join(images_path, image_id + '.jpg')
label_path = os.path.join(labels_path, labels_file)
example = self._generate_example(image_id, image_path, label_path)
yield image_id, example
def _generate_example(self, image_id, image_filepath, annon_filepath):
objects = list(_get_example_objects(annon_filepath))
labels = sorted(set(obj["label"] for obj in objects))
return {
"image": image_filepath,
"image/filename": image_id + ".jpg",
"objects": objects,
"labels": labels,
}
| null |
dota_voc.py
|
dota_voc.py
|
py
| 5,371 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "tensorflow.io.gfile.GFile",
"line_number": 49,
"usage_type": "call"
},
{
"api_name": "tensorflow.io",
"line_number": 49,
"usage_type": "attribute"
},
{
"api_name": "xml.etree.ElementTree.etree.ElementTree.parse",
"line_number": 50,
"usage_type": "call"
},
{
"api_name": "xml.etree.ElementTree.etree",
"line_number": 50,
"usage_type": "attribute"
},
{
"api_name": "xml.etree.ElementTree",
"line_number": 50,
"usage_type": "name"
},
{
"api_name": "tensorflow_datasets.public_api.features.BBox",
"line_number": 70,
"usage_type": "call"
},
{
"api_name": "tensorflow_datasets.public_api.features",
"line_number": 70,
"usage_type": "attribute"
},
{
"api_name": "tensorflow_datasets.public_api",
"line_number": 70,
"usage_type": "name"
},
{
"api_name": "tensorflow_datasets.public_api.core",
"line_number": 75,
"usage_type": "attribute"
},
{
"api_name": "tensorflow_datasets.public_api",
"line_number": 75,
"usage_type": "name"
},
{
"api_name": "tensorflow_datasets.public_api.core.Version",
"line_number": 85,
"usage_type": "call"
},
{
"api_name": "tensorflow_datasets.public_api.core",
"line_number": 85,
"usage_type": "attribute"
},
{
"api_name": "tensorflow_datasets.public_api",
"line_number": 85,
"usage_type": "name"
},
{
"api_name": "tensorflow_datasets.public_api.core",
"line_number": 89,
"usage_type": "attribute"
},
{
"api_name": "tensorflow_datasets.public_api",
"line_number": 89,
"usage_type": "name"
},
{
"api_name": "tensorflow_datasets.public_api.core.DatasetInfo",
"line_number": 109,
"usage_type": "call"
},
{
"api_name": "tensorflow_datasets.public_api.core",
"line_number": 109,
"usage_type": "attribute"
},
{
"api_name": "tensorflow_datasets.public_api",
"line_number": 109,
"usage_type": "name"
},
{
"api_name": "tensorflow_datasets.public_api.features.FeaturesDict",
"line_number": 112,
"usage_type": "call"
},
{
"api_name": "tensorflow_datasets.public_api.features",
"line_number": 112,
"usage_type": "attribute"
},
{
"api_name": "tensorflow_datasets.public_api",
"line_number": 112,
"usage_type": "name"
},
{
"api_name": "tensorflow_datasets.public_api.features.Image",
"line_number": 113,
"usage_type": "call"
},
{
"api_name": "tensorflow_datasets.public_api.features",
"line_number": 113,
"usage_type": "attribute"
},
{
"api_name": "tensorflow_datasets.public_api",
"line_number": 113,
"usage_type": "name"
},
{
"api_name": "tensorflow_datasets.public_api.features.Text",
"line_number": 114,
"usage_type": "call"
},
{
"api_name": "tensorflow_datasets.public_api.features",
"line_number": 114,
"usage_type": "attribute"
},
{
"api_name": "tensorflow_datasets.public_api",
"line_number": 114,
"usage_type": "name"
},
{
"api_name": "tensorflow_datasets.public_api.features.Sequence",
"line_number": 115,
"usage_type": "call"
},
{
"api_name": "tensorflow_datasets.public_api.features",
"line_number": 115,
"usage_type": "attribute"
},
{
"api_name": "tensorflow_datasets.public_api",
"line_number": 115,
"usage_type": "name"
},
{
"api_name": "tensorflow_datasets.public_api.features.ClassLabel",
"line_number": 116,
"usage_type": "call"
},
{
"api_name": "tensorflow_datasets.public_api.features",
"line_number": 116,
"usage_type": "attribute"
},
{
"api_name": "tensorflow_datasets.public_api",
"line_number": 116,
"usage_type": "name"
},
{
"api_name": "tensorflow_datasets.public_api.features.BBoxFeature",
"line_number": 117,
"usage_type": "call"
},
{
"api_name": "tensorflow_datasets.public_api.features",
"line_number": 117,
"usage_type": "attribute"
},
{
"api_name": "tensorflow_datasets.public_api",
"line_number": 117,
"usage_type": "name"
},
{
"api_name": "tensorflow_datasets.public_api.features.Sequence",
"line_number": 119,
"usage_type": "call"
},
{
"api_name": "tensorflow_datasets.public_api.features",
"line_number": 119,
"usage_type": "attribute"
},
{
"api_name": "tensorflow_datasets.public_api",
"line_number": 119,
"usage_type": "name"
},
{
"api_name": "tensorflow_datasets.public_api.features.ClassLabel",
"line_number": 120,
"usage_type": "call"
},
{
"api_name": "tensorflow_datasets.public_api.features",
"line_number": 120,
"usage_type": "attribute"
},
{
"api_name": "tensorflow_datasets.public_api",
"line_number": 120,
"usage_type": "name"
},
{
"api_name": "tensorflow.io.gfile.listdir",
"line_number": 144,
"usage_type": "call"
},
{
"api_name": "tensorflow.io",
"line_number": 144,
"usage_type": "attribute"
},
{
"api_name": "os.path.join",
"line_number": 147,
"usage_type": "call"
},
{
"api_name": "os.path",
"line_number": 147,
"usage_type": "attribute"
},
{
"api_name": "os.path.join",
"line_number": 148,
"usage_type": "call"
},
{
"api_name": "os.path",
"line_number": 148,
"usage_type": "attribute"
}
] |
214823890
|
from __future__ import print_function, division
from argparse import ArgumentParser
import yaml
import logging
import copy
import sys
import os
import time
from subprocess import call
from marmot.experiment.import_utils import call_for_each_element, build_object, build_objects, mk_tmp_dir
from marmot.experiment.preprocessing_utils import create_contexts, flatten, contexts_to_features, tags_from_contexts, fit_binarizers, binarize
from marmot.experiment.learning_utils import map_classifiers, predict_all
from marmot.evaluation.evaluation_metrics import weighted_fmeasure, sequence_correlation, sequence_correlation_weighted
from marmot.evaluation.evaluation_utils import compare_vocabulary
from marmot.util.persist_features import persist_features
from marmot.util.generate_crf_template import generate_crf_template
from marmot.evaluation.evaluation_utils import write_res_to_file
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)
logger = logging.getLogger('experiment_logger')
'''
Learn a model with an external CRF tool: CRF++ or CRFSuite
'''
def label_test(flat_labels, new_test_name, text_file, method_name):
tag_map = {0: 'BAD', 1: 'OK'}
new_test_plain = open(new_test_name+'.'+method_name+'.plain', 'w')
new_test_ext = open(new_test_name+'.'+method_name+'.ext', 'w')
start_idx = 0
for s_idx, txt in enumerate(open(text_file)):
words = txt[:-1].decode('utf-8').strip().split()
tag_seq = [tag_map[flat_labels[i]] for i in range(start_idx, len(words))]
new_test_plain.write('%s\n' % ' '.join(tag_seq))
for t_idx, (tag, word) in enumerate(zip(tag_seq, words)):
new_test_ext.write('%s\t%d\t%d\t%s\t%s\n' % (method_name, s_idx, t_idx, word.encode('utf-8'), tag))
def get_crfpp_output(out_file):
predicted = []
for line in open(out_file):
line = line.strip('\n').replace('\t', ' ')
predicted.append(line.split(' ')[-1])
return predicted
def main(config):
workers = config['workers']
tmp_dir = config['tmp_dir'] if 'tmp_dir' in config else None
tmp_dir = mk_tmp_dir(tmp_dir)
time_stamp = str(time.time())
# REPRESENTATION GENERATION
# main representations (source, target, tags)
# training
train_data_generators = build_objects(config['datasets']['training'])
train_data = {}
for gen in train_data_generators:
data = gen.generate()
for key in data:
if key not in train_data:
train_data[key] = []
train_data[key].extend(data[key])
# test
test_data_generator = build_object(config['datasets']['test'][0])
test_data = test_data_generator.generate()
logger.info("Train data keys: {}".format(train_data.keys()))
logger.info("Train data sequences: {}".format(len(train_data['target'])))
logger.info("Sample sequence: {}".format([w.encode('utf-8') for w in train_data['target'][0]]))
# logger.info("Sample sequence: {}".format(train_data['similarity'][0]))
# sys.exit()
# additional representations
if 'representations' in config:
representation_generators = build_objects(config['representations'])
else:
representation_generators = []
for r in representation_generators:
train_data = r.generate(train_data)
test_data = r.generate(test_data)
# borders = config['borders'] if 'borders' in config else False
# if 'multiply_data_train' not in config:
# pass
# elif config['multiply_data_train'] == 'ngrams':
# train_data = multiply_data_ngrams(train_data, borders=borders)
# elif config['multiply_data_train'] == '1ton':
# train_data = multiply_data(train_data, borders=borders)
# elif config['multiply_data_train'] == 'duplicate':
# train_data = multiply_data_base(train_data)
# elif config['multiply_data_train'] == 'all':
# train_data = multiply_data_all(train_data, borders=borders)
# else:
# print("Unknown 'multiply data train' value: {}".format(config['multiply_data_train']))
# logger.info("Extended train representations: {}".format(len(train_data['target'])))
# logger.info("Simple test representations: {}".format(len(test_data['target'])))
# if 'multiply_data_test' not in config:
# pass
# elif config['multiply_data_test'] == 'ngrams':
# test_data = multiply_data_ngrams(test_data, borders=borders)
# elif config['multiply_data_test'] == '1ton':
# test_data = multiply_data(test_data, borders=borders)
# else:
# print("Unknown 'multiply data test' value: {}".format(config['multiply_data_test']))
# logger.info("Extended test representations: {}".format(len(test_data['target'])))
logger.info('here are the keys in your representations: {}'.format(train_data.keys()))
# the data_type is the format corresponding to the model of the data that the user wishes to learn
data_type = config['contexts'] if 'contexts' in config else 'plain'
test_contexts = create_contexts(test_data, data_type=data_type)
test_contexts_seq = create_contexts(test_data, data_type='sequential')
train_contexts = create_contexts(train_data, data_type=data_type)
logger.info('Vocabulary comparison -- coverage for each dataset: ')
logger.info(compare_vocabulary([train_data['target'], test_data['target']]))
# END REPRESENTATION GENERATION
# FEATURE EXTRACTION
train_tags = call_for_each_element(train_contexts, tags_from_contexts, data_type=data_type)
test_tags = call_for_each_element(test_contexts, tags_from_contexts, data_type=data_type)
test_tags_seq = call_for_each_element(test_contexts_seq, tags_from_contexts, data_type='sequential')
logger.info('creating feature extractors...')
feature_extractors = build_objects(config['feature_extractors'])
logger.info('mapping the feature extractors over the contexts for test...')
test_features = call_for_each_element(test_contexts, contexts_to_features, [feature_extractors, workers], data_type=data_type)
logger.info('mapping the feature extractors over the contexts for train...')
train_features = call_for_each_element(train_contexts, contexts_to_features, [feature_extractors, workers], data_type=data_type)
logger.info('number of training instances: {}'.format(len(train_features)))
logger.info('number of testing instances: {}'.format(len(test_features)))
logger.info('All of your features now exist in their raw representation, but they may not be numbers yet')
# END FEATURE EXTRACTION
# BEGIN CONVERTING FEATURES TO NUMBERS
logger.info('binarization flag: {}'.format(config['features']['binarize']))
# flatten so that we can properly binarize the features
if config['features']['binarize'] is True:
logger.info('Binarizing your features...')
all_values = []
if data_type == 'sequential':
all_values = flatten(train_features)
elif data_type == 'plain':
all_values = train_features
elif data_type == 'token':
all_values = flatten(train_features.values())
feature_names = [f for extractor in feature_extractors for f in extractor.get_feature_names()]
features_num = len(feature_names)
true_features_num = len(all_values[0])
logger.info('fitting binarizers...')
binarizers = fit_binarizers(all_values)
logger.info('binarizing test data...')
test_features = call_for_each_element(test_features, binarize, [binarizers], data_type=data_type)
logger.info('binarizing training data...')
# TODO: this line hangs with alignment+w2v
train_features = call_for_each_element(train_features, binarize, [binarizers], data_type=data_type)
logger.info('All of your features are now scalars in numpy arrays')
logger.info('training and test sets successfully generated')
# the way that we persist depends upon the structure of the data (plain/sequence/token_dict)
# TODO: remove this once we have a list containing all datasets
if config['features']['persist']:
if 'persist_format' in config['features']:
persist_format = config['features']['persist_format']
else:
persist_format = 'crf++'
experiment_datasets = [{'name': 'test', 'features': test_features, 'tags': test_tags}, {'name': 'train', 'features': train_features, 'tags': train_tags}]
feature_names = [f for extractor in feature_extractors for f in extractor.get_feature_names()]
if config['features']['persist_dir']:
persist_dir = config['features']['persist_dir']
else:
persist_dir = os.path.getcwd()
logger.info('persisting your features to: {}'.format(persist_dir))
# for each dataset, write a file and persist the features
for dataset_obj in experiment_datasets:
persist_features(dataset_obj['name'], dataset_obj['features'], persist_dir, feature_names=feature_names, tags=dataset_obj['tags'], file_format=persist_format)
# BEGIN LEARNING
# TODO: different sequence learning modules need different representation, we should wrap them in a class
# TODO: create a consistent interface to sequence learners, will need to use *args and **kwargs because APIs are very different
from sklearn.metrics import f1_score, precision_score, recall_score
import numpy as np
experiment_datasets = [{'name': 'test', 'features': test_features, 'tags': test_tags}, {'name': 'train', 'features': train_features, 'tags': train_tags}]
feature_names = [f for extractor in feature_extractors for f in extractor.get_feature_names()]
print("FEATURE NAMES: ", feature_names)
persist_dir = tmp_dir
logger.info('persisting your features to: {}'.format(persist_dir))
# for each dataset, write a file and persist the features
if 'persist_format' not in config:
config['persist_format'] = 'crf_suite'
for dataset_obj in experiment_datasets:
persist_features(dataset_obj['name']+time_stamp, dataset_obj['features'], persist_dir, feature_names=feature_names, tags=dataset_obj['tags'], file_format=config['persist_format'])
feature_num = len(train_features[0][0])
train_file = os.path.join(tmp_dir, 'train'+time_stamp+'.crf')
test_file = os.path.join(tmp_dir, 'test'+time_stamp+'.crf')
tag_map = {u'OK': 1, u'BAD': 0, 0: 0, 1: 1}
if config['persist_format'] == 'crf++':
# generate a template for CRF++ feature extractor
generate_crf_template(feature_num, 'template', tmp_dir)
# train a CRF++ model
call(['crf_learn', '-a', 'MIRA', os.path.join(tmp_dir, 'template'), train_file, os.path.join(tmp_dir, 'crfpp_model_file'+time_stamp)])
# tag a test set
call(['crf_test', '-m', os.path.join(tmp_dir, 'crfpp_model_file'+time_stamp), '-o', test_file+'.tagged', test_file])
elif config['persist_format'] == 'crf_suite':
crfsuite_algorithm = config['crfsuite_algorithm']
call(['crfsuite', 'learn', '-a', crfsuite_algorithm, '-m', os.path.join(tmp_dir, 'crfsuite_model_file'+time_stamp), train_file])
test_out = open(test_file+'.tagged', 'w')
call(['crfsuite', 'tag', '-tr', '-m', os.path.join(tmp_dir, 'crfsuite_model_file'+time_stamp), test_file], stdout=test_out)
test_out.close()
else:
print("Unknown persist format: {}".format(config['persist_format']))
# parse CRFSuite output
flattened_ref, flattened_hyp = [], []
tag_map = {'OK': 1, 'BAD': 0}
for line in open(test_file+'.tagged'):
if line == "\n":
continue
chunks = line.strip('\n').split('\t')
if len(chunks) != 2:
continue
try:
flattened_ref.append(tag_map[chunks[-2]])
flattened_hyp.append(tag_map[chunks[-1]])
except KeyError:
continue
print("Ref, hyp: ", len(flattened_ref), len(flattened_hyp))
logger.info('Structured prediction f1: ')
print(f1_score(flattened_ref, flattened_hyp, average=None))
print(f1_score(flattened_ref, flattened_hyp, average='weighted', pos_label=None))
logger.info("Sequence correlation: ")
# print(sequence_correlation_weighted(y_test, structured_hyp, verbose=True)[1])
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument("configuration_file", action="store", help="path to the config file (in YAML format).")
parser.add_argument("-a", help="crfsuite algorithm")
args = parser.parse_args()
experiment_config = {}
# Experiment hyperparams
cfg_path = args.configuration_file
# read configuration file
with open(cfg_path, "r") as cfg_file:
experiment_config = yaml.load(cfg_file.read())
experiment_config['crfsuite_algorithm'] = args.a
main(experiment_config)
| null |
marmot/experiment/crf_experiment.py
|
crf_experiment.py
|
py
| 12,883 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "logging.basicConfig",
"line_number": 21,
"usage_type": "call"
},
{
"api_name": "logging.INFO",
"line_number": 21,
"usage_type": "attribute"
},
{
"api_name": "logging.getLogger",
"line_number": 22,
"usage_type": "call"
},
{
"api_name": "marmot.experiment.import_utils.mk_tmp_dir",
"line_number": 53,
"usage_type": "call"
},
{
"api_name": "time.time",
"line_number": 54,
"usage_type": "call"
},
{
"api_name": "marmot.experiment.import_utils.build_objects",
"line_number": 59,
"usage_type": "call"
},
{
"api_name": "marmot.experiment.import_utils.build_object",
"line_number": 68,
"usage_type": "call"
},
{
"api_name": "marmot.experiment.import_utils.build_objects",
"line_number": 79,
"usage_type": "call"
},
{
"api_name": "marmot.experiment.preprocessing_utils.create_contexts",
"line_number": 117,
"usage_type": "call"
},
{
"api_name": "marmot.experiment.preprocessing_utils.create_contexts",
"line_number": 118,
"usage_type": "call"
},
{
"api_name": "marmot.experiment.preprocessing_utils.create_contexts",
"line_number": 119,
"usage_type": "call"
},
{
"api_name": "marmot.evaluation.evaluation_utils.compare_vocabulary",
"line_number": 122,
"usage_type": "call"
},
{
"api_name": "marmot.experiment.import_utils.call_for_each_element",
"line_number": 127,
"usage_type": "call"
},
{
"api_name": "marmot.experiment.preprocessing_utils.tags_from_contexts",
"line_number": 127,
"usage_type": "argument"
},
{
"api_name": "marmot.experiment.import_utils.call_for_each_element",
"line_number": 128,
"usage_type": "call"
},
{
"api_name": "marmot.experiment.preprocessing_utils.tags_from_contexts",
"line_number": 128,
"usage_type": "argument"
},
{
"api_name": "marmot.experiment.import_utils.call_for_each_element",
"line_number": 129,
"usage_type": "call"
},
{
"api_name": "marmot.experiment.preprocessing_utils.tags_from_contexts",
"line_number": 129,
"usage_type": "argument"
},
{
"api_name": "marmot.experiment.import_utils.build_objects",
"line_number": 132,
"usage_type": "call"
},
{
"api_name": "marmot.experiment.import_utils.call_for_each_element",
"line_number": 134,
"usage_type": "call"
},
{
"api_name": "marmot.experiment.preprocessing_utils.contexts_to_features",
"line_number": 134,
"usage_type": "argument"
},
{
"api_name": "marmot.experiment.import_utils.call_for_each_element",
"line_number": 136,
"usage_type": "call"
},
{
"api_name": "marmot.experiment.preprocessing_utils.contexts_to_features",
"line_number": 136,
"usage_type": "argument"
},
{
"api_name": "marmot.experiment.preprocessing_utils.flatten",
"line_number": 151,
"usage_type": "call"
},
{
"api_name": "marmot.experiment.preprocessing_utils.flatten",
"line_number": 155,
"usage_type": "call"
},
{
"api_name": "marmot.experiment.preprocessing_utils.fit_binarizers",
"line_number": 162,
"usage_type": "call"
},
{
"api_name": "marmot.experiment.import_utils.call_for_each_element",
"line_number": 164,
"usage_type": "call"
},
{
"api_name": "marmot.experiment.preprocessing_utils.binarize",
"line_number": 164,
"usage_type": "argument"
},
{
"api_name": "marmot.experiment.import_utils.call_for_each_element",
"line_number": 167,
"usage_type": "call"
},
{
"api_name": "marmot.experiment.preprocessing_utils.binarize",
"line_number": 167,
"usage_type": "argument"
},
{
"api_name": "os.path.getcwd",
"line_number": 185,
"usage_type": "call"
},
{
"api_name": "os.path",
"line_number": 185,
"usage_type": "attribute"
},
{
"api_name": "marmot.util.persist_features.persist_features",
"line_number": 189,
"usage_type": "call"
},
{
"api_name": "marmot.util.persist_features.persist_features",
"line_number": 208,
"usage_type": "call"
},
{
"api_name": "os.path.join",
"line_number": 211,
"usage_type": "call"
},
{
"api_name": "os.path",
"line_number": 211,
"usage_type": "attribute"
},
{
"api_name": "os.path.join",
"line_number": 212,
"usage_type": "call"
},
{
"api_name": "os.path",
"line_number": 212,
"usage_type": "attribute"
},
{
"api_name": "marmot.util.generate_crf_template.generate_crf_template",
"line_number": 217,
"usage_type": "call"
},
{
"api_name": "subprocess.call",
"line_number": 219,
"usage_type": "call"
},
{
"api_name": "os.path.join",
"line_number": 219,
"usage_type": "call"
},
{
"api_name": "os.path",
"line_number": 219,
"usage_type": "attribute"
},
{
"api_name": "subprocess.call",
"line_number": 221,
"usage_type": "call"
},
{
"api_name": "os.path.join",
"line_number": 221,
"usage_type": "call"
},
{
"api_name": "os.path",
"line_number": 221,
"usage_type": "attribute"
},
{
"api_name": "subprocess.call",
"line_number": 224,
"usage_type": "call"
},
{
"api_name": "os.path.join",
"line_number": 224,
"usage_type": "call"
},
{
"api_name": "os.path",
"line_number": 224,
"usage_type": "attribute"
},
{
"api_name": "subprocess.call",
"line_number": 226,
"usage_type": "call"
},
{
"api_name": "os.path.join",
"line_number": 226,
"usage_type": "call"
},
{
"api_name": "os.path",
"line_number": 226,
"usage_type": "attribute"
},
{
"api_name": "sklearn.metrics.f1_score",
"line_number": 248,
"usage_type": "call"
},
{
"api_name": "sklearn.metrics.f1_score",
"line_number": 249,
"usage_type": "call"
},
{
"api_name": "argparse.ArgumentParser",
"line_number": 256,
"usage_type": "call"
},
{
"api_name": "yaml.load",
"line_number": 266,
"usage_type": "call"
}
] |
142165523
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Apr 10 16:06:16 2020
@author: js
"""
import torch
import torch.nn as nn
from utils_down_resol import DownResolFunction, DownResolModule, DynamicDownResolModule, calcScale
num_bits = 8
class BasicBlock(nn.Module):
def __init__(self, in_planes, planes, blockstride=1):
super(BasicBlock, self).__init__()
self.blockstride = blockstride
self.channel_change = in_planes != planes
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=blockstride, padding=1, bias=True)
self.down_resol1 = DynamicDownResolModule(num_bits)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=True)
self.down_resol2 = DynamicDownResolModule(num_bits)
if blockstride > 1 or in_planes != planes:
self.conv3 = nn.Conv2d(in_planes, planes, kernel_size=1, stride=blockstride, padding=0, bias=True)
self.down_resol3 = DynamicDownResolModule(num_bits)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.down_resol1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.down_resol2(out)
if self.blockstride > 1 or self.channel_change:
residual = self.conv3(residual)
residual = self.down_resol3(residual)
out += residual
out = self.relu(out)
return out
class ResBlock(nn.Module):
def __init__(self, in_planes, inter_planes, planes, blockstride=1):
super(ResBlock, self).__init__()
self.blockstride = blockstride
self.channel_change = in_planes != planes
self.conv1 = nn.Conv2d(in_planes, inter_planes, kernel_size=1, stride=1, padding=0, bias=True)
self.down_resol1 = DynamicDownResolModule(num_bits)
self.conv2 = nn.Conv2d(inter_planes, inter_planes, kernel_size=3, stride=blockstride, padding=1, bias=True)
self.down_resol2 = DynamicDownResolModule(num_bits)
self.conv3 = nn.Conv2d(inter_planes, planes, kernel_size=1, stride=1, padding=0, bias=True)
self.down_resol3 = DynamicDownResolModule(num_bits)
if blockstride > 1 or in_planes != planes:
self.conv4 = nn.Conv2d(in_planes, planes, kernel_size=1, stride=blockstride, padding=0, bias=True)
self.down_resol4 = DynamicDownResolModule(num_bits)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.down_resol1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.down_resol2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.down_resol3(out)
if self.blockstride > 1 or self.channel_change:
residual = self.conv4(residual)
residual = self.down_resol4(residual)
out += residual
out = self.relu(out)
return out
class Resnet34(nn.Module):
def __init__(self, unet=False):
super(Resnet34, self).__init__()
self.relu = nn.ReLU(inplace=True)
self.unet = unet
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=True)
self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
# Block1
self.block1_1 = BasicBlock(64, 64)
self.block1_2 = BasicBlock(64, 64)
self.block1_3 = BasicBlock(64, 64)
# Block2
self.block2_1 = BasicBlock(64, 128, blockstride=2)
self.block2_2 = BasicBlock(128, 128)
self.block2_3 = BasicBlock(128, 128)
self.block2_4 = BasicBlock(128, 128)
# Block3
self.block3_1 = BasicBlock(128, 256, blockstride=2)
self.block3_2 = BasicBlock(256, 256)
self.block3_3 = BasicBlock(256, 256)
self.block3_4 = BasicBlock(256, 256)
self.block3_5 = BasicBlock(256, 256)
self.block3_6 = BasicBlock(256, 256)
# Block4
self.block4_1 = BasicBlock(256, 512, blockstride=2)
self.block4_2 = BasicBlock(512, 512)
self.block4_3 = BasicBlock(512, 512)
self.avgpool =nn.AdaptiveAvgPool2d(output_size=(1,1))
self.fc = nn.Linear(512, 1000, bias=True)
def forward(self, x):
x = self.conv1(x)
c1 = self.relu(x)
x = self.maxpool(c1)
x = self.block1_1(x)
x = self.block1_2(x)
c2 = self.block1_3(x)
x = self.block2_1(c2)
x = self.block2_2(x)
x = self.block2_3(x)
c3 = self.block2_4(x)
x = self.block3_1(c3)
x = self.block3_2(x)
x = self.block3_3(x)
x = self.block3_4(x)
x = self.block3_5(x)
c4 = self.block3_6(x)
x = self.block4_1(c4)
x = self.block4_2(x)
c5 = self.block4_3(x)
x = self.avgpool(c5)
x = torch.flatten(x, 1)
x = self.fc(x)
if self.unet:
return c1, c2, c3, c4, c5
else:
return x
class Resnet50(nn.Module):
def __init__(self, unet=False):
super(Resnet50, self).__init__()
self.relu = nn.ReLU(inplace=True)
self.unet=unet
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=True)
self.down_resol1 = DynamicDownResolModule(num_bits)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
# BLock1
self.block1_1 = ResBlock(64, 64, 256)
self.block1_2 = ResBlock(256, 64, 256)
self.block1_3 = ResBlock(256, 64, 256)
# Block2
self.block2_1 = ResBlock(256, 128, 512, blockstride=2)
self.block2_2 = ResBlock(512, 128, 512)
self.block2_3 = ResBlock(512, 128, 512)
self.block2_4 = ResBlock(512, 128, 512)
# Block3
self.block3_1 = ResBlock(512, 256, 1024, blockstride=2)
self.block3_2 = ResBlock(1024, 256, 1024)
self.block3_3 = ResBlock(1024, 256, 1024)
self.block3_4 = ResBlock(1024, 256, 1024)
self.block3_5 = ResBlock(1024, 256, 1024)
self.block3_6 = ResBlock(1024, 256, 1024)
# Block4
self.block4_1 = ResBlock(1024, 512, 2048, blockstride=2)
self.block4_2 = ResBlock(2048, 512, 2048)
self.block4_3 = ResBlock(2048, 512, 2048)
self.avgpool =nn.AdaptiveAvgPool2d(output_size=(1,1))
self.fc = nn.Linear(2048, 1000, bias=True)
self.down_resol2 = DynamicDownResolModule(num_bits)
def forward(self, x):
x = self.conv1(x)
x = self.down_resol1(x)
c1 = self.relu(x)
x = self.maxpool(c1)
x = self.block1_1(x)
x = self.block1_2(x)
c2 = self.block1_3(x)
x = self.block2_1(c2)
x = self.block2_2(x)
x = self.block2_3(x)
c3 = self.block2_4(x)
x = self.block3_1(c3)
x = self.block3_2(x)
x = self.block3_3(x)
x = self.block3_4(x)
x = self.block3_5(x)
c4 = self.block3_6(x)
x = self.block4_1(c4)
x = self.block4_2(x)
c5 = self.block4_3(x)
x = self.avgpool(c5)
x = torch.flatten(x, 1)
x = self.fc(x)
x = self.down_resol2(x)
if self.unet:
return c1, c2, c3, c4, c5
else:
return x
if __name__ == "__main__":
net = Resnet34()
x = torch.rand((2,3,224,224))
output = net(x)
print(output.shape)
net = Resnet50()
x = torch.rand((2,3,224,224))
output = net(x)
print(output.shape)
| null |
srcs/model_quant.py
|
model_quant.py
|
py
| 7,804 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "torch.nn.Module",
"line_number": 17,
"usage_type": "attribute"
},
{
"api_name": "torch.nn",
"line_number": 17,
"usage_type": "name"
},
{
"api_name": "torch.nn.Conv2d",
"line_number": 24,
"usage_type": "call"
},
{
"api_name": "torch.nn",
"line_number": 24,
"usage_type": "name"
},
{
"api_name": "utils_down_resol.DynamicDownResolModule",
"line_number": 25,
"usage_type": "call"
},
{
"api_name": "torch.nn.Conv2d",
"line_number": 26,
"usage_type": "call"
},
{
"api_name": "torch.nn",
"line_number": 26,
"usage_type": "name"
},
{
"api_name": "utils_down_resol.DynamicDownResolModule",
"line_number": 27,
"usage_type": "call"
},
{
"api_name": "torch.nn.Conv2d",
"line_number": 30,
"usage_type": "call"
},
{
"api_name": "torch.nn",
"line_number": 30,
"usage_type": "name"
},
{
"api_name": "utils_down_resol.DynamicDownResolModule",
"line_number": 31,
"usage_type": "call"
},
{
"api_name": "torch.nn.ReLU",
"line_number": 33,
"usage_type": "call"
},
{
"api_name": "torch.nn",
"line_number": 33,
"usage_type": "name"
},
{
"api_name": "torch.nn.Module",
"line_number": 54,
"usage_type": "attribute"
},
{
"api_name": "torch.nn",
"line_number": 54,
"usage_type": "name"
},
{
"api_name": "torch.nn.Conv2d",
"line_number": 62,
"usage_type": "call"
},
{
"api_name": "torch.nn",
"line_number": 62,
"usage_type": "name"
},
{
"api_name": "utils_down_resol.DynamicDownResolModule",
"line_number": 63,
"usage_type": "call"
},
{
"api_name": "torch.nn.Conv2d",
"line_number": 64,
"usage_type": "call"
},
{
"api_name": "torch.nn",
"line_number": 64,
"usage_type": "name"
},
{
"api_name": "utils_down_resol.DynamicDownResolModule",
"line_number": 65,
"usage_type": "call"
},
{
"api_name": "torch.nn.Conv2d",
"line_number": 66,
"usage_type": "call"
},
{
"api_name": "torch.nn",
"line_number": 66,
"usage_type": "name"
},
{
"api_name": "utils_down_resol.DynamicDownResolModule",
"line_number": 67,
"usage_type": "call"
},
{
"api_name": "torch.nn.Conv2d",
"line_number": 70,
"usage_type": "call"
},
{
"api_name": "torch.nn",
"line_number": 70,
"usage_type": "name"
},
{
"api_name": "utils_down_resol.DynamicDownResolModule",
"line_number": 71,
"usage_type": "call"
},
{
"api_name": "torch.nn.ReLU",
"line_number": 73,
"usage_type": "call"
},
{
"api_name": "torch.nn",
"line_number": 73,
"usage_type": "name"
},
{
"api_name": "torch.nn.Module",
"line_number": 97,
"usage_type": "attribute"
},
{
"api_name": "torch.nn",
"line_number": 97,
"usage_type": "name"
},
{
"api_name": "torch.nn.ReLU",
"line_number": 102,
"usage_type": "call"
},
{
"api_name": "torch.nn",
"line_number": 102,
"usage_type": "name"
},
{
"api_name": "torch.nn.Conv2d",
"line_number": 106,
"usage_type": "call"
},
{
"api_name": "torch.nn",
"line_number": 106,
"usage_type": "name"
},
{
"api_name": "torch.nn.MaxPool2d",
"line_number": 107,
"usage_type": "call"
},
{
"api_name": "torch.nn",
"line_number": 107,
"usage_type": "name"
},
{
"api_name": "torch.nn.AdaptiveAvgPool2d",
"line_number": 129,
"usage_type": "call"
},
{
"api_name": "torch.nn",
"line_number": 129,
"usage_type": "name"
},
{
"api_name": "torch.nn.Linear",
"line_number": 130,
"usage_type": "call"
},
{
"api_name": "torch.nn",
"line_number": 130,
"usage_type": "name"
},
{
"api_name": "torch.flatten",
"line_number": 158,
"usage_type": "call"
},
{
"api_name": "torch.nn.Module",
"line_number": 167,
"usage_type": "attribute"
},
{
"api_name": "torch.nn",
"line_number": 167,
"usage_type": "name"
},
{
"api_name": "torch.nn.ReLU",
"line_number": 172,
"usage_type": "call"
},
{
"api_name": "torch.nn",
"line_number": 172,
"usage_type": "name"
},
{
"api_name": "torch.nn.Conv2d",
"line_number": 175,
"usage_type": "call"
},
{
"api_name": "torch.nn",
"line_number": 175,
"usage_type": "name"
},
{
"api_name": "utils_down_resol.DynamicDownResolModule",
"line_number": 176,
"usage_type": "call"
},
{
"api_name": "torch.nn.MaxPool2d",
"line_number": 177,
"usage_type": "call"
},
{
"api_name": "torch.nn",
"line_number": 177,
"usage_type": "name"
},
{
"api_name": "torch.nn.AdaptiveAvgPool2d",
"line_number": 199,
"usage_type": "call"
},
{
"api_name": "torch.nn",
"line_number": 199,
"usage_type": "name"
},
{
"api_name": "torch.nn.Linear",
"line_number": 200,
"usage_type": "call"
},
{
"api_name": "torch.nn",
"line_number": 200,
"usage_type": "name"
},
{
"api_name": "utils_down_resol.DynamicDownResolModule",
"line_number": 201,
"usage_type": "call"
},
{
"api_name": "torch.flatten",
"line_number": 230,
"usage_type": "call"
},
{
"api_name": "torch.rand",
"line_number": 242,
"usage_type": "call"
},
{
"api_name": "torch.rand",
"line_number": 247,
"usage_type": "call"
}
] |
139691351
|
# -*- coding: utf-8 -*-
#!/usr/bin/python3
import sys
import argparse
class NewickTree(object):
"""Newick Tree."""
def __init__(self):
self.root = None
self.node_dict = {}
def add_node(self, parent_name, node_name):
# First input as root
if not self.root:
if node_name == parent_name:
print("Cannot have duplicated parent node", file=sys.stderr)
return
newnode = NewickNode(parent_name, None)
self.root = newnode
self.node_dict[parent_name] = newnode
newchild = newnode.add_child(node_name)
self.node_dict[node_name] = newchild
return
if parent_name not in self.node_dict and self.root:
print("Node_Parent %s not in the tree" %parent_name, file=sys.stderr)
return
if node_name in self.node_dict:
print("Node %s already in the tree" % node_name, file=sys.stderr)
return
parent_node = self.node_dict[parent_name]
childnode = parent_node.add_child(node_name)
self.node_dict[node_name] = childnode
def add_raw_node(self, parent_name, node_name):
if node_name == parent_name:
print("Cannot have duplicated parent node", file=sys.stderr)
return
if parent_name not in self.node_dict:
newnode = NewickNode(parent_name, None)
self.node_dict[parent_name] = newnode
if node_name not in self.node_dict:
newnode = NewickNode(node_name, None)
self.node_dict[node_name] = newnode
if self.node_dict[node_name].parent:
print("Node %s cannot be assigned to both %s and %s" % (
node_name, parent_name, self.node_dict[node_name].parent.name),
file=sys.stderr)
return
self.node_dict[parent_name].child_list.append(self.node_dict[node_name])
self.node_dict[node_name].parent = self.node_dict[parent_name]
def print_tree(self):
"""Print tree"""
cur_node = self.root
if not cur_node:
print("Empty Tree", file=sys.stderr)
children_content = self.print_children(cur_node)
print(children_content)
def load_tree(self, raw_tree: str):
"""Load the Newick tree from the parentheses form."""
# Remove spaces/tabs
raw_tree = "".join(raw_tree.split())
# Use depth dict to store the raw tree
cur_node_ch = []
orphans = {}
cur_depth = 0
for ch in raw_tree:
if ch == "(" :
cur_depth += 1
elif ch == ",":
node = "".join(cur_node_ch)
cur_node_ch = []
orphans.setdefault(cur_depth, [])
orphans[cur_depth].append(node)
# Add the child of current node if exists
if cur_depth + 1 in orphans:
for child in orphans[cur_depth + 1]:
self.add_raw_node(node, child)
del orphans[cur_depth + 1]
elif ch == ")":
node = "".join(cur_node_ch)
cur_node_ch = []
orphans.setdefault(cur_depth, [])
orphans[cur_depth].append(node)
# Add the child of current node if exists
if cur_depth + 1 in orphans:
for child in orphans[cur_depth + 1]:
self.add_raw_node(node, child)
del orphans[cur_depth + 1]
cur_depth -= 1
else:
cur_node_ch.append(ch)
# Add the child of the root node
root = "".join(cur_node_ch)
if 1 in orphans:
for child in orphans[1]:
self.add_raw_node(root, child)
self.root = self.node_dict[root]
def get_distance(self, nodename_a, nodename_b):
"""Get the distance between two nodes."""
try:
assert nodename_a in self.node_dict
except:
print("%s is not in the tree" %nodename_a, file=sys.stderr)
try:
assert nodename_b in self.node_dict
except:
print("%s is not in the tree" %nodename_b, file=sys.stderr)
node_a = self.node_dict[nodename_a]
node_b = self.node_dict[nodename_b]
trans_a = [nodename_a]
trans_b = [nodename_b]
cur_node = node_a
while cur_node.parent:
cur_node = cur_node.parent
trans_a.append(cur_node.name)
cur_node = node_b
while cur_node.parent:
cur_node = cur_node.parent
trans_b.append(cur_node.name)
for depth_a, node_name in enumerate(trans_a):
if node_name in trans_b:
depth_b = trans_b.index(node_name)
break
return depth_a + depth_b
def print_children(self, cur_node):
cur_children = cur_node.child_list
if not cur_children:
return cur_node.name
children_content = []
for child in cur_children:
children_content.append(self.print_children(child))
children_content = ",".join(children_content)
children_content = "(%s)%s" %(children_content, cur_node.name)
return children_content
class NewickNode(object):
"""Node of Newick Tree"""
def __init__(self, name, parent):
self.name = name
self.child_list = []
self.parent = parent
def add_child(self, name):
new_child = NewickNode(name, self)
self.child_list.append(new_child)
return new_child
def build_print_newicktree(infile):
"""Test to build and print newick tree."""
n_tree = NewickTree()
for line in infile:
entry = line.split()
if not entry:
continue
n_tree.add_node(entry[0], entry[1])
n_tree.print_tree()
def dist_newicktree(infile):
"""Load Newick Tree in parentheses format."""
count = 0
for line in infile:
count = count + 1
entry = line.strip().split(";")
if not entry[0]: #newline
continue
elif len(entry) != 2:
print("Input must be of format <newick_tree>; <int>,<int>. Line %i skipped." % count, \
file=sys.stderr)
continue
raw_tree = entry[0]
nodes = entry[1].strip().split(",")
if len(nodes) != 2 or nodes[0] == '' or nodes[1] == '':
print("Requires two nodes to calculate distance. Line %i skipped." \
% count, file=sys.stderr)
continue
node_a = nodes[0].strip()
node_b = nodes[1].strip()
n_tree = NewickTree()
n_tree.load_tree(raw_tree)
print(n_tree.get_distance(node_a, node_b))
def main(infile):
"""Main func for Rosland"""
dist_newicktree(infile)
if __name__ == '__main__':
#main()
parser = argparse.ArgumentParser(description='Input must be of format \
<newick_tree>; <int>,<int>. For example, \
((((6)5)2,(4,7)3)1)0; 3,6',
prog='problem2.B.py')
parser.add_argument('--infile', nargs='?', type=argparse.FileType('r'),
default=sys.stdin, help='Either enter a filename or \
enter input via stdin (default)')
args = parser.parse_args()
main(args.infile)
| null |
team_D1_zxu_ehuang/problem2.B.py
|
problem2.B.py
|
py
| 7,492 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "sys.stderr",
"line_number": 16,
"usage_type": "attribute"
},
{
"api_name": "sys.stderr",
"line_number": 25,
"usage_type": "attribute"
},
{
"api_name": "sys.stderr",
"line_number": 28,
"usage_type": "attribute"
},
{
"api_name": "sys.stderr",
"line_number": 36,
"usage_type": "attribute"
},
{
"api_name": "sys.stderr",
"line_number": 47,
"usage_type": "attribute"
},
{
"api_name": "sys.stderr",
"line_number": 56,
"usage_type": "attribute"
},
{
"api_name": "sys.stderr",
"line_number": 106,
"usage_type": "attribute"
},
{
"api_name": "sys.stderr",
"line_number": 110,
"usage_type": "attribute"
},
{
"api_name": "sys.stderr",
"line_number": 177,
"usage_type": "attribute"
},
{
"api_name": "sys.stderr",
"line_number": 183,
"usage_type": "attribute"
},
{
"api_name": "argparse.ArgumentParser",
"line_number": 199,
"usage_type": "call"
},
{
"api_name": "argparse.FileType",
"line_number": 203,
"usage_type": "call"
},
{
"api_name": "sys.stdin",
"line_number": 204,
"usage_type": "attribute"
}
] |
573264646
|
import pytest
from pyscipopt import Model, quicksum
from pyscipopt.scip import Expr, ExprCons
def test_string():
PI = 3.141592653589793238462643
NWIRES = 11
DIAMETERS = [0.207, 0.225, 0.244, 0.263, 0.283, 0.307, 0.331, 0.362, 0.394, 0.4375, 0.500]
PRELOAD = 300.0
MAXWORKLOAD = 1000.0
MAXDEFLECT = 6.0
DEFLECTPRELOAD = 1.25
MAXFREELEN = 14.0
MAXCOILDIAM = 3.0
MAXSHEARSTRESS = 189000.0
SHEARMOD = 11500000.0
m = Model()
coil = m.addVar('coildiam')
wire = m.addVar('wirediam')
defl = m.addVar('deflection', lb=DEFLECTPRELOAD / (MAXWORKLOAD - PRELOAD), ub=MAXDEFLECT / PRELOAD)
ncoils = m.addVar('ncoils', vtype='I')
const1 = m.addVar('const1')
const2 = m.addVar('const2')
volume = m.addVar('volume')
y = [m.addVar('wire%d' % i, vtype='B') for i in range(NWIRES)]
obj = 1.0 * volume
m.setObjective(obj, 'minimize')
m.addCons(PI/2*(ncoils + 2)*coil*wire**2 - volume == 0, name='voldef')
# defconst1: coil / wire - const1 == 0.0
m.addCons(coil - const1*wire == 0, name='defconst1')
# defconst2: (4.0*const1 - 1.0) / (4.0*const1 - 4.0) + 0.615 / const1 - const2 == 0.0
d1 = (4.0*const1 - 4.0)
d2 = const1
m.addCons((4.0*const1 - 1.0)*d2 + 0.615*d1 - const2*d1*d2 == 0, name='defconst2')
m.addCons(8.0*MAXWORKLOAD/PI*const1*const2 - MAXSHEARSTRESS*wire**2 <= 0.0, name='shear')
# defdefl: 8.0/shearmod * ncoils * const1^3 / wire - defl == 0.0
m.addCons(8.0/SHEARMOD*ncoils*const1**3 - defl*wire == 0.0, name="defdefl")
m.addCons(MAXWORKLOAD*defl + 1.05*ncoils*wire + 2.1*wire <= MAXFREELEN, name='freel')
m.addCons(coil + wire <= MAXCOILDIAM, name='coilwidth')
m.addCons(quicksum(c*v for (c,v) in zip(DIAMETERS, y)) - wire == 0, name='defwire')
m.addCons(quicksum(y) == 1, name='selectwire')
m.optimize()
if __name__ == '__main__':
test_string()
| null |
tests/test_nonlinear.py
|
test_nonlinear.py
|
py
| 1,907 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "pyscipopt.Model",
"line_number": 19,
"usage_type": "call"
},
{
"api_name": "pyscipopt.quicksum",
"line_number": 51,
"usage_type": "call"
},
{
"api_name": "pyscipopt.quicksum",
"line_number": 53,
"usage_type": "call"
}
] |
69503971
|
from django.conf import settings
from django.test import Client
from django.test import LiveServerTestCase
from selenium import webdriver
from . import utils
from .pop import goalsPage
from .pop import indexPage
from .pop import rolesPage
from .pop import todosPage
from .pop import navbar
class InterfaceTests(LiveServerTestCase):
def setUp(self):
super(InterfaceTests, self).setUp()
self.__initSelenium()
self.goalsPage = goalsPage.goalsPage(selenium = self.selenium)
self.indexPage = indexPage.indexPage(selenium = self.selenium)
self.rolesPage = rolesPage.rolesPage(selenium = self.selenium)
self.todosPage = todosPage.todosPage(selenium = self.selenium)
self.navbar = navbar.navbar(selenium = self.selenium)
self.testUtil = utils.TestUtil(selenium = self.selenium)
def __initSelenium(self):
self.selenium = webdriver.Chrome(settings.SELENIUM_CHROMEDRIVER)
self.selenium.get(settings.MAIN_PAGE)
def tearDown(self):
self.selenium.quit()
super(InterfaceTests, self).tearDown()
def test_navbar_has_roles_button(self):
self.navbar.clickRolesLink()
self.testUtil.assertCurrentUrl(expectedUrl = self.rolesPage.getExpectedUrl())
def test_navbar_has_goals_button(self):
self.navbar.clickGoalsLink()
self.testUtil.assertCurrentUrl(expectedUrl = self.goalsPage.getExpectedUrl())
def test_navbar_has_todos_button(self):
self.navbar.clickTodosLink()
self.testUtil.assertCurrentUrl(expectedUrl = self.todosPage.getExpectedUrl())
| null |
weekPlaner/calendarManager/tests/tests_interface.py
|
tests_interface.py
|
py
| 1,597 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "django.test.LiveServerTestCase",
"line_number": 12,
"usage_type": "name"
},
{
"api_name": "pop.goalsPage.goalsPage",
"line_number": 17,
"usage_type": "call"
},
{
"api_name": "pop.goalsPage",
"line_number": 17,
"usage_type": "name"
},
{
"api_name": "pop.indexPage.indexPage",
"line_number": 18,
"usage_type": "call"
},
{
"api_name": "pop.indexPage",
"line_number": 18,
"usage_type": "name"
},
{
"api_name": "pop.rolesPage.rolesPage",
"line_number": 19,
"usage_type": "call"
},
{
"api_name": "pop.rolesPage",
"line_number": 19,
"usage_type": "name"
},
{
"api_name": "pop.todosPage.todosPage",
"line_number": 20,
"usage_type": "call"
},
{
"api_name": "pop.todosPage",
"line_number": 20,
"usage_type": "name"
},
{
"api_name": "pop.navbar.navbar",
"line_number": 21,
"usage_type": "call"
},
{
"api_name": "pop.navbar",
"line_number": 21,
"usage_type": "name"
},
{
"api_name": "selenium.webdriver.Chrome",
"line_number": 25,
"usage_type": "call"
},
{
"api_name": "selenium.webdriver",
"line_number": 25,
"usage_type": "name"
},
{
"api_name": "django.conf.settings.SELENIUM_CHROMEDRIVER",
"line_number": 25,
"usage_type": "attribute"
},
{
"api_name": "django.conf.settings",
"line_number": 25,
"usage_type": "name"
},
{
"api_name": "django.conf.settings.MAIN_PAGE",
"line_number": 26,
"usage_type": "attribute"
},
{
"api_name": "django.conf.settings",
"line_number": 26,
"usage_type": "name"
}
] |
40642366
|
import time
import tweepy as twitter
import os
superhour = time.localtime().tm_hour
hour = superhour % 12
if hour == 0:
hour = 12
sentence = "Tenho %d lรกgrima%s no canto do mostrador, %s nos Aรงores%s"
if superhour >= 12:
if hour == 1:
sentence = sentence % (hour, "", "12 lรกgrimas", "")
else:
sentence = sentence % (hour, "s", "menos uma lรกgrima", "")
else:
if hour == 1:
sentence = sentence % (hour, "", "12 lรกgrimas", ".")
else:
sentence = sentence % (hour, "s", "menos uma lรกgrima", ".")
CONSUMER_KEY = os.getenv('CONSUMER_KEY')
CONSUMER_SECRET = os.getenv('CONSUMER_SECRET')
ACCESS_TOKEN = os.getenv('ACCESS_TOKEN')
ACCESS_TOKEN_SECRET = os.getenv('ACCESS_TOKEN_SECRET')
auth = twitter.OAuthHandler(CONSUMER_KEY, CONSUMER_SECRET)
auth.set_access_token(ACCESS_TOKEN, ACCESS_TOKEN_SECRET)
api = twitter.API(auth)
api.update_status(status=sentence)
| null |
bonga.py
|
bonga.py
|
py
| 876 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "time.localtime",
"line_number": 5,
"usage_type": "call"
},
{
"api_name": "os.getenv",
"line_number": 23,
"usage_type": "call"
},
{
"api_name": "os.getenv",
"line_number": 24,
"usage_type": "call"
},
{
"api_name": "os.getenv",
"line_number": 25,
"usage_type": "call"
},
{
"api_name": "os.getenv",
"line_number": 26,
"usage_type": "call"
},
{
"api_name": "tweepy.OAuthHandler",
"line_number": 28,
"usage_type": "call"
},
{
"api_name": "tweepy.API",
"line_number": 31,
"usage_type": "call"
}
] |
194858390
|
__author__ = 'daniel'
import matplotlib.pyplot as plt
from scipy import ndimage
import numpy as np
import time
import threading
import random
global my_data
path = "/home/daniel/bt-img/test1/"
img = ["ball-1.jpg", "ball-2.jpg", "ball-3.jpg", "ball-4.jpg", "ball-5.jpg"]
my_data = ndimage.imread(path + random.choice(img))
class ComputeThread(threading.Thread):
def __init__(self):
threading.Thread.__init__(self)
self.nr = 1
self.i = 0
def run(self):
global my_data
while(self.i < 10):
self.i += 1
read_file = random.choice(img)
print("Compute iteration: " + str(self.i) + " | reading file: " + read_file)
my_data = ndimage.imread(path + read_file)
print("type: {0} | shape: {1}".format(type(my_data), my_data.shape))
time.sleep(1.0)
class Graphic():
def __init__(self):
self.i = 0
self.run()
def run(self):
global my_data
f, axarr = plt.subplots(2, 2)
self.do_plot(axarr)
plt.pause(0.01)
while self.i < 10:
self.i += 1
print("Graphic iteration: " + str(self.i))
self.do_plot(axarr)
plt.draw()
plt.pause(0.01)
time.sleep(1.0)
plt.close()
def do_plot(self, axarr):
axarr[0, 0].imshow(my_data, interpolation="none")
axarr[0, 1].imshow(my_data[:, :, 0], interpolation="none")
axarr[1, 0].imshow(my_data[:, :, 1], interpolation="none")
axarr[1, 1].imshow(my_data[:, :, 2], interpolation="none")
CT = ComputeThread()
CT.start()
G = Graphic()
print("done!")
| null |
code/img_handler/matplotlib_show_subplots.py
|
matplotlib_show_subplots.py
|
py
| 1,678 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "scipy.ndimage.imread",
"line_number": 16,
"usage_type": "call"
},
{
"api_name": "scipy.ndimage",
"line_number": 16,
"usage_type": "name"
},
{
"api_name": "random.choice",
"line_number": 16,
"usage_type": "call"
},
{
"api_name": "threading.Thread",
"line_number": 19,
"usage_type": "attribute"
},
{
"api_name": "threading.Thread.__init__",
"line_number": 22,
"usage_type": "call"
},
{
"api_name": "threading.Thread",
"line_number": 22,
"usage_type": "attribute"
},
{
"api_name": "random.choice",
"line_number": 31,
"usage_type": "call"
},
{
"api_name": "scipy.ndimage.imread",
"line_number": 33,
"usage_type": "call"
},
{
"api_name": "scipy.ndimage",
"line_number": 33,
"usage_type": "name"
},
{
"api_name": "time.sleep",
"line_number": 35,
"usage_type": "call"
},
{
"api_name": "matplotlib.pyplot.subplots",
"line_number": 47,
"usage_type": "call"
},
{
"api_name": "matplotlib.pyplot",
"line_number": 47,
"usage_type": "name"
},
{
"api_name": "matplotlib.pyplot.pause",
"line_number": 51,
"usage_type": "call"
},
{
"api_name": "matplotlib.pyplot",
"line_number": 51,
"usage_type": "name"
},
{
"api_name": "matplotlib.pyplot.draw",
"line_number": 57,
"usage_type": "call"
},
{
"api_name": "matplotlib.pyplot",
"line_number": 57,
"usage_type": "name"
},
{
"api_name": "matplotlib.pyplot.pause",
"line_number": 58,
"usage_type": "call"
},
{
"api_name": "matplotlib.pyplot",
"line_number": 58,
"usage_type": "name"
},
{
"api_name": "time.sleep",
"line_number": 59,
"usage_type": "call"
},
{
"api_name": "matplotlib.pyplot.close",
"line_number": 61,
"usage_type": "call"
},
{
"api_name": "matplotlib.pyplot",
"line_number": 61,
"usage_type": "name"
}
] |
596805772
|
import os
import sys
lib_dir = os.path.expanduser('~/proj/ml_lib/')
sys.path.append(lib_dir)
import numpy as np
import matplotlib.pyplot as plt
from kernel.kernel_ridge import KernelRidge
from kernel.kernels import gaussian_kernel
N = 1000
sigma_noise = 0.1
X = np.linspace(0, 2 * np.pi, N).reshape(-1, 1)
y = np.sin(X)
y_noised = y + np.random.normal(0, sigma_noise, X.shape)
kr = KernelRidge()
sigma = 0.5
pen = 0.1
K = gaussian_kernel(X, sigma)
a = kr.fit(K, y_noised, pen)
y_predicted = K.dot(a)
plt.scatter(X, y_noised, marker='x', c = 'red')
plt.plot(X, y_predicted)
plt.show()
| null |
demo/kernel_ridge_demo.py
|
kernel_ridge_demo.py
|
py
| 592 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "os.path.expanduser",
"line_number": 4,
"usage_type": "call"
},
{
"api_name": "os.path",
"line_number": 4,
"usage_type": "attribute"
},
{
"api_name": "sys.path.append",
"line_number": 5,
"usage_type": "call"
},
{
"api_name": "sys.path",
"line_number": 5,
"usage_type": "attribute"
},
{
"api_name": "numpy.linspace",
"line_number": 15,
"usage_type": "call"
},
{
"api_name": "numpy.pi",
"line_number": 15,
"usage_type": "attribute"
},
{
"api_name": "numpy.sin",
"line_number": 16,
"usage_type": "call"
},
{
"api_name": "numpy.random.normal",
"line_number": 17,
"usage_type": "call"
},
{
"api_name": "numpy.random",
"line_number": 17,
"usage_type": "attribute"
},
{
"api_name": "kernel.kernel_ridge.KernelRidge",
"line_number": 19,
"usage_type": "call"
},
{
"api_name": "kernel.kernels.gaussian_kernel",
"line_number": 23,
"usage_type": "call"
},
{
"api_name": "matplotlib.pyplot.scatter",
"line_number": 28,
"usage_type": "call"
},
{
"api_name": "matplotlib.pyplot",
"line_number": 28,
"usage_type": "name"
},
{
"api_name": "matplotlib.pyplot.plot",
"line_number": 29,
"usage_type": "call"
},
{
"api_name": "matplotlib.pyplot",
"line_number": 29,
"usage_type": "name"
},
{
"api_name": "matplotlib.pyplot.show",
"line_number": 30,
"usage_type": "call"
},
{
"api_name": "matplotlib.pyplot",
"line_number": 30,
"usage_type": "name"
}
] |
192561299
|
from flask import Flask, render_template, request
#from nocache import nocache
import ast, requests, boto3, os
from datetime import datetime
import csv
# import plots,copy,random,string
# access_key_id = 'ASIA37PBWIRNEDGEMZO2'
# secret_access_key = "+QT0v4mCGOxm7"
# session_token = '+dP/EIgDIcZgOUcuzlLHRY9glf+/SYI6CBvnEYPOtumiuqdCgHJZLUrYjZx0AsENG9BMgodHcFk8u/cSppfhzjYwWbGKzyBuNiWvpQrpNwVrpO+O+J3ORApG0/jnIv8ibN8oxqLa4QU='
#
app = Flask(__name__)
# app.config['SECRET_KEY'] = '0f9dc56d2288afa6e1'
# app.config['SEND_FILE_MAX_AGE_DEFAULT'] = 0
#
#
# types = {"Government" : 0, "Education" : 0, "Invalid URL" : 0, "Social Media" : 0,
# "News" : 0, "Blog" : 0, "Commercial Health" : 0, "Fake News" : 0, "Scientific" : 0,
# "Videos" : 0, "Commercial" : 0, "HealthMagazines" : 0, "HealthInsurance" : 0,
# "NMPSocieties" : 0, "None Found" : 0}
#
# table_dict = {"vaccine" : (copy.deepcopy(types),copy.deepcopy(types),copy.deepcopy(types)),
# "abortion" : (copy.deepcopy(types),copy.deepcopy(types),copy.deepcopy(types)),
# "weed" : (copy.deepcopy(types),copy.deepcopy(types),copy.deepcopy(types)),
# "ecig" : (copy.deepcopy(types),copy.deepcopy(types),copy.deepcopy(types)),
# "aids" : (copy.deepcopy(types),copy.deepcopy(types),copy.deepcopy(types))}
#
region = 'us-east-2'
# session = boto3.session.Session()
aws_secret = 'aXL3ndaT/BilMryekS'
aws_pub = 'AKIAIFL3OJZQZDFSJOQQ'
db = boto3.resource('dynamodb',aws_access_key_id=aws_pub,aws_secret_access_key=aws_secret, region_name=region)
# img_folder = '/home/trevorm4/mysite/static/img/'
# No caching at all for API endpoints.
# @app.after_request
# def add_header(response):
# """
# Add headers to both force latest IE rendering engine or Chrome Frame,
# and also to cache the rendered page for 10 minutes.
# """
# response.headers['X-UA-Compatible'] = 'IE=Edge,chrome=1'
# response.headers['Cache-Control'] = 'public, max-age=0'
# return response
#
# """
# Uses Twitter oEmbed api to fetch the html code for embedding the tweet.
# Uses fix_twitter_html_response because the api escapes '/', even though its not necessary,which
# messes up the code
#
# @param tweet_url : url of the tweet to fetch html code for
# @return html code to embed passed tweet
# """
# def get_embed_html(tweet_url):
# r = requests.get('https://publish.twitter.com/oembed?url='+tweet_url)
# r = fix_malformed_dict_string(r.text)
# return fix_twitter_html_response((ast.literal_eval(r)['html']))
#
# def fix_twitter_html_response(html):
# new_string = ""
# for i in range(len(html)):
# if not (html[i] == "\\" and html[i:i+2] == '\\/'):
# new_string += html[i]
# return new_string
#
# """
# Some of the JSONs have false/true/null instead of False/True/None
# So this method just replaces all of false/true/null with False/True/None so ast.literal_eval can
# parse it extremely easily
# """
# def fix_malformed_dict_string(dict_string):
# no_null = dict_string.replace('null','None')
# no_false = no_null.replace('false','False')
# no_true = no_false.replace('true','True')
# return no_true
#
# def get_latest_tweets(table_name,num_tweets,topic):
# table = db.Table(table_name)
# response = table.scan()
# tweets = []
#
# for item in response['Items']:
# if item['topic'] == topic.lower():
# tweets.append(get_embed_html(item['TweetID']))
# return tweets[:num_tweets]
#
# def update_counts(table_name,dictionary):
# table = db.Table(table_name)
#
# response = table.scan()
#
# for item in response["Items"]:
# category = item['topic']
# url_type = item['type']
# dictionary[category][0][url_type] += 1 #overall count
# if item['user_type'] == 'Bot':
# dictionary[category][2][url_type] += 1
# else:
# dictionary[category][1][url_type] += 1
#
# def update_plots(category):
# update_counts('URLsTable',table_dict)
# cat = category
# plots.type_histogram_overall(table_dict[cat][0],True, category + '_PLOT_'+ generate_random_string(10) + '.png')
# plots.type_histogram_overall(table_dict[cat][2],True, category + '_PLOT_'+ generate_random_string(10) + '_human_' +'.png')
# plots.type_histogram_overall(table_dict[cat][2],True, category + '_PLOT_'+ generate_random_string(10) + '_bot_'+ '.png')
#
# def generate_random_string(n):
# return ''.join(random.choice(string.ascii_uppercase + string.digits) for _ in range(n))
#
# def get_plot_html(category):
# existing_files = [file for file in os.listdir(img_folder) if file.find(category + '_PLOT_') == 0]
#
# for file in existing_files:
# os.remove(os.path.join(img_folder,file))
# update_plots(category)
#
# files = os.listdir(img_folder)
# files = [file for file in files if file.find(category + '_PLOT_') == 0]
# html_blocks = []
#
# for file in files:
# print('<img src=\"' + img_folder + file + '\" alt=\"' + file[:file.find('.png')] + '\">')
# html_blocks.append('<img src=\"' + '/static/img/' + file + '\" alt=\"' + file[:file.find('.png')] + '\">')
# return html_blocks
#app route
@app.route('/', methods=['POST', 'GET'])
def dash():
# with open('AllTweet.csv', encoding="utf8") as f:
# rd = csv.reader(f)
# for row in rd:
# data_list.append(row)
# Get the full table
table = db.Table('AllTweet')
# With Scan get the full table data
data = table.scan()
# get the first item
data_One = data['Items']
# initialize the varialbe outside of loop to avoid error when the app loads without any result or first time when the app loads, there will be no result
result_list = []
positive = 0
negative = 0
neutral =0
# get the search topic
search_topic = ''
if request.method == 'POST':
search_topic = request.form['topic']
for item in data_One:
if item['topic'] == search_topic:
result_list.append(item)
# ===================================================
# calculate the neautral, negative, positive number
# ================================================
for item in result_list:
if item['sentiment'] == "Neutral":
neutral += 1
if item['sentiment'] == "Negative":
negative += 1
if item['sentiment'] == "Positive":
positive += 1
# ==================================================
# calculate the number of topic happended each day
# ===============================================
all_day_list = []
unique_day_list = []
for item in result_list:
all_day_list.append(item['created_at'].split()[0].split('-')[-1])
for item in all_day_list:
if item not in unique_day_list:
unique_day_list.append(item)
each_day_topic_list = []
day_first = 0
day_second = 0
for item in result_list:
if item['created_at'].split()[0].split('-')[-1] == unique_day_list[0]:
day_first += 1
if day_first != len(result_list):
day_second = len(result_list) - day_first
# ================================================================================
# getting url support number for each search topic from URLsTable table from aws
# =============================================================================
# Get the full table
url_table = db.Table('URLsTable')
# With Scan get the full table data
url_data = url_table.scan()
# get the first item
url_data_One = data['Items']
total_url_for_search_topic = []
url_supported_link = 0
url_non_supported_link = 0
# getting all urls for search topic
for item in url_data_One:
if item['topic'] == search_topic:
for key, val in item.items():
try:
if "/" in val:
total_url_for_search_topic.append(val)
except:
pass
# getting total url number which contain the serach topic word
for item in total_url_for_search_topic:
if search_topic in item:
url_supported_link += 1
# getting non_supported_url number
url_non_supported_link = len(total_url_for_search_topic) - url_supported_link
# =================================================
# Calculating total unique account for each topic
# ==============================================
all_account_list = []
unique_account_list = []
total_account = 0
topics_per_account = 0
for item in result_list:
all_account_list.append(item['username'])
for item in all_account_list:
if item not in unique_account_list:
unique_account_list.append(item)
total_account = len(unique_account_list)
if result_list:
topics_per_account = round((len(result_list) / total_account), 2)
# ==============================================
# Calculating total BOT account for each topic
# ===========================================
total_bot_account = 0
for item in result_list:
if item['user_type'] == 'Bot':
total_bot_account += 1
# ==============================================
# Calculating % of true account for each topic
# ===========================================
true_account_percentage_full_decimal = 0
true_account_percentage = 0
if result_list:
true_account_percentage_full_decimal = 100 - ((total_bot_account * 100) / len(result_list))
true_account_percentage = round(true_account_percentage_full_decimal, 2)
# ===============================================================
# Calculating url & non-url for each sentiment for Search topic
# ===========================================================
negative_result_list = []
positive_result_list = []
neutral_result_list = []
if result_list:
for item in result_list:
if item['sentiment'] == "Negative":
negative_result_list.append(item['TweetID'])
if item['sentiment'] == "Positive":
positive_result_list.append(item['TweetID'])
if item['sentiment'] == "Neutral":
neutral_result_list.append(item['TweetID'])
negative_url_result_list = []
positive_url_result_list = []
neutral_url_result_list = []
negative_with_url = 0
negative_with_out_url = 0
positive_with_url = 0
positive_with_out_url = 0
neutral_with_url = 0
neutral_with_out_url = 0
for item in negative_result_list:
for id in url_data_One:
if item == id['TweetID']:
negative_url_result_list.append(id)
for item in positive_result_list:
for id in url_data_One:
if item == id['TweetID']:
positive_url_result_list.append(id)
for item in neutral_result_list:
for id in url_data_One:
if item == id['TweetID']:
neutral_url_result_list.append(id)
if search_topic:
for item in negative_url_result_list:
for key, val in item.items():
try:
if "/" in val:
if search_topic in val:
negative_with_url += 1
except:
pass
negative_with_out_url = len(negative_url_result_list) - negative_with_url
for item in positive_url_result_list:
for key, val in item.items():
try:
if "/" in val:
if search_topic in val:
positive_with_url += 1
except:
pass
positive_with_out_url = len(positive_url_result_list) - positive_with_url
for item in neutral_url_result_list:
for key, val in item.items():
try:
if "/" in val:
if search_topic in val:
neutral_with_url += 1
except:
pass
neutral_with_out_url = len(neutral_url_result_list) - neutral_with_url
return render_template('dashboard.html', result_list=result_list, positive=positive, negative=negative, neutral=neutral, search_topic=search_topic, unique_day_list=unique_day_list, url_supported_link=url_supported_link, url_non_supported_link=url_non_supported_link, day_first=day_first, day_second=day_second, total_account=total_account, topics_per_account=topics_per_account, total_bot_account=total_bot_account, true_account_percentage=true_account_percentage, negative_with_url=negative_with_url, negative_with_out_url=negative_with_out_url, positive_with_url=positive_with_url, positive_with_out_url=positive_with_out_url, neutral_with_url=neutral_with_url, neutral_with_out_url=neutral_with_out_url)
@app.route('/analyze')
def analyze():
return render_template('dashboard.html',tweets=get_latest_tweets('AllTweet',15,'aids'))
@app.route('/about')
def about():
return render_template('about.html')
@app.route('/graph/')
def graph():
# table = db.Table('AllTweet')
# tabdata = table.creation_date_time
# # num_of_item = table.item_count
# data = table.scan()
# data_One = data['Items']
# result_list = []
# topic_list = []
# unique_topic_list = []
# created_at_column_data = []
#
#
# for item in data_One:
# # if item['topic'] == 'weed':
# # result_list.append(item)
# topic_list.append(item['topic'])
# created_at_column_data.append(item['created_at'])
#
# # getting the unique topic list
# for item in topic_list:
# if item not in unique_topic_list:
# unique_topic_list.append(item)
table = db.Table('URLsTable')
data = table.scan()
data_One = data['Items']
# num_of_item = len(result_list)
return render_template('graph.html', data_One=data_One)
#
# @app.route('/vaccines')
# def vaccines():
# #tweetss = get_latest_tweets('tweets_by_ID',15)
# graphs = get_plot_html("vaccine")
# return render_template('vaccines.html',charts=graphs)
#
# @app.route('/abortion')
# def abortion():
# #tweetss = get_latest_tweets('abortion_tweets_by_ID',15)
# graphs = get_plot_html("abortion")
# return render_template('abortion.html',charts=graphs)
# @app.route('/marijuana')
# def weed():
# #tweetss = get_latest_tweets('weed_tweets_by_ID',15)
# graphs = get_plot_html('weed')
# return render_template('weed.html', charts = graphs)
# @app.route('/aids')
# def aids():
# #tweetss = get_latest_tweets('aids_tweets_by_ID',15)
# graphs = get_plot_html('aids')
# return render_template('aids.html', charts = graphs)
# @app.route('/ecigs')
# def ecigs():
# #tweetss = get_latest_tweets('ecig_tweets_by_ID',15)
# graphs = get_plot_html('ecig')
# return render_template('ecigs.html', charts = graphs)
if __name__ == "__main__":
app.run(debug=True)
| null |
app.py
|
app.py
|
py
| 14,965 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "flask.Flask",
"line_number": 11,
"usage_type": "call"
},
{
"api_name": "boto3.resource",
"line_number": 31,
"usage_type": "call"
},
{
"api_name": "flask.request.method",
"line_number": 153,
"usage_type": "attribute"
},
{
"api_name": "flask.request",
"line_number": 153,
"usage_type": "name"
},
{
"api_name": "flask.request.form",
"line_number": 154,
"usage_type": "attribute"
},
{
"api_name": "flask.request",
"line_number": 154,
"usage_type": "name"
},
{
"api_name": "flask.render_template",
"line_number": 341,
"usage_type": "call"
},
{
"api_name": "flask.render_template",
"line_number": 350,
"usage_type": "call"
},
{
"api_name": "flask.render_template",
"line_number": 355,
"usage_type": "call"
},
{
"api_name": "flask.render_template",
"line_number": 388,
"usage_type": "call"
}
] |
179634356
|
import matplotlib.image as mpimg
import matplotlib.pyplot as plt
import numpy as np
import cv2
import glob
import pickle
from sklearn.model_selection import train_test_split
import dataProcess as dp
from sklearn.preprocessing import StandardScaler
from sklearn.svm import LinearSVC
from sklearn.externals import joblib
cspace = 'YCrCb'
spatial_size = (16,16)
hist_bins = 16
orient = 9
pix_per_cell = 8
cell_per_block = 1
hog_channel = 'ALL'
spatial_feat = True
hist_feat = True
hog_feat = True
cars, notCars = dp.dataRead('../data/allData.p')
carFeature = dp.extract_features(cars, cspace =cspace, bin_size = spatial_size, hist_bins = hist_bins,
orient=orient, pix_per_cell=pix_per_cell, cell_per_block=cell_per_block,
hog_channel=hog_channel,binFeat = spatial_feat, histFeat = hist_feat,
hogFeat = hog_feat)
# print(carFeature)
notCarFeature = dp.extract_features(notCars, cspace =cspace, bin_size = spatial_size, hist_bins = hist_bins,
orient=orient, pix_per_cell=pix_per_cell, cell_per_block=cell_per_block,
hog_channel=hog_channel,binFeat = spatial_feat, histFeat = hist_feat,
hogFeat = hog_feat)
# print(notCarFeature)
X = np.vstack((carFeature, notCarFeature)).astype(np.float64)
X_scaler = StandardScaler().fit(X)
scaled_X = X_scaler.transform(X)
y = np.hstack((np.ones(len(carFeature)), np.zeros(len(notCarFeature))))
rand_state = np.random.randint(0, 100)
X_train, X_test, y_train, y_test = train_test_split(scaled_X, y, test_size=0.2, random_state=rand_state)
parameter = dict(color_space = cspace,spatial_size=spatial_size, hist_bins=hist_bins,
orient=orient, pix_per_cell=pix_per_cell, cell_per_block=cell_per_block,
hog_channel=hog_channel, spatial_feat=spatial_feat,
hist_feat=hist_feat, hog_feat=hog_feat)
svc = LinearSVC()
svc.fit(X_train, y_train)
print('Test Accuracy of SVC = ', round(svc.score(X_test, y_test), 4))
joblib.dump({'model':svc, 'config':parameter, 'scaling':X_scaler}, '../model/svmCar.pkl')
print ('save model success')
| null |
code/training.py
|
training.py
|
py
| 2,033 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "dataProcess.dataRead",
"line_number": 23,
"usage_type": "call"
},
{
"api_name": "dataProcess.extract_features",
"line_number": 25,
"usage_type": "call"
},
{
"api_name": "dataProcess.extract_features",
"line_number": 30,
"usage_type": "call"
},
{
"api_name": "numpy.vstack",
"line_number": 35,
"usage_type": "call"
},
{
"api_name": "numpy.float64",
"line_number": 35,
"usage_type": "attribute"
},
{
"api_name": "sklearn.preprocessing.StandardScaler",
"line_number": 36,
"usage_type": "call"
},
{
"api_name": "numpy.hstack",
"line_number": 38,
"usage_type": "call"
},
{
"api_name": "numpy.ones",
"line_number": 38,
"usage_type": "call"
},
{
"api_name": "numpy.zeros",
"line_number": 38,
"usage_type": "call"
},
{
"api_name": "numpy.random.randint",
"line_number": 40,
"usage_type": "call"
},
{
"api_name": "numpy.random",
"line_number": 40,
"usage_type": "attribute"
},
{
"api_name": "sklearn.model_selection.train_test_split",
"line_number": 41,
"usage_type": "call"
},
{
"api_name": "sklearn.svm.LinearSVC",
"line_number": 49,
"usage_type": "call"
},
{
"api_name": "sklearn.externals.joblib.dump",
"line_number": 53,
"usage_type": "call"
},
{
"api_name": "sklearn.externals.joblib",
"line_number": 53,
"usage_type": "name"
}
] |
186711611
|
from django import forms
from contactos.models import Pozo, Pertenece, Area, Atiende, Calificacion
from contactos.models import Nota, Recordatorio, Llamada
from contactos.models import NumeroTelefonico, TipoNumeroTelefonico
from empresas.models import Cliente
from principal.models import Vendedor
class PozoForm(forms.ModelForm):
nombre = forms.CharField(max_length=35, help_text='Nombre: ', \
required=True, widget=forms.TextInput(attrs={'class': 'form-control'}))
ubicacion = forms.CharField(max_length=35, help_text='Ubicacion: ', \
required=True, widget=forms.TextInput(attrs={'class': 'form-control'}))
empresa = forms.ModelChoiceField(queryset=Cliente.objects.all(), \
help_text='Cliente: ', required=True, widget=forms.Select(attrs={'class': 'form-control'}))
class Meta:
model = Pozo
fields = ('nombre', 'ubicacion', 'cliente',)
class LlamadaForm(forms.ModelForm):
contacto = forms.ModelChoiceField(queryset=Pozo.objects.all(), help_text='Pozo: ', \
required=True, widget=forms.Select(attrs={'class': 'form-control'}))
descripcion = forms.CharField(help_text='Descripciรณn: ', \
required=True, widget=forms.Textarea(attrs={'class': 'form-control'}))
class Meta:
model = Pozo
fields = ('contacto', 'descripcion',)
class NotaForm(forms.ModelForm):
contacto = forms.ModelChoiceField(queryset=Pozo.objects.all(), help_text='Pozo: ', \
required=True, widget=forms.Select(attrs={'class': 'form-control'}))
descripcion = forms.CharField(help_text='Descripciรณn: ', \
required=True, widget=forms.Textarea(attrs={'class': 'form-control'}))
clasificacion = forms.ChoiceField(help_text='Clasificaciรณn: ', choices=[(x, x) for x in range(1, 4)], \
widget=forms.Select(attrs={'class': 'form-control'}))
class Meta:
model = Pozo
fields = ('contacto', 'descripcion', 'clasificacion',)
class RecordatorioForm(forms.ModelForm):
contacto = forms.ModelChoiceField(queryset=Pozo.objects.all(), help_text='Pozo: ', \
required=True, widget=forms.Select(attrs={'class': 'form-control'}))
descripcion = forms.CharField(help_text='Descripciรณn: ', \
required=True, widget=forms.Textarea(attrs={'class': 'form-control'}))
urgencia = forms.ChoiceField(help_text='Urgencia: ', choices=[(x, x) for x in range(1, 4)], \
widget=forms.Select(attrs={'class': 'form-control'}))
fecha = forms.DateField(help_text='Fecha y hora: ', \
widget=forms.DateTimeInput(attrs={'class': 'form-control datepicker'}))
class Meta:
model = Recordatorio
fields = ('contacto', 'descripcion', 'urgencia', 'fecha',)
class AtiendeForm(forms.ModelForm):
vendedor = forms.ModelChoiceField(queryset=Vendedor.objects.all(), help_text='Vendedor: ', \
required=True, widget=forms.Select(attrs={'class':'form-control'}))
class Meta:
model = Atiende
fields = ('vendedor',)
class EditarPozoForm(forms.ModelForm):
nombre = forms.CharField(max_length=35, help_text='Nombre: ', \
required=True, widget=forms.TextInput(attrs={'class': 'form-control'}))
apellido = forms.CharField(max_length=35, help_text='Apellido: ', \
required=True, widget=forms.TextInput(attrs={'class': 'form-control'}))
empresa = forms.ModelChoiceField(queryset=Cliente.objects.all(), \
help_text='Cliente: ', required=True, widget=forms.Select(attrs={'class': 'form-control'}))
area = forms.ModelChoiceField(queryset=Area.objects.all(), help_text='Area: ', \
required=True, widget=forms.Select(attrs={'class': 'form-control'}))
calificacion = forms.ModelChoiceField(help_text='Calificaciรณn: ', \
queryset=Calificacion.objects.all(), required=True, \
widget=forms.Select(attrs={'class':'form-control'}))
is_cliente = forms.BooleanField(help_text='Cliente: ', required=False, \
widget=forms.CheckboxInput(attrs={'class':'form-control'}))
class Meta:
model = Pozo
fields = ('nombre', 'apellido', 'empresa', 'area', \
'calificacion', 'is_cliente',)
| null |
claand/contactos/forms.py
|
forms.py
|
py
| 4,140 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "django.forms.ModelForm",
"line_number": 8,
"usage_type": "attribute"
},
{
"api_name": "django.forms",
"line_number": 8,
"usage_type": "name"
},
{
"api_name": "django.forms.CharField",
"line_number": 9,
"usage_type": "call"
},
{
"api_name": "django.forms",
"line_number": 9,
"usage_type": "name"
},
{
"api_name": "django.forms.TextInput",
"line_number": 10,
"usage_type": "call"
},
{
"api_name": "django.forms",
"line_number": 10,
"usage_type": "name"
},
{
"api_name": "django.forms.CharField",
"line_number": 11,
"usage_type": "call"
},
{
"api_name": "django.forms",
"line_number": 11,
"usage_type": "name"
},
{
"api_name": "django.forms.TextInput",
"line_number": 12,
"usage_type": "call"
},
{
"api_name": "django.forms",
"line_number": 12,
"usage_type": "name"
},
{
"api_name": "django.forms.ModelChoiceField",
"line_number": 13,
"usage_type": "call"
},
{
"api_name": "django.forms",
"line_number": 13,
"usage_type": "name"
},
{
"api_name": "empresas.models.Cliente.objects.all",
"line_number": 13,
"usage_type": "call"
},
{
"api_name": "empresas.models.Cliente.objects",
"line_number": 13,
"usage_type": "attribute"
},
{
"api_name": "empresas.models.Cliente",
"line_number": 13,
"usage_type": "name"
},
{
"api_name": "django.forms.Select",
"line_number": 14,
"usage_type": "call"
},
{
"api_name": "django.forms",
"line_number": 14,
"usage_type": "name"
},
{
"api_name": "contactos.models.Pozo",
"line_number": 17,
"usage_type": "name"
},
{
"api_name": "django.forms.ModelForm",
"line_number": 20,
"usage_type": "attribute"
},
{
"api_name": "django.forms",
"line_number": 20,
"usage_type": "name"
},
{
"api_name": "django.forms.ModelChoiceField",
"line_number": 21,
"usage_type": "call"
},
{
"api_name": "django.forms",
"line_number": 21,
"usage_type": "name"
},
{
"api_name": "contactos.models.Pozo.objects.all",
"line_number": 21,
"usage_type": "call"
},
{
"api_name": "contactos.models.Pozo.objects",
"line_number": 21,
"usage_type": "attribute"
},
{
"api_name": "contactos.models.Pozo",
"line_number": 21,
"usage_type": "name"
},
{
"api_name": "django.forms.Select",
"line_number": 22,
"usage_type": "call"
},
{
"api_name": "django.forms",
"line_number": 22,
"usage_type": "name"
},
{
"api_name": "django.forms.CharField",
"line_number": 23,
"usage_type": "call"
},
{
"api_name": "django.forms",
"line_number": 23,
"usage_type": "name"
},
{
"api_name": "django.forms.Textarea",
"line_number": 24,
"usage_type": "call"
},
{
"api_name": "django.forms",
"line_number": 24,
"usage_type": "name"
},
{
"api_name": "contactos.models.Pozo",
"line_number": 27,
"usage_type": "name"
},
{
"api_name": "django.forms.ModelForm",
"line_number": 30,
"usage_type": "attribute"
},
{
"api_name": "django.forms",
"line_number": 30,
"usage_type": "name"
},
{
"api_name": "django.forms.ModelChoiceField",
"line_number": 31,
"usage_type": "call"
},
{
"api_name": "django.forms",
"line_number": 31,
"usage_type": "name"
},
{
"api_name": "contactos.models.Pozo.objects.all",
"line_number": 31,
"usage_type": "call"
},
{
"api_name": "contactos.models.Pozo.objects",
"line_number": 31,
"usage_type": "attribute"
},
{
"api_name": "contactos.models.Pozo",
"line_number": 31,
"usage_type": "name"
},
{
"api_name": "django.forms.Select",
"line_number": 32,
"usage_type": "call"
},
{
"api_name": "django.forms",
"line_number": 32,
"usage_type": "name"
},
{
"api_name": "django.forms.CharField",
"line_number": 33,
"usage_type": "call"
},
{
"api_name": "django.forms",
"line_number": 33,
"usage_type": "name"
},
{
"api_name": "django.forms.Textarea",
"line_number": 34,
"usage_type": "call"
},
{
"api_name": "django.forms",
"line_number": 34,
"usage_type": "name"
},
{
"api_name": "django.forms.ChoiceField",
"line_number": 35,
"usage_type": "call"
},
{
"api_name": "django.forms",
"line_number": 35,
"usage_type": "name"
},
{
"api_name": "django.forms.Select",
"line_number": 36,
"usage_type": "call"
},
{
"api_name": "django.forms",
"line_number": 36,
"usage_type": "name"
},
{
"api_name": "contactos.models.Pozo",
"line_number": 39,
"usage_type": "name"
},
{
"api_name": "django.forms.ModelForm",
"line_number": 42,
"usage_type": "attribute"
},
{
"api_name": "django.forms",
"line_number": 42,
"usage_type": "name"
},
{
"api_name": "django.forms.ModelChoiceField",
"line_number": 43,
"usage_type": "call"
},
{
"api_name": "django.forms",
"line_number": 43,
"usage_type": "name"
},
{
"api_name": "contactos.models.Pozo.objects.all",
"line_number": 43,
"usage_type": "call"
},
{
"api_name": "contactos.models.Pozo.objects",
"line_number": 43,
"usage_type": "attribute"
},
{
"api_name": "contactos.models.Pozo",
"line_number": 43,
"usage_type": "name"
},
{
"api_name": "django.forms.Select",
"line_number": 44,
"usage_type": "call"
},
{
"api_name": "django.forms",
"line_number": 44,
"usage_type": "name"
},
{
"api_name": "django.forms.CharField",
"line_number": 45,
"usage_type": "call"
},
{
"api_name": "django.forms",
"line_number": 45,
"usage_type": "name"
},
{
"api_name": "django.forms.Textarea",
"line_number": 46,
"usage_type": "call"
},
{
"api_name": "django.forms",
"line_number": 46,
"usage_type": "name"
},
{
"api_name": "django.forms.ChoiceField",
"line_number": 47,
"usage_type": "call"
},
{
"api_name": "django.forms",
"line_number": 47,
"usage_type": "name"
},
{
"api_name": "django.forms.Select",
"line_number": 48,
"usage_type": "call"
},
{
"api_name": "django.forms",
"line_number": 48,
"usage_type": "name"
},
{
"api_name": "django.forms.DateField",
"line_number": 49,
"usage_type": "call"
},
{
"api_name": "django.forms",
"line_number": 49,
"usage_type": "name"
},
{
"api_name": "django.forms.DateTimeInput",
"line_number": 50,
"usage_type": "call"
},
{
"api_name": "django.forms",
"line_number": 50,
"usage_type": "name"
},
{
"api_name": "contactos.models.Recordatorio",
"line_number": 53,
"usage_type": "name"
},
{
"api_name": "django.forms.ModelForm",
"line_number": 56,
"usage_type": "attribute"
},
{
"api_name": "django.forms",
"line_number": 56,
"usage_type": "name"
},
{
"api_name": "django.forms.ModelChoiceField",
"line_number": 57,
"usage_type": "call"
},
{
"api_name": "django.forms",
"line_number": 57,
"usage_type": "name"
},
{
"api_name": "principal.models.Vendedor.objects.all",
"line_number": 57,
"usage_type": "call"
},
{
"api_name": "principal.models.Vendedor.objects",
"line_number": 57,
"usage_type": "attribute"
},
{
"api_name": "principal.models.Vendedor",
"line_number": 57,
"usage_type": "name"
},
{
"api_name": "django.forms.Select",
"line_number": 58,
"usage_type": "call"
},
{
"api_name": "django.forms",
"line_number": 58,
"usage_type": "name"
},
{
"api_name": "contactos.models.Atiende",
"line_number": 61,
"usage_type": "name"
},
{
"api_name": "django.forms.ModelForm",
"line_number": 64,
"usage_type": "attribute"
},
{
"api_name": "django.forms",
"line_number": 64,
"usage_type": "name"
},
{
"api_name": "django.forms.CharField",
"line_number": 65,
"usage_type": "call"
},
{
"api_name": "django.forms",
"line_number": 65,
"usage_type": "name"
},
{
"api_name": "django.forms.TextInput",
"line_number": 66,
"usage_type": "call"
},
{
"api_name": "django.forms",
"line_number": 66,
"usage_type": "name"
},
{
"api_name": "django.forms.CharField",
"line_number": 67,
"usage_type": "call"
},
{
"api_name": "django.forms",
"line_number": 67,
"usage_type": "name"
},
{
"api_name": "django.forms.TextInput",
"line_number": 68,
"usage_type": "call"
},
{
"api_name": "django.forms",
"line_number": 68,
"usage_type": "name"
},
{
"api_name": "django.forms.ModelChoiceField",
"line_number": 69,
"usage_type": "call"
},
{
"api_name": "django.forms",
"line_number": 69,
"usage_type": "name"
},
{
"api_name": "empresas.models.Cliente.objects.all",
"line_number": 69,
"usage_type": "call"
},
{
"api_name": "empresas.models.Cliente.objects",
"line_number": 69,
"usage_type": "attribute"
},
{
"api_name": "empresas.models.Cliente",
"line_number": 69,
"usage_type": "name"
},
{
"api_name": "django.forms.Select",
"line_number": 70,
"usage_type": "call"
},
{
"api_name": "django.forms",
"line_number": 70,
"usage_type": "name"
},
{
"api_name": "django.forms.ModelChoiceField",
"line_number": 71,
"usage_type": "call"
},
{
"api_name": "django.forms",
"line_number": 71,
"usage_type": "name"
},
{
"api_name": "contactos.models.Area.objects.all",
"line_number": 71,
"usage_type": "call"
},
{
"api_name": "contactos.models.Area.objects",
"line_number": 71,
"usage_type": "attribute"
},
{
"api_name": "contactos.models.Area",
"line_number": 71,
"usage_type": "name"
},
{
"api_name": "django.forms.Select",
"line_number": 72,
"usage_type": "call"
},
{
"api_name": "django.forms",
"line_number": 72,
"usage_type": "name"
},
{
"api_name": "django.forms.ModelChoiceField",
"line_number": 73,
"usage_type": "call"
},
{
"api_name": "django.forms",
"line_number": 73,
"usage_type": "name"
},
{
"api_name": "contactos.models.Calificacion.objects.all",
"line_number": 74,
"usage_type": "call"
},
{
"api_name": "contactos.models.Calificacion.objects",
"line_number": 74,
"usage_type": "attribute"
},
{
"api_name": "contactos.models.Calificacion",
"line_number": 74,
"usage_type": "name"
},
{
"api_name": "django.forms.Select",
"line_number": 75,
"usage_type": "call"
},
{
"api_name": "django.forms",
"line_number": 75,
"usage_type": "name"
},
{
"api_name": "django.forms.BooleanField",
"line_number": 76,
"usage_type": "call"
},
{
"api_name": "django.forms",
"line_number": 76,
"usage_type": "name"
},
{
"api_name": "django.forms.CheckboxInput",
"line_number": 77,
"usage_type": "call"
},
{
"api_name": "django.forms",
"line_number": 77,
"usage_type": "name"
},
{
"api_name": "contactos.models.Pozo",
"line_number": 80,
"usage_type": "name"
}
] |
566790456
|
import os
import numpy as np
import pandas as pd
import pickle
import quandl
import time
from datetime import datetime
import plotly.offline as py
import plotly.graph_objs as go
import plotly.figure_factory as ff
def get_quandl_data(quandl_id):
'''Download and cache Quandl dataseries'''
cache_path = '{}.pkl'.format(quandl_id).replace('/','-')
try:
f = open(cache_path, 'rb')
df = pickle.load(f)
print('Loaded {} from cache'.format(quandl_id))
except (OSError, IOError) as e:
print('Download {} from Quandl'.format(quandl_id))
df = quandl.get(quandl_id, returns='pandas')
df.to_pickle(cache_path)
print('Cached {} at {}'.format(quandl_id, cache_path))
return df
btc_usd_price_kraken = get_quandl_data('BCHARTS/KRAKENUSD')
# print(btc_usd_price_kraken.head())
# btc_trace = go.Scatter(x=btc_usd_price_kraken.index, y=btc_usd_price_kraken['Weighted Price'])
# py.plot([btc_trace])
exchanges=['COINBASE','BITSTAMP','ITBIT']
exchange_data={}
exchange_data['KRAKEN']=btc_usd_price_kraken
for exchange in exchanges:
exchange_code='BCHARTS/{}USD'.format(exchange)
btc_exchange_df=get_quandl_data(exchange_code)
exchange_data[exchange]=btc_exchange_df
def merge_dfs_on_column(dataframes, labels, col):
'''Merge a single column of each dataframe into a new combined dataframe'''
series_dict={}
for index in range(len(dataframes)):
series_dict[labels[index]] = dataframes[index][col]
return pd.DataFrame(series_dict)
btc_usd_datasets = merge_dfs_on_column(list(exchange_data.values()), list(exchange_data.keys()), 'Weighted Price')
# print(btc_usd_datasets.tail())
def df_scatter(df, title, seperate_y_axis=False, y_axis_label='', scale='linear', initial_hide=False):
'''Generate a scaatter plot of the entire dataframe'''
label_arr = list(df)
series_arr = list(map(lambda col:df[col],label_arr))
layout = go.Layout(title=title, legend=dict(orientation='h'), xaxis=dict(type='date'), yaxis=dict(title=y_axis_label, showticklabels=not seperate_y_axis, type=scale))
y_axis_config = dict(overlaying='y', showticklabels=False, type=scale)
visibility = 'visible'
if initial_hide: visibility = 'legendonly' #From trace for each serise
trace_arr=[]
for index, series in enumerate(series_arr):
trace = go.Scatter(x=series.index, y=series, name=label_arr[index],visible=visibility)
#Add seperate axis for the series
if seperate_y_axis: trace['yaxis']='y{}'.format(index+1)
layout['yaxis{}'.format(index+1)] = y_axis_config
trace_arr.append(trace)
fig=go.Figure(data=trace_arr, layout=layout)
py.plot(fig)
btc_usd_datasets.replace(0, np.nan, inplace=True)
# df_scatter(btc_usd_datasets, 'Bitcoin Price (USD) By Exchange')
btc_usd_datasets['avg_btc_price_usd'] = btc_usd_datasets.mean(axis=1)
# btc_trace = go.Scatter(x=btc_usd_datasets.index, y=btc_usd_datasets['avg_btc_price_usd'])
# py.plot([btc_trace])
def get_json_data(json_url, cache_path):
try:
f = open(cache_path, 'rb')
df = pickle.load(f)
print('Loaded {} from cache'.format(json_url))
except(OSError, IOError) as e:
print('Downloading {}'.format(json_url))
df = pd.read_json(json_url)
df.to_pickle(cache_path)
print('Cache {} at {}'.format(json_url, cache_path))
return df
base_polo_url='https://poloniex.com/public?command=returnChartData¤cyPair={}&start={}&end={}&period={}'
start_date=datetime.strptime('2015-01-01','%Y-%m-%d')# get data from the start of 2015
end_date=datetime.now()# up until today
pediod=86400# pull daily data (86,400 seconds per day)
base_coin_market_cap_url = 'https://api.coinmarketcap.com/v1/ticker/{}/?convert=USD'
# print(start_date.time())
# print(end_date.time())
def get_crypto_data(poloniex_pair):
'''Retrieve cryptocurrency data from poloniex'''
json_url=base_polo_url.format(poloniex_pair,time.mktime(start_date.timetuple()),time.mktime(end_date.timetuple()),pediod)
data_df=get_json_data(json_url,poloniex_pair)
data_df=data_df.set_index('date')
return data_df
altcoins=['ETH','LTC','XRP','ETC','STR','DASH']
altcoin_data={}
for altcoin in altcoins:
coinpair='BTC_{}'.format(altcoin)
crypto_price_df=get_crypto_data(coinpair)
altcoin_data[altcoin]=crypto_price_df
# print(altcoin_data['ETH'].tail())
for altcoin in altcoin_data.keys():
altcoin_data[altcoin]['price_usd'] = altcoin_data[altcoin]['weightedAverage'] * btc_usd_datasets['avg_btc_price_usd']
combined_df = merge_dfs_on_column(list(altcoin_data.values()), list(altcoin_data.keys()), 'price_usd')
#add BTC price to the dataframe combined_df
combined_df['BTC'] = btc_usd_datasets['avg_btc_price_usd']
#Chart all of the altocoin prices
df_scatter(combined_df, 'Cryptocurrency Price (USD)', seperate_y_axis=False, y_axis_label='Coin Value(USD)', scale='log')
combined_df_2016 = combined_df[combined_df.index.year == 2016]
# print(combined_df_2016.pct_change().corr(method='pearson'))
def correlation_heatmap(df, title, absolute_bounds=True):
'''Plot a correlation heatmap for the entire dataframe'''
heatmap = go.Heatmap(z=df.corr(method='pearson').as_matrix(),
x=df.columns,
y=df.columns,
colorbar=dict(title='Pearson Coefficient'),)
layout = go.Layout(title=title)
if absolute_bounds: heatmap['zmax'] = 1.0
heatmap['zmin'] = -1.0
fig = go.Figure(data=[heatmap], layout=layout)
py.plot(fig)
# correlation_heatmap(combined_df_2016.pct_change(), "Cryptocurrency Correlations in 2016")
| null |
DataScience/crypto-currency/PriceTracking.py
|
PriceTracking.py
|
py
| 5,637 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "pickle.load",
"line_number": 18,
"usage_type": "call"
},
{
"api_name": "quandl.get",
"line_number": 23,
"usage_type": "call"
},
{
"api_name": "pandas.DataFrame",
"line_number": 48,
"usage_type": "call"
},
{
"api_name": "plotly.graph_objs.Layout",
"line_number": 58,
"usage_type": "call"
},
{
"api_name": "plotly.graph_objs",
"line_number": 58,
"usage_type": "name"
},
{
"api_name": "plotly.graph_objs.Scatter",
"line_number": 64,
"usage_type": "call"
},
{
"api_name": "plotly.graph_objs",
"line_number": 64,
"usage_type": "name"
},
{
"api_name": "plotly.graph_objs.Figure",
"line_number": 69,
"usage_type": "call"
},
{
"api_name": "plotly.graph_objs",
"line_number": 69,
"usage_type": "name"
},
{
"api_name": "plotly.offline.plot",
"line_number": 70,
"usage_type": "call"
},
{
"api_name": "plotly.offline",
"line_number": 70,
"usage_type": "name"
},
{
"api_name": "numpy.nan",
"line_number": 72,
"usage_type": "attribute"
},
{
"api_name": "pickle.load",
"line_number": 82,
"usage_type": "call"
},
{
"api_name": "pandas.read_json",
"line_number": 86,
"usage_type": "call"
},
{
"api_name": "datetime.datetime.strptime",
"line_number": 93,
"usage_type": "call"
},
{
"api_name": "datetime.datetime",
"line_number": 93,
"usage_type": "name"
},
{
"api_name": "datetime.datetime.now",
"line_number": 94,
"usage_type": "call"
},
{
"api_name": "datetime.datetime",
"line_number": 94,
"usage_type": "name"
},
{
"api_name": "time.mktime",
"line_number": 105,
"usage_type": "call"
},
{
"api_name": "plotly.graph_objs.Heatmap",
"line_number": 133,
"usage_type": "call"
},
{
"api_name": "plotly.graph_objs",
"line_number": 133,
"usage_type": "name"
},
{
"api_name": "plotly.graph_objs.Layout",
"line_number": 137,
"usage_type": "call"
},
{
"api_name": "plotly.graph_objs",
"line_number": 137,
"usage_type": "name"
},
{
"api_name": "plotly.graph_objs.Figure",
"line_number": 140,
"usage_type": "call"
},
{
"api_name": "plotly.graph_objs",
"line_number": 140,
"usage_type": "name"
},
{
"api_name": "plotly.offline.plot",
"line_number": 141,
"usage_type": "call"
},
{
"api_name": "plotly.offline",
"line_number": 141,
"usage_type": "name"
}
] |
100791602
|
import torch
import torch.nn as nn
import torchvision
from . import resnet, resnext, mobilenet, hrnet
from lib.nn import SynchronizedBatchNorm2d
BatchNorm2d = SynchronizedBatchNorm2d
import math
class SegmentationModuleBase(nn.Module):
def __init__(self):
super(SegmentationModuleBase, self).__init__()
def pixel_acc(self, pred, label):
_, preds = torch.max(pred, dim=1)
valid = (label >= 0).long()
acc_sum = torch.sum(valid * (preds == label).long())
pixel_sum = torch.sum(valid)
acc = acc_sum.float() / (pixel_sum.float() + 1e-10)
return acc
class SegmentationModule(SegmentationModuleBase):
def __init__(self, net_enc, net_dec, crit, deep_sup_scale=None):
super(SegmentationModule, self).__init__()
self.encoder = net_enc
self.decoder = net_dec
self.crit = crit
self.deep_sup_scale = deep_sup_scale
def forward(self, feed_dict):
x1,x2,x3,x4 = self.encoder(feed_dict)
pred = self.decoder(x1, x2, x3, x4)
return pred
class ModelBuilder:
# custom weights initialization
@staticmethod
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
nn.init.kaiming_normal_(m.weight.data)
elif classname.find('BatchNorm') != -1:
m.weight.data.fill_(1.)
m.bias.data.fill_(1e-4)
#elif classname.find('Linear') != -1:
# m.weight.data.normal_(0.0, 0.0001)
@staticmethod
def build_encoder(arch='resnet50dilated', fc_dim=512, weights=''):
pretrained = True if len(weights) == 0 else False
orig_resnet = resnet.__dict__['resnet101'](pretrained=pretrained)
net_encoder = Resnet(orig_resnet)
# encoders are usually pretrained
# net_encoder.apply(ModelBuilder.weights_init)
if len(weights) > 0:
print('Loading weights for net_encoder')
net_encoder.load_state_dict(
torch.load(weights, map_location=lambda storage, loc: storage), strict=False)
return net_encoder
@staticmethod
def build_decoder(arch='ppm_deepsup',
fc_dim=512, num_class=150,
weights='', use_softmax=False):
net_decoder = UPerNet(
num_class=num_class,
fc_dim=fc_dim,
use_softmax=use_softmax,
fpn_dim=512)
net_decoder.apply(ModelBuilder.weights_init)
if len(weights) > 0:
print('Loading weights for net_decoder')
net_decoder.load_state_dict(
torch.load(weights, map_location=lambda storage, loc: storage), strict=False)
return net_decoder
def conv3x3_bn_relu(in_planes, out_planes, stride=1):
"3x3 convolution + BN + relu"
return nn.Sequential(
nn.Conv2d(in_planes, out_planes, kernel_size=3,
stride=stride, padding=1, bias=False),
BatchNorm2d(out_planes),
nn.ReLU(inplace=True),
)
class Resnet(nn.Module):
def __init__(self, orig_resnet):
super(Resnet, self).__init__()
# take pretrained resnet, except AvgPool and FC
self.conv1 = orig_resnet.conv1
self.bn1 = orig_resnet.bn1
self.relu1 = orig_resnet.relu1
self.conv2 = orig_resnet.conv2
self.bn2 = orig_resnet.bn2
self.relu2 = orig_resnet.relu2
self.conv3 = orig_resnet.conv3
self.bn3 = orig_resnet.bn3
self.relu3 = orig_resnet.relu3
self.maxpool = orig_resnet.maxpool
self.layer1 = orig_resnet.layer1
self.layer2 = orig_resnet.layer2
self.layer3 = orig_resnet.layer3
self.layer4 = orig_resnet.layer4
def forward(self, x):
x = self.relu1(self.bn1(self.conv1(x)))
x = self.relu2(self.bn2(self.conv2(x)))
x = self.relu3(self.bn3(self.conv3(x)))
x = self.maxpool(x)
x1 = self.layer1(x)
x2 = self.layer2(x1)
x3 = self.layer3(x2)
x4 = self.layer4(x3)
return (x1,x2,x3,x4)
# pyramid pooling
class PPM(nn.Module):
def __init__(self, num_class=150, fc_dim=4096,
use_softmax=False, pool_scales=(1, 2, 3, 6)):
super(PPM, self).__init__()
self.use_softmax = use_softmax
self.ppm = []
for scale in pool_scales:
self.ppm.append(nn.Sequential(
nn.AdaptiveAvgPool2d(scale),
nn.Conv2d(fc_dim, 512, kernel_size=1, bias=False),
BatchNorm2d(512),
nn.ReLU(inplace=True)
))
self.ppm = nn.ModuleList(self.ppm)
self.conv_last = nn.Sequential(
nn.Conv2d(fc_dim+len(pool_scales)*512, 512,
kernel_size=3, padding=1, bias=False),
BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.Dropout2d(0.1),
nn.Conv2d(512, num_class, kernel_size=1)
)
def forward(self, conv_out, segSize=None):
conv5 = conv_out[-1]
input_size = conv5.size()
ppm_out = [conv5]
for pool_scale in self.ppm:
ppm_out.append(nn.functional.interpolate(
pool_scale(conv5),
(input_size[2], input_size[3]),
mode='bilinear', align_corners=False))
ppm_out = torch.cat(ppm_out, 1)
x = self.conv_last(ppm_out)
if self.use_softmax: # is True during inference
x = nn.functional.interpolate(
x, size=segSize, mode='bilinear', align_corners=False)
x = nn.functional.softmax(x, dim=1)
else:
x = nn.functional.log_softmax(x, dim=1)
return x
# upernet
class UPerNet(nn.Module):
def __init__(self, num_class=150, fc_dim=4096,
use_softmax=False, pool_scales=(1, 2, 3, 6),
fpn_inplanes=(256, 512, 1024, 2048), fpn_dim=256):
super(UPerNet, self).__init__()
self.use_softmax = use_softmax
# PPM Module
#1x1
H = 10
W = 15
O_H = 1
O_W = 1
stride_H = math.floor(H/O_H)
stride_W = math.floor(H/O_W)
kernel_H = H - (O_H - 1) * stride_H
kernel_W = W - (O_W - 1) * stride_W
self.ppm_pooling_1 = nn.AvgPool2d(kernel_size=(kernel_H, kernel_W), stride=(stride_H, stride_W), padding=0)
#2x2
H = 10
W = 15
O_H = 2
O_W = 2
stride_H = math.floor(H/O_H)
stride_W = math.floor(H/O_W)
kernel_H = H - (O_H - 1) * stride_H
kernel_W = W - (O_W - 1) * stride_W
self.ppm_pooling_2 = nn.AvgPool2d(kernel_size=(kernel_H, kernel_W), stride=(stride_H, stride_W), padding=0)
#3x3
H = 10
W = 15
O_H = 3
O_W = 3
stride_H = math.floor(H/O_H)
stride_W = math.floor(H/O_W)
kernel_H = H - (O_H - 1) * stride_H
kernel_W = W - (O_W - 1) * stride_W
self.ppm_pooling_3 = nn.AvgPool2d(kernel_size=(kernel_H, kernel_W), stride=(stride_H, stride_W), padding=0)
#6x6
H = 10
W = 15
O_H = 6
O_W = 6
stride_H = math.floor(H/O_H)
stride_W = math.floor(H/O_W)
kernel_H = H - (O_H - 1) * stride_H
kernel_W = W - (O_W - 1) * stride_W
self.ppm_pooling_4 = nn.AvgPool2d(kernel_size=(kernel_H, kernel_W), stride=(stride_H, stride_W), padding=0)
# self.ppm_conv = [
# nn.Sequential(nn.Conv2d(fc_dim, 512, kernel_size=1, bias=False),BatchNorm2d(512),nn.ReLU(inplace=True)),
# nn.Sequential(nn.Conv2d(fc_dim, 512, kernel_size=1, bias=False),BatchNorm2d(512),nn.ReLU(inplace=True)),
# nn.Sequential(nn.Conv2d(fc_dim, 512, kernel_size=1, bias=False),BatchNorm2d(512),nn.ReLU(inplace=True)),
# nn.Sequential(nn.Conv2d(fc_dim, 512, kernel_size=1, bias=False),BatchNorm2d(512),nn.ReLU(inplace=True))
# ]
self.ppm_conv_1 = nn.Sequential(nn.Conv2d(fc_dim, 512, kernel_size=1, bias=False),BatchNorm2d(512),nn.ReLU(inplace=True))
self.ppm_conv_2 = nn.Sequential(nn.Conv2d(fc_dim, 512, kernel_size=1, bias=False),BatchNorm2d(512),nn.ReLU(inplace=True))
self.ppm_conv_3 = nn.Sequential(nn.Conv2d(fc_dim, 512, kernel_size=1, bias=False),BatchNorm2d(512),nn.ReLU(inplace=True))
self.ppm_conv_4 = nn.Sequential(nn.Conv2d(fc_dim, 512, kernel_size=1, bias=False),BatchNorm2d(512),nn.ReLU(inplace=True))
# for scale in pool_scales:
# self.ppm_pooling.append(nn.AdaptiveAvgPool2d(scale))
# self.ppm_conv.append(nn.Sequential(
# nn.Conv2d(fc_dim, 512, kernel_size=1, bias=False),
# BatchNorm2d(512),
# nn.ReLU(inplace=True)
# ))
# self.ppm_pooling = nn.ModuleList(self.ppm_pooling)
# self.ppm_conv = nn.ModuleList(self.ppm_conv)
self.ppm_last_conv = conv3x3_bn_relu(fc_dim + len(pool_scales)*512, fpn_dim, 1)
# FPN Module
self.fpn_in = []
for fpn_inplane in fpn_inplanes[:-1]: # skip the top layer
self.fpn_in.append(nn.Sequential(
nn.Conv2d(fpn_inplane, fpn_dim, kernel_size=1, bias=False),
BatchNorm2d(fpn_dim),
nn.ReLU(inplace=True)
))
self.fpn_in = nn.ModuleList(self.fpn_in)
self.fpn_out = []
for i in range(len(fpn_inplanes) - 1): # skip the top layer
self.fpn_out.append(nn.Sequential(
conv3x3_bn_relu(fpn_dim, fpn_dim, 1),
))
self.fpn_out = nn.ModuleList(self.fpn_out)
self.conv_last = nn.Sequential(
conv3x3_bn_relu(len(fpn_inplanes) * fpn_dim, fpn_dim, 1),
nn.Conv2d(fpn_dim, num_class, kernel_size=1)
)
# def forward(self, conv_out, segSize=None):
# conv5 = conv_out[-1]
# input_size = conv5.size()
# ppm_out = [conv5]
# for pool_scale, pool_conv in zip(self.ppm_pooling, self.ppm_conv):
# ppm_out.append(pool_conv(nn.functional.interpolate(
# pool_scale(conv5),
# (input_size[2], input_size[3]),
# mode='bilinear', align_corners=False)))
# ppm_out = torch.cat(ppm_out, 1)
# f = self.ppm_last_conv(ppm_out)
# fpn_feature_list = [f]
# for i in reversed(range(len(conv_out) - 1)):
# conv_x = conv_out[i]
# conv_x = self.fpn_in[i](conv_x) # lateral branch
# f = nn.functional.interpolate(
# f, size=conv_x.size()[2:], mode='bilinear', align_corners=False) # top-down branch
# f = conv_x + f
# fpn_feature_list.append(self.fpn_out[i](f))
# fpn_feature_list.reverse() # [P2 - P5]
# output_size = fpn_feature_list[0].size()[2:]
# fusion_list = [fpn_feature_list[0]]
# for i in range(1, len(fpn_feature_list)):
# fusion_list.append(nn.functional.interpolate(
# fpn_feature_list[i],
# output_size,
# mode='bilinear', align_corners=False))
# fusion_out = torch.cat(fusion_list, 1)
# x = self.conv_last(fusion_out)
# if self.use_softmax: # is True during inference
# x = nn.functional.interpolate(
# x, size=segSize, mode='bilinear', align_corners=False)
# x = nn.functional.softmax(x, dim=1)
# return x
# x = nn.functional.log_softmax(x, dim=1)
# return x
def forward(self, x1, x2, x3, x4):
pp3 = self.ppm_conv_1(nn.functional.interpolate(self.ppm_pooling_1(x4),(10, 15),mode='bilinear', align_corners=False))
pp2 = self.ppm_conv_2(nn.functional.interpolate(self.ppm_pooling_2(x4),(10, 15),mode='bilinear', align_corners=False))
pp1 = self.ppm_conv_3(nn.functional.interpolate(self.ppm_pooling_3(x4),(10, 15),mode='bilinear', align_corners=False))
pp0 = self.ppm_conv_4(nn.functional.interpolate(self.ppm_pooling_4(x4),(10, 15),mode='bilinear', align_corners=False))
ppm_out = torch.cat([x4, pp3, pp2, pp1, pp0], 1)
p4 = self.ppm_last_conv(ppm_out)
conv_x3 = self.fpn_in[2](x3)
f = nn.functional.interpolate(p4, size=(20, 30), mode='bilinear', align_corners=False)
f = conv_x3 + f
p3 = self.fpn_out[2](f)
conv_x2 = self.fpn_in[1](x2)
f = nn.functional.interpolate(f, size=(40, 60), mode='bilinear', align_corners=False)
f = conv_x2 + f
p2 = self.fpn_out[1](f)
conv_x1 = self.fpn_in[0](x1)
f = nn.functional.interpolate(f, size=(80, 120), mode='bilinear', align_corners=False)
f = conv_x1 + f
p1 = self.fpn_out[0](f)
cat_2 = nn.functional.interpolate(p2,(80, 120),mode='bilinear', align_corners=False)
cat_3 = nn.functional.interpolate(p3,(80, 120),mode='bilinear', align_corners=False)
cat_4 = nn.functional.interpolate(p4,(80, 120),mode='bilinear', align_corners=False)
fusion_out = torch.cat((p1,cat_2,cat_3,cat_4), 1)
x = self.conv_last(fusion_out)
x = nn.functional.interpolate(x, size=(512, 768), mode='bilinear', align_corners=False)
x = nn.functional.softmax(x, dim=1)
print(x.shape)
return x
| null |
models/models.py
|
models.py
|
py
| 13,391 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "lib.nn.SynchronizedBatchNorm2d",
"line_number": 6,
"usage_type": "name"
},
{
"api_name": "torch.nn.Module",
"line_number": 9,
"usage_type": "attribute"
},
{
"api_name": "torch.nn",
"line_number": 9,
"usage_type": "name"
},
{
"api_name": "torch.max",
"line_number": 14,
"usage_type": "call"
},
{
"api_name": "torch.sum",
"line_number": 16,
"usage_type": "call"
},
{
"api_name": "torch.sum",
"line_number": 17,
"usage_type": "call"
},
{
"api_name": "torch.nn.init.kaiming_normal_",
"line_number": 42,
"usage_type": "call"
},
{
"api_name": "torch.nn.init",
"line_number": 42,
"usage_type": "attribute"
},
{
"api_name": "torch.nn",
"line_number": 42,
"usage_type": "name"
},
{
"api_name": "torch.load",
"line_number": 60,
"usage_type": "call"
},
{
"api_name": "torch.load",
"line_number": 78,
"usage_type": "call"
},
{
"api_name": "torch.nn.Sequential",
"line_number": 84,
"usage_type": "call"
},
{
"api_name": "torch.nn",
"line_number": 84,
"usage_type": "name"
},
{
"api_name": "torch.nn.Conv2d",
"line_number": 85,
"usage_type": "call"
},
{
"api_name": "torch.nn",
"line_number": 85,
"usage_type": "name"
},
{
"api_name": "torch.nn.ReLU",
"line_number": 88,
"usage_type": "call"
},
{
"api_name": "torch.nn",
"line_number": 88,
"usage_type": "name"
},
{
"api_name": "torch.nn.Module",
"line_number": 92,
"usage_type": "attribute"
},
{
"api_name": "torch.nn",
"line_number": 92,
"usage_type": "name"
},
{
"api_name": "torch.nn.Module",
"line_number": 126,
"usage_type": "attribute"
},
{
"api_name": "torch.nn",
"line_number": 126,
"usage_type": "name"
},
{
"api_name": "torch.nn.Sequential",
"line_number": 134,
"usage_type": "call"
},
{
"api_name": "torch.nn",
"line_number": 134,
"usage_type": "name"
},
{
"api_name": "torch.nn.AdaptiveAvgPool2d",
"line_number": 135,
"usage_type": "call"
},
{
"api_name": "torch.nn",
"line_number": 135,
"usage_type": "name"
},
{
"api_name": "torch.nn.Conv2d",
"line_number": 136,
"usage_type": "call"
},
{
"api_name": "torch.nn",
"line_number": 136,
"usage_type": "name"
},
{
"api_name": "torch.nn.ReLU",
"line_number": 138,
"usage_type": "call"
},
{
"api_name": "torch.nn",
"line_number": 138,
"usage_type": "name"
},
{
"api_name": "torch.nn.ModuleList",
"line_number": 140,
"usage_type": "call"
},
{
"api_name": "torch.nn",
"line_number": 140,
"usage_type": "name"
},
{
"api_name": "torch.nn.Sequential",
"line_number": 142,
"usage_type": "call"
},
{
"api_name": "torch.nn",
"line_number": 142,
"usage_type": "name"
},
{
"api_name": "torch.nn.Conv2d",
"line_number": 143,
"usage_type": "call"
},
{
"api_name": "torch.nn",
"line_number": 143,
"usage_type": "name"
},
{
"api_name": "torch.nn.ReLU",
"line_number": 146,
"usage_type": "call"
},
{
"api_name": "torch.nn",
"line_number": 146,
"usage_type": "name"
},
{
"api_name": "torch.nn.Dropout2d",
"line_number": 147,
"usage_type": "call"
},
{
"api_name": "torch.nn",
"line_number": 147,
"usage_type": "name"
},
{
"api_name": "torch.nn.Conv2d",
"line_number": 148,
"usage_type": "call"
},
{
"api_name": "torch.nn",
"line_number": 148,
"usage_type": "name"
},
{
"api_name": "torch.nn.functional.interpolate",
"line_number": 157,
"usage_type": "call"
},
{
"api_name": "torch.nn.functional",
"line_number": 157,
"usage_type": "attribute"
},
{
"api_name": "torch.nn",
"line_number": 157,
"usage_type": "name"
},
{
"api_name": "torch.cat",
"line_number": 161,
"usage_type": "call"
},
{
"api_name": "torch.nn.functional.interpolate",
"line_number": 166,
"usage_type": "call"
},
{
"api_name": "torch.nn.functional",
"line_number": 166,
"usage_type": "attribute"
},
{
"api_name": "torch.nn",
"line_number": 166,
"usage_type": "name"
},
{
"api_name": "torch.nn.functional.softmax",
"line_number": 168,
"usage_type": "call"
},
{
"api_name": "torch.nn.functional",
"line_number": 168,
"usage_type": "attribute"
},
{
"api_name": "torch.nn",
"line_number": 168,
"usage_type": "name"
},
{
"api_name": "torch.nn.functional.log_softmax",
"line_number": 170,
"usage_type": "call"
},
{
"api_name": "torch.nn.functional",
"line_number": 170,
"usage_type": "attribute"
},
{
"api_name": "torch.nn",
"line_number": 170,
"usage_type": "name"
},
{
"api_name": "torch.nn.Module",
"line_number": 174,
"usage_type": "attribute"
},
{
"api_name": "torch.nn",
"line_number": 174,
"usage_type": "name"
},
{
"api_name": "math.floor",
"line_number": 187,
"usage_type": "call"
},
{
"api_name": "math.floor",
"line_number": 188,
"usage_type": "call"
},
{
"api_name": "torch.nn.AvgPool2d",
"line_number": 191,
"usage_type": "call"
},
{
"api_name": "torch.nn",
"line_number": 191,
"usage_type": "name"
},
{
"api_name": "math.floor",
"line_number": 197,
"usage_type": "call"
},
{
"api_name": "math.floor",
"line_number": 198,
"usage_type": "call"
},
{
"api_name": "torch.nn.AvgPool2d",
"line_number": 201,
"usage_type": "call"
},
{
"api_name": "torch.nn",
"line_number": 201,
"usage_type": "name"
},
{
"api_name": "math.floor",
"line_number": 207,
"usage_type": "call"
},
{
"api_name": "math.floor",
"line_number": 208,
"usage_type": "call"
},
{
"api_name": "torch.nn.AvgPool2d",
"line_number": 211,
"usage_type": "call"
},
{
"api_name": "torch.nn",
"line_number": 211,
"usage_type": "name"
},
{
"api_name": "math.floor",
"line_number": 217,
"usage_type": "call"
},
{
"api_name": "math.floor",
"line_number": 218,
"usage_type": "call"
},
{
"api_name": "torch.nn.AvgPool2d",
"line_number": 221,
"usage_type": "call"
},
{
"api_name": "torch.nn",
"line_number": 221,
"usage_type": "name"
},
{
"api_name": "torch.nn.Sequential",
"line_number": 229,
"usage_type": "call"
},
{
"api_name": "torch.nn",
"line_number": 229,
"usage_type": "name"
},
{
"api_name": "torch.nn.Conv2d",
"line_number": 229,
"usage_type": "call"
},
{
"api_name": "torch.nn.ReLU",
"line_number": 229,
"usage_type": "call"
},
{
"api_name": "torch.nn.Sequential",
"line_number": 230,
"usage_type": "call"
},
{
"api_name": "torch.nn",
"line_number": 230,
"usage_type": "name"
},
{
"api_name": "torch.nn.Conv2d",
"line_number": 230,
"usage_type": "call"
},
{
"api_name": "torch.nn.ReLU",
"line_number": 230,
"usage_type": "call"
},
{
"api_name": "torch.nn.Sequential",
"line_number": 231,
"usage_type": "call"
},
{
"api_name": "torch.nn",
"line_number": 231,
"usage_type": "name"
},
{
"api_name": "torch.nn.Conv2d",
"line_number": 231,
"usage_type": "call"
},
{
"api_name": "torch.nn.ReLU",
"line_number": 231,
"usage_type": "call"
},
{
"api_name": "torch.nn.Sequential",
"line_number": 232,
"usage_type": "call"
},
{
"api_name": "torch.nn",
"line_number": 232,
"usage_type": "name"
},
{
"api_name": "torch.nn.Conv2d",
"line_number": 232,
"usage_type": "call"
},
{
"api_name": "torch.nn.ReLU",
"line_number": 232,
"usage_type": "call"
},
{
"api_name": "torch.nn.Sequential",
"line_number": 249,
"usage_type": "call"
},
{
"api_name": "torch.nn",
"line_number": 249,
"usage_type": "name"
},
{
"api_name": "torch.nn.Conv2d",
"line_number": 250,
"usage_type": "call"
},
{
"api_name": "torch.nn",
"line_number": 250,
"usage_type": "name"
},
{
"api_name": "torch.nn.ReLU",
"line_number": 252,
"usage_type": "call"
},
{
"api_name": "torch.nn",
"line_number": 252,
"usage_type": "name"
},
{
"api_name": "torch.nn.ModuleList",
"line_number": 254,
"usage_type": "call"
},
{
"api_name": "torch.nn",
"line_number": 254,
"usage_type": "name"
},
{
"api_name": "torch.nn.Sequential",
"line_number": 258,
"usage_type": "call"
},
{
"api_name": "torch.nn",
"line_number": 258,
"usage_type": "name"
},
{
"api_name": "torch.nn.ModuleList",
"line_number": 261,
"usage_type": "call"
},
{
"api_name": "torch.nn",
"line_number": 261,
"usage_type": "name"
},
{
"api_name": "torch.nn.Sequential",
"line_number": 263,
"usage_type": "call"
},
{
"api_name": "torch.nn",
"line_number": 263,
"usage_type": "name"
},
{
"api_name": "torch.nn.Conv2d",
"line_number": 265,
"usage_type": "call"
},
{
"api_name": "torch.nn",
"line_number": 265,
"usage_type": "name"
},
{
"api_name": "torch.nn.functional.interpolate",
"line_number": 315,
"usage_type": "call"
},
{
"api_name": "torch.nn.functional",
"line_number": 315,
"usage_type": "attribute"
},
{
"api_name": "torch.nn",
"line_number": 315,
"usage_type": "name"
},
{
"api_name": "torch.nn.functional.interpolate",
"line_number": 316,
"usage_type": "call"
},
{
"api_name": "torch.nn.functional",
"line_number": 316,
"usage_type": "attribute"
},
{
"api_name": "torch.nn",
"line_number": 316,
"usage_type": "name"
},
{
"api_name": "torch.nn.functional.interpolate",
"line_number": 317,
"usage_type": "call"
},
{
"api_name": "torch.nn.functional",
"line_number": 317,
"usage_type": "attribute"
},
{
"api_name": "torch.nn",
"line_number": 317,
"usage_type": "name"
},
{
"api_name": "torch.nn.functional.interpolate",
"line_number": 318,
"usage_type": "call"
},
{
"api_name": "torch.nn.functional",
"line_number": 318,
"usage_type": "attribute"
},
{
"api_name": "torch.nn",
"line_number": 318,
"usage_type": "name"
},
{
"api_name": "torch.cat",
"line_number": 320,
"usage_type": "call"
},
{
"api_name": "torch.nn.functional.interpolate",
"line_number": 324,
"usage_type": "call"
},
{
"api_name": "torch.nn.functional",
"line_number": 324,
"usage_type": "attribute"
},
{
"api_name": "torch.nn",
"line_number": 324,
"usage_type": "name"
},
{
"api_name": "torch.nn.functional.interpolate",
"line_number": 329,
"usage_type": "call"
},
{
"api_name": "torch.nn.functional",
"line_number": 329,
"usage_type": "attribute"
},
{
"api_name": "torch.nn",
"line_number": 329,
"usage_type": "name"
},
{
"api_name": "torch.nn.functional.interpolate",
"line_number": 334,
"usage_type": "call"
},
{
"api_name": "torch.nn.functional",
"line_number": 334,
"usage_type": "attribute"
},
{
"api_name": "torch.nn",
"line_number": 334,
"usage_type": "name"
},
{
"api_name": "torch.nn.functional.interpolate",
"line_number": 338,
"usage_type": "call"
},
{
"api_name": "torch.nn.functional",
"line_number": 338,
"usage_type": "attribute"
},
{
"api_name": "torch.nn",
"line_number": 338,
"usage_type": "name"
},
{
"api_name": "torch.nn.functional.interpolate",
"line_number": 339,
"usage_type": "call"
},
{
"api_name": "torch.nn.functional",
"line_number": 339,
"usage_type": "attribute"
},
{
"api_name": "torch.nn",
"line_number": 339,
"usage_type": "name"
},
{
"api_name": "torch.nn.functional.interpolate",
"line_number": 340,
"usage_type": "call"
},
{
"api_name": "torch.nn.functional",
"line_number": 340,
"usage_type": "attribute"
},
{
"api_name": "torch.nn",
"line_number": 340,
"usage_type": "name"
},
{
"api_name": "torch.cat",
"line_number": 342,
"usage_type": "call"
},
{
"api_name": "torch.nn.functional.interpolate",
"line_number": 344,
"usage_type": "call"
},
{
"api_name": "torch.nn.functional",
"line_number": 344,
"usage_type": "attribute"
},
{
"api_name": "torch.nn",
"line_number": 344,
"usage_type": "name"
},
{
"api_name": "torch.nn.functional.softmax",
"line_number": 345,
"usage_type": "call"
},
{
"api_name": "torch.nn.functional",
"line_number": 345,
"usage_type": "attribute"
},
{
"api_name": "torch.nn",
"line_number": 345,
"usage_type": "name"
}
] |
199128348
|
import numpy as np
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation, Flatten
from keras.layers.convolutional import Convolution2D, MaxPooling2D
from keras.optimizers import SGD
from load import DataLoader
from scipy.stats import itemfreq
loader = DataLoader()
loader.load_train()
X_train = loader.images_train
Y_train = loader.labels_train
mean = np.mean(X_train, axis=0)
X_train -= mean
X_train = X_train.swapaxes(3, 1)
batch_size = 32
nb_classes = 5
model = Sequential()
model.add(Convolution2D(32, 3, 3, 3, border_mode='full'))
model.add(Activation('relu'))
model.add(Convolution2D(32, 32, 3, 3))
model.add(Activation('relu'))
model.add(MaxPooling2D(poolsize=(2, 2)))
model.add(Dropout(0.25))
model.add(Convolution2D(64, 32, 3, 3, border_mode='full'))
model.add(Activation('relu'))
model.add(Convolution2D(64, 64, 3, 3))
model.add(Activation('relu'))
model.add(MaxPooling2D(poolsize=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(64*8*8, 512))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(512, nb_classes))
model.add(Activation('softmax'))
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd)
model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=30)
X_valid = loader.images_valid
X_valid -= mean
X_valid = X_valid.swapaxes(3, 1)
Y_valid = loader.labels_valid
model.evaluate(X_valid, Y_valid, batch_size, show_accuracy=True)
# # predicting
# loader.load_test()
# X_test = loader.images_test
# pred = model.predict_classes(X_test)
#
# print itemfreq(pred)
| null |
keras_cnn.py
|
keras_cnn.py
|
py
| 1,640 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "load.DataLoader",
"line_number": 10,
"usage_type": "call"
},
{
"api_name": "numpy.mean",
"line_number": 15,
"usage_type": "call"
},
{
"api_name": "keras.models.Sequential",
"line_number": 22,
"usage_type": "call"
},
{
"api_name": "keras.layers.convolutional.Convolution2D",
"line_number": 24,
"usage_type": "call"
},
{
"api_name": "keras.layers.core.Activation",
"line_number": 25,
"usage_type": "call"
},
{
"api_name": "keras.layers.convolutional.Convolution2D",
"line_number": 26,
"usage_type": "call"
},
{
"api_name": "keras.layers.core.Activation",
"line_number": 27,
"usage_type": "call"
},
{
"api_name": "keras.layers.convolutional.MaxPooling2D",
"line_number": 28,
"usage_type": "call"
},
{
"api_name": "keras.layers.core.Dropout",
"line_number": 29,
"usage_type": "call"
},
{
"api_name": "keras.layers.convolutional.Convolution2D",
"line_number": 31,
"usage_type": "call"
},
{
"api_name": "keras.layers.core.Activation",
"line_number": 32,
"usage_type": "call"
},
{
"api_name": "keras.layers.convolutional.Convolution2D",
"line_number": 33,
"usage_type": "call"
},
{
"api_name": "keras.layers.core.Activation",
"line_number": 34,
"usage_type": "call"
},
{
"api_name": "keras.layers.convolutional.MaxPooling2D",
"line_number": 35,
"usage_type": "call"
},
{
"api_name": "keras.layers.core.Dropout",
"line_number": 36,
"usage_type": "call"
},
{
"api_name": "keras.layers.core.Flatten",
"line_number": 38,
"usage_type": "call"
},
{
"api_name": "keras.layers.core.Dense",
"line_number": 39,
"usage_type": "call"
},
{
"api_name": "keras.layers.core.Activation",
"line_number": 40,
"usage_type": "call"
},
{
"api_name": "keras.layers.core.Dropout",
"line_number": 41,
"usage_type": "call"
},
{
"api_name": "keras.layers.core.Dense",
"line_number": 43,
"usage_type": "call"
},
{
"api_name": "keras.layers.core.Activation",
"line_number": 44,
"usage_type": "call"
},
{
"api_name": "keras.optimizers.SGD",
"line_number": 46,
"usage_type": "call"
}
] |
257560395
|
from django.urls import path
from . import views
urlpatterns = [
path('', views.principal, name='cliente'),
path('crear_cliente/', views.crear),
path('modificar_cliente/', views.modificar),
path('borrar_cliente/', views.borrar),
path('cuentas_cliente/', views.cuentas),
path(r'crear_cuenta/(?P<dni>d+)/$', views.crear_cuentas, name='crear_cuentas'),
path(r'deposito/(?P<numero>d+)/$', views.depositar, name='deposito'),
path(r'retiro/(?P<numero>d+)/$', views.retirar, name='retiro'),
path(r'transferencia/(?P<numero>d+)/$', views.transferir, name='transferencia'),
path(r'borrar_cuenta/(?P<numero>d+)/$', views.borrar_cuenta, name='borrar_cuenta'),
]
| null |
cooperativa2019/ape/modelo/urls.py
|
urls.py
|
py
| 693 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "django.urls.path",
"line_number": 7,
"usage_type": "call"
},
{
"api_name": "django.urls.path",
"line_number": 8,
"usage_type": "call"
},
{
"api_name": "django.urls.path",
"line_number": 9,
"usage_type": "call"
},
{
"api_name": "django.urls.path",
"line_number": 10,
"usage_type": "call"
},
{
"api_name": "django.urls.path",
"line_number": 11,
"usage_type": "call"
},
{
"api_name": "django.urls.path",
"line_number": 12,
"usage_type": "call"
},
{
"api_name": "django.urls.path",
"line_number": 13,
"usage_type": "call"
},
{
"api_name": "django.urls.path",
"line_number": 14,
"usage_type": "call"
},
{
"api_name": "django.urls.path",
"line_number": 15,
"usage_type": "call"
},
{
"api_name": "django.urls.path",
"line_number": 16,
"usage_type": "call"
}
] |
508325791
|
from discord.ext.commands import Bot as BotBase
from discord.ext import commands
import os
PRIFIX = "~"
class Bot(BotBase):
def __init__(self):
self.PRIFIX = PRIFIX
super().__init__(command_prefix=PRIFIX)
def setup(self):
for filename in os.listdir("./lib/cogs"):
if filename.endswith('.py'):
super().load_extension(f'lib.cogs.{filename[:-3]}')
print(f'cogs.{filename} cog loaded')
print("setup completed")
def run(self):
print("running setup")
self.setup()
with open("./lib/bot/token.txt", "r") as t:
self.TOKEN = t.readlines()[0].strip()
print("running bot...")
super().run(self.TOKEN)
async def on_connect(self):
print("Bot connected")
async def on_disconnect(self):
print("Bot disconnected")
async def on_ready(self):
print("Hello I am ready")
bot=Bot()
| null |
lib/bot/__init__.py
|
__init__.py
|
py
| 974 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "discord.ext.commands.Bot",
"line_number": 7,
"usage_type": "name"
},
{
"api_name": "os.listdir",
"line_number": 14,
"usage_type": "call"
}
] |
482993743
|
import itertools as it
def erat3( ):
D = { 9: 3, 25: 5 }
yield 2
yield 3
yield 5
MASK= 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0,
MODULOS= frozenset( (1, 7, 11, 13, 17, 19, 23, 29) )
for q in it.compress(
it.islice(it.count(7), 0, None, 2),
it.cycle(MASK)):
p = D.pop(q, None)
if p is None:
D[q*q] = q
yield q
else:
x = q + 2*p
while x in D or (x%30) not in MODULOS:
x += 2*p
D[x] = p
def genprimelist(n):
gen = erat3()
primelist = []
nextprime = next(gen)
while(nextprime < n):
primelist.append(nextprime)
nextprime = next(gen)
return primelist
def only1379(primestring):
evens = ["0","2","4","5","6","8"]
for char in primestring:
if char in evens:
return False
return True
def solve35(n):
circulars = set([])
notcircular = set([])
primelist = genprimelist(n)
for prime in primelist:
primestring = str(prime)
length = len(primestring)
#if it is 1 digit
if length == 1:
circulars.update([prime])
else:
if (prime in circulars) or (prime in notcircular):
pass
else:
#Any digits other than 1,3,7,9 will have a nonprime iteration
if(not(only1379(primestring))):
pass
else:
#Generate all possibilities and
iterations = [prime]
nextiter = primestring[1:]+primestring[0]
while nextiter != primestring:
iterations.append(int(nextiter))
nextiter = nextiter[1:]+nextiter[0]
notprime = False
for iter in iterations:
if iter in primelist:
pass
else:
notprime = True
break
#Move to correct list
#Noncircular only contains values that passed
#the digit check
if notprime:
notcircular.update(iterations)
else:
circulars.update(iterations)
return len(circulars)
| null |
Problems 31 - 40/problem 35/problem 35.py
|
problem 35.py
|
py
| 1,908 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "itertools.compress",
"line_number": 11,
"usage_type": "call"
},
{
"api_name": "itertools.islice",
"line_number": 12,
"usage_type": "call"
},
{
"api_name": "itertools.count",
"line_number": 12,
"usage_type": "call"
},
{
"api_name": "itertools.cycle",
"line_number": 13,
"usage_type": "call"
}
] |
391603773
|
from flask import Blueprint, session, abort, request, current_app, jsonify
from flask_login import LoginManager, login_required, current_user, logout_user, login_user
from dunder_funk import db
login_manager = LoginManager()
login_manager.login_view = 'authentication.login'
auth_blueprint = Blueprint('authentication', __name__)
@login_manager.user_loader
def load_user(id):
return db.get_client_by_id(int(id))
@auth_blueprint.errorhandler(400)
def auth400(error):
return jsonify({'message': error.description})
@auth_blueprint.route('/register', methods=['PUT'])
def do_registration():
data = request.get_json()
if not data.get('username'):
abort(400, 'No username provided in client registration request')
elif not data.get('password'):
abort(400, 'No password provided in client registration request')
elif not data.get('description'):
abort(400, 'No player description provided')
return jsonify(db.create_client(**data))
@auth_blueprint.route('/login', methods=['POST'])
def login():
data = request.get_json()
result = db.check_credentials(**data)
if result is None:
abort(401, 'Login failed')
login_user(db.get_client_by_id(result['id']))
return jsonify(result)
@auth_blueprint.route('/client/<int:client_id>/status', methods=['POST'])
@login_required
def client_status():
return jsonify(current_user.serialize)
@auth_blueprint.route('/logout', methods=['GET', 'POST'])
@login_required
def logout():
logout_user()
return jsonify({'message': 'Logged out'})
@auth_blueprint.route('/login', methods=['GET'])
def usage():
response = jsonify({'usage': 'post username and password to /login'})
response.status_code = 401
return response
@auth_blueprint.route('/session', methods=['GET', 'POST'])
@login_required
def session_info():
session_header = request.headers.get('Session-Token')
if session_header is not None:
session = db.get_session(session_header)
if session is None:
abort(404, 'Unable to locate current session')
return jsonify(session)
data = request.get_json()
if not data:
abort(400, 'Missing required data for session retrieval')
auth = db.get_active_auth(data.get('client_id'))
if auth is None:
auth = db.authorize_client(data.get('client_id'))
else:
auth = auth.serialize
if auth is None:
abort(404, 'Unable to locate active client authentication')
return jsonify(db.get_session_by_id(auth['session_id']).serialize)
| null |
dunder_funk/server/routes/auth.py
|
auth.py
|
py
| 2,562 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "flask_login.LoginManager",
"line_number": 6,
"usage_type": "call"
},
{
"api_name": "flask.Blueprint",
"line_number": 9,
"usage_type": "call"
},
{
"api_name": "dunder_funk.db.get_client_by_id",
"line_number": 14,
"usage_type": "call"
},
{
"api_name": "dunder_funk.db",
"line_number": 14,
"usage_type": "name"
},
{
"api_name": "flask.jsonify",
"line_number": 19,
"usage_type": "call"
},
{
"api_name": "flask.request.get_json",
"line_number": 24,
"usage_type": "call"
},
{
"api_name": "flask.request",
"line_number": 24,
"usage_type": "name"
},
{
"api_name": "flask.abort",
"line_number": 26,
"usage_type": "call"
},
{
"api_name": "flask.abort",
"line_number": 28,
"usage_type": "call"
},
{
"api_name": "flask.abort",
"line_number": 30,
"usage_type": "call"
},
{
"api_name": "flask.jsonify",
"line_number": 31,
"usage_type": "call"
},
{
"api_name": "dunder_funk.db.create_client",
"line_number": 31,
"usage_type": "call"
},
{
"api_name": "dunder_funk.db",
"line_number": 31,
"usage_type": "name"
},
{
"api_name": "flask.request.get_json",
"line_number": 36,
"usage_type": "call"
},
{
"api_name": "flask.request",
"line_number": 36,
"usage_type": "name"
},
{
"api_name": "dunder_funk.db.check_credentials",
"line_number": 37,
"usage_type": "call"
},
{
"api_name": "dunder_funk.db",
"line_number": 37,
"usage_type": "name"
},
{
"api_name": "flask.abort",
"line_number": 39,
"usage_type": "call"
},
{
"api_name": "flask_login.login_user",
"line_number": 40,
"usage_type": "call"
},
{
"api_name": "dunder_funk.db.get_client_by_id",
"line_number": 40,
"usage_type": "call"
},
{
"api_name": "dunder_funk.db",
"line_number": 40,
"usage_type": "name"
},
{
"api_name": "flask.jsonify",
"line_number": 41,
"usage_type": "call"
},
{
"api_name": "flask.jsonify",
"line_number": 47,
"usage_type": "call"
},
{
"api_name": "flask_login.current_user.serialize",
"line_number": 47,
"usage_type": "attribute"
},
{
"api_name": "flask_login.current_user",
"line_number": 47,
"usage_type": "name"
},
{
"api_name": "flask_login.login_required",
"line_number": 45,
"usage_type": "name"
},
{
"api_name": "flask_login.logout_user",
"line_number": 53,
"usage_type": "call"
},
{
"api_name": "flask.jsonify",
"line_number": 54,
"usage_type": "call"
},
{
"api_name": "flask_login.login_required",
"line_number": 51,
"usage_type": "name"
},
{
"api_name": "flask.jsonify",
"line_number": 59,
"usage_type": "call"
},
{
"api_name": "flask.request.headers.get",
"line_number": 67,
"usage_type": "call"
},
{
"api_name": "flask.request.headers",
"line_number": 67,
"usage_type": "attribute"
},
{
"api_name": "flask.request",
"line_number": 67,
"usage_type": "name"
},
{
"api_name": "flask.session",
"line_number": 69,
"usage_type": "name"
},
{
"api_name": "dunder_funk.db.get_session",
"line_number": 69,
"usage_type": "call"
},
{
"api_name": "dunder_funk.db",
"line_number": 69,
"usage_type": "name"
},
{
"api_name": "flask.session",
"line_number": 70,
"usage_type": "name"
},
{
"api_name": "flask.abort",
"line_number": 71,
"usage_type": "call"
},
{
"api_name": "flask.jsonify",
"line_number": 72,
"usage_type": "call"
},
{
"api_name": "flask.session",
"line_number": 72,
"usage_type": "argument"
},
{
"api_name": "flask.request.get_json",
"line_number": 74,
"usage_type": "call"
},
{
"api_name": "flask.request",
"line_number": 74,
"usage_type": "name"
},
{
"api_name": "flask.abort",
"line_number": 76,
"usage_type": "call"
},
{
"api_name": "dunder_funk.db.get_active_auth",
"line_number": 77,
"usage_type": "call"
},
{
"api_name": "dunder_funk.db",
"line_number": 77,
"usage_type": "name"
},
{
"api_name": "dunder_funk.db.authorize_client",
"line_number": 79,
"usage_type": "call"
},
{
"api_name": "dunder_funk.db",
"line_number": 79,
"usage_type": "name"
},
{
"api_name": "flask.abort",
"line_number": 83,
"usage_type": "call"
},
{
"api_name": "flask.jsonify",
"line_number": 84,
"usage_type": "call"
},
{
"api_name": "dunder_funk.db.get_session_by_id",
"line_number": 84,
"usage_type": "call"
},
{
"api_name": "dunder_funk.db",
"line_number": 84,
"usage_type": "name"
},
{
"api_name": "flask_login.login_required",
"line_number": 65,
"usage_type": "name"
}
] |
314833730
|
from rodan.models.workflow import Workflow
from rest_framework import serializers
from rodan.serializers.page import MinimalPageSerializer
from rodan.serializers.workflowjob import WorkflowJobSerializer
from rodan.serializers.workflowrun import WorkflowRunSerializer
class WorkflowSerializer(serializers.HyperlinkedModelSerializer):
project = serializers.HyperlinkedRelatedField(view_name="project-detail")
creator = serializers.HyperlinkedRelatedField(view_name="user-detail")
pages = MinimalPageSerializer()
# pages = serializers.HyperlinkedRelatedField(many=True, view_name="page-detail")
workflow_jobs = WorkflowJobSerializer()
workflow_runs = WorkflowRunSerializer()
uuid = serializers.Field(source='uuid')
# runs = serializers.IntegerField(required=False)
class Meta:
model = Workflow
read_only_fields = ('created', 'updated', 'runs')
fields = ("url",
"uuid",
"name",
"project",
'runs',
"pages",
"workflow_jobs",
"description",
"has_started",
"created",
"updated",
"workflow_runs")
class WorkflowListSerializer(serializers.HyperlinkedModelSerializer):
uuid = serializers.Field(source='uuid')
project = serializers.HyperlinkedRelatedField(view_name="project-detail")
creator = serializers.HyperlinkedRelatedField(view_name="user-detail")
class Meta:
model = Workflow
read_only_fields = ('created', 'updated', 'runs')
fields = ('url',
"uuid",
'project',
'creator',
'uuid',
'name',
'created',
'updated')
| null |
rodan/serializers/workflow.py
|
workflow.py
|
py
| 1,837 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "rest_framework.serializers.HyperlinkedModelSerializer",
"line_number": 8,
"usage_type": "attribute"
},
{
"api_name": "rest_framework.serializers",
"line_number": 8,
"usage_type": "name"
},
{
"api_name": "rest_framework.serializers.HyperlinkedRelatedField",
"line_number": 9,
"usage_type": "call"
},
{
"api_name": "rest_framework.serializers",
"line_number": 9,
"usage_type": "name"
},
{
"api_name": "rest_framework.serializers.HyperlinkedRelatedField",
"line_number": 10,
"usage_type": "call"
},
{
"api_name": "rest_framework.serializers",
"line_number": 10,
"usage_type": "name"
},
{
"api_name": "rodan.serializers.page.MinimalPageSerializer",
"line_number": 11,
"usage_type": "call"
},
{
"api_name": "rodan.serializers.workflowjob.WorkflowJobSerializer",
"line_number": 13,
"usage_type": "call"
},
{
"api_name": "rodan.serializers.workflowrun.WorkflowRunSerializer",
"line_number": 14,
"usage_type": "call"
},
{
"api_name": "rest_framework.serializers.Field",
"line_number": 15,
"usage_type": "call"
},
{
"api_name": "rest_framework.serializers",
"line_number": 15,
"usage_type": "name"
},
{
"api_name": "rodan.models.workflow.Workflow",
"line_number": 19,
"usage_type": "name"
},
{
"api_name": "rest_framework.serializers.HyperlinkedModelSerializer",
"line_number": 35,
"usage_type": "attribute"
},
{
"api_name": "rest_framework.serializers",
"line_number": 35,
"usage_type": "name"
},
{
"api_name": "rest_framework.serializers.Field",
"line_number": 36,
"usage_type": "call"
},
{
"api_name": "rest_framework.serializers",
"line_number": 36,
"usage_type": "name"
},
{
"api_name": "rest_framework.serializers.HyperlinkedRelatedField",
"line_number": 37,
"usage_type": "call"
},
{
"api_name": "rest_framework.serializers",
"line_number": 37,
"usage_type": "name"
},
{
"api_name": "rest_framework.serializers.HyperlinkedRelatedField",
"line_number": 38,
"usage_type": "call"
},
{
"api_name": "rest_framework.serializers",
"line_number": 38,
"usage_type": "name"
},
{
"api_name": "rodan.models.workflow.Workflow",
"line_number": 41,
"usage_type": "name"
}
] |
18581393
|
import unittest
import torch
import numpy as np
from nl2prog.nn.nl2code import Predictor, ActionSequenceReader
from nl2prog.nn.utils import rnn
class TestPredictor(unittest.TestCase):
def test_parameters(self):
reader = ActionSequenceReader(1, 1, 1, 2, 3)
predictor = Predictor(reader, 1, 2, 3, 5)
self.assertEqual(17, len(dict(predictor.named_parameters())))
def test_shape(self):
reader = ActionSequenceReader(1, 1, 1, 1, 1)
predictor = Predictor(reader, 1, 2, 3, 5)
feature0 = torch.rand(2, 3)
feature1 = torch.rand(1, 3)
feature = rnn.pad_sequence([feature0, feature1])
context0 = torch.rand(2, 2)
context1 = torch.rand(1, 2)
context = rnn.pad_sequence([context0, context1])
query0 = torch.rand(3, 2)
query1 = torch.rand(1, 2)
query = rnn.pad_sequence([query0, query1])
rule_pred, token_pred, copy_pred = predictor(
query, (feature, context))
self.assertTrue(np.array_equal(
[[1, 1], [1, 0]], rule_pred.mask.numpy()))
self.assertEqual((2, 2, 1), rule_pred.data.shape)
self.assertTrue(np.allclose([[1, 1], [1, 1]], np.sum(
rule_pred.data.detach().numpy(), axis=2)))
self.assertEqual((2, 2, 1), token_pred.data.shape)
self.assertTrue(np.array_equal(
[[1, 1], [1, 0]], token_pred.mask.numpy()))
self.assertEqual((2, 2, 3), copy_pred.data.shape)
self.assertTrue(np.array_equal(
[[1, 1], [1, 0]], copy_pred.mask.numpy()))
self.assertTrue(np.allclose([[1, 1], [1, 1]],
np.sum(token_pred.data.detach().numpy(),
axis=2) +
np.sum(copy_pred.data.detach().numpy(),
axis=2)))
if __name__ == "__main__":
unittest.main()
| null |
test/nn/nl2code/test_predictor.py
|
test_predictor.py
|
py
| 1,932 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "unittest.TestCase",
"line_number": 9,
"usage_type": "attribute"
},
{
"api_name": "nl2prog.nn.nl2code.ActionSequenceReader",
"line_number": 11,
"usage_type": "call"
},
{
"api_name": "nl2prog.nn.nl2code.Predictor",
"line_number": 12,
"usage_type": "call"
},
{
"api_name": "nl2prog.nn.nl2code.ActionSequenceReader",
"line_number": 16,
"usage_type": "call"
},
{
"api_name": "nl2prog.nn.nl2code.Predictor",
"line_number": 17,
"usage_type": "call"
},
{
"api_name": "torch.rand",
"line_number": 18,
"usage_type": "call"
},
{
"api_name": "torch.rand",
"line_number": 19,
"usage_type": "call"
},
{
"api_name": "nl2prog.nn.utils.rnn.pad_sequence",
"line_number": 20,
"usage_type": "call"
},
{
"api_name": "nl2prog.nn.utils.rnn",
"line_number": 20,
"usage_type": "name"
},
{
"api_name": "torch.rand",
"line_number": 21,
"usage_type": "call"
},
{
"api_name": "torch.rand",
"line_number": 22,
"usage_type": "call"
},
{
"api_name": "nl2prog.nn.utils.rnn.pad_sequence",
"line_number": 23,
"usage_type": "call"
},
{
"api_name": "nl2prog.nn.utils.rnn",
"line_number": 23,
"usage_type": "name"
},
{
"api_name": "torch.rand",
"line_number": 24,
"usage_type": "call"
},
{
"api_name": "torch.rand",
"line_number": 25,
"usage_type": "call"
},
{
"api_name": "nl2prog.nn.utils.rnn.pad_sequence",
"line_number": 26,
"usage_type": "call"
},
{
"api_name": "nl2prog.nn.utils.rnn",
"line_number": 26,
"usage_type": "name"
},
{
"api_name": "numpy.array_equal",
"line_number": 30,
"usage_type": "call"
},
{
"api_name": "numpy.allclose",
"line_number": 33,
"usage_type": "call"
},
{
"api_name": "numpy.sum",
"line_number": 33,
"usage_type": "call"
},
{
"api_name": "numpy.array_equal",
"line_number": 36,
"usage_type": "call"
},
{
"api_name": "numpy.array_equal",
"line_number": 39,
"usage_type": "call"
},
{
"api_name": "numpy.allclose",
"line_number": 41,
"usage_type": "call"
},
{
"api_name": "numpy.sum",
"line_number": 42,
"usage_type": "call"
},
{
"api_name": "numpy.sum",
"line_number": 44,
"usage_type": "call"
},
{
"api_name": "unittest.main",
"line_number": 49,
"usage_type": "call"
}
] |
34997065
|
# -*- coding: utf-8 -*-
from scrapy.linkextractors import LinkExtractor
from scrapy.http import TextResponse
from scrapy.loader import XPathItemLoader
from scrapy.loader.processors import TakeFirst
from scrapy.selector import HtmlXPathSelector
from scrapy.spiders import CrawlSpider
from scrapy.spiders import Rule
from yp.items import YpItem
class OrphanLoader(XPathItemLoader):
default_output_processor = TakeFirst()
class MySpider(CrawlSpider):
name = "yp"
allowed_domains = ["qatcom.com"]
start_urls = ["http://www.qatcom.com/listings/search?what=&searchtype=both"]
rules = (
Rule(LinkExtractor(allow=(), restrict_xpaths=("//a[text()='Next >']")), follow=True),
Rule(LinkExtractor(allow=(), restrict_xpaths=("//div[@class='title']/a",)), callback="parse_item", follow=True),
)
# "/qatar-categories/[0-9]+/[0-9]+"
# "//div[@class='col-sm-12 col-lg-12 ct-u-marginBottom40']/div/a", "//a[@aria-label='Next']" ,
# "//div[@class='search_title']/a",
# "/qatar-companies-profile-rev/[0-9]+/[A-z]+"
def parse_item(self, response):
hxs = HtmlXPathSelector(response)
l = OrphanLoader(YpItem(), hxs)
#hxs = HtmlXPathSelector(response)
items = []
item = YpItem()
#item["Work_Email"] = ' '.join(''.join(hxs.select("//div[@class='form-group ']/input[@id='email']//@value").extract()).rsplit())
item["Fax"] = ' '.join(''.join(hxs.select("//dd[@class='fax']/text()").extract()).replace('(00974)', '+974').replace('(+974)', '+974').rsplit())
item["Work_Phone"] = ' '.join(''.join(hxs.select("//dd[@class='telephone']/text()").extract()).replace('(00974)', '+974').replace('(+974)', '+974').rsplit())
item["Mobile"] = ' '.join(''.join(hxs.select("//dd[@class='mobile']/text()").extract()).replace('(00974)', '+974').replace('(+974)', '+974').rsplit())
address = ' '.join(''.join(hxs.select("//dd[@class='location']/text()").extract()).rsplit())
item["Industry"] = ' '.join(''.join(hxs.select("//dl[@class='category']/dd/text()").extract()).rsplit())
item["Company_Type"] = 'Client'
item["Company_Name"] = ' '.join(''.join(hxs.select("///div[@class='title']/a/text()").extract()).rsplit())
if not address:
pass
else:
item["Street"] = address
item["Address"] = address
# item["City"] = ''.join(address.rsplit(',')[-2])
item['Zip'] =''.join(''.join(hxs.select("//dd[@class='po_box']/text()").extract()).rsplit(',')[0])
# item["Corporate_Website"] = ' '.join(''.join(hxs.select("//div[@class='category-logo']/a/@href").extract()).rsplit())
item["Country"] = 'Qatar'
if not item["Company_Name"]:
pass
else:
items.append(item)
return items
| null |
malaysia/Spiders/scrapy_Qatar2.py
|
scrapy_Qatar2.py
|
py
| 2,827 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "scrapy.loader.XPathItemLoader",
"line_number": 12,
"usage_type": "name"
},
{
"api_name": "scrapy.loader.processors.TakeFirst",
"line_number": 13,
"usage_type": "call"
},
{
"api_name": "scrapy.spiders.CrawlSpider",
"line_number": 15,
"usage_type": "name"
},
{
"api_name": "scrapy.spiders.Rule",
"line_number": 20,
"usage_type": "call"
},
{
"api_name": "scrapy.linkextractors.LinkExtractor",
"line_number": 20,
"usage_type": "call"
},
{
"api_name": "scrapy.spiders.Rule",
"line_number": 21,
"usage_type": "call"
},
{
"api_name": "scrapy.linkextractors.LinkExtractor",
"line_number": 21,
"usage_type": "call"
},
{
"api_name": "scrapy.selector.HtmlXPathSelector",
"line_number": 28,
"usage_type": "call"
},
{
"api_name": "yp.items.YpItem",
"line_number": 29,
"usage_type": "call"
},
{
"api_name": "yp.items.YpItem",
"line_number": 32,
"usage_type": "call"
}
] |
339893920
|
import requests
from projects.golem_api.pages.utils import url, headers
DELETE_SUITE_ENDPOINT = '/suite/delete'
DUPLICATE_SUITE_ENDPOINT = '/suite/duplicate'
RENAME_SUITE_ENDPOINT = '/suite/rename'
RUN_SUITE_ENDPOINT = '/suite/run'
SAVE_SUITE_ENDPOINT = '/suite/save'
RENAME_SUITE_DIRECTORY_ENDPOINT = '/suite/directory/rename'
DELETE_SUITE_DIRECTORY_ENDPOINT = '/suite/directory/delete'
def delete_suite(project_name, suite_name, user=None):
return requests.delete(url(DELETE_SUITE_ENDPOINT), headers=headers(user),
json={'project': project_name, 'fullPath': suite_name})
def duplicate_suite(project_name, suite_name, new_suite_name, user=None):
json_ = {
'project': project_name,
'fullPath': suite_name,
'newFileFullPath': new_suite_name
}
return requests.post(url(DUPLICATE_SUITE_ENDPOINT), headers=headers(user), json=json_)
def rename_suite(project_name, suite_name, new_suite_name, user=None):
json_ = {
'project': project_name,
'fullFilename': suite_name,
'newFullFilename': new_suite_name
}
return requests.post(url(RENAME_SUITE_ENDPOINT), headers=headers(user), json=json_)
def run_suite(project_name, suite_name, user=None):
return requests.post(url(RUN_SUITE_ENDPOINT), headers=headers(user),
json={'project': project_name, 'suite': suite_name})
def save_suite(project_name, suite_name, tests=[], processes=1, tags=[], browsers=[],
environments=[], user=None):
json_ = {
'project': project_name,
'suite': suite_name,
'tests': tests,
'processes': processes,
'tags': tags,
'browsers': browsers,
'environments': environments
}
return requests.put(url(SAVE_SUITE_ENDPOINT), headers=headers(user), json=json_)
def rename_suite_directory(project_name, dir_name, new_dir_name, user=None):
json_ = {
'project': project_name,
'fullDirname': dir_name,
'newFullDirname': new_dir_name
}
return requests.post(url(RENAME_SUITE_DIRECTORY_ENDPOINT), headers=headers(user), json=json_)
def delete_suite_directory(project_name, dir_name, user=None):
return requests.delete(url(DELETE_SUITE_DIRECTORY_ENDPOINT), headers=headers(user),
json={'project': project_name, 'fullDirname': dir_name})
| null |
projects/golem_api/pages/suite.py
|
suite.py
|
py
| 2,383 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "requests.delete",
"line_number": 16,
"usage_type": "call"
},
{
"api_name": "projects.golem_api.pages.utils.url",
"line_number": 16,
"usage_type": "call"
},
{
"api_name": "projects.golem_api.pages.utils.headers",
"line_number": 16,
"usage_type": "call"
},
{
"api_name": "requests.post",
"line_number": 26,
"usage_type": "call"
},
{
"api_name": "projects.golem_api.pages.utils.url",
"line_number": 26,
"usage_type": "call"
},
{
"api_name": "projects.golem_api.pages.utils.headers",
"line_number": 26,
"usage_type": "call"
},
{
"api_name": "requests.post",
"line_number": 35,
"usage_type": "call"
},
{
"api_name": "projects.golem_api.pages.utils.url",
"line_number": 35,
"usage_type": "call"
},
{
"api_name": "projects.golem_api.pages.utils.headers",
"line_number": 35,
"usage_type": "call"
},
{
"api_name": "requests.post",
"line_number": 39,
"usage_type": "call"
},
{
"api_name": "projects.golem_api.pages.utils.url",
"line_number": 39,
"usage_type": "call"
},
{
"api_name": "projects.golem_api.pages.utils.headers",
"line_number": 39,
"usage_type": "call"
},
{
"api_name": "requests.put",
"line_number": 54,
"usage_type": "call"
},
{
"api_name": "projects.golem_api.pages.utils.url",
"line_number": 54,
"usage_type": "call"
},
{
"api_name": "projects.golem_api.pages.utils.headers",
"line_number": 54,
"usage_type": "call"
},
{
"api_name": "requests.post",
"line_number": 63,
"usage_type": "call"
},
{
"api_name": "projects.golem_api.pages.utils.url",
"line_number": 63,
"usage_type": "call"
},
{
"api_name": "projects.golem_api.pages.utils.headers",
"line_number": 63,
"usage_type": "call"
},
{
"api_name": "requests.delete",
"line_number": 67,
"usage_type": "call"
},
{
"api_name": "projects.golem_api.pages.utils.url",
"line_number": 67,
"usage_type": "call"
},
{
"api_name": "projects.golem_api.pages.utils.headers",
"line_number": 67,
"usage_type": "call"
}
] |
340182951
|
# coding: utf-8
from __future__ import absolute_import
from datetime import date, datetime # noqa: F401
from typing import List, Dict # noqa: F401
from openapi_server.models.base_model_ import Model
from openapi_server.models.currency_stats import CurrencyStats
from openapi_server.models.stats_note import StatsNote
from openapi_server.models.stats_tags_source import StatsTagsSource
from openapi_server.models.stats_tool import StatsTool
from openapi_server.models.stats_version import StatsVersion
from openapi_server import util
from openapi_server.models.currency_stats import CurrencyStats # noqa: E501
from openapi_server.models.stats_note import StatsNote # noqa: E501
from openapi_server.models.stats_tags_source import StatsTagsSource # noqa: E501
from openapi_server.models.stats_tool import StatsTool # noqa: E501
from openapi_server.models.stats_version import StatsVersion # noqa: E501
class Stats(Model):
"""NOTE: This class is auto generated by OpenAPI Generator (https://openapi-generator.tech).
Do not edit the class manually.
"""
def __init__(self, currencies=None, version=None, tools=None, tags_source=None, notes=None): # noqa: E501
"""Stats - a model defined in OpenAPI
:param currencies: The currencies of this Stats. # noqa: E501
:type currencies: List[CurrencyStats]
:param version: The version of this Stats. # noqa: E501
:type version: StatsVersion
:param tools: The tools of this Stats. # noqa: E501
:type tools: List[StatsTool]
:param tags_source: The tags_source of this Stats. # noqa: E501
:type tags_source: StatsTagsSource
:param notes: The notes of this Stats. # noqa: E501
:type notes: List[StatsNote]
"""
self.openapi_types = {
'currencies': List[CurrencyStats],
'version': StatsVersion,
'tools': List[StatsTool],
'tags_source': StatsTagsSource,
'notes': List[StatsNote]
}
self.attribute_map = {
'currencies': 'currencies',
'version': 'version',
'tools': 'tools',
'tags_source': 'tags_source',
'notes': 'notes'
}
self._currencies = currencies
self._version = version
self._tools = tools
self._tags_source = tags_source
self._notes = notes
@classmethod
def from_dict(cls, dikt) -> 'Stats':
"""Returns the dict as a model
:param dikt: A dict.
:type: dict
:return: The stats of this Stats. # noqa: E501
:rtype: Stats
"""
return util.deserialize_model(dikt, cls)
def to_dict(self, prefix=""):
"""Returns the model as a dict:
:return: The Stats as a dict
:rtype: dict
"""
return { 'currencies': self._currencies,
'version': self._version,
'tools': self._tools,
'tags_source': self._tags_source,
'notes': self._notes }
@property
def currencies(self):
"""Gets the currencies of this Stats.
:return: The currencies of this Stats.
:rtype: List[CurrencyStats]
"""
return self._currencies
@currencies.setter
def currencies(self, currencies):
"""Sets the currencies of this Stats.
:param currencies: The currencies of this Stats.
:type currencies: List[CurrencyStats]
"""
self._currencies = currencies
@property
def version(self):
"""Gets the version of this Stats.
:return: The version of this Stats.
:rtype: StatsVersion
"""
return self._version
@version.setter
def version(self, version):
"""Sets the version of this Stats.
:param version: The version of this Stats.
:type version: StatsVersion
"""
self._version = version
@property
def tools(self):
"""Gets the tools of this Stats.
:return: The tools of this Stats.
:rtype: List[StatsTool]
"""
return self._tools
@tools.setter
def tools(self, tools):
"""Sets the tools of this Stats.
:param tools: The tools of this Stats.
:type tools: List[StatsTool]
"""
self._tools = tools
@property
def tags_source(self):
"""Gets the tags_source of this Stats.
:return: The tags_source of this Stats.
:rtype: StatsTagsSource
"""
return self._tags_source
@tags_source.setter
def tags_source(self, tags_source):
"""Sets the tags_source of this Stats.
:param tags_source: The tags_source of this Stats.
:type tags_source: StatsTagsSource
"""
self._tags_source = tags_source
@property
def notes(self):
"""Gets the notes of this Stats.
:return: The notes of this Stats.
:rtype: List[StatsNote]
"""
return self._notes
@notes.setter
def notes(self, notes):
"""Sets the notes of this Stats.
:param notes: The notes of this Stats.
:type notes: List[StatsNote]
"""
self._notes = notes
| null |
openapi_server/models/stats.py
|
stats.py
|
py
| 5,245 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "openapi_server.models.base_model_.Model",
"line_number": 22,
"usage_type": "name"
},
{
"api_name": "typing.List",
"line_number": 43,
"usage_type": "name"
},
{
"api_name": "openapi_server.models.currency_stats.CurrencyStats",
"line_number": 43,
"usage_type": "name"
},
{
"api_name": "openapi_server.models.stats_version.StatsVersion",
"line_number": 44,
"usage_type": "name"
},
{
"api_name": "typing.List",
"line_number": 45,
"usage_type": "name"
},
{
"api_name": "openapi_server.models.stats_tool.StatsTool",
"line_number": 45,
"usage_type": "name"
},
{
"api_name": "openapi_server.models.stats_tags_source.StatsTagsSource",
"line_number": 46,
"usage_type": "name"
},
{
"api_name": "typing.List",
"line_number": 47,
"usage_type": "name"
},
{
"api_name": "openapi_server.models.stats_note.StatsNote",
"line_number": 47,
"usage_type": "name"
},
{
"api_name": "openapi_server.util.deserialize_model",
"line_number": 73,
"usage_type": "call"
},
{
"api_name": "openapi_server.util",
"line_number": 73,
"usage_type": "name"
}
] |
532889033
|
#!/usr/bin/env python3
'''
The MIT License (MIT)
Copyright (c) 2017, 2018 Erik Perillo <[email protected]>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the 'Software'), to deal
in the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED 'AS IS', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.
'''
import numpy as np
import random
from config import train as conf
random.seed(conf['rand_seed'])
np.random.seed(conf['rand_seed'] + 1)
import tensorflow as tf
import subprocess as sp
import os
import sys
import shutil
import argparse
from collections import OrderedDict
import model
import trloop
import util
def populate_out_dir(out_dir, train_set, val_set):
'''
Populates output dir with info files.
'''
#info file
with open(os.path.join(out_dir, 'etc', 'train-log', 'info.txt'), 'w') as f:
print('date created (y-m-d):', util.date_str(), file=f)
print('time created:', util.time_str(), file=f)
print('git commit hash:', util.git_hash(), file=f)
#saving train/val filepaths
with open(os.path.join(out_dir, 'input', 'train.csv'), 'w') as f:
for path in train_set:
print(path, file=f)
with open(os.path.join(out_dir, 'input', 'val.csv'), 'w') as f:
for path in val_set:
print(path, file=f)
def train():
#parsing possible command-line arguments
parser = argparse.ArgumentParser()
parser.add_argument('--output_dir_path', type=str, nargs='?',
help='path to directory to save train data',
default=conf['output_dir_path'])
parser.add_argument('--pre_trained_model_path', type=str, nargs='?',
help='path to pre-trained model',
default=conf['pre_trained_model_path'])
parser.add_argument('--train_set', type=str, nargs='?',
help='path to csv list of train set paths',
default=conf['train_set'])
parser.add_argument('--val_set', type=str, nargs='?',
help='path to csv list of validation set paths',
default=conf['val_set'])
args = parser.parse_args()
#getting output_dir_path
output_dir_path = args.output_dir_path
#getting pre_trained_model_path
pre_trained_model_path = args.pre_trained_model_path
#getting train_set
train_set = util.get_paths(args.train_set)
#getting val
val_set = util.get_paths(args.val_set)
out_dir = util.mk_model_dir(output_dir_path)
print('created out dir \'{}\', populating...'.format(out_dir),
flush=True, end=' ')
populate_out_dir(out_dir, train_set, val_set)
print('done.')
#meta-model
meta_model_kwargs = dict(conf['meta_model_kwargs'])
if 'rand_seed' not in meta_model_kwargs:
meta_model_kwargs['rand_seed'] = conf['rand_seed'] + 2
meta_model = model.MetaModel(**meta_model_kwargs)
#creating logging object
log = util.Tee([sys.stdout,
open(os.path.join(out_dir, 'etc', 'train-log', 'train.log'), 'w')])
#building graph
if pre_trained_model_path is None:
log.print('[info] building graph for the first time')
graph = meta_model.build_graph()
else:
graph = tf.Graph()
#tensorboard logging paths
summ_dir = os.path.join(out_dir, 'etc', 'train-log', 'summaries')
#training session
with tf.Session(graph=graph) as sess:
#if first time training, creates graph collections for model params
#else, loads model weights and params from collections
if pre_trained_model_path is None:
sess.run(
tf.group(
tf.global_variables_initializer(),
tf.local_variables_initializer()))
meta_model.mk_params_colls(graph=graph)
else:
log.print('[info] loading graph/weights from \'{}\''.format(
pre_trained_model_path))
model.load(sess, pre_trained_model_path)
meta_model.set_params_from_colls(graph=graph)
#building functions
#train function: cumputes loss
_train_fn = meta_model.get_train_fn(sess)
def train_fn(x, y_true):
return _train_fn(x, y_true, {
meta_model.params['learning_rate']: conf['learning_rate']
})
#test function: returns a dict with pairs metric_name: metric_value
_test_fn = meta_model.get_test_fn(sess)
def test_fn(x, y_true):
metrics_values = _test_fn(x, y_true)
return OrderedDict(zip(
meta_model.params['metrics'].keys(), metrics_values))
#save model function: given epoch and iter number, saves checkpoint
def save_model_fn(epoch=None, it=None, name=None):
if name is None:
path = os.path.join(out_dir, 'self', 'ckpts',
'epoch-{}_it-{}'.format(epoch, it))
else:
path = os.path.join(out_dir, 'self', 'ckpts', '{}'.format(name))
model.save(sess, path, overwrite=True)
print(' saved checkpoint to \'{}\''.format(path))
#test
if conf['use_tensorboard']:
#tensorboard summary writers
train_writer = tf.summary.FileWriter(
os.path.join(summ_dir, 'train'), graph=graph)
val_writer = tf.summary.FileWriter(
os.path.join(summ_dir, 'val'), graph=graph)
#running tensorboard
cmd = ['tensorboard', '--logdir={}'.format(summ_dir)]
cmd.extend('--{}={}'.format(k, v) \
for k, v in conf['tensorboard_params'].items())
log.print('[info] running \'{}\''.format(' '.join(cmd)))
proc = sp.Popen(cmd, stdout=sp.PIPE, stderr=sp.PIPE)
_log_fn = meta_model.get_summary_fn(sess)
def log_fn(x, y_true, its, train=True):
summ = _log_fn(x, y_true)
if train:
train_writer.add_summary(summ, its)
if its%10 == 0:
train_writer.flush()
else:
val_writer.add_summary(summ, its)
if its%10 == 0:
val_writer.flush()
else:
log_fn = None
#main train loop
print('calling train loop')
try:
trloop.train_loop(
train_set=train_set,
train_fn=train_fn,
n_epochs=conf['n_epochs'],
val_set=val_set,
val_fn=test_fn,
val_every_its=conf['val_every_its'],
patience=conf['patience'],
log_every_its=conf['log_every_its'],
log_fn=log_fn,
save_model_fn=save_model_fn,
save_every_its=conf['save_every_its'],
batch_gen_kw=conf['batch_gen_kw'],
log_batch_gen_kw=conf['log_batch_gen_kw'],
better_loss_tol=conf['better_loss_tol'],
verbose=conf['verbose'],
print_fn=log.print,
)
except KeyboardInterrupt:
print('Keyboard Interrupt event.')
finally:
#closing tensorboard writers
if conf['use_tensorboard']:
train_writer.close()
val_writer.close()
#saving model on final state
path = os.path.join(out_dir, 'self', 'ckpts', 'final')
print('saving checkpoint to \'{}\'...'.format(path), flush=True)
model.save(sess, path, overwrite=True)
print('\ndone.', flush=True)
def main():
train()
if __name__ == '__main__':
train()
| null |
deeppeek-train-infer/code/train.py
|
train.py
|
py
| 8,439 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "random.seed",
"line_number": 31,
"usage_type": "call"
},
{
"api_name": "config.train",
"line_number": 31,
"usage_type": "name"
},
{
"api_name": "numpy.random.seed",
"line_number": 32,
"usage_type": "call"
},
{
"api_name": "numpy.random",
"line_number": 32,
"usage_type": "attribute"
},
{
"api_name": "config.train",
"line_number": 32,
"usage_type": "name"
},
{
"api_name": "os.path.join",
"line_number": 51,
"usage_type": "call"
},
{
"api_name": "os.path",
"line_number": 51,
"usage_type": "attribute"
},
{
"api_name": "util.date_str",
"line_number": 52,
"usage_type": "call"
},
{
"api_name": "util.time_str",
"line_number": 53,
"usage_type": "call"
},
{
"api_name": "util.git_hash",
"line_number": 54,
"usage_type": "call"
},
{
"api_name": "os.path.join",
"line_number": 57,
"usage_type": "call"
},
{
"api_name": "os.path",
"line_number": 57,
"usage_type": "attribute"
},
{
"api_name": "os.path.join",
"line_number": 61,
"usage_type": "call"
},
{
"api_name": "os.path",
"line_number": 61,
"usage_type": "attribute"
},
{
"api_name": "argparse.ArgumentParser",
"line_number": 67,
"usage_type": "call"
},
{
"api_name": "config.train",
"line_number": 70,
"usage_type": "name"
},
{
"api_name": "config.train",
"line_number": 73,
"usage_type": "name"
},
{
"api_name": "config.train",
"line_number": 76,
"usage_type": "name"
},
{
"api_name": "config.train",
"line_number": 79,
"usage_type": "name"
},
{
"api_name": "util.get_paths",
"line_number": 87,
"usage_type": "call"
},
{
"api_name": "util.get_paths",
"line_number": 89,
"usage_type": "call"
},
{
"api_name": "util.mk_model_dir",
"line_number": 91,
"usage_type": "call"
},
{
"api_name": "config.train",
"line_number": 98,
"usage_type": "name"
},
{
"api_name": "config.train",
"line_number": 100,
"usage_type": "name"
},
{
"api_name": "model.MetaModel",
"line_number": 101,
"usage_type": "call"
},
{
"api_name": "util.Tee",
"line_number": 104,
"usage_type": "call"
},
{
"api_name": "sys.stdout",
"line_number": 104,
"usage_type": "attribute"
},
{
"api_name": "os.path.join",
"line_number": 105,
"usage_type": "call"
},
{
"api_name": "os.path",
"line_number": 105,
"usage_type": "attribute"
},
{
"api_name": "tensorflow.Graph",
"line_number": 112,
"usage_type": "call"
},
{
"api_name": "os.path.join",
"line_number": 115,
"usage_type": "call"
},
{
"api_name": "os.path",
"line_number": 115,
"usage_type": "attribute"
},
{
"api_name": "tensorflow.Session",
"line_number": 118,
"usage_type": "call"
},
{
"api_name": "tensorflow.group",
"line_number": 123,
"usage_type": "call"
},
{
"api_name": "tensorflow.global_variables_initializer",
"line_number": 124,
"usage_type": "call"
},
{
"api_name": "tensorflow.local_variables_initializer",
"line_number": 125,
"usage_type": "call"
},
{
"api_name": "model.load",
"line_number": 130,
"usage_type": "call"
},
{
"api_name": "config.train",
"line_number": 138,
"usage_type": "name"
},
{
"api_name": "collections.OrderedDict",
"line_number": 145,
"usage_type": "call"
},
{
"api_name": "os.path.join",
"line_number": 151,
"usage_type": "call"
},
{
"api_name": "os.path",
"line_number": 151,
"usage_type": "attribute"
},
{
"api_name": "os.path.join",
"line_number": 154,
"usage_type": "call"
},
{
"api_name": "os.path",
"line_number": 154,
"usage_type": "attribute"
},
{
"api_name": "model.save",
"line_number": 155,
"usage_type": "call"
},
{
"api_name": "config.train",
"line_number": 159,
"usage_type": "name"
},
{
"api_name": "tensorflow.summary.FileWriter",
"line_number": 161,
"usage_type": "call"
},
{
"api_name": "tensorflow.summary",
"line_number": 161,
"usage_type": "attribute"
},
{
"api_name": "os.path.join",
"line_number": 162,
"usage_type": "call"
},
{
"api_name": "os.path",
"line_number": 162,
"usage_type": "attribute"
},
{
"api_name": "tensorflow.summary.FileWriter",
"line_number": 163,
"usage_type": "call"
},
{
"api_name": "tensorflow.summary",
"line_number": 163,
"usage_type": "attribute"
},
{
"api_name": "os.path.join",
"line_number": 164,
"usage_type": "call"
},
{
"api_name": "os.path",
"line_number": 164,
"usage_type": "attribute"
},
{
"api_name": "config.train",
"line_number": 168,
"usage_type": "name"
},
{
"api_name": "subprocess.Popen",
"line_number": 170,
"usage_type": "call"
},
{
"api_name": "subprocess.PIPE",
"line_number": 170,
"usage_type": "attribute"
},
{
"api_name": "trloop.train_loop",
"line_number": 189,
"usage_type": "call"
},
{
"api_name": "config.train",
"line_number": 192,
"usage_type": "name"
},
{
"api_name": "config.train",
"line_number": 195,
"usage_type": "name"
},
{
"api_name": "config.train",
"line_number": 196,
"usage_type": "name"
},
{
"api_name": "config.train",
"line_number": 197,
"usage_type": "name"
},
{
"api_name": "config.train",
"line_number": 200,
"usage_type": "name"
},
{
"api_name": "config.train",
"line_number": 201,
"usage_type": "name"
},
{
"api_name": "config.train",
"line_number": 202,
"usage_type": "name"
},
{
"api_name": "config.train",
"line_number": 203,
"usage_type": "name"
},
{
"api_name": "config.train",
"line_number": 204,
"usage_type": "name"
},
{
"api_name": "config.train",
"line_number": 211,
"usage_type": "name"
},
{
"api_name": "os.path.join",
"line_number": 216,
"usage_type": "call"
},
{
"api_name": "os.path",
"line_number": 216,
"usage_type": "attribute"
},
{
"api_name": "model.save",
"line_number": 218,
"usage_type": "call"
}
] |
508799213
|
#!/usr/bin/env python
# -*- coding:utf-8 -*-
#็ๆไบ็ปด็
from PIL import Image
import qrcode
def create_qr_code(data, version=7, box_size=10, border=4):
"""
ๅๆฐ version ่กจ็คบ็ๆไบ็ปด็ ็ๅฐบๅฏธๅคงๅฐ๏ผๅๅผ่ๅดๆฏ 1 ่ณ 40๏ผ
ๆๅฐๅฐบๅฏธ 1 ไผ็ๆ 21 * 21 ็ไบ็ปด็ ๏ผversion ๆฏๅขๅ 1๏ผ็ๆ็ไบ็ปด็ ๅฐฑไผๆทปๅ 4 ๅฐบๅฏธ๏ผ
ไพๅฆ version ๆฏ 2๏ผๅ็ๆ 25 * 25 ็ไบ็ปด็ ใ
ๅๆฐ error_correction ๆๅฎไบ็ปด็ ็ๅฎน้็ณปๆฐ๏ผๅๅซๆไปฅไธ4ไธช็ณปๆฐ๏ผ
1.ERROR_CORRECT_L: 7%็ๅญ็ ๅฏ่ขซๅฎน้
2.ERROR_CORRECT_M: 15%็ๅญ็ ๅฏ่ขซๅฎน้
3.ERROR_CORRECT_Q: 25%็ๅญ็ ๅฏ่ขซๅฎน้
4.ERROR_CORRECT_H: 30%็ๅญ็ ๅฏ่ขซๅฎน้
ๅฏไปฅ็ๆไบ็ปด็ ๅพ็๏ผๆ นๆฎๅๆฐ
ๅๆฐ box_size ่กจ็คบไบ็ปด็ ้ๆฏไธชๆ ผๅญ็ๅ็ด ๅคงๅฐใ
ๅๆฐ border ่กจ็คบ่พนๆก็ๆ ผๅญๅๅบฆๆฏๅคๅฐ๏ผ้ป่ฎคๆฏ4๏ผใ
:param data: ไฝ ่ฆ็ๆไบ็ปด็ ็ๆฐๆฎ๏ผๅฆ url ็ฝๅ ๆ่
"ๆ็ฑไฝ ๆๅ
"
:return: img ่ฟๅ็ๆฏๅพ็๏ผๅฆๆ้่ฆไฟๅญๅฐฑ image.save()
"""
qr = qrcode.QRCode(
version=version,
error_correction=qrcode.constants.ERROR_CORRECT_L,
box_size=box_size,
border=border
)
qr.add_data(data)
#qr.add_data("ๆ็ฑไฝ ๆๅ
")
qr.make(fit=True)
img = qr.make_image()
return img
def create_mid_pic_code(data, path):
"""
็ๆไธญ้ดๅธฆๅพ็็ไบ็ปด็
:param data: ไบ็ปด็ ๅ
ๅฎน
:param path: ๅฐ่ฆๆพๅจไบ็ปด็ ไธญ้ด็ๅพ็่ทฏๅพ
:return: img ่ฟๅๅถไฝๅฅฝ็ๅพ็
"""
qr = qrcode.QRCode(
version=4,
error_correction=qrcode.constants.ERROR_CORRECT_H,
box_size=10,
border=2
)
qr.add_data(data)
qr.make(fit=True)
img = qr.make_image()
img = img.convert("RGBA")
# ๆๅผ่ฆๆทปๅ ็ๅพ็ๆไปถๅฏน่ฑก
picture = Image.open(path)
img_w, img_h = img.size
factor = 4
size_w = int(img_w / factor)
size_h = int(img_h / factor)
picture_w, picture_h = picture.size
if picture_w > size_w:
picture_w = size_w
if picture_h > size_h:
picture_h = size_h
picture = picture.resize((picture_w, picture_h), Image.ANTIALIAS)
w = int((img_w - picture_w) / 2)
h = int((img_h - picture_h) / 2)
img.paste(picture, (w, h), picture)
return img
| null |
qr_code.py
|
qr_code.py
|
py
| 2,376 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "qrcode.QRCode",
"line_number": 27,
"usage_type": "call"
},
{
"api_name": "qrcode.constants",
"line_number": 29,
"usage_type": "attribute"
},
{
"api_name": "qrcode.QRCode",
"line_number": 46,
"usage_type": "call"
},
{
"api_name": "qrcode.constants",
"line_number": 48,
"usage_type": "attribute"
},
{
"api_name": "PIL.Image.open",
"line_number": 59,
"usage_type": "call"
},
{
"api_name": "PIL.Image",
"line_number": 59,
"usage_type": "name"
},
{
"api_name": "PIL.Image.ANTIALIAS",
"line_number": 71,
"usage_type": "attribute"
},
{
"api_name": "PIL.Image",
"line_number": 71,
"usage_type": "name"
}
] |
467828372
|
# coding=utf-8
import math
import logging
import getopt
import sys
logger = logging.getLogger()
def convert_axes(qax, qay, qaz, pa, ra, yaw_control=False):
"""
Axes: Convert the acceleration in g's to earth coordinates, then integrate to
convert to speeds in earth's X and Y axes meters per second.
Matrix 1: Uses X, Y, and Y accelerometers but omit yaw
---------
|eax| | cos(pitch), 0, -sin(pitch)| |qax|
|eay| = | 0, cos(roll), -sin(roll)| |qay|
|eaz| | sin(pitch), sin(roll), cos(pitch).cos(roll)| |qaz|
Matrix 2: Uses X, Y, and Y accelerometers and include yaw (unsupported)
---------
|eax| | cos(pitch), sin(roll), -sin(pitch)| |qax|
|eay| = | sin(pitch), cos(roll), -sin(roll)| |qay|
|eaz| | sin(pitch), sin(roll), cos(pitch).cos(roll)| |qaz|
@param qax:
@param qay:
@param qaz:
@param pa:
@param ra:
@param yaw_control: Boolean (Unused)
@return:
"""
if not yaw_control:
eax = qax * math.cos(pa) - qaz * math.sin(pa)
eay = qay * math.cos(ra) - qaz * math.sin(ra)
eaz = qaz * math.cos(pa) * math.cos(ra) + qax * math.sin(pa) + qay * math.sin(ra) - 1.0
else:
eax = qax * math.cos(pa) + qay * math.sin(ra) - qaz * math.sin(pa)
eay = qay * math.cos(ra) * qax * math.sin(pa) - qaz * math.sin(ra)
eaz = qaz * math.cos(pa) * math.cos(ra) + qax * math.sin(pa) + qay * math.sin(ra) - 1.0
return eax, eay, eaz
def check_cli(argv):
"""
Check CLI validity, set calibrate_sensors / fly or sys.exit(1)
@param argv:
@return:
"""
cli_fly = False
cli_calibrate_sensors = False
cli_video = False
cli_hover_target = 680
#-----------------------------------------------------------------------------------
# Defaults for vertical velocity PIDs
#-----------------------------------------------------------------------------------
cli_vvp_gain = 300.0
cli_vvi_gain = 150.0
cli_vvd_gain = 0.0
#-----------------------------------------------------------------------------------
# Defaults for horizontal velocity PIDs
#-----------------------------------------------------------------------------------
cli_hvp_gain = 0.6
cli_hvi_gain = 0.1
cli_hvd_gain = 0.0
#-----------------------------------------------------------------------------------
# Defaults for absolute angle PIDs
#-----------------------------------------------------------------------------------
cli_aap_gain = 2.5
cli_aai_gain = 0.0
cli_aad_gain = 0.0
#-----------------------------------------------------------------------------------
# Defaults for rotation rate PIDs
#-----------------------------------------------------------------------------------
cli_rrp_gain = 150
cli_rri_gain = 0.0
cli_rrd_gain = 0.0
#-----------------------------------------------------------------------------------
# Other configuration defaults
#-----------------------------------------------------------------------------------
cli_test_case = 0
cli_tau = 2.0 # 0.25 * 100 = 25 samples averaged for -3dB merge
cli_dlpf = 5
cli_loop_frequency = 500 # 100
cli_matrix = 2
cli_statistics = False
cli_yaw_control = False
cli_motion_frequency = 40
cli_attitude_frequency = 40
hover_target_defaulted = True
no_drift_control = False
rrp_set = False
rri_set = False
rrd_set = False
aap_set = False
aai_set = False
aad_set = False
#-----------------------------------------------------------------------------------
# Right, let's get on with reading the command line and checking consistency
#-----------------------------------------------------------------------------------
try:
opts, args = getopt.getopt(argv,'a:fcvh:l:m:nsy', ['tc=', 'vvp=', 'vvi=', 'vvd=', 'hvp=', 'hvi=', 'hvd=', 'aap=', 'aai=', 'aad=', 'arp=', 'ari=', 'ard=', 'tau=', 'dlpf='])
except getopt.GetoptError:
logger.critical('qcpi.py [-f][-h hover_target][-v][')
sys.exit(2)
for opt, arg in opts:
if opt == '-f':
cli_fly = True
elif opt in '-h':
cli_hover_target = int(arg)
hover_target_defaulted = False
elif opt in '-v':
cli_video = True
elif opt in '-a':
cli_attitude_frequency = int(arg)
elif opt in '-c':
cli_calibrate_sensors = True
elif opt in '-l':
cli_loop_frequency = int(arg)
elif opt in '-m':
cli_motion_frequency = int(arg)
elif opt in '-n':
no_drift_control = True
elif opt in '-s':
cli_statistics = True
elif opt in '-y':
cli_yaw_control = True
elif opt in '--vvp':
cli_vvp_gain = float(arg)
elif opt in '--vvi':
cli_vvi_gain = float(arg)
elif opt in '--vvd':
cli_vvd_gain = float(arg)
elif opt in '--hvp':
cli_hvp_gain = float(arg)
elif opt in '--hvi':
cli_hvi_gain = float(arg)
elif opt in '--hvd':
cli_hvd_gain = float(arg)
elif opt in '--aap':
cli_aap_gain = float(arg)
aap_set = True
elif opt in '--aai':
cli_aai_gain = float(arg)
aai_set = True
elif opt in '--aad':
cli_aad_gain = float(arg)
aad_set = True
elif opt in '--arp':
cli_rrp_gain = float(arg)
rrp_set = True
elif opt in '--ari':
cli_rri_gain = float(arg)
rri_set = True
elif opt in '--ard':
cli_rrd_gain = float(arg)
rrd_set = True
elif opt in '--tc':
cli_test_case = int(arg)
elif opt in '--tau':
cli_tau = float(arg)
elif opt in '--dlpf':
cli_dlpf = int(arg)
if not cli_calibrate_sensors and not cli_fly and cli_test_case == 0:
logger.critical('Must specify one of -f or -c or --tc')
logger.critical(' qcpi.py [-f] [-t speed] [-c] [-v]')
logger.critical(' -f set whether to fly')
logger.critical(' -h set the hover speed for manual testing')
logger.critical(' -c calibrate sensors against temperature and save')
logger.critical(' -s enable diagnostic statistics')
logger.critical(' -n disable drift control')
logger.critical(' -y enable yaw control (unsupported')
logger.critical(' -v video the flight')
logger.critical(' -l ?? set the processing loop frequency')
logger.critical(' -a ?? set attitude PID update frequency')
logger.critical(' -m ?? set motion PID update frequency')
logger.critical(' --vvp set vertical speed PID P gain')
logger.critical(' --vvi set vertical speed PID P gain')
logger.critical(' --vvd set vertical speed PID P gain')
logger.critical(' --hvp set horizontal speed PID P gain')
logger.critical(' --hvi set horizontal speed PID I gain')
logger.critical(' --hvd set horizontal speed PID D gain')
logger.critical(' --aap set absolute angle PID P gain')
logger.critical(' --aai set absolute angle PID I gain')
logger.critical(' --aad set absolute angle PID D gain')
logger.critical(' --arp set angular PID P gain')
logger.critical(' --ari set angular PID I gain')
logger.critical(' --ari set angular PID D gain')
logger.critical(' --tc select which testcase to run')
logger.critical(' --tau set the complementary filter period')
logger.critical(' --dlpf set the digital low pass filter')
sys.exit(2)
elif not cli_calibrate_sensors and (cli_hover_target < 0 or cli_hover_target > 1000):
logger.critical('Hover speed must lie in the following range')
logger.critical('0 <= test speed <= 1000')
sys.exit(2)
elif cli_yaw_control:
logger.critical('YAW control is not supported yet')
sys.exit(2)
elif cli_test_case == 0 and cli_fly:
logger.critical('Pre-flight checks passed, enjoy your flight, sir!')
if no_drift_control:
cli_hvp_gain = 0.0
cli_hvi_gain = 0.0
cli_hvd_gain = 0.0
cli_aap_gain = 1.5
cli_aai_gain = 0.5
cli_aad_gain = 0.01
cli_rrp_gain = 110
cli_rri_gain = 100
cli_rrd_gain = 2.5
elif cli_test_case == 0 and cli_calibrate_sensors:
logger.critical('Calibrate sensors is it, sir!')
elif cli_test_case == 0:
logger.critical('You must specify flight (-f) or gravity calibration (-c)')
sys.exit(2)
elif cli_fly or cli_calibrate_sensors:
logger.critical('Choose a specific test case (--tc) or fly (-f) or calibrate gravity (-g)')
sys.exit(2)
#---------------------------------------------------------------------------------------
# Test case 1: Check all the blades work and spin in the right direction
# Test case 2: Tune the rotational rate PIDs
# Test case 3: Tune the absolute angle PIDs
# Test case 4: Tune the hover speed
#---------------------------------------------------------------------------------------
elif cli_test_case < 1 or cli_test_case > 4:
logger.critical('Select test case 1, 2, 3 or 4')
sys.exit(2)
elif hover_target_defaulted:
logger.critical('You must choose a specific hover speed (-h) for all test cases.')
sys.exit(2)
elif cli_test_case == 2 and (not rrp_set or not rri_set or not rrd_set):
logger.critical('You must choose a starting point for the angular rate PID P, I and D gains')
logger.critical('Try sudo python ./qc.py --tc 2 -h 450 --arp 50 --ari 0.0 --ard 0.0 and work up from there')
sys.exit(2)
elif cli_test_case == 3 and (not aap_set or not aai_set or not aad_set):
logger.critical('You must choose a starting point for the absolute angle PID P, I and D gains')
logger.critical('Try sudo python ./qc.py --tc 3 -h 450 --aap 1.5 --aai 0.5 --aad 0.001 and work up from there')
sys.exit(2)
elif cli_test_case == 2:
cli_vvp_gain = 0.0
cli_vvi_gain = 0.0
cli_vvd_gain = 0.0
cli_hvp_gain = 0.0
cli_hvi_gain = 0.0
cli_hvd_gain = 0.0
cli_aap_gain = 0.0
cli_aai_gain = 0.0
cli_aad_gain = 0.0
elif cli_test_case == 3 or cli_test_case == 4:
cli_vvp_gain = 0.0
cli_vvi_gain = 0.0
cli_vvd_gain = 0.0
cli_hvp_gain = 0.0
cli_hvi_gain = 0.0
cli_hvd_gain = 0.0
return cli_calibrate_sensors, cli_fly, cli_hover_target, cli_video, cli_vvp_gain, cli_vvi_gain, cli_vvd_gain, cli_hvp_gain, cli_hvi_gain, cli_hvd_gain, cli_aap_gain, cli_aai_gain, cli_aad_gain, cli_rrp_gain, cli_rri_gain, cli_rrd_gain, cli_test_case, cli_tau, cli_dlpf, cli_loop_frequency, cli_motion_frequency, cli_attitude_frequency, cli_statistics, cli_yaw_control
| null |
py/car/nodes/components/accel/qc/utils.py
|
utils.py
|
py
| 11,237 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "logging.getLogger",
"line_number": 7,
"usage_type": "call"
},
{
"api_name": "math.cos",
"line_number": 36,
"usage_type": "call"
},
{
"api_name": "math.sin",
"line_number": 36,
"usage_type": "call"
},
{
"api_name": "math.cos",
"line_number": 37,
"usage_type": "call"
},
{
"api_name": "math.sin",
"line_number": 37,
"usage_type": "call"
},
{
"api_name": "math.cos",
"line_number": 38,
"usage_type": "call"
},
{
"api_name": "math.sin",
"line_number": 38,
"usage_type": "call"
},
{
"api_name": "math.cos",
"line_number": 41,
"usage_type": "call"
},
{
"api_name": "math.sin",
"line_number": 41,
"usage_type": "call"
},
{
"api_name": "math.cos",
"line_number": 42,
"usage_type": "call"
},
{
"api_name": "math.sin",
"line_number": 42,
"usage_type": "call"
},
{
"api_name": "math.cos",
"line_number": 43,
"usage_type": "call"
},
{
"api_name": "math.sin",
"line_number": 43,
"usage_type": "call"
},
{
"api_name": "getopt.getopt",
"line_number": 115,
"usage_type": "call"
},
{
"api_name": "getopt.GetoptError",
"line_number": 116,
"usage_type": "attribute"
},
{
"api_name": "sys.exit",
"line_number": 118,
"usage_type": "call"
},
{
"api_name": "sys.exit",
"line_number": 231,
"usage_type": "call"
},
{
"api_name": "sys.exit",
"line_number": 236,
"usage_type": "call"
},
{
"api_name": "sys.exit",
"line_number": 240,
"usage_type": "call"
},
{
"api_name": "sys.exit",
"line_number": 260,
"usage_type": "call"
},
{
"api_name": "sys.exit",
"line_number": 264,
"usage_type": "call"
},
{
"api_name": "sys.exit",
"line_number": 275,
"usage_type": "call"
},
{
"api_name": "sys.exit",
"line_number": 279,
"usage_type": "call"
},
{
"api_name": "sys.exit",
"line_number": 284,
"usage_type": "call"
},
{
"api_name": "sys.exit",
"line_number": 289,
"usage_type": "call"
}
] |
447965413
|
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
import numpy as np
import json
from tqdm import tqdm, trange
from utils import TensorboardWriter
from network import AE
def save_checkpoint(epoch, model, optimizer, path):
state = {
'Epoch': epoch,
'State_dict': model.state_dict(),
'optimizer': optimizer.state_dict()
}
torch.save(state, path)
def load_checkpoint(model, optimizer, path):
checkpoint = torch.load(path)
model.load_state_dict(checkpoint['State_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
class Solver(object):
def __init__(self, config=None, train_loader=None, test_loader=None):
"""Class that Builds, Trains and Evaluates SUM-GAN model"""
self.config = config
self.train_loader = train_loader
self.test_loader = test_loader
def build(self):
self.linear_compress = nn.Linear(
self.config.input_size,
self.config.hidden_size).cuda()
self.AE = AE(input_size=self.config.hidden_size,
hidden_size=self.config.hidden_size,
num_layers=self.config.num_layers).cuda()
self.model = nn.ModuleList([
self.linear_compress, self.AE])
# Build Modules
if self.config.mode == 'train':
# Build Optimizers
self.ae_optimizer = optim.Adam(
list(self.AE.e_lstm.parameters())
+ list(self.AE.d_lstm.parameters())
+ list(self.linear_compress.parameters()),
lr=self.config.lr)
# ์ ์ฅ๋ ๋ชจ๋ธ ๋ถ๋ฌ์์ ์ด์ด์ ํ์ต
if self.config.pre_trained:
load_checkpoint(self.model, self.ae_optimizer, self.config.model_dir)
self.AE.train()
self.writer = TensorboardWriter(self.config.log_dir)
def train(self):
# ์ด์ด์ ํ์ตํ๋ ค๋ฉด epochs์ step์ ์ด์ด์ ๊ณ์ฐ
if self.config.pre_trained:
md = self.config.model_dir
n_epochs = int(md[md.find('epoch-') + 6:md.find('pkl') - 1])
epochs = tqdm(range(n_epochs, n_epochs + self.config.n_epochs), desc='Epoch', ncols=80)
video_type = ['SumMe', 'TvSum', 'OVP', 'All']
train_example_num = [20, 40, 80, 175]
step = n_epochs * train_example_num[video_type.index(self.config.video_type)]
else:
step = 0
n_epochs = self.config.n_epochs
epochs = tqdm(range(n_epochs), desc='Epoch', ncols=80)
print(n_epochs)
mse_loss = nn.MSELoss()
# tqdm ์ค์
for epoch_i in epochs:
loss_history = []
if self.config.verbose:
tqdm.write('\nTraining')
for batch_i, image_features in enumerate(tqdm(
self.train_loader, desc='Batch', ncols=80, leave=False)):
# ๋ด๊ฐ ์์ ํ ์ฝ๋ / ์ด๋ฏธ์ง ์ฅ์๋ก ๊ฑด๋๋ฐ๊ธฐ ์ผ๋จ ์ ํ ์์ด
tqdm.write(f'\n------{batch_i}th Batch: {image_features.size(1)} size')
image_features = image_features.view(-1, 1024)
image_features_ = Variable(image_features).cuda()
# ---- Train sLSTM, eLSTM ----#
original_features = self.linear_compress(image_features_.detach()).unsqueeze(1)
decoded_features = self.AE(original_features)
loss = mse_loss(original_features, decoded_features)
tqdm.write(f'loss: {loss}')
self.ae_optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(self.AE.parameters(), self.config.clip)
self.ae_optimizer.step()
loss_history.append(loss.data)
self.writer.update_loss(loss.data, step, 'reconstruct_loss')
step += 1
epoch_loss = torch.stack(loss_history).mean()
# Plot
if self.config.verbose:
tqdm.write('Plotting...')
self.writer.update_loss(epoch_loss, epoch_i, 'loss_epochs')
# Save parameters at checkpoint every five epoch
if (epoch_i + 1) % 10 == 0:
ckpt_path = str(self.config.save_dir) + f'_epoch-{epoch_i + 1}.pkl'
tqdm.write(f'Save parameters at {ckpt_path}')
save_checkpoint(epoch_i+1, self.model,
self.ae_optimizer, ckpt_path)
def evaluate(self, model_path):
self.AE.load_state_dict(torch.load(model_path))
self.AE.eval()
mse_loss = nn.MSELoss()
out_dict = {}
print(self.test_loader)
losses = []
for video_tensor, video_name in tqdm(self.test_loader, desc='Evaluate', ncols=80, leave=False):
# [seq_len, batch=1, 2048]
video_tensor = video_tensor.view(-1, self.config.input_size)
video_feature = Variable(video_tensor, volatile=True).cuda()
# [seq_len, 1, hidden_size]
original_feature = self.linear_compress(video_feature.detach()).unsqueeze(1)
decoded_feature = self.AE(original_feature)
loss = mse_loss(original_feature, decoded_feature)
losses.append(loss)
mean_loss = np.mean(losses).squeeze()
tqdm.write(f'loss = {mean_loss.data}.')
| null |
original/autoencoder/solver.py
|
solver.py
|
py
| 5,434 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "torch.save",
"line_number": 18,
"usage_type": "call"
},
{
"api_name": "torch.load",
"line_number": 22,
"usage_type": "call"
},
{
"api_name": "torch.nn.Linear",
"line_number": 35,
"usage_type": "call"
},
{
"api_name": "torch.nn",
"line_number": 35,
"usage_type": "name"
},
{
"api_name": "network.AE",
"line_number": 39,
"usage_type": "call"
},
{
"api_name": "torch.nn.ModuleList",
"line_number": 42,
"usage_type": "call"
},
{
"api_name": "torch.nn",
"line_number": 42,
"usage_type": "name"
},
{
"api_name": "torch.optim.Adam",
"line_number": 47,
"usage_type": "call"
},
{
"api_name": "torch.optim",
"line_number": 47,
"usage_type": "name"
},
{
"api_name": "utils.TensorboardWriter",
"line_number": 58,
"usage_type": "call"
},
{
"api_name": "tqdm.tqdm",
"line_number": 65,
"usage_type": "call"
},
{
"api_name": "tqdm.tqdm",
"line_number": 72,
"usage_type": "call"
},
{
"api_name": "torch.nn.MSELoss",
"line_number": 76,
"usage_type": "call"
},
{
"api_name": "torch.nn",
"line_number": 76,
"usage_type": "name"
},
{
"api_name": "tqdm.tqdm.write",
"line_number": 82,
"usage_type": "call"
},
{
"api_name": "tqdm.tqdm",
"line_number": 82,
"usage_type": "name"
},
{
"api_name": "tqdm.tqdm",
"line_number": 83,
"usage_type": "call"
},
{
"api_name": "tqdm.tqdm.write",
"line_number": 86,
"usage_type": "call"
},
{
"api_name": "tqdm.tqdm",
"line_number": 86,
"usage_type": "name"
},
{
"api_name": "torch.autograd.Variable",
"line_number": 89,
"usage_type": "call"
},
{
"api_name": "tqdm.tqdm.write",
"line_number": 97,
"usage_type": "call"
},
{
"api_name": "tqdm.tqdm",
"line_number": 97,
"usage_type": "name"
},
{
"api_name": "torch.nn.utils.clip_grad_norm_",
"line_number": 101,
"usage_type": "call"
},
{
"api_name": "torch.nn",
"line_number": 101,
"usage_type": "attribute"
},
{
"api_name": "torch.stack",
"line_number": 108,
"usage_type": "call"
},
{
"api_name": "tqdm.tqdm.write",
"line_number": 112,
"usage_type": "call"
},
{
"api_name": "tqdm.tqdm",
"line_number": 112,
"usage_type": "name"
},
{
"api_name": "tqdm.tqdm.write",
"line_number": 118,
"usage_type": "call"
},
{
"api_name": "tqdm.tqdm",
"line_number": 118,
"usage_type": "name"
},
{
"api_name": "torch.load",
"line_number": 123,
"usage_type": "call"
},
{
"api_name": "torch.nn.MSELoss",
"line_number": 126,
"usage_type": "call"
},
{
"api_name": "torch.nn",
"line_number": 126,
"usage_type": "name"
},
{
"api_name": "tqdm.tqdm",
"line_number": 130,
"usage_type": "call"
},
{
"api_name": "torch.autograd.Variable",
"line_number": 134,
"usage_type": "call"
},
{
"api_name": "numpy.mean",
"line_number": 141,
"usage_type": "call"
},
{
"api_name": "tqdm.tqdm.write",
"line_number": 142,
"usage_type": "call"
},
{
"api_name": "tqdm.tqdm",
"line_number": 142,
"usage_type": "name"
}
] |
289919892
|
#!/home/daniel/anaconda3/bin/python
# -*- coding: utf-8 -*-
"""
================================================
main_process_trt_data.py
================================================
This program processes TRT data obtaining plots of time series of
parameters over the TRT cell trajectory
"""
# Author: fvj
# License: BSD 3 clause
import datetime
import argparse
import atexit
import glob
import os
from shutil import copy
from warnings import warn
import numpy as np
from pyrad.io import read_trt_traj_data, write_trt_cell_scores
from pyrad.io import write_trt_cell_lightning
from pyrad.util import belongs_roi_indices
from pyrad.graph import plot_timeseries, plot_scatter_comp, plot_pos
print(__doc__)
def main():
"""
"""
# parse the arguments
parser = argparse.ArgumentParser(
description='Entry to Pyrad processing framework')
# positional arguments
parser.add_argument(
'days', nargs='+', type=str,
help='Dates to process. Format YYYY-MM-DD')
# keyword arguments
parser.add_argument(
'--trtbase', type=str,
default='/store/msrad/radar/trt/',
help='name of folder containing the TRT cell data')
parser.add_argument(
'--lon', type=str,
default='8.9000010,9.2000000,9.4999970,9.4999970,8.9000010',
help=('longitude of the points defining the perimeter of the area ' +
'of interest'))
parser.add_argument(
'--lat', type=str,
default='47.0000030,47.0000030,47.0000030,47.5999930,47.5999930',
help=('latitude of the points defining the perimeter of the area ' +
'of interest'))
args = parser.parse_args()
print("====== TRT cell processing started: %s" %
datetime.datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S"))
atexit.register(_print_end_msg,
"====== comparison finished: ")
time_dir_list = args.days
lons = args.lon.split(',')
lats = args.lat.split(',')
if np.size(lons) != np.size(lats):
warn(
str(np.size(lons))+' longitudes but '+str(np.size(lats)) +
' latitudes. Their number must be equal')
return
lon_list = []
lat_list = []
for i, lon in enumerate(lons):
lon_list.append(float(lon))
lat_list.append(float(lats[i]))
roi = {
'lon': lon_list,
'lat': lat_list
}
# List for collection of max data
cell_ID_max_list = []
nflashes_max_list = []
area_flash_max_list = []
flash_density_max_list = []
time_flash_density_max_list = []
flash_density_max_rank_list = []
rank_max_list = []
time_rank_max_list = []
# List for collection of flashes data
cell_ID_list = np.ma.asarray([], dtype=int)
time_list = np.ma.asarray([], dtype=datetime.datetime)
lon_list = np.ma.asarray([], dtype=float)
lat_list = np.ma.asarray([], dtype=float)
flash_density_list = np.ma.asarray([], dtype=float)
rank_flash_density_list = np.ma.asarray([], dtype=float)
area_list = np.ma.asarray([], dtype=float)
nflash_list = np.ma.asarray([], dtype=int)
for i, time_dir in enumerate(time_dir_list):
data_input_path = args.trtbase+time_dir+'/TRTC_cell/'
data_output_base = args.trtbase+time_dir+'/TRTC_cell_plots/'
flist = glob.glob(data_input_path+'*.trt')
for fname in flist:
print('Reading TRT trajectory file '+fname)
(traj_ID, yyyymmddHHMM, lon, lat, _, _, _, area, vel_x, vel_y,
det, RANKr, CG_n, CG_p, CG, _, ET45, ET45m, ET15, ET15m, VIL,
maxH, maxHm, POH, _, _, _, _) = read_trt_traj_data(fname)
inds, is_roi = belongs_roi_indices(lat, lon, roi)
if is_roi == 'None':
continue
elif is_roi == 'Some' and len(lat[inds]) < 3:
continue
data_output_path = data_output_base+is_roi+'/'
if not os.path.isdir(data_output_path):
os.makedirs(data_output_path)
# copy file
copy(fname, data_output_path)
# general caracteristics
flash_density = CG/area
cell_ID_max_list.append(traj_ID[0])
flash_density_max_list.append(np.max(flash_density))
nflashes_max_list.append(CG[np.argmax(flash_density)])
area_flash_max_list.append(area[np.argmax(flash_density)])
time_flash_density_max_list.append(
yyyymmddHHMM[np.argmax(flash_density)])
flash_density_max_rank_list.append(
RANKr[np.argmax(flash_density)])
rank_max_list.append(np.max(RANKr))
time_rank_max_list.append(yyyymmddHHMM[np.argmax(RANKr)])
cell_ID_list = np.append(cell_ID_list, traj_ID)
time_list = np.append(time_list, yyyymmddHHMM)
lon_list = np.append(lon_list, lon)
lat_list = np.append(lat_list, lat)
flash_density_list = np.append(flash_density_list, flash_density)
rank_flash_density_list = np.append(
rank_flash_density_list, RANKr)
area_list = np.append(area_list, area)
nflash_list = np.append(nflash_list, CG)
# Time series plots
figfname = data_output_path+str(traj_ID[0])+'_flash_density.png'
plot_timeseries(
yyyymmddHHMM, [flash_density], [figfname], labelx='Time UTC',
labely='Flash density [flashes/km2]',
title=str(traj_ID[0])+' flash density')
figfname = data_output_path+str(traj_ID[0])+'_area.png'
plot_timeseries(
yyyymmddHHMM, [area], [figfname], labelx='Time UTC',
labely='area [km2]', title=str(traj_ID[0])+' cell area')
figfname = data_output_path+str(traj_ID[0])+'_vel.png'
plot_timeseries(
yyyymmddHHMM, [vel_x, vel_y], [figfname], labelx='Time UTC',
labely='Velocity [km/h]', labels=['x speed', 'y speed'],
title=str(traj_ID[0])+' cell velocity')
figfname = data_output_path+str(traj_ID[0])+'_det.png'
plot_timeseries(
yyyymmddHHMM, [det], [figfname], labelx='Time UTC',
labely='Detection threshold [dBZ]',
title=str(traj_ID[0])+' cell detection threshold')
figfname = data_output_path+str(traj_ID[0])+'_rank.png'
plot_timeseries(
yyyymmddHHMM, [RANKr], [figfname], labelx='Time UTC',
labely='Rank [-]', title=str(traj_ID[0])+' cell rank')
figfname = data_output_path+str(traj_ID[0])+'_lightning.png'
plot_timeseries(
yyyymmddHHMM, [CG_n, CG_p, CG], [figfname], labelx='Time UTC',
labely='N flash [-]', labels=['CG-', 'CG+', 'CG'],
title=str(traj_ID[0])+' flashes in cell')
figfname = data_output_path+str(traj_ID[0])+'_ET.png'
plot_timeseries(
yyyymmddHHMM, [ET45, ET45m, ET15, ET15m], [figfname],
labelx='Time UTC', labely='Echo Top [km]',
labels=['ET45', 'ET45m', 'ET15', 'ET15m'],
title=str(traj_ID[0])+' Echo top')
figfname = data_output_path+str(traj_ID[0])+'_VIL.png'
plot_timeseries(
yyyymmddHHMM, [VIL], [figfname], labelx='Time UTC',
labely='VIL [Kg/m2]', labels=['VIL'],
title=str(traj_ID[0])+' VIL')
figfname = data_output_path+str(traj_ID[0])+'_maxH.png'
plot_timeseries(
yyyymmddHHMM, [maxH, maxHm], [figfname], labelx='Time UTC',
labely='Max. Echo Height [Km]', labels=['maxH', 'maxHm'],
title=str(traj_ID[0])+' Height of Max. Reflectivity')
figfname = data_output_path+str(traj_ID[0])+'_POH.png'
plot_timeseries(
yyyymmddHHMM, [POH], [figfname], labelx='Time UTC',
labely='POH [%]', labels=['POH'],
title=str(traj_ID[0])+' Probability of Hail')
# plot position
# get time since start of cell in s
td_vec = yyyymmddHHMM-yyyymmddHHMM[0]
tt_s = np.empty(td_vec.size, dtype=float)
for j, td in enumerate(td_vec):
tt_s[j] = td.total_seconds()
cb_label = (
'Time since '+yyyymmddHHMM[0].strftime('%Y-%m-%d %H:%M') +
' [s]')
figfname = data_output_path+str(traj_ID[0])+'_pos.png'
figfname = plot_pos(
lat, lon, tt_s, [figfname], cb_label=cb_label,
titl=str(traj_ID[0])+' Cell Position')
print('Plotted '+' '.join(figfname))
fname = args.trtbase+'Santis_cell_scores.csv'
write_trt_cell_scores(
cell_ID_max_list, time_flash_density_max_list,
flash_density_max_rank_list, nflashes_max_list, area_flash_max_list,
flash_density_max_list, time_rank_max_list, rank_max_list, fname)
fname = args.trtbase+'Santis_cell_euclid_lightning.csv'
write_trt_cell_lightning(
cell_ID_list, time_list, lon_list, lat_list, area_list,
rank_flash_density_list, nflash_list, flash_density_list, fname)
plot_scatter_comp(
flash_density_list, rank_flash_density_list/10.,
[args.trtbase+'hist_flash_density_rank'],
labelx='flash density [flashes/km2]', labely='rank',
titl='Flash density vs Rank', axis=None, metadata=None, dpi=72)
def _print_end_msg(text):
"""
prints end message
Parameters
----------
text : str
the text to be printed
Returns
-------
Nothing
"""
print(text + datetime.datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S"))
# ---------------------------------------------------------
# Start main:
# ---------------------------------------------------------
if __name__ == "__main__":
main()
| null |
src/pyrad_proc/pyrad/EGG-INFO/scripts/main_process_trt_data.py
|
main_process_trt_data.py
|
py
| 10,006 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "argparse.ArgumentParser",
"line_number": 39,
"usage_type": "call"
},
{
"api_name": "datetime.datetime.utcnow",
"line_number": 68,
"usage_type": "call"
},
{
"api_name": "datetime.datetime",
"line_number": 68,
"usage_type": "attribute"
},
{
"api_name": "atexit.register",
"line_number": 69,
"usage_type": "call"
},
{
"api_name": "numpy.size",
"line_number": 76,
"usage_type": "call"
},
{
"api_name": "warnings.warn",
"line_number": 77,
"usage_type": "call"
},
{
"api_name": "numpy.size",
"line_number": 78,
"usage_type": "call"
},
{
"api_name": "numpy.ma.asarray",
"line_number": 104,
"usage_type": "call"
},
{
"api_name": "numpy.ma",
"line_number": 104,
"usage_type": "attribute"
},
{
"api_name": "numpy.ma.asarray",
"line_number": 105,
"usage_type": "call"
},
{
"api_name": "numpy.ma",
"line_number": 105,
"usage_type": "attribute"
},
{
"api_name": "datetime.datetime",
"line_number": 105,
"usage_type": "attribute"
},
{
"api_name": "numpy.ma.asarray",
"line_number": 106,
"usage_type": "call"
},
{
"api_name": "numpy.ma",
"line_number": 106,
"usage_type": "attribute"
},
{
"api_name": "numpy.ma.asarray",
"line_number": 107,
"usage_type": "call"
},
{
"api_name": "numpy.ma",
"line_number": 107,
"usage_type": "attribute"
},
{
"api_name": "numpy.ma.asarray",
"line_number": 108,
"usage_type": "call"
},
{
"api_name": "numpy.ma",
"line_number": 108,
"usage_type": "attribute"
},
{
"api_name": "numpy.ma.asarray",
"line_number": 109,
"usage_type": "call"
},
{
"api_name": "numpy.ma",
"line_number": 109,
"usage_type": "attribute"
},
{
"api_name": "numpy.ma.asarray",
"line_number": 110,
"usage_type": "call"
},
{
"api_name": "numpy.ma",
"line_number": 110,
"usage_type": "attribute"
},
{
"api_name": "numpy.ma.asarray",
"line_number": 111,
"usage_type": "call"
},
{
"api_name": "numpy.ma",
"line_number": 111,
"usage_type": "attribute"
},
{
"api_name": "glob.glob",
"line_number": 117,
"usage_type": "call"
},
{
"api_name": "pyrad.io.read_trt_traj_data",
"line_number": 123,
"usage_type": "call"
},
{
"api_name": "pyrad.util.belongs_roi_indices",
"line_number": 125,
"usage_type": "call"
},
{
"api_name": "os.path.isdir",
"line_number": 133,
"usage_type": "call"
},
{
"api_name": "os.path",
"line_number": 133,
"usage_type": "attribute"
},
{
"api_name": "os.makedirs",
"line_number": 134,
"usage_type": "call"
},
{
"api_name": "shutil.copy",
"line_number": 137,
"usage_type": "call"
},
{
"api_name": "numpy.max",
"line_number": 142,
"usage_type": "call"
},
{
"api_name": "numpy.argmax",
"line_number": 143,
"usage_type": "call"
},
{
"api_name": "numpy.argmax",
"line_number": 144,
"usage_type": "call"
},
{
"api_name": "numpy.argmax",
"line_number": 146,
"usage_type": "call"
},
{
"api_name": "numpy.argmax",
"line_number": 148,
"usage_type": "call"
},
{
"api_name": "numpy.max",
"line_number": 149,
"usage_type": "call"
},
{
"api_name": "numpy.argmax",
"line_number": 150,
"usage_type": "call"
},
{
"api_name": "numpy.append",
"line_number": 152,
"usage_type": "call"
},
{
"api_name": "numpy.append",
"line_number": 153,
"usage_type": "call"
},
{
"api_name": "numpy.append",
"line_number": 154,
"usage_type": "call"
},
{
"api_name": "numpy.append",
"line_number": 155,
"usage_type": "call"
},
{
"api_name": "numpy.append",
"line_number": 156,
"usage_type": "call"
},
{
"api_name": "numpy.append",
"line_number": 157,
"usage_type": "call"
},
{
"api_name": "numpy.append",
"line_number": 159,
"usage_type": "call"
},
{
"api_name": "numpy.append",
"line_number": 160,
"usage_type": "call"
},
{
"api_name": "pyrad.graph.plot_timeseries",
"line_number": 164,
"usage_type": "call"
},
{
"api_name": "pyrad.graph.plot_timeseries",
"line_number": 170,
"usage_type": "call"
},
{
"api_name": "pyrad.graph.plot_timeseries",
"line_number": 175,
"usage_type": "call"
},
{
"api_name": "pyrad.graph.plot_timeseries",
"line_number": 181,
"usage_type": "call"
},
{
"api_name": "pyrad.graph.plot_timeseries",
"line_number": 187,
"usage_type": "call"
},
{
"api_name": "pyrad.graph.plot_timeseries",
"line_number": 192,
"usage_type": "call"
},
{
"api_name": "pyrad.graph.plot_timeseries",
"line_number": 198,
"usage_type": "call"
},
{
"api_name": "pyrad.graph.plot_timeseries",
"line_number": 205,
"usage_type": "call"
},
{
"api_name": "pyrad.graph.plot_timeseries",
"line_number": 211,
"usage_type": "call"
},
{
"api_name": "pyrad.graph.plot_timeseries",
"line_number": 217,
"usage_type": "call"
},
{
"api_name": "numpy.empty",
"line_number": 225,
"usage_type": "call"
},
{
"api_name": "pyrad.graph.plot_pos",
"line_number": 232,
"usage_type": "call"
},
{
"api_name": "pyrad.io.write_trt_cell_scores",
"line_number": 238,
"usage_type": "call"
},
{
"api_name": "pyrad.io.write_trt_cell_lightning",
"line_number": 244,
"usage_type": "call"
},
{
"api_name": "pyrad.graph.plot_scatter_comp",
"line_number": 248,
"usage_type": "call"
},
{
"api_name": "datetime.datetime.utcnow",
"line_number": 269,
"usage_type": "call"
},
{
"api_name": "datetime.datetime",
"line_number": 269,
"usage_type": "attribute"
}
] |
480854253
|
from django.contrib import admin
from users.models import FoodPreference, UserFoodPreference
class FoodPreferenceAdmin(admin.ModelAdmin):
list_display = ('slug', 'name')
class UserFoodPreferenceAdmin(admin.ModelAdmin):
list_display = ('user_id', 'preference_id')
# Register your models here.
admin.site.register(FoodPreference, FoodPreferenceAdmin)
admin.site.register(UserFoodPreference, UserFoodPreferenceAdmin)
| null |
users/admin.py
|
admin.py
|
py
| 428 |
python
|
en
|
code
| null |
code-starcoder2
|
83
|
[
{
"api_name": "django.contrib.admin.ModelAdmin",
"line_number": 5,
"usage_type": "attribute"
},
{
"api_name": "django.contrib.admin",
"line_number": 5,
"usage_type": "name"
},
{
"api_name": "django.contrib.admin.ModelAdmin",
"line_number": 9,
"usage_type": "attribute"
},
{
"api_name": "django.contrib.admin",
"line_number": 9,
"usage_type": "name"
},
{
"api_name": "django.contrib.admin.site.register",
"line_number": 14,
"usage_type": "call"
},
{
"api_name": "users.models.FoodPreference",
"line_number": 14,
"usage_type": "argument"
},
{
"api_name": "django.contrib.admin.site",
"line_number": 14,
"usage_type": "attribute"
},
{
"api_name": "django.contrib.admin",
"line_number": 14,
"usage_type": "name"
},
{
"api_name": "django.contrib.admin.site.register",
"line_number": 15,
"usage_type": "call"
},
{
"api_name": "users.models.UserFoodPreference",
"line_number": 15,
"usage_type": "argument"
},
{
"api_name": "django.contrib.admin.site",
"line_number": 15,
"usage_type": "attribute"
},
{
"api_name": "django.contrib.admin",
"line_number": 15,
"usage_type": "name"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.