markdown
stringlengths
0
1.02M
code
stringlengths
0
832k
output
stringlengths
0
1.02M
license
stringlengths
3
36
path
stringlengths
6
265
repo_name
stringlengths
6
127
Делаем симлинк скрытой папки с временными файлами и настройками ботана случай если придется что-то редактировать или вынимать оттуда наживую, иначе ее не будет видно в браузере файлов слева
!ln -s ~/.ScreamingFrogSEOSpider ~/ScreamingFrogSEOSpider
_____no_output_____
MIT
Running_screamingfrog_SEO_spider_in_Colab_notebook.ipynb
danzerzine/seospider-colab
Даем команду боту в headless режиме прописываем все нужные флаги для экспорта, настроек, отчетов, выгрузок и так далее
#@title Crawl settings { vertical-output: true } url_start = "" #@param {type:"string"} use_gcs = "" #@param ["", "--use-google-search-console \"account \""] {allow-input: true} config_path = "" #@param {type:"string"} output_folder = "" #@param {type:"string"} !screamingfrogseospider --crawl "$url_start" $use_gcs --headless --config "$config_path" --output-folder "$output_folder" --timestamped-output --save-crawl --export-tabs "Internal:All,Response Codes:All,Response Codes:Blocked by Robots.txt,Response Codes:Blocked Resource,Response Codes:No Response,Response Codes:Redirection (3xx),Response Codes:Redirection (JavaScript),Response Codes:Redirection (Meta Refresh),Response Codes:Client Error (4xx),Response Codes:Server Error (5xx),Page Titles:All,Page Titles:Missing,Page Titles:Duplicate,Page Titles:Over X Characters,Page Titles:Below X Characters,Page Titles:Over X Pixels,Page Titles:Below X Pixels,Page Titles:Same as H1,Page Titles:Multiple,Meta Description:All,Meta Description:Missing,Meta Description:Duplicate,Meta Description:Over X Characters,Meta Description:Below X Characters,Meta Description:Over X Pixels,Meta Description:Below X Pixels,Meta Description:Multiple,Meta Keywords:All,Meta Keywords:Missing,Meta Keywords:Duplicate,Meta Keywords:Multiple,Canonicals:All,Canonicals:Contains Canonical,Canonicals:Self Referencing,Canonicals:Canonicalised,Canonicals:Missing,Canonicals:Multiple,Canonicals:Non-Indexable Canonical,Directives:All,Directives:Index,Directives:Noindex,Directives:Follow,Directives:Nofollow,Directives:None,Directives:NoArchive,Directives:NoSnippet,Directives:Max-Snippet,Directives:Max-Image-Preview,Directives:Max-Video-Preview,Directives:NoODP,Directives:NoYDIR,Directives:NoImageIndex,Directives:NoTranslate,Directives:Unavailable_After,Directives:Refresh,AMP:All,AMP:Non-200 Response,AMP:Missing Non-AMP Return Link,AMP:Missing Canonical to Non-AMP,AMP:Non-Indexable Canonical,AMP:Indexable,AMP:Non-Indexable,AMP:Missing <html amp> Tag,AMP:Missing/Invalid <!doctype html> Tag,AMP:Missing <head> Tag,AMP:Missing <body> Tag,AMP:Missing Canonical,AMP:Missing/Invalid <meta charset> Tag,AMP:Missing/Invalid <meta viewport> Tag,AMP:Missing/Invalid AMP Script,AMP:Missing/Invalid AMP Boilerplate,AMP:Contains Disallowed HTML,AMP:Other Validation Errors,Structured Data:All,Structured Data:Contains Structured Data,Structured Data:Missing,Structured Data:Validation Errors,Structured Data:Validation Warnings,Structured Data:Parse Errors,Structured Data:Microdata URLs,Structured Data:JSON-LD URLs,Structured Data:RDFa URLs,Sitemaps:All,Sitemaps:URLs in Sitemap,Sitemaps:URLs not in Sitemap,Sitemaps:Orphan URLs,Sitemaps:Non-Indexable URLs in Sitemap,Sitemaps:URLs in Multiple Sitemaps,Sitemaps:XML Sitemap with over 50k URLs,Sitemaps:XML Sitemap over 50MB" --bulk-export "Canonicals:Contains Canonical Inlinks,Canonicals:Self Referencing Inlinks,Canonicals:Canonicalised Inlinks,Canonicals:Missing Inlinks,Canonicals:Multiple Inlinks,Canonicals:Non-Indexable Canonical Inlinks,AMP:All Inlinks,AMP:Non-200 Response Inlinks,AMP:Missing Non-AMP Return Link Inlinks,AMP:Missing Canonical to Non-AMP Inlinks,AMP:Non-Indexable Canonical Inlinks,AMP:Indexable Inlinks,AMP:Non-Indexable Inlinks,Structured Data:Contains Structured Data,Structured Data:Validation Errors,Structured Data:Validation Warnings,Structured Data:JSON-LD URLs,Structured Data:Microdata URLs,Structured Data:RDFa URLs,Sitemaps:URLs in Sitemap Inlinks,Sitemaps:Orphan URLs Inlinks,Sitemaps:Non-Indexable URLs in Sitemap Inlinks,Sitemaps:URLs in Multiple Sitemaps Inlinks" --save-report "Crawl Overview,Redirects:All Redirects,Redirects:Redirect Chains,Redirects:Redirect & Canonical Chains,Canonicals:Canonical Chains,Canonicals:Non-Indexable Canonicals,Pagination:Non-200 Pagination URLs,Pagination:Unlinked Pagination URLs,Hreflang:All hreflang URLs,Hreflang:Non-200 hreflang URLs,Hreflang:Unlinked hreflang URLs,Hreflang:Missing Return Links,Hreflang:Inconsistent Language & Region Return Links,Hreflang:Non Canonical Return Links,Hreflang:Noindex Return Links,Insecure Content,SERP Summary,Orphan Pages,Structured Data:Validation Errors & Warnings Summary,Structured Data:Validation Errors & Warnings,Structured Data:Google Rich Results Features Summary,Structured Data:Google Rich Results Features,HTTP Headers:HTTP Header Summary,Cookies:Cookie Summary" --export-format xlsx --export-custom-summary "Site Crawled,Date,Time,Total URLs Encountered,Total URLs Crawled,Total Internal blocked by robots.txt,Total External blocked by robots.txt,URLs Displayed,Total Internal URLs,Total External URLs,Total Internal Indexable URLs,Total Internal Non-Indexable URLs,JavaScript:All,JavaScript:Uses Old AJAX Crawling Scheme URLs,JavaScript:Uses Old AJAX Crawling Scheme Meta Fragment Tag,JavaScript:Page Title Only in Rendered HTML,JavaScript:Page Title Updated by JavaScript,JavaScript:H1 Only in Rendered HTML,JavaScript:H1 Updated by JavaScript,JavaScript:Meta Description Only in Rendered HTML,JavaScript:Meta Description Updated by JavaScript,JavaScript:Canonical Only in Rendered HTML,JavaScript:Canonical Mismatch,JavaScript:Noindex Only in Original HTML,JavaScript:Nofollow Only in Original HTML,JavaScript:Contains JavaScript Links,JavaScript:Contains JavaScript Content,JavaScript:Pages with Blocked Resources,H1:All,H1:Missing,H1:Duplicate,H1:Over X Characters,H1:Multiple,H2:All,H2:Missing,H2:Duplicate,H2:Over X Characters,H2:Multiple,Internal:All,Internal:HTML,Internal:JavaScript,Internal:CSS,Internal:Images,Internal:PDF,Internal:Flash,Internal:Other,Internal:Unknown,External:All,External:HTML,External:JavaScript,External:CSS,External:Images,External:PDF,External:Flash,External:Other,External:Unknown,AMP:All,AMP:Non-200 Response,AMP:Missing Non-AMP Return Link,AMP:Missing Canonical to Non-AMP,AMP:Non-Indexable Canonical,AMP:Indexable,AMP:Non-Indexable,AMP:Missing <html amp> Tag,AMP:Missing/Invalid <!doctype html> Tag,AMP:Missing <head> Tag,AMP:Missing <body> Tag,AMP:Missing Canonical,AMP:Missing/Invalid <meta charset> Tag,AMP:Missing/Invalid <meta viewport> Tag,AMP:Missing/Invalid AMP Script,AMP:Missing/Invalid AMP Boilerplate,AMP:Contains Disallowed HTML,AMP:Other Validation Errors,Canonicals:All,Canonicals:Contains Canonical,Canonicals:Self Referencing,Canonicals:Canonicalised,Canonicals:Missing,Canonicals:Multiple,Canonicals:Non-Indexable Canonical,Content:All,Content:Spelling Errors,Content:Grammar Errors,Content:Near Duplicates,Content:Exact Duplicates,Content:Low Content Pages,Custom Extraction:All,Custom Search:All,Directives:All,Directives:Index,Directives:Noindex,Directives:Follow,Directives:Nofollow,Directives:None,Directives:NoArchive,Directives:NoSnippet,Directives:Max-Snippet,Directives:Max-Image-Preview,Directives:Max-Video-Preview,Directives:NoODP,Directives:NoYDIR,Directives:NoImageIndex,Directives:NoTranslate,Directives:Unavailable_After,Directives:Refresh,Analytics:All,Analytics:Sessions Above 0,Analytics:Bounce Rate Above 70%,Analytics:No GA Data,Analytics:Non-Indexable with GA Data,Analytics:Orphan URLs,Search Console:All,Search Console:Clicks Above 0,Search Console:No GSC Data,Search Console:Non-Indexable with GSC Data,Search Console:Orphan URLs,Hreflang:All,Hreflang:Contains hreflang,Hreflang:Non-200 hreflang URLs,Hreflang:Unlinked hreflang URLs,Hreflang:Missing Return Links,Hreflang:Inconsistent Language & Region Return Links,Hreflang:Non-Canonical Return Links,Hreflang:Noindex Return Links,Hreflang:Incorrect Language & Region Codes,Hreflang:Multiple Entries,Hreflang:Missing Self Reference,Hreflang:Not Using Canonical,Hreflang:Missing X-Default,Hreflang:Missing,Images:All,Images:Over X KB,Images:Missing Alt Text,Images:Missing Alt Attribute,Images:Alt Text Over X Characters,Link Metrics:All,Meta Description:All,Meta Description:Missing,Meta Description:Duplicate,Meta Description:Over X Characters,Meta Description:Below X Characters,Meta Description:Over X Pixels,Meta Description:Below X Pixels,Meta Description:Multiple,Meta Keywords:All,Meta Keywords:Missing,Meta Keywords:Duplicate,Meta Keywords:Multiple,PageSpeed:All,PageSpeed:Eliminate Render-Blocking Resources,PageSpeed:Defer Offscreen Images,PageSpeed:Efficiently Encode Images,PageSpeed:Properly Size Images,PageSpeed:Minify CSS,PageSpeed:Minify JavaScript,PageSpeed:Reduce Unused CSS,PageSpeed:Reduce Unused JavaScript,PageSpeed:Serve Images in Next-Gen Formats,PageSpeed:Enable Text Compression,PageSpeed:Preconnect to Required Origins,PageSpeed:Reduce Server Response Times (TTFB),PageSpeed:Avoid Multiple Page Redirects,PageSpeed:Preload Key Requests,PageSpeed:Use Video Formats for Animated Content,PageSpeed:Avoid Excessive DOM Size,PageSpeed:Reduce JavaScript Execution Time,PageSpeed:Serve Static Assets with an Efficient Cache Policy,PageSpeed:Minimize Main-Thread Work,PageSpeed:Ensure Text Remains Visible During Webfont Load,PageSpeed:Image Elements Do Not Have Explicit Width & Height,PageSpeed:Avoid Large Layout Shifts,PageSpeed:Avoid Serving Legacy JavaScript to Modern Browsers,PageSpeed:Request Errors,Pagination:All,Pagination:Contains Pagination,Pagination:First Page,Pagination:Paginated 2+ Pages,Pagination:Pagination URL Not in Anchor Tag,Pagination:Non-200 Pagination URLs,Pagination:Unlinked Pagination URLs,Pagination:Non-Indexable,Pagination:Multiple Pagination URLs,Pagination:Pagination Loop,Pagination:Sequence Error,Response Codes:All,Response Codes:Blocked by Robots.txt,Response Codes:Blocked Resource,Response Codes:No Response,Response Codes:Success (2xx),Response Codes:Redirection (3xx),Response Codes:Redirection (JavaScript),Response Codes:Redirection (Meta Refresh),Response Codes:Client Error (4xx),Response Codes:Server Error (5xx),Security:All,Security:HTTP URLs,Security:HTTPS URLs,Security:Mixed Content,Security:Form URL Insecure,Security:Form on HTTP URL,Security:Unsafe Cross-Origin Links,Security:Missing HSTS Header,Security:Bad Content Type,Security:Missing X-Content-Type-Options Header,Security:Missing X-Frame-Options Header,Security:Protocol-Relative Resource Links,Security:Missing Content-Security-Policy Header,Security:Missing Secure Referrer-Policy Header,Sitemaps:All,Sitemaps:URLs in Sitemap,Sitemaps:URLs not in Sitemap,Sitemaps:Orphan URLs,Sitemaps:Non-Indexable URLs in Sitemap,Sitemaps:URLs in Multiple Sitemaps,Sitemaps:XML Sitemap with over 50k URLs,Sitemaps:XML Sitemap over 50MB,Structured Data:All,Structured Data:Contains Structured Data,Structured Data:Missing,Structured Data:Validation Errors,Structured Data:Validation Warnings,Structured Data:Parse Errors,Structured Data:Microdata URLs,Structured Data:JSON-LD URLs,Structured Data:RDFa URLs,Page Titles:All,Page Titles:Missing,Page Titles:Duplicate,Page Titles:Over X Characters,Page Titles:Below X Characters,Page Titles:Over X Pixels,Page Titles:Below X Pixels,Page Titles:Same as H1,Page Titles:Multiple,URL:All,URL:Non ASCII Characters,URL:Underscores,URL:Uppercase,URL:Parameters,URL:Over X Characters,URL:Multiple Slashes,URL:Repetitive Path,URL:Contains Space,URL:Broken Bookmark,URL:Internal Search,Depth 1,Depth 2,Depth 3,Depth 4,Depth 5,Depth 6,Depth 7,Depth 8,Depth 9,Depth 10+,Top Inlinks 1 URL,Top Inlinks 1 Number of Inlinks,Top Inlinks 2 URL,Top Inlinks 2 Number of Inlinks,Top Inlinks 3 URL,Top Inlinks 3 Number of Inlinks,Top Inlinks 4 URL,Top Inlinks 4 Number of Inlinks,Top Inlinks 5 URL,Top Inlinks 5 Number of Inlinks,Top Inlinks 6 URL,Top Inlinks 6 Number of Inlinks,Top Inlinks 7 URL,Top Inlinks 7 Number of Inlinks,Top Inlinks 8 URL,Top Inlinks 8 Number of Inlinks,Top Inlinks 9 URL,Top Inlinks 9 Number of Inlinks,Top Inlinks 10 URL,Top Inlinks 10 Number of Inlinks,Top Inlinks 11 URL,Top Inlinks 11 Number of Inlinks,Top Inlinks 12 URL,Top Inlinks 12 Number of Inlinks,Top Inlinks 13 URL,Top Inlinks 13 Number of Inlinks,Top Inlinks 14 URL,Top Inlinks 14 Number of Inlinks,Top Inlinks 15 URL,Top Inlinks 15 Number of Inlinks,Top Inlinks 16 URL,Top Inlinks 16 Number of Inlinks,Top Inlinks 17 URL,Top Inlinks 17 Number of Inlinks,Top Inlinks 18 URL,Top Inlinks 18 Number of Inlinks,Top Inlinks 19 URL,Top Inlinks 19 Number of Inlinks,Top Inlinks 20 URL,Top Inlinks 20 Number of Inlinks,Response Times 0s to 1s,Response Times 1s to 2s,Response Times 2s to 3s,Response Times 3s to 4s,Response Times 4s to 5s,Response Times 5s to 6s,Response Times 6s to 7s,Response Times 7s to 8s,Response Times 8s to 9s,Response Times 10s or more"
_____no_output_____
MIT
Running_screamingfrog_SEO_spider_in_Colab_notebook.ipynb
danzerzine/seospider-colab
---- 베이즈 정리 - 데이터라는 조건이 주어졌을 때 조건부 확률을 구하는 공식 - $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$ ---- - $P(A|B)$ : 사후확률(posterior). 사건 B가 발생한 후 갱신된 사건 A의 확률 - $P(A)$ : 사전확률 (prior). 사건 B가 발생하기 전에 가지고 있던 사건 A의 확률 - $P(B|A)$ : 가능도(likelihood). 사건 A가 발생한 경우 사건 B의 확률 - $P(B)$ : 정규화상수(normalizing constant) 또는 증거(evidence). 확률의 크기 조정 --- 베이즈 정리 확장1 - $P(A_1|B)$ $= \frac{P(B|A)P(A)}{P(B)}$ $= \frac{P(B|A_1)P(A_1)}{\sum_iP(A_i,B)}$ $= \frac{P(B|A_1)P(A_1)}{\sum_iP(B|A_I)P(A_i)}$ - $P(A_i|B)$ 에서 $i$의 값이 바뀌어도 분자의 값만 비교하면 됨 --- Classification 의 장점과 단점 - 장점 : 첫번째 답이 아닐 때 2,3을 구할 수 있음. - 단점 : Class4개를 풀기 위해서 4개를 구해야함.... --- $A_1 = A , A_2 = A^\complement$ 인 경우 - $P(A|B)$ $ = \frac{P(B|A)P(A)}{P(B)}$ $ = \frac{P(B|A)P(A)}{P(B,A)+P(B,A^\complement}$ $ = \frac{p(B|A)P(A)}{P(B|A)P(A) + P(B|A^\complement)P(A^\complement)}$ $ = \frac{P(B|A)P(A)}{P(B|A)P(A)+P(B|A^\complement)(1-P(A)}$ - 2진 분류 문제 --- 검사 시약 문제 1) 사건 - 병에 걸리는 경우 : D - 양성반응을 보이는 경우 : S - 병에 걸린 사람이 양성 반응을 보이는 경우 : S|D - 양성 반응을 보이는 사람이 병에 걸려있을 경우 : D|S 2) 문제 - $P(S|D) = 0.99$가 주어졌을 때, P(D|S)를 구하라. ---- 베이즈 정리에 의해서 - $P(D|S) = \frac{P(S|D)P(D)}{P(S)}$ -- 현재 $P(S), P(D)$ 를 모르기 때문에 구할 수가 없다. ---- 3) 추가 조사 정보 - 이 병은 전체 인구 중에서 걸린 사람이 0.2%인 희귀병이다. : $P(D) = 0.002$ - 이 병에 걸리지 않은 사람에게 시약검사를 했을 때, 양성반응이 나타날 확률은 5%이다. : $P(S|D^\complement) = 0.05$ --- 베이즈 정리의 확장에 의해서 - $P(D|S)$ $= \frac{P(S|D)P(D)}{P(S)}$ $ = \frac{P(S|D)P(D)}{P(S,D)+P(S,D^\complement)} $ $ = \frac{P(S|D)P(D)}{P(S|D)P(D)+P(S|D^\complement)P(D^\complement)}$ $ = \frac{P(S|D)P(D)}{P(S|D)P(D)+P(S|D^\complement)(1-P(D))}$ $ = \frac{0.99\cdot 0.002}{0.99\cdot 0.002+0.05\cdot (1-0.002)}$ $ = 0.038$
round((0.99*0.002) / (0.99*0.002+0.05)*(1-0.002), 3)
_____no_output_____
MIT
MATH/18_Bayesian_rule.ipynb
CATERINA-SEUL/Data-Science-School
---- TabularCPD(variable, variable_card, value, evidence=None, evidence_card=None) - BayesianModel : 베이즈정리에 적용 - TabularCPD : 조건부확률을 구현 ---- - variable : 확률 변수의 이름 문자열 - variable_card : 확률변수가 가질 수 있는 경우의 수 - value : 조건부확률 배열. 하나의 열(column)이 동일 조건을 뜻하므로, 하나의 열의 확률 합은 1이어야 한다. - evidence : 조건이 되는 확률변수의 이름 문자열 리스트 - evidence_card : 조건이 되는 확률변수가 가질 수 있는 경우의 수 리스트 일반적인 확률을 구현할 때 : evidence = None , evidence_card = None 병에 걸렸을 사전확률 $P(D) = P(X=1)$, 병에 걸리지 않았을 사전확률 $P(D^\complement) = P(X = 0)$
from pgmpy.factors.discrete import TabularCPD cpd_X = TabularCPD('X', 2, [[1-0.002, 0.002]]) print(cpd_X)
+------+-------+ | X(0) | 0.998 | +------+-------+ | X(1) | 0.002 | +------+-------+
MIT
MATH/18_Bayesian_rule.ipynb
CATERINA-SEUL/Data-Science-School
양성반응이 나올 확률 $P(S) = P(Y = 1)$, 음성 반응이 나올 확률 $P(S^\complement) = P(Y=0)$ - 확률 변수 $Y$ 에 확률을 베이즈 모형에 넣을 때는 $P(Y|X)$의 형태로 넣어야한다. - evidence : 조건이 되는 확률변수가 누구냐 ! - evidence_card : 몇가지 조건이 존재하는가 !
cpd_Y_on_X = TabularCPD('Y', 2, np.array( [[0.95, 0.01], [0.05, 0.99]]), evidence=['X'], evidence_card=[2]) print(cpd_Y_on_X) from pgmpy.models import BayesianModel
_____no_output_____
MIT
MATH/18_Bayesian_rule.ipynb
CATERINA-SEUL/Data-Science-School
BayesianModel(variables) - variables : 확률모형이 포함하는 확률변수 이름 문자열 리스트 - add_cpds() : 조건부확률 추가 - check_model() : 모형이 정상적인지 확인. True이면 정상모델
model = BayesianModel([('X','Y')]) model.add_cpds(cpd_X,cpd_Y_on_X) model.check_model() from pgmpy.inference import VariableElimination
_____no_output_____
MIT
MATH/18_Bayesian_rule.ipynb
CATERINA-SEUL/Data-Science-School
VariableElimination (변수제거법) 을 사용한 추정을 제공 query(variables, evidences) - query() 를 통해 사후확률 계산---- - variables : 사후 확률을 계산할 확률변수의 이름 리스트 - evidences : 조건이 되는 확률변수의 값을 나타내는 딕셔너리
inference = VariableElimination(model) posterior = inference.query(['X'], evidence={'Y':1}) print(posterior)
+------+----------+ | X | phi(X) | +======+==========+ | X(0) | 0.9618 | +------+----------+ | X(1) | 0.0382 | +------+----------+
MIT
MATH/18_Bayesian_rule.ipynb
CATERINA-SEUL/Data-Science-School
Machine Learning OverviewMachine learning is the ability of computers to take a dataset of objects and learn patterns about them. This dataset is structured as a table, where each row is a vector representing some object by encoding their properties as the values of the vector. The columns represent **features** - properties that all the objects share.There are, broadly speaking, two kinds of machine learning. **Supervised learning** has an extra column at the end of the dataset, and the program learns to predict the value of this based on the input features for some new object. If the output value is continuous, it is **regression**, otherwise it is **classification**. **Unsupervised learning** seeks to find patterns within the data by, for example, clustering.![Machine Learning Overview](img/machine-learning-overview.png) Supervised LearningOne of the most critical concepts in supervised learning is the dataset. This represents the knowledge about the set of objects in question that you wish the machine to learn. It is essentially a table where the rows represent objects, and the columns represent the properties. 'Training' is essentially the creation of an object called a model, which can take a row missing the last column, and predict what its value will be by examining the data in the dataset. For example...
import pandas as pd iris_dataset = pd.read_csv("../data/iris.csv") iris_dataset.head()
_____no_output_____
MIT
notebooks/ML.ipynb
samirelanduk/numberwang
Here a dataset has been loaded from CSV into a pandas dataframe. Each row represents a flower, on which four measurements have been taken, and each flower belongs to one of three classes. A supervised learning model would take this dataset of 150 flowers and train such that any other flower for which the relevant measurements were known could have its class predicted. This would obviously be a classification problem, not regression.A very simple model would take just two features and map them to one of two classes. The dataset can be reduced to this form asd follows:
simple_iris = iris_dataset.iloc[0:100, [0, 2, 4]] simple_iris.head() simple_iris.tail()
_____no_output_____
MIT
notebooks/ML.ipynb
samirelanduk/numberwang
Because this is just two dimensions, it can be easily visualised as a scatter plot.
import sys sys.path.append("..") import numerus.learning as ml ml.plot_dataset(simple_iris)
_____no_output_____
MIT
notebooks/ML.ipynb
samirelanduk/numberwang
The data can be seen to be **linearly separable** - there is a line that can be drawn between them that would separate them perfectly.One of the simplest classifiers for supervised learning is the perceptron. Perceptrons have a weights vector which they dot with an input vector to get some level of activation. If the activation is above some threshold, one class is predicted - otherwise the other is predicted. Training a perceptron means giving the model training inputs until it has values for the weights and threshold that effectively separate the classes.The data must be split into training and test data, and then a perceptron created from the training data.
train_simple_iris, test_simple_iris = ml.split_data(simple_iris) ml.plot_dataset(train_simple_iris, title="Training Data") perceptron = ml.Perceptron(train_simple_iris) print(perceptron)
_____no_output_____
MIT
notebooks/ML.ipynb
samirelanduk/numberwang
_*Using Qiskit Aqua for clique problems*_This Qiskit Aqua Optimization notebook demonstrates how to use the VQE quantum algorithm to compute the clique of a given graph. The problem is defined as follows. A clique in a graph $G$ is a complete subgraph of $G$. That is, it is a subset $K$ of the vertices such that every two vertices in $K$ are the two endpoints of an edge in $G$. A maximal clique is a clique to which no more vertices can be added. A maximum clique is a clique that includes the largest possible number of vertices. We will go through three examples to show (1) how to run the optimization in the non-programming way, (2) how to run the optimization in the programming way, (3) how to run the optimization with the VQE.We will omit the details for the support of CPLEX, which are explained in other notebooks such as maxcut.Note that the solution may not be unique. The problem and a brute-force method.
import numpy as np from qiskit import Aer from qiskit_aqua import run_algorithm from qiskit_aqua.input import EnergyInput from qiskit_aqua.translators.ising import clique from qiskit_aqua.algorithms import ExactEigensolver
_____no_output_____
Apache-2.0
community/aqua/optimization/clique.ipynb
Chibikuri/qiskit-tutorials
first, let us have a look at the graph, which is in the adjacent matrix form.
K = 3 # K means the size of the clique np.random.seed(100) num_nodes = 5 w = clique.random_graph(num_nodes, edge_prob=0.8, weight_range=10) print(w)
[[ 0. 4. 5. 3. -5.] [ 4. 0. 7. 0. 6.] [ 5. 7. 0. -4. 0.] [ 3. 0. -4. 0. 8.] [-5. 6. 0. 8. 0.]]
Apache-2.0
community/aqua/optimization/clique.ipynb
Chibikuri/qiskit-tutorials
Let us try a brute-force method. Basically, we exhaustively try all the binary assignments. In each binary assignment, the entry of a vertex is either 0 (meaning the vertex is not in the clique) or 1 (meaning the vertex is in the clique). We print the binary assignment that satisfies the definition of the clique (Note the size is specified as K).
def brute_force(): # brute-force way: try every possible assignment! def bitfield(n, L): result = np.binary_repr(n, L) return [int(digit) for digit in result] L = num_nodes # length of the bitstring that represents the assignment max = 2**L has_sol = False for i in range(max): cur = bitfield(i, L) cur_v = clique.satisfy_or_not(np.array(cur), w, K) if cur_v: has_sol = True break return has_sol, cur has_sol, sol = brute_force() if has_sol: print("solution is ", sol) else: print("no solution found for K=", K)
solution is [1, 0, 0, 1, 1]
Apache-2.0
community/aqua/optimization/clique.ipynb
Chibikuri/qiskit-tutorials
Part I: run the optimization in the non-programming way
qubit_op, offset = clique.get_clique_qubitops(w, K) algo_input = EnergyInput(qubit_op) params = { 'problem': {'name': 'ising'}, 'algorithm': {'name': 'ExactEigensolver'} } result = run_algorithm(params, algo_input) x = clique.sample_most_likely(len(w), result['eigvecs'][0]) ising_sol = clique.get_graph_solution(x) if clique.satisfy_or_not(ising_sol, w, K): print("solution is", ising_sol) else: print("no solution found for K=", K)
solution is [1. 0. 1. 1. 0.]
Apache-2.0
community/aqua/optimization/clique.ipynb
Chibikuri/qiskit-tutorials
Part II: run the optimization in the programming way
algo = ExactEigensolver(algo_input.qubit_op, k=1, aux_operators=[]) result = algo.run() x = clique.sample_most_likely(len(w), result['eigvecs'][0]) ising_sol = clique.get_graph_solution(x) if clique.satisfy_or_not(ising_sol, w, K): print("solution is", ising_sol) else: print("no solution found for K=", K)
solution is [1. 0. 1. 1. 0.]
Apache-2.0
community/aqua/optimization/clique.ipynb
Chibikuri/qiskit-tutorials
Part III: run the optimization with the VQE
algorithm_cfg = { 'name': 'VQE', 'operator_mode': 'matrix' } optimizer_cfg = { 'name': 'COBYLA' } var_form_cfg = { 'name': 'RY', 'depth': 5, 'entanglement': 'linear' } params = { 'problem': {'name': 'ising', 'random_seed': 10598}, 'algorithm': algorithm_cfg, 'optimizer': optimizer_cfg, 'variational_form': var_form_cfg } backend = Aer.get_backend('statevector_simulator') result = run_algorithm(params, algo_input, backend=backend) x = clique.sample_most_likely(len(w), result['eigvecs'][0]) ising_sol = clique.get_graph_solution(x) if clique.satisfy_or_not(ising_sol, w, K): print("solution is", ising_sol) else: print("no solution found for K=", K)
solution is [1. 0. 1. 1. 0.]
Apache-2.0
community/aqua/optimization/clique.ipynb
Chibikuri/qiskit-tutorials
Test shifting template experiments
%load_ext autoreload %autoreload 2 import os import sys import pandas as pd import numpy as np import random import umap import glob import pickle import tensorflow as tf from keras.models import load_model from sklearn.decomposition import PCA from plotnine import (ggplot, labs, geom_point, aes, ggsave, theme_bw, theme, facet_wrap, scale_color_manual, guides, guide_legend, element_blank, element_text, element_rect, element_line, coords) import warnings warnings.filterwarnings(action='ignore') from ponyo import utils, train_vae_modules, simulate_expression_data # Set seeds to get reproducible VAE trained models # The below is necessary in Python 3.2.3 onwards to # have reproducible behavior for certain hash-based operations. # See these references for further details: # https://keras.io/getting-started/faq/#how-can-i-obtain-reproducible-results-using-keras-during-development # https://docs.python.org/3.4/using/cmdline.html#envvar-PYTHONHASHSEED # https://github.com/keras-team/keras/issues/2280#issuecomment-306959926 os.environ["PYTHONHASHSEED"] = "0" # The below is necessary for starting Numpy generated random numbers # in a well-defined initial state. np.random.seed(42) # The below is necessary for starting core Python generated random numbers # in a well-defined state. random.seed(12345) # The below tf.set_random_seed() will make random number generation # in the TensorFlow backend have a well-defined initial state. tf.set_random_seed(1234) # Read in config variables base_dir = os.path.abspath(os.path.join(os.getcwd(),"../")) config_filename = os.path.abspath(os.path.join(base_dir, "human_tests", "config_test_human.tsv")) params = utils.read_config(config_filename) # Load parameters local_dir = params["local_dir"] dataset_name = params['dataset_name'] analysis_name = params["simulation_type"] rpkm_data_filename = params["raw_data_filename"] normalized_data_filename = params["normalized_data_filename"] metadata_filename = params["metadata_filename"] NN_architecture = params['NN_architecture'] scaler_filename = params['scaler_transform_filename'] num_runs = params['num_simulated'] metadata_delimiter = params["metadata_delimiter"] experiment_id_colname = params['metadata_experiment_colname'] sample_id_colname = params['metadata_sample_colname'] project_id = params['project_id'] NN_dir = os.path.join( base_dir, dataset_name, "models", NN_architecture) assert os.path.exists(rpkm_data_filename)
_____no_output_____
BSD-3-Clause
human_tests/Human_template_simulation.ipynb
ben-heil/ponyo
Setup directories
utils.setup_dir(config_filename)
_____no_output_____
BSD-3-Clause
human_tests/Human_template_simulation.ipynb
ben-heil/ponyo
Pre-process data
train_vae_modules.normalize_expression_data(base_dir, config_filename, rpkm_data_filename, normalized_data_filename)
input: dataset contains 50 samples and 5000 genes Output: normalized dataset contains 50 samples and 5000 genes
BSD-3-Clause
human_tests/Human_template_simulation.ipynb
ben-heil/ponyo
Train VAE
# Directory containing log information from VAE training vae_log_dir = os.path.join( base_dir, dataset_name, "logs", NN_architecture) # Train VAE train_vae_modules.train_vae(config_filename, normalized_data_filename)
input dataset contains 50 samples and 5000 genes WARNING:tensorflow:From /home/alexandra/anaconda3/envs/test_ponyo/lib/python3.7/site-packages/tensorflow_core/python/ops/resource_variable_ops.py:1630: calling BaseResourceVariable.__init__ (from tensorflow.python.ops.resource_variable_ops) with constraint is deprecated and will be removed in a future version. Instructions for updating: If using Keras pass *_constraint arguments to layers. tracking <tf.Variable 'Variable:0' shape=() dtype=float32> beta WARNING:tensorflow:From /home/alexandra/anaconda3/envs/test_ponyo/lib/python3.7/site-packages/tensorflow_core/python/ops/nn_impl.py:183: where (from tensorflow.python.ops.array_ops) is deprecated and will be removed in a future version. Instructions for updating: Use tf.where in 2.0, which has the same broadcast rule as np.where WARNING:tensorflow:From /home/alexandra/anaconda3/envs/test_ponyo/lib/python3.7/site-packages/keras/backend/tensorflow_backend.py:422: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead. Train on 45 samples, validate on 5 samples Epoch 1/10 45/45 [==============================] - 4s 88ms/step - loss: 2511.2365 - val_loss: 2078.2676 Epoch 2/10 45/45 [==============================] - 4s 79ms/step - loss: 1688.8236 - val_loss: 2374.3589 Epoch 3/10 45/45 [==============================] - 4s 79ms/step - loss: 1664.0755 - val_loss: 1454.6667 Epoch 4/10 45/45 [==============================] - 4s 79ms/step - loss: 1509.4538 - val_loss: 1387.5260 Epoch 5/10 45/45 [==============================] - 4s 79ms/step - loss: 1474.1985 - val_loss: 1371.2039 Epoch 6/10 45/45 [==============================] - 4s 79ms/step - loss: 1489.1452 - val_loss: 1350.6823 Epoch 7/10 45/45 [==============================] - 4s 79ms/step - loss: 1502.0319 - val_loss: 1949.6031 Epoch 8/10 45/45 [==============================] - 4s 79ms/step - loss: 1381.4732 - val_loss: 1232.3323 Epoch 9/10 45/45 [==============================] - 4s 79ms/step - loss: 1419.9623 - val_loss: 1151.1223 Epoch 10/10 45/45 [==============================] - 4s 79ms/step - loss: 1384.7468 - val_loss: 1161.4500
BSD-3-Clause
human_tests/Human_template_simulation.ipynb
ben-heil/ponyo
Shift template experiment
#tmp result dir tmp = os.path.join(local_dir, "pseudo_experiment") os.makedirs(tmp, exist_ok=True) # Load pickled file scaler = pickle.load(open(scaler_filename, "rb")) # Run simulation normalized_data = normalized_data = pd.read_csv( normalized_data_filename, header=0, sep="\t", index_col=0 ) for run in range(num_runs): simulate_expression_data.shift_template_experiment( normalized_data, NN_architecture, dataset_name, scaler, metadata_filename, metadata_delimiter, experiment_id_colname, sample_id_colname, project_id, local_dir, base_dir, run)
_____no_output_____
BSD-3-Clause
human_tests/Human_template_simulation.ipynb
ben-heil/ponyo
Visualize latent transform compendium
# Load VAE models model_encoder_filename = glob.glob(os.path.join( NN_dir, "*_encoder_model.h5"))[0] weights_encoder_filename = glob.glob(os.path.join( NN_dir, "*_encoder_weights.h5"))[0] model_decoder_filename = glob.glob(os.path.join( NN_dir, "*_decoder_model.h5"))[0] weights_decoder_filename = glob.glob(os.path.join( NN_dir, "*_decoder_weights.h5"))[0] # Load saved models loaded_model = load_model(model_encoder_filename) loaded_decode_model = load_model(model_decoder_filename) loaded_model.load_weights(weights_encoder_filename) loaded_decode_model.load_weights(weights_decoder_filename) pca = PCA(n_components=2) # Read data normalized_compendium = pd.read_csv(normalized_data_filename, header=0, sep="\t", index_col=0) # Encode normalized compendium into latent space compendium_encoded = loaded_model.predict_on_batch(normalized_compendium) compendium_encoded_df = pd.DataFrame(data=compendium_encoded, index=normalized_compendium.index) # Get and save PCA model model = pca.fit(compendium_encoded_df) compendium_PCAencoded = model.transform(compendium_encoded_df) compendium_PCAencoded_df = pd.DataFrame(data=compendium_PCAencoded, index=compendium_encoded_df.index, columns=['1','2']) # Add label compendium_PCAencoded_df['experiment_id'] = 'background' # Embedding of real template experiment (encoded) template_filename = os.path.join(local_dir, "pseudo_experiment", "template_normalized_data_"+project_id+"_test.txt") template_data = pd.read_csv(template_filename, header=0, sep='\t', index_col=0) # Encode template experiment into latent space template_encoded = loaded_model.predict_on_batch(template_data) template_encoded_df = pd.DataFrame(data=template_encoded, index=template_data.index) template_PCAencoded = model.transform(template_encoded_df) template_PCAencoded_df = pd.DataFrame(data=template_PCAencoded, index=template_encoded_df.index, columns=['1','2']) # Add back label column template_PCAencoded_df['experiment_id'] = 'template_experiment' # Embedding of simulated experiment (encoded) encoded_simulated_filename = os.path.join(local_dir, "pseudo_experiment", "selected_simulated_encoded_data_"+project_id+"_1.txt") simulated_encoded_df = pd.read_csv(encoded_simulated_filename,header=0, sep='\t', index_col=0) simulated_PCAencoded = model.transform(simulated_encoded_df) simulated_PCAencoded_df = pd.DataFrame(data=simulated_PCAencoded, index=simulated_encoded_df.index, columns=['1','2']) # Add back label column simulated_PCAencoded_df['experiment_id'] = 'simulated_experiment' # Concatenate dataframes combined_PCAencoded_df = pd.concat([compendium_PCAencoded_df, template_PCAencoded_df, simulated_PCAencoded_df]) print(combined_PCAencoded_df.shape) combined_PCAencoded_df.head() # Plot fig = ggplot(combined_PCAencoded_df, aes(x='1', y='2')) fig += geom_point(aes(color='experiment_id'), alpha=0.2) fig += labs(x ='PCA 1', y = 'PCA 2', title = 'PCA original data with experiments (latent space)') fig += theme_bw() fig += theme( legend_title_align = "center", plot_background=element_rect(fill='white'), legend_key=element_rect(fill='white', colour='white'), legend_title=element_text(family='sans-serif', size=15), legend_text=element_text(family='sans-serif', size=12), plot_title=element_text(family='sans-serif', size=15), axis_text=element_text(family='sans-serif', size=12), axis_title=element_text(family='sans-serif', size=15) ) fig += guides(colour=guide_legend(override_aes={'alpha': 1})) fig += scale_color_manual(['#bdbdbd', 'red', 'blue']) fig += geom_point(data=combined_PCAencoded_df[combined_PCAencoded_df['experiment_id'] == 'template_experiment'], alpha=0.2, color='blue') fig += geom_point(data=combined_PCAencoded_df[combined_PCAencoded_df['experiment_id'] == 'simulated_experiment'], alpha=0.1, color='red') print(fig)
_____no_output_____
BSD-3-Clause
human_tests/Human_template_simulation.ipynb
ben-heil/ponyo
选择 布尔类型、数值和表达式![](../Photo/33.png)- 注意:比较运算符的相等是两个等到,一个等到代表赋值- 在Python中可以用整型0来代表False,其他数字来代表True- 后面还会讲到 is 在判断语句中的用发
1== true while 1: print('hahaha')
_____no_output_____
Apache-2.0
9.12.ipynb
ljmzyl/Work
字符串的比较使用ASCII值
'a'>True 0<10>100 num=eval(input('>>')) if num>=90: print('A') elif 80<=num<90: print('B') else : print('C')
>>80 B
Apache-2.0
9.12.ipynb
ljmzyl/Work
Markdown - https://github.com/younghz/Markdown EP:- - 输入一个数字,判断其实奇数还是偶数 产生随机数字- 函数random.randint(a,b) 可以用来产生一个a和b之间且包括a和b的随机整数
import random a=random.randint(1,5) print(a) while True: num=eval(input('>>')) if num == a: print('Success') break elif num>a: print('太大了') elif num<a: print('太小了')
2 >>5 太大了 >>2 Success
Apache-2.0
9.12.ipynb
ljmzyl/Work
其他random方法- random.random 返回0.0到1.0之间前闭后开区间的随机浮点- random.randrange(a,b) 前闭后开 EP:- 产生两个随机整数number1和number2,然后显示给用户,使用户输入数字的和,并判定其是否正确- 进阶:写一个随机序号点名程序
import random a=random.randint(1,5) b=random.randint(2,6) print(a,b) # num=eval(input('>>')) # if num==a+b: # print('Success') # else : # print('失败') num=a+b while 1: input('>>') if input == num: print('Success') break else : print('失败')
_____no_output_____
Apache-2.0
9.12.ipynb
ljmzyl/Work
if语句- 如果条件正确就执行一个单向if语句,亦即当条件为真的时候才执行if内部的语句- Python有很多选择语句:> - 单向if - 双向if-else - 嵌套if - 多向if-elif-else - 注意:当语句含有子语句的时候,那么一定至少要有一个缩进,也就是说如果有儿子存在,那么一定要缩进- 切记不可tab键和space混用,单用tab 或者 space- 当你输出的结果是无论if是否为真时都需要显示时,语句应该与if对齐
a=eval(input('>>')) if a<=30: b=input('>>') if b!='丑': c=input('>>') if c=='高': d=input('>>') if d=='是': print('见') else: print('不见') else : print('不见') else : print('不见') else: print('too old')
>>25 >>帅 >>高 >>是 见
Apache-2.0
9.12.ipynb
ljmzyl/Work
EP:- 用户输入一个数字,判断其实奇数还是偶数- 进阶:可以查看下4.5实例研究猜生日 双向if-else 语句- 如果条件为真,那么走if内部语句,否则走else内部语句 EP:- 产生两个随机整数number1和number2,然后显示给用户,使用户输入数字,并判定其是否正确,如果正确打印“you‘re correct”,否则打印正确错误 嵌套if 和多向if-elif-else![](../Photo/35.png) EP:- 提示用户输入一个年份,然后显示表示这一年的动物![](../Photo/36.png)- 计算身体质量指数的程序- BMI = 以千克为单位的体重除以以米为单位的身高![](../Photo/37.png)
a=eval(input('>>')) num=a%12 if num==0: print('猴') elif num == 1: print('鸡') elif num == 2: print('狗') elif num == 3: print('猪') elif num== 4: print('鼠') elif num== 5: print('牛') elif num== 6: print('虎') elif num== 7: print('兔') elif num== 8: print('龙') elif num== 9: print('蛇') elif num== 10: print('马') else: print('羊') w,h=eval(input('>>')) bmi=w/(h*h) print(bmi) if bmi<18.5: print('超轻') elif 18.5<=bmi<25.0: print('标准') elif 25.0<=bmi<30.0: print('超重') else : print('痴肥')
>>60,1.84 17.72211720226843 超轻
Apache-2.0
9.12.ipynb
ljmzyl/Work
逻辑运算符![](../Photo/38.png) ![](../Photo/39.png)![](../Photo/40.png)
a=[1,2,3,4] 1 not in a
_____no_output_____
Apache-2.0
9.12.ipynb
ljmzyl/Work
EP:- 判定闰年:一个年份如果能被4整除但不能被100整除,或者能被400整除,那么这个年份就是闰年- 提示用户输入一个年份,并返回是否是闰年- 提示用户输入一个数字,判断其是否为水仙花数
year=eval(input('>>')) a=year%4==0 b=year%100!=0 c=year%400==0 if (a or c) and b : print('闰年') else : print('非闰年') n=eval(input('>>')) a1=n//100 a2=n//10%10 a3=n%10 s=a1**3+a2**3+a3**3 if s == n: print('是水仙花数') else : print('结束')
>>154 结束
Apache-2.0
9.12.ipynb
ljmzyl/Work
实例研究:彩票![](../Photo/41.png)
import random a1=random.randint(0,9) a2=random.randint(0,9) print(a1,a2) a=str(a1)+str(a2) num=input('>>') if num==a: print('一等奖') elif (num[0]==a[1] and (num[1]== a[0])): print('二等奖') elif ((num[0]==a[0]) or (num[1]==a[0]) or (num[0]==a[1]) or (num[1]==a[1])): print('三等奖') else : ('未中奖')
8 4 >>48 二等奖
Apache-2.0
9.12.ipynb
ljmzyl/Work
Homework- 1![](../Photo/42.png)
import math a,b,c=eval(input('>>')) pan=b**2-4*a*c r1=((-b)+math.sqrt(pan))/(2*a) r2=((-b)-math.sqrt(pan))/(2*a) if pan>0: print(r1,r2) elif pan==0: print(r1) else : print('The equation has no real roots')
>>1,3,1 -0.3819660112501051 -2.618033988749895
Apache-2.0
9.12.ipynb
ljmzyl/Work
- 2![](../Photo/43.png)
import random a1=random.randint(0,99) a2=random.randint(0,99) print(a1,a2) num=eval(input('>>')) number=a1+a2 if num == number: print('True') else : print('False')
93 42 >>12 False
Apache-2.0
9.12.ipynb
ljmzyl/Work
- 3![](../Photo/44.png)
day = eval(input('今天是哪一天(星期天是0,星期一是1,。。。,星期六是6):')) days = eval(input('今天之后到未来某天的天数:')) n = day + days if day==0: a='星期日' elif day==1: a='星期一' elif day==2: a='星期二' elif day==3: a='星期三' elif day==4: a='星期四' elif day==5: a='星期五' elif day==6: a='星期六' if n%7 ==0: print('今天是'+str(a)+'并且'+str(days)+'天之后是星期天') elif n%7 ==1: print('今天是'+str(a)+'并且'+str(days)+'天之后是星期一') elif n%7 ==2: print('今天是'+str(a)+'并且'+str(days)+'天之后是星期二') elif n%7 ==3: print('今天是'+str(a)+'并且'+str(days)+'天之后是星期三') elif n%7 ==4: print('今天是'+str(a)+'并且'+str(days)+'天之后是星期四') elif n%7 ==5: print('今天是'+str(a)+'并且'+str(days)+'天之后是星期五') elif n%7 ==6: print('今天是'+str(a)+'并且'+str(days)+'天之后是星期六')
今天是哪一天(星期天是0,星期一是1,。。。,星期六是6):1 今天之后到未来某天的天数:3 今天是星期一并且3天之后是星期四
Apache-2.0
9.12.ipynb
ljmzyl/Work
- 4![](../Photo/45.png)
a,b,c = eval(input('输入三个整数:')) if a>=b and b>=c: print(c,b,a) elif a>=b and b<=c and a>=c: print(b,c,a) elif b>=a and a>=c : print(c,a,b) elif b>=a and a<=c and b>=c: print(a,c,b) elif c>=b and b>=a: print(a,b,c) elif c>=b and b<=a and c>=a: print(b,a,c)
输入三个整数:2,1,3 1 2 3
Apache-2.0
9.12.ipynb
ljmzyl/Work
- 5![](../Photo/46.png)
a1,a2=eval(input('输入第一种重量和价钱:')) b1,b2=eval(input('输入第一种重量和价钱:')) num1=a2/a1 num2=b2/b1 if num1>num2: print('购买第二种更加合适') else : print('购买第一种更合适')
_____no_output_____
Apache-2.0
9.12.ipynb
ljmzyl/Work
- 6![](../Photo/47.png)
m,year=eval(input('输入月份和年')) a=year%4==0 b=year%100!=0 c=year%400==0 r=[1,3,5,7,8,10,12] if (a or c) and b and m==2: print(str(year)+'年'+str(m)+'月有29天') elif ((m==1) or (m==3) or (m==5) or (m==7) or (m==8) or (m==10) or (m==12)): print(str(year)+'年'+str(m)+'月有31天') elif ((m==4) or (m==6) or (m==9) or (m==11)): print(str(year)+'年'+str(m)+'月有30天') else : print(str(year)+'年'+str(m)+'月有28天')
_____no_output_____
Apache-2.0
9.12.ipynb
ljmzyl/Work
- 7![](../Photo/48.png)
import random a=random.randint(0,1) print(a) num=eval(input('>>')) if a==num: print('正确') else : print('错误')
0 >>1 错误
Apache-2.0
9.12.ipynb
ljmzyl/Work
- 8![](../Photo/49.png)
a=eval(input('输入1,2或0:')) import random d=random.randint(0,3) if d==a: print('平局') elif a==0 and d==1: print('你输了') elif a==0 and d==2: print('你赢了') elif a==1 and d==0: print('你赢了') elif a==1 and d==2: print('你输了') elif a==2 and d==1: print('你赢了') elif a==2 and d==0: print('你输了')
_____no_output_____
Apache-2.0
9.12.ipynb
ljmzyl/Work
- 9![](../Photo/50.png)
y = eval(input('请输入年份:')) m = eval(input('请输入月份:')) q = eval(input('请输入天数:')) j = y//100//1 k = y%100 if m == 1:     m = 13 elif m == 2:     m = 14 h = (q + (26*(m+1))/10//1+k+k/4//1+j/4//1+5*j)%7 print(round(h))
_____no_output_____
Apache-2.0
9.12.ipynb
ljmzyl/Work
- 10![](../Photo/51.png)
import random size=['Ace',2,3,4,5,6,7,8,9,10,'Jack','Queen','King'] A=random.randint(0,len(size)-1) color=['Diamond','Heart','Spade','Club'] B=random.randint(0,len(color)-1) print('The card you picked is the ' + str(size[A]) + ' of ' + str(color[B]))
_____no_output_____
Apache-2.0
9.12.ipynb
ljmzyl/Work
- 11![](../Photo/52.png)
x = input('Enter a three-digit integer:') if x[0] == x[2] : print(str(x)+'is a palindrome') else: print(str(x)+'is not a palindrome')
_____no_output_____
Apache-2.0
9.12.ipynb
ljmzyl/Work
- 12![](../Photo/53.png)
lenght1,lenght2,lenght3, =eval(input('Enter three adges:')) perimeter = lenght1 + lenght2 + lenght3 if lenght1 + lenght2 > lenght3 and lenght1 + lenght3 > lenght2 and lenght2 + lenght3 > lenght1: print('The perimeter is',perimeter) else: print('The perimeter invalid')
_____no_output_____
Apache-2.0
9.12.ipynb
ljmzyl/Work
1. Деревья решений для классификации (продолжение)На прошлом занятии мы разобрали идею Деревьев решений:![DecisionTree](tree1.png)Давайте теперь разберемся **как происходит разделения в каждом узле** то есть как проходит этап **обучения модели**. Есть как минимум две причины в этом разобраться : во-первых это позволит нам решать задачи классификации на 3 и более классов, во-вторых это даст нам возможность считать *важность* признаков в обученной модели.Для начала посмотрим какие бывают деревья решений ----Дерево решений вообще говоря **не обязано быть бинарным**, на практике однако используются именно бинарные деревья, поскольку для любоого не бинарного дерева решений **можно построить бинарное** (при этом увеличится глубина дерева). 1. Деревья решений использую простой одномерный предикат для разделения объектовИмеется ввиду что в каждом узле разделение объектов (и создание двух новых узлов) происходит **по 1 (одному)** признаку: *Все объекты со значением некоторого признака меньше трешхолда отправляются в один узел, а больше - в другой:*$$[x_j < t]$$Вообще говоря это совсем не обязательно, например в каждом отдельном узле можно строить любую модель (например логистическую регрессию или KNN), рассматривая сразу несколько признаков. 2. Оценка качества Мы говорили про простой функционал качества разбиения (**выбора трешхолда**): количество ошибок (1-accuracy). На практике используются два критерия: Gini's impurity index и Information gain.**Индекс Джини**$$I_{Gini} = 1 - \sum_i^K p_i^2 $$где $K$ - количество классов, a $p_i = \frac{|n_i|}{n}$ - доля представителей $i$ - ого класса в данном узле**Энтропия**$$H(p) = - \sum_i^K p_i\log(p_i)$$**Информационный критерий**$$IG(p) = H(\text{parent}) - H(\text{child})$$ Разделение производится по тому трешхолду и тому признаку по которому взвешенное среднее функционала качества в узлах потомках наименьшее. 3. Критерий остановкиМы с вами говорили о таких параметрах Решающего дерева как минимальное число объектов в листе,и минимальное число объектов в узле, для того чтобы он был разделен на два. Еще один критерий - глубина дерева. Возможны и другие.* Ограничение числа объектов в листе* Ограничение числа объектов в узле, для того чтобы он был разделен* Ограничение глубины дерева* Ограничение минимального прироста Энтропии или Информационного критерия при разделении* Остановка в случае если все объекты в листе принадлежат к одному классуНа прошлой лекции мы обсуждали технику которая называется **Прунинг** (pruning) это альтернатива Критериям остановки, когда сначала строится переобученное дерево, а затем она каким то образом упрощается. На практике по ряду причин чаще используются критерии остановки, а не прунинг.Подробнее см. https://github.com/esokolov/ml-course-hse/blob/master/2018-fall/lecture-notes/lecture07-trees.pdfОссобенности разбиения непрерывных признаков* http://kevinmeurer.com/a-simple-guide-to-entropy-based-discretization/* http://clear-lines.com/blog/post/Discretizing-a-continuous-variable-using-Entropy.aspx--- 1.1. Оценка качества разделения в узле
def gini_impurity(y_current): n = y_current.shape[0] val, count = np.unique(y_current, return_counts=True) gini = 1 - ((count/n)**2).sum() return gini def entropy(y_current): gini = 1 n = y_current.shape[0] val, count = np.unique(y_current, return_counts=True) p = count/n igain = p.dot(np.log(p)) return igain n = 100 Y_example = np.zeros((100,100)) for i in range(100): for j in range(i, 100): Y_example[i, j] = 1 gini = [gini_impurity(y) for y in Y_example] ig = [-entropy(y) for y in Y_example] plt.figure(figsize=(7,7)) plt.plot(np.linspace(0,1,100), gini, label='Index Gini'); plt.plot(np.linspace(0,1,100), ig, label ='Entropy'); plt.legend() plt.xlabel('Доля примеров\n положительного класса') plt.ylabel('Значение оптимизируемого\n функционала');
_____no_output_____
MIT
seminar-5-dt-rf/5_1_dt_2_draft.ipynb
kurmukovai/iitp-ml-ds
1.2. Пример работы Решающего дерева **Индекс Джини** и **Информационный критерий** это меры сбалансированности вектора (насколько значения объектов в наборе однородны). Максимальная неоднородность когда объектов разных классов поровну. Максимальная однородность когда в наборе объекты одного класса. Разбивая множество объектов на два подмножества, мы стремимся уменьшить неоднородность в каждом подмножестве.Посмотрем на примере Ирисов Фишера Ирисы Фишера
from sklearn.datasets import load_iris from sklearn.tree import DecisionTreeClassifier iris = load_iris() model = DecisionTreeClassifier() model = model.fit(iris.data, iris.target) feature_names = ['sepal length', 'sepal width', 'petal length', 'petal width'] target_names = ['setosa', 'versicolor', 'virginica'] model.feature_importances_ np.array(model.decision_path(iris.data).todense())[0] np.array(model.decision_path(iris.data).todense())[90] iris.data[0] model.predict(iris.data) model.tree_.node_count
_____no_output_____
MIT
seminar-5-dt-rf/5_1_dt_2_draft.ipynb
kurmukovai/iitp-ml-ds
Цифры. Интерпретируемость
from sklearn.datasets import load_digits X, y = load_digits(n_class=2, return_X_y=True) plt.figure(figsize=(12,12)) for i in range(9): ax = plt.subplot(3,3,i+1) ax.imshow(X[i].reshape(8,8), cmap='gray') from sklearn.metrics import accuracy_score model = DecisionTreeClassifier() model.fit(X, y) y_pred = model.predict(X) print(accuracy_score(y, y_pred)) print(X.shape) np.array(model.decision_path(X).todense())[0] model.feature_importances_ plt.imshow(model.feature_importances_.reshape(8,8)); from sklearn.tree import export_graphviz export_graphviz(model, out_file='tree.dot', filled=True) # #sudo apt-get install graphviz # !dot -Tpng 'tree.dot' -o 'tree.png' # ![Iris_tree](tree.png) np.array(model.decision_path(X).todense())[0] plt.imshow(X[0].reshape(8,8))
_____no_output_____
MIT
seminar-5-dt-rf/5_1_dt_2_draft.ipynb
kurmukovai/iitp-ml-ds
2.3. Решающие деревья легко обобщаются на задачу многоклассовой классификации Пример с рукописными цифрами
X, y = load_digits(n_class=10, return_X_y=True) plt.figure(figsize=(12,12)) for i in range(9): ax = plt.subplot(3,3,i+1) ax.imshow(X[i].reshape(8,8), cmap='gray') ax.set_title(y[i]) ax.set_xticks([]) ax.set_yticks([]) model = DecisionTreeClassifier() model.fit(X, y) y_pred = model.predict(X) print(accuracy_score(y, y_pred)) plt.imshow(model.feature_importances_.reshape(8,8)); model.feature_importances_
_____no_output_____
MIT
seminar-5-dt-rf/5_1_dt_2_draft.ipynb
kurmukovai/iitp-ml-ds
Вопрос: откуда мы получаем feature importance? 2.4. Пример на котором дерево решений строит очень сложную разделяющую кривуюПример взят отсюда https://habr.com/ru/company/ods/blog/322534/slozhnyy-sluchay-dlya-derevev-resheniy .Как мы помним Деревья используют одномерный предикат для разделени множества объектов.Это значит что если данные плохо разделимы по **каждому** (индивидуальному) признаку по отдельности, результирующее решающее правило может оказаться очень сложным.
from sklearn.tree import DecisionTreeClassifier def form_linearly_separable_data(n=500, x1_min=0, x1_max=30, x2_min=0, x2_max=30): data, target = [], [] for i in range(n): x1, x2 = np.random.randint(x1_min, x1_max), np.random.randint(x2_min, x2_max) if np.abs(x1 - x2) > 0.5: data.append([x1, x2]) target.append(np.sign(x1 - x2)) return np.array(data), np.array(target) X, y = form_linearly_separable_data() plt.figure(figsize=(10,10)) plt.scatter(X[:, 0], X[:, 1], c=y, cmap='autumn');
_____no_output_____
MIT
seminar-5-dt-rf/5_1_dt_2_draft.ipynb
kurmukovai/iitp-ml-ds
Давайте посмотрим как данные выглядит в проекции на 1 ось
plt.figure(figsize=(15,5)) ax1 = plt.subplot(1,2,1) ax1.set_title('Проекция на ось $X_0$') ax1.hist(X[y==1, 0], alpha=.3); ax1.hist(X[y==-1, 0], alpha=.6); ax2 = plt.subplot(1,2,2) ax2.set_title('Проекция на ось $X_1$') ax2.hist(X[y==1, 1], alpha=.3); ax2.hist(X[y==-1, 1], alpha=.6); def get_grid(data, eps=0.01): x_min, x_max = data[:, 0].min() - 1, data[:, 0].max() + 1 y_min, y_max = data[:, 1].min() - 1, data[:, 1].max() + 1 return np.meshgrid(np.arange(x_min, x_max, eps), np.arange(y_min, y_max, eps)) tree = DecisionTreeClassifier(random_state=17).fit(X, y) xx, yy = get_grid(X, eps=.05) predicted = tree.predict(np.c_[xx.ravel(), yy.ravel()]).reshape(xx.shape) plt.figure(figsize=(10,10)) plt.pcolormesh(xx, yy, predicted, cmap='autumn', alpha=0.3) plt.scatter(X[y==1, 0], X[y==1, 1], marker='x', s=100, cmap='autumn', linewidth=1.5) plt.scatter(X[y==-1, 0], X[y==-1, 1], marker='o', s=100, cmap='autumn', edgecolors='k',linewidth=1.5) plt.title('Easy task. Decision tree compexifies everything'); # export_graphviz(tree, out_file='complex_tree.dot', filled=True) # !dot -Tpng 'complex_tree.dot' -o 'complex_tree.png'
_____no_output_____
MIT
seminar-5-dt-rf/5_1_dt_2_draft.ipynb
kurmukovai/iitp-ml-ds
Kernel analysis
df = read_ods("./results.ods", "matmul-kernel") expand_modes(df) print(df["MODE"].unique()) ############################################# # Disregard the store result for the kernel # ############################################# df.loc[df["MODE"] == "AD (volatile result)", "MODE"] = "AD" order = ['DRAM', 'AD', 'AD (in-place FMA)', 'MM (hot)', 'MM (cold)'] hue_order = [7000, 1000] # Split the two families of experiments df_rowcol = df[df.MATRIX_SIDE != 0] df = df[df.MATRIX_SIDE == 0] sns.barplot(x='MODE', y='TIMING', data=df[(df.BLOCKSIZE == 1000)], capsize=0.1, order=order, palette=custom_kernel_palette(6)) plt.title("Submatrix size: 1000x1000 (small object)") plt.xticks(rotation=25, horizontalalignment='right') plt.show() sns.barplot(x='MODE', y='TIMING', data=df[(df.BLOCKSIZE == 7000)], capsize=0.1, order=order, palette=custom_kernel_palette(6)) plt.title("Submatrix size: 7000x7000 (big object)") plt.xticks(rotation=25, horizontalalignment='right') plt.show() ################################### # sns.barplot(x='MODE', y='TIMING', # data=df_rowcol[(df_rowcol.BLOCKSIZE == 1000)], # capsize=0.1, # order=order, # palette=palette) # plt.title("BLOCKSIZE: 1k || row x col") # plt.xticks(rotation=25, horizontalalignment='right') # plt.show() # sns.barplot(x='MODE', y='TIMING', # data=df_rowcol[(df_rowcol.BLOCKSIZE == 7000)], # capsize=0.1, # order=order, # palette=palette) # plt.title("BLOCKSIZE: 7k || row x col") # plt.xticks(rotation=25, horizontalalignment='right') # plt.show() # Remove MM-NVM as it is outlier-ish #df = df[df.MODE != 'MM-NVM'] # ... or maybe not? trying set_ylim maybe: #axes = plt.gca() #axes.set_ylim([0,1.5]) #plt.title("...") #plt.show() df.loc[(df.BLOCKSIZE == 1000), "NORMALIZED"] = df.TIMING df.loc[(df.BLOCKSIZE == 7000), "NORMALIZED"] = df.TIMING / (7*7*7) ax = sns.barplot(y='MODE', x='NORMALIZED', data=df, capsize=0.1, order=order, hue_order=hue_order, hue="BLOCKSIZE", palette="muted") kernel_plot_tweaks(ax, 7*7*7, legend_title="Submatrix blocksize") plt.savefig("matmul-kernel.pdf", bbox_inches='tight') plt.show() kernel_times = df.groupby(["BLOCKSIZE", "MODE"]).min() kernel_times #rowcol_times = df_rowcol.groupby(["BLOCKSIZE", "MODE"]).min() #rowcol_times
_____no_output_____
CC0-1.0
analysis/matmul-analysis.ipynb
bsc-dom/optanedc-miniapps
Matmul results analysis
df = read_ods("./results.ods", "matmul-app") expand_modes(df) df for bs in [1000, 7000]: df.loc[(df.BLOCKSIZE == bs) & (df.MODE == "DRAM"), "ATOM_KERNEL"] = \ kernel_times.loc[(bs, "DRAM"), "TIMING"] df.loc[(df.BLOCKSIZE == bs) & (df.MODE == "AD (volatile result)"), "ATOM_KERNEL"] = \ kernel_times.loc[(bs, "AD"), "TIMING"] df.loc[(df.BLOCKSIZE == bs) & (df.MODE == "AD (store result)"), "ATOM_KERNEL"] = \ kernel_times.loc[(bs, "AD"), "TIMING"] df.loc[(df.BLOCKSIZE == bs) & (df.MODE == "AD (in-place FMA)"), "ATOM_KERNEL"] = \ kernel_times.loc[(bs, "AD (in-place FMA)"), "TIMING"] df.loc[(df.BLOCKSIZE == bs) & (df.MODE == "DAOS (volatile result)"), "ATOM_KERNEL"] = \ kernel_times.loc[(bs, "DRAM"), "TIMING"] df.loc[(df.BLOCKSIZE == bs) & (df.MODE == "DAOS (store result)"), "ATOM_KERNEL"] = \ kernel_times.loc[(bs, "DRAM"), "TIMING"] df.loc[(df.BLOCKSIZE == 1000) & (df.MATRIX_SIDE == 42) & (df.MODE == "MM"), "ATOM_KERNEL"] = kernel_times.loc[(1000, "MM (hot)"), "TIMING"] df.loc[(df.BLOCKSIZE == 7000) & (df.MATRIX_SIDE == 6) & (df.MODE == "MM"), "ATOM_KERNEL"] = kernel_times.loc[(7000, "MM (hot)"), "TIMING"] df.loc[(df.BLOCKSIZE == 1000) & (df.MATRIX_SIDE == 84) & (df.MODE == "MM"), "ATOM_KERNEL"] = kernel_times.loc[(1000, "MM (cold)"), "TIMING"] df.loc[(df.BLOCKSIZE == 7000) & (df.MATRIX_SIDE == 12) & (df.MODE == "MM"), "ATOM_KERNEL"] = kernel_times.loc[(7000, "MM (cold)"), "TIMING"] df["KERNEL_TIME"] = df["MATRIX_SIDE"]**3 * df["ATOM_KERNEL"] # Sanity check null_values = df[df.isnull().values] if len(null_values) > 0: print('There are null values, check null_values variable') df
_____no_output_____
CC0-1.0
analysis/matmul-analysis.ipynb
bsc-dom/optanedc-miniapps
Article image generation
sns.set(style="whitegrid") order = ['DRAM', 'AD (volatile result)', 'AD (store result)', 'AD (in-place FMA)', 'MM', 'DAOS (volatile result)', 'DAOS (store result)'] small = ( ((df.BLOCKSIZE == 1000) & (df.MATRIX_SIDE == 42)) | ((df.BLOCKSIZE == 7000) & (df.MATRIX_SIDE == 6)) ) big = ( ((df.BLOCKSIZE == 1000) & (df.MATRIX_SIDE == 84)) | ((df.BLOCKSIZE == 7000) & (df.MATRIX_SIDE == 12)) ) ax = sns.barplot(y='MODE', x="TIMING", data=df[small], capsize=0.1, order=order, hue_order=hue_order, palette="colorblind", hue=df.BLOCKSIZE) bottom = sns.barplot(y='MODE', x="KERNEL_TIME", data=df[small], capsize=0, order=order, hue_order=hue_order, palette="pastel", hue=df.BLOCKSIZE) crop_axis(ax, 800) ylabel_tweaks(ax, [2, 5], ['non-active', 'active'], 0.40, 0.005) legend_tweaks(bottom, ["big objects", "small objects", "kernel comp."], placement='upper center') ax.set_xlabel("execution time (s)") plt.title("Small dataset") save_tweaks("matmul-small.pdf", big=True) plt.show() ax = sns.barplot(y='MODE', x="TIMING", data=df[big], capsize=0.1, order=order, hue_order=hue_order, palette="colorblind", hue=df.BLOCKSIZE) annotate_dram(ax) bottom = sns.barplot(y='MODE', x="KERNEL_TIME", data=df[big], capsize=0, order=order, hue_order=hue_order, palette="pastel", hue=df.BLOCKSIZE) crop_axis(ax, 6000) ylabel_tweaks(ax, [2, 5], ['non-active', 'active'], 0.40, 0.005) legend_tweaks(bottom, ["big objects", "small objects", "kernel comp."], placement='upper center') ax.set_xlabel("execution time (s)") plt.title("Big dataset") save_tweaks("matmul-big.pdf", big=True) plt.show() df.groupby(["BLOCKSIZE", "MATRIX_SIDE", "MODE"]).mean()
_____no_output_____
CC0-1.0
analysis/matmul-analysis.ipynb
bsc-dom/optanedc-miniapps
DASHBOARD LINKhttps://public.tableau.com/profile/altaf.lakhi2442!/vizhome/UnbankedExploration/Dashboard1
import pandas as pd import seaborn as sns CPS_df = pd.read_csv("../data/processed/CPS_2009_2017_clean.csv") ACS_df = pd.read_csv("../data/processed/ACS_2011_2017_clean.csv") NFCS_df = pd.read_csv("../data/processed/NFCS_2009_2018_clean.csv") frames = [CPS_df, ACS_df, NFCS_df] #declaring STATE list STATES = ["Alabama","Alaska","Arizona","Arkansas","California","Colorado", "Connecticut","Delaware","District of Columbia", "Florida","Georgia","Hawaii", "Idaho","Illinois", "Indiana","Iowa","Kansas","Kentucky","Louisiana","Maine", "Maryland","Massachusetts","Michigan","Minnesota","Mississippi","Missouri","Montana", "Nebraska","Nevada","New Hampshire","New Jersey","New Mexico","New York", "North Carolina","North Dakota","Ohio","Oklahoma","Oregon","Pennsylvania", "Rhode Island","South Carolina","South Dakota","Tennessee","Texas","Utah", "Vermont","Virginia","Washington","West Virginia","Wisconsin","Wyoming"] #generating state:state_number dictionary STATE_FIPS = list(frames[0].STATEFIP.unique()) STATE = {} for state, name in zip(STATE_FIPS, STATES): STATE[state] = name #generating STATE column for pertinent dfs CPS_df["STATE"] = CPS_df.STATEFIP.map(STATE) ACS_df["STATE"] = ACS_df.STATEFIP.map(STATE) counties = pd.read_csv("../data/external/county_fips_master.csv", engine='python')
_____no_output_____
MIT
notebooks/Dashboard_Data.ipynb
Altaf410/An-Exploration-of-the-Unbanked-in-the-US
Aggregatting CPS Data
pop_prop = pd.read_csv("../data/interim/population_proportions") pop_prop.head() pop_prop = pop_prop[["YEAR", "BUNBANKED", "STATEFIP"]] pop_prop state_year_agg = [] for year in pop_prop.YEAR.unique(): holder = pop_prop[pop_prop.YEAR == year] state_year_agg.append(holder) #national_agg_sums = [pop_prop[pop_prop.STATEFIP == state].BUNBANKED.sum() for state in pop_prop.STATEFIP.unique()] #print(f"{year}") #display(holder) state_survey_pop_agg = pd.concat(state_year_agg) state_survey_pop_agg["STATE"] = state_survey_pop_agg.STATEFIP.map(STATE) state_survey_pop_agg state_survey_pop_agg.rename(columns = {"BUNBANKED": "SURVEY_POP"}, inplace = True) state_survey_pop_agg CPS_agg = pd.DataFrame() CPS_agg["STATE"] = CPS_df.STATE CPS_agg["UNDERBANKED"] = CPS_df.BUNBANKED CPS_agg["YEAR"] = CPS_df.YEAR #copying aggregation before grouping for additional breakdowns CPS_reason_agg = CPS_agg.copy(deep=True) CPS_agg = CPS_agg.groupby(["YEAR", "STATE"]).count() CPS_agg = CPS_agg.reset_index() CPS_agg state_survey_pop_agg = state_survey_pop_agg[state_survey_pop_agg.YEAR.isin(CPS_agg.YEAR.unique())].reset_index() state_survey_pop_agg CPS_agg["SURVEY_POP"] = state_survey_pop_agg.SURVEY_POP CPS_agg CPS_agg.to_csv("../data/processed/Dashboard_Data/CPS_STATE_Aggregate.csv") #Isolating the specific northwest while PNW = ["Washington", "Oregon", "Wyoming", "Montana", "Idaho"] PNW_CPS_agg = CPS_agg[CPS_agg.STATE.isin(PNW)] PNW_CPS_agg PNW_CPS_agg.to_csv("../data/processed/Dashboard_Data/CPS_PNW_STATE_Aggregate.csv")
_____no_output_____
MIT
notebooks/Dashboard_Data.ipynb
Altaf410/An-Exploration-of-the-Unbanked-in-the-US
---------------------------------------------------------------------------------------------- Aggregatting ACS Data
#ACS_df = pd.read_csv("../data/processed/ACS_2011_2017_clean") #ACS_df["STATE"] = ACS_df.STATEFIP.map(STATE) ACS_df.head() ACS_df.HHWT ACS_df = ACS_df.drop(columns = ['Unnamed: 0']) filtering_columns = ACS_df.columns filtering_columns = filtering_columns.drop(["STATE", "YEAR", "SAMPLE", "REGION", 'STATEFIP']) filtering_columns pivot_df = ACS_df.copy(deep=True) #using filter to generate multiple pivot tables for data vizualization for _filter in filtering_columns: pivot_df[f"{_filter}_COUNTS"] = pivot_df[_filter] pivot_df_final = pivot_df[["YEAR", "REGION", "STATE", _filter, f"{_filter}_COUNTS"]].groupby(["YEAR", "REGION", "STATE", _filter]).count() #display(pivot_df[["YEAR", "REGION", "STATE", _filter, f"{_filter}_COUNTS"]].groupby(["YEAR", "REGION", "STATE", _filter]).count()) #display(pivot_df_final) pivot_df_final.to_csv(f"../data/processed/Dashboard_Data/{_filter}_ACS_AGG.csv") ACS_df.groupby(["YEAR", "REGION", "STATE", "CINETHH"]).count()#.value_counts() ACS_df.columns
_____no_output_____
MIT
notebooks/Dashboard_Data.ipynb
Altaf410/An-Exploration-of-the-Unbanked-in-the-US
* HHINCOME = House Hold Income* MARST = Marital Status* OCC2010 = Occupation* CINETHH = Access to Internet* CILAPTOP = Laptop, desktop, or notebook computer* CISMRTPHN = Smartphone* CITABLET = Tablet or other portable wireless computer* CIHAND = Handheld Computer* CIHISPEED = Broadband (high speed) Internet service such as cable, fiber optic, or DSL service* CISAT = Satellite internet service* CIDIAL = Dial-up Service* CIOTHSVC = Other Internet Service
ACS_agg = pd.DataFrame() ACS_agg["STATE"] = ACS_df.STATE ACS_agg["OCC2010"] = ACS_df.OCC2010 ACS_agg["CINETHH"] = ACS_df.CINETHH ACS_agg["CILAPTOP"] = ACS_df.CILAPTOP ACS_agg["CISMRTPHN"] = ACS_df.CISMRTPHN ACS_agg["CITABLET"] = ACS_df.CITABLET ACS_agg["CIHAND"] = ACS_df.CIHAND ACS_agg["CIHISPEED"] = ACS_df.CIHISPEED ACS_agg["CISAT"] = ACS_df.CISAT ACS_agg["CIDIAL"] = ACS_df.CIDIAL ACS_agg["CIOTHSVC"] = ACS_df.CIOTHSVC ACS_agg["YEAR"] = ACS_df.YEAR ACS_agg = ACS_agg.groupby(["STATE", "YEAR"]).count() ACS_agg = ACS_agg.reset_index() ACS_agg ACS_agg.to_csv("../data/processed/Dashboard_Data/ACS_STATE_Aggregate.csv")
_____no_output_____
MIT
notebooks/Dashboard_Data.ipynb
Altaf410/An-Exploration-of-the-Unbanked-in-the-US
---------------------------------------------------------------------------------------------- Aggregating NFCS
NFCS_df.head() NFCS_df.drop("Unnamed: 0", axis=1,inplace=True) #declaring STATE list STATES = ["Alabama","Alaska","Arizona","Arkansas","California","Colorado", "Connecticut","Delaware","District of Columbia", "Florida","Georgia","Hawaii", "Idaho","Illinois", "Indiana","Iowa","Kansas","Kentucky","Louisiana","Maine", "Maryland","Massachusetts","Michigan","Minnesota","Mississippi","Missouri","Montana", "Nebraska","Nevada","New Hampshire","New Jersey","New Mexico","New York", "North Carolina","North Dakota","Ohio","Oklahoma","Oregon","Pennsylvania", "Rhode Island","South Carolina","South Dakota","Tennessee","Texas","Utah", "Vermont","Virginia","Washington","West Virginia","Wisconsin","Wyoming"] #generating state:state_number dictionary STATE_NFCS = list(NFCS_df.STATE.unique()) STATE_NFCS.sort() STATE = {} for state, name in zip(STATE_NFCS, STATES): STATE[state] = name NFCS_df.STATE = NFCS_df.STATE.map(STATE) NFCS_df.STATE NFCS_agg = NFCS_df.groupby(["STATE", "YEAR"]).count() NFCS_agg factors = list(NFCS_df.columns) factors.remove("STATE") factors.remove("YEAR") #using filter to generate multiple pivot tables for data vizualization pivot_df = NFCS_df.copy(deep=True) for factor in factors: pivot_df[f"{factor}_COUNTS"] = pivot_df[factor] pivot_df_final = pivot_df[["YEAR", "STATE", factor, f"{factor}_COUNTS"]].groupby(["YEAR", "STATE", factor]).count() #display(pivot_df[["YEAR", "REGION", "STATE", factor, f"{factor}_COUNTS"]].groupby(["YEAR", "REGION", "STATE", factor]).count()) display(pivot_df_final) pivot_df_final.to_csv(f"../data/processed/Dashboard_Data/{factor}_NFCS_AGG.csv") NFCS_agg.to_csv("../data/processed/Dashboard_Data/NFCS_STATE_Aggregate.csv")
_____no_output_____
MIT
notebooks/Dashboard_Data.ipynb
Altaf410/An-Exploration-of-the-Unbanked-in-the-US
Copyright (c) Microsoft Corporation. All rights reserved.Licensed under the MIT License. ![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/configuration.png) Configuration_**Setting up your Azure Machine Learning services workspace and configuring your notebook library**_------ Table of Contents1. [Introduction](Introduction) 1. What is an Azure Machine Learning workspace1. [Setup](Setup) 1. Azure subscription 1. Azure ML SDK and other library installation 1. Azure Container Instance registration1. [Configure your Azure ML Workspace](Configure%20your%20Azure%20ML%20workspace) 1. Workspace parameters 1. Access your workspace 1. Create a new workspace 1. Create compute resources1. [Next steps](Next%20steps)--- IntroductionThis notebook configures your library of notebooks to connect to an Azure Machine Learning (ML) workspace. In this case, a library contains all of the notebooks in the current folder and any nested folders. You can configure this notebook library to use an existing workspace or create a new workspace.Typically you will need to run this notebook only once per notebook library as all other notebooks will use connection information that is written here. If you want to redirect your notebook library to work with a different workspace, then you should re-run this notebook.In this notebook you will* Learn about getting an Azure subscription* Specify your workspace parameters* Access or create your workspace* Add a default compute cluster for your workspace What is an Azure Machine Learning workspaceAn Azure ML Workspace is an Azure resource that organizes and coordinates the actions of many other Azure resources to assist in executing and sharing machine learning workflows. In particular, an Azure ML Workspace coordinates storage, databases, and compute resources providing added functionality for machine learning experimentation, deployment, inference, and the monitoring of deployed models. SetupThis section describes activities required before you can access any Azure ML services functionality. 1. Azure SubscriptionIn order to create an Azure ML Workspace, first you need access to an Azure subscription. An Azure subscription allows you to manage storage, compute, and other assets in the Azure cloud. You can [create a new subscription](https://azure.microsoft.com/en-us/free/) or access existing subscription information from the [Azure portal](https://portal.azure.com). Later in this notebook you will need information such as your subscription ID in order to create and access AML workspaces. 2. Azure ML SDK and other library installationIf you are running in your own environment, follow [SDK installation instructions](https://docs.microsoft.com/azure/machine-learning/service/how-to-configure-environment). If you are running in Azure Notebooks or another Microsoft managed environment, the SDK is already installed.Also install following libraries to your environment. Many of the example notebooks depend on them```(myenv) $ conda install -y matplotlib tqdm scikit-learn```Once installation is complete, the following cell checks the Azure ML SDK version:
import azureml.core print("This notebook was created using version 1.0.74.1 of the Azure ML SDK") print("You are currently using version", azureml.core.VERSION, "of the Azure ML SDK")
_____no_output_____
MIT
aml/configuration.ipynb
kawo123/azure-e2e-ml
Configure your Azure ML workspace Workspace parametersTo use an AML Workspace, you will need to import the Azure ML SDK and supply the following information:* Your subscription id* A resource group name* (optional) The region that will host your workspace* A name for your workspaceYou can get your subscription ID from the [Azure portal](https://portal.azure.com).You will also need access to a [_resource group_](https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-overviewresource-groups), which organizes Azure resources and provides a default region for the resources in a group. You can see what resource groups to which you have access, or create a new one in the [Azure portal](https://portal.azure.com). If you don't have a resource group, the create workspace command will create one for you using the name you provide.The region to host your workspace will be used if you are creating a new workspace. You do not need to specify this if you are using an existing workspace. You can find the list of supported regions [here](https://azure.microsoft.com/en-us/global-infrastructure/services/?products=machine-learning-service). You should pick a region that is close to your location or that contains your data.The name for your workspace is unique within the subscription and should be descriptive enough to discern among other AML Workspaces. The subscription may be used only by you, or it may be used by your department or your entire enterprise, so choose a name that makes sense for your situation.The following cell allows you to specify your workspace parameters. This cell uses the python method `os.getenv` to read values from environment variables which is useful for automation. If no environment variable exists, the parameters will be set to the specified default values. If you ran the Azure Machine Learning [quickstart](https://docs.microsoft.com/en-us/azure/machine-learning/service/quickstart-get-started) in Azure Notebooks, you already have a configured workspace! You can go to your Azure Machine Learning Getting Started library, view *config.json* file, and copy-paste the values for subscription ID, resource group and workspace name below.Replace the default values in the cell below with your workspace parameters
import os subscription_id = os.getenv("SUBSCRIPTION_ID", default="<my-subscription-id>") resource_group = os.getenv("RESOURCE_GROUP", default="<my-resource-group>") workspace_name = os.getenv("WORKSPACE_NAME", default="<my-workspace-name>") workspace_region = os.getenv("WORKSPACE_REGION", default="eastus2")
_____no_output_____
MIT
aml/configuration.ipynb
kawo123/azure-e2e-ml
Access your workspaceThe following cell uses the Azure ML SDK to attempt to load the workspace specified by your parameters. If this cell succeeds, your notebook library will be configured to access the workspace from all notebooks using the `Workspace.from_config()` method. The cell can fail if the specified workspace doesn't exist or you don't have permissions to access it.
from azureml.core import Workspace try: ws = Workspace(subscription_id = subscription_id, resource_group = resource_group, workspace_name = workspace_name) # write the details of the workspace to a configuration file to the notebook library ws.write_config() print("Workspace configuration succeeded. Skip the workspace creation steps below") except: print("Workspace not accessible. Change your parameters or create a new workspace below")
_____no_output_____
MIT
aml/configuration.ipynb
kawo123/azure-e2e-ml
This notebook was prepared by [Donne Martin](https://github.com/donnemartin). Source and license info is on [GitHub](https://github.com/donnemartin/interactive-coding-challenges). Challenge Notebook Problem: Given an array of (unix_timestamp, num_people, EventType.ENTER or EventType.EXIT), find the busiest period.* [Constraints](Constraints)* [Test Cases](Test-Cases)* [Algorithm](Algorithm)* [Code](Code)* [Unit Test](Unit-Test)* [Solution Notebook](Solution-Notebook) Constraints* Can we assume the input array is valid? * Check for None* Can we assume the elements of the input array are valid? * Yes* Is the input sorted by time? * No* Can you have enter and exit elements for the same timestamp? * Yes you can, order of enter and exit is not guaranteed* Could we have multiple enter events (or multiple exit events) for the same timestamp? * No* What is the format of the output? * An array of timestamps [t1, t2]* Can we assume the starting number of people is zero? * Yes* Can we assume the inputs are valid? * No* Can we assume this fits memory? * Yes Test Cases* None -> TypeError* [] -> None* General casetimestamp num_people event_type1 2 EventType.ENTER3 1 EventType.ENTER3 2 EventType.EXIT7 3 EventType.ENTER8 2 EventType.EXIT9 2 EventType.EXITresult = Period(7, 8) AlgorithmRefer to the [Solution Notebook](). If you are stuck and need a hint, the solution notebook's algorithm discussion might be a good place to start. Code
from enum import Enum class Data(object): def __init__(self, timestamp, num_people, event_type): self.timestamp = timestamp self.num_people = num_people self.event_type = event_type def __lt__(self, other): return self.timestamp < other.timestamp class Period(object): def __init__(self, start, end): self.start = start self.end = end def __eq__(self, other): return self.start == other.start and self.end == other.end def __repr__(self): return str(self.start) + ', ' + str(self.end) class EventType(Enum): ENTER = 0 EXIT = 1 class Solution(object): def find_busiest_period(self, data): # TODO: Implement me pass
_____no_output_____
Apache-2.0
online_judges/busiest_period/busiest_period_challenge.ipynb
benkeesey/interactive-coding-challenges
Unit Test **The following unit test is expected to fail until you solve the challenge.**
# %load test_find_busiest_period.py import unittest class TestSolution(unittest.TestCase): def test_find_busiest_period(self): solution = Solution() self.assertRaises(TypeError, solution.find_busiest_period, None) self.assertEqual(solution.find_busiest_period([]), None) data = [ Data(3, 2, EventType.EXIT), Data(1, 2, EventType.ENTER), Data(3, 1, EventType.ENTER), Data(7, 3, EventType.ENTER), Data(9, 2, EventType.EXIT), Data(8, 2, EventType.EXIT), ] self.assertEqual(solution.find_busiest_period(data), Period(7, 8)) print('Success: test_find_busiest_period') def main(): test = TestSolution() test.test_find_busiest_period() if __name__ == '__main__': main()
_____no_output_____
Apache-2.0
online_judges/busiest_period/busiest_period_challenge.ipynb
benkeesey/interactive-coding-challenges
$ \newcommand{\bra}[1]{\langle 1|} $$ \newcommand{\ket}[1]{|1\rangle} $$ \newcommand{\braket}[2]{\langle 1|2\rangle} $$ \newcommand{\dot}[2]{ 1 \cdot 2} $$ \newcommand{\biginner}[2]{\left\langle 1,2\right\rangle} $$ \newcommand{\mymatrix}[2]{\left( \begin{array}{1} 2\end{array} \right)} $$ \newcommand{\myvector}[1]{\mymatrix{c}{1}} $$ \newcommand{\myrvector}[1]{\mymatrix{r}{1}} $$ \newcommand{\mypar}[1]{\left( 1 \right)} $$ \newcommand{\mybigpar}[1]{ \Big( 1 \Big)} $$ \newcommand{\sqrttwo}{\frac{1}{\sqrt{2}}} $$ \newcommand{\dsqrttwo}{\dfrac{1}{\sqrt{2}}} $$ \newcommand{\onehalf}{\frac{1}{2}} $$ \newcommand{\donehalf}{\dfrac{1}{2}} $$ \newcommand{\hadamard}{ \mymatrix{rr}{ \sqrttwo & \sqrttwo \\ \sqrttwo & -\sqrttwo }} $$ \newcommand{\vzero}{\myvector{1\\0}} $$ \newcommand{\vone}{\myvector{0\\1}} $$ \newcommand{\stateplus}{\myvector{ \sqrttwo \\ \sqrttwo } } $$ \newcommand{\stateminus}{ \myrvector{ \sqrttwo \\ -\sqrttwo } } $$ \newcommand{\myarray}[2]{ \begin{array}{1}2\end{array}} $$ \newcommand{\X}{ \mymatrix{cc}{0 & 1 \\ 1 & 0} } $$ \newcommand{\I}{ \mymatrix{rr}{1 & 0 \\ 0 & 1} } $$ \newcommand{\Z}{ \mymatrix{rr}{1 & 0 \\ 0 & -1} } $$ \newcommand{\Htwo}{ \mymatrix{rrrr}{ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} } } $$ \newcommand{\CNOT}{ \mymatrix{cccc}{1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0} } $$ \newcommand{\norm}[1]{ \left\lVert 1 \right\rVert } $$ \newcommand{\pstate}[1]{ \lceil \mspace{-1mu} 1 \mspace{-1.5mu} \rfloor } $$ \newcommand{\greenbit}[1] {\mathbf{{\color{green}1}}} $$ \newcommand{\bluebit}[1] {\mathbf{{\color{blue}1}}} $$ \newcommand{\redbit}[1] {\mathbf{{\color{red}1}}} $$ \newcommand{\brownbit}[1] {\mathbf{{\color{brown}1}}} $$ \newcommand{\blackbit}[1] {\mathbf{{\color{black}1}}} $ Probabilistic States _prepared by Abuzer Yakaryilmaz_[](https://youtu.be/tJjrF7WgT1g) Suppose that Asja tosses a fair coin secretly.As we do not see the result, our information about the outcome will be probabilistic:$\rightarrow$ The outcome is heads with probability $0.5$ and the outcome will be tails with probability $0.5$.If the coin has a bias $ \dfrac{Pr(Head)}{Pr(Tail)} = \dfrac{3}{1}$, then our information about the outcome will be as follows:$\rightarrow$ The outcome will be heads with probability $ 0.75 $ and the outcome will be tails with probability $ 0.25 $. Explanation: The probability of getting heads is three times of the probability of getting tails. The total probability is 1. We divide the whole probability 1 into four parts (three parts are for heads and one part is for tail), one part is $ \dfrac{1}{4} = 0.25$, and then give three parts for heads ($0.75$) and one part for tails ($0.25$). Listing probabilities as a column We have two different outcomes: heads (0) and tails (1).We use a column of size 2 to show the probabilities of getting heads and getting tails.For the fair coin, our information after the coin-flip will be $ \myvector{0.5 \\ 0.5} $. For the biased coin, it will be $ \myvector{0.75 \\ 0.25} $.The first entry shows the probability of getting heads, and the second entry shows the probability of getting tails. $ \myvector{0.5 \\ 0.5} $ and $ \myvector{0.75 \\ 0.25} $ are two examples of 2-dimensional (column) vectors. Task 1 Suppose that Balvis secretly flips a coin having the bias $ \dfrac{Pr(Heads)}{Pr(Tails)} = \dfrac{1}{4}$.Represent your information about the outcome as a column vector. Task 2 Suppose that Fyodor secretly rolls a loaded (tricky) dice with the bias $$ Pr(1):Pr(2):Pr(3):Pr(4):Pr(5):Pr(6) = 7:5:4:2:6:1 . $$Represent your information about the result as a column vector. Remark that the size of your column vector should be 6.You may use python for your calculations.
# # your code is here #
_____no_output_____
Apache-2.0
classical-systems/CS16_Probabilistic_States.ipynb
dev-aditya/QWorld_Summer_School_2021
click for our solution Vector representation Suppose that we have a system with 4 distiguishable states: $ s_1 $, $s_2 $, $s_3$, and $s_4$. We expect the system to be in one of them at any moment. By speaking with probabilities, we say that the system is in one of the states with probability 1, and in any other state with probability 0. By using our column representation, we can show each state as a column vector (by using the vectors in standard basis of $ \mathbb{R}^4 $):$ e_1 = \myvector{1\\ 0 \\ 0 \\ 0}, e_2 = \myvector{0 \\ 1 \\ 0 \\ 0}, e_3 = \myvector{0 \\ 0 \\ 1 \\ 0}, \mbox{ and } e_4 = \myvector{0 \\ 0 \\ 0 \\ 1}.$ This representation helps us to represent our information on a system when it is in more than one state with certain probabilities. Remember the case in which the coins are tossed secretly. For example, suppose that the system is in states $ s_1 $, $ s_2 $, $ s_3 $, and $ s_4 $ with probabilities $ 0.20 $, $ 0.25 $, $ 0.40 $, and $ 0.15 $, respectively. (The total probability must be 1, i.e., $ 0.20+0.25+0.40+0.15 = 1.00 $)Then, we can say that the system is in the following probabilistic state:$ 0.20 \cdot e_1 + 0.25 \cdot e2 + 0.40 \cdot e_3 + 0.15 \cdot e4 $$ = 0.20 \cdot \myvector{1\\ 0 \\ 0 \\ 0} + 0.25 \cdot \myvector{0\\ 1 \\ 0 \\ 0} + 0.40 \cdot \myvector{0\\ 0 \\ 1 \\ 0} + 0.15 \cdot \myvector{0\\ 0 \\ 0 \\ 1} $$ = \myvector{0.20\\ 0 \\ 0 \\ 0} + \myvector{0\\ 0.25 \\ 0 \\ 0} + \myvector{0\\ 0 \\0.40 \\ 0} + \myvector{0\\ 0 \\ 0 \\ 0.15 } = \myvector{ 0.20 \\ 0.25 \\ 0.40 \\ 0.15 }, $where the summation of entries must be 1. Probabilistic state A probabilistic state is a linear combination of the vectors in the standard basis. Here coefficients (scalars) must satisfy certain properties: Each coefficient is non-negative The summation of coefficients is 1 Alternatively, we can say that a probabilistic state is a probability distribution over deterministic states.We can show all information as a single mathematical object, which is called as a stochastic vector. Remark that the state of any linear system is a linear combination of the vectors in the basis. Task 3 For a system with 4 states, randomly create a probabilistic state, and print its entries, e.g., $ 0.16~~0.17~~0.02~~0.65 $.Hint: You may pick your random numbers between 0 and 100 (or 1000), and then normalize each value by dividing the summation of all numbers.
# # your solution is here #
_____no_output_____
Apache-2.0
classical-systems/CS16_Probabilistic_States.ipynb
dev-aditya/QWorld_Summer_School_2021
click for our solution Task 4 [extra] As given in the hint for Task 3, you may pick your random numbers between 0 and $ 10^k $. For better precision, you may take bigger values of $ k $.Write a function that randomly creates a probabilisitic state of size $ n $ with a precision up to $ k $ digits. Test your function.
# # your solution is here #
_____no_output_____
Apache-2.0
classical-systems/CS16_Probabilistic_States.ipynb
dev-aditya/QWorld_Summer_School_2021
Sentiment Analysis: Data Gathering 1 (Vader)The original sentiments of domain dataset are unclean, especially for the neutral sentiment. Instead of manually going through and correcting sentiments by hand certain techniques are employed to assist this process. This notebook implements the first data annotation pipeline for the sentiment analysis task, which utilizes NLTK's VADER sentiment classifier in order to quickly get a different baseline sentiment to compare with the original. This process has been performed iteratively by manually inspecting the results and modiying VADER's internal library, which contains pre-defined weights towards certain sentiments. Data used here are texts that have been cleaned from stopwords (see ma_eda_all.ipynb)since certain words / phrases affect the results negatively, e.g. "kind regards", "good day", etc.Data used is also the normalized version in order to better target certain words and update the weights within VADER's vocabulary since some words, e.g. "worn", "hole", etc., are considered more negative in this domain as opposed to what VADER would classify it normally. Notes* Data: feedback_39k* Texts have been removed from certain stopwords that might skew the results of VADER* Using normalized words to better target words* Tuned by updating vocabulary of VADER Goal* Add additional column for VADER sentiments pos/neu/neg Results* Passable results to help with manual tasks* Very different sentiment distributions than original sentiments* Not good if too few words
import nltk nltk.download('vader_lexicon') nltk.download('punkt') import re import pandas as pd import seaborn as sns; sns.set() from nltk.sentiment.vader import SentimentIntensityAnalyzer sns.set(style='white', context='notebook', palette='deep') from google.colab import drive drive.mount('/content/drive') PROJECT_PATH = '/content/drive/MyDrive/Colab/data/ma_data/' DATA = PROJECT_PATH + 'feedback_all_normalized.csv' DATA_EXPORT = PROJECT_PATH + 'feedback_all_vader_1.csv' sia = SentimentIntensityAnalyzer() print(sia.lexicon) domain_words = {"bruise": -3.0, "pity": -3.0, "thanks": 0.0, "glue": -2.0, "shortcoming": -3.0, "break": -3.0, "inflamed": -2.0, "reminder": -1.0, "reliable": 3.0, "uncomplicated": 2.0, "fast": 2.0, "kindly": 0.0, "confuse": -2.0, "blister": -3.0, "flaw": -3.0, "stain": -3.0, "complain": -2.0, "dissolve": -3.0, "apalled": -4.0, "discolor": -3.0, "spot": -2.0, "big": -1.5, "small": -1.5, "broken": -3.0, "worn": -3.0, "torn": -3.0, "hole": -3.0, "dirt": -3.0} sia.lexicon.update(domain_words) df_raw = pd.read_csv(DATA) df_raw[6:11] df = df_raw.copy() %%time pos_treshold = 0.8 neg_treshold = -0.25 df['vader'] = df['normalized_with_stopwords'].apply(lambda x: 'POSITIVE' if sia.polarity_scores(str(x))['compound'] >= pos_treshold else ('NEGATIVE' if sia.polarity_scores(str(x))['compound'] <= neg_treshold else 'NONE')) df['vader score'] = df['normalized_with_stopwords'].apply(lambda x: sia.polarity_scores(str(x))['compound']) df.iloc[idx, 8] # Original sentiment distribution df["sentiment"].value_counts(normalize=True) # Vader initial predictions df["vader"].value_counts(normalize=True) # No including stopwords df["vader"].value_counts(normalize=True) # With more stopwords v2 df["vader"].value_counts(normalize=True) # With more stopwords v3 df["vader"].value_counts(normalize=True) test_sia = "material error on the belt loop leather color flake off" sia.polarity_scores(test_sia) df_export = df[["feedback_text_en", "sentiment", "vader", "vader score", "delivery", "feedback_return", "product", "monetary", "one_hot_labels", "feedback_normalized", "normalized_with_stopwords"]] df_export.to_csv(DATA_EXPORT)
_____no_output_____
MIT
notebooks/ma02_data_sa_vader.ipynb
CouchCat/ma-zdash-nlp
Linear independence
import numpy as np from sympy.solvers import solve from sympy import Symbol x = Symbol('x') y = Symbol('y') z = Symbol('z')
_____no_output_____
MIT
juypter/notebooks/linear-algebra/3_linear_independence.ipynb
JamesMcGuigan/ecosystem-research
The set of vectors are called linearly independent because each of the vectors in the set {V0, V1, …, Vn−1} cannot be written as a combination of the others in the set. Linear Independent Arrays
A = np.array([1,1,1]) B = np.array([0,1,1]) C = np.array([0,0,1]) Z = np.array([0,0,0]) np.array_equal( Z, 0*A + 0*B + 0*C ) solve(x*A + y*B + z*C)
_____no_output_____
MIT
juypter/notebooks/linear-algebra/3_linear_independence.ipynb
JamesMcGuigan/ecosystem-research
Linear Dependent Arrays
A = np.array([1,1,1]) B = np.array([0,0,1]) C = np.array([1,1,0]) 1*A + -1*B + -1*C solve(x*A + y*B + z*C) A = np.array([1,2,3]) B = np.array([1,-4,-4]) C = np.array([3,0,2]) 2*A + 1*B + -C solve(x*A + y*B + z*C)
_____no_output_____
MIT
juypter/notebooks/linear-algebra/3_linear_independence.ipynb
JamesMcGuigan/ecosystem-research
Datasets and Neural NetworksThis notebook will step through the process of loading an arbitrary dataset in PyTorch, and creating a simple neural network for regression. DatasetsWe will first work through loading an arbitrary dataset in PyTorch. For this project, we chose the delve abalone dataset. First, download and unzip the dataset from the link above, then unzip `Dataset.data.gz` and move `Dataset.data` into `hackpack-ml/models/data`.We are given the following attribute information in the spec:```Attributes: 1 sex u M F I Gender or Infant (I) 2 length u (0,Inf] Longest shell measurement (mm) 3 diameter u (0,Inf] perpendicular to length (mm) 4 height u (0,Inf] with meat in shell (mm) 5 whole_weight u (0,Inf] whole abalone (gr) 6 shucked_weight u (0,Inf] weight of meat (gr) 7 viscera_weight u (0,Inf] gut weight (after bleeding) (gr) 8 shell_weight u (0,Inf] after being dried (gr) 9 rings u 0..29 +1.5 gives the age in years```
import math from tqdm import tqdm import torch import torch.nn as nn import torch.optim as optim import torch.utils.data as data import torch.nn.functional as F import pandas as pd from torch.utils.data import Dataset, DataLoader
_____no_output_____
MIT
models/dataset_nn/dataset_neural_nets.ipynb
TreeHacks/hackpack-ml
Pandas is a data manipulation library that works really well with structured data. We can use Pandas DataFrames to load the dataset.
col_names = ['sex', 'length', 'diameter', 'height', 'whole_weight', 'shucked_weight', 'viscera_weight', 'shell_weight', 'rings'] abalone_df = pd.read_csv('../data/Dataset.data', sep=' ', names=col_names) abalone_df.head(n=3)
_____no_output_____
MIT
models/dataset_nn/dataset_neural_nets.ipynb
TreeHacks/hackpack-ml
We define a subclass of PyTorch Dataset for our Abalone dataset.
class AbaloneDataset(data.Dataset): """Abalone dataset. Provides quick iteration over rows of data.""" def __init__(self, csv): """ Args: csv (string): Path to the Abalone dataset. """ self.features = ['sex', 'length', 'diameter', 'height', 'whole_weight', 'shucked_weight', 'viscera_weight', 'shell_weight'] self.y = ['rings'] self.abalone_df = pd.read_csv(csv, sep=' ', names=(self.features + self.y)) # Turn categorical data into machine interpretable format (one hot) self.abalone_df['sex'] = pd.get_dummies(self.abalone_df['sex']) def __len__(self): return len(self.abalone_df) def __getitem__(self, idx): """Return (x,y) pair where x are abalone features and y is age.""" features = self.abalone_df.iloc[idx][self.features].values y = self.abalone_df.iloc[idx][self.y] return torch.Tensor(features).float(), torch.Tensor(y).float()
_____no_output_____
MIT
models/dataset_nn/dataset_neural_nets.ipynb
TreeHacks/hackpack-ml
Neural NetworksThe task is to predict the age (number of rings) of abalone from physical measurements. We build a simple neural network with one hidden layer to model the regression.
class Net(nn.Module): def __init__(self, feature_size): super(Net, self).__init__() # feature_size input channels (8), 1 output channels self.fc1 = nn.Linear(feature_size, 4) self.fc2 = nn.Linear(4, 1) def forward(self, x): x = F.relu(self.fc1(x)) x = self.fc2(x) return x
_____no_output_____
MIT
models/dataset_nn/dataset_neural_nets.ipynb
TreeHacks/hackpack-ml
We instantiate an Abalone dataset instance and create DataLoaders for train and test sets.
dataset = AbaloneDataset('../data/Dataset.data') train_split, test_split = math.floor(len(dataset) * 0.8), math.ceil(len(dataset) * 0.2) trainset = [dataset[i] for i in range(train_split)] testset = [dataset[train_split + j] for j in range(test_split)] batch_sz = len(trainset) # Compact data allows for big batch size trainloader = data.DataLoader(trainset, batch_size=batch_sz, shuffle=True, num_workers=4) testloader = data.DataLoader(testset, batch_size=batch_sz, shuffle=False, num_workers=4)
_____no_output_____
MIT
models/dataset_nn/dataset_neural_nets.ipynb
TreeHacks/hackpack-ml
Now, we can initialize our network and define train and test functions
net = Net(len(dataset.features)) loss_fn = nn.MSELoss() optimizer = optim.Adam(net.parameters(), lr=0.1) device = 'cuda' if torch.cuda.is_available() else 'cpu' gpu_ids = [0] # On Colab, we have access to one GPU. Change this value as you see fit def train(epoch): """ Trains our net on data from the trainloader for a single epoch """ net.train() with tqdm(total=len(trainloader.dataset)) as progress_bar: for batch_idx, (inputs, targets) in enumerate(trainloader): inputs, targets = inputs.to(device), targets.to(device) optimizer.zero_grad() # Clear any stored gradients for new step outputs = net(inputs.float()) loss = loss_fn(outputs, targets) # Calculate loss between prediction and label loss.backward() # Backpropagate gradient updates through net based on loss optimizer.step() # Update net weights based on gradients progress_bar.set_postfix(loss=loss.item()) progress_bar.update(inputs.size(0)) def test(epoch): """ Run net in inference mode on test data. """ net.eval() # Ensures the net will not update weights with torch.no_grad(): with tqdm(total=len(testloader.dataset)) as progress_bar: for batch_idx, (inputs, targets) in enumerate(testloader): inputs, targets = inputs.to(device).float(), targets.to(device).float() outputs = net(inputs) loss = loss_fn(outputs, targets) progress_bar.set_postfix(testloss=loss.item()) progress_bar.update(inputs.size(0))
_____no_output_____
MIT
models/dataset_nn/dataset_neural_nets.ipynb
TreeHacks/hackpack-ml
Now that everything is prepared, it's time to train!
test_freq = 5 # Frequency to run model on validation data for epoch in range(0, 200): train(epoch) if epoch % test_freq == 0: test(epoch)
_____no_output_____
MIT
models/dataset_nn/dataset_neural_nets.ipynb
TreeHacks/hackpack-ml
We use the network's eval mode to do a sample prediction to see how well it does.
net.eval() sample = testset[0] predicted_age = net(sample[0]) true_age = sample[1] print(f'Input features: {sample[0]}') print(f'Predicted age: {predicted_age.item()}, True age: {true_age[0]}')
_____no_output_____
MIT
models/dataset_nn/dataset_neural_nets.ipynb
TreeHacks/hackpack-ml
Optimization with equality constraints
import math import numpy as np from scipy import optimize as opt
_____no_output_____
MIT
00-pre-requisitos/2-math/otimização-II.ipynb
sn3fru/datascience_course
maximize $.4\,\log(x_1)+.6\,\log(x_2)$ s.t. $x_1+3\,x_2=50$.
I = 50 p = np.array([1, 3]) U = lambda x: (.4*math.log(x[0])+.6*math.log(x[1])) x0 = (I/len(p))/np.array(p) budget = ({'type': 'eq', 'fun': lambda x: I-np.sum(np.multiply(x, p))}) opt.minimize(lambda x: -U(x), x0, method='SLSQP', constraints=budget, tol=1e-08, options={'disp': True, 'ftol': 1e-08}) def consumer(U, p, I): budget = ({'type': 'eq', 'fun': lambda x: I-np.sum(np.multiply(x, p))}) x0 = (I/len(p))/np.array(p) sol = opt.minimize(lambda x: -U(x), x0, method='SLSQP', constraints=budget, tol=1e-08, options={'disp': False, 'ftol': 1e-08}) if sol.status == 0: return {'x': sol.x, 'V': -sol.fun, 'MgU': -sol.jac, 'mult': -sol.jac[0]/p[0]} else: return 0 consumer(U, p, I) delta=.01 (consumer(U, p, I+delta)['V']-consumer(U, p, I-delta)['V'])/(2*delta) delta=.001 numerador = (consumer(U,p+np.array([delta, 0]), I)['V']-consumer(U,p+np.array([-delta, 0]), I)['V'])/(2*delta) denominador = (consumer(U, p, I+delta)['V']-consumer(U, p, I-delta)['V'])/(2*delta) -numerador/denominador
_____no_output_____
MIT
00-pre-requisitos/2-math/otimização-II.ipynb
sn3fru/datascience_course
Cost function
# Production function F = lambda x: (x[0]**.8)*(x[1]**.2) w = np.array([5, 4]) y = 1 constraint = ({'type': 'eq', 'fun': lambda x: y-F(x)}) x0 = np.array([.5, .5]) cost = opt.minimize(lambda x: w@x, x0, method='SLSQP', constraints=constraint, tol=1e-08, options={'disp': True, 'ftol': 1e-08}) F(cost.x) cost
_____no_output_____
MIT
00-pre-requisitos/2-math/otimização-II.ipynb
sn3fru/datascience_course
Exercise
a = 2 u = lambda c: -np.exp(-a*c) R = 2 Z2 = np.array([.72, .92, 1.12, 1.32]) Z3 = np.array([.86, .96, 1.06, 1.16]) def U(x): states = len(Z2)*len(Z3) U = u(x[0]) for z2 in Z2: for z3 in Z3: U += (1/states)*u(x[1]*R+x[2]*z2+x[3]*z3) return U p = np.array([1, 1, .5, .5]) I = 4 # a=1 consumer(U, p, I) # a=5 consumer(U, p, I) # a=2 consumer(U, p, I) import matplotlib.pyplot as plt x = np.arange(0.0, 2.0, 0.01) a = 2 u = lambda c: -np.exp(-a*c) plt.plot(x, u(x)) a = -2 plt.plot(x, u(x))
_____no_output_____
MIT
00-pre-requisitos/2-math/otimização-II.ipynb
sn3fru/datascience_course
Optimization with inequality constraints
f = lambda x: -x[0]**3+x[1]**2-2*x[0]*(x[2]**2) constraints =({'type': 'eq', 'fun': lambda x: 2*x[0]+x[1]**2+x[2]-5}, {'type': 'ineq', 'fun': lambda x: 5*x[0]**2-x[1]**2-x[2]-2}) constraints =({'type': 'eq', 'fun': lambda x: x[0]**3-x[1]}) x0 = np.array([.5, .5, 2]) opt.minimize(f, x0, method='SLSQP', constraints=constraints, tol=1e-08, options={'disp': True, 'ftol': 1e-08})
Optimization terminated successfully. (Exit mode 0) Current function value: -19.000000000000256 Iterations: 11 Function evaluations: 56 Gradient evaluations: 11
MIT
00-pre-requisitos/2-math/otimização-II.ipynb
sn3fru/datascience_course
Params:
aggregate_by_state = False outcome_type = 'cases'
_____no_output_____
MIT
modeling/basic_model_framework.ipynb
rahul263-stack/covid19-severity-prediction
Basic Data Visualization
# Just something to quickly summarize the number of cases and distributions each day # 'deaths' and 'cases' contain the time-series of the outbreak df = load_data.load_county_level(data_dir = '../data/') df = df.sort_values('#Deaths_3/30/2020', ascending=False) # outcome_cases = load_data.outcome_cases # most recent day # outcome_deaths = load_data.outcome_deaths important_vars = load_data.important_keys(df) very_important_vars = ['PopulationDensityperSqMile2010', # 'MedicareEnrollment,AgedTot2017', 'PopulationEstimate2018', '#ICU_beds', 'MedianAge2010', 'Smokers_Percentage', 'DiabetesPercentage', 'HeartDiseaseMortality', '#Hospitals' # 'PopMale60-642010', # 'PopFmle60-642010', # 'PopMale65-742010', # 'PopFmle65-742010', # 'PopMale75-842010', # 'PopFmle75-842010', # 'PopMale>842010', # 'PopFmle>842010' ] def sum_lists(list_of_lists): arr = np.array(list(list_of_lists)) sum_arr = np.sum(arr,0) return list(sum_arr) if aggregate_by_state: # Aggregate by State state_deaths_df = df.groupby('StateNameAbbreviation').deaths.agg(sum_lists).to_frame() state_cases_df = df.groupby('StateNameAbbreviation').cases.agg(sum_lists).to_frame() df = pd.concat([state_cases_df,state_deaths_df],axis =1 ) # Distribution of the maximum number of cases _cases = list(df['cases']) max_cases = [] for i in range(len(df)): max_cases.append(max(_cases[i])) print('Number of counties with non-zero cases') print(sum([v >0 for v in max_cases])) # cases truncated below 20 and above 1000 for plot readability plt.hist([v for v in max_cases if v > 20 and v < 1000],bins = 100) sum(max_cases) print(sum([v > 50 for v in max_cases])) np.quantile(max_cases,.5) # Distribution of the maximum number of cases _deaths = list(df['deaths']) max_deaths = [] for i in range(len(df)): max_deaths.append(max(_deaths[i])) print('Number of counties with non-zero deaths') print(sum([v > 0 for v in max_deaths])) # plt.hist(max_cases) # print(sum([v >0 for v in max_cases])) plt.hist([v for v in max_deaths if v > 5],bins=30) sum(max_deaths) max(max_deaths) np.quantile(max_deaths,.7)
_____no_output_____
MIT
modeling/basic_model_framework.ipynb
rahul263-stack/covid19-severity-prediction
Clean data
# Remove counties with zero cases max_cases = [max(v) for v in df['cases']] df['max_cases'] = max_cases max_deaths = [max(v) for v in df['deaths']] df['max_deaths'] = max_deaths df = df[df['max_cases'] > 0]
_____no_output_____
MIT
modeling/basic_model_framework.ipynb
rahul263-stack/covid19-severity-prediction
Predict data from model:
method_keys = [] # clear predictions for m in method_keys: del df[m] # target_day = np.array([1]) # # Trains model on train_df and produces predictions for the final day for test_df and writes prediction # # to a new column for test_df # # fit_and_predict(df, method='exponential', outcome=outcome_type, mode='eval_mode',target_day=target_day) # # fit_and_predict(df,method='shared_exponential', outcome=outcome_type, mode='eval_mode',target_day=target_day) # # fit_and_predict(train_df, test_df,'shared_exponential', mode='eval_mode',demographic_vars=important_vars) # # fit_and_predict(df,method='shared_exponential', outcome=outcome_type, mode='eval_mode',demographic_vars=very_important_vars,target_day=target_day) # fit_and_predict(df, outcome=outcome_type, mode='eval_mode',demographic_vars=[], # method='ensemble',target_day=target_day) # fit_and_predict(df, outcome=outcome_type, mode='eval_mode',demographic_vars=[], # method='ensemble',target_day=np.array([1,2,3])) # # fit_and_predict(train_df, test_d f,method='exponential',mode='eval_mode',target_day = np.array([1,2])) # # Finds the names of all the methods # method_keys = [c for c in df if 'predicted' in c] # method_keys # for days_ahead in [1, 2, 3]: # for method in ['exponential', 'shared_exponential', 'ensemble']: # fit_and_predict(df, method=method, outcome=outcome_type, mode='eval_mode',target_day=np.array([days_ahead])) # if method == 'shared_exponential': # fit_and_predict(df,method='shared_exponential', # outcome=outcome_type, # mode='eval_mode', # demographic_vars=very_important_vars, # target_day=np.array([days_ahead])) # method_keys = [c for c in df if 'predicted' in c] # geo = ['countyFIPS', 'CountyNamew/StateAbbrev'] # method_keys = [c for c in df if 'predicted' in c] # df_preds = df[method_keys + geo + ['deaths']] # df_preds.to_pickle("multi_day_6.pkl")
_____no_output_____
MIT
modeling/basic_model_framework.ipynb
rahul263-stack/covid19-severity-prediction
Ensemble predictions
exponential = {'model_type':'exponential'} shared_exponential = {'model_type':'shared_exponential'} demographics = {'model_type':'shared_exponential', 'demographic_vars':very_important_vars} linear = {'model_type':'linear'} # import fit_and_predict # for d in [1, 2, 3]: # df = fit_and_predict.fit_and_predict_ensemble(df, # target_day=np.array([d]), # mode='eval_mode', # outcome=outcome_type, # output_key=f'predicted_{outcome_type}_ensemble_{d}' # ) import fit_and_predict for d in [1, 3, 5, 7]: df = fit_and_predict.fit_and_predict_ensemble(df, target_day=np.array(range(1, d+1)), mode='eval_mode', outcome=outcome_type, methods=[exponential, shared_exponential, demographics, linear ], output_key=f'predicted_{outcome_type}_ensemble_{d}_with_exponential' ) method_keys = [c for c in df if 'predicted' in c] # df = fit_and_predict.fit_and_predict_ensemble(df) method_keys
_____no_output_____
MIT
modeling/basic_model_framework.ipynb
rahul263-stack/covid19-severity-prediction
Evaluate and visualize models Compute MSE and log MSE on relevant cases
# TODO: add average rank as metric # Computes the mse in log space and non-log space for all columns def l1(arr1,arr2,norm=True): """ arr2 ground truth arr1 predictions """ if norm: sum_percent_dif = 0 for i in range(len(arr1)): sum_percent_dif += np.abs(arr2[i]-arr1[i])/arr1[i] return sum_percent_dif/len(arr1) return sum([np.abs(a1-a2) for (a1,a2) in zip(arr1,arr2)])/len(arr1) mse = sklearn.metrics.mean_squared_error # Only evaluate points that exceed this number of deaths # lower_threshold, upper_threshold = 10, 100000 lower_threshold, upper_threshold = 10, np.inf # Log scaled outcome = np.array([df[outcome_type].values[i][-1] for i in range(len(df))]) for key in method_keys: preds = [np.log(p[-1] + 1) for p in df[key][(outcome > lower_threshold)]] # * (outcome < upper_threshold)]] print('Log scale MSE for '+key) print(mse(np.log(outcome[(outcome > lower_threshold) * (outcome < upper_threshold)] + 1),preds)) # Log scaled outcome = np.array([df[outcome_type].values[i][-1] for i in range(len(df))]) for key in method_keys: preds = [np.log(p[-1] + 1) for p in df[key][outcome > lower_threshold]] print('Log scale l1 for '+key) print(l1(np.log(outcome[outcome > lower_threshold] + 1),preds)) # No log scale outcome = np.array([df[outcome_type].values[i][-1] for i in range(len(df))]) for key in method_keys: preds = [p[-1] for p in df[key][outcome > lower_threshold]] print('Raw MSE for '+key) print(mse(outcome[outcome > lower_threshold],preds)) # No log scale outcome = np.array([df[outcome_type].values[i][-1] for i in range(len(df))]) for key in method_keys: preds = [p[-1] for p in df[key][outcome > lower_threshold]] print('Raw l1 for '+key) print(l1(outcome[outcome > lower_threshold],preds)) # No log scale outcome = np.array([df[outcome_type].values[i][-1] for i in range(len(df))]) for key in method_keys: preds = [p[-1] for p in df[key][outcome > lower_threshold]] print('Raw l1 for '+key) print(l1(outcome[outcome > lower_threshold],preds,norm=False))
Raw l1 for predicted_cases_ensemble_1 15.702192279696032 Raw l1 for predicted_cases_ensemble_3 56.27341453693248
MIT
modeling/basic_model_framework.ipynb
rahul263-stack/covid19-severity-prediction
Plot residuals
# TODO: Create bounds automatically, create a plot function and call it instead of copying code, figure out way # to plot more than two things at once cleanly # Creates residual plots log scaled and raw # We only look at cases with number of deaths greater than 5 def method_name_to_pretty_name(key): # TODO: hacky, fix words = key.split('_') words2 = [] for w in words: if not w.isnumeric(): words2.append(w) else: num = w model_name = ' '.join(words2[2:]) # model_name = 'model' if num == '1': model_name += ' predicting 1 day ahead' else: model_name += ' predicting ' +w+' days ahead' return model_name # Make log plots: bounds = [1.5, 7] outcome = np.array([df[outcome_type].values[i][-1] for i in range(len(df))]) for key in method_keys: preds = [np.log(p[-1]) for p in df[key][outcome > 5]] plt.scatter(np.log(outcome[outcome > 5]),preds,label=method_name_to_pretty_name(key)) plt.xlabel('actual '+outcome_type) plt.ylabel('predicted '+outcome_type) plt.xlim(bounds) plt.ylim(bounds) plt.legend() plt.plot(bounds, bounds, ls="--", c=".3") plt.show() # Make log plots zoomed in for the counties that have a fewer number of deaths bounds = [1.5, 4] outcome = np.array([df[outcome_type].values[i][-1] for i in range(len(df))]) for key in method_keys: preds = [np.log(p[-1]) for p in df[key][outcome > 5]] plt.scatter(np.log(outcome[outcome > 5]),preds,label=method_name_to_pretty_name(key)) plt.xlabel('actual '+outcome_type) plt.ylabel('predicted '+outcome_type) plt.xlim(bounds) plt.ylim(bounds) plt.legend() plt.plot(bounds, bounds, ls="--", c=".3") plt.show() # Make non-log plots zoomed in for the counties that have a fewer number of deaths# We set bounds bounds = [10,400] outcome = np.array([df[outcome_type].values[i][-1] for i in range(len(df))]) for key in method_keys: preds = [p[-1] for p in df[key][outcome > 5]] plt.scatter(outcome[outcome > 5],preds,label=method_name_to_pretty_name(key)) plt.xlabel('actual '+outcome_type) plt.ylabel('predicted '+outcome_type) plt.xlim(bounds) plt.ylim(bounds) plt.legend() plt.plot(bounds, bounds, ls="--", c=".3") plt.show()
_____no_output_____
MIT
modeling/basic_model_framework.ipynb
rahul263-stack/covid19-severity-prediction
Graph Visualizations
# Here we visualize predictions on a per county level. # The blue lines are the true number of deaths, and the dots are our predictions for each model for those days. def plot_prediction(row): """ Plots model predictions vs actual row: dataframe row window: autoregressive window size """ gold_key = outcome_type for i,val in enumerate(row[gold_key]): if val > 0: start_point = i break # plt.plot(row[gold_key][start_point:], label=gold_key) if len(row[gold_key][start_point:]) < 3: return sns.lineplot(list(range(len(row[gold_key][start_point:]))),row[gold_key][start_point:], label=gold_key) for key in method_keys: preds = row[key] sns.scatterplot(list(range(len(row[gold_key][start_point:])))[-len(preds):],preds,label=method_name_to_pretty_name(key)) # plt.scatter(list(range(len(row[gold_key][start_point:])))[-len(preds):],preds,label=key) # plt.legend() # plt.show() # sns.legend() plt.title(row['CountyName']+' in '+row['StateNameAbbreviation']) plt.ylabel(outcome_type) plt.xlabel('Days since first death') plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) plt.figure(dpi=500) plt.show() # feature_vals = { # 'PopulationDensityperSqMile2010' : 1.1525491065255939e-05, # "MedicareEnrollment,AgedTot2017" : -2.119520577282583e-06, # 'PopulationEstimate2018' : 2.8898343032154275e-07, # '#ICU_beds' : -0.000647030727828718, # 'MedianAge2010' : 0.05032666600339253, # 'Smokers_Percentage' : -0.013410742818946319, # 'DiabetesPercentage' : 0.04395318355581005, # 'HeartDiseaseMortality' : 0.0015473771787186525, # '#Hospitals': 0.019248102357644396, # 'log(deaths)' : 0.8805209010821442, # 'bias' : -1.871552103871495 # } df = df.sort_values(by='max_deaths',ascending=False) for i in range(len(df)): row = df.iloc[i] # If number of deaths greater than 10 if max(row['deaths']) > 10: print(row['CountyName']+' in '+row['StateNameAbbreviation']) plot_prediction(row) for v in very_important_vars: print(v+ ': '+str(row[v])) #+';\t contrib: '+ str(feature_vals[v]*float(row[v]))) print('\n')
_____no_output_____
MIT
modeling/basic_model_framework.ipynb
rahul263-stack/covid19-severity-prediction
0) Carregamento as bibliotecas
# Mostra múltiplos resultados em uma única saída: from IPython.core.interactiveshell import InteractiveShell InteractiveShell.ast_node_interactivity = "all" from IPython.display import Math import pandas as pd import numpy as np import geopandas as gpd import os import pysal from pyproj import CRS from shapely.geometry import Point, MultiPoint, Polygon, mapping %matplotlib inline import matplotlib as mpl import matplotlib.pyplot as plt import pickle
C:\Users\Jorge\Anaconda3\lib\site-packages\pysal\explore\segregation\network\network.py:16: UserWarning: You need pandana and urbanaccess to work with segregation's network module You can install them with `pip install urbanaccess pandana` or `conda install -c udst pandana urbanaccess` "You need pandana and urbanaccess to work with segregation's network module\n" C:\Users\Jorge\Anaconda3\lib\site-packages\pysal\model\spvcm\abstracts.py:10: UserWarning: The `dill` module is required to use the sqlite backend fully. from .sqlite import head_to_sql, start_sql
MIT
NT02-Bahia (NRS Sul).ipynb
pedreirajr/GeoCombatCOVID19
1) Leitura dos Banco de Dados: **(a) Dados SIH 2019:**
df = pd.read_csv("NT02 - Bahia/SIH/sih_17-19.csv") #pickle.dump(df, open('sih_2019', 'wb')) #df = pickle.load(open('sih_2019','rb')) df.info() df.head() df.rename(columns={'MES_CMPT':'Mes','DT_INTER':'DT_Inter','DT_SAIDA':'DT_Saida','MUNIC_RES':'Cod_Municipio_Res', 'MUNIC_MOV':'Cod_Municipio','DIAG_PRINC':'Diagnostico','PROC_REA':'Procedimento','COMPLEX':'Complexidade', 'QT_DIARIAS':'Quantidade Diarias'}, inplace=True) df = df.astype({'Cod_Municipio_Res': 'str','Cod_Municipio':'str','DT_Inter':'str','DT_Saida':'str', 'Complexidade':'str','Procedimento':'str'}) df.info() df['Complexidade'] = df['Complexidade'].replace(['2','3'],['Média','Alta']) df.head()
_____no_output_____
MIT
NT02-Bahia (NRS Sul).ipynb
pedreirajr/GeoCombatCOVID19
* **Formatação para datas:**
from datetime import datetime df['DT_Inter'] = df['DT_Inter'].apply(lambda x: pd.to_datetime(x, format = '%Y%m%d')) df['DT_Saida'] = df['DT_Saida'].apply(lambda x: pd.to_datetime(x, format = '%Y%m%d')) pickle.dump(df, open('sih', 'wb')) df = pickle.load(open('sih','rb')) df2 = df.drop_duplicates(subset ="N_AIH",keep = 'last') len(df2) #Total de internações em hospitais baianos len(df2[df2['Cod_Municipio_Res'].str.startswith('29')]) # Internações em hospitais baianos de indivíduos que moram na bahia 2550223/2579967
_____no_output_____
MIT
NT02-Bahia (NRS Sul).ipynb
pedreirajr/GeoCombatCOVID19
**(b) Shape municípios:**
mun = gpd.read_file("NT02 - Bahia/mun_br.shp") mun = mun.to_crs(CRS("WGS84")); mun.crs mun.info() mun.head() mun.plot(); plt.show(); mun_ba = mun[mun['GEOCODIGO'].str.startswith('29')].copy() mun_ba.head() mun_ba[mun_ba['GEOCODIGO'].str.startswith('290160')] mun_ba[mun_ba['NOME']=='Sítio do Quinto'] mun_ba[mun_ba['NOME']=='Antas'] mun_ba.plot(); plt.show();
_____no_output_____
MIT
NT02-Bahia (NRS Sul).ipynb
pedreirajr/GeoCombatCOVID19
**Adicionando a população de 2019 (IBGE):**
pop = gpd.read_file('NT02 - Bahia/IBGE - Estimativa popul 2019.shp') pop.head() mun_ba['Pop'] = 0 for i, row in mun_ba.iterrows(): mun_ba.loc[i,'Pop'] = pop[pop['Codigo']==row['GEOCODIGO']]['p_pop_2019'].values[0]
_____no_output_____
MIT
NT02-Bahia (NRS Sul).ipynb
pedreirajr/GeoCombatCOVID19
**Adicionando Casos até 24/04:**
casos = gpd.read_file('NT02 - Bahia/Evolução/data_shape_ba_mod(1).shp') casos.info() mun_ba['c20200424'] = 0 for i, row in mun_ba.iterrows(): mun_ba.loc[i,'c20200424'] = casos[casos['Codigo']==row['GEOCODIGO']]['2020-04-24'].values[0] mun_ba['c20200424'] = mun_ba['c20200424'].fillna(0)
_____no_output_____
MIT
NT02-Bahia (NRS Sul).ipynb
pedreirajr/GeoCombatCOVID19
**Calculando prevalências (com base em 24/04):**
mun_ba['prev'] = (mun_ba['c20200424']/mun_ba['Pop'])*100000 mun_ba.sort_values(by='prev', ascending = False)
_____no_output_____
MIT
NT02-Bahia (NRS Sul).ipynb
pedreirajr/GeoCombatCOVID19
(2) Internações nos Hospitais BA **(a) Quantidade de indivíduos:**
mun_ba['Qtd_Tot'] = 0 mun_ba['Qtd_Fora'] = 0 mun_ba['Qtd_CplxM'] = 0 mun_ba['Qtd_CplxA'] = 0 mun_ba['Dia_Tot'] = 0 mun_ba['Dia_CplxM'] = 0 mun_ba['Dia_CplxA'] = 0
_____no_output_____
MIT
NT02-Bahia (NRS Sul).ipynb
pedreirajr/GeoCombatCOVID19
**Período de 01/07/2018 a 30/06/2019:**
from datetime import date per = pd.date_range(date(2018,7,1), periods=365).tolist() per[0] per[-1] # Entraram em alguma data até 30/06/2019 e saíram entre 01/07/2018 até 30/06/2019 df_BA = df2[(df2['DT_Inter'] <= per[-1]) & (df2['DT_Saida'] >= per[0]) & (df2['DT_Saida'] <= per[-1])] #df_BA = df2[(df2['Cod_Municipio'].str.startswith('29')) & (df2['Cod_Municipio_Res'].str.startswith('29'))].copy() df_BA.head() for i, row in mun_ba.iterrows(): mun_ba.loc[i,'Qtd_Tot'] = len(df_BA[df_BA['Cod_Municipio']==row['GEOCODIGO'][:-1]]) mun_ba.loc[i,'Qtd_Fora'] = len(df_BA[(df_BA['Cod_Municipio']==row['GEOCODIGO'][:-1]) & (df2['Cod_Municipio_Res']!=row['GEOCODIGO'][:-1])]) mun_ba.loc[i,'Qtd_CplxM'] = len(df_BA[(df_BA['Cod_Municipio']==row['GEOCODIGO'][:-1]) & (df_BA['Complexidade']=='Média')]) mun_ba.loc[i,'Qtd_CplxA'] = len(df_BA[(df_BA['Cod_Municipio']==row['GEOCODIGO'][:-1]) & (df_BA['Complexidade']=='Alta')]) mun_ba.loc[i,'Dia_Tot'] = df_BA[df_BA['Cod_Municipio']==row['GEOCODIGO'][:-1]]['Quantidade Diarias'].sum() mun_ba.loc[i,'Dia_CplxM'] = df_BA[(df_BA['Cod_Municipio']==row['GEOCODIGO'][:-1]) & (df_BA['Complexidade']=='Média')]['Quantidade Diarias'].sum() mun_ba.loc[i,'Dia_CplxA'] = df_BA[(df_BA['Cod_Municipio']==row['GEOCODIGO'][:-1]) & (df_BA['Complexidade']=='Alta')]['Quantidade Diarias'].sum() fig, ax = plt.subplots(figsize=(15,15)); mun_ba.plot(ax = ax, column = 'Qtd_Tot'); mun_ba.to_file('NT02 - Bahia/intern_ba.shp') mun_ba = gpd.read_file('NT02 - Bahia/intern_ba.shp')
_____no_output_____
MIT
NT02-Bahia (NRS Sul).ipynb
pedreirajr/GeoCombatCOVID19