markdown
stringlengths
0
1.02M
code
stringlengths
0
832k
output
stringlengths
0
1.02M
license
stringlengths
3
36
path
stringlengths
6
265
repo_name
stringlengths
6
127
Anonymizing Personally Identifiable Information (PII)There will be many cases where the data will contain PersonallyIdentifiable Information which we cannot disclose. In these cases, wewill want our Tabular Models to replace the information within thesefields with fake, simulated data that looks similar to the real one butdoes not contain any of the original values.Let\'s load a new dataset that contains a PII field, the`student_placements_pii` demo, and try to generate synthetic versions ofit that do not contain any of the PII fields.**Note**The `student_placements_pii` dataset is a modified version of the`student_placements` dataset with one new field, `address`, whichcontains PII information about the students. Notice that this additional`address` field has been simulated and does not correspond to data fromthe real users.
data_pii = load_tabular_demo('student_placements_pii') data_pii.head()
_____no_output_____
MIT
tutorials/single_table_data/04_TVAE_Model.ipynb
HDI-Project/SDV
If we use our tabular model on this new data we will see how thesynthetic data that it generates discloses the addresses from the realstudents:
model = TVAE( primary_key='student_id', ) model.fit(data_pii) new_data_pii = model.sample(200) new_data_pii.head()
_____no_output_____
MIT
tutorials/single_table_data/04_TVAE_Model.ipynb
HDI-Project/SDV
More specifically, we can see how all the addresses that have beengenerated actually come from the original dataset:
new_data_pii.address.isin(data_pii.address).sum()
_____no_output_____
MIT
tutorials/single_table_data/04_TVAE_Model.ipynb
HDI-Project/SDV
In order to solve this, we can pass an additional argument`anonymize_fields` to our model when we create the instance. This`anonymize_fields` argument will need to be a dictionary that contains:- The name of the field that we want to anonymize.- The category of the field that we want to use when we generate fake values for it.The list complete list of possible categories can be seen in the [FakerProviders](https://faker.readthedocs.io/en/master/providers.html) page,and it contains a huge list of concepts such as:- name- address- country- city- ssn- credit_card_number- credit_card_expire- credit_card_security_code- email- telephone- \...In this case, since the field is an address, we will pass adictionary indicating the category `address`
model = TVAE( primary_key='student_id', anonymize_fields={ 'address': 'address' } ) model.fit(data_pii)
_____no_output_____
MIT
tutorials/single_table_data/04_TVAE_Model.ipynb
HDI-Project/SDV
As a result, we can see how the real `address` values have been replacedby other fake addresses:
new_data_pii = model.sample(200) new_data_pii.head()
_____no_output_____
MIT
tutorials/single_table_data/04_TVAE_Model.ipynb
HDI-Project/SDV
Which means that none of the original addresses can be found in thesampled data:
data_pii.address.isin(new_data_pii.address).sum()
_____no_output_____
MIT
tutorials/single_table_data/04_TVAE_Model.ipynb
HDI-Project/SDV
As we can see, in this case these modifications changed the obtainedresults slightly, but they did neither introduce dramatic changes in theperformance. Conditional SamplingAs the name implies, conditional sampling allows us to sample from a conditional distribution using the `TVAE` model, which means we can generate only values that satisfy certain conditions. These conditional values can be passed to the `sample_conditions` method as a list of `sdv.sampling.Condition` objects or to the `sample_remaining_columns` method as a dataframe. When specifying a `sdv.sampling.Condition` object, we can pass in the desired conditions as a dictionary, as well as specify the number of desired rows for that condition.
from sdv.sampling import Condition condition = Condition({ 'gender': 'M' }, num_rows=5) model.sample_conditions(conditions=[condition])
_____no_output_____
MIT
tutorials/single_table_data/04_TVAE_Model.ipynb
HDI-Project/SDV
It's also possible to condition on multiple columns, such as `gender = M, 'experience_years': 0`.
condition = Condition({ 'gender': 'M', 'experience_years': 0 }, num_rows=5) model.sample_conditions(conditions=[condition])
_____no_output_____
MIT
tutorials/single_table_data/04_TVAE_Model.ipynb
HDI-Project/SDV
In the `sample_remaining_columns` method, `conditions` is passed as a dataframe. In that case, the model will generate one sample for each row of the dataframe, sorted in the same order. Since the model already knows how many samples to generate, passing it as a parameter is unnecessary. For example, if we want to generate three samples where `gender = M` and three samples with `gender = F`, we can do the following:
import pandas as pd conditions = pd.DataFrame({ 'gender': ['M', 'M', 'M', 'F', 'F', 'F'], }) model.sample_remaining_columns(conditions)
_____no_output_____
MIT
tutorials/single_table_data/04_TVAE_Model.ipynb
HDI-Project/SDV
`TVAE` also supports conditioning on continuous values, as long as the values are within the range of seen numbers. For example, if all the values of the dataset are within 0 and 1, `TVAE` will not be able to set this value to 1000.
condition = Condition({ 'degree_perc': 70.0 }, num_rows=5) model.sample_conditions(conditions=[condition])
_____no_output_____
MIT
tutorials/single_table_data/04_TVAE_Model.ipynb
HDI-Project/SDV
Lesson 1 - Introduction Getting to know the Notebook Two types of cells:* Code cells* Text cells Hi hello! Hi hello. (shift + enter = executes) This is a **text** cell. It can be formatted with **images**, **HTML**, **LaTeX**. For example **LaTeX**:$Y_t - Y_{t-1} = \rho Y_{t-1} - Y_{t-1} + \epsilon $$\Delta Y_t = (\rho - 1) Y_{t-1} + \epsilon$**Image**: ![image.png]()
# Header 1 ## Section 1.1 ### Sub-section 1.1.1 #### And we can continue # this is number # comment 5 6+2 2 + 2 5 + 2 # Pay attention to the execution order! 5 / 2
_____no_output_____
MIT
Python4Scientists_Lesson1.ipynb
cordmaur/PythonForScientists
Note It has some differences to the standard implementation of Jupyter Notebook (ex. shortcuts)--- Basic Types (part 1) Numbers
# integers 265 # Real (called float) 235.45 # Binary (called Boolean) True, False # complex 2 + 4j # function(123123) type(2 + 4j) type(2), type(2.) type(3/2) 3/2
_____no_output_____
MIT
Python4Scientists_Lesson1.ipynb
cordmaur/PythonForScientists
OperationsAll arithmetic operators: * +, -, *, /* %, **, //
# % -> Modulus operator print(13/5) print(13%5) # // -> Floor division 13//2 # ** -> expoent 3**3 # operators precedence print( 2*2**2 ) print( (2*2)**2 )
8 16
MIT
Python4Scientists_Lesson1.ipynb
cordmaur/PythonForScientists
**Note:** Don't use square brackets [ ].or curly brackets to write expressions Comparison Operators==, !=, >, =, <=
# the result is always a boolean 2 == 3 1>2 int(True) float(2) 123 >= 122.99 # comparing two objects 123 == "123", 123 != "123" int("234") # Remove int to raise error 123 <= int("234")
_____no_output_____
MIT
Python4Scientists_Lesson1.ipynb
cordmaur/PythonForScientists
Logical OperatorsAlways compare booleans and, or, not
not True 2 < 5 and (3 < 4) not (2 > 5) or (3 < 4)
_____no_output_____
MIT
Python4Scientists_Lesson1.ipynb
cordmaur/PythonForScientists
https://www.programiz.com/python-programming/precedence-associativity
# it doesn't matter the precedence # True and True or False and not False
_____no_output_____
MIT
Python4Scientists_Lesson1.ipynb
cordmaur/PythonForScientists
Bitwise operators* & - AND* | - OR* ^ - XOR* ~ - NOT* << Left shift* '>>' Right shiftIf you thought you could skip this class....https://medium.com/analytics-vidhya/python-for-geosciences-raster-bit-masks-explained-step-by-step-8620ed27141e![image.png]() Strings
"Hello World!" "5 + 2" "Hello" + " world!" "Hello" == "Hello!" # check alphabetical order "Jean" > "Albin" 3 == "3" # Some operations are note defined # "Hello" - "H" "Hello" < str(3) 12/ 33333
_____no_output_____
MIT
Python4Scientists_Lesson1.ipynb
cordmaur/PythonForScientists
Variables
a = 23 b = 7.89 type(a), type(b) a + b s = "Hello world!" print(s) type(s) a < b
_____no_output_____
MIT
Python4Scientists_Lesson1.ipynb
cordmaur/PythonForScientists
ListsUp to now, everything could be done with a good calculator... now things will get better.Ordered, accepts duplicates (diff from set) and can contain different data types.
lst = [1, "Hello", 3.5, 4, ["innerList_item1", "innerList_item2"], 6] lst len(lst)
_____no_output_____
MIT
Python4Scientists_Lesson1.ipynb
cordmaur/PythonForScientists
Indexing/SlicingIt's a way to refer to individual/subset of items within a list.Python indexing is Zero-Based
# Examples of indexing # Get the first item and the last item lst[0], lst[-1] lst[5] # Get second and penultimate itens lst[1], lst[-2] # Examples of slicing # OBS: The slicing don't include the last item. So, 0:3 will return the 3 first # elements # [1, 10) - > 1.....9 # Syntax is: list[first index:last_index (excludent)] lst[0:3] lst[3:6] list2 = lst[-2] lst[-2][0] # It can work with strings, as well lst[-2][0][-5:] lst[-2][0][:5]
_____no_output_____
MIT
Python4Scientists_Lesson1.ipynb
cordmaur/PythonForScientists
Acessing object members
type(lst) # crtl+space lst.index? lst.index(4) help(lst.append) lst.append? lst.append('last element') lst len(lst) lst.index('Hello') lst[-1] = 'last' lst
_____no_output_____
MIT
Python4Scientists_Lesson1.ipynb
cordmaur/PythonForScientists
String Members
s.replace('Hello', 'Hi') s.lower() s.swapcase() '234'.isnumeric() s.isnumeric?
_____no_output_____
MIT
Python4Scientists_Lesson1.ipynb
cordmaur/PythonForScientists
We will now see how to control the flow execution of a program. There are important structures missing like **tuples**, **dictionaries**, **sets**, etc... We will come back to them afterwards. Flow control If-statement (if-then-else) **basic usage is:** if condition:> flow if condition is satisfiedelse:> flow if condition is not satisfied**Extended version:**if condition:> flow if condition is satisfiedelif condition2:> flow if condition2 is satisfiedelif condition3:> flow if condition3 is satisfiedelse:> flow if now condition is satisfiedCondition is always a boolean
# indent x = 18276748451 if x % 2 == 0: print(x) print('This number is even') else: print(x) print('This number is odd') x = input("Please, enter an integer:") # The result of the input function is always a string. # We have to convert it to an integer before proceeding. x = int(x) if x < 0: print('Negative') elif x > 0: print('Positive') else: print('Zero') print('finished')
Please, enter an integer:2 Positive finished
MIT
Python4Scientists_Lesson1.ipynb
cordmaur/PythonForScientists
While statement while condition (is met):> do something
# good to count start = 1 end = 1000 while start <= end: print(start) start = start + 1 # combine flow control and loops (printing just numbers divisable by 3) i = 0 while i <= 100: if i % 3 == 0: print(i) i = i + 1 # Create a list with number divisible by 3 from 0 to 100 current_number = 0 lst = [] while current_number < 100: if current_number%3 == 0: lst.append(current_number) current_number += 1 str(lst) # Create a list with the 10 first odd numbers? current_number = 0 lst = [] while len(lst) < 10: if current_number%2 != 0: lst.append(current_number) current_number += 1 lst # New we can iterate through a list (old-style) # Calculate the square i = 0 while i < len(lst): print(lst[i]**2) i += 1
0 9 36 81 144 225 324 441 576 729 900 1089 1296 1521 1764 2025 2304 2601 2916 3249 3600 3969 4356 4761 5184 5625 6084 6561 7056 7569 8100 8649 9216 9801
MIT
Python4Scientists_Lesson1.ipynb
cordmaur/PythonForScientists
For statement **Basic usage:**for variable in "list" (Iterable):> do something
# to calculate the square of these... for anything in lst: print(anything/2)
0.0 1.5 3.0 4.5 6.0 7.5 9.0 10.5 12.0 13.5 15.0 16.5 18.0 19.5 21.0 22.5 24.0 25.5 27.0 28.5 30.0 31.5 33.0 34.5 36.0 37.5 39.0 40.5 42.0 43.5 45.0 46.5 48.0 49.5
MIT
Python4Scientists_Lesson1.ipynb
cordmaur/PythonForScientists
That's something different from older (lower level) languages like C, C++, Pascal, Fortran, etc. **Note: There is no condition in Python's `for statement`**
# range(start, end, step) for i in range(10, 0, -2): print(i)
10 8 6 4 2
MIT
Python4Scientists_Lesson1.ipynb
cordmaur/PythonForScientists
Exercise We have the precipitation for one month and corresponding days.
import random random.randint? # create the days and daily rain random.seed(1) daily_rain = [] day_of_month = [] for i in range(1, 32, 1): day_of_month.append(i) daily_rain.append(random.randint(0, 100)) str(day_of_month), str(daily_rain) import matplotlib.pyplot as plt plt.figure(figsize=(18, 9)) plt.bar(day_of_month, daily_rain)
_____no_output_____
MIT
Python4Scientists_Lesson1.ipynb
cordmaur/PythonForScientists
Answer these questions:* number of days with rain* day of the maximum rain and day of the minimum rain* total rain* mean rain* Challenge: order the days according to the rain precipitation. Descending order (from highest to lowest). Ex: [12, 7, ...] Extra - n-dimensional matrices as combination of lists
# create a checkerboard l1 = [0, 1, 0, 1, 0, 1, 0, 1] l2 = [1, 0, 1, 0, 1, 0, 1, 0] l3 = [0, 1, 0, 1, 0, 1, 0, 1] l4 = [1, 0, 1, 0, 1, 0, 1, 0] l5 = [0, 1, 0, 1, 0, 1, 0, 1] l6 = [1, 0, 1, 0, 1, 0, 1, 0] l7 = [0, 1, 0, 1, 0, 1, 0, 1] l8 = [1, 0, 1, 0, 1, 0, 1, 0] m = [l1, l2, l3, l4, l5, l6, l7, l8] m m[2][2] type(m[2]) plt.imshow(m, cmap='hot') size = 12 m = [] for i in range(size): # lines line = [] for j in range(size): # columns line.append(i%2 == j%2) m.append(line) plt.imshow(m, cmap='hot') linha = [] i = 0 while i < 256: linha.append(i) i = i + 1 str(linha) m = [] i = 0 while i < 256: m.append(linha) i = i + 1 plt.imshow(m, cmap='hot')
_____no_output_____
MIT
Python4Scientists_Lesson1.ipynb
cordmaur/PythonForScientists
_*H2 ground state energy computation using Iterative QPE*_This notebook demonstrates using Qiskit Chemistry to plot graphs of the ground state energy of the Hydrogen (H2) molecule over a range of inter-atomic distances using IQPE (Iterative Quantum Phase Estimation) algorithm. It is compared to the same energies as computed by the ExactEigensolverThis notebook populates a dictionary, that is a progammatic representation of an input file, in order to drive the qiskit_chemistry stack. Such a dictionary can be manipulated programmatically and this is indeed the case here where we alter the molecule supplied to the driver in each loop.This notebook has been written to use the PYSCF chemistry driver. See the PYSCF chemistry driver readme if you need to install the external PySCF library that this driver requires.
import numpy as np import pylab from qiskit import LegacySimulators from qiskit_chemistry import QiskitChemistry import time # Input dictionary to configure Qiskit Chemistry for the chemistry problem. qiskit_chemistry_dict = { 'driver': {'name': 'PYSCF'}, 'PYSCF': {'atom': '', 'basis': 'sto3g'}, 'operator': {'name': 'hamiltonian', 'transformation': 'full', 'qubit_mapping': 'parity'}, 'algorithm': {'name': ''}, 'initial_state': {'name': 'HartreeFock'}, } molecule = 'H .0 .0 -{0}; H .0 .0 {0}' algorithms = [ { 'name': 'IQPE', 'num_iterations': 16, 'num_time_slices': 3000, 'expansion_mode': 'trotter', 'expansion_order': 1, }, { 'name': 'ExactEigensolver' } ] backends = [ LegacySimulators.get_backend('qasm_simulator'), None ] start = 0.5 # Start distance by = 0.5 # How much to increase distance by steps = 20 # Number of steps to increase by energies = np.empty([len(algorithms), steps+1]) hf_energies = np.empty(steps+1) distances = np.empty(steps+1) import concurrent.futures import multiprocessing as mp import copy def subrountine(i, qiskit_chemistry_dict, d, backend, algorithm): solver = QiskitChemistry() qiskit_chemistry_dict['PYSCF']['atom'] = molecule.format(d/2) qiskit_chemistry_dict['algorithm'] = algorithm result = solver.run(qiskit_chemistry_dict, backend=backend) return i, d, result['energy'], result['hf_energy'] start_time = time.time() max_workers = max(4, mp.cpu_count()) with concurrent.futures.ProcessPoolExecutor(max_workers=max_workers) as executor: futures = [] for j in range(len(algorithms)): algorithm = algorithms[j] backend = backends[j] for i in range(steps+1): d = start + i*by/steps future = executor.submit( subrountine, i, copy.deepcopy(qiskit_chemistry_dict), d, backend, algorithm ) futures.append(future) for future in concurrent.futures.as_completed(futures): i, d, energy, hf_energy = future.result() energies[j][i] = energy hf_energies[i] = hf_energy distances[i] = d print(' --- complete') print('Distances: ', distances) print('Energies:', energies) print('Hartree-Fock energies:', hf_energies) print("--- %s seconds ---" % (time.time() - start_time)) pylab.plot(distances, hf_energies, label='Hartree-Fock') for j in range(len(algorithms)): pylab.plot(distances, energies[j], label=algorithms[j]['name']) pylab.xlabel('Interatomic distance') pylab.ylabel('Energy') pylab.title('H2 Ground State Energy') pylab.legend(loc='upper right') pylab.show() pylab.plot(distances, np.subtract(hf_energies, energies[1]), label='Hartree-Fock') pylab.plot(distances, np.subtract(energies[0], energies[1]), label='IQPE') pylab.xlabel('Interatomic distance') pylab.ylabel('Energy') pylab.title('Energy difference from ExactEigensolver') pylab.legend(loc='upper right') pylab.show()
_____no_output_____
Apache-2.0
community/aqua/chemistry/h2_iqpe.ipynb
Chibikuri/qiskit-tutorials
ML Pipeline PreparationFollow the instructions below to help you create your ML pipeline. 1. Import libraries and load data from database.- Import Python libraries- Load dataset from database with [`read_sql_table`](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_sql_table.html)- Define feature and target variables X and Y
# import necessary libraries import pandas as pd import numpy as np import os import pickle import nltk import re from sqlalchemy import create_engine import sqlite3 from nltk.tokenize import word_tokenize, RegexpTokenizer from nltk.stem import WordNetLemmatizer from sklearn.metrics import confusion_matrix from sklearn.model_selection import train_test_split from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer from sklearn.multioutput import MultiOutputClassifier from sklearn.pipeline import Pipeline, FeatureUnion from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import GridSearchCV from sklearn.metrics import classification_report from sklearn.naive_bayes import MultinomialNB from sklearn.tree import DecisionTreeClassifier from sklearn.base import BaseEstimator, TransformerMixin from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier,AdaBoostClassifier from sklearn.pipeline import Pipeline, FeatureUnion from sklearn.model_selection import GridSearchCV from sklearn.metrics import make_scorer, accuracy_score, f1_score, fbeta_score, classification_report from sklearn.metrics import precision_recall_fscore_support from scipy.stats import hmean from scipy.stats.mstats import gmean from nltk.corpus import stopwords nltk.download(['punkt', 'wordnet', 'averaged_perceptron_tagger', 'stopwords']) import matplotlib.pyplot as plt %matplotlib inline # load data from database engine = create_engine('sqlite:///InsertDatabaseName.db') df = pd.read_sql("SELECT * FROM InsertTableName", engine) df.head() # View types of unque 'genre' attribute genre_types = df.genre.value_counts() genre_types # check for attributes with missing values/elements df.isnull().mean().head() # drops attributes with missing values df.dropna() df.head() # load data from database with 'X' as attributes for message column X = df["message"] # load data from database with 'Y' attributes for the last 36 columns Y = df.drop(['id', 'message', 'original', 'genre'], axis = 1)
_____no_output_____
FTL
ML Pipeline Preparation.ipynb
Sanmilee/Disaster-Response-Pipeline
2. Write a tokenization function to process your text data
# Proprocess text by removing unwanted properties def tokenize(text): ''' input: text: input text data containing attributes output: clean_tokens: cleaned text without unwanted texts ''' url_regex = 'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\(\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+' detected_urls = re.findall(url_regex, text) for url in detected_urls: text = text.replace(url, "urlplaceholder") # take out all punctuation while tokenizing tokenizer = RegexpTokenizer(r'\w+') tokens = tokenizer.tokenize(text) # lemmatize as shown in the lesson lemmatizer = WordNetLemmatizer() clean_tokens = [] for tok in tokens: clean_tok = lemmatizer.lemmatize(tok).lower().strip() clean_tokens.append(clean_tok) return clean_tokens
_____no_output_____
FTL
ML Pipeline Preparation.ipynb
Sanmilee/Disaster-Response-Pipeline
3. Build a machine learning pipelineThis machine pipeline should take in the `message` column as input and output classification results on the other 36 categories in the dataset. You may find the [MultiOutputClassifier](http://scikit-learn.org/stable/modules/generated/sklearn.multioutput.MultiOutputClassifier.html) helpful for predicting multiple target variables.
pipeline = Pipeline([ ('vect', CountVectorizer(tokenizer=tokenize)), ('tfidf', TfidfTransformer()), ('clf', MultiOutputClassifier(RandomForestClassifier())), ]) # Visualize model parameters pipeline.get_params()
_____no_output_____
FTL
ML Pipeline Preparation.ipynb
Sanmilee/Disaster-Response-Pipeline
4. Train pipeline- Split data into train and test sets- Train pipeline
# use sklearn split function to split dataset into train and 20% test sets X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size = 0.2) # Train pipeline using RandomForest Classifier algorithm pipeline.fit(X_train, y_train)
_____no_output_____
FTL
ML Pipeline Preparation.ipynb
Sanmilee/Disaster-Response-Pipeline
5. Test your modelReport the f1 score, precision and recall for each output category of the dataset. You can do this by iterating through the columns and calling sklearn's classification_report on each.
# Output result metrics of trained RandomForest Classifier algorithm def evaluate_model(model, X_test, y_test): ''' Input: model: RandomForest Classifier trained model X_test: Test training features Y_test: Test training response variable Output: None: Display model precision, recall, f1-score, support ''' y_pred = model.predict(X_test) for item, col in enumerate(y_test): print(col) print(classification_report(y_test[col], y_pred[:, item])) # classification_report to display model precision, recall, f1-score, support evaluate_model(pipeline, X_test, y_test)
related precision recall f1-score support 0 0.65 0.38 0.48 1193 1 0.83 0.94 0.88 4016 2 0.50 0.43 0.46 35 avg / total 0.79 0.81 0.79 5244 request precision recall f1-score support 0 0.89 0.98 0.93 4361 1 0.82 0.39 0.53 883 avg / total 0.88 0.88 0.87 5244 offer precision recall f1-score support 0 0.99 1.00 1.00 5210 1 0.00 0.00 0.00 34 avg / total 0.99 0.99 0.99 5244 aid_related precision recall f1-score support 0 0.72 0.88 0.79 3049 1 0.75 0.53 0.62 2195 avg / total 0.74 0.73 0.72 5244 medical_help precision recall f1-score support 0 0.92 1.00 0.96 4805 1 0.71 0.08 0.14 439 avg / total 0.90 0.92 0.89 5244 medical_products precision recall f1-score support 0 0.95 1.00 0.98 4984 1 0.60 0.07 0.12 260 avg / total 0.94 0.95 0.93 5244 search_and_rescue precision recall f1-score support 0 0.98 1.00 0.99 5106 1 0.67 0.10 0.18 138 avg / total 0.97 0.98 0.97 5244 security precision recall f1-score support 0 0.98 1.00 0.99 5151 1 0.25 0.01 0.02 93 avg / total 0.97 0.98 0.97 5244 military precision recall f1-score support 0 0.97 1.00 0.98 5069 1 0.67 0.07 0.12 175 avg / total 0.96 0.97 0.95 5244 child_alone precision recall f1-score support 0 1.00 1.00 1.00 5244 avg / total 1.00 1.00 1.00 5244 water precision recall f1-score support 0 0.95 1.00 0.97 4897 1 0.82 0.30 0.44 347 avg / total 0.94 0.95 0.94 5244 food precision recall f1-score support 0 0.94 0.99 0.96 4655 1 0.83 0.46 0.59 589 avg / total 0.92 0.93 0.92 5244 shelter precision recall f1-score support 0 0.93 0.99 0.96 4761 1 0.82 0.30 0.44 483 avg / total 0.92 0.93 0.91 5244 clothing precision recall f1-score support 0 0.98 1.00 0.99 5150 1 1.00 0.05 0.10 94 avg / total 0.98 0.98 0.98 5244 money precision recall f1-score support 0 0.98 1.00 0.99 5133 1 0.75 0.05 0.10 111 avg / total 0.98 0.98 0.97 5244 missing_people precision recall f1-score support 0 0.99 1.00 0.99 5181 1 0.75 0.05 0.09 63 avg / total 0.99 0.99 0.98 5244 refugees precision recall f1-score support 0 0.97 1.00 0.99 5091 1 0.82 0.06 0.11 153 avg / total 0.97 0.97 0.96 5244 death precision recall f1-score support 0 0.96 1.00 0.98 5021 1 0.77 0.11 0.19 223 avg / total 0.95 0.96 0.95 5244 other_aid precision recall f1-score support 0 0.87 0.99 0.93 4531 1 0.54 0.04 0.07 713 avg / total 0.82 0.86 0.81 5244 infrastructure_related precision recall f1-score support 0 0.94 1.00 0.97 4907 1 0.00 0.00 0.00 337 avg / total 0.88 0.93 0.90 5244 transport precision recall f1-score support 0 0.95 1.00 0.97 4977 1 0.61 0.06 0.12 267 avg / total 0.93 0.95 0.93 5244 buildings precision recall f1-score support 0 0.95 1.00 0.97 4966 1 0.87 0.07 0.13 278 avg / total 0.95 0.95 0.93 5244 electricity precision recall f1-score support 0 0.98 1.00 0.99 5138 1 0.83 0.09 0.17 106 avg / total 0.98 0.98 0.97 5244 tools precision recall f1-score support 0 0.99 1.00 1.00 5209 1 0.00 0.00 0.00 35 avg / total 0.99 0.99 0.99 5244 hospitals precision recall f1-score support 0 0.99 1.00 0.99 5189 1 0.00 0.00 0.00 55 avg / total 0.98 0.99 0.98 5244 shops precision recall f1-score support 0 1.00 1.00 1.00 5218 1 0.00 0.00 0.00 26 avg / total 0.99 1.00 0.99 5244 aid_centers precision recall f1-score support 0 0.99 1.00 0.99 5185 1 0.00 0.00 0.00 59 avg / total 0.98 0.99 0.98 5244 other_infrastructure precision recall f1-score support 0 0.96 1.00 0.98 5011 1 0.25 0.00 0.01 233 avg / total 0.92 0.96 0.93 5244 weather_related precision recall f1-score support 0 0.85 0.97 0.90 3801 1 0.85 0.53 0.66 1443 avg / total 0.85 0.85 0.83 5244 floods precision recall f1-score support 0 0.93 1.00 0.96 4798 1 0.87 0.23 0.37 446 avg / total 0.93 0.93 0.91 5244 storm precision recall f1-score support 0 0.94 0.99 0.96 4758 1 0.77 0.35 0.48 486 avg / total 0.92 0.93 0.92 5244 fire precision recall f1-score support 0 0.99 1.00 0.99 5186 1 1.00 0.02 0.03 58 avg / total 0.99 0.99 0.98 5244 earthquake precision recall f1-score support 0 0.96 0.99 0.98 4769 1 0.90 0.61 0.73 475 avg / total 0.96 0.96 0.95 5244 cold precision recall f1-score support 0 0.98 1.00 0.99 5150 1 0.90 0.10 0.17 94 avg / total 0.98 0.98 0.98 5244 other_weather precision recall f1-score support 0 0.95 1.00 0.97 4958 1 0.46 0.04 0.08 286 avg / total 0.92 0.95 0.92 5244 direct_report precision recall f1-score support 0 0.85 0.98 0.91 4197 1 0.78 0.30 0.43 1047 avg / total 0.83 0.84 0.81 5244
FTL
ML Pipeline Preparation.ipynb
Sanmilee/Disaster-Response-Pipeline
6. Improve your modelUse grid search to find better parameters.
parameters = {'clf__estimator__max_depth': [10, 50, None], 'clf__estimator__min_samples_leaf':[2, 5, 10]} cv = GridSearchCV(pipeline, parameters)
_____no_output_____
FTL
ML Pipeline Preparation.ipynb
Sanmilee/Disaster-Response-Pipeline
7. Test your modelShow the accuracy, precision, and recall of the tuned model.Since this project focuses on code quality, process, and pipelines, there is no minimum performance metric needed to pass. However, make sure to fine tune your models for accuracy, precision and recall to make your project stand out - especially for your portfolio!
# Train pipeline using the improved model cv.fit(X_train, y_train) # # classification_report to display model precision, recall, f1-score, support evaluate_model(cv, X_test, y_test) cv.best_estimator_
_____no_output_____
FTL
ML Pipeline Preparation.ipynb
Sanmilee/Disaster-Response-Pipeline
8. Try improving your model further. Here are a few ideas:* try other machine learning algorithms* add other features besides the TF-IDF
# Improve model using DecisionTree Classifier new_pipeline = Pipeline([ ('vect', CountVectorizer(tokenizer=tokenize)), ('tfidf', TfidfTransformer()), ('clf', MultiOutputClassifier(DecisionTreeClassifier())) ]) # Train improved model new_pipeline.fit(X_train, y_train) # Run result metric score display function evaluate_model(new_pipeline, X_test, y_test)
related precision recall f1-score support 0 0.47 0.45 0.46 1193 1 0.84 0.85 0.84 4016 2 0.31 0.40 0.35 35 avg / total 0.75 0.75 0.75 5244 request precision recall f1-score support 0 0.92 0.92 0.92 4361 1 0.60 0.61 0.60 883 avg / total 0.87 0.87 0.87 5244 offer precision recall f1-score support 0 0.99 1.00 1.00 5210 1 0.00 0.00 0.00 34 avg / total 0.99 0.99 0.99 5244 aid_related precision recall f1-score support 0 0.75 0.75 0.75 3049 1 0.65 0.65 0.65 2195 avg / total 0.71 0.71 0.71 5244 medical_help precision recall f1-score support 0 0.94 0.95 0.94 4805 1 0.33 0.30 0.31 439 avg / total 0.89 0.89 0.89 5244 medical_products precision recall f1-score support 0 0.97 0.97 0.97 4984 1 0.40 0.35 0.37 260 avg / total 0.94 0.94 0.94 5244 search_and_rescue precision recall f1-score support 0 0.98 0.98 0.98 5106 1 0.22 0.20 0.21 138 avg / total 0.96 0.96 0.96 5244 security precision recall f1-score support 0 0.98 0.99 0.98 5151 1 0.04 0.03 0.03 93 avg / total 0.97 0.97 0.97 5244 military precision recall f1-score support 0 0.98 0.98 0.98 5069 1 0.39 0.37 0.38 175 avg / total 0.96 0.96 0.96 5244 child_alone precision recall f1-score support 0 1.00 1.00 1.00 5244 avg / total 1.00 1.00 1.00 5244 water precision recall f1-score support 0 0.98 0.98 0.98 4897 1 0.67 0.67 0.67 347 avg / total 0.96 0.96 0.96 5244 food precision recall f1-score support 0 0.96 0.96 0.96 4655 1 0.72 0.71 0.71 589 avg / total 0.94 0.94 0.94 5244 shelter precision recall f1-score support 0 0.96 0.96 0.96 4761 1 0.62 0.59 0.61 483 avg / total 0.93 0.93 0.93 5244 clothing precision recall f1-score support 0 0.99 1.00 0.99 5150 1 0.62 0.40 0.49 94 avg / total 0.98 0.98 0.98 5244 money precision recall f1-score support 0 0.99 0.99 0.99 5133 1 0.40 0.38 0.39 111 avg / total 0.97 0.97 0.97 5244 missing_people precision recall f1-score support 0 0.99 0.99 0.99 5181 1 0.27 0.21 0.23 63 avg / total 0.98 0.98 0.98 5244 refugees precision recall f1-score support 0 0.98 0.98 0.98 5091 1 0.24 0.25 0.25 153 avg / total 0.96 0.95 0.96 5244 death precision recall f1-score support 0 0.98 0.98 0.98 5021 1 0.49 0.53 0.51 223 avg / total 0.96 0.96 0.96 5244 other_aid precision recall f1-score support 0 0.89 0.90 0.89 4531 1 0.29 0.27 0.28 713 avg / total 0.81 0.81 0.81 5244 infrastructure_related precision recall f1-score support 0 0.94 0.95 0.95 4907 1 0.18 0.16 0.17 337 avg / total 0.89 0.90 0.90 5244 transport precision recall f1-score support 0 0.96 0.97 0.97 4977 1 0.36 0.29 0.32 267 avg / total 0.93 0.94 0.93 5244 buildings precision recall f1-score support 0 0.97 0.97 0.97 4966 1 0.43 0.40 0.42 278 avg / total 0.94 0.94 0.94 5244 electricity precision recall f1-score support 0 0.99 0.99 0.99 5138 1 0.39 0.31 0.35 106 avg / total 0.97 0.98 0.97 5244 tools precision recall f1-score support 0 0.99 1.00 0.99 5209 1 0.05 0.03 0.04 35 avg / total 0.99 0.99 0.99 5244 hospitals precision recall f1-score support 0 0.99 0.99 0.99 5189 1 0.22 0.18 0.20 55 avg / total 0.98 0.98 0.98 5244 shops precision recall f1-score support 0 1.00 1.00 1.00 5218 1 0.00 0.00 0.00 26 avg / total 0.99 0.99 0.99 5244 aid_centers precision recall f1-score support 0 0.99 0.99 0.99 5185 1 0.08 0.08 0.08 59 avg / total 0.98 0.98 0.98 5244 other_infrastructure precision recall f1-score support 0 0.96 0.97 0.96 5011 1 0.15 0.13 0.14 233 avg / total 0.92 0.93 0.93 5244 weather_related precision recall f1-score support 0 0.89 0.91 0.90 3801 1 0.74 0.71 0.72 1443 avg / total 0.85 0.85 0.85 5244 floods precision recall f1-score support 0 0.96 0.96 0.96 4798 1 0.59 0.54 0.57 446 avg / total 0.93 0.93 0.93 5244 storm precision recall f1-score support 0 0.96 0.97 0.97 4758 1 0.66 0.65 0.65 486 avg / total 0.94 0.94 0.94 5244 fire precision recall f1-score support 0 0.99 0.99 0.99 5186 1 0.31 0.29 0.30 58 avg / total 0.98 0.99 0.98 5244 earthquake precision recall f1-score support 0 0.98 0.98 0.98 4769 1 0.80 0.78 0.79 475 avg / total 0.96 0.96 0.96 5244 cold precision recall f1-score support 0 0.99 0.99 0.99 5150 1 0.34 0.38 0.36 94 avg / total 0.98 0.98 0.98 5244 other_weather precision recall f1-score support 0 0.96 0.96 0.96 4958 1 0.26 0.22 0.24 286 avg / total 0.92 0.92 0.92 5244 direct_report precision recall f1-score support 0 0.88 0.89 0.88 4197 1 0.54 0.50 0.52 1047 avg / total 0.81 0.81 0.81 5244
FTL
ML Pipeline Preparation.ipynb
Sanmilee/Disaster-Response-Pipeline
9. Export your model as a pickle file
# save a copy file of the the trained model to disk trained_model_file = 'trained_model.sav' pickle.dump(cv, open(trained_model_file, 'wb'))
_____no_output_____
FTL
ML Pipeline Preparation.ipynb
Sanmilee/Disaster-Response-Pipeline
Total de Casos y Mortalidad padecimiento
import matplotlib.pyplot as plt cv19_confirmed_cases = covid_pd[covid_pd['RESULTADO_LAB'] == YES] pneumonia_confirmed_cases = cv19_confirmed_cases[cv19_confirmed_cases['NEUMONIA'] == YES] diabetes_confirmed_cases = cv19_confirmed_cases[cv19_confirmed_cases['DIABETES'] == YES] epoc_confirmed_cases = cv19_confirmed_cases[cv19_confirmed_cases['EPOC'] == YES] asma_confirmed_cases = cv19_confirmed_cases[cv19_confirmed_cases['ASMA'] == YES] inmusupr_confirmed_cases = cv19_confirmed_cases[cv19_confirmed_cases['INMUSUPR'] == YES] hyper_confirmed_cases = cv19_confirmed_cases[cv19_confirmed_cases['HIPERTENSION'] == YES] # others_confirmed_cases = cv19_confirmed_cases[cv19_confirmed_cases['OTRAS_COM'] == YES] cardio_confirmed_cases = cv19_confirmed_cases[cv19_confirmed_cases['CARDIOVASCULAR'] == YES] obesity_confirmed_cases = cv19_confirmed_cases[cv19_confirmed_cases['OBESIDAD'] == YES] renal_confirmed_cases = cv19_confirmed_cases[cv19_confirmed_cases['RENAL_CRONICA'] == YES] # smoking_confirmed_cases = cv19_confirmed_cases[cv19_confirmed_cases['TABAQUISMO'] == YES] TOTAL_POSITIVE_COV19_CASES = cv19_confirmed_cases.shape[0] # len(list(filter(lambda x: x, covid_pd['RESULTADO_LAB'] == YES))) TOTAL_PNEUMONIA_CASES = pneumonia_confirmed_cases.shape[0] print(TOTAL_POSITIVE_COV19_CASES) def percentage_died(df): part = who_died(df).shape[0] whole = df.shape[0] percentage = 100 * float(part)/float(whole) return f'{int(percentage)}%' def who_died(df): return df[df['FECHA_DEF'] != '9999-99-99'] diseases_dfs = [ diabetes_confirmed_cases, # pneumonia_confirmed_cases, epoc_confirmed_cases, asma_confirmed_cases, inmusupr_confirmed_cases, hyper_confirmed_cases, cardio_confirmed_cases, obesity_confirmed_cases, renal_confirmed_cases, smoking_confirmed_cases, ] _ = lambda value: '{:,.2f}'.format(value).split('.')[0] if type(value) != str else value cases_by_disease = pd.DataFrame.from_dict({ 'Padecimiento': ['Diabetes', # 'Neumonía', 'EPOC', 'Asma', 'Inmunosupresión', 'Hipertensión', 'Cardiovascular', 'Obesidad', 'Renal Crónica', 'Tabaquismo'], 'Positivos': [ diabetes_confirmed_cases.shape[0], # pneumonia_confirmed_cases.shape[0], epoc_confirmed_cases.shape[0], asma_confirmed_cases.shape[0], inmusupr_confirmed_cases.shape[0], hyper_confirmed_cases.shape[0], cardio_confirmed_cases.shape[0], obesity_confirmed_cases.shape[0], renal_confirmed_cases.shape[0], smoking_confirmed_cases.shape[0], ], 'Muertes': [ who_died(diabetes_confirmed_cases).shape[0], # who_died(pneumonia_confirmed_cases).shape[0], who_died(epoc_confirmed_cases).shape[0], who_died(asma_confirmed_cases).shape[0], who_died(inmusupr_confirmed_cases).shape[0], who_died(hyper_confirmed_cases).shape[0], who_died(cardio_confirmed_cases).shape[0], who_died(obesity_confirmed_cases).shape[0], who_died(renal_confirmed_cases).shape[0], who_died(smoking_confirmed_cases).shape[0], ], 'Porcentaje de Muerte': [ percentage_died(diabetes_confirmed_cases), # percentage_died(pneumonia_confirmed_cases), percentage_died(epoc_confirmed_cases), percentage_died(asma_confirmed_cases), percentage_died(inmusupr_confirmed_cases), percentage_died(hyper_confirmed_cases), percentage_died(cardio_confirmed_cases), percentage_died(obesity_confirmed_cases), percentage_died(renal_confirmed_cases), percentage_died(smoking_confirmed_cases), ], }) cases_by_disease = cases_by_disease.set_index('Padecimiento') # cases_by_disease = cases_by_disease.astype({'Positivos': float, 'Muertes' : float}) cases_by_disease.applymap(_).to_csv(join(output_folder, 'table1.csv')) cases_by_disease.applymap(_) import matplotlib.pyplot as plt from matplotlib.ticker import FormatStrFormatter, StrMethodFormatter cases_by_disease ax = cases_by_disease.plot.bar(rot=0, figsize=(15,5)) plt.yticks(fontsize = 13) plt.xlabel('Casos positivos y defunciones por padecimiento', fontsize = 18) # add value label to each bar, displayng its height for p in ax.patches: ax.annotate(p.get_height(), (p.get_x() + p.get_width()/2., p.get_height()), ha = 'center', va = 'center', xytext = (0,7), textcoords = 'offset points', size=9) ax.yaxis.set_major_formatter(StrMethodFormatter('{x:,}')) plt.tight_layout() # save Figure 7 as an image plt.savefig(join(output_folder, 'figure1.png')) from matplotlib_venn import venn3, venn3_circles from matplotlib.pyplot import gca major_diseases = [set(diabetes_confirmed_cases['ID_REGISTRO']), set(hyper_confirmed_cases['ID_REGISTRO']), set(obesity_confirmed_cases['ID_REGISTRO'])] major_diseases_deaths = [set(who_died(diabetes_confirmed_cases)['ID_REGISTRO']), set(who_died(hyper_confirmed_cases)['ID_REGISTRO']), set(who_died(obesity_confirmed_cases)['ID_REGISTRO'])] fig, axes = plt.subplots(1, 2, figsize=(15, 15)) venn3(major_diseases, set_colors=('#3E64AF', '#3EAF5D', '#D74E3B'), set_labels = ('Diabetes', 'Hipertensión', 'Obesidad', ), alpha=0.75, ) venn3_circles(major_diseases, lw=0.7) plt.subplot(1, 2, 1) venn3(major_diseases_deaths, set_colors=('#3E64AF', '#3EAF5D', '#D74E3B'), set_labels = ('Fallecimientos por \nDiabetes', 'Fallecimientos por \nHipertensión', 'Fallecimientos por \nObesidad'), alpha=0.75) venn3_circles(major_diseases_deaths, lw=0.7) plt.show() plt.tight_layout() plt.savefig(join(output_folder, 'figure2.png'), bbox_inches='tight') axes fig, axes = plt.subplots(3, 3, figsize=(10, 10), dpi=100) colors = ['tab:red', 'tab:blue', 'tab:green', 'tab:pink', 'tab:olive'] disease_title = [ 'Diabetes', 'EPOC', 'Asma', 'Inmunosuprecion', 'Hipertension', 'Cardiovascular', 'Obesidad', 'Insuficiencia renal', 'Tabaquismo' ] for i, (ax, df) in enumerate(zip(axes.flatten(), diseases_dfs)): ax.hist(df['EDAD'], alpha=0.5, bins=100, density=True, stacked=True, label=disease_title[i], color=colors[ i % 4]) ax.set_xlabel("Edad") ax.set_ylabel("Frecuencia") ax.legend(loc='upper left', frameon=False) # ax.set_title(disease_title[i]) ax.set_xlim(0, 90); plt.suptitle('Afectacion de pacientes con enfermadad preexistente por edad ', y=1.05, size=16) plt.tight_layout(); plt.savefig(join(output_folder, 'figure3.png'), bbox_inches='tight') #diabetes_confirmed_cases fig, axes = plt.subplots(3, 3, figsize=(10, 10), dpi=100) diseases_dfs = [ who_died(diabetes_confirmed_cases), who_died(pneumonia_confirmed_cases), who_died(epoc_confirmed_cases), who_died(asma_confirmed_cases), who_died(inmusupr_confirmed_cases), who_died(hyper_confirmed_cases), who_died(cardio_confirmed_cases), who_died(obesity_confirmed_cases), who_died(renal_confirmed_cases), who_died(smoking_confirmed_cases), ] for i, (ax, df) in enumerate(zip(axes.flatten(), diseases_dfs)): ax.hist(df['EDAD'], alpha=0.5, bins=100, density=True, stacked=True, label=disease_title[i], color=colors[ i % 4]) # ax.set_title(disease_title[i]) ax.set_xlabel("Edad") ax.set_ylabel("Frecuencia") ax.legend(loc='upper left', frameon=False) ax.set_xlim(0, 90); plt.suptitle('Afectacion de fallecidos con enfermadad preexistente por edad ', y=1.05, size=16) plt.tight_layout(); plt.savefig(join(output_folder, 'figure4.png'), bbox_inches='tight')
_____no_output_____
MIT
001-000-general-overview/run.ipynb
devlabmexico/reporte-covid
Computer Vision Nanodegree Project: Image Captioning---In this notebook, you will learn how to load and pre-process data from the [COCO dataset](http://cocodataset.org/home). You will also design a CNN-RNN model for automatically generating image captions.Note that **any amendments that you make to this notebook will not be graded**. However, you will use the instructions provided in **Step 3** and **Step 4** to implement your own CNN encoder and RNN decoder by making amendments to the **models.py** file provided as part of this project. Your **models.py** file **will be graded**. Feel free to use the links below to navigate the notebook:- [Step 1](step1): Explore the Data Loader- [Step 2](step2): Use the Data Loader to Obtain Batches- [Step 3](step3): Experiment with the CNN Encoder- [Step 4](step4): Implement the RNN Decoder Step 1: Explore the Data LoaderWe have already written a [data loader](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader) that you can use to load the COCO dataset in batches. In the code cell below, you will initialize the data loader by using the `get_loader` function in **data_loader.py**. > For this project, you are not permitted to change the **data_loader.py** file, which must be used as-is.The `get_loader` function takes as input a number of arguments that can be explored in **data_loader.py**. Take the time to explore these arguments now by opening **data_loader.py** in a new window. Most of the arguments must be left at their default values, and you are only allowed to amend the values of the arguments below:1. **`transform`** - an [image transform](http://pytorch.org/docs/master/torchvision/transforms.html) specifying how to pre-process the images and convert them to PyTorch tensors before using them as input to the CNN encoder. For now, you are encouraged to keep the transform as provided in `transform_train`. You will have the opportunity later to choose your own image transform to pre-process the COCO images.2. **`mode`** - one of `'train'` (loads the training data in batches) or `'test'` (for the test data). We will say that the data loader is in training or test mode, respectively. While following the instructions in this notebook, please keep the data loader in training mode by setting `mode='train'`.3. **`batch_size`** - determines the batch size. When training the model, this is number of image-caption pairs used to amend the model weights in each training step.4. **`vocab_threshold`** - the total number of times that a word must appear in the in the training captions before it is used as part of the vocabulary. Words that have fewer than `vocab_threshold` occurrences in the training captions are considered unknown words. 5. **`vocab_from_file`** - a Boolean that decides whether to load the vocabulary from file. We will describe the `vocab_threshold` and `vocab_from_file` arguments in more detail soon. For now, run the code cell below. Be patient - it may take a couple of minutes to run!
# install PixieDebugger - A Visual Python Debugger for Jupyter Notebooks # https://medium.com/codait/the-visual-python-debugger-for-jupyter-notebooks-youve-always-wanted-761713babc62 # https://www.analyticsvidhya.com/blog/2018/07/pixie-debugger-python-debugging-tool-jupyter-notebooks-data-scientist-must-use/ !pip install pixiedust # install other toolboxes !pip install tqdm==4.14 # https://stackoverflow.com/questions/59109313/tqdm-tqdm-tqdmkeyerror-unknown-arguments-unit-divisor-1024 !pip install nltk !pip install torch==1.2.0 torchvision==0.4.0 !pip install torchsummary import sys sys.path.append('/opt/cocoapi/PythonAPI') from pycocotools.coco import COCO import nltk nltk.download('punkt') from data_loader import get_loader import torch print('PyTorch Version:', torch.__version__) print('CUDA available:', torch.cuda.is_available()) from torchvision import transforms from torchsummary import summary import pixiedust # Define a transform to pre-process the training images. transform_train = transforms.Compose([ transforms.Resize(256), # smaller edge of image resized to 256 transforms.RandomCrop(224), # get 224x224 crop from random location transforms.RandomHorizontalFlip(), # horizontally flip image with probability=0.5 transforms.ToTensor(), # convert the PIL Image to a tensor transforms.Normalize((0.485, 0.456, 0.406), # normalize image for pre-trained model (0.229, 0.224, 0.225))]) # Set the minimum word count threshold. vocab_threshold = 5 # Specify the batch size. batch_size = 64 # Obtain the data loader. data_loader = get_loader(transform=transform_train, mode='train', batch_size=batch_size, vocab_threshold=vocab_threshold, vocab_from_file=False)
[nltk_data] Downloading package punkt to /root/nltk_data... [nltk_data] Package punkt is already up-to-date! PyTorch Version: 1.2.0 CUDA available: True Pixiedust database opened successfully
MIT
1_Preliminaries.ipynb
zhulingchen/CVND---Image-Captioning-Project
When you ran the code cell above, the data loader was stored in the variable `data_loader`. You can access the corresponding dataset as `data_loader.dataset`. This dataset is an instance of the `CoCoDataset` class in **data_loader.py**. If you are unfamiliar with data loaders and datasets, you are encouraged to review [this PyTorch tutorial](http://pytorch.org/tutorials/beginner/data_loading_tutorial.html). Exploring the `__getitem__` MethodThe `__getitem__` method in the `CoCoDataset` class determines how an image-caption pair is pre-processed before being incorporated into a batch. This is true for all `Dataset` classes in PyTorch; if this is unfamiliar to you, please review [the tutorial linked above](http://pytorch.org/tutorials/beginner/data_loading_tutorial.html). When the data loader is in training mode, this method begins by first obtaining the filename (`path`) of a training image and its corresponding caption (`caption`). Image Pre-Processing Image pre-processing is relatively straightforward (from the `__getitem__` method in the `CoCoDataset` class):```python Convert image to tensor and pre-process using transformimage = Image.open(os.path.join(self.img_folder, path)).convert('RGB')image = self.transform(image)```After loading the image in the training folder with name `path`, the image is pre-processed using the same transform (`transform_train`) that was supplied when instantiating the data loader. Caption Pre-Processing The captions also need to be pre-processed and prepped for training. In this example, for generating captions, we are aiming to create a model that predicts the next token of a sentence from previous tokens, so we turn the caption associated with any image into a list of tokenized words, before casting it to a PyTorch tensor that we can use to train the network.To understand in more detail how COCO captions are pre-processed, we'll first need to take a look at the `vocab` instance variable of the `CoCoDataset` class. The code snippet below is pulled from the `__init__` method of the `CoCoDataset` class:```pythondef __init__(self, transform, mode, batch_size, vocab_threshold, vocab_file, start_word, end_word, unk_word, annotations_file, vocab_from_file, img_folder): ... self.vocab = Vocabulary(vocab_threshold, vocab_file, start_word, end_word, unk_word, annotations_file, vocab_from_file) ...```From the code snippet above, you can see that `data_loader.dataset.vocab` is an instance of the `Vocabulary` class from **vocabulary.py**. Take the time now to verify this for yourself by looking at the full code in **data_loader.py**. We use this instance to pre-process the COCO captions (from the `__getitem__` method in the `CoCoDataset` class):```python Convert caption to tensor of word ids.tokens = nltk.tokenize.word_tokenize(str(caption).lower()) line 1caption = [] line 2caption.append(self.vocab(self.vocab.start_word)) line 3caption.extend([self.vocab(token) for token in tokens]) line 4caption.append(self.vocab(self.vocab.end_word)) line 5caption = torch.Tensor(caption).long() line 6```As you will see soon, this code converts any string-valued caption to a list of integers, before casting it to a PyTorch tensor. To see how this code works, we'll apply it to the sample caption in the next code cell.
sample_caption = 'A person doing a trick on a rail while riding a skateboard.'
_____no_output_____
MIT
1_Preliminaries.ipynb
zhulingchen/CVND---Image-Captioning-Project
In **`line 1`** of the code snippet, every letter in the caption is converted to lowercase, and the [`nltk.tokenize.word_tokenize`](http://www.nltk.org/) function is used to obtain a list of string-valued tokens. Run the next code cell to visualize the effect on `sample_caption`.
sample_tokens = nltk.tokenize.word_tokenize(str(sample_caption).lower()) print(sample_tokens)
['a', 'person', 'doing', 'a', 'trick', 'on', 'a', 'rail', 'while', 'riding', 'a', 'skateboard', '.']
MIT
1_Preliminaries.ipynb
zhulingchen/CVND---Image-Captioning-Project
In **`line 2`** and **`line 3`** we initialize an empty list and append an integer to mark the start of a caption. The [paper](https://arxiv.org/pdf/1411.4555.pdf) that you are encouraged to implement uses a special start word (and a special end word, which we'll examine below) to mark the beginning (and end) of a caption.This special start word (`""`) is decided when instantiating the data loader and is passed as a parameter (`start_word`). You are **required** to keep this parameter at its default value (`start_word=""`).As you will see below, the integer `0` is always used to mark the start of a caption.
sample_caption = [] start_word = data_loader.dataset.vocab.start_word print('Special start word:', start_word) sample_caption.append(data_loader.dataset.vocab(start_word)) print(sample_caption)
Special start word: <start> [0]
MIT
1_Preliminaries.ipynb
zhulingchen/CVND---Image-Captioning-Project
In **`line 4`**, we continue the list by adding integers that correspond to each of the tokens in the caption.
sample_caption.extend([data_loader.dataset.vocab(token) for token in sample_tokens]) print(sample_caption)
[0, 3, 98, 754, 3, 396, 39, 3, 1009, 207, 139, 3, 753, 18]
MIT
1_Preliminaries.ipynb
zhulingchen/CVND---Image-Captioning-Project
In **`line 5`**, we append a final integer to mark the end of the caption. Identical to the case of the special start word (above), the special end word (`""`) is decided when instantiating the data loader and is passed as a parameter (`end_word`). You are **required** to keep this parameter at its default value (`end_word=""`).As you will see below, the integer `1` is always used to mark the end of a caption.
end_word = data_loader.dataset.vocab.end_word print('Special end word:', end_word) sample_caption.append(data_loader.dataset.vocab(end_word)) print(sample_caption)
Special end word: <end> [0, 3, 98, 754, 3, 396, 39, 3, 1009, 207, 139, 3, 753, 18, 1]
MIT
1_Preliminaries.ipynb
zhulingchen/CVND---Image-Captioning-Project
Finally, in **`line 6`**, we convert the list of integers to a PyTorch tensor and cast it to [long type](http://pytorch.org/docs/master/tensors.htmltorch.Tensor.long). You can read more about the different types of PyTorch tensors on the [website](http://pytorch.org/docs/master/tensors.html).
sample_caption = torch.Tensor(sample_caption).long() print(sample_caption)
tensor([ 0, 3, 98, 754, 3, 396, 39, 3, 1009, 207, 139, 3, 753, 18, 1])
MIT
1_Preliminaries.ipynb
zhulingchen/CVND---Image-Captioning-Project
And that's it! In summary, any caption is converted to a list of tokens, with _special_ start and end tokens marking the beginning and end of the sentence:```[, 'a', 'person', 'doing', 'a', 'trick', 'while', 'riding', 'a', 'skateboard', '.', ]```This list of tokens is then turned into a list of integers, where every distinct word in the vocabulary has an associated integer value:```[0, 3, 98, 754, 3, 396, 207, 139, 3, 753, 18, 1]```Finally, this list is converted to a PyTorch tensor. All of the captions in the COCO dataset are pre-processed using this same procedure from **`lines 1-6`** described above. As you saw, in order to convert a token to its corresponding integer, we call `data_loader.dataset.vocab` as a function. The details of how this call works can be explored in the `__call__` method in the `Vocabulary` class in **vocabulary.py**. ```pythondef __call__(self, word): if not word in self.word2idx: return self.word2idx[self.unk_word] return self.word2idx[word]```The `word2idx` instance variable is a Python [dictionary](https://docs.python.org/3/tutorial/datastructures.htmldictionaries) that is indexed by string-valued keys (mostly tokens obtained from training captions). For each key, the corresponding value is the integer that the token is mapped to in the pre-processing step.Use the code cell below to view a subset of this dictionary.
# Preview the word2idx dictionary. dict(list(data_loader.dataset.vocab.word2idx.items())[:10])
_____no_output_____
MIT
1_Preliminaries.ipynb
zhulingchen/CVND---Image-Captioning-Project
We also print the total number of keys.
# Print the total number of keys in the word2idx dictionary. print('Total number of tokens in vocabulary:', len(data_loader.dataset.vocab))
Total number of tokens in vocabulary: 8855
MIT
1_Preliminaries.ipynb
zhulingchen/CVND---Image-Captioning-Project
As you will see if you examine the code in **vocabulary.py**, the `word2idx` dictionary is created by looping over the captions in the training dataset. If a token appears no less than `vocab_threshold` times in the training set, then it is added as a key to the dictionary and assigned a corresponding unique integer. You will have the option later to amend the `vocab_threshold` argument when instantiating your data loader. Note that in general, **smaller** values for `vocab_threshold` yield a **larger** number of tokens in the vocabulary. You are encouraged to check this for yourself in the next code cell by decreasing the value of `vocab_threshold` before creating a new data loader.
# Modify the minimum word count threshold. vocab_threshold = 4 # Obtain the data loader. data_loader = get_loader(transform=transform_train, mode='train', batch_size=batch_size, vocab_threshold=vocab_threshold, vocab_from_file=False) # Print the total number of keys in the word2idx dictionary. print('Total number of tokens in vocabulary:', len(data_loader.dataset.vocab))
Total number of tokens in vocabulary: 9955
MIT
1_Preliminaries.ipynb
zhulingchen/CVND---Image-Captioning-Project
There are also a few special keys in the `word2idx` dictionary. You are already familiar with the special start word (`""`) and special end word (`""`). There is one more special token, corresponding to unknown words (`""`). All tokens that don't appear anywhere in the `word2idx` dictionary are considered unknown words. In the pre-processing step, any unknown tokens are mapped to the integer `2`.
unk_word = data_loader.dataset.vocab.unk_word print('Special unknown word:', unk_word) print('All unknown words are mapped to this integer:', data_loader.dataset.vocab(unk_word))
Special unknown word: <unk> All unknown words are mapped to this integer: 2
MIT
1_Preliminaries.ipynb
zhulingchen/CVND---Image-Captioning-Project
Check this for yourself below, by pre-processing the provided nonsense words that never appear in the training captions.
print(data_loader.dataset.vocab('jfkafejw')) print(data_loader.dataset.vocab('ieowoqjf'))
2 2
MIT
1_Preliminaries.ipynb
zhulingchen/CVND---Image-Captioning-Project
The final thing to mention is the `vocab_from_file` argument that is supplied when creating a data loader. To understand this argument, note that when you create a new data loader, the vocabulary (`data_loader.dataset.vocab`) is saved as a [pickle](https://docs.python.org/3/library/pickle.html) file in the project folder, with filename `vocab.pkl`.If you are still tweaking the value of the `vocab_threshold` argument, you **must** set `vocab_from_file=False` to have your changes take effect. But once you are happy with the value that you have chosen for the `vocab_threshold` argument, you need only run the data loader *one more time* with your chosen `vocab_threshold` to save the new vocabulary to file. Then, you can henceforth set `vocab_from_file=True` to load the vocabulary from file and speed the instantiation of the data loader. Note that building the vocabulary from scratch is the most time-consuming part of instantiating the data loader, and so you are strongly encouraged to set `vocab_from_file=True` as soon as you are able.Note that if `vocab_from_file=True`, then any supplied argument for `vocab_threshold` when instantiating the data loader is completely ignored.
# Obtain the data loader (from file). Note that it runs much faster than before! data_loader = get_loader(transform=transform_train, mode='train', batch_size=batch_size, vocab_from_file=True)
Vocabulary successfully loaded from vocab.pkl file! loading annotations into memory...
MIT
1_Preliminaries.ipynb
zhulingchen/CVND---Image-Captioning-Project
In the next section, you will learn how to use the data loader to obtain batches of training data. Step 2: Use the Data Loader to Obtain BatchesThe captions in the dataset vary greatly in length. You can see this by examining `data_loader.dataset.caption_lengths`, a Python list with one entry for each training caption (where the value stores the length of the corresponding caption). In the code cell below, we use this list to print the total number of captions in the training data with each length. As you will see below, the majority of captions have length 10. Likewise, very short and very long captions are quite rare.
from collections import Counter # Tally the total number of training captions with each length. counter = Counter(data_loader.dataset.caption_lengths) lengths = sorted(counter.items(), key=lambda pair: pair[1], reverse=True) for value, count in lengths: print('value: %2d --- count: %5d' % (value, count))
value: 10 --- count: 86334 value: 11 --- count: 79948 value: 9 --- count: 71934 value: 12 --- count: 57637 value: 13 --- count: 37645 value: 14 --- count: 22335 value: 8 --- count: 20771 value: 15 --- count: 12841 value: 16 --- count: 7729 value: 17 --- count: 4842 value: 18 --- count: 3104 value: 19 --- count: 2014 value: 7 --- count: 1597 value: 20 --- count: 1451 value: 21 --- count: 999 value: 22 --- count: 683 value: 23 --- count: 534 value: 24 --- count: 383 value: 25 --- count: 277 value: 26 --- count: 215 value: 27 --- count: 159 value: 28 --- count: 115 value: 29 --- count: 86 value: 30 --- count: 58 value: 31 --- count: 49 value: 32 --- count: 44 value: 34 --- count: 39 value: 37 --- count: 32 value: 33 --- count: 31 value: 35 --- count: 31 value: 36 --- count: 26 value: 38 --- count: 18 value: 39 --- count: 18 value: 43 --- count: 16 value: 44 --- count: 16 value: 48 --- count: 12 value: 45 --- count: 11 value: 42 --- count: 10 value: 40 --- count: 9 value: 49 --- count: 9 value: 46 --- count: 9 value: 47 --- count: 7 value: 50 --- count: 6 value: 51 --- count: 6 value: 41 --- count: 6 value: 52 --- count: 5 value: 54 --- count: 3 value: 56 --- count: 2 value: 6 --- count: 2 value: 53 --- count: 2 value: 55 --- count: 2 value: 57 --- count: 1
MIT
1_Preliminaries.ipynb
zhulingchen/CVND---Image-Captioning-Project
To generate batches of training data, we begin by first sampling a caption length (where the probability that any length is drawn is proportional to the number of captions with that length in the dataset). Then, we retrieve a batch of size `batch_size` of image-caption pairs, where all captions have the sampled length. This approach for assembling batches matches the procedure in [this paper](https://arxiv.org/pdf/1502.03044.pdf) and has been shown to be computationally efficient without degrading performance.Run the code cell below to generate a batch. The `get_train_indices` method in the `CoCoDataset` class first samples a caption length, and then samples `batch_size` indices corresponding to training data points with captions of that length. These indices are stored below in `indices`.These indices are supplied to the data loader, which then is used to retrieve the corresponding data points. The pre-processed images and captions in the batch are stored in `images` and `captions`.
import numpy as np import torch.utils.data as data # Randomly sample a caption length, and sample indices with that length. indices = data_loader.dataset.get_train_indices() print('selected caption length:', set(data_loader.dataset.caption_lengths[i] for i in indices)) print('batch size:', data_loader.dataset.batch_size) print('sampled indices:', indices) # Create and assign a batch sampler to retrieve a batch with the sampled indices. new_sampler = data.sampler.SubsetRandomSampler(indices=indices) data_loader.batch_sampler.sampler = new_sampler # Obtain the batch. images, captions = next(iter(data_loader)) print('images.shape:', images.shape) print('captions.shape:', captions.shape)
selected caption length: {11} batch size: 64 sampled indices: [163258, 37144, 380255, 317957, 192582, 360740, 10195, 2809, 162865, 309252, 293693, 333283, 35401, 403582, 103488, 93114, 234377, 135463, 281449, 85137, 73144, 43331, 279550, 9538, 215758, 166348, 288499, 375568, 226201, 77114, 139807, 66138, 349567, 316866, 200844, 302747, 78815, 342849, 273002, 58477, 229691, 22617, 172296, 86417, 241012, 201450, 404151, 231331, 202059, 347401, 374039, 220502, 32122, 246526, 157367, 186080, 139093, 410879, 240537, 296696, 208667, 360735, 224908, 87710] images.shape: torch.Size([64, 3, 224, 224]) captions.shape: torch.Size([64, 13])
MIT
1_Preliminaries.ipynb
zhulingchen/CVND---Image-Captioning-Project
Each time you run the code cell above, a different caption length is sampled, and a different batch of training data is returned. Run the code cell multiple times to check this out!You will train your model in the next notebook in this sequence (**2_Training.ipynb**). This code for generating training batches will be provided to you.> Before moving to the next notebook in the sequence (**2_Training.ipynb**), you are strongly encouraged to take the time to become very familiar with the code in **data_loader.py** and **vocabulary.py**. **Step 1** and **Step 2** of this notebook are designed to help facilitate a basic introduction and guide your understanding. However, our description is not exhaustive, and it is up to you (as part of the project) to learn how to best utilize these files to complete the project. __You should NOT amend any of the code in either *data_loader.py* or *vocabulary.py*.__In the next steps, we focus on learning how to specify a CNN-RNN architecture in PyTorch, towards the goal of image captioning. Step 3: Experiment with the CNN EncoderRun the code cell below to import `EncoderCNN` and `DecoderRNN` from **model.py**.
# Watch for any changes in model.py, and re-load it automatically. % load_ext autoreload % autoreload 2
_____no_output_____
MIT
1_Preliminaries.ipynb
zhulingchen/CVND---Image-Captioning-Project
In the next code cell we define a `device` that you will use move PyTorch tensors to GPU (if CUDA is available). Run this code cell before continuing.
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
_____no_output_____
MIT
1_Preliminaries.ipynb
zhulingchen/CVND---Image-Captioning-Project
Run the code cell below to instantiate the CNN encoder in `encoder`. The pre-processed images from the batch in **Step 2** of this notebook are then passed through the encoder, and the output is stored in `features`.
from model import EncoderCNN # Specify the dimensionality of the image embedding. embed_size = 256 #-#-#-# Do NOT modify the code below this line. #-#-#-# # Initialize the encoder. (Optional: Add additional arguments if necessary.) encoder = EncoderCNN(embed_size) # Move the encoder to GPU if CUDA is available. encoder.to(device) # Move last batch of images (from Step 2) to GPU if CUDA is available. images = images.to(device) # Print encoder summary summary(encoder, images.cpu().data.numpy().shape[1:]) # Pass the images through the encoder. features = encoder(images) print('type(features):', type(features)) print('features.shape:', features.shape) # Check that your encoder satisfies some requirements of the project! :D assert type(features)==torch.Tensor, "Encoder output needs to be a PyTorch Tensor." assert (features.shape[0]==batch_size) & (features.shape[1]==embed_size), "The shape of the encoder output is incorrect."
---------------------------------------------------------------- Layer (type) Output Shape Param # ================================================================ Conv2d-1 [-1, 64, 112, 112] 9,408 BatchNorm2d-2 [-1, 64, 112, 112] 128 ReLU-3 [-1, 64, 112, 112] 0 MaxPool2d-4 [-1, 64, 56, 56] 0 Conv2d-5 [-1, 64, 56, 56] 4,096 BatchNorm2d-6 [-1, 64, 56, 56] 128 ReLU-7 [-1, 64, 56, 56] 0 Conv2d-8 [-1, 64, 56, 56] 36,864 BatchNorm2d-9 [-1, 64, 56, 56] 128 ReLU-10 [-1, 64, 56, 56] 0 Conv2d-11 [-1, 256, 56, 56] 16,384 BatchNorm2d-12 [-1, 256, 56, 56] 512 Conv2d-13 [-1, 256, 56, 56] 16,384 BatchNorm2d-14 [-1, 256, 56, 56] 512 ReLU-15 [-1, 256, 56, 56] 0 Bottleneck-16 [-1, 256, 56, 56] 0 Conv2d-17 [-1, 64, 56, 56] 16,384 BatchNorm2d-18 [-1, 64, 56, 56] 128 ReLU-19 [-1, 64, 56, 56] 0 Conv2d-20 [-1, 64, 56, 56] 36,864 BatchNorm2d-21 [-1, 64, 56, 56] 128 ReLU-22 [-1, 64, 56, 56] 0 Conv2d-23 [-1, 256, 56, 56] 16,384 BatchNorm2d-24 [-1, 256, 56, 56] 512 ReLU-25 [-1, 256, 56, 56] 0 Bottleneck-26 [-1, 256, 56, 56] 0 Conv2d-27 [-1, 64, 56, 56] 16,384 BatchNorm2d-28 [-1, 64, 56, 56] 128 ReLU-29 [-1, 64, 56, 56] 0 Conv2d-30 [-1, 64, 56, 56] 36,864 BatchNorm2d-31 [-1, 64, 56, 56] 128 ReLU-32 [-1, 64, 56, 56] 0 Conv2d-33 [-1, 256, 56, 56] 16,384 BatchNorm2d-34 [-1, 256, 56, 56] 512 ReLU-35 [-1, 256, 56, 56] 0 Bottleneck-36 [-1, 256, 56, 56] 0 Conv2d-37 [-1, 128, 56, 56] 32,768 BatchNorm2d-38 [-1, 128, 56, 56] 256 ReLU-39 [-1, 128, 56, 56] 0 Conv2d-40 [-1, 128, 28, 28] 147,456 BatchNorm2d-41 [-1, 128, 28, 28] 256 ReLU-42 [-1, 128, 28, 28] 0 Conv2d-43 [-1, 512, 28, 28] 65,536 BatchNorm2d-44 [-1, 512, 28, 28] 1,024 Conv2d-45 [-1, 512, 28, 28] 131,072 BatchNorm2d-46 [-1, 512, 28, 28] 1,024 ReLU-47 [-1, 512, 28, 28] 0 Bottleneck-48 [-1, 512, 28, 28] 0 Conv2d-49 [-1, 128, 28, 28] 65,536 BatchNorm2d-50 [-1, 128, 28, 28] 256 ReLU-51 [-1, 128, 28, 28] 0 Conv2d-52 [-1, 128, 28, 28] 147,456 BatchNorm2d-53 [-1, 128, 28, 28] 256 ReLU-54 [-1, 128, 28, 28] 0 Conv2d-55 [-1, 512, 28, 28] 65,536 BatchNorm2d-56 [-1, 512, 28, 28] 1,024 ReLU-57 [-1, 512, 28, 28] 0 Bottleneck-58 [-1, 512, 28, 28] 0 Conv2d-59 [-1, 128, 28, 28] 65,536 BatchNorm2d-60 [-1, 128, 28, 28] 256 ReLU-61 [-1, 128, 28, 28] 0 Conv2d-62 [-1, 128, 28, 28] 147,456 BatchNorm2d-63 [-1, 128, 28, 28] 256 ReLU-64 [-1, 128, 28, 28] 0 Conv2d-65 [-1, 512, 28, 28] 65,536 BatchNorm2d-66 [-1, 512, 28, 28] 1,024 ReLU-67 [-1, 512, 28, 28] 0 Bottleneck-68 [-1, 512, 28, 28] 0 Conv2d-69 [-1, 128, 28, 28] 65,536 BatchNorm2d-70 [-1, 128, 28, 28] 256 ReLU-71 [-1, 128, 28, 28] 0 Conv2d-72 [-1, 128, 28, 28] 147,456 BatchNorm2d-73 [-1, 128, 28, 28] 256 ReLU-74 [-1, 128, 28, 28] 0 Conv2d-75 [-1, 512, 28, 28] 65,536 BatchNorm2d-76 [-1, 512, 28, 28] 1,024 ReLU-77 [-1, 512, 28, 28] 0 Bottleneck-78 [-1, 512, 28, 28] 0 Conv2d-79 [-1, 256, 28, 28] 131,072 BatchNorm2d-80 [-1, 256, 28, 28] 512 ReLU-81 [-1, 256, 28, 28] 0 Conv2d-82 [-1, 256, 14, 14] 589,824 BatchNorm2d-83 [-1, 256, 14, 14] 512 ReLU-84 [-1, 256, 14, 14] 0 Conv2d-85 [-1, 1024, 14, 14] 262,144 BatchNorm2d-86 [-1, 1024, 14, 14] 2,048 Conv2d-87 [-1, 1024, 14, 14] 524,288 BatchNorm2d-88 [-1, 1024, 14, 14] 2,048 ReLU-89 [-1, 1024, 14, 14] 0 Bottleneck-90 [-1, 1024, 14, 14] 0 Conv2d-91 [-1, 256, 14, 14] 262,144 BatchNorm2d-92 [-1, 256, 14, 14] 512 ReLU-93 [-1, 256, 14, 14] 0 Conv2d-94 [-1, 256, 14, 14] 589,824 BatchNorm2d-95 [-1, 256, 14, 14] 512 ReLU-96 [-1, 256, 14, 14] 0 Conv2d-97 [-1, 1024, 14, 14] 262,144 BatchNorm2d-98 [-1, 1024, 14, 14] 2,048 ReLU-99 [-1, 1024, 14, 14] 0 Bottleneck-100 [-1, 1024, 14, 14] 0 Conv2d-101 [-1, 256, 14, 14] 262,144 BatchNorm2d-102 [-1, 256, 14, 14] 512 ReLU-103 [-1, 256, 14, 14] 0 Conv2d-104 [-1, 256, 14, 14] 589,824 BatchNorm2d-105 [-1, 256, 14, 14] 512 ReLU-106 [-1, 256, 14, 14] 0 Conv2d-107 [-1, 1024, 14, 14] 262,144 BatchNorm2d-108 [-1, 1024, 14, 14] 2,048 ReLU-109 [-1, 1024, 14, 14] 0 Bottleneck-110 [-1, 1024, 14, 14] 0 Conv2d-111 [-1, 256, 14, 14] 262,144 BatchNorm2d-112 [-1, 256, 14, 14] 512 ReLU-113 [-1, 256, 14, 14] 0 Conv2d-114 [-1, 256, 14, 14] 589,824 BatchNorm2d-115 [-1, 256, 14, 14] 512 ReLU-116 [-1, 256, 14, 14] 0 Conv2d-117 [-1, 1024, 14, 14] 262,144 BatchNorm2d-118 [-1, 1024, 14, 14] 2,048 ReLU-119 [-1, 1024, 14, 14] 0 Bottleneck-120 [-1, 1024, 14, 14] 0 Conv2d-121 [-1, 256, 14, 14] 262,144 BatchNorm2d-122 [-1, 256, 14, 14] 512 ReLU-123 [-1, 256, 14, 14] 0 Conv2d-124 [-1, 256, 14, 14] 589,824 BatchNorm2d-125 [-1, 256, 14, 14] 512 ReLU-126 [-1, 256, 14, 14] 0 Conv2d-127 [-1, 1024, 14, 14] 262,144 BatchNorm2d-128 [-1, 1024, 14, 14] 2,048 ReLU-129 [-1, 1024, 14, 14] 0 Bottleneck-130 [-1, 1024, 14, 14] 0 Conv2d-131 [-1, 256, 14, 14] 262,144 BatchNorm2d-132 [-1, 256, 14, 14] 512 ReLU-133 [-1, 256, 14, 14] 0 Conv2d-134 [-1, 256, 14, 14] 589,824 BatchNorm2d-135 [-1, 256, 14, 14] 512 ReLU-136 [-1, 256, 14, 14] 0 Conv2d-137 [-1, 1024, 14, 14] 262,144 BatchNorm2d-138 [-1, 1024, 14, 14] 2,048 ReLU-139 [-1, 1024, 14, 14] 0 Bottleneck-140 [-1, 1024, 14, 14] 0 Conv2d-141 [-1, 512, 14, 14] 524,288 BatchNorm2d-142 [-1, 512, 14, 14] 1,024 ReLU-143 [-1, 512, 14, 14] 0 Conv2d-144 [-1, 512, 7, 7] 2,359,296 BatchNorm2d-145 [-1, 512, 7, 7] 1,024 ReLU-146 [-1, 512, 7, 7] 0 Conv2d-147 [-1, 2048, 7, 7] 1,048,576 BatchNorm2d-148 [-1, 2048, 7, 7] 4,096 Conv2d-149 [-1, 2048, 7, 7] 2,097,152 BatchNorm2d-150 [-1, 2048, 7, 7] 4,096 ReLU-151 [-1, 2048, 7, 7] 0 Bottleneck-152 [-1, 2048, 7, 7] 0 Conv2d-153 [-1, 512, 7, 7] 1,048,576 BatchNorm2d-154 [-1, 512, 7, 7] 1,024 ReLU-155 [-1, 512, 7, 7] 0 Conv2d-156 [-1, 512, 7, 7] 2,359,296 BatchNorm2d-157 [-1, 512, 7, 7] 1,024 ReLU-158 [-1, 512, 7, 7] 0 Conv2d-159 [-1, 2048, 7, 7] 1,048,576 BatchNorm2d-160 [-1, 2048, 7, 7] 4,096 ReLU-161 [-1, 2048, 7, 7] 0 Bottleneck-162 [-1, 2048, 7, 7] 0 Conv2d-163 [-1, 512, 7, 7] 1,048,576 BatchNorm2d-164 [-1, 512, 7, 7] 1,024 ReLU-165 [-1, 512, 7, 7] 0 Conv2d-166 [-1, 512, 7, 7] 2,359,296 BatchNorm2d-167 [-1, 512, 7, 7] 1,024 ReLU-168 [-1, 512, 7, 7] 0 Conv2d-169 [-1, 2048, 7, 7] 1,048,576 BatchNorm2d-170 [-1, 2048, 7, 7] 4,096 ReLU-171 [-1, 2048, 7, 7] 0 Bottleneck-172 [-1, 2048, 7, 7] 0 AvgPool2d-173 [-1, 2048, 1, 1] 0 Linear-174 [-1, 256] 524,544 ================================================================ Total params: 24,032,576 Trainable params: 524,544 Non-trainable params: 23,508,032 ---------------------------------------------------------------- Input size (MB): 0.57 Forward/backward pass size (MB): 286.55 Params size (MB): 91.68 Estimated Total Size (MB): 378.80 ---------------------------------------------------------------- type(features): <class 'torch.Tensor'> features.shape: torch.Size([64, 256])
MIT
1_Preliminaries.ipynb
zhulingchen/CVND---Image-Captioning-Project
The encoder that we provide to you uses the pre-trained ResNet-50 architecture (with the final fully-connected layer removed) to extract features from a batch of pre-processed images. The output is then flattened to a vector, before being passed through a `Linear` layer to transform the feature vector to have the same size as the word embedding.![Encoder](images/encoder.png)You are welcome (and encouraged) to amend the encoder in **model.py**, to experiment with other architectures. In particular, consider using a [different pre-trained model architecture](http://pytorch.org/docs/master/torchvision/models.html). You may also like to [add batch normalization](http://pytorch.org/docs/master/nn.htmlnormalization-layers). > You are **not** required to change anything about the encoder.For this project, you **must** incorporate a pre-trained CNN into your encoder. Your `EncoderCNN` class must take `embed_size` as an input argument, which will also correspond to the dimensionality of the input to the RNN decoder that you will implement in Step 4. When you train your model in the next notebook in this sequence (**2_Training.ipynb**), you are welcome to tweak the value of `embed_size`.If you decide to modify the `EncoderCNN` class, save **model.py** and re-execute the code cell above. If the code cell returns an assertion error, then please follow the instructions to modify your code before proceeding. The assert statements ensure that `features` is a PyTorch tensor with shape `[batch_size, embed_size]`. Step 4: Implement the RNN DecoderBefore executing the next code cell, you must write `__init__` and `forward` methods in the `DecoderRNN` class in **model.py**. (Do **not** write the `sample` method yet - you will work with this method when you reach **3_Inference.ipynb**.)> The `__init__` and `forward` methods in the `DecoderRNN` class are the only things that you **need** to modify as part of this notebook. You will write more implementations in the notebooks that appear later in the sequence.Your decoder will be an instance of the `DecoderRNN` class and must accept as input:- the PyTorch tensor `features` containing the embedded image features (outputted in Step 3, when the last batch of images from Step 2 was passed through `encoder`), along with- a PyTorch tensor corresponding to the last batch of captions (`captions`) from Step 2.Note that the way we have written the data loader should simplify your code a bit. In particular, every training batch will contain pre-processed captions where all have the same length (`captions.shape[1]`), so **you do not need to worry about padding**. > While you are encouraged to implement the decoder described in [this paper](https://arxiv.org/pdf/1411.4555.pdf), you are welcome to implement any architecture of your choosing, as long as it uses at least one RNN layer, with hidden dimension `hidden_size`. Although you will test the decoder using the last batch that is currently stored in the notebook, your decoder should be written to accept an arbitrary batch (of embedded image features and pre-processed captions [where all captions have the same length]) as input. ![Decoder](images/decoder.png)In the code cell below, `outputs` should be a PyTorch tensor with size `[batch_size, captions.shape[1], vocab_size]`. Your output should be designed such that `outputs[i,j,k]` contains the model's predicted score, indicating how likely the `j`-th token in the `i`-th caption in the batch is the `k`-th token in the vocabulary. In the next notebook of the sequence (**2_Training.ipynb**), we provide code to supply these scores to the [`torch.nn.CrossEntropyLoss`](http://pytorch.org/docs/master/nn.htmltorch.nn.CrossEntropyLoss) optimizer in PyTorch.
from model import DecoderRNN # Specify the number of features in the hidden state of the RNN decoder. hidden_size = 512 #-#-#-# Do NOT modify the code below this line. #-#-#-# # Store the size of the vocabulary. vocab_size = len(data_loader.dataset.vocab) # Initialize the decoder. decoder = DecoderRNN(embed_size, hidden_size, vocab_size) # Move the decoder to GPU if CUDA is available. decoder.to(device) # Move last batch of captions (from Step 1) to GPU if CUDA is available captions = captions.to(device) # Pass the encoder output and captions through the decoder. print('features.shape:', features.shape) print('captions.shape:', captions.shape) print(decoder) outputs = decoder(features, captions) print('type(outputs):', type(outputs)) print('outputs.shape:', outputs.shape) # Check that your decoder satisfies some requirements of the project! :D assert type(outputs)==torch.Tensor, "Decoder output needs to be a PyTorch Tensor." assert (outputs.shape[0]==batch_size) & (outputs.shape[1]==captions.shape[1]) & (outputs.shape[2]==vocab_size), "The shape of the decoder output is incorrect."
features.shape: torch.Size([64, 256]) captions.shape: torch.Size([64, 13]) DecoderRNN( (embedding): Embedding(9955, 256) (lstm): LSTM(256, 512, batch_first=True) (linear): Linear(in_features=512, out_features=9955, bias=True) ) type(outputs): <class 'torch.Tensor'> outputs.shape: torch.Size([64, 13, 9955])
MIT
1_Preliminaries.ipynb
zhulingchen/CVND---Image-Captioning-Project
**Student BENREKIA Mohamed Ali (IASD 2021-2022)**
%matplotlib inline import numpy as np from scipy.linalg import norm import matplotlib.pyplot as plt import seaborn as sns %load_ext autoreload %autoreload 2
The autoreload extension is already loaded. To reload it, use: %reload_ext autoreload
MIT
Optim_Project.ipynb
iladan0/Abalone_Age_Prediction
Loading data
!wget https://raw.githubusercontent.com/nishitpatel01/predicting-age-of-abalone-using-regression/master/Abalone_data.csv # Use this code to read from a CSV file. import pandas as pd U = pd.read_csv('/content/Abalone_data.csv') U.shape U.info() U.head() U.tail() U.Sex=U.Sex.astype('category').cat.codes U.head() U.describe(include='all') U.sample(10) U.isnull().sum() U.dtypes U.hist(figsize=(10,15)) corr = U.corr() corr sns.heatmap(corr, annot=False) # split train - validation shuffle_df = U.sample(frac=1) # Define a size for your train set train_size = int(0.8 * len(U)) # Split your dataset train_set = shuffle_df[:train_size] valid_set = shuffle_df[train_size:] #split feature target x_train = train_set.drop("Rings",axis=1).to_numpy() y_train = train_set["Rings"] x_valid = valid_set.drop("Rings",axis=1) y_valid = valid_set["Rings"] #no need mA = x_train.mean(axis=0) sA = x_train.std(axis=0) x_train = (x_train-mA)/sA x_valid = (x_valid-mA)/sA # no need m = y_train.mean() y_train = y_train-m y_valid = y_valid-m x_train.shape[1]
_____no_output_____
MIT
Optim_Project.ipynb
iladan0/Abalone_Age_Prediction
Problem definition (Linear regression)
class RegPb(object): ''' A class for regression problems with linear models. Attributes: X: Data matrix (features) y: Data vector (labels) n,d: Dimensions of X loss: Loss function to be considered in the regression 'l2': Least-squares loss lbda: Regularization parameter ''' # Instantiate the class def __init__(self, X, y,lbda=0,loss='l2'): self.X = X self.y = y self.n, self.d = X.shape self.loss = loss self.lbda = lbda # Objective value def fun(self, w): if self.loss=='l2': return np.square(self.X.dot(w) - self.y).mean() + self.lbda * norm(w) ** 2 else: return np.square(self.X.dot(w) - self.y).mean() """ # Partial objective value def f_i(self, i, w): if self.loss=='l2': return norm(self.X[i].dot(w) - self.y[i]) ** 2 / (2.) + self.lbda * norm(w) ** 2 else: return norm(self.X[i].dot(w) - self.y[i]) ** 2 / (2.) """ # Full gradient computation def grad(self, w): if self.loss=='l2': return self.X.T.dot(self.X.dot(w) - self.y) * (2/self.n) + 2 * self.lbda * w else: return self.X.T.dot(self.X.dot(w) - self.y) * (2/self.n) # Partial gradient def grad_i(self,i,w): x_i = self.X[i] if self.loss=='l2': return (2/self.n) * (x_i.dot(w) - self.y[i]) * x_i + 2 * self.lbda*w else: return (2/self.n) * (x_i.dot(w) - self.y[i]) * x_i """ # Lipschitz constant for the gradient def lipgrad(self): if self.loss=='l2': L = norm(self.X, ord=2) ** 2 / self.n + self.lbda """ lda = 1. / x_train.shape[0] ** (0.5) pblinreg = RegPb(x_train, y_train, lbda=lda, loss='l2')
_____no_output_____
MIT
Optim_Project.ipynb
iladan0/Abalone_Age_Prediction
**PCA**
U, s, V = np.linalg.svd(x_train.T.dot(x_train)) eig_values, eig_vectors = s, U explained_variance=(eig_values / np.sum(eig_values))*100 plt.figure(figsize=(8,4)) plt.bar(range(8), explained_variance, alpha=0.6) plt.ylabel('Percentage of explained variance') plt.xlabel('Dimensions') # calculating our new axis pc1 = x_train.dot(eig_vectors[:,0]) pc2 = x_train.dot(eig_vectors[:,1]) plt.plot(pc1, pc2, '.') plt.axis('equal');
_____no_output_____
MIT
Optim_Project.ipynb
iladan0/Abalone_Age_Prediction
Btach Gradietn Descent
def batch_grad(w0,problem, stepchoice=0, lr= 0.01, n_iter=1000,verbose=False): # objective history objvals = [] # Number of samples n = problem.n # Initial value of current iterate w = w0.copy() nw = norm(w) # Current objective obj = problem.fun(w) objvals.append(obj); # Initialize iteration counter k=0 # Plot initial quantities of interest if verbose: print("Gradient Descent") print(' | '.join([name.center(8) for name in ["iter", "MSE_Loss"]])) print(' | '.join([("%d" % k).rjust(8),("%.2e" % obj).rjust(8)])) # Main loop while (k < n_iter ):#and nw < 10**100 # gradient calculation gr = np.zeros(d) gr = problem.grad(w) if stepchoice==0: w[:] = w - lr * gr elif stepchoice>0: if (k*nb*10) % n == 0: sk = float(lr/stepchoice) w[:] = w - sk * gr nw = norm(w) #Computing the norm to measure divergence obj = problem.fun(w) k += 1 # Plot quantities of interest at the end of every epoch only objvals.append(obj) if verbose: print(' | '.join([("%d" % k).rjust(8),("%.2e" % obj).rjust(8)])) # End of main loop ################# # Plot quantities of interest for the last iterate (if needed) if k % n_iter > 0: objvals.append(obj) if verbose: print(' | '.join([("%d" % k).rjust(8),("%.2e" % obj).rjust(8)])) # Outputs w_output = w.copy() return w_output, np.array(objvals)
_____no_output_____
MIT
Optim_Project.ipynb
iladan0/Abalone_Age_Prediction
**Different Learning rates**
nb_epochs = 100 n = pblinreg.n d = pblinreg.d w0 = np.zeros(d) valsstep0 = [0.1,0.01,0.001,0.0001,0.00001] nvals = len(valsstep0) objs = np.zeros((nvals,nb_epochs+1)) for val in range(nvals): w_temp, objs_temp = batch_grad(w0,pblinreg, lr=valsstep0[val], n_iter=nb_epochs) objs[val] = objs_temp epochs = range(1,102) plt.figure(figsize=(7, 5)) for val in range(nvals): plt.plot(epochs, objs[val], label="BG - "+str(valsstep0[val]), lw=2) plt.title("Convergence plot", fontsize=16) plt.xlabel("#epochs", fontsize=14) plt.ylabel("Objective", fontsize=14) plt.legend() plt.show()
_____no_output_____
MIT
Optim_Project.ipynb
iladan0/Abalone_Age_Prediction
Accelerated Gradient Descent
def accelerated_grad(w_0,problem,lr=0.001,method="nesterov",momentum=None,n_iter=100,verbose=False): """ A generic code for Nesterov's accelerated gradient method. Inputs: w0: Initial vector problem: Problem structure lr: Learning rate method: Type of acceleration technique that is used 'nesterov': Accelerated gradient for convex functions (Nesterov) momentum: Constant value for the momentum parameter (only used if method!='nesterov') n_iter: Number of iterations verbose: Boolean value indicating whether the outcome of every iteration should be displayed Outputs: z_output: Final iterate of the method objvals: History of function values in z (output as a Numpy array of length n_iter+1) """ ############ # Initial step: Compute and plot some initial quantities # objective history objvals = [] # Initial value of current and next iterates w = w0.copy() w_new = w0.copy() z = w0.copy() if method=='nesterov': # Initialize parameter sequence tk = 0 tkp1 = 1 momentum = 0 # Initialize iteration counter k=0 # Initial objective obj = problem.fun(z) objvals.append(obj); # Plot the initial values if required if verbose: print("Accelerated Gradient/"+method) print(' | '.join([name.center(8) for name in ["iter", "fval"]])) print(' | '.join([("%d" % k).rjust(8),("%.2e" % obj).rjust(8)])) ####################### # Main loop while (k < n_iter): # Perform the accelerated iteration # Gradient step g = problem.grad(z) w_new[:] = z - lr * g # Momentum step z[:] = w_new + momentum*(w_new-w) # Update sequence w[:] = w_new[:] # Adjusting the momentum parameter if needed if method=='nesterov': tkp1 = 0.5*(1+np.sqrt(1+4*(tk**2))) momentum = (tk-1)/tkp1 tk = tkp1 # Compute and plot the new objective value and distance to the minimum obj = problem.fun(z) objvals.append(obj) # Plot these values if required if verbose: print(' | '.join([("%d" % k).rjust(8),("%.2e" % obj).rjust(8)])) # Increment the iteration counter k += 1 # End loop ####################### # Output z_output = z.copy() return z_output, np.array(objvals)
_____no_output_____
MIT
Optim_Project.ipynb
iladan0/Abalone_Age_Prediction
**GD Vs NAGD**
nb_epochs = 100 n = pblinreg.n d = pblinreg.d w0 = np.zeros(d) learning_rate = 0.01 w_g, obj_g = batch_grad(w0,pblinreg, lr=learning_rate, n_iter=nb_epochs) w_n, obj_n = accelerated_grad(w0,pblinreg, lr=learning_rate, n_iter=nb_epochs) epochs = range(1,102) plt.figure(figsize=(7, 5)) plt.plot(epochs, obj_g, label="GD", lw=2) plt.plot(epochs, obj_n, label="NAGD", lw=2) plt.title("Convergence plot", fontsize=16) plt.xlabel("#epochs", fontsize=14) plt.ylabel("Objective", fontsize=14) plt.legend() plt.show()
_____no_output_____
MIT
Optim_Project.ipynb
iladan0/Abalone_Age_Prediction
Stochastic gradient Descent
def stoch_grad(w0,problem, stepchoice=0, lr= 0.01, n_iter=1000,nb=1,average=0,scaling=0,with_replace=False,verbose=False): """ A code for gradient descent with various step choices. Inputs: w0: Initial vector problem: Problem structure problem.fun() returns the objective function, which is assumed to be a finite sum of functions problem.n returns the number of components in the finite sum problem.grad_i() returns the gradient of a single component f_i stepchoice: Strategy for computing the stepsize 0: Constant step size equal to lr 1: Step size decreasing in lr/ stepchoice lr: Learning rate n_iter: Number of iterations, used as stopping criterion nb: Number of components drawn per iteration/Batch size 1: Classical stochastic gradient algorithm (default value) problem.n: Classical gradient descent (default value) average: Indicates whether the method computes the average of the iterates 0: No averaging (default) 1: With averaging scaling: Use a diagonal scaling 0: No scaling (default) 1: Average of magnitudes (RMSProp) 2: Normalization with magnitudes (Adagrad) with_replace: Boolean indicating whether components are drawn with or without replacement True: Components drawn with replacement False: Components drawn without replacement (Default) verbose: Boolean indicating whether information should be plot at every iteration (Default: False) Outputs: w_output: Final iterate of the method (or average if average=1) objvals: History of function values (Numpy array of length n_iter at most) """ ############ # Initial step: Compute and plot some initial quantities # objective history objvals = [] # iterates distance to the minimum history normits = [] """ # Lipschitz constant L = problem.lipgrad() """ # Number of samples n = problem.n # Initial value of current iterate w = w0.copy() nw = norm(w) # Average (if needed) if average: wavg=np.zeros(len(w)) #Scaling values if scaling>0: mu=1/(2 *(n ** (0.5))) v = np.zeros(d) beta = 0.8 # Initialize iteration counter k=0 # Current objective obj = problem.fun(w) objvals.append(obj); # Plot initial quantities of interest if verbose: print("Stochastic Gradient, batch size=",nb,"/",n) print(' | '.join([name.center(8) for name in ["iter", "MSE_Loss"]])) print(' | '.join([("%d" % k).rjust(8),("%.2e" % obj).rjust(8)])) ################ # Main loop while (k < n_iter ):#and nw < 10**100 # Draw the batch indices ik = np.random.choice(n,nb,replace=with_replace)# Batch gradient # Stochastic gradient calculation sg = np.zeros(d) for j in range(nb): gi = problem.grad_i(ik[j],w) sg = sg + gi sg = (1/nb)*sg if scaling>0: if scaling==1: # RMSProp update v = beta*v + (1-beta)*sg*sg elif scaling==2: # Adagrad update v = v + sg*sg sg = sg/(np.sqrt(v+mu)) if stepchoice==0: w[:] = w - lr * sg elif stepchoice>0: if (k*nb*10) % n == 0: sk = float(lr/stepchoice) w[:] = w - sk * sg nw = norm(w) #Computing the norm to measure divergence if average: # If average, compute the average of the iterates wavg = k/(k+1) *wavg + w/(k+1) obj = problem.fun(wavg) else: obj = problem.fun(w) k += 1 # Plot quantities of interest at the end of every epoch only if k % int(n/nb) == 0: objvals.append(obj) if verbose: print(' | '.join([("%d" % k).rjust(8),("%.2e" % obj).rjust(8)])) # End of main loop ################# # Plot quantities of interest for the last iterate (if needed) if (k*nb) % n > 0: objvals.append(obj) if verbose: print(' | '.join([("%d" % k).rjust(8),("%.2e" % obj).rjust(8)])) # Outputs if average: w_output = wavg.copy() else: w_output = w.copy() return w_output, np.array(objvals)
_____no_output_____
MIT
Optim_Project.ipynb
iladan0/Abalone_Age_Prediction
**Constant Vs Decreasing LR**
nb_epochs = 60 n = pblinreg.n d = pblinreg.d w0 = np.zeros(d) # Run a - GD with constant stepsize w_a, obj_a = stoch_grad(w0,pblinreg, n_iter=nb_epochs,nb=n) # Run b - Stochastic gradient with constant stepsize # The version below may diverges, in which case the bound on norm(w) in the code will be triggered w_b, obj_b = stoch_grad(w0,pblinreg, lr=0.0001, n_iter=nb_epochs*n,nb=1) # Run Gradient descent with decreasing stepsize w_c, obj_c = stoch_grad(w0,pblinreg, stepchoice=0.5, lr=0.2, n_iter=nb_epochs,nb=n) # Run Stochastic gradient with decreasing stepsize w_d, obj_d = stoch_grad(w0,pblinreg, stepchoice=0.5, lr=0.2, n_iter=nb_epochs*n,nb=1) epochs = range(1,62) plt.figure(figsize=(7, 5)) plt.plot(epochs, obj_a, label="GD - const-lbda", lw=2) plt.plot(epochs, obj_b, label="SG - const-lbda", lw=2) plt.plot(epochs, obj_c, label="GD - decr-lbda", lw=2) plt.plot(epochs, obj_d, label="SG - decr-lbda", lw=2) plt.title("Convergence plot", fontsize=16) plt.xlabel("#epochs", fontsize=14) plt.ylabel("Objective MSE", fontsize=14) plt.legend() plt.show()
_____no_output_____
MIT
Optim_Project.ipynb
iladan0/Abalone_Age_Prediction
**Different Constant LR**
nb_epochs = 60 n = pblinreg.n d = pblinreg.d w0 = np.zeros(d) valsstep0 = [0.01,0.001,0.0001,0.00001] nvals = len(valsstep0) objs = np.zeros((nvals,nb_epochs+1)) for val in range(nvals): w_temp, objs_temp = stoch_grad(w0,pblinreg, lr=valsstep0[val], n_iter=nb_epochs*n,nb=1) objs[val] = objs_temp plt.figure(figsize=(7, 5)) for val in range(nvals): plt.plot(epochs, objs[val], label="SG - "+str(valsstep0[val]), lw=2) plt.title("Convergence plot", fontsize=16) plt.xlabel("#epochs", fontsize=14) plt.ylabel("Objective", fontsize=14) plt.legend() plt.show()
_____no_output_____
MIT
Optim_Project.ipynb
iladan0/Abalone_Age_Prediction
**Different decreasing LR**
nb_epochs = 60 n = pblinreg.n nbset = 1 w0 = np.zeros(d) decstep = [1,2,10,20,100] nvals = len(decstep) objs = np.zeros((nvals,nb_epochs+1)) for val in range(nvals): _, objs[val] = stoch_grad(w0,pblinreg,stepchoice=decstep[val],lr=0.02, n_iter=nb_epochs*n,nb=1) plt.figure(figsize=(7, 5)) for val in range(nvals): plt.semilogy(epochs, objs[val], label="SG - "+str(decstep[val]), lw=2) plt.title("Convergence plot", fontsize=16) plt.xlabel("#epochs", fontsize=14) plt.ylabel("Objective", fontsize=14) plt.legend() plt.show()
_____no_output_____
MIT
Optim_Project.ipynb
iladan0/Abalone_Age_Prediction
**Different Batch size**
nb_epochs = 100 n = pblinreg.n w0 = np.zeros(d) # Stochastic gradient (batch size 1) w_a, obj_a= stoch_grad(w0,pblinreg, lr=0.0001, n_iter=nb_epochs*n,nb=1) # Batch stochastic gradient (batch size n/100) nbset=int(n/100) w_b, obj_b = stoch_grad(w0,pblinreg, lr=0.0001, n_iter=nb_epochs*100,nb=nbset) # Batch stochastic gradient (batch size n/10) nbset=int(n/10) w_c, obj_c = stoch_grad(w0,pblinreg, lr=0.0001, n_iter=int(nb_epochs*10),nb=nbset) # Batch stochastic gradient (batch size n/2) nbset=int(n/2) w_d, obj_d = stoch_grad(w0,pblinreg, lr=0.0001, n_iter=int(nb_epochs*2),nb=nbset) # Gradient descent (batch size n, taken without replacement) w_f, obj_f = stoch_grad(w0,pblinreg, lr=0.0001, n_iter=int(nb_epochs),nb=n) nbset=int(n/100) w_b, obj_b = stoch_grad(w0,pblinreg, lr=0.0001, n_iter=int(nb_epochs*100),nb=nbset,verbose=True) print(len(obj_b)) epochs = range(1,102) plt.figure(figsize=(7, 5)) plt.semilogy(epochs, obj_a, label="SG (batch=1)", lw=2) plt.semilogy(epochs, obj_b, label="Batch SG - n/100", lw=2) plt.semilogy(epochs, obj_c, label="Batch SG - n/10", lw=2) plt.semilogy(epochs, obj_d, label="Batch SG - n/2", lw=2) plt.semilogy(epochs, obj_f, label="GD", lw=2) plt.title("Convergence plot", fontsize=16) plt.xlabel("#epochs", fontsize=14) plt.ylabel("Objective", fontsize=14) plt.legend() plt.show() plt.figure(figsize=(7, 5)) plt.plot(epochs, obj_a, label="SG (batch=1)", lw=2) plt.plot(epochs, obj_b, label="Batch SG - n/100", lw=2) plt.plot(epochs, obj_c, label="Batch SG - n/10", lw=2) plt.plot(epochs, obj_d, label="Batch SG - n/2", lw=2) plt.plot(epochs, obj_f, label="GD", lw=2) plt.title("Convergence plot", fontsize=16) plt.xlabel("#epochs", fontsize=14) plt.ylabel("Objective", fontsize=14) plt.legend() plt.show()
_____no_output_____
MIT
Optim_Project.ipynb
iladan0/Abalone_Age_Prediction
Other variants for SGD **batch with replacement**
#Batch with replacement for GD, SGD and Batch SGD nb_epochs = 100 n = pblinreg.n w0 = np.zeros(d) nruns = 3 for i in range(nruns): # Run standard stochastic gradient (batch size 1) _, obj_a= stoch_grad(w0,pblinreg, lr=0.0001, n_iter=nb_epochs*n,nb=1,with_replace=True) # Batch stochastic gradient (batch size n/10) nbset=int(n/2) _, obj_b= stoch_grad(w0,pblinreg, lr=0.0001, n_iter=int(nb_epochs*n/nbset),nb=nbset,with_replace=True) # Batch stochastic gradient (batch size n, with replacement) nbset=n _, obj_c=stoch_grad(w0,pblinreg, lr=0.0001, n_iter=int(nb_epochs*n/nbset),nb=nbset,with_replace=True) if i<nruns-1: plt.semilogy(obj_a,color='orange',lw=2) plt.semilogy(obj_b,color='green', lw=2) plt.semilogy(obj_c,color='blue', lw=2) plt.semilogy(obj_a,label="SG",color='orange',lw=2) plt.semilogy(obj_b,label="batch n/2",color='green', lw=2) plt.semilogy(obj_c,label="batch n",color='blue', lw=2) plt.title("Convergence plot", fontsize=16) plt.xlabel("#epochs ", fontsize=14) plt.ylabel("Objective ", fontsize=14) plt.legend()
_____no_output_____
MIT
Optim_Project.ipynb
iladan0/Abalone_Age_Prediction
**Averaging**
# Comparison of stochastic gradient with and without averaging nb_epochs = 100 n = pblinreg.n w0 = np.zeros(d) # Run standard stochastic gradient without averaging _, obj_a =stoch_grad(w0,pblinreg, lr=0.0001, n_iter=nb_epochs*n,nb=1) # Run stochastic gradient with averaging _, obj_b =stoch_grad(w0,pblinreg, lr=0.0001, n_iter=nb_epochs*n,nb=1,average=1) # Plot the results plt.figure(figsize=(7, 5)) plt.semilogy(obj_a,label='SG',color='orange',lw=2) plt.semilogy(obj_b,label='SG+averaging',color='red', lw=2) plt.title("Convergence plot", fontsize=16) plt.xlabel("#epochs (log scale)", fontsize=14) plt.ylabel("Objective (log scale)", fontsize=14) plt.legend()
_____no_output_____
MIT
Optim_Project.ipynb
iladan0/Abalone_Age_Prediction
**Diagonal Scaling**
# Comparison of stochastic gradient with and without diagonal scaling nb_epochs = 60 n = pblinreg.n w0 = np.zeros(d) # Stochastic gradient (batch size 1) without diagonal scaling w_a, obj_a= stoch_grad(w0,pblinreg, lr=0.0001, n_iter=nb_epochs*n,nb=1) # Stochastic gradient (batch size 1) with RMSProp diagonal scaling w_b, obj_b = stoch_grad(w0,pblinreg, lr=0.0001, n_iter=nb_epochs*n,nb=1,average=0,scaling=1) # Stochastic gradient (batch size 1) with Adagrad diagonal scaling - Constant step size w_c, obj_c = stoch_grad(w0,pblinreg, lr=0.0001, n_iter=nb_epochs*n,nb=1,average=0,scaling=2) # Stochastic gradient (batch size 1) with Adagrad diagonal scaling - Decreasing step size w_d, obj_d = stoch_grad(w0,pblinreg, lr=0.0001, n_iter=nb_epochs*n,nb=1,average=0,scaling=2) # Plot the results - Comparison of stochastic gradient with and without diagonal scaling # In terms of objective value (logarithmic scale) plt.figure(figsize=(7, 5)) plt.semilogy(obj_a, label="SG", lw=2) plt.semilogy(obj_b, label="SG/RMSProp", lw=2) plt.semilogy(obj_c, label="SG/Adagrad (Cst)", lw=2) plt.semilogy(obj_d, label="SG/Adagrad (Dec)", lw=2) plt.title("Convergence plot", fontsize=16) plt.xlabel("#epochs (log scale)", fontsize=14) plt.ylabel("Objective (log scale)", fontsize=14) plt.legend() plt.show
_____no_output_____
MIT
Optim_Project.ipynb
iladan0/Abalone_Age_Prediction
Regression (Lasso with iterative soft thersholding) **Lasso regression with ISTA**
#Minimization fucntion with l1 norm (Lasso regression) def cost(w, X, y, lbda): return np.square(X.dot(w) - y).mean() + lbda * norm(w,1) def ista_solve( A, d, lbdaa ): """ Iterative soft-thresholding solves the minimization problem Minimize |Ax-d|_2^2 + lambda*|x|_1 (Lasso regression) """ max_iter = 300 objvals = [] tol = 10**(-3) tau = 1.5/np.linalg.norm(A,2)**2 n = A.shape[1] w = np.zeros((n,1)) for j in range(max_iter): z = w - tau*(A.T@(A@w-d)) w_old = w w = np.sign(z) * np.maximum(np.abs(z)-tau*lbdaa, np.zeros(z.shape)) if j % 100 == 0: obj = cost(w,A,d,lbdaa) objvals.append(obj) if np.linalg.norm(w - w_old) < tol: break return w, objvals #we iterate over multiple values of lambda lmbdas = [0.000001, 0.000002, 0.00001, 0.00002, 0.0001, 0.0002, 0.001, 0.002, 0.01, 0.02, 0.1, 0.2, 1, 2, 10, 20] mse_list=[] for lda in lmbdas: w_star, obj_x = ista_solve_hot( x_train, y_train, lda) mse_list.append(obj_x[-1]) x_range = range(1,len(lmbdas)+1) plt.figure(figsize=(7, 5)) plt.plot(x_range,mse_list, label="Lasso-ISTA", lw=2) plt.title("Best Lambda factor", fontsize=16) plt.xlabel("Lambda", fontsize=14) plt.xticks(np.arange(len(lmbdas)),lmbdas,rotation=40) plt.ylabel("Objective Lasso reg", fontsize=14) plt.legend() plt.show() w_star, obj_x = ista_solve_hot( x_train, y_train, 0.00001)
_____no_output_____
MIT
Optim_Project.ipynb
iladan0/Abalone_Age_Prediction
Performance on Test set
#MSE on lasso-ISTA cost(w_star, x_valid, y_valid, 0.00001) # MSE on best sgd algo cost(w_b, x_valid, y_valid, 0.00001)
_____no_output_____
MIT
Optim_Project.ipynb
iladan0/Abalone_Age_Prediction
The Monte Carlo Simulation of Radiation Transport WE will discuss essentiall physics and method to do gamma quanta (photons with high enough energy) radiation transport using Monte Carlo methods. We will covers interactions processes, basics of radiation passing through matter as well as Monte Carlo method and how it helps with radiation propagation. Glossary- $h$ Plank's constant- $\hbar$ reduced Plank's constant, $h/2\pi$- $\omega$ photon circular frequency, - $\hbar \omega$ photon energy- $\lambda$ photon wavelength- $\theta$ scattering angle, between incoming and outgoing photon- $\phi$ azimuthal angle- $c$ speed of light in vacuum- $m_e$ electron mass- $r_e$ classical electron radius- $N_A$ Avogadro Constant, 6.02214076$\times$10$^{23}$ mol$^{-1}$ Basic physics We would cover typical energies and wave length when photons are behaving like a point-like particle interaction with matter. Units Common unit for a photon energy would be electron-volt (eV). This is the kinetic energy electron aquire when it moves in electric field (say, between plates of the capacitor) with potential difference 1Volt. This is very small energy and is equal to about $1.6\times10^{-19}$Joules. Typical energies we are interested inare in the 1keV to 100MeV range. Spatial size and wave length Photons are massless particles, and it is very easy to compute photon "size" which is photon wavelength.$$ \lambda = \frac{hc}{E_\gamma} = \frac{hc}{\hbar \omega} = \frac{2 \pi c}{\omega}$$where $\lambda$ is wavelength, $h$ is Plank's constant, $c$ is speed of light and $E_\gamma$ is photon energy. For example, lets compute wavelength for photon with energy 1eV.
h = 6.625e-34 c = 3e8 hw = 1.0 * 1.6e-19 # eV λ = h*c/hw print(f"Photon wavelength = {λ*1.0e9} nanometers")
Photon wavelength = 1242.1875 nanometers
MIT
GammaTransport.ipynb
Tatiana-Krivosheev/Radiation-Transport-with-Monte-Carlo
Thus, for 1keV photon we will get wave length about 1.2 nm, and for 1MeV photon we will get wave length about $1.2\times10^{-3}$nm. FOr comparison, typical atom size is from 0.1nm (He) to 0.4nm (Fr and other heavy). Therefore, for most interactions between photon and atoms in our enery range we could consider it particles, not waves. Basics of Monte Carlo methods Was first introduced by Conte du Buffon, as needle dropping experiment to calculate value of $\pi$. Laplace extended the example of the CduB by using sampling in the square to calculate value of $\pi$. It is a very general method of stochastic integration of the function. Was successfully applied to the particles (neutron in this case) transport by Enrico Fermi. Since growing applications of computers it is growing exponentially in use - finances, radiation therapy, machine learning, astrophysics, optimizations, younameit. Let's try to calculate $\pi$ with the Laplace method, namely sampe points uniformly in the
import numpy as np import matplotlib.pyplot as plt %matplotlib inline N = 1000 # number of points to sample x = 2.0*np.random.random(N) - 1.0 y = 2.0*np.random.random(N) - 1.0 unitCircle = plt.Circle((0, 0), 1.0, color='r', fill=False) fig, ax = plt.subplots(1, 1) ax.plot(x, y, 'bo', label='Sampling in square') ax.add_artist(unitCircle) plt.axhline(0, color='grey') plt.axvline(0, color='grey') plt.title("Sampling in square") plt.show() r = np.sqrt(x*x + y*y) #print(r) pinside = r[r<=1.0] Ninside = len(pinside) print(4.0*Ninside/N)
3.08
MIT
GammaTransport.ipynb
Tatiana-Krivosheev/Radiation-Transport-with-Monte-Carlo
Result shall be close to $\pi$ Basic Photons Interactions with atoms There are several interaction processess of photons with media. Compton Scattering Compton scattering is described by Klein-Nishina formula with energy of scattered photon directly tied to incoming energy and scattering angle$$\hbar \omega'=\frac{\hbar\omega}{1+\frac{\hbar \omega}{m_e c^2} (1 - \cos{\theta})}$$where prime marks particle after scattering. It is clear to see that for backscattering photon ($\theta=\pi$, $\cos{\theta}=-1$) the energy of scattered photon reach minimum, which means scattered photon energy has limits$$\frac{\hbar \omega }{1 + 2\hbar\omega/m_ec^2} \le \hbar\omega' \le \hbar\omega$$ Scattering cross-section (you could think of this as denormalized probability to be scattered to a given enegy)$$\frac{d\sigma}{d\hbar\omega'} = \pi r_e^2 \frac{m_ec^2}{(\hbar\omega)^2} \lbrace \frac{\hbar\omega}{\hbar\omega'} + \frac{\hbar\omega'}{\hbar\omega} +\left ( \frac{m_ec^2}{\hbar\omega'} - \frac{m_ec^2}{\hbar\omega} \right )^2 - 2m_ec^2 \left ( \frac{1}{\hbar\omega'} - \frac{1}{\hbar\omega} \right ) \rbrace$$Full cross-section, where $x=2 \hbar\omega/m_e c^2$ is double relative photon enery.$$\sigma=2\pi r_e^2\frac{1}{x}\lbrace \left ( 1 - \frac{4}{x} - \frac{8}{x^2} \right ) \log{(1+x) +\frac{1}{2} + \frac{8}{x}-\frac{1}{2(1+x)^2}} \rbrace$$Then we could divide partial cross-section by total cross-section and get probability of scattered photon energy for different incoming photons. Lets plot few graphs. As one can see, cross-section has dimension of area. They are very small, therefore cross-sections are measured in barns, one barn being $10^-{24}$ centimeter squared.Let's for reference add expression how to compute angular differential cross-section$$\frac{d\sigma}{d\omicron'} = \frac{1}{2} r_e^2 \left( \frac{\hbar\omega'}{\hbar\omega}\right)^2 \left(\frac{\hbar\omega}{\hbar\omega'} + \frac{\hbar\omega'}{\hbar\omega} - \sin^2{\theta}\right)$$ Let's move to more appropriate units: energy would be always in MeV, unit of length for cross-sections would be in femtometers (1fm = $10^{-15}m$). Barn is 100 femtometers squa.
# usefule constants MeC2 = 0.511 # in MeV Re = 2.82 # femtometers # main functions to deal with cross-sections def hw_prime(hw, cos_theta): """computes outgoing photon energy vs cosine of the scattered angle""" hwp = hw/(1.0 + (1.0 - cos_theta)*hw/MeC2) return hwp def cosθ_from_hwp(hw, hwp): return 1.0 - (MeC2/hwp - MeC2/hw) def hwp_minimum(hw): """Computes minimum scattere energy in MeV given incoming photon energy hw""" return hw/(1.0 + 2.0*hw/MeC2) def total_cross_section(hw): """Klein-Nishina total cross-section, LDL p.358, eq (86.16)""" if hw <= 0.0: raise RuntimeError(f"Photon energy is negative: {hw}") x = 2.0 * hw / MeC2 q = 1.0/x z = (1.0 + x) σ = 2.0*np.pi*Re*Re * q * ((1.0 - 4.0*q - 8.0*q*q)*np.log(z) + 0.5 + 8.0*q - 0.5/z/z) return σ def diff_cross_section_dhwp(hw, hwp): """Differential cross-section over outgoing photon energy""" if hw <= 0.0: raise RuntimeError(f"Photon energy is negative or zero: {hw}") if hwp <= 0.0: raise RuntimeError(f"Scattered photon energy is negative or zero: {hwp}") if hwp < hwp_minimum(hw): # outgoing energy cannot be less than minimum allowed return 0.0 ei = MeC2/hw eo = MeC2/hwp dσ_dhwp = np.pi*Re*Re * (ei/hw) * (ei/eo + eo/ei + (eo-ei)**2 - 2.0*(eo-ei)) return dσ_dhwp def diff_cross_section_dOp(hw, θ): """Differential cross-section over outgoing photon differential angle""" cst = np.cos(θ) hwp = hw_prime(hw, cst) rhw = hwp/hw dσ_dOp = 0.5*np.pi*Re*Re * rhw*rhw*(rhw + 1.0/rhw - (1.0 - cst)*(1.0 + cst)) return dσ_dOp def make_energyloss_curve(hw): N = 101 hwm = hwp_minimum(hw) hws = np.linspace(0.0, hw-hwm, N) st = total_cross_section(hw) sc = np.empty(101) for k in range(0, len(hws)): hwp = hw - hws[k] sc[k] = diff_cross_section_dhwp(hw, hwp)/st return hws, sc q_p25, s_p25 = make_energyloss_curve(0.25) q_p50, s_p50 = make_energyloss_curve(0.50) q_1p0, s_1p0 = make_energyloss_curve(1.00) fig, ax = plt.subplots(1, 1) ax.plot(q_p25, s_p25, 'r-', lw=2, label='Scattering probability vs energy loss, 0.25MeV') ax.plot(q_p50, s_p50, 'g-', lw=2, label='Scattering probability vs energy loss, 0.50MeV') ax.plot(q_1p0, s_1p0, 'b-', lw=2, label='Scattering probability vs energy loss, 1.00MeV') plt.title("Klein-Nishina") plt.show() def make_angular_curve(hw): """Helper function to make angular probability x,y arrays given incoming photon enenrgy, MeV""" N = 181 theta_d = np.linspace(0.0, 180.0, N) # angles in degrees theta_r = theta_d * np.pi / 180.0 st = total_cross_section(hw) so = np.empty(N) for k in range(0, len(so)): so[k] = diff_cross_section_dOp(hw, theta_r[k]) * 2.0*np.pi / st return theta_d, so a_p25, s_p25 = make_angular_curve(0.25) a_p50, s_p50 = make_angular_curve(0.50) a_1p0, s_1p0 = make_angular_curve(1.00) fig, ax = plt.subplots(1, 1) ax.plot(a_p25, s_p25, 'r-', lw=2, label='Scattering angular probability, 0.25MeV') ax.plot(a_p50, s_p50, 'g-', lw=2, label='Scattering angular probability, 0.50MeV') ax.plot(a_1p0, s_1p0, 'b-', lw=2, label='Scattering angular probability, 1.00MeV') plt.title("Klein-Nishina") plt.show()
_____no_output_____
MIT
GammaTransport.ipynb
Tatiana-Krivosheev/Radiation-Transport-with-Monte-Carlo
Cross-sections Microscopic and Macroscopic cross-sections We learned about so-called microscopic cross-sections, which is oneabout one photon scattering on one electron. It is very small, measured in barns which is $10^{-24}$ cm$^2$. In real life photons interacti with material objects measured in grams and kilograms. For that, we need macroscopic cross-section. For macroscopic cross-section, we have to multiply microscopic one by $N$, which is density of scatterers, as well as atomic number $Z$ (remember, we are scattering on electrons)For Compton scattering in water, we could write$$\Sigma = \rho Z \frac{N_A}{M} \sigma$$where $N_A$ is Avogadro constant, $M$ is molar mass (total mass of $N_A$ molecules) and $\rho$ is the density. Lets check the units. Suppose density is in $g/cm^3$, Avogadro Constant is in mol$^{-1}$ and molar mass is in $g/mol$. Therefore, macroscopic cross-section is measured in $cm^{-1}$ and gives the base for linear attenuation coefficient$$P(x) = \exp{(-\Sigma x)}$$where one can see that value under exponent is dimensionless. NIST cross-sections database National Institute of Standards and Technologies provides a lot of precomputed corss-sections for elements and mixtures, for energies from 1keV up to 10GeV. One can find cross-sections from [XCOM place](https://www.nist.gov/pml/xcom-photon-cross-sections-database). One can pick elements, materials, mixtures and save them into local file. What is worth mentioning is that XCOM provides data as $$\Sigma = Z \frac{N_A}{M}\sigma$$where density is specifically excluded. It is called mass attenuation coefficient. It is measured in $cm^2/g$. Using such units has certaint advantages, e.g. if you compute photon transport in media where density could change (say, inside nuclear reator where due to heating density of water goes from $\sim$ 1$\;g/cm^3$ to about 0.75$\;g/cm^3$) allows to keep intercation physics separate from density. Multiplying mass attenuation coefficient by density gives you back linear attenuation coefficient. Cross-sections for Water Lets read water cross-sections and plot them
lines = None with open('H2o.data', "r") as f: lines = f.readlines() header_len = 3 lines = lines[header_len:41] # remove header, and limit energy to 10MeV energy = np.empty(len(lines)) # energy scale coh_xs = np.empty(len(lines)) # coherent cross-section inc_xs = np.empty(len(lines)) # incoherent cross-section pht_xs = np.empty(len(lines)) # photo-effect cross-section npp_xs = np.empty(len(lines)) # nuclear pair production epp_xs = np.empty(len(lines)) # electron pair production for k in range(0, len(lines)): s = lines[k].split('|') energy[k] = float(s[0]) coh_xs[k] = float(s[1]) inc_xs[k] = float(s[2]) pht_xs[k] = float(s[3]) npp_xs[k] = float(s[4]) epp_xs[k] = float(s[5])
_____no_output_____
MIT
GammaTransport.ipynb
Tatiana-Krivosheev/Radiation-Transport-with-Monte-Carlo
Now we will plot together photoeffect, coherent, incoherent and total mass attenuation cross-sections.
plt.xscale("log") plt.yscale("log") plt.plot(energy, coh_xs, 'g-', linewidth=2) plt.plot(energy, inc_xs, 'r-', linewidth=2) plt.plot(energy, pht_xs, 'b-', linewidth=2) plt.plot(energy, pht_xs+coh_xs+inc_xs, 'o-', linewidth=2) # total cross-section #plt.plot(energy, npp_xs, 'c-', linewidth=2) #plt.plot(energy, epp_xs, 'm-', linewidth=2) plt.show()
_____no_output_____
MIT
GammaTransport.ipynb
Tatiana-Krivosheev/Radiation-Transport-with-Monte-Carlo
One can see that for all practical reasons considering only photo-effect and compton (aka incoherent) scatterin is good enough approximation, Compton Scattering Sampling W will use Khan's method to sample Compton scattering.
def KhanComptonSampling(hw, rng): """Sample scattering energy after Compton interaction""" α = 2.0*hw/MeC2 # double relative incoming photon energy t = (α + 1.0)/(α + 9.0) x = 0.0 while True: y = 1.0 + α*rng.random() if rng.random() < t: if rng.random() < 4.0*(1.0 - 1.0/y)/y: x = y break else: y = (1.0 + α) / y c = 2.0*y/α + 1.0 if rng.random() < 0.5*(c*c + 1.0/y): x = y break return hw/x # scattered photon energy back
_____no_output_____
MIT
GammaTransport.ipynb
Tatiana-Krivosheev/Radiation-Transport-with-Monte-Carlo
Let's test Compton sampling and compare it with microscopic differential cross-section
hw = 1.0 # MeV hwm = hwp_minimum(hw) Nt = 1000000 hwp = np.empty(Nt) rng = np.random.default_rng(312345) for k in range(0, len(hwp)): hwp[k] = KhanComptonSampling(hw, rng)
_____no_output_____
MIT
GammaTransport.ipynb
Tatiana-Krivosheev/Radiation-Transport-with-Monte-Carlo
Ok, lets check first the minimum energy in sampled values, should be within allowed range.
hwm_sampled = np.min(hwp) print(f"Minimum allowed scattered energy: {hwm} vs actual sampled minimum {hwm_sampled}") if hwm_sampled < hwm: print("We have a problem with kinematics!") count, bins, ignored = plt.hist(hwp, 20, density=True) plt.show() # plotting angular distribution cosθ = cosθ_from_hwp(hw, hwp) count, bins, ignored = plt.hist(cosθ, 20, density=True) plt.show()
_____no_output_____
MIT
GammaTransport.ipynb
Tatiana-Krivosheev/Radiation-Transport-with-Monte-Carlo
Monte Carlo photon transport code
# several helper functions and constants X = 0 Y = 1 Z = 2 def isotropic_source(rng): cosθ = 2.0*rng.random() - 1.0 # uniform cosine of the azimuth angle sinθ = np.sqrt((1.0 - cosθ)*(1.0 + cosθ)) φ = 2.0*np.pi*rng.random() # uniform polar angle return np.array((sinθ*np.cos(φ), sinθ*np.sin(φ), cosθ)) def find_energy_index(scale, hw): return np.searchsorted(scale, hw, side='right') - 1 def calculate_xs(xs, scale, hw, idx): q = (hw - scale[idx])/(scale[idx+1] - scale[idx]) return xs[idx]*(1.0 - q) + xs[idx+1]*q def transform_cosines(wx, wy, wz, cosθ, φ): """https://www.scratchapixel.com/lessons/mathematics-physics-for-computer-graphics/monte-carlo-methods-in-practice/monte-carlo-simulation""" # print(wx, wy, wz, cosθ) sinθ = np.sqrt((1.0 - cosθ)*(1.0 + cosθ)) cosφ = np.cos(φ) sinφ = np.sin(φ) if wz == 1.0: return np.array((sinθ * cosφ, sinθ * sinφ, cosθ)) if wz == -1.0: return np.array((sinθ * cosφ, -sinθ * sinφ, -cosθ)) denom = np.sqrt((1.0 - wz)*(1.0 + wz)) # denominator wzcosφ = wz * cosφ return np.array((wx * cosθ + sinθ * (wx * wzcosφ - wy * sinφ)/denom, wy * cosθ + sinθ * (wy * wzcosφ + wx * sinφ)/denom, wz * cosθ - denom * sinθ * cosφ)) def is_inside(pos): """Check is photon is inside world box""" if pos[X] > 20.0: return False if pos[X] < -20.0: return False if pos[Y] > 20.0: return False if pos[Y] < -20.0: return False if pos[Z] > 20.0: return False if pos[Z] < -20.0: return False return True # main MC loop rng = np.random.default_rng(312345) # set RNG seed Nt = 100 # number of trajectories hw_src = 1.0 # initial energy, MeV hw_max = energy[-1] # maximum energy in xs tables pos_src = (0.0, 0.0, 0.0) # initial position dir_src = (0.0, 0.0, 1.0) # initial direction density = 1.0 # g/cm^3 for k in range(0, Nt): # loop over all trajectories print(f"Particle # {k}") # set energy, position and direction from source terms hw = hw_src gpos = np.array(pos_src, dtype=np.float64) gdir = np.array(dir_src, dtype=np.float64) # could try isotropic source here if hw < 0.0: raise ValueError(f"Energy is negative: {hw}") if hw > hw_max: raise ValueError(f"Energy is too large: {hw}") while True: # infinite loop over single trajectory till photon is absorbed or out of the box or out of energy range idx = find_energy_index(energy, hw) if idx < 0: # photon fell below 1keV energy threshold, kill it break phxs = calculate_xs(pht_xs, energy, hw, idx) # photo-effect cross-section inxs = calculate_xs(inc_xs, energy, hw, idx) # incoherent, aka Compton cross-section toxs = (phxs + inxs) # total cross-section pathlength = - np.log(1.0 - rng.random()) # exponential distribution pathlength /= (toxs*density) # path length now in cm, because we move from mass attenuation toxs to linear attenuation #gpos = (gpos[X] + gdir[X]*pathlength, gpos[Y] + gdir[Y]*pathlength, gpos[Z] + gdir[Z]*pathlength) # move to the next interaction point gpos = gpos + np.multiply(gdir, pathlength) if not is_inside(gpos): # check if we are in volume of interest break # we'out, done with trajectory p_abs = phxs/toxs # probability of absorbtion if rng.random() < p_abs: # sample absorbtion break # photoeffect, photon is gone # compton scattering hwp = KhanComptonSampling(hw, rng) cosθ = cosθ_from_hwp(hw, hwp) φ = 2.0*np.pi*rng.random() # uniform azimuth angle gdir = transform_cosines(*gdir, cosθ, φ) gdir = gdir/np.linalg.norm(gdir) # normalization hw = hwp # here we have new energy, new position and new direction
Particle # 0 Particle # 1 Particle # 2 Particle # 3 Particle # 4 Particle # 5 Particle # 6 Particle # 7 Particle # 8 Particle # 9 Particle # 10 Particle # 11 Particle # 12 Particle # 13 Particle # 14 Particle # 15 Particle # 16 Particle # 17 Particle # 18 Particle # 19 Particle # 20 Particle # 21 Particle # 22 Particle # 23 Particle # 24 Particle # 25 Particle # 26 Particle # 27 Particle # 28 Particle # 29 Particle # 30 Particle # 31 Particle # 32 Particle # 33 Particle # 34 Particle # 35 Particle # 36 Particle # 37 Particle # 38 Particle # 39 Particle # 40 Particle # 41 Particle # 42 Particle # 43 Particle # 44 Particle # 45 Particle # 46 Particle # 47 Particle # 48 Particle # 49 Particle # 50 Particle # 51 Particle # 52 Particle # 53 Particle # 54 Particle # 55 Particle # 56 Particle # 57 Particle # 58 Particle # 59 Particle # 60 Particle # 61 Particle # 62 Particle # 63 Particle # 64 Particle # 65 Particle # 66 Particle # 67 Particle # 68 Particle # 69 Particle # 70 Particle # 71 Particle # 72 Particle # 73 Particle # 74 Particle # 75 Particle # 76 Particle # 77 Particle # 78 Particle # 79 Particle # 80 Particle # 81 Particle # 82 Particle # 83 Particle # 84 Particle # 85 Particle # 86 Particle # 87 Particle # 88 Particle # 89 Particle # 90 Particle # 91 Particle # 92 Particle # 93 Particle # 94 Particle # 95 Particle # 96 Particle # 97 Particle # 98 Particle # 99
MIT
GammaTransport.ipynb
Tatiana-Krivosheev/Radiation-Transport-with-Monte-Carlo
Random Signals*This jupyter notebook is part of a [collection of notebooks](../index.ipynb) on various topics of Digital Signal Processing. Please direct questions and suggestions to [[email protected]](mailto:[email protected]).* Auto-Power Spectral DensityThe (auto-) [power spectral density](https://en.wikipedia.org/wiki/Spectral_densityPower_spectral_density) (PSD) is defined as the Fourier transformation of the [auto-correlation function](correlation_functions.ipynb) (ACF). DefinitionFor a continuous-amplitude, real-valued, wide-sense stationary (WSS) random signal $x[k]$ the PSD is given as\begin{equation}\Phi_{xx}(\mathrm{e}^{\,\mathrm{j}\,\Omega}) = \mathcal{F}_* \{ \varphi_{xx}[\kappa] \},\end{equation}where $\mathcal{F}_* \{ \cdot \}$ denotes the [discrete-time Fourier transformation](https://en.wikipedia.org/wiki/Discrete-time_Fourier_transform) (DTFT) and $\varphi_{xx}[\kappa]$ the ACF of $x[k]$. Note that the DTFT is performed with respect to $\kappa$. The ACF of a random signal of finite length $N$ can be expressed by way of a linear convolution\begin{equation}\varphi_{xx}[\kappa] = \frac{1}{N} \cdot x_N[k] * x_N[-k].\end{equation}Taking the DTFT of the left- and right-hand side results in\begin{equation}\Phi_{xx}(\mathrm{e}^{\,\mathrm{j}\,\Omega}) = \frac{1}{N} \, X_N(\mathrm{e}^{\,\mathrm{j}\,\Omega})\, X_N(\mathrm{e}^{-\,\mathrm{j}\,\Omega}) = \frac{1}{N} \, | X_N(\mathrm{e}^{\,\mathrm{j}\,\Omega}) |^2.\end{equation}The last equality results from the definition of the magnitude and the symmetry of the DTFT for real-valued signals. The spectrum $X_N(\mathrm{e}^{\,\mathrm{j}\,\Omega})$ quantifies the amplitude density of the signal $x_N[k]$. It can be concluded from above result that the PSD quantifies the squared amplitude or power density of a random signal. This explains the term power spectral density. PropertiesThe properties of the PSD can be deduced from the properties of the ACF and the DTFT as:1. From the link between the PSD $\Phi_{xx}(\mathrm{e}^{\,\mathrm{j}\,\Omega})$ and the spectrum $X_N(\mathrm{e}^{\,\mathrm{j}\,\Omega})$ derived above it can be concluded that the PSD is real valued $$\Phi_{xx}(\mathrm{e}^{\,\mathrm{j}\,\Omega}) \in \mathbb{R}$$2. From the even symmetry $\varphi_{xx}[\kappa] = \varphi_{xx}[-\kappa]$ of the ACF it follows that $$ \Phi_{xx}(\mathrm{e}^{\,\mathrm{j} \, \Omega}) = \Phi_{xx}(\mathrm{e}^{\,-\mathrm{j}\, \Omega}) $$3. The PSD of an uncorrelated random signal is given as $$ \Phi_{xx}(\mathrm{e}^{\,\mathrm{j} \, \Omega}) = \sigma_x^2 + \mu_x^2 \cdot {\bot \!\! \bot \!\! \bot}\left( \frac{\Omega}{2 \pi} \right) ,$$ which can be deduced from the [ACF of an uncorrelated signal](correlation_functions.ipynbProperties).4. The quadratic mean of a random signal is given as $$ E\{ x[k]^2 \} = \varphi_{xx}[\kappa=0] = \frac{1}{2\pi} \int\limits_{-\pi}^{\pi} \Phi_{xx}(\mathrm{e}^{\,\mathrm{j}\, \Omega}) \,\mathrm{d} \Omega $$ The last relation can be found by expressing the ACF via the inverse DTFT of $\Phi_{xx}$ and considering that $\mathrm{e}^{\mathrm{j} \Omega \kappa} = 1$ when evaluating the integral for $\kappa=0$. Example - Power Spectral Density of a Speech SignalIn this example the PSD $\Phi_{xx}(\mathrm{e}^{\,\mathrm{j} \,\Omega})$ of a speech signal of length $N$ is estimated by applying a discrete Fourier transformation (DFT) to its ACF. For a better interpretation of the PSD, the frequency axis $f = \frac{\Omega}{2 \pi} \cdot f_s$ has been chosen for illustration, where $f_s$ denotes the sampling frequency of the signal. The speech signal constitutes a recording of the vowel 'o' spoken from a German male, loaded into variable `x`.In Python the ACF is stored in a vector with indices $0, 1, \dots, 2N - 2$ corresponding to the lags $\kappa = (0, 1, \dots, 2N - 2)^\mathrm{T} - (N-1)$. When computing the discrete Fourier transform (DFT) of the ACF numerically by the fast Fourier transform (FFT) one has to take this shift into account. For instance, by multiplying the DFT $\Phi_{xx}[\mu]$ by $\mathrm{e}^{\mathrm{j} \mu \frac{2 \pi}{2N - 1} (N-1)}$.
import numpy as np import matplotlib.pyplot as plt from scipy.io import wavfile # read audio file fs, x = wavfile.read('../data/vocal_o_8k.wav') x = np.asarray(x, dtype=float) N = len(x) # compute ACF acf = 1/N * np.correlate(x, x, mode='full') # compute PSD psd = np.fft.fft(acf) psd = psd * np.exp(1j*np.arange(2*N-1)*2*np.pi*(N-1)/(2*N-1)) f = np.fft.fftfreq(2*N-1, d=1/fs) # plot PSD plt.figure(figsize=(10, 4)) plt.plot(f, np.real(psd)) plt.title('Estimated power spectral density') plt.ylabel(r'$\hat{\Phi}_{xx}(e^{j \Omega})$') plt.xlabel(r'$f / Hz$') plt.axis([0, 500, 0, 1.1*max(np.abs(psd))]) plt.grid()
_____no_output_____
MIT
random_signals/power_spectral_densities.ipynb
TA1DB/digital-signal-processing-lecture
**Exercise*** What does the PSD tell you about the average spectral contents of a speech signal?Solution: The speech signal exhibits a harmonic structure with the dominant fundamental frequency $f_0 \approx 100$ Hz and a number of harmonics $f_n \approx n \cdot f_0$ for $n > 0$. This due to the fact that vowels generate random signals which are in good approximation periodic. To generate vowels, the sound produced by the periodically vibrating vowel folds is filtered by the resonance volumes and articulators above the voice box. The spectrum of periodic signals is a line spectrum. Cross-Power Spectral DensityThe cross-power spectral density is defined as the Fourier transformation of the [cross-correlation function](correlation_functions.ipynbCross-Correlation-Function) (CCF). DefinitionFor two continuous-amplitude, real-valued, wide-sense stationary (WSS) random signals $x[k]$ and $y[k]$, the cross-power spectral density is given as\begin{equation}\Phi_{xy}(\mathrm{e}^{\,\mathrm{j} \, \Omega}) = \mathcal{F}_* \{ \varphi_{xy}[\kappa] \},\end{equation}where $\varphi_{xy}[\kappa]$ denotes the CCF of $x[k]$ and $y[k]$. Note again, that the DTFT is performed with respect to $\kappa$. The CCF of two random signals of finite length $N$ and $M$ can be expressed by way of a linear convolution\begin{equation}\varphi_{xy}[\kappa] = \frac{1}{N} \cdot x_N[k] * y_M[-k].\end{equation}Note the chosen $\frac{1}{N}$-averaging convention corresponds to the length of signal $x$. If $N \neq M$, care should be taken on the interpretation of this normalization. In case of $N=M$ the $\frac{1}{N}$-averaging yields a [biased estimator](https://en.wikipedia.org/wiki/Bias_of_an_estimator) of the CCF, which consistently should be denoted with $\hat{\varphi}_{xy,\mathrm{biased}}[\kappa]$.Taking the DTFT of the left- and right-hand side from above cross-correlation results in\begin{equation}\Phi_{xy}(\mathrm{e}^{\,\mathrm{j}\,\Omega}) = \frac{1}{N} \, X_N(\mathrm{e}^{\,\mathrm{j}\,\Omega})\, Y_M(\mathrm{e}^{-\,\mathrm{j}\,\Omega}).\end{equation} Properties1. The symmetries of $\Phi_{xy}(\mathrm{e}^{\,\mathrm{j}\, \Omega})$ can be derived from the symmetries of the CCF and the DTFT as $$ \underbrace {\Phi_{xy}(\mathrm{e}^{\,\mathrm{j}\, \Omega}) = \Phi_{xy}^*(\mathrm{e}^{-\,\mathrm{j}\, \Omega})}_{\varphi_{xy}[\kappa] \in \mathbb{R}} = \underbrace {\Phi_{yx}(\mathrm{e}^{\,- \mathrm{j}\, \Omega}) = \Phi_{yx}^*(\mathrm{e}^{\,\mathrm{j}\, \Omega})}_{\varphi_{yx}[-\kappa] \in \mathbb{R}},$$ from which $|\Phi_{xy}(\mathrm{e}^{\,\mathrm{j}\, \Omega})| = |\Phi_{yx}(\mathrm{e}^{\,\mathrm{j}\, \Omega})|$ can be concluded.2. The cross PSD of two uncorrelated random signals is given as $$ \Phi_{xy}(\mathrm{e}^{\,\mathrm{j} \, \Omega}) = \mu_x^2 \mu_y^2 \cdot {\bot \!\! \bot \!\! \bot}\left( \frac{\Omega}{2 \pi} \right) $$ which can be deduced from the CCF of an uncorrelated signal. Example - Cross-Power Spectral DensityThe following example estimates and plots the cross PSD $\Phi_{xy}(\mathrm{e}^{\,\mathrm{j}\, \Omega})$ of two random signals $x_N[k]$ and $y_M[k]$ of finite lengths $N = 64$ and $M = 512$.
N = 64 # length of x M = 512 # length of y # generate two uncorrelated random signals np.random.seed(1) x = 2 + np.random.normal(size=N) y = 3 + np.random.normal(size=M) N = len(x) M = len(y) # compute cross PSD via CCF acf = 1/N * np.correlate(x, y, mode='full') psd = np.fft.fft(acf) psd = psd * np.exp(1j*np.arange(N+M-1)*2*np.pi*(M-1)/(2*M-1)) psd = np.fft.fftshift(psd) Om = 2*np.pi * np.arange(0, N+M-1) / (N+M-1) Om = Om - np.pi # plot results plt.figure(figsize=(10, 4)) plt.stem(Om, np.abs(psd), basefmt='C0:', use_line_collection=True) plt.title('Biased estimator of cross power spectral density') plt.ylabel(r'$|\hat{\Phi}_{xy}(e^{j \Omega})|$') plt.xlabel(r'$\Omega$') plt.grid()
_____no_output_____
MIT
random_signals/power_spectral_densities.ipynb
TA1DB/digital-signal-processing-lecture
Otter-Grader TutorialThis notebook is part of the Otter-Grader tutorial. For more information about Otter, see our [documentation](https://otter-grader.rtfd.io).
import pandas as pd import numpy as np %matplotlib inline import otter grader = otter.Notebook()
_____no_output_____
BSD-3-Clause
docs/tutorial/submissions/ipynbs/demo-fails2Hidden.ipynb
chrispyles/otter-grader
**Question 1:** Write a function `square` that returns the square of its argument.
def square(x): return x**2 grader.check("q1")
_____no_output_____
BSD-3-Clause
docs/tutorial/submissions/ipynbs/demo-fails2Hidden.ipynb
chrispyles/otter-grader
**Question 2:** Write an infinite generator of the Fibonacci sequence `fibferator` that is *not* recursive.
def fiberator(): yield 0 yield 1 while True: yield 1 grader.check("q2")
_____no_output_____
BSD-3-Clause
docs/tutorial/submissions/ipynbs/demo-fails2Hidden.ipynb
chrispyles/otter-grader
**Question 3:** Create a DataFrame mirroring the table below and assign this to `data`. Then group by the `flavor` column and find the mean price for each flavor; assign this **series** to `price_by_flavor`.| flavor | scoops | price ||-----|-----|-----|| chocolate | 1 | 2 || vanilla | 1 | 1.5 || chocolate | 2 | 3 || strawberry | 1 | 2 || strawberry | 3 | 4 || vanilla | 2 | 2 || mint | 1 | 4 || mint | 2 | 5 || chocolate | 3 | 5 |
data = pd.DataFrame({ "flavor": ["chocolate", "vanilla", "chocolate", "strawberry", "strawberry", "vanilla", "mint", "mint", "chocolate"], "scoops": [1, 1, 2, 1, 3, 2, 1, 2, 3], "price": [2, 1.5, 3, 2, 4, 2, 4, 5, 5] }) price_by_flavor = data.groupby("flavor").mean()["price"] price_by_flavor grader.check("q3")
_____no_output_____
BSD-3-Clause
docs/tutorial/submissions/ipynbs/demo-fails2Hidden.ipynb
chrispyles/otter-grader
**Question 1.4:** Create a barplot of `price_by_flavor`.
price_by_flavor.plot.bar()
_____no_output_____
BSD-3-Clause
docs/tutorial/submissions/ipynbs/demo-fails2Hidden.ipynb
chrispyles/otter-grader
**Question 1.5:** What do you notice about the bar plot? _Type your answer here, replacing this text._ The cell below allows you run all checks again.
grader.check_all() grader.export()
_____no_output_____
BSD-3-Clause
docs/tutorial/submissions/ipynbs/demo-fails2Hidden.ipynb
chrispyles/otter-grader
Table of Contents
#!python """ Find the brightest pixel coordinate of a image. @author: Bhishan Poudel @date: Oct 27, 2017 @email: [email protected] """ # Imports import time import numpy as np from astropy.io import fits import subprocess from scipy.ndimage import measurements def brightest_coord(): with open('centroids_f8.txt','w') as fo: for i in range(201): pre = '/Users/poudel/Research/a01_data/original_data/HST_ACS_WFC_f814w/' infile = '{}/sect23_f814w_gal{}.fits'.format(pre,i) dat = fits.getdata(infile) x,y = np.unravel_index(np.argmax(dat), dat.shape) x,y = int(y+1) , int(x+1) print("{} {}".format(x, y), file=fo) def find_centroid(): with open('centroids_f8_scipy.txt','w') as fo: for i in range(201): pre = '/Users/poudel/Research/a01_data/original_data/HST_ACS_WFC_f814w/' infile = '{}/sect23_f814w_gal{}.fits'.format(pre,i) dat = fits.getdata(infile) x,y = measurements.center_of_mass(dat) x,y = int(y+1) , int(x+1) print("{} {}".format(x, y), file=fo) def main(): """Run main function.""" # bright_coord() # find_centroid() # # checking # i = 0 # pre = '/Users/poudel/Research/a01_data/original_data/HST_ACS_WFC_f814w/' # infile = '{}/sect23_f814w_gal{}.fits'.format(pre,i) # ds9 = '/Applications/ds9.app/Contents/MacOS/ds9' # subprocess.call('{} {}'.format(ds9, infile), shell=True) # when zooming we can see brightest pixel is at 296, 307 image coord. if __name__ == "__main__": import time, os # Beginning time program_begin_time = time.time() begin_ctime = time.ctime() # Run the main program main() # Print the time taken program_end_time = time.time() end_ctime = time.ctime() seconds = program_end_time - program_begin_time m, s = divmod(seconds, 60) h, m = divmod(m, 60) d, h = divmod(h, 24) print("\n\nBegin time: ", begin_ctime) print("End time: ", end_ctime, "\n") print("Time taken: {0: .0f} days, {1: .0f} hours, \ {2: .0f} minutes, {3: f} seconds.".format(d, h, m, s)) print("\n") !head -n 5 centroids_f8.txt !head -n 5 centroids_f8_scipy.txt def find_max_coord(dat): print("dat = \n{}".format(dat)) maxpos = np.unravel_index(np.argmax(dat), dat.shape) print("maxpos = {}".format(maxpos)) with open('example_data.txt','w') as fo: data = """0.1 0.5 0.0 0.0 4.0 3.0 0.0 0.0 1.0 1.0 """ fo.write(data) dat = np.genfromtxt('example_data.txt') find_max_coord(dat) x,y = measurements.center_of_mass(dat) import matplotlib.pyplot as plt %matplotlib inline plt.imshow(dat) # default is RGB plt.imshow(dat,cmap='gray', vmin=int(dat.min()), vmax=int(dat.max())) # we can see brightest pixel is x=0 and y = 2 # or, if we count from 1, x = 1 and y =3 measurements.center_of_mass(dat) x,y = measurements.center_of_mass(dat) x,y = int(x), int(y) x,y dat dat[2][0] # Numpy index is dat[2][0] # but image shows x=0 and y =2. x,y = measurements.center_of_mass(dat) x,y = int(y), int(x) x,y dat[2][0] # Looking at mean dat.mean(axis=0) np.argmax(dat) np.unravel_index(4,dat.shape)
_____no_output_____
MIT
Useful_Codes/find_centroid.ipynb
bhishanpdl/Research
Poland* Homepage of project: https://oscovida.github.io* Plots are explained at http://oscovida.github.io/plots.html* [Execute this Jupyter Notebook using myBinder](https://mybinder.org/v2/gh/oscovida/binder/master?filepath=ipynb/Poland.ipynb)
import datetime import time start = datetime.datetime.now() print(f"Notebook executed on: {start.strftime('%d/%m/%Y %H:%M:%S%Z')} {time.tzname[time.daylight]}") %config InlineBackend.figure_formats = ['svg'] from oscovida import * overview("Poland", weeks=5); overview("Poland"); compare_plot("Poland", normalise=True); # load the data cases, deaths = get_country_data("Poland") # get population of the region for future normalisation: inhabitants = population("Poland") print(f'Population of "Poland": {inhabitants} people') # compose into one table table = compose_dataframe_summary(cases, deaths) # show tables with up to 1000 rows pd.set_option("max_rows", 1000) # display the table table
_____no_output_____
CC-BY-4.0
ipynb/Poland.ipynb
oscovida/oscovida.github.io
Explore the data in your web browser- If you want to execute this notebook, [click here to use myBinder](https://mybinder.org/v2/gh/oscovida/binder/master?filepath=ipynb/Poland.ipynb)- and wait (~1 to 2 minutes)- Then press SHIFT+RETURN to advance code cell to code cell- See http://jupyter.org for more details on how to use Jupyter Notebook Acknowledgements:- Johns Hopkins University provides data for countries- Robert Koch Institute provides data for within Germany- Atlo Team for gathering and providing data from Hungary (https://atlo.team/koronamonitor/)- Open source and scientific computing community for the data tools- Github for hosting repository and html files- Project Jupyter for the Notebook and binder service- The H2020 project Photon and Neutron Open Science Cloud ([PaNOSC](https://www.panosc.eu/))--------------------
print(f"Download of data from Johns Hopkins university: cases at {fetch_cases_last_execution()} and " f"deaths at {fetch_deaths_last_execution()}.") # to force a fresh download of data, run "clear_cache()" print(f"Notebook execution took: {datetime.datetime.now()-start}")
_____no_output_____
CC-BY-4.0
ipynb/Poland.ipynb
oscovida/oscovida.github.io
Implementation of VGG16> In this notebook I have implemented VGG16 on CIFAR10 dataset using Pytorch
#importing libraries import torch import torch.nn as nn import torch.nn.functional as F from torchvision import transforms import torch.optim as optim import tqdm import matplotlib.pyplot as plt from torchvision.datasets import CIFAR10 from torch.utils.data import random_split from torch.utils.data.dataloader import DataLoader
_____no_output_____
MIT
VGG/VGG.ipynb
gowriaddepalli/papers
Load the data and do standard preprocessing steps,such as resizing and converting the images into tensor
transform = transforms.Compose([transforms.Resize(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225])]) train_ds = CIFAR10(root='data/',train = True,download=True,transform = transform) val_ds = CIFAR10(root='data/',train = False,download=True,transform = transform) batch_size = 128 train_loader = DataLoader(train_ds,batch_size,shuffle=True,num_workers=4,pin_memory=True) val_loader = DataLoader(val_ds,batch_size,num_workers=4,pin_memory=True)
Files already downloaded and verified Files already downloaded and verified
MIT
VGG/VGG.ipynb
gowriaddepalli/papers
A custom utility class to print out the accuracy and losses during training and testing
def accuracy(outputs,labels): _,preds = torch.max(outputs,dim=1) return torch.tensor(torch.sum(preds==labels).item()/len(preds)) class ImageClassificationBase(nn.Module): def training_step(self,batch): images, labels = batch out = self(images) loss = F.cross_entropy(out,labels) return loss def validation_step(self,batch): images, labels = batch out = self(images) loss = F.cross_entropy(out,labels) acc = accuracy(out,labels) return {'val_loss': loss.detach(),'val_acc': acc} def validation_epoch_end(self,outputs): batch_losses = [x['val_loss'] for x in outputs] epoch_loss = torch.stack(batch_losses).mean() batch_accs = [x['val_acc'] for x in outputs] epoch_acc = torch.stack(batch_accs).mean() return {'val_loss': epoch_loss.item(), 'val_acc': epoch_acc.item()} def epoch_end(self, epoch, result): print("Epoch [{}], train_loss: {:.4f}, val_loss: {:.4f}, val_acc: {:.4f}".format( epoch, result['train_loss'], result['val_loss'], result['val_acc']))
_____no_output_____
MIT
VGG/VGG.ipynb
gowriaddepalli/papers
Creating a network
VGG_types = { 'VGG11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'VGG13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'VGG16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'], 'VGG19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'], } class VGG_net(ImageClassificationBase): def __init__(self, in_channels=3, num_classes=1000): super(VGG_net, self).__init__() self.in_channels = in_channels self.conv_layers = self.create_conv_layers(VGG_types['VGG16']) self.fcs = nn.Sequential( nn.Linear(512*7*7, 4096), nn.ReLU(), nn.Dropout(p=0.5), nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(p=0.5), nn.Linear(4096, num_classes) ) def forward(self, x): x = self.conv_layers(x) x = x.reshape(x.shape[0], -1) x = self.fcs(x) return x def create_conv_layers(self, architecture): layers = [] in_channels = self.in_channels for x in architecture: if type(x) == int: out_channels = x layers += [nn.Conv2d(in_channels=in_channels,out_channels=out_channels, kernel_size=(3,3), stride=(1,1), padding=(1,1)), nn.BatchNorm2d(x), nn.ReLU()] in_channels = x elif x == 'M': layers += [nn.MaxPool2d(kernel_size=(2,2), stride=(2,2))] return nn.Sequential(*layers)
_____no_output_____
MIT
VGG/VGG.ipynb
gowriaddepalli/papers