markdown
stringlengths
0
1.02M
code
stringlengths
0
832k
output
stringlengths
0
1.02M
license
stringlengths
3
36
path
stringlengths
6
265
repo_name
stringlengths
6
127
Next, we need to preprocess our data so that it matches the data BERT was trained on. For this, we'll need to do a couple of things (but don't worry--this is also included in the Python library):1. Lowercase our text (if we're using a BERT lowercase model)2. Tokenize it (i.e. "sally says hi" -> ["sally", "says", "hi"])3. Break words into WordPieces (i.e. "calling" -> ["call", "ing"])4. Map our words to indexes using a vocab file that BERT provides5. Add special "CLS" and "SEP" tokens (see the [readme](https://github.com/google-research/bert))6. Append "index" and "segment" tokens to each input (see the [BERT paper](https://arxiv.org/pdf/1810.04805.pdf))Happily, we don't have to worry about most of these details. To start, we'll need to load a vocabulary file and lowercasing information directly from the BERT tf hub module:
# This is a path to an uncased (all lowercase) version of BERT BERT_MODEL_HUB = "https://tfhub.dev/google/bert_uncased_L-12_H-768_A-12/1" def create_tokenizer_from_hub_module(): """Get the vocab file and casing info from the Hub module.""" with tf.Graph().as_default(): bert_module = hub.Module(BERT_MODEL_HUB) tokenization_info = bert_module(signature="tokenization_info", as_dict=True) with tf.Session() as sess: vocab_file, do_lower_case = sess.run([tokenization_info["vocab_file"], tokenization_info["do_lower_case"]]) return bert.tokenization.FullTokenizer( vocab_file=vocab_file, do_lower_case=do_lower_case) tokenizer = create_tokenizer_from_hub_module()
I0414 10:19:59.282109 140105573619520 saver.py:1499] Saver not created because there are no variables in the graph to restore W0414 10:20:00.810749 140105573619520 deprecation_wrapper.py:119] From /usr/local/lib/python3.6/dist-packages/bert/tokenization.py:125: The name tf.gfile.GFile is deprecated. Please use tf.io.gfile.GFile instead.
Apache-2.0
predicting_movie_reviews_with_bert_on_tf_hub.ipynb
bedman3/bert
Great--we just learned that the BERT model we're using expects lowercase data (that's what stored in tokenization_info["do_lower_case"]) and we also loaded BERT's vocab file. We also created a tokenizer, which breaks words into word pieces:
tokenizer.tokenize("This here's an example of using the BERT tokenizer")
_____no_output_____
Apache-2.0
predicting_movie_reviews_with_bert_on_tf_hub.ipynb
bedman3/bert
Using our tokenizer, we'll call `run_classifier.convert_examples_to_features` on our InputExamples to convert them into features BERT understands.
# We'll set sequences to be at most 128 tokens long. MAX_SEQ_LENGTH = 128 # Convert our train and test features to InputFeatures that BERT understands. train_features = bert.run_classifier.convert_examples_to_features(train_InputExamples, label_list, MAX_SEQ_LENGTH, tokenizer) test_features = bert.run_classifier.convert_examples_to_features(test_InputExamples, label_list, MAX_SEQ_LENGTH, tokenizer)
W0414 10:20:00.919758 140105573619520 deprecation_wrapper.py:119] From /usr/local/lib/python3.6/dist-packages/bert/run_classifier.py:774: The name tf.logging.info is deprecated. Please use tf.compat.v1.logging.info instead. I0414 10:20:00.921136 140105573619520 run_classifier.py:774] Writing example 0 of 20000 I0414 10:20:00.929281 140105573619520 run_classifier.py:461] *** Example *** I0414 10:20:00.930946 140105573619520 run_classifier.py:462] guid: None I0414 10:20:00.931859 140105573619520 run_classifier.py:464] tokens: [CLS] " what do you do for recreation ? " " oh , the usual . i bowl . drive around . the occasional acid flashback . " i do not actually like bowling . it ' s my nature . i only like things that i am good at and i am not even certain i would like to be good at bowling so i had my reservations when being invited to hang with the optimism club kids but i love these kids so . . . " fuck it , dude , let ' s go bowling . " i do have to admit ; i really had a blast here . it is vintage and sc ##um ##my on the outside which to me [SEP] I0414 10:20:00.932403 140105573619520 run_classifier.py:465] input_ids: 101 1000 2054 2079 2017 2079 2005 8640 1029 1000 1000 2821 1010 1996 5156 1012 1045 4605 1012 3298 2105 1012 1996 8138 5648 21907 1012 1000 1045 2079 2025 2941 2066 9116 1012 2009 1005 1055 2026 3267 1012 1045 2069 2066 2477 2008 1045 2572 2204 2012 1998 1045 2572 2025 2130 3056 1045 2052 2066 2000 2022 2204 2012 9116 2061 1045 2018 2026 17829 2043 2108 4778 2000 6865 2007 1996 27451 2252 4268 2021 1045 2293 2122 4268 2061 1012 1012 1012 1000 6616 2009 1010 12043 1010 2292 1005 1055 2175 9116 1012 1000 1045 2079 2031 2000 6449 1025 1045 2428 2018 1037 8479 2182 1012 2009 2003 13528 1998 8040 2819 8029 2006 1996 2648 2029 2000 2033 102 I0414 10:20:00.932891 140105573619520 run_classifier.py:466] input_mask: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I0414 10:20:00.933523 140105573619520 run_classifier.py:467] segment_ids: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I0414 10:20:00.934118 140105573619520 run_classifier.py:468] label: 4 (id = 3) I0414 10:20:00.935426 140105573619520 run_classifier.py:461] *** Example *** I0414 10:20:00.936100 140105573619520 run_classifier.py:462] guid: None I0414 10:20:00.936616 140105573619520 run_classifier.py:464] tokens: [CLS] the burger ##s are good and they have good fries too . i used to get the ib ##ion rings but i can ' t eat onion now unfortunately . would recommend to anyone for lunch . [SEP] I0414 10:20:00.937265 140105573619520 run_classifier.py:465] input_ids: 101 1996 15890 2015 2024 2204 1998 2027 2031 2204 22201 2205 1012 1045 2109 2000 2131 1996 21307 3258 7635 2021 1045 2064 1005 1056 4521 20949 2085 6854 1012 2052 16755 2000 3087 2005 6265 1012 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I0414 10:20:00.937844 140105573619520 run_classifier.py:466] input_mask: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I0414 10:20:00.938503 140105573619520 run_classifier.py:467] segment_ids: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I0414 10:20:00.939382 140105573619520 run_classifier.py:468] label: 5 (id = 4) I0414 10:20:00.942288 140105573619520 run_classifier.py:461] *** Example *** I0414 10:20:00.942847 140105573619520 run_classifier.py:462] guid: None I0414 10:20:00.943509 140105573619520 run_classifier.py:464] tokens: [CLS] been there three times , twice they didn ' t have gu ##aca ##mo ##le . took the family on thursday night to hear live reggae , which they had confirmed when i called earlier in the day . ordered gu ##ac . . . no gu ##ac . ordered beef with mole . . . we ' re out of mole . wife ordered car ##ni ##tas , after long wait , waitress came back and informed her they were out of car ##ni ##tas . i think any problems relate to lai ##sse ##z fair ##e management . service is slow because they don ' t pay for enough staff . food takes long b / c there is only room for one cook [SEP] I0414 10:20:00.944194 140105573619520 run_classifier.py:465] input_ids: 101 2042 2045 2093 2335 1010 3807 2027 2134 1005 1056 2031 19739 19629 5302 2571 1012 2165 1996 2155 2006 9432 2305 2000 2963 2444 15662 1010 2029 2027 2018 4484 2043 1045 2170 3041 1999 1996 2154 1012 3641 19739 6305 1012 1012 1012 2053 19739 6305 1012 3641 12486 2007 16709 1012 1012 1012 2057 1005 2128 2041 1997 16709 1012 2564 3641 2482 3490 10230 1010 2044 2146 3524 1010 13877 2234 2067 1998 6727 2014 2027 2020 2041 1997 2482 3490 10230 1012 1045 2228 2151 3471 14396 2000 21110 11393 2480 4189 2063 2968 1012 2326 2003 4030 2138 2027 2123 1005 1056 3477 2005 2438 3095 1012 2833 3138 2146 1038 1013 1039 2045 2003 2069 2282 2005 2028 5660 102 I0414 10:20:00.944772 140105573619520 run_classifier.py:466] input_mask: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I0414 10:20:00.945364 140105573619520 run_classifier.py:467] segment_ids: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I0414 10:20:00.945957 140105573619520 run_classifier.py:468] label: 2 (id = 1) I0414 10:20:00.947746 140105573619520 run_classifier.py:461] *** Example *** I0414 10:20:00.948391 140105573619520 run_classifier.py:462] guid: None I0414 10:20:00.948909 140105573619520 run_classifier.py:464] tokens: [CLS] pretty excited to discover this cal ##i gas ##tro ##pu ##b was arriving at the swan ##ky downtown summer ##lin . great beers and our server was not only fun but extremely knowledge ##able and turned me on to the w ##him ##sic ##al and ta ##sty golden monkey . outdoor patio is great place for a late night meal . and best of al locals get half off their bill on mondays . how good is that ? [SEP] I0414 10:20:00.949487 140105573619520 run_classifier.py:465] input_ids: 101 3492 7568 2000 7523 2023 10250 2072 3806 13181 14289 2497 2001 7194 2012 1996 10677 4801 5116 2621 4115 1012 2307 18007 1998 2256 8241 2001 2025 2069 4569 2021 5186 3716 3085 1998 2357 2033 2006 2000 1996 1059 14341 19570 2389 1998 11937 21756 3585 10608 1012 7254 19404 2003 2307 2173 2005 1037 2397 2305 7954 1012 1998 2190 1997 2632 10575 2131 2431 2125 2037 3021 2006 28401 1012 2129 2204 2003 2008 1029 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I0414 10:20:00.950110 140105573619520 run_classifier.py:466] input_mask: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I0414 10:20:00.950884 140105573619520 run_classifier.py:467] segment_ids: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I0414 10:20:00.951302 140105573619520 run_classifier.py:468] label: 5 (id = 4) I0414 10:20:00.953340 140105573619520 run_classifier.py:461] *** Example *** I0414 10:20:00.954030 140105573619520 run_classifier.py:462] guid: None I0414 10:20:00.954628 140105573619520 run_classifier.py:464] tokens: [CLS] i have been very pleased with the care that i receive here . i have been going to them since 2002 for five different reasons and i love them . they are thorough , caring and very dedicated to see you recover completely . their front office staff is amazing . they will work with you to assure that you are getting everything you need and make sure that your insurance and referring physician are informed about your care . i have had pablo and cory as my therapist and i would recommend them to anyone that needs physical therapy . [SEP] I0414 10:20:00.955208 140105573619520 run_classifier.py:465] input_ids: 101 1045 2031 2042 2200 7537 2007 1996 2729 2008 1045 4374 2182 1012 1045 2031 2042 2183 2000 2068 2144 2526 2005 2274 2367 4436 1998 1045 2293 2068 1012 2027 2024 16030 1010 11922 1998 2200 4056 2000 2156 2017 8980 3294 1012 2037 2392 2436 3095 2003 6429 1012 2027 2097 2147 2007 2017 2000 14306 2008 2017 2024 2893 2673 2017 2342 1998 2191 2469 2008 2115 5427 1998 7727 7522 2024 6727 2055 2115 2729 1012 1045 2031 2018 11623 1998 18342 2004 2026 19294 1998 1045 2052 16755 2068 2000 3087 2008 3791 3558 7242 1012 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I0414 10:20:00.955861 140105573619520 run_classifier.py:466] input_mask: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I0414 10:20:00.956392 140105573619520 run_classifier.py:467] segment_ids: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I0414 10:20:00.956864 140105573619520 run_classifier.py:468] label: 5 (id = 4) I0414 10:20:16.874609 140105573619520 run_classifier.py:774] Writing example 10000 of 20000 I0414 10:20:32.753437 140105573619520 run_classifier.py:774] Writing example 0 of 2000 I0414 10:20:32.754873 140105573619520 run_classifier.py:461] *** Example *** I0414 10:20:32.755411 140105573619520 run_classifier.py:462] guid: None I0414 10:20:32.756034 140105573619520 run_classifier.py:464] tokens: [CLS] food is sometimes sometimes great and something ##s just good . wasn ' t a fan of their br ##un ##ch but lunch and dinner is good . service is hit and miss . [SEP] I0414 10:20:32.756607 140105573619520 run_classifier.py:465] input_ids: 101 2833 2003 2823 2823 2307 1998 2242 2015 2074 2204 1012 2347 1005 1056 1037 5470 1997 2037 7987 4609 2818 2021 6265 1998 4596 2003 2204 1012 2326 2003 2718 1998 3335 1012 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I0414 10:20:32.757318 140105573619520 run_classifier.py:466] input_mask: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I0414 10:20:32.757845 140105573619520 run_classifier.py:467] segment_ids: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I0414 10:20:32.758347 140105573619520 run_classifier.py:468] label: 4 (id = 3) I0414 10:20:32.759270 140105573619520 run_classifier.py:461] *** Example *** I0414 10:20:32.759799 140105573619520 run_classifier.py:462] guid: None I0414 10:20:32.760307 140105573619520 run_classifier.py:464] tokens: [CLS] they should seriously market the sausage and gr ##av ##y . you may hear chicken sausage but - good lord this is some amazing sausage biscuits and gr ##av ##y . [SEP] I0414 10:20:32.760833 140105573619520 run_classifier.py:465] input_ids: 101 2027 2323 5667 3006 1996 24165 1998 24665 11431 2100 1012 2017 2089 2963 7975 24165 2021 1011 2204 2935 2023 2003 2070 6429 24165 27529 1998 24665 11431 2100 1012 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I0414 10:20:32.761393 140105573619520 run_classifier.py:466] input_mask: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I0414 10:20:32.762058 140105573619520 run_classifier.py:467] segment_ids: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I0414 10:20:32.762672 140105573619520 run_classifier.py:468] label: 5 (id = 4) I0414 10:20:32.766637 140105573619520 run_classifier.py:461] *** Example *** I0414 10:20:32.767348 140105573619520 run_classifier.py:462] guid: None I0414 10:20:32.767922 140105573619520 run_classifier.py:464] tokens: [CLS] while i have had several average salon and spa services at holt ##s this review is for my hair coloring experiences with ina . i have had my blonde highlights done by ina on and off for a few years . i was always very happy with the results , yet i was kept trying to look for a more reasonably priced place because it is very expensive indeed ( in my case about $ 300 with the tone ##r and blow dry , which is not included ) . and so it was that a month before my wedding i went to a very rep ##utable downtown salon ( supposedly the best in to ) to have my highlights done . to make a very [SEP] I0414 10:20:32.768587 140105573619520 run_classifier.py:465] input_ids: 101 2096 1045 2031 2018 2195 2779 11090 1998 12403 2578 2012 12621 2015 2023 3319 2003 2005 2026 2606 22276 6322 2007 27118 1012 1045 2031 2018 2026 9081 11637 2589 2011 27118 2006 1998 2125 2005 1037 2261 2086 1012 1045 2001 2467 2200 3407 2007 1996 3463 1010 2664 1045 2001 2921 2667 2000 2298 2005 1037 2062 16286 21125 2173 2138 2009 2003 2200 6450 5262 1006 1999 2026 2553 2055 1002 3998 2007 1996 4309 2099 1998 6271 4318 1010 2029 2003 2025 2443 1007 1012 1998 2061 2009 2001 2008 1037 3204 2077 2026 5030 1045 2253 2000 1037 2200 16360 23056 5116 11090 1006 10743 1996 2190 1999 2000 1007 2000 2031 2026 11637 2589 1012 2000 2191 1037 2200 102 I0414 10:20:32.769200 140105573619520 run_classifier.py:466] input_mask: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I0414 10:20:32.769784 140105573619520 run_classifier.py:467] segment_ids: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I0414 10:20:32.770305 140105573619520 run_classifier.py:468] label: 5 (id = 4) I0414 10:20:32.772956 140105573619520 run_classifier.py:461] *** Example *** I0414 10:20:32.773533 140105573619520 run_classifier.py:462] guid: None I0414 10:20:32.774001 140105573619520 run_classifier.py:464] tokens: [CLS] i have been coming to nc ##s for almost two years . i had been going to a salon in the mall for about a year and i noticed that my hair was getting extremely dry . i used some products that they recommended but nothing seemed to help . a friend recommended sara d so i made an appointment with her hoping that she would be able to make some suggestions for my dry and damaged hair . she suggested one product and gave me tips for drying and styling that would help . since that first visit , my hair has come along way . sara always gives me suggestions for keeping my hair healthy and she ' ll recommend different products in the [SEP] I0414 10:20:32.774591 140105573619520 run_classifier.py:465] input_ids: 101 1045 2031 2042 2746 2000 13316 2015 2005 2471 2048 2086 1012 1045 2018 2042 2183 2000 1037 11090 1999 1996 6670 2005 2055 1037 2095 1998 1045 4384 2008 2026 2606 2001 2893 5186 4318 1012 1045 2109 2070 3688 2008 2027 6749 2021 2498 2790 2000 2393 1012 1037 2767 6749 7354 1040 2061 1045 2081 2019 6098 2007 2014 5327 2008 2016 2052 2022 2583 2000 2191 2070 15690 2005 2026 4318 1998 5591 2606 1012 2016 4081 2028 4031 1998 2435 2033 10247 2005 17462 1998 20724 2008 2052 2393 1012 2144 2008 2034 3942 1010 2026 2606 2038 2272 2247 2126 1012 7354 2467 3957 2033 15690 2005 4363 2026 2606 7965 1998 2016 1005 2222 16755 2367 3688 1999 1996 102 I0414 10:20:32.775171 140105573619520 run_classifier.py:466] input_mask: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I0414 10:20:32.775726 140105573619520 run_classifier.py:467] segment_ids: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I0414 10:20:32.776291 140105573619520 run_classifier.py:468] label: 5 (id = 4) I0414 10:20:32.778075 140105573619520 run_classifier.py:461] *** Example *** I0414 10:20:32.778569 140105573619520 run_classifier.py:462] guid: None I0414 10:20:32.779173 140105573619520 run_classifier.py:464] tokens: [CLS] this place should be renamed to " we take our sweet ass time " large fried chicken . j ##ks , but seriously . there was no line , and only 3 people waiting in front of me for their order , and it still took a good 15 minutes to receive my order . i ordered the regular chicken w / the strawberry drink ( forgot what it ' s called ) . the chicken was pretty good , i must admit . the drink , however , was decent - tasted like strawberry sp ##rite - but not worth ~ $ 3 . 50 . come here only if you have time to spare . [SEP] I0414 10:20:32.779727 140105573619520 run_classifier.py:465] input_ids: 101 2023 2173 2323 2022 4096 2000 1000 2057 2202 2256 4086 4632 2051 1000 2312 13017 7975 1012 1046 5705 1010 2021 5667 1012 2045 2001 2053 2240 1010 1998 2069 1017 2111 3403 1999 2392 1997 2033 2005 2037 2344 1010 1998 2009 2145 2165 1037 2204 2321 2781 2000 4374 2026 2344 1012 1045 3641 1996 3180 7975 1059 1013 1996 16876 4392 1006 9471 2054 2009 1005 1055 2170 1007 1012 1996 7975 2001 3492 2204 1010 1045 2442 6449 1012 1996 4392 1010 2174 1010 2001 11519 1011 12595 2066 16876 11867 17625 1011 2021 2025 4276 1066 1002 1017 1012 2753 1012 2272 2182 2069 2065 2017 2031 2051 2000 8622 1012 102 0 0 0 0 0 0 0 0 0 I0414 10:20:32.780362 140105573619520 run_classifier.py:466] input_mask: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 I0414 10:20:32.780905 140105573619520 run_classifier.py:467] segment_ids: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I0414 10:20:32.781480 140105573619520 run_classifier.py:468] label: 3 (id = 2)
Apache-2.0
predicting_movie_reviews_with_bert_on_tf_hub.ipynb
bedman3/bert
Creating a modelNow that we've prepared our data, let's focus on building a model. `create_model` does just this below. First, it loads the BERT tf hub module again (this time to extract the computation graph). Next, it creates a single new layer that will be trained to adapt BERT to our sentiment task (i.e. classifying whether a movie review is positive or negative). This strategy of using a mostly trained model is called [fine-tuning](http://wiki.fast.ai/index.php/Fine_tuning).
def create_model(is_predicting, input_ids, input_mask, segment_ids, labels, num_labels): """Creates a classification model.""" bert_module = hub.Module( BERT_MODEL_HUB, trainable=True) bert_inputs = dict( input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids) bert_outputs = bert_module( inputs=bert_inputs, signature="tokens", as_dict=True) # Use "pooled_output" for classification tasks on an entire sentence. # Use "sequence_outputs" for token-level output. output_layer = bert_outputs["pooled_output"] hidden_size = output_layer.shape[-1].value # Create our own layer to tune for politeness data. output_weights = tf.get_variable( "output_weights", [num_labels, hidden_size], initializer=tf.truncated_normal_initializer(stddev=0.02)) output_bias = tf.get_variable( "output_bias", [num_labels], initializer=tf.zeros_initializer()) with tf.variable_scope("loss"): # Dropout helps prevent overfitting output_layer = tf.nn.dropout(output_layer, keep_prob=0.9) logits = tf.matmul(output_layer, output_weights, transpose_b=True) logits = tf.nn.bias_add(logits, output_bias) log_probs = tf.nn.log_softmax(logits, axis=-1) # Convert labels into one-hot encoding one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32) predicted_labels = tf.squeeze(tf.argmax(log_probs, axis=-1, output_type=tf.int32)) # If we're predicting, we want predicted labels and the probabiltiies. if is_predicting: return (predicted_labels, log_probs) # If we're train/eval, compute loss between predicted and actual label per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1) loss = tf.reduce_mean(per_example_loss) return (loss, predicted_labels, log_probs)
_____no_output_____
Apache-2.0
predicting_movie_reviews_with_bert_on_tf_hub.ipynb
bedman3/bert
Next we'll wrap our model function in a `model_fn_builder` function that adapts our model to work for training, evaluation, and prediction.
# model_fn_builder actually creates our model function # using the passed parameters for num_labels, learning_rate, etc. def model_fn_builder(num_labels, learning_rate, num_train_steps, num_warmup_steps): """Returns `model_fn` closure for TPUEstimator.""" def model_fn(features, labels, mode, params): # pylint: disable=unused-argument """The `model_fn` for TPUEstimator.""" input_ids = features["input_ids"] input_mask = features["input_mask"] segment_ids = features["segment_ids"] label_ids = features["label_ids"] is_predicting = (mode == tf.estimator.ModeKeys.PREDICT) # TRAIN and EVAL if not is_predicting: (loss, predicted_labels, log_probs) = create_model( is_predicting, input_ids, input_mask, segment_ids, label_ids, num_labels) train_op = bert.optimization.create_optimizer( loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu=False) # Calculate evaluation metrics. def metric_fn(label_ids, predicted_labels): accuracy = tf.metrics.accuracy(label_ids, predicted_labels) f1_score = tf.contrib.metrics.f1_score( label_ids, predicted_labels) auc = tf.metrics.auc( label_ids, predicted_labels) recall = tf.metrics.recall( label_ids, predicted_labels) precision = tf.metrics.precision( label_ids, predicted_labels) true_pos = tf.metrics.true_positives( label_ids, predicted_labels) true_neg = tf.metrics.true_negatives( label_ids, predicted_labels) false_pos = tf.metrics.false_positives( label_ids, predicted_labels) false_neg = tf.metrics.false_negatives( label_ids, predicted_labels) return { "eval_accuracy": accuracy, "f1_score": f1_score, "auc": auc, "precision": precision, "recall": recall, "true_positives": true_pos, "true_negatives": true_neg, "false_positives": false_pos, "false_negatives": false_neg } eval_metrics = metric_fn(label_ids, predicted_labels) if mode == tf.estimator.ModeKeys.TRAIN: return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op) else: return tf.estimator.EstimatorSpec(mode=mode, loss=loss, eval_metric_ops=eval_metrics) else: (predicted_labels, log_probs) = create_model( is_predicting, input_ids, input_mask, segment_ids, label_ids, num_labels) predictions = { 'probabilities': log_probs, 'labels': predicted_labels } return tf.estimator.EstimatorSpec(mode, predictions=predictions) # Return the actual model function in the closure return model_fn # Compute train and warmup steps from batch size # These hyperparameters are copied from this colab notebook (https://colab.sandbox.google.com/github/tensorflow/tpu/blob/master/tools/colab/bert_finetuning_with_cloud_tpus.ipynb) BATCH_SIZE = 32 LEARNING_RATE = 2e-5 NUM_TRAIN_EPOCHS = 3.0 # Warmup is a period of time where hte learning rate # is small and gradually increases--usually helps training. WARMUP_PROPORTION = 0.1 # Model configs SAVE_CHECKPOINTS_STEPS = 500 SAVE_SUMMARY_STEPS = 100 # Compute # train and warmup steps from batch size num_train_steps = int(len(train_features) / BATCH_SIZE * NUM_TRAIN_EPOCHS) num_warmup_steps = int(num_train_steps * WARMUP_PROPORTION) # Specify outpit directory and number of checkpoint steps to save run_config = tf.estimator.RunConfig( model_dir=OUTPUT_DIR, save_summary_steps=SAVE_SUMMARY_STEPS, save_checkpoints_steps=SAVE_CHECKPOINTS_STEPS) model_fn = model_fn_builder( num_labels=len(label_list), learning_rate=LEARNING_RATE, num_train_steps=num_train_steps, num_warmup_steps=num_warmup_steps) estimator = tf.estimator.Estimator( model_fn=model_fn, config=run_config, params={"batch_size": BATCH_SIZE})
I0414 10:20:36.028532 140105573619520 estimator.py:209] Using config: {'_model_dir': 'output_files', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': 500, '_save_checkpoints_secs': None, '_session_config': allow_soft_placement: true graph_options { rewrite_options { meta_optimizer_iterations: ONE } } , '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_service': None, '_cluster_spec': <tensorflow.python.training.server_lib.ClusterSpec object at 0x7f6be0248208>, '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1}
Apache-2.0
predicting_movie_reviews_with_bert_on_tf_hub.ipynb
bedman3/bert
Next we create an input builder function that takes our training feature set (`train_features`) and produces a generator. This is a pretty standard design pattern for working with Tensorflow [Estimators](https://www.tensorflow.org/guide/estimators).
# Create an input function for training. drop_remainder = True for using TPUs. train_input_fn = bert.run_classifier.input_fn_builder( features=train_features, seq_length=MAX_SEQ_LENGTH, is_training=True, drop_remainder=False)
_____no_output_____
Apache-2.0
predicting_movie_reviews_with_bert_on_tf_hub.ipynb
bedman3/bert
Now we train our model! For me, using a Colab notebook running on Google's GPUs, my training time was about 14 minutes.
print(f'Beginning Training!') current_time = datetime.now() estimator.train(input_fn=train_input_fn, max_steps=num_train_steps) print("Training took time ", datetime.now() - current_time)
W0414 10:20:36.153037 140105573619520 deprecation.py:323] From /usr/local/lib/python3.6/dist-packages/tensorflow/python/training/training_util.py:236: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version. Instructions for updating: Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts.
Apache-2.0
predicting_movie_reviews_with_bert_on_tf_hub.ipynb
bedman3/bert
Now let's use our test data to see how well our model did:
test_input_fn = run_classifier.input_fn_builder( features=test_features, seq_length=MAX_SEQ_LENGTH, is_training=False, drop_remainder=False) estimator.evaluate(input_fn=test_input_fn, steps=None)
_____no_output_____
Apache-2.0
predicting_movie_reviews_with_bert_on_tf_hub.ipynb
bedman3/bert
Now let's write code to make predictions on new sentences:
def getPrediction(in_sentences): labels = ["Negative", "Positive"] input_examples = [run_classifier.InputExample(guid="", text_a = x, text_b = None, label = 0) for x in in_sentences] # here, "" is just a dummy label input_features = run_classifier.convert_examples_to_features(input_examples, label_list, MAX_SEQ_LENGTH, tokenizer) predict_input_fn = run_classifier.input_fn_builder(features=input_features, seq_length=MAX_SEQ_LENGTH, is_training=False, drop_remainder=False) predictions = estimator.predict(predict_input_fn) return [(sentence, prediction['probabilities'], labels[prediction['labels']]) for sentence, prediction in zip(in_sentences, predictions)] pred_sentences = [ "That movie was absolutely awful", "The acting was a bit lacking", "The film was creative and surprising", "Absolutely fantastic!" ] predictions = getPrediction(pred_sentences)
_____no_output_____
Apache-2.0
predicting_movie_reviews_with_bert_on_tf_hub.ipynb
bedman3/bert
Voila! We have a sentiment classifier!
predictions
_____no_output_____
Apache-2.0
predicting_movie_reviews_with_bert_on_tf_hub.ipynb
bedman3/bert
UCI Daphnet dataset (Freezing of gait for Parkinson's disease patients)
import numpy as np import pandas as pd import os from typing import List from pathlib import Path from config import data_raw_folder, data_processed_folder from timeeval import Datasets import matplotlib import matplotlib.pyplot as plt %matplotlib inline plt.rcParams['figure.figsize'] = (20, 10) dataset_collection_name = "Daphnet" source_folder = Path(data_raw_folder) / "UCI ML Repository/Daphnet/dataset" target_folder = Path(data_processed_folder) print(f"Looking for source datasets in {source_folder.absolute()} and\nsaving processed datasets in {target_folder.absolute()}") train_type = "unsupervised" train_is_normal = False input_type = "multivariate" datetime_index = True dataset_type = "real" # create target directory dataset_subfolder = os.path.join(input_type, dataset_collection_name) target_subfolder = os.path.join(target_folder, dataset_subfolder) try: os.makedirs(target_subfolder) print(f"Created directories {target_subfolder}") except FileExistsError: print(f"Directories {target_subfolder} already exist") pass dm = Datasets(target_folder) experiments = [f for f in source_folder.iterdir()] experiments columns = ["timestamp", "ankle_horiz_fwd", "ankle_vert", "ankle_horiz_lateral", "leg_horiz_fwd", "leg_vert", "leg_horiz_lateral", "trunk_horiz_fwd", "trunk_vert", "trunk_horiz_lateral", "is_anomaly"] def transform_experiment_file(path: Path) -> List[pd.DataFrame]: df = pd.read_csv(path, sep=" ", header=None) df.columns = columns df["timestamp"] = pd.to_datetime(df["timestamp"], unit="ms") # slice out experiments (0 annotation shows unrelated data points (preparation/briefing/...)) s_group = df["is_anomaly"].isin([1, 2]) s_diff = s_group.shift(-1) - s_group starts = (df[s_diff == 1].index + 1).values # first point has annotation 0 --> index + 1 ends = df[s_diff == -1].index.values dfs = [] for start, end in zip(starts, ends): df1 = df.iloc[start:end].copy() df1["is_anomaly"] = (df1["is_anomaly"] == 2).astype(int) dfs.append(df1) return dfs for exp in experiments: # transform file to get datasets datasets = transform_experiment_file(exp) for i, df in enumerate(datasets): # get target filenames experiment_name = os.path.splitext(exp.name)[0] dataset_name = f"{experiment_name}E{i}" filename = f"{dataset_name}.test.csv" path = os.path.join(dataset_subfolder, filename) target_filepath = os.path.join(target_subfolder, filename) # calc length and save in file dataset_length = len(df) df.to_csv(target_filepath, index=False) print(f"Processed source dataset {exp} -> {target_filepath}") # save metadata dm.add_dataset((dataset_collection_name, dataset_name), train_path = None, test_path = path, dataset_type = dataset_type, datetime_index = datetime_index, split_at = None, train_type = train_type, train_is_normal = train_is_normal, input_type = input_type, dataset_length = dataset_length ) dm.save() dm.refresh() dm.df().loc[(slice(dataset_collection_name,dataset_collection_name), slice(None))]
_____no_output_____
MIT
notebooks/data-prep/UCI-Daphnet.ipynb
HPI-Information-Systems/TimeEval
ExperimentationAnnotations- `0`: not part of the experiment. For instance the sensors are installed on the user or the user is performing activities unrelated to the experimental protocol, such as debriefing- `1`: experiment, no freeze (can be any of stand, walk, turn)- `2`: freeze
columns = ["timestamp", "ankle_horiz_fwd", "ankle_vert", "ankle_horiz_lateral", "leg_horiz_fwd", "leg_vert", "leg_horiz_lateral", "trunk_horiz_fwd", "trunk_vert", "trunk_horiz_lateral", "annotation"] df1 = pd.read_csv(source_folder / "S01R01.txt", sep=' ', header=None) df1.columns = columns df1["timestamp"] = pd.to_datetime(df1["timestamp"], unit="ms") df1 columns = [c for c in columns if c not in ["timestamp", "annotation"]] df_plot = df1.set_index("timestamp", drop=True)#.loc["1970-01-01 00:15:00":"1970-01-01 00:16:00"] df_plot.plot(y=columns, figsize=(20,10)) df_plot["annotation"].plot(secondary_y=True) plt.legend() plt.show() s_group = df1["annotation"].isin([1, 2]) s_diff = s_group.shift(-1) - s_group starts = (df1[s_diff == 1].index + 1).values ends = df1[s_diff == -1].index.values starts, ends dfs = [df1.iloc[start:end] for start, end in zip(starts, ends)] len(dfs) columns = [c for c in columns if c not in ["timestamp", "annotation"]] for df in dfs: df = df.set_index("timestamp", drop=True) df.plot(y=columns, figsize=(20,10)) df["annotation"].plot(secondary_y=True) plt.show()
_____no_output_____
MIT
notebooks/data-prep/UCI-Daphnet.ipynb
HPI-Information-Systems/TimeEval
Amy Green - 200930437 5990M: Introduction to Programming for Geographical Information Analysis - Core Skills __**Assignment 2: Investigating the Black Death**__ ------------------------------------------------------------- Project AimThe aim of the project hopes to build a model, based upon initial agent-based framework coding schemes, that generates an analysis into an aspect of 'The Black Death'. This project intends to calculate the fatalities from The Great Plague of London via the known population densities of London parishes in 1665. The generation of this measure from historical data will allow any correlation to be investigated and an overall map of total deaths to be produced. Furthermore, the final code should allow for manipulation in terms of changing parameter weights to investigate possible scenarios that could have ensued. ContextThe Great Plague of London (1665-1666) was the last occurrence of the fatal ‘Black Death’ Plague that swept across Europe in the 1300s. The bubonic plague caused an epidemic across the 17th century parishes of London, as well as some smaller areas of the UK. The overcrowded city and hot Summer became a breeding ground for the bacterium Yersinia pestis disseminated by rat fleas – the known cause of the plague. Transmission was inevitable due to the high poverty levels, low sanitation rates, and open sewers in closely packed waste-filled streets; especially in poorer areas (Trueman, 2015). Deaths started slowly within the St. Giles’s Parish but rose alarmingly as documented by the weekly ‘Bill of Mortality’ that was legally required from each parish at the time (Defoe, 2005). The numbers of deaths slowed after 18 months due to quarantines, much of the population moving to the country and the onset of Winter, however, the final end emerged due to the Great Fire of London destroying central parts of the city in September 1666. Data SourceThe calculation of the average death rate from the Great Plague will be generated from two raster maps. The model will be using known rat populations and average population densities of 16 different parishes within London, both from historical records, recorded by rat-catchers and parish figures in 1665, respectively. The original maps have data stored for each 400m x 400m area as text data, but the figures have been averaged to represent either the area covered by the Parish or the area within which the rat-catcher operates. The relationship to calculate the average death rate from this source data is as follows: Death Rate = (0.8 x Rat Population)(1.3 x Population Density) Model Expectations The model should first show maps of the original source data: the rat populations and population densities for the 16 investigated parishes. These maps will then be combined using the calculation to generate the average death rate from the Great Plague per week and will be mapped as an image. The final map will then be altered so the user will be able to manipulate the weights of either the rat population or the density population to envision how these alternate factors may change the overall death rate. The code should run on Windows. ------------------------------------------------------------------------------ Part 1 - Read in Source Data
'''Step 1 - Set up initial imports for programme''' import random %matplotlib inline import matplotlib.pyplot import matplotlib import matplotlib.animation import os import requests import tkinter import pandas as pd #Shortened in standard python documentation format import numpy as np #Shortened in standard python documentation format import ipywidgets as widgets #Shortened in standard python documentation format
_____no_output_____
BSL-1.0
.ipynb
AGreen0/BlackDeathProject
Map 1 - Rat Populations (Average Rats caught per week)
'''Step 2 - Import data for the rat populations and generate environment from the 2D array''' #Set up a base path for the import of the rats txt file base_path = "C:\\Users\\Home\\Documents\\MSc GIS\\Programming\\Black_Death\\BlackDeathProject" #Basepath deathrats = "deathrats.txt" #Saved filename path_to_file = os.path.join(base_path, deathrats) f = open(path_to_file , 'r') #mapA = f.read() #print(mapA) #Test to show data has imported #Set up an environment to read the rats txt file into - this is called environmentA environmentA = [] for line in f: parsed_line = str.split(line, ",") #Split values up via commas rowlist = [] for word in parsed_line: rowlist.append(float(word)) environmentA.append(rowlist) #Append all lists individually so can print environment f.close() #print(environmentA) #Test environment appears and all lines run #Display environment of rat populations matplotlib.pyplot.xlim(0, 400) #Set up x-axis matplotlib.pyplot.ylim(0, 400) #Set up y-axis matplotlib.pyplot.imshow(environmentA) #Shows the environment matplotlib.pyplot.title('Average Rat Populations', loc='center') #Adds a centred title hsv() #Altered colourmap to red-yellow-green-cyan-blue-pink-magenta display, from original viridis: aids user interpretation
_____no_output_____
BSL-1.0
.ipynb
AGreen0/BlackDeathProject
This map contains the data for the average rat populations denoted from the amount of rats caught per week. The data is initially placed into a text file which can be seen through print(mapA), but then has been put into an environment which is shown. The different colours show the different amounts of rats, however, this will have more useful when combined with Map 2 in Part 2 when calculating the overall death rates. Map 2 - Average Population Densities (per Parish)
'''Step 3 - Import data for the parish population densities and generate environment from the 2D array''' #Set up a base path for the import of the parish txt file #base_path = "C:\\Users\\Home\\Documents\\MSc GIS\\Programming\\Black_Death\\BlackDeathProject" #Basepath deathparishes = "deathparishes.txt" #Saved filename path_to_file = os.path.join(base_path, deathparishes) fd = open(path_to_file , 'r') #mapB = fd.read() #print(mapB) #Test to show data has imported #Set up an environment to read the parish txt file into - this is called environmentB environmentB = [] for line in fd: parsed_line = str.split(line, ",") #Split values up via commas rowlist = [] for word in parsed_line: rowlist.append(float(word)) environmentB.append(rowlist) #Append all lists individually so can print environment f.close() #print(environmentB) #Test environment appears and all lines run #Display environment of parish populations matplotlib.pyplot.xlim(0, 400) #Set up x-axis matplotlib.pyplot.ylim(0, 400) #Set up y-axis matplotlib.pyplot.imshow(environmentB) #Shows the environment matplotlib.pyplot.title('Average Parish Population Densities', loc='center') #Adds a centred title hsv() #Altered colourmap to red-yellow-green-cyan-blue-pink-magenta display, from original viridis: aids user interpretation
_____no_output_____
BSL-1.0
.ipynb
AGreen0/BlackDeathProject
This map contains the data for the average population densities per the 16 parishes investigated. The data is initially placed into a text file which can be seen through print(mapB), but then has been put into an environment which is shown. The different colours show the different populations per parish. ------------------------------------------------------------------------------ Part 2 - Calculate the Average Death Rate
'''Step 4 - Calculate Map of Average death rates ''' #Sets up a list named results to append all calculated values to result = [] for r in range(len(environmentA)):#Goes through both environments' (A and B) rows row_a = environmentA[r] row_b = environmentB[r] rowlist = [] result.append(rowlist) #Append all lists individually so can merge values from environmentA and environmentB for c in range(len(row_a)): #Goes through both environments' (A and B) columns rats = row_a[c] parishes = row_b[c] # d = (0.8 x r) x (1.3 x p) Equation used to generate average death rate d = (0.8 * rats) * (1.3 * parishes) #Puts values through death average equation with initial set parameters rowlist.append(d) #print(d) #Test that results array shows '''Step 5 - Plot and show the average death rates''' #Sets up environment to display the results matplotlib.pyplot.xlim(0, 400) #Set up x-axis matplotlib.pyplot.ylim(0, 400) #Set up y-axis matplotlib.pyplot.imshow(result) #Shows the environment matplotlib.pyplot.title('Average Weekly Death Rates of the Great Plague', loc='center') #Adds a centred title hsv() #Altered colourmap to red-yellow-green-cyan-blue-pink-magenta display, from original viridis: aids user interpretation #To do: #Insert legend '''Step 6 - Save the average death rate results as a seperate txt.file''' np.savetxt('result.txt', result, fmt='%-6.2f' , newline="\r\n") #Each row should equal a new line on the map #Results have been padded to a width of 6 and rounded to 2 decimal points within the txt.file
_____no_output_____
BSL-1.0
.ipynb
AGreen0/BlackDeathProject
The output map within Part 2 displays the average death rate calculations within the 400x400 environment of the parishes investigated. The results array has been saved as a result.txt file (rounded to two decimal points) that can be manipulated and utilised for further investigation. ------------------------------------------------------------------------------ Part 3 - Display the Death Rate with Changing Parameters
'''Step 7 - Set up Rat Population Parameter Slider''' #Generate a slider for the rats parameter sR = widgets.FloatSlider( value=0.8, #Initial parameter value set by the equation min=0, #Minimum of range is 0 max=5.0, #Maximum of range is 5 step=0.1, #Values get to 1 decimal place increments description='Rats:', #Label for slider disabled=False, continuous_update=False, orientation='horizontal', readout=True, readout_format='.1f', ) display(sR) #Dispays the parameter slider for rats that users can alter '''Step 8 - Set up Parish Population Density Parameter Slider''' #Generate a slider for the parish parameter sP = widgets.FloatSlider( value=1.3, #Initial parameter value set by the equation min=0, #Minimum of range is 0 max=5.0, #Maximum of range is 5 step=0.1, #Values get to 1 decimal place increments description='Parishes:', #Label for slider disabled=False, continuous_update=False, orientation='horizontal', readout=True, readout_format='.1f', ) display(sP) #Displays the parameter slider for parish population that users can alter
_____no_output_____
BSL-1.0
.ipynb
AGreen0/BlackDeathProject
The sliders above are available to alter to investigate the relationship between the rat population values and the average population density amounts. These will then be the next set parameters when the proceeding cell is run.
'''Step 9 - Display the Changed Parameters ''' #Formatting to display parameter amounts to correlate to the underlying map print('Changed Parameter Values') print('Rats:', sR.value) print('Parishes:', sP.value) '''Step 10 - Create a map of the death rate average with new changed parameters''' #Alter the results list to incorporate the altered parameter values result = [] for r in range(len(environmentA)): #Goes through both environments' (A and B) rows row_a = environmentA[r] row_b = environmentB[r] rowlist = [] result.append(rowlist) #Append all lists individually so can merge values from environmentA and environmentB for c in range(len(row_a)): #Goes through both environments' (A and B) columns rats = row_a[c] parishes = row_b[c] # d = (0.8 x r) x (1.3 x p) #Original equation used to generate average death rate d = (sR.value * rats) * (sP.value * parishes) #Updated equation to show the altered parameter values rowlist.append(d) #print(d) #Test that results array has updated #Set up a larger figure view of the final map fig = matplotlib.pyplot.figure(figsize=(7,7)) ax = fig.add_axes([0, 0, 1, 1]) matplotlib.pyplot.xlim(0, 400) #Set up x-axis matplotlib.pyplot.ylim(0, 400) #Set up y-axis matplotlib.pyplot.imshow(result) #Display the final map matplotlib.pyplot.xlabel('Rat Populations') #Label the x-axis matplotlib.pyplot.ylabel('Parish Densities') #Label the y-axis matplotlib.pyplot.title('Average Weekly Death Rates of the Great Plague at Altered Parameters', loc='center') #Adds a centred title hsv() #Altered colourmap to red-yellow-green-cyan-blue-pink-magenta display, from original viridis: aids user interpretation def update(d): d = (sR * rats)*(sP * parishes) rowlist.append(d) #Updates figure with new parameters print('Average weekly death rate at these parameters =', round(d,2)) #Print the average weekly death rate with altered parameters to 2 decimal places
Changed Parameter Values Rats: 2.9 Parishes: 1.0 Average weekly death rate at these parameters = 29754.0
BSL-1.0
.ipynb
AGreen0/BlackDeathProject
SDLib> Shilling simulated attacks and detection methods Setup
!mkdir -p results
_____no_output_____
Apache-2.0
docs/T006054_SDLib.ipynb
sparsh-ai/recsys-attacks
Imports
from collections import defaultdict import numpy as np import random import os import os.path from os.path import abspath from os import makedirs,remove from re import compile,findall,split import matplotlib.pyplot as plt import seaborn as sns from sklearn.metrics.pairwise import pairwise_distances,cosine_similarity from numpy.linalg import norm from scipy.stats.stats import pearsonr from math import sqrt,exp import sys from re import split from multiprocessing import Process,Manager from time import strftime,localtime,time import re from os.path import abspath from time import strftime,localtime,time from sklearn.metrics import classification_report from re import split from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from random import shuffle from sklearn.tree import DecisionTreeClassifier import time as tm from sklearn.metrics import classification_report import numpy as np from collections import defaultdict from math import log,exp from sklearn.ensemble import RandomForestClassifier from sklearn.tree import DecisionTreeClassifier from random import choice import matplotlib import matplotlib.pyplot as plt from sklearn.manifold import TSNE import random from sklearn.metrics import classification_report import numpy as np from collections import defaultdict from math import log,exp from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import classification_report from sklearn import metrics from sklearn.metrics import classification_report from sklearn import preprocessing from sklearn import metrics import scipy from scipy.sparse import csr_matrix from sklearn.metrics import classification_report from sklearn.model_selection import train_test_split import math from sklearn.naive_bayes import GaussianNB
_____no_output_____
Apache-2.0
docs/T006054_SDLib.ipynb
sparsh-ai/recsys-attacks
Data
!mkdir -p dataset/amazon !cd dataset/amazon && wget -q --show-progress https://github.com/Coder-Yu/SDLib/raw/master/dataset/amazon/profiles.txt !cd dataset/amazon && wget -q --show-progress https://github.com/Coder-Yu/SDLib/raw/master/dataset/amazon/labels.txt !mkdir -p dataset/averageattack !cd dataset/averageattack && wget -q --show-progress https://github.com/Coder-Yu/SDLib/raw/master/dataset/averageattack/ratings.txt !cd dataset/averageattack && wget -q --show-progress https://github.com/Coder-Yu/SDLib/raw/master/dataset/averageattack/labels.txt !mkdir -p dataset/filmtrust !cd dataset/filmtrust && wget -q --show-progress https://github.com/Coder-Yu/SDLib/raw/master/dataset/filmtrust/ratings.txt !cd dataset/filmtrust && wget -q --show-progress https://github.com/Coder-Yu/SDLib/raw/master/dataset/filmtrust/trust.txt
ratings.txt 100%[===================>] 367.62K --.-KB/s in 0.006s trust.txt 100%[===================>] 19.15K --.-KB/s in 0s
Apache-2.0
docs/T006054_SDLib.ipynb
sparsh-ai/recsys-attacks
Config Configure the Detection Method Entry Example Description ratings dataset/averageattack/ratings.txt Set the path to the dirty recommendation dataset. Format: each row separated by empty, tab or comma symbol. label dataset/averageattack/labels.txt Set the path to labels (for users). Format: each row separated by empty, tab or comma symbol. ratings.setup -columns 0 1 2 -columns: (user, item, rating) columns of rating data are used; -header: to skip the first head line when reading data MethodName DegreeSAD/PCASelect/etc. The name of the detection method evaluation.setup -testSet dataset/testset.txt Main option: -testSet, -ap, -cv -testSet path/to/test/file (need to specify the test set manually) -ap ratio (ap means that the user set (including items and ratings) are automatically partitioned into training set and test set, the number is the ratio of test set. e.g. -ap 0.2) -cv k (-cv means cross validation, k is the number of the fold. e.g. -cv 5) output.setup on -dir Results/ Main option: whether to output recommendation results -dir path: the directory path of output results. Configure the Shilling Model Entry Example Description ratings dataset/averageattack/ratings.txt Set the path to the recommendation dataset. Format: each row separated by empty, tab or comma symbol. ratings.setup -columns 0 1 2 -columns: (user, item, rating) columns of rating data are used; -header: to skip the first head line when reading data attackSize 0.01 The ratio of the injected spammers to genuine users fillerSize 0.01 The ratio of the filler items to all items selectedSize 0.001 The ratio of the selected items to all items linkSize 0.01 The ratio of the users maliciously linked by a spammer to all user targetCount 20 The count of the targeted items targetScore 5.0 The score given to the target items threshold 3.0 Item has an average score lower than threshold may be chosen as one of the target items minCount 3 Item has a ratings count larger than minCount may be chosen as one of the target items maxCount 50 Item has a rating count smaller that maxCount may be chosen as one of the target items outputDir data/ User profiles and labels will be output here
%%writefile BayesDetector.conf ratings=dataset/amazon/profiles.txt ratings.setup=-columns 0 1 2 label=dataset/amazon/labels.txt methodName=BayesDetector evaluation.setup=-cv 5 item.ranking=off -topN 50 num.max.iter=100 learnRate=-init 0.03 -max 0.1 reg.lambda=-u 0.3 -i 0.3 BayesDetector=-k 10 -negCount 256 -gamma 1 -filter 4 -delta 0.01 output.setup=on -dir results/ %%writefile CoDetector.conf ratings=dataset/amazon/profiles.txt ratings.setup=-columns 0 1 2 label=dataset/amazon/labels.txt methodName=CoDetector evaluation.setup=-ap 0.3 item.ranking=on -topN 50 num.max.iter=200 learnRate=-init 0.01 -max 0.01 reg.lambda=-u 0.8 -i 0.4 CoDetector=-k 10 -negCount 256 -gamma 1 -filter 4 output.setup=on -dir results/amazon/ %%writefile DegreeSAD.conf ratings=dataset/amazon/profiles.txt ratings.setup=-columns 0 1 2 label=dataset/amazon/labels.txt methodName=DegreeSAD evaluation.setup=-cv 5 output.setup=on -dir results/ %%writefile FAP.conf ratings=dataset/averageattack/ratings.txt ratings.setup=-columns 0 1 2 label=dataset/averageattack/labels.txt methodName=FAP evaluation.setup=-ap 0.000001 seedUser=350 topKSpam=1557 output.setup=on -dir results/ %%writefile PCASelectUsers.conf ratings=dataset/averageattack/ratings.txt ratings.setup=-columns 0 1 2 label=dataset/averageattack/labels.txt methodName=PCASelectUsers evaluation.setup=-ap 0.00001 kVals=3 attackSize=0.1 output.setup=on -dir results/ %%writefile SemiSAD.conf ratings=dataset/averageattack/ratings.txt ratings.setup=-columns 0 1 2 label=dataset/averageattack/labels.txt methodName=SemiSAD evaluation.setup=-ap 0.2 Lambda=0.5 topK=28 output.setup=on -dir results/
Writing SemiSAD.conf
Apache-2.0
docs/T006054_SDLib.ipynb
sparsh-ai/recsys-attacks
Baseclass
class SDetection(object): def __init__(self,conf,trainingSet=None,testSet=None,labels=None,fold='[1]'): self.config = conf self.isSave = False self.isLoad = False self.foldInfo = fold self.labels = labels self.dao = RatingDAO(self.config, trainingSet, testSet) self.training = [] self.trainingLabels = [] self.test = [] self.testLabels = [] def readConfiguration(self): self.algorName = self.config['methodName'] self.output = LineConfig(self.config['output.setup']) def printAlgorConfig(self): "show algorithm's configuration" print('Algorithm:',self.config['methodName']) print('Ratings dataSet:',abspath(self.config['ratings'])) if LineConfig(self.config['evaluation.setup']).contains('-testSet'): print('Test set:',abspath(LineConfig(self.config['evaluation.setup']).getOption('-testSet'))) #print 'Count of the users in training set: ',len() print('Training set size: (user count: %d, item count %d, record count: %d)' %(self.dao.trainingSize())) print('Test set size: (user count: %d, item count %d, record count: %d)' %(self.dao.testSize())) print('='*80) def initModel(self): pass def buildModel(self): pass def saveModel(self): pass def loadModel(self): pass def predict(self): pass def execute(self): self.readConfiguration() if self.foldInfo == '[1]': self.printAlgorConfig() # load model from disk or build model if self.isLoad: print('Loading model %s...' % (self.foldInfo)) self.loadModel() else: print('Initializing model %s...' % (self.foldInfo)) self.initModel() print('Building Model %s...' % (self.foldInfo)) self.buildModel() # preict the ratings or item ranking print('Predicting %s...' % (self.foldInfo)) prediction = self.predict() report = classification_report(self.testLabels, prediction, digits=4) currentTime = currentTime = strftime("%Y-%m-%d %H-%M-%S", localtime(time())) FileIO.writeFile(self.output['-dir'],self.algorName+'@'+currentTime+self.foldInfo,report) # save model if self.isSave: print('Saving model %s...' % (self.foldInfo)) self.saveModel() print(report) return report class SSDetection(SDetection): def __init__(self,conf,trainingSet=None,testSet=None,labels=None,relation=list(),fold='[1]'): super(SSDetection, self).__init__(conf,trainingSet,testSet,labels,fold) self.sao = SocialDAO(self.config, relation) # social relations access control
_____no_output_____
Apache-2.0
docs/T006054_SDLib.ipynb
sparsh-ai/recsys-attacks
Utils
class Config(object): def __init__(self,fileName): self.config = {} self.readConfiguration(fileName) def __getitem__(self, item): if not self.contains(item): print('parameter '+item+' is invalid!') exit(-1) return self.config[item] def getOptions(self,item): if not self.contains(item): print('parameter '+item+' is invalid!') exit(-1) return self.config[item] def contains(self,key): return key in self.config def readConfiguration(self,fileName): if not os.path.exists(abspath(fileName)): print('config file is not found!') raise IOError with open(fileName) as f: for ind,line in enumerate(f): if line.strip()!='': try: key,value=line.strip().split('=') self.config[key]=value except ValueError: print('config file is not in the correct format! Error Line:%d'%(ind)) class LineConfig(object): def __init__(self,content): self.line = content.strip().split(' ') self.options = {} self.mainOption = False if self.line[0] == 'on': self.mainOption = True elif self.line[0] == 'off': self.mainOption = False for i,item in enumerate(self.line): if (item.startswith('-') or item.startswith('--')) and not item[1:].isdigit(): ind = i+1 for j,sub in enumerate(self.line[ind:]): if (sub.startswith('-') or sub.startswith('--')) and not sub[1:].isdigit(): ind = j break if j == len(self.line[ind:])-1: ind=j+1 break try: self.options[item] = ' '.join(self.line[i+1:i+1+ind]) except IndexError: self.options[item] = 1 def __getitem__(self, item): if not self.contains(item): print('parameter '+item+' is invalid!') exit(-1) return self.options[item] def getOption(self,key): if not self.contains(key): print('parameter '+key+' is invalid!') exit(-1) return self.options[key] def isMainOn(self): return self.mainOption def contains(self,key): return key in self.options class FileIO(object): def __init__(self): pass @staticmethod def writeFile(dir,file,content,op = 'w'): if not os.path.exists(dir): os.makedirs(dir) if type(content)=='str': with open(dir + file, op) as f: f.write(content) else: with open(dir+file,op) as f: f.writelines(content) @staticmethod def deleteFile(filePath): if os.path.exists(filePath): remove(filePath) @staticmethod def loadDataSet(conf, file, bTest=False): trainingData = defaultdict(dict) testData = defaultdict(dict) ratingConfig = LineConfig(conf['ratings.setup']) if not bTest: print('loading training data...') else: print('loading test data...') with open(file) as f: ratings = f.readlines() # ignore the headline if ratingConfig.contains('-header'): ratings = ratings[1:] # order of the columns order = ratingConfig['-columns'].strip().split() for lineNo, line in enumerate(ratings): items = split(' |,|\t', line.strip()) if not bTest and len(order) < 3: print('The rating file is not in a correct format. Error: Line num %d' % lineNo) exit(-1) try: userId = items[int(order[0])] itemId = items[int(order[1])] if bTest and len(order)<3: rating = 1 #default value else: rating = items[int(order[2])] except ValueError: print('Error! Have you added the option -header to the rating.setup?') exit(-1) if not bTest: trainingData[userId][itemId]=float(rating) else: testData[userId][itemId] = float(rating) if not bTest: return trainingData else: return testData @staticmethod def loadRelationship(conf, filePath): socialConfig = LineConfig(conf['social.setup']) relation = [] print('loading social data...') with open(filePath) as f: relations = f.readlines() # ignore the headline if socialConfig.contains('-header'): relations = relations[1:] # order of the columns order = socialConfig['-columns'].strip().split() if len(order) <= 2: print('The social file is not in a correct format.') for lineNo, line in enumerate(relations): items = split(' |,|\t', line.strip()) if len(order) < 2: print('The social file is not in a correct format. Error: Line num %d' % lineNo) exit(-1) userId1 = items[int(order[0])] userId2 = items[int(order[1])] if len(order) < 3: weight = 1 else: weight = float(items[int(order[2])]) relation.append([userId1, userId2, weight]) return relation @staticmethod def loadLabels(filePath): labels = {} with open(filePath) as f: for line in f: items = split(' |,|\t', line.strip()) labels[items[0]] = items[1] return labels class DataSplit(object): def __init__(self): pass @staticmethod def dataSplit(data,test_ratio = 0.3,output=False,path='./',order=1): if test_ratio>=1 or test_ratio <=0: test_ratio = 0.3 testSet = {} trainingSet = {} for user in data: if random.random() < test_ratio: testSet[user] = data[user].copy() else: trainingSet[user] = data[user].copy() if output: FileIO.writeFile(path,'testSet['+str(order)+']',testSet) FileIO.writeFile(path, 'trainingSet[' + str(order) + ']', trainingSet) return trainingSet,testSet @staticmethod def crossValidation(data,k,output=False,path='./',order=1): if k<=1 or k>10: k=3 for i in range(k): trainingSet = {} testSet = {} for ind,user in enumerate(data): if ind%k == i: testSet[user] = data[user].copy() else: trainingSet[user] = data[user].copy() yield trainingSet,testSet def drawLine(x,y,labels,xLabel,yLabel,title): f, ax = plt.subplots(1, 1, figsize=(10, 6), sharex=True) #f.tight_layout() #sns.set(style="darkgrid") palette = ['blue','orange','red','green','purple','pink'] # for i in range(len(ax)): # x1 = range(0, len(x)) #ax.set_xlim(min(x1)-0.2,max(x1)+0.2) # mini = 10000;max = -10000 # for label in labels: # if mini>min(y[i][label]): # mini = min(y[i][label]) # if max<max(y[i][label]): # max = max(y[i][label]) # ax[i].set_ylim(mini-0.25*(max-mini),max+0.25*(max-mini)) # for j,label in enumerate(labels): # if j%2==1: # ax[i].plot(x1, y[i][label], color=palette[j/2], marker='.', label=label, markersize=12) # else: # ax[i].plot(x1, y[i][label], color=palette[j/2], marker='.', label=label,markersize=12,linestyle='--') # ax[0].set_ylabel(yLabel,fontsize=20) for xdata,ydata,lab,c in zip(x,y,labels,palette): ax.plot(xdata,ydata,color = c,label=lab) ind = np.arange(0,60,10) ax.set_xticks(ind) #ax.set_xticklabels(x) ax.set_xlabel(xLabel, fontsize=20) ax.set_ylabel(yLabel, fontsize=20) ax.tick_params(labelsize=16) #ax.tick_params(axs='y', labelsize=20) ax.set_title(title,fontsize=24) plt.grid(True) handles, labels1 = ax.get_legend_handles_labels() #ax[i].legend(handles, labels1, loc=2, fontsize=20) # ax.legend(loc=2, # ncol=6, borderaxespad=0.,fontsize=20) #ax[2].legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.,fontsize=20) ax.legend(loc='upper right',fontsize=20,shadow=True) plt.show() plt.close() paths = ['SVD.txt','PMF.txt','EE.txt','RDML.txt'] files = ['EE['+str(i)+'] iteration.txt' for i in range(2,9)] x = [] y = [] data = [] def normalize(): for file in files: xdata = [] with open(file) as f: for line in f: items = line.strip().split() rmse = items[2].split(':')[1] xdata.append(float(rmse)) data.append(xdata) average = [] for i in range(len(data[0])): total = 0 for k in range(len(data)): total += data[k][i] average.append(str(i+1)+':'+str(float(total)/len(data))+'\n') with open('EE.txt','w') as f: f.writelines(average) def readData(): for file in paths: xdata = [] ydata = [] with open(file) as f: for line in f: items = line.strip().split(':') xdata.append(int(items[0])) rmse = float(items[1]) ydata.append(float(rmse)) x.append(xdata) y.append(ydata) # x = [[1,2,3],[1,2,3]] # y = [[1,2,3],[4,5,6]] #normalize() readData() labels = ['SVD','PMF','EE','RDML',] xlabel = 'Iteration' ylabel = 'RMSE' drawLine(x,y,labels,xlabel,ylabel,'') def l1(x): return norm(x,ord=1) def l2(x): return norm(x) def common(x1,x2): # find common ratings common = (x1!=0)&(x2!=0) new_x1 = x1[common] new_x2 = x2[common] return new_x1,new_x2 def cosine_sp(x1,x2): 'x1,x2 are dicts,this version is for sparse representation' total = 0 denom1 = 0 denom2 =0 for k in x1: if k in x2: total+=x1[k]*x2[k] denom1+=x1[k]**2 denom2+=x2[k]**2 try: return (total + 0.0) / (sqrt(denom1) * sqrt(denom2)) except ZeroDivisionError: return 0 def cosine(x1,x2): #find common ratings new_x1, new_x2 = common(x1,x2) #compute the cosine similarity between two vectors sum = new_x1.dot(new_x2) denom = sqrt(new_x1.dot(new_x1)*new_x2.dot(new_x2)) try: return float(sum)/denom except ZeroDivisionError: return 0 #return cosine_similarity(x1,x2)[0][0] def pearson_sp(x1,x2): total = 0 denom1 = 0 denom2 = 0 overlapped=False try: mean1 = sum(x1.values())/(len(x1)+0.0) mean2 = sum(x2.values()) / (len(x2) + 0.0) for k in x1: if k in x2: total += (x1[k]-mean1) * (x2[k]-mean2) denom1 += (x1[k]-mean1) ** 2 denom2 += (x2[k]-mean2) ** 2 overlapped=True return (total + 0.0) / (sqrt(denom1) * sqrt(denom2)) except ZeroDivisionError: if overlapped: return 1 else: return 0 def euclidean(x1,x2): #find common ratings new_x1, new_x2 = common(x1, x2) #compute the euclidean between two vectors diff = new_x1-new_x2 denom = sqrt((diff.dot(diff))) try: return 1/denom except ZeroDivisionError: return 0 def pearson(x1,x2): #find common ratings new_x1, new_x2 = common(x1, x2) #compute the pearson similarity between two vectors ind1 = new_x1 > 0 ind2 = new_x2 > 0 try: mean_x1 = float(new_x1.sum())/ind1.sum() mean_x2 = float(new_x2.sum())/ind2.sum() new_x1 = new_x1 - mean_x1 new_x2 = new_x2 - mean_x2 sum = new_x1.dot(new_x2) denom = sqrt((new_x1.dot(new_x1))*(new_x2.dot(new_x2))) return float(sum) / denom except ZeroDivisionError: return 0 def similarity(x1,x2,sim): if sim == 'pcc': return pearson_sp(x1,x2) if sim == 'euclidean': return euclidean(x1,x2) else: return cosine_sp(x1, x2) def normalize(vec,maxVal,minVal): 'get the normalized value using min-max normalization' if maxVal > minVal: return float(vec-minVal)/(maxVal-minVal)+0.01 elif maxVal==minVal: return vec/maxVal else: print('error... maximum value is less than minimum value.') raise ArithmeticError def sigmoid(val): return 1/(1+exp(-val)) def denormalize(vec,maxVal,minVal): return minVal+(vec-0.01)*(maxVal-minVal)
_____no_output_____
Apache-2.0
docs/T006054_SDLib.ipynb
sparsh-ai/recsys-attacks
Shilling models Attack base class
class Attack(object): def __init__(self,conf): self.config = Config(conf) self.userProfile = FileIO.loadDataSet(self.config,self.config['ratings']) self.itemProfile = defaultdict(dict) self.attackSize = float(self.config['attackSize']) self.fillerSize = float(self.config['fillerSize']) self.selectedSize = float(self.config['selectedSize']) self.targetCount = int(self.config['targetCount']) self.targetScore = float(self.config['targetScore']) self.threshold = float(self.config['threshold']) self.minCount = int(self.config['minCount']) self.maxCount = int(self.config['maxCount']) self.minScore = float(self.config['minScore']) self.maxScore = float(self.config['maxScore']) self.outputDir = self.config['outputDir'] if not os.path.exists(self.outputDir): os.makedirs(self.outputDir) for user in self.userProfile: for item in self.userProfile[user]: self.itemProfile[item][user] = self.userProfile[user][item] self.spamProfile = defaultdict(dict) self.spamItem = defaultdict(list) #items rated by spammers self.targetItems = [] self.itemAverage = {} self.getAverageRating() self.selectTarget() self.startUserID = 0 def getAverageRating(self): for itemID in self.itemProfile: li = list(self.itemProfile[itemID].values()) self.itemAverage[itemID] = float(sum(li)) / len(li) def selectTarget(self,): print('Selecting target items...') print('-'*80) print('Target item Average rating of the item') itemList = list(self.itemProfile.keys()) itemList.sort() while len(self.targetItems) < self.targetCount: target = np.random.randint(len(itemList)) #generate a target order at random if len(self.itemProfile[str(itemList[target])]) < self.maxCount and len(self.itemProfile[str(itemList[target])]) > self.minCount \ and str(itemList[target]) not in self.targetItems \ and self.itemAverage[str(itemList[target])] <= self.threshold: self.targetItems.append(str(itemList[target])) print(str(itemList[target]),' ',self.itemAverage[str(itemList[target])]) def getFillerItems(self): mu = int(self.fillerSize*len(self.itemProfile)) sigma = int(0.1*mu) markedItemsCount = abs(int(round(random.gauss(mu, sigma)))) markedItems = np.random.randint(len(self.itemProfile), size=markedItemsCount) return markedItems.tolist() def insertSpam(self,startID=0): pass def loadTarget(self,filename): with open(filename) as f: for line in f: self.targetItems.append(line.strip()) def generateLabels(self,filename): labels = [] path = self.outputDir + filename with open(path,'w') as f: for user in self.spamProfile: labels.append(user+' 1\n') for user in self.userProfile: labels.append(user+' 0\n') f.writelines(labels) print('User profiles have been output to '+abspath(self.config['outputDir'])+'.') def generateProfiles(self,filename): ratings = [] path = self.outputDir+filename with open(path, 'w') as f: for user in self.userProfile: for item in self.userProfile[user]: ratings.append(user+' '+item+' '+str(self.userProfile[user][item])+'\n') for user in self.spamProfile: for item in self.spamProfile[user]: ratings.append(user + ' ' + item + ' ' + str(self.spamProfile[user][item])+'\n') f.writelines(ratings) print('User labels have been output to '+abspath(self.config['outputDir'])+'.')
_____no_output_____
Apache-2.0
docs/T006054_SDLib.ipynb
sparsh-ai/recsys-attacks
Relation attack
class RelationAttack(Attack): def __init__(self,conf): super(RelationAttack, self).__init__(conf) self.spamLink = defaultdict(list) self.relation = FileIO.loadRelationship(self.config,self.config['social']) self.trustLink = defaultdict(list) self.trusteeLink = defaultdict(list) for u1,u2,t in self.relation: self.trustLink[u1].append(u2) self.trusteeLink[u2].append(u1) self.activeUser = {} # 关注了虚假用户的正常用户 self.linkedUser = {} # 被虚假用户种植过链接的用户 # def reload(self): # super(RelationAttack, self).reload() # self.spamLink = defaultdict(list) # self.trustLink, self.trusteeLink = loadTrusts(self.config['social']) # self.activeUser = {} # 关注了虚假用户的正常用户 # self.linkedUser = {} # 被虚假用户种植过链接的用户 def farmLink(self): pass def getReciprocal(self,target): #当前目标用户关注spammer的概率,依赖于粉丝数和关注数的交集 reciprocal = float(2 * len(set(self.trustLink[target]).intersection(self.trusteeLink[target])) + 0.1) \ / (len(set(self.trustLink[target]).union(self.trusteeLink[target])) + 1) reciprocal += (len(self.trustLink[target]) + 0.1) / (len(self.trustLink[target]) + len(self.trusteeLink[target]) + 1) reciprocal /= 2 return reciprocal def generateSocialConnections(self,filename): relations = [] path = self.outputDir + filename with open(path, 'w') as f: for u1 in self.trustLink: for u2 in self.trustLink[u1]: relations.append(u1 + ' ' + u2 + ' 1\n') for u1 in self.spamLink: for u2 in self.spamLink[u1]: relations.append(u1 + ' ' + u2 + ' 1\n') f.writelines(relations) print('Social relations have been output to ' + abspath(self.config['outputDir']) + '.')
_____no_output_____
Apache-2.0
docs/T006054_SDLib.ipynb
sparsh-ai/recsys-attacks
Random relation attack
class RandomRelationAttack(RelationAttack): def __init__(self,conf): super(RandomRelationAttack, self).__init__(conf) self.scale = float(self.config['linkSize']) def farmLink(self): # 随机注入虚假关系 for spam in self.spamProfile: #对购买了目标项目的用户种植链接 for item in self.spamItem[spam]: if random.random() < 0.01: for target in self.itemProfile[item]: self.spamLink[spam].append(target) response = np.random.random() reciprocal = self.getReciprocal(target) if response <= reciprocal: self.trustLink[target].append(spam) self.activeUser[target] = 1 else: self.linkedUser[target] = 1 #对其它用户以scale的比例种植链接 for user in self.userProfile: if random.random() < self.scale: self.spamLink[spam].append(user) response = np.random.random() reciprocal = self.getReciprocal(user) if response < reciprocal: self.trustLink[user].append(spam) self.activeUser[user] = 1 else: self.linkedUser[user] = 1
_____no_output_____
Apache-2.0
docs/T006054_SDLib.ipynb
sparsh-ai/recsys-attacks
Random attack
class RandomAttack(Attack): def __init__(self,conf): super(RandomAttack, self).__init__(conf) def insertSpam(self,startID=0): print('Modeling random attack...') itemList = list(self.itemProfile.keys()) if startID == 0: self.startUserID = len(self.userProfile) else: self.startUserID = startID for i in range(int(len(self.userProfile)*self.attackSize)): #fill 装填项目 fillerItems = self.getFillerItems() for item in fillerItems: self.spamProfile[str(self.startUserID)][str(itemList[item])] = random.randint(self.minScore,self.maxScore) #target 目标项目 for j in range(self.targetCount): target = np.random.randint(len(self.targetItems)) self.spamProfile[str(self.startUserID)][self.targetItems[target]] = self.targetScore self.spamItem[str(self.startUserID)].append(self.targetItems[target]) self.startUserID += 1 class RR_Attack(RandomRelationAttack,RandomAttack): def __init__(self,conf): super(RR_Attack, self).__init__(conf)
_____no_output_____
Apache-2.0
docs/T006054_SDLib.ipynb
sparsh-ai/recsys-attacks
Average attack
class AverageAttack(Attack): def __init__(self,conf): super(AverageAttack, self).__init__(conf) def insertSpam(self,startID=0): print('Modeling average attack...') itemList = list(self.itemProfile.keys()) if startID == 0: self.startUserID = len(self.userProfile) else: self.startUserID = startID for i in range(int(len(self.userProfile)*self.attackSize)): #fill fillerItems = self.getFillerItems() for item in fillerItems: self.spamProfile[str(self.startUserID)][str(itemList[item])] = round(self.itemAverage[str(itemList[item])]) #target for j in range(self.targetCount): target = np.random.randint(len(self.targetItems)) self.spamProfile[str(self.startUserID)][self.targetItems[target]] = self.targetScore self.spamItem[str(self.startUserID)].append(self.targetItems[target]) self.startUserID += 1
_____no_output_____
Apache-2.0
docs/T006054_SDLib.ipynb
sparsh-ai/recsys-attacks
Random average relation
class RA_Attack(RandomRelationAttack,AverageAttack): def __init__(self,conf): super(RA_Attack, self).__init__(conf)
_____no_output_____
Apache-2.0
docs/T006054_SDLib.ipynb
sparsh-ai/recsys-attacks
Bandwagon attack
class BandWagonAttack(Attack): def __init__(self,conf): super(BandWagonAttack, self).__init__(conf) self.hotItems = sorted(iter(self.itemProfile.items()), key=lambda d: len(d[1]), reverse=True)[ :int(self.selectedSize * len(self.itemProfile))] def insertSpam(self,startID=0): print('Modeling bandwagon attack...') itemList = list(self.itemProfile.keys()) if startID == 0: self.startUserID = len(self.userProfile) else: self.startUserID = startID for i in range(int(len(self.userProfile)*self.attackSize)): #fill 装填项目 fillerItems = self.getFillerItems() for item in fillerItems: self.spamProfile[str(self.startUserID)][str(itemList[item])] = random.randint(self.minScore,self.maxScore) #selected 选择项目 selectedItems = self.getSelectedItems() for item in selectedItems: self.spamProfile[str(self.startUserID)][item] = self.targetScore #target 目标项目 for j in range(self.targetCount): target = np.random.randint(len(self.targetItems)) self.spamProfile[str(self.startUserID)][self.targetItems[target]] = self.targetScore self.spamItem[str(self.startUserID)].append(self.targetItems[target]) self.startUserID += 1 def getFillerItems(self): mu = int(self.fillerSize*len(self.itemProfile)) sigma = int(0.1*mu) markedItemsCount = int(round(random.gauss(mu, sigma))) if markedItemsCount < 0: markedItemsCount = 0 markedItems = np.random.randint(len(self.itemProfile), size=markedItemsCount) return markedItems def getSelectedItems(self): mu = int(self.selectedSize * len(self.itemProfile)) sigma = int(0.1 * mu) markedItemsCount = abs(int(round(random.gauss(mu, sigma)))) markedIndexes = np.random.randint(len(self.hotItems), size=markedItemsCount) markedItems = [self.hotItems[index][0] for index in markedIndexes] return markedItems
_____no_output_____
Apache-2.0
docs/T006054_SDLib.ipynb
sparsh-ai/recsys-attacks
Random bandwagon relation
class RB_Attack(RandomRelationAttack,BandWagonAttack): def __init__(self,conf): super(RB_Attack, self).__init__(conf)
_____no_output_____
Apache-2.0
docs/T006054_SDLib.ipynb
sparsh-ai/recsys-attacks
Hybrid attack
class HybridAttack(Attack): def __init__(self,conf): super(HybridAttack, self).__init__(conf) self.aveAttack = AverageAttack(conf) self.bandAttack = BandWagonAttack(conf) self.randAttack = RandomAttack(conf) def insertSpam(self,startID=0): self.aveAttack.insertSpam() self.bandAttack.insertSpam(self.aveAttack.startUserID+1) self.randAttack.insertSpam(self.bandAttack.startUserID+1) self.spamProfile = {} self.spamProfile.update(self.aveAttack.spamProfile) self.spamProfile.update(self.bandAttack.spamProfile) self.spamProfile.update(self.randAttack.spamProfile) def generateProfiles(self,filename): ratings = [] path = self.outputDir + filename with open(path, 'w') as f: for user in self.userProfile: for item in self.userProfile[user]: ratings.append(user + ' ' + item + ' ' + str(self.userProfile[user][item]) + '\n') for user in self.spamProfile: for item in self.spamProfile[user]: ratings.append(user + ' ' + item + ' ' + str(self.spamProfile[user][item]) + '\n') f.writelines(ratings) print('User labels have been output to ' + abspath(self.config['outputDir']) + '.') def generateLabels(self,filename): labels = [] path = self.outputDir + filename with open(path,'w') as f: for user in self.spamProfile: labels.append(user+' 1\n') for user in self.userProfile: labels.append(user+' 0\n') f.writelines(labels) print('User profiles have been output to '+abspath(self.config['outputDir'])+'.')
_____no_output_____
Apache-2.0
docs/T006054_SDLib.ipynb
sparsh-ai/recsys-attacks
Generate data
%%writefile config.conf ratings=dataset/filmtrust/ratings.txt ratings.setup=-columns 0 1 2 social=dataset/filmtrust/trust.txt social.setup=-columns 0 1 2 attackSize=0.1 fillerSize=0.05 selectedSize=0.005 targetCount=20 targetScore=4.0 threshold=3.0 maxScore=4.0 minScore=1.0 minCount=5 maxCount=50 linkSize=0.001 outputDir=output/ attack = RR_Attack('config.conf') attack.insertSpam() attack.farmLink() attack.generateLabels('labels.txt') attack.generateProfiles('profiles.txt') attack.generateSocialConnections('relations.txt')
loading training data... Selecting target items... -------------------------------------------------------------------------------- Target item Average rating of the item 877 2.875 472 2.5833333333333335 715 2.8 528 2.7142857142857144 169 2.25 442 2.8055555555555554 270 2.962962962962963 681 2.75 843 3.0 832 1.8571428571428572 668 2.7777777777777777 938 2.9166666666666665 282 2.642857142857143 489 2.1666666666666665 927 2.5833333333333335 577 2.5 693 2.6875 593 2.7083333333333335 529 2.5 872 2.3333333333333335 loading social data... Modeling random attack... User profiles have been output to /content/output. User labels have been output to /content/output. Social relations have been output to /content/output.
Apache-2.0
docs/T006054_SDLib.ipynb
sparsh-ai/recsys-attacks
Data access objects
class RatingDAO(object): 'data access control' def __init__(self,config, trainingData, testData): self.config = config self.ratingConfig = LineConfig(config['ratings.setup']) self.user = {} #used to store the order of users in the training set self.item = {} #used to store the order of items in the training set self.id2user = {} self.id2item = {} self.all_Item = {} self.all_User = {} self.userMeans = {} #used to store the mean values of users's ratings self.itemMeans = {} #used to store the mean values of items's ratings self.globalMean = 0 self.timestamp = {} # self.trainingMatrix = None # self.validationMatrix = None self.testSet_u = testData.copy() # used to store the test set by hierarchy user:[item,rating] self.testSet_i = defaultdict(dict) # used to store the test set by hierarchy item:[user,rating] self.trainingSet_u = trainingData.copy() self.trainingSet_i = defaultdict(dict) #self.rScale = [] self.trainingData = trainingData self.testData = testData self.__generateSet() self.__computeItemMean() self.__computeUserMean() self.__globalAverage() def __generateSet(self): scale = set() # find the maximum rating and minimum value # for i, entry in enumerate(self.trainingData): # userName, itemName, rating = entry # scale.add(float(rating)) # self.rScale = list(scale) # self.rScale.sort() for i,user in enumerate(self.trainingData): for item in self.trainingData[user]: # makes the rating within the range [0, 1]. #rating = normalize(float(rating), self.rScale[-1], self.rScale[0]) #self.trainingSet_u[userName][itemName] = float(rating) self.trainingSet_i[item][user] = self.trainingData[user][item] # order the user if user not in self.user: self.user[user] = len(self.user) self.id2user[self.user[user]] = user # order the item if item not in self.item: self.item[item] = len(self.item) self.id2item[self.item[item]] = item self.trainingSet_i[item][user] = self.trainingData[user][item] # userList.append # triple.append([self.user[userName], self.item[itemName], rating]) # self.trainingMatrix = new_sparseMatrix.SparseMatrix(triple) self.all_User.update(self.user) self.all_Item.update(self.item) for i, user in enumerate(self.testData): # order the user if user not in self.user: self.all_User[user] = len(self.all_User) for item in self.testData[user]: # order the item if item not in self.item: self.all_Item[item] = len(self.all_Item) #self.testSet_u[userName][itemName] = float(rating) self.testSet_i[item][user] = self.testData[user][item] def __globalAverage(self): total = sum(self.userMeans.values()) if total==0: self.globalMean = 0 else: self.globalMean = total/len(self.userMeans) def __computeUserMean(self): # for u in self.user: # n = self.row(u) > 0 # mean = 0 # # if not self.containsUser(u): # no data about current user in training set # pass # else: # sum = float(self.row(u)[0].sum()) # try: # mean = sum/ n[0].sum() # except ZeroDivisionError: # mean = 0 # self.userMeans[u] = mean for u in self.trainingSet_u: self.userMeans[u] = sum(self.trainingSet_u[u].values())/(len(list(self.trainingSet_u[u].values()))+0.0) for u in self.testSet_u: self.userMeans[u] = sum(self.testSet_u[u].values())/(len(list(self.testSet_u[u].values()))+0.0) def __computeItemMean(self): # for c in self.item: # n = self.col(c) > 0 # mean = 0 # if not self.containsItem(c): # no data about current user in training set # pass # else: # sum = float(self.col(c)[0].sum()) # try: # mean = sum / n[0].sum() # except ZeroDivisionError: # mean = 0 # self.itemMeans[c] = mean for item in self.trainingSet_i: self.itemMeans[item] = sum(self.trainingSet_i[item].values())/(len(list(self.trainingSet_i[item].values())) + 0.0) for item in self.testSet_i: self.itemMeans[item] = sum(self.testSet_i[item].values())/(len(list(self.testSet_i[item].values())) + 0.0) def getUserId(self,u): if u in self.user: return self.user[u] else: return -1 def getItemId(self,i): if i in self.item: return self.item[i] else: return -1 def trainingSize(self): recordCount = 0 for user in self.trainingData: recordCount+=len(self.trainingData[user]) return (len(self.trainingSet_u),len(self.trainingSet_i),recordCount) def testSize(self): recordCount = 0 for user in self.testData: recordCount += len(self.testData[user]) return (len(self.testSet_u),len(self.testSet_i),recordCount) def contains(self,u,i): 'whether user u rated item i' if u in self.trainingSet_u and i in self.trainingSet_u[u]: return True return False def containsUser(self,u): 'whether user is in training set' return u in self.trainingSet_u def containsItem(self,i): 'whether item is in training set' return i in self.trainingSet_i def allUserRated(self, u): if u in self.user: return list(self.trainingSet_u[u].keys()), list(self.trainingSet_u[u].values()) else: return list(self.testSet_u[u].keys()), list(self.testSet_u[u].values()) # def userRated(self,u): # if self.trainingMatrix.matrix_User.has_key(self.getUserId(u)): # itemIndex = self.trainingMatrix.matrix_User[self.user[u]].keys() # rating = self.trainingMatrix.matrix_User[self.user[u]].values() # return (itemIndex,rating) # return ([],[]) # # def itemRated(self,i): # if self.trainingMatrix.matrix_Item.has_key(self.getItemId(i)): # userIndex = self.trainingMatrix.matrix_Item[self.item[i]].keys() # rating = self.trainingMatrix.matrix_Item[self.item[i]].values() # return (userIndex,rating) # return ([],[]) # def row(self,u): # return self.trainingMatrix.row(self.getUserId(u)) # # def col(self,c): # return self.trainingMatrix.col(self.getItemId(c)) # # def sRow(self,u): # return self.trainingMatrix.sRow(self.getUserId(u)) # # def sCol(self,c): # return self.trainingMatrix.sCol(self.getItemId(c)) # # def rating(self,u,c): # return self.trainingMatrix.elem(self.getUserId(u),self.getItemId(c)) # # def ratingScale(self): # return (self.rScale[0],self.rScale[1]) # def elemCount(self): # return self.trainingMatrix.elemCount() class SocialDAO(object): def __init__(self,conf,relation=list()): self.config = conf self.user = {} #used to store the order of users self.relation = relation self.followees = {} self.followers = {} self.trustMatrix = self.__generateSet() def __generateSet(self): #triple = [] for line in self.relation: userId1,userId2,weight = line #add relations to dict if userId1 not in self.followees: self.followees[userId1] = {} self.followees[userId1][userId2] = weight if userId2 not in self.followers: self.followers[userId2] = {} self.followers[userId2][userId1] = weight # order the user if userId1 not in self.user: self.user[userId1] = len(self.user) if userId2 not in self.user: self.user[userId2] = len(self.user) #triple.append([self.user[userId1], self.user[userId2], weight]) #return new_sparseMatrix.SparseMatrix(triple) # def row(self,u): # #return user u's followees # return self.trustMatrix.row(self.user[u]) # # def col(self,u): # #return user u's followers # return self.trustMatrix.col(self.user[u]) # # def elem(self,u1,u2): # return self.trustMatrix.elem(u1,u2) def weight(self,u1,u2): if u1 in self.followees and u2 in self.followees[u1]: return self.followees[u1][u2] else: return 0 # def trustSize(self): # return self.trustMatrix.size def getFollowers(self,u): if u in self.followers: return self.followers[u] else: return {} def getFollowees(self,u): if u in self.followees: return self.followees[u] else: return {} def hasFollowee(self,u1,u2): if u1 in self.followees: if u2 in self.followees[u1]: return True else: return False return False def hasFollower(self,u1,u2): if u1 in self.followers: if u2 in self.followers[u1]: return True else: return False return False
_____no_output_____
Apache-2.0
docs/T006054_SDLib.ipynb
sparsh-ai/recsys-attacks
Methods BayesDetector
#BayesDetector: Collaborative Shilling Detection Bridging Factorization and User Embedding class BayesDetector(SDetection): def __init__(self, conf, trainingSet=None, testSet=None, labels=None, fold='[1]'): super(BayesDetector, self).__init__(conf, trainingSet, testSet, labels, fold) def readConfiguration(self): super(BayesDetector, self).readConfiguration() extraSettings = LineConfig(self.config['BayesDetector']) self.k = int(extraSettings['-k']) self.negCount = int(extraSettings['-negCount']) # the number of negative samples if self.negCount < 1: self.negCount = 1 self.regR = float(extraSettings['-gamma']) self.filter = int(extraSettings['-filter']) self.delta = float(extraSettings['-delta']) learningRate = LineConfig(self.config['learnRate']) self.lRate = float(learningRate['-init']) self.maxLRate = float(learningRate['-max']) self.maxIter = int(self.config['num.max.iter']) regular = LineConfig(self.config['reg.lambda']) self.regU, self.regI = float(regular['-u']), float(regular['-i']) # self.delta = float(self.config['delta']) def printAlgorConfig(self): super(BayesDetector, self).printAlgorConfig() print('k: %d' % self.negCount) print('regR: %.5f' % self.regR) print('filter: %d' % self.filter) print('=' * 80) def initModel(self): super(BayesDetector, self).initModel() # self.c = np.random.rand(len(self.dao.all_User) + 1) / 20 # bias value of context self.G = np.random.rand(len(self.dao.all_User)+1, self.k) / 100 # context embedding self.P = np.random.rand(len(self.dao.all_User)+1, self.k) / 100 # latent user matrix self.Q = np.random.rand(len(self.dao.all_Item)+1, self.k) / 100 # latent item matrix # constructing SPPMI matrix self.SPPMI = defaultdict(dict) D = len(self.dao.user) print('Constructing SPPMI matrix...') # for larger data set has many items, the process will be time consuming occurrence = defaultdict(dict) for user1 in self.dao.all_User: iList1, rList1 = self.dao.allUserRated(user1) if len(iList1) < self.filter: continue for user2 in self.dao.all_User: if user1 == user2: continue if user2 not in occurrence[user1]: iList2, rList2 = self.dao.allUserRated(user2) if len(iList2) < self.filter: continue count = len(set(iList1).intersection(set(iList2))) if count > self.filter: occurrence[user1][user2] = count occurrence[user2][user1] = count maxVal = 0 frequency = {} for user1 in occurrence: frequency[user1] = sum(occurrence[user1].values()) * 1.0 D = sum(frequency.values()) * 1.0 # maxx = -1 for user1 in occurrence: for user2 in occurrence[user1]: try: val = max([log(occurrence[user1][user2] * D / (frequency[user1] * frequency[user2]), 2) - log( self.negCount, 2), 0]) except ValueError: print(self.SPPMI[user1][user2]) print(self.SPPMI[user1][user2] * D / (frequency[user1] * frequency[user2])) if val > 0: if maxVal < val: maxVal = val self.SPPMI[user1][user2] = val self.SPPMI[user2][user1] = self.SPPMI[user1][user2] # normalize for user1 in self.SPPMI: for user2 in self.SPPMI[user1]: self.SPPMI[user1][user2] = self.SPPMI[user1][user2] / maxVal def buildModel(self): self.dao.ratings = dict(self.dao.trainingSet_u, **self.dao.testSet_u) #suspicous set print('Preparing sets...') self.sSet = defaultdict(dict) #normal set self.nSet = defaultdict(dict) # self.NegativeSet = defaultdict(list) for user in self.dao.user: for item in self.dao.ratings[user]: # if self.dao.ratings[user][item] >= 5 and self.labels[user]=='1': if self.labels[user] =='1': self.sSet[item][user] = 1 # if self.dao.ratings[user][item] >= 5 and self.labels[user] == '0': if self.labels[user] == '0': self.nSet[item][user] = 1 # Jointly decompose R(ratings) and SPPMI with shared user latent factors P iteration = 0 while iteration < self.maxIter: self.loss = 0 for item in self.sSet: i = self.dao.all_Item[item] if item not in self.nSet: continue normalUserList = list(self.nSet[item].keys()) for user in self.sSet[item]: su = self.dao.all_User[user] # if len(self.NegativeSet[user]) > 0: # item_j = choice(self.NegativeSet[user]) # else: normalUser = choice(normalUserList) nu = self.dao.all_User[normalUser] s = sigmoid(self.P[su].dot(self.Q[i]) - self.P[nu].dot(self.Q[i])) self.Q[i] += (self.lRate * (1 - s) * (self.P[su] - self.P[nu])) self.P[su] += (self.lRate * (1 - s) * self.Q[i]) self.P[nu] -= (self.lRate * (1 - s) * self.Q[i]) self.Q[i] -= self.lRate * self.regI * self.Q[i] self.P[su] -= self.lRate * self.regU * self.P[su] self.P[nu] -= self.lRate * self.regU * self.P[nu] self.loss += (-log(s)) # # for item in self.sSet: # if not self.nSet.has_key(item): # continue # for user1 in self.sSet[item]: # for user2 in self.sSet[item]: # su1 = self.dao.all_User[user1] # su2 = self.dao.all_User[user2] # self.P[su1] += (self.lRate*(self.P[su1]-self.P[su2]))*self.delta # self.P[su2] -= (self.lRate*(self.P[su1]-self.P[su2]))*self.delta # # self.loss += ((self.P[su1]-self.P[su2]).dot(self.P[su1]-self.P[su2]))*self.delta for user in self.dao.ratings: for item in self.dao.ratings[user]: rating = self.dao.ratings[user][item] if rating < 5: continue error = rating - self.predictRating(user,item) u = self.dao.all_User[user] i = self.dao.all_Item[item] p = self.P[u] q = self.Q[i] # self.loss += (error ** 2)*self.b # update latent vectors self.P[u] += (self.lRate * (error * q - self.regU * p)) self.Q[i] += (self.lRate * (error * p - self.regI * q)) for user in self.SPPMI: u = self.dao.all_User[user] p = self.P[u] for context in self.SPPMI[user]: v = self.dao.all_User[context] m = self.SPPMI[user][context] g = self.G[v] diff = (m - p.dot(g)) self.loss += (diff ** 2) # update latent vectors self.P[u] += (self.lRate * diff * g) self.G[v] += (self.lRate * diff * p) self.loss += self.regU * (self.P * self.P).sum() + self.regI * (self.Q * self.Q).sum() + self.regR * (self.G * self.G).sum() iteration += 1 print('iteration:',iteration) # preparing examples self.training = [] self.trainingLabels = [] self.test = [] self.testLabels = [] for user in self.dao.trainingSet_u: self.training.append(self.P[self.dao.all_User[user]]) self.trainingLabels.append(self.labels[user]) for user in self.dao.testSet_u: self.test.append(self.P[self.dao.all_User[user]]) self.testLabels.append(self.labels[user]) # # tsne = TSNE(n_components=2) # self.Y = tsne.fit_transform(self.P) # # self.normalUsers = [] # self.spammers = [] # for user in self.labels: # if self.labels[user] == '0': # self.normalUsers.append(user) # else: # self.spammers.append(user) # # # print len(self.spammers) # self.normalfeature = np.zeros((len(self.normalUsers), 2)) # self.spamfeature = np.zeros((len(self.spammers), 2)) # normal_index = 0 # for normaluser in self.normalUsers: # if normaluser in self.dao.all_User: # self.normalfeature[normal_index] = self.Y[self.dao.all_User[normaluser]] # normal_index += 1 # # spam_index = 0 # for spamuser in self.spammers: # if spamuser in self.dao.all_User: # self.spamfeature[spam_index] = self.Y[self.dao.all_User[spamuser]] # spam_index += 1 # self.randomNormal = np.zeros((500,2)) # self.randomSpam = np.zeros((500,2)) # # for i in range(500): # # self.randomNormal[i] = self.normalfeature[random.randint(0,len(self.normalfeature)-1)] # # self.randomSpam[i] = self.spamfeature[random.randint(0,len(self.spamfeature)-1)] # plt.scatter(self.normalfeature[:, 0], self.normalfeature[:, 1], c='red',s=8,marker='o',label='NormalUser') # plt.scatter(self.spamfeature[:, 0], self.spamfeature[:, 1], c='blue',s=8,marker='o',label='Spammer') # plt.legend(loc='lower left') # plt.xticks([]) # plt.yticks([]) # plt.savefig('9.png',dpi=500) def predictRating(self,user,item): u = self.dao.all_User[user] i = self.dao.all_Item[item] return self.P[u].dot(self.Q[i]) def predict(self): classifier = RandomForestClassifier(n_estimators=12) # classifier = DecisionTreeClassifier(criterion='entropy') classifier.fit(self.training, self.trainingLabels) pred_labels = classifier.predict(self.test) print('Decision Tree:') return pred_labels
_____no_output_____
Apache-2.0
docs/T006054_SDLib.ipynb
sparsh-ai/recsys-attacks
CoDetector
#CoDetector: Collaborative Shilling Detection Bridging Factorization and User Embedding class CoDetector(SDetection): def __init__(self, conf, trainingSet=None, testSet=None, labels=None, fold='[1]'): super(CoDetector, self).__init__(conf, trainingSet, testSet, labels, fold) def readConfiguration(self): super(CoDetector, self).readConfiguration() extraSettings = LineConfig(self.config['CoDetector']) self.k = int(extraSettings['-k']) self.negCount = int(extraSettings['-negCount']) # the number of negative samples if self.negCount < 1: self.negCount = 1 self.regR = float(extraSettings['-gamma']) self.filter = int(extraSettings['-filter']) learningRate = LineConfig(self.config['learnRate']) self.lRate = float(learningRate['-init']) self.maxLRate = float(learningRate['-max']) self.maxIter = int(self.config['num.max.iter']) regular = LineConfig(self.config['reg.lambda']) self.regU, self.regI = float(regular['-u']), float(regular['-i']) def printAlgorConfig(self): super(CoDetector, self).printAlgorConfig() print('k: %d' % self.negCount) print('regR: %.5f' % self.regR) print('filter: %d' % self.filter) print('=' * 80) def initModel(self): super(CoDetector, self).initModel() self.w = np.random.rand(len(self.dao.all_User)+1) / 20 # bias value of user self.c = np.random.rand(len(self.dao.all_User)+1)/ 20 # bias value of context self.G = np.random.rand(len(self.dao.all_User)+1, self.k) / 20 # context embedding self.P = np.random.rand(len(self.dao.all_User)+1, self.k) / 20 # latent user matrix self.Q = np.random.rand(len(self.dao.all_Item)+1, self.k) / 20 # latent item matrix # constructing SPPMI matrix self.SPPMI = defaultdict(dict) D = len(self.dao.user) print('Constructing SPPMI matrix...') # for larger data set has many items, the process will be time consuming occurrence = defaultdict(dict) for user1 in self.dao.all_User: iList1, rList1 = self.dao.allUserRated(user1) if len(iList1) < self.filter: continue for user2 in self.dao.all_User: if user1 == user2: continue if user2 not in occurrence[user1]: iList2, rList2 = self.dao.allUserRated(user2) if len(iList2) < self.filter: continue count = len(set(iList1).intersection(set(iList2))) if count > self.filter: occurrence[user1][user2] = count occurrence[user2][user1] = count maxVal = 0 frequency = {} for user1 in occurrence: frequency[user1] = sum(occurrence[user1].values()) * 1.0 D = sum(frequency.values()) * 1.0 # maxx = -1 for user1 in occurrence: for user2 in occurrence[user1]: try: val = max([log(occurrence[user1][user2] * D / (frequency[user1] * frequency[user2]), 2) - log( self.negCount, 2), 0]) except ValueError: print(self.SPPMI[user1][user2]) print(self.SPPMI[user1][user2] * D / (frequency[user1] * frequency[user2])) if val > 0: if maxVal < val: maxVal = val self.SPPMI[user1][user2] = val self.SPPMI[user2][user1] = self.SPPMI[user1][user2] # normalize for user1 in self.SPPMI: for user2 in self.SPPMI[user1]: self.SPPMI[user1][user2] = self.SPPMI[user1][user2] / maxVal def buildModel(self): # Jointly decompose R(ratings) and SPPMI with shared user latent factors P iteration = 0 while iteration < self.maxIter: self.loss = 0 self.dao.ratings = dict(self.dao.trainingSet_u, **self.dao.testSet_u) for user in self.dao.ratings: for item in self.dao.ratings[user]: rating = self.dao.ratings[user][item] error = rating - self.predictRating(user,item) u = self.dao.all_User[user] i = self.dao.all_Item[item] p = self.P[u] q = self.Q[i] self.loss += error ** 2 # update latent vectors self.P[u] += self.lRate * (error * q - self.regU * p) self.Q[i] += self.lRate * (error * p - self.regI * q) for user in self.SPPMI: u = self.dao.all_User[user] p = self.P[u] for context in self.SPPMI[user]: v = self.dao.all_User[context] m = self.SPPMI[user][context] g = self.G[v] diff = (m - p.dot(g) - self.w[u] - self.c[v]) self.loss += diff ** 2 # update latent vectors self.P[u] += self.lRate * diff * g self.G[v] += self.lRate * diff * p self.w[u] += self.lRate * diff self.c[v] += self.lRate * diff self.loss += self.regU * (self.P * self.P).sum() + self.regI * (self.Q * self.Q).sum() + self.regR * (self.G * self.G).sum() iteration += 1 print('iteration:',iteration) # preparing examples self.training = [] self.trainingLabels = [] self.test = [] self.testLabels = [] for user in self.dao.trainingSet_u: self.training.append(self.P[self.dao.all_User[user]]) self.trainingLabels.append(self.labels[user]) for user in self.dao.testSet_u: self.test.append(self.P[self.dao.all_User[user]]) self.testLabels.append(self.labels[user]) def predictRating(self,user,item): u = self.dao.all_User[user] i = self.dao.all_Item[item] return self.P[u].dot(self.Q[i]) def predict(self): classifier = DecisionTreeClassifier(criterion='entropy') classifier.fit(self.training, self.trainingLabels) pred_labels = classifier.predict(self.test) print('Decision Tree:') return pred_labels
_____no_output_____
Apache-2.0
docs/T006054_SDLib.ipynb
sparsh-ai/recsys-attacks
DegreeSAD
class DegreeSAD(SDetection): def __init__(self, conf, trainingSet=None, testSet=None, labels=None, fold='[1]'): super(DegreeSAD, self).__init__(conf, trainingSet, testSet, labels, fold) def buildModel(self): self.MUD = {} self.RUD = {} self.QUD = {} # computing MUD,RUD,QUD for training set sList = sorted(iter(self.dao.trainingSet_i.items()), key=lambda d: len(d[1]), reverse=True) maxLength = len(sList[0][1]) for user in self.dao.trainingSet_u: self.MUD[user] = 0 for item in self.dao.trainingSet_u[user]: self.MUD[user] += len(self.dao.trainingSet_i[item]) #/ float(maxLength) self.MUD[user]/float(len(self.dao.trainingSet_u[user])) lengthList = [len(self.dao.trainingSet_i[item]) for item in self.dao.trainingSet_u[user]] lengthList.sort(reverse=True) self.RUD[user] = lengthList[0] - lengthList[-1] lengthList = [len(self.dao.trainingSet_i[item]) for item in self.dao.trainingSet_u[user]] lengthList.sort() self.QUD[user] = lengthList[int((len(lengthList) - 1) / 4.0)] # computing MUD,RUD,QUD for test set for user in self.dao.testSet_u: self.MUD[user] = 0 for item in self.dao.testSet_u[user]: self.MUD[user] += len(self.dao.trainingSet_i[item]) #/ float(maxLength) for user in self.dao.testSet_u: lengthList = [len(self.dao.trainingSet_i[item]) for item in self.dao.testSet_u[user]] lengthList.sort(reverse=True) self.RUD[user] = lengthList[0] - lengthList[-1] for user in self.dao.testSet_u: lengthList = [len(self.dao.trainingSet_i[item]) for item in self.dao.testSet_u[user]] lengthList.sort() self.QUD[user] = lengthList[int((len(lengthList) - 1) / 4.0)] # preparing examples for user in self.dao.trainingSet_u: self.training.append([self.MUD[user], self.RUD[user], self.QUD[user]]) self.trainingLabels.append(self.labels[user]) for user in self.dao.testSet_u: self.test.append([self.MUD[user], self.RUD[user], self.QUD[user]]) self.testLabels.append(self.labels[user]) def predict(self): # classifier = LogisticRegression() # classifier.fit(self.training, self.trainingLabels) # pred_labels = classifier.predict(self.test) # print 'Logistic:' # print classification_report(self.testLabels, pred_labels) # # classifier = SVC() # classifier.fit(self.training, self.trainingLabels) # pred_labels = classifier.predict(self.test) # print 'SVM:' # print classification_report(self.testLabels, pred_labels) classifier = DecisionTreeClassifier(criterion='entropy') classifier.fit(self.training, self.trainingLabels) pred_labels = classifier.predict(self.test) print('Decision Tree:') return pred_labels
_____no_output_____
Apache-2.0
docs/T006054_SDLib.ipynb
sparsh-ai/recsys-attacks
FAP
class FAP(SDetection): def __init__(self, conf, trainingSet=None, testSet=None, labels=None, fold='[1]'): super(FAP, self).__init__(conf, trainingSet, testSet, labels, fold) def readConfiguration(self): super(FAP, self).readConfiguration() # # s means the number of seedUser who be regarded as spammer in training self.s =int( self.config['seedUser']) # preserve the real spammer ID self.spammer = [] for i in self.dao.user: if self.labels[i] == '1': self.spammer.append(self.dao.user[i]) sThreshold = int(0.5 * len(self.spammer)) if self.s > sThreshold : self.s = sThreshold print('*** seedUser is more than a half of spammer, so it is set to', sThreshold, '***') # # predict top-k user as spammer self.k = int(self.config['topKSpam']) # 0.5 is the ratio of spammer to dataset, it can be changed according to different datasets kThreshold = int(0.5 * (len(self.dao.user) - self.s)) if self.k > kThreshold: self.k = kThreshold print('*** the number of top-K users is more than threshold value, so it is set to', kThreshold, '***') # product transition probability matrix self.TPUI and self.TPIU def __computeTProbability(self): # m--user count; n--item count m, n, tmp = self.dao.trainingSize() self.TPUI = np.zeros((m, n)) self.TPIU = np.zeros((n, m)) self.userUserIdDic = {} self.itemItemIdDic = {} tmpUser = list(self.dao.user.values()) tmpUserId = list(self.dao.user.keys()) tmpItem = list(self.dao.item.values()) tmpItemId = list(self.dao.item.keys()) for users in range(0, m): self.userUserIdDic[tmpUser[users]] = tmpUserId[users] for items in range(0, n): self.itemItemIdDic[tmpItem[items]] = tmpItemId[items] for i in range(0, m): for j in range(0, n): user = self.userUserIdDic[i] item = self.itemItemIdDic[j] # if has edge in graph,set a value ;otherwise set 0 if (user not in self.bipartiteGraphUI) or (item not in self.bipartiteGraphUI[user]): continue else: w = float(self.bipartiteGraphUI[user][item]) # to avoid positive feedback and reliability problem,we should Polish the w otherItemW = 0 otherUserW = 0 for otherItem in self.bipartiteGraphUI[user]: otherItemW += float(self.bipartiteGraphUI[user][otherItem]) for otherUser in self.dao.trainingSet_i[item]: otherUserW += float(self.bipartiteGraphUI[otherUser][item]) # wPrime = w*1.0/(otherUserW * otherItemW) wPrime = w self.TPUI[i][j] = wPrime / otherItemW self.TPIU[j][i] = wPrime / otherUserW if i % 100 == 0: print('progress: %d/%d' %(i,m)) def initModel(self): # construction of the bipartite graph print("constructing bipartite graph...") self.bipartiteGraphUI = {} for user in self.dao.trainingSet_u: tmpUserItemDic = {} # user-item-point for item in self.dao.trainingSet_u[user]: # tmpItemUserDic = {}#item-user-point recordValue = float(self.dao.trainingSet_u[user][item]) w = 1 + abs((recordValue - self.dao.userMeans[user]) / self.dao.userMeans[user]) + abs( (recordValue - self.dao.itemMeans[item]) / self.dao.itemMeans[item]) + abs( (recordValue - self.dao.globalMean) / self.dao.globalMean) # tmpItemUserDic[user] = w tmpUserItemDic[item] = w # self.bipartiteGraphIU[item] = tmpItemUserDic self.bipartiteGraphUI[user] = tmpUserItemDic # we do the polish in computing the transition probability print("computing transition probability...") self.__computeTProbability() def isConvergence(self, PUser, PUserOld): if len(PUserOld) == 0: return True for i in range(0, len(PUser)): if (PUser[i] - PUserOld[i]) > 0.01: return True return False def buildModel(self): # -------init-------- m, n, tmp = self.dao.trainingSize() PUser = np.zeros(m) PItem = np.zeros(n) self.testLabels = [0 for i in range(m)] self.predLabels = [0 for i in range(m)] # preserve seedUser Index self.seedUser = [] randDict = {} for i in range(0, self.s): randNum = random.randint(0, len(self.spammer) - 1) while randNum in randDict: randNum = random.randint(0, len(self.spammer) - 1) randDict[randNum] = 0 self.seedUser.append(int(self.spammer[randNum])) # print len(randDict), randDict #initial user and item spam probability for j in range(0, m): if j in self.seedUser: #print type(j),j PUser[j] = 1 else: PUser[j] = random.random() for tmp in range(0, n): PItem[tmp] = random.random() # -------iterator------- PUserOld = [] iterator = 0 while self.isConvergence(PUser, PUserOld): #while iterator < 100: for j in self.seedUser: PUser[j] = 1 PUserOld = PUser PItem = np.dot(self.TPIU, PUser) PUser = np.dot(self.TPUI, PItem) iterator += 1 print(self.foldInfo,'iteration', iterator) PUserDict = {} userId = 0 for i in PUser: PUserDict[userId] = i userId += 1 for j in self.seedUser: del PUserDict[j] self.PSort = sorted(iter(PUserDict.items()), key=lambda d: d[1], reverse=True) def predict(self): # predLabels # top-k user as spammer spamList = [] sIndex = 0 while sIndex < self.k: spam = self.PSort[sIndex][0] spamList.append(spam) self.predLabels[spam] = 1 sIndex += 1 # trueLabels for user in self.dao.trainingSet_u: userInd = self.dao.user[user] # print type(user), user, userInd self.testLabels[userInd] = int(self.labels[user]) # delete seedUser labels differ = 0 for user in self.seedUser: user = int(user - differ) # print type(user) del self.predLabels[user] del self.testLabels[user] differ += 1 return self.predLabels
_____no_output_____
Apache-2.0
docs/T006054_SDLib.ipynb
sparsh-ai/recsys-attacks
PCASelectUsers
class PCASelectUsers(SDetection): def __init__(self, conf, trainingSet=None, testSet=None, labels=None, fold='[1]', k=None, n=None ): super(PCASelectUsers, self).__init__(conf, trainingSet, testSet, labels, fold) def readConfiguration(self): super(PCASelectUsers, self).readConfiguration() # K = top-K vals of cov self.k = int(self.config['kVals']) self.userNum = len(self.dao.trainingSet_u) self.itemNum = len(self.dao.trainingSet_i) if self.k >= min(self.userNum, self.itemNum): self.k = 3 print('*** k-vals is more than the number of user or item, so it is set to', self.k) # n = attack size or the ratio of spammers to normal users self.n = float(self.config['attackSize']) def buildModel(self): #array initialization dataArray = np.zeros([self.userNum, self.itemNum], dtype=float) self.testLabels = np.zeros(self.userNum) self.predLabels = np.zeros(self.userNum) #add data print('construct matrix') for user in self.dao.trainingSet_u: for item in list(self.dao.trainingSet_u[user].keys()): value = self.dao.trainingSet_u[user][item] a = self.dao.user[user] b = self.dao.item[item] dataArray[a][b] = value sMatrix = csr_matrix(dataArray) # z-scores sMatrix = preprocessing.scale(sMatrix, axis=0, with_mean=False) sMT = np.transpose(sMatrix) # cov covSM = np.dot(sMT, sMatrix) # eigen-value-decomposition vals, vecs = scipy.sparse.linalg.eigs(covSM, k=self.k, which='LM') newArray = np.dot(dataArray**2, np.real(vecs)) distanceDict = {} userId = 0 for user in newArray: distance = 0 for tmp in user: distance += tmp distanceDict[userId] = float(distance) userId += 1 print('sort distance ') self.disSort = sorted(iter(distanceDict.items()), key=lambda d: d[1], reverse=False) def predict(self): print('predict spammer') spamList = [] i = 0 while i < self.n * len(self.disSort): spam = self.disSort[i][0] spamList.append(spam) self.predLabels[spam] = 1 i += 1 # trueLabels for user in self.dao.trainingSet_u: userInd = self.dao.user[user] self.testLabels[userInd] = int(self.labels[user]) return self.predLabels
_____no_output_____
Apache-2.0
docs/T006054_SDLib.ipynb
sparsh-ai/recsys-attacks
SemiSAD
class SemiSAD(SDetection): def __init__(self, conf, trainingSet=None, testSet=None, labels=None, fold='[1]'): super(SemiSAD, self).__init__(conf, trainingSet, testSet, labels, fold) def readConfiguration(self): super(SemiSAD, self).readConfiguration() # K = top-K vals of cov self.k = int(self.config['topK']) # Lambda = λ参数 self.Lambda = float(self.config['Lambda']) def buildModel(self): self.H = {} self.DegSim = {} self.LengVar = {} self.RDMA = {} self.FMTD = {} print('Begin feature engineering...') # computing H,DegSim,LengVar,RDMA,FMTD for LabledData set trainingIndex = 0 testIndex = 0 trainingUserCount, trainingItemCount, trainingrecordCount = self.dao.trainingSize() testUserCount, testItemCount, testrecordCount = self.dao.testSize() for user in self.dao.trainingSet_u: trainingIndex += 1 self.H[user] = 0 for i in range(10,50,5): n = 0 for item in self.dao.trainingSet_u[user]: if(self.dao.trainingSet_u[user][item]==(i/10.0)): n+=1 if n==0: self.H[user] += 0 else: self.H[user] += (-(n/(trainingUserCount*1.0))*math.log(n/(trainingUserCount*1.0),2)) SimList = [] self.DegSim[user] = 0 for user1 in self.dao.trainingSet_u: userA, userB, C, D, E, Count = 0,0,0,0,0,0 for item in list(set(self.dao.trainingSet_u[user]).intersection(set(self.dao.trainingSet_u[user1]))): userA += self.dao.trainingSet_u[user][item] userB += self.dao.trainingSet_u[user1][item] Count += 1 if Count==0: AverageA = 0 AverageB = 0 else: AverageA = userA/Count AverageB = userB/Count for item in list(set(self.dao.trainingSet_u[user]).intersection(set(self.dao.trainingSet_u[user1]))): C += (self.dao.trainingSet_u[user][item]-AverageA)*(self.dao.trainingSet_u[user1][item]-AverageB) D += np.square(self.dao.trainingSet_u[user][item]-AverageA) E += np.square(self.dao.trainingSet_u[user1][item]-AverageB) if C==0: SimList.append(0.0) else: SimList.append(C/(math.sqrt(D)*math.sqrt(E))) SimList.sort(reverse=True) for i in range(1,self.k+1): self.DegSim[user] += SimList[i] / (self.k) GlobalAverage = 0 F = 0 for user2 in self.dao.trainingSet_u: GlobalAverage += len(self.dao.trainingSet_u[user2]) / (len(self.dao.trainingSet_u) + 0.0) for user3 in self.dao.trainingSet_u: F += pow(len(self.dao.trainingSet_u[user3])-GlobalAverage,2) self.LengVar[user] = abs(len(self.dao.trainingSet_u[user])-GlobalAverage)/(F*1.0) Divisor = 0 for item1 in self.dao.trainingSet_u[user]: Divisor += abs(self.dao.trainingSet_u[user][item1]-self.dao.itemMeans[item1])/len(self.dao.trainingSet_i[item1]) self.RDMA[user] = Divisor/len(self.dao.trainingSet_u[user]) Minuend, index1, Subtrahend, index2 = 0, 0, 0, 0 for item3 in self.dao.trainingSet_u[user]: if(self.dao.trainingSet_u[user][item3]==5.0 or self.dao.trainingSet_u[user][item3]==1.0) : Minuend += sum(self.dao.trainingSet_i[item3].values()) index1 += len(self.dao.trainingSet_i[item3]) else: Subtrahend += sum(self.dao.trainingSet_i[item3].values()) index2 += len(self.dao.trainingSet_i[item3]) if index1 == 0 and index2 == 0: self.FMTD[user] = 0 elif index1 == 0: self.FMTD[user] = abs(Subtrahend / index2) elif index2 == 0: self.FMTD[user] = abs(Minuend / index1) else: self.FMTD[user] = abs(Minuend / index1 - Subtrahend / index2) if trainingIndex==(trainingUserCount/5): print('trainingData Done 20%...') elif trainingIndex==(trainingUserCount/5*2): print('trainingData Done 40%...') elif trainingIndex==(trainingUserCount/5*3): print('trainingData Done 60%...') elif trainingIndex==(trainingUserCount/5*4): print('trainingData Done 80%...') elif trainingIndex==(trainingUserCount): print('trainingData Done 100%...') # computing H,DegSim,LengVar,RDMA,FMTD for UnLabledData set for user in self.dao.testSet_u: testIndex += 1 self.H[user] = 0 for i in range(10,50,5): n = 0 for item in self.dao.testSet_u[user]: if(self.dao.testSet_u[user][item]==(i/10.0)): n+=1 if n==0: self.H[user] += 0 else: self.H[user] += (-(n/(testUserCount*1.0))*math.log(n/(testUserCount*1.0),2)) SimList = [] self.DegSim[user] = 0 for user1 in self.dao.testSet_u: userA, userB, C, D, E, Count = 0,0,0,0,0,0 for item in list(set(self.dao.testSet_u[user]).intersection(set(self.dao.testSet_u[user1]))): userA += self.dao.testSet_u[user][item] userB += self.dao.testSet_u[user1][item] Count += 1 if Count==0: AverageA = 0 AverageB = 0 else: AverageA = userA/Count AverageB = userB/Count for item in list(set(self.dao.testSet_u[user]).intersection(set(self.dao.testSet_u[user1]))): C += (self.dao.testSet_u[user][item]-AverageA)*(self.dao.testSet_u[user1][item]-AverageB) D += np.square(self.dao.testSet_u[user][item]-AverageA) E += np.square(self.dao.testSet_u[user1][item]-AverageB) if C==0: SimList.append(0.0) else: SimList.append(C/(math.sqrt(D)*math.sqrt(E))) SimList.sort(reverse=True) for i in range(1,self.k+1): self.DegSim[user] += SimList[i] / self.k GlobalAverage = 0 F = 0 for user2 in self.dao.testSet_u: GlobalAverage += len(self.dao.testSet_u[user2]) / (len(self.dao.testSet_u) + 0.0) for user3 in self.dao.testSet_u: F += pow(len(self.dao.testSet_u[user3])-GlobalAverage,2) self.LengVar[user] = abs(len(self.dao.testSet_u[user])-GlobalAverage)/(F*1.0) Divisor = 0 for item1 in self.dao.testSet_u[user]: Divisor += abs(self.dao.testSet_u[user][item1]-self.dao.itemMeans[item1])/len(self.dao.testSet_i[item1]) self.RDMA[user] = Divisor/len(self.dao.testSet_u[user]) Minuend, index1, Subtrahend, index2= 0,0,0,0 for item3 in self.dao.testSet_u[user]: if(self.dao.testSet_u[user][item3]==5.0 or self.dao.testSet_u[user][item3]==1.0): Minuend += sum(self.dao.testSet_i[item3].values()) index1 += len(self.dao.testSet_i[item3]) else: Subtrahend += sum(self.dao.testSet_i[item3].values()) index2 += len(self.dao.testSet_i[item3]) if index1 == 0 and index2 == 0: self.FMTD[user] = 0 elif index1 == 0: self.FMTD[user] = abs(Subtrahend / index2) elif index2 == 0: self.FMTD[user] = abs(Minuend / index1) else: self.FMTD[user] = abs(Minuend / index1 - Subtrahend / index2) if testIndex == testUserCount / 5: print('testData Done 20%...') elif testIndex == testUserCount / 5 * 2: print('testData Done 40%...') elif testIndex == testUserCount / 5 * 3: print('testData Done 60%...') elif testIndex == testUserCount / 5 * 4: print('testData Done 80%...') elif testIndex == testUserCount: print('testData Done 100%...') # preparing examples training for LabledData ,test for UnLableData for user in self.dao.trainingSet_u: self.training.append([self.H[user], self.DegSim[user], self.LengVar[user],self.RDMA[user],self.FMTD[user]]) self.trainingLabels.append(self.labels[user]) for user in self.dao.testSet_u: self.test.append([self.H[user], self.DegSim[user], self.LengVar[user],self.RDMA[user],self.FMTD[user]]) self.testLabels.append(self.labels[user]) def predict(self): ClassifierN = 0 classifier = GaussianNB() X_train,X_test,y_train,y_test = train_test_split(self.training,self.trainingLabels,test_size=0.75,random_state=33) classifier.fit(X_train, y_train) # predict UnLabledData #pred_labelsForTrainingUn = classifier.predict(X_test) print('Enhanced classifier...') while 1: if len(X_test)<=5: # min break #min proba_labelsForTrainingUn = classifier.predict_proba(X_test) X_test_labels = np.hstack((X_test, proba_labelsForTrainingUn)) X_test_labels0_sort = sorted(X_test_labels,key=lambda x:x[5],reverse=True) if X_test_labels0_sort[4][5]>X_test_labels0_sort[4][6]: a = [x[:5] for x in X_test_labels0_sort] b = a[0:5] classifier.partial_fit(b, ['0','0','0','0','0'], classes=['0', '1'],sample_weight=np.ones(len(b), dtype=np.float) * self.Lambda) X_test_labels = X_test_labels0_sort[5:] X_test = a[5:] if len(X_test)<6: # min break #min X_test_labels0_sort = sorted(X_test_labels, key=lambda x: x[5], reverse=True) if X_test_labels0_sort[4][5]<=X_test_labels0_sort[4][6]: #min a = [x[:5] for x in X_test_labels0_sort] b = a[0:5] classifier.partial_fit(b, ['1', '1', '1', '1', '1'], classes=['0', '1'],sample_weight=np.ones(len(b), dtype=np.float) * 1) X_test_labels = X_test_labels0_sort[5:] # min X_test = a[5:] if len(X_test)<6: break # while 1 : # p1 = pred_labelsForTrainingUn # # 将带λ参数的无标签数据拟合入分类器 # classifier.partial_fit(X_test, pred_labelsForTrainingUn,classes=['0','1'], sample_weight=np.ones(len(X_test),dtype=np.float)*self.Lambda) # pred_labelsForTrainingUn = classifier.predict(X_test) # p2 = pred_labelsForTrainingUn # # 判断分类器是否稳定 # if list(p1)==list(p2) : # ClassifierN += 1 # elif ClassifierN > 0: # ClassifierN = 0 # if ClassifierN == 20: # break pred_labels = classifier.predict(self.test) print('naive_bayes with EM algorithm:') return pred_labels
_____no_output_____
Apache-2.0
docs/T006054_SDLib.ipynb
sparsh-ai/recsys-attacks
Main
class SDLib(object): def __init__(self,config): self.trainingData = [] # training data self.testData = [] # testData self.relation = [] self.measure = [] self.config =config self.ratingConfig = LineConfig(config['ratings.setup']) self.labels = FileIO.loadLabels(config['label']) if self.config.contains('evaluation.setup'): self.evaluation = LineConfig(config['evaluation.setup']) if self.evaluation.contains('-testSet'): #specify testSet self.trainingData = FileIO.loadDataSet(config, config['ratings']) self.testData = FileIO.loadDataSet(config, self.evaluation['-testSet'], bTest=True) elif self.evaluation.contains('-ap'): #auto partition self.trainingData = FileIO.loadDataSet(config,config['ratings']) self.trainingData,self.testData = DataSplit.\ dataSplit(self.trainingData,test_ratio=float(self.evaluation['-ap'])) elif self.evaluation.contains('-cv'): #cross validation self.trainingData = FileIO.loadDataSet(config, config['ratings']) #self.trainingData,self.testData = DataSplit.crossValidation(self.trainingData,int(self.evaluation['-cv'])) else: print('Evaluation is not well configured!') exit(-1) if config.contains('social'): self.socialConfig = LineConfig(self.config['social.setup']) self.relation = FileIO.loadRelationship(config,self.config['social']) print('preprocessing...') def execute(self): if self.evaluation.contains('-cv'): k = int(self.evaluation['-cv']) if k <= 1 or k > 10: k = 3 #create the manager used to communication in multiprocess manager = Manager() m = manager.dict() i = 1 tasks = [] for train,test in DataSplit.crossValidation(self.trainingData,k): fold = '['+str(i)+']' if self.config.contains('social'): method = self.config['methodName'] + "(self.config,train,test,self.labels,self.relation,fold)" else: method = self.config['methodName'] + "(self.config,train,test,self.labels,fold)" #create the process p = Process(target=run,args=(m,eval(method),i)) tasks.append(p) i+=1 #start the processes for p in tasks: p.start() #wait until all processes are completed for p in tasks: p.join() #compute the mean error of k-fold cross validation self.measure = [dict(m)[i] for i in range(1,k+1)] res = [] pattern = re.compile('(\d+\.\d+)') countPattern = re.compile('\d+\\n') labelPattern = re.compile('\s\d{1}[^\.|\n|\d]') labels = re.findall(labelPattern, self.measure[0]) values = np.array([0]*9,dtype=float) count = np.array([0,0,0],dtype=int) for report in self.measure: patterns = np.array(re.findall(pattern,report),dtype=float) values += patterns[:9] patterncounts = np.array(re.findall(countPattern,report),dtype=int) count += patterncounts[:3] values/=k values=np.around(values,decimals=4) res.append(' precision recall f1-score support\n\n') res.append(' '+labels[0]+' '+' '.join(np.array(values[0:3],dtype=str).tolist())+' '+str(count[0])+'\n') res.append(' '+labels[1]+' '+' '.join(np.array(values[3:6],dtype=str).tolist())+' '+str(count[1])+'\n\n') res.append(' avg/total ' + ' '.join(np.array(values[6:9], dtype=str).tolist()) + ' ' + str(count[2]) + '\n') print('Total:') print(''.join(res)) # for line in lines[1:]: # # measure = self.measure[0][i].split(':')[0] # total = 0 # for j in range(k): # total += float(self.measure[j][i].split(':')[1]) # res.append(measure+':'+str(total/k)+'\n') #output result currentTime = strftime("%Y-%m-%d %H-%M-%S", localtime(time())) outDir = LineConfig(self.config['output.setup'])['-dir'] fileName = self.config['methodName'] +'@'+currentTime+'-'+str(k)+'-fold-cv' + '.txt' FileIO.writeFile(outDir,fileName,res) print('The results have been output to '+abspath(LineConfig(self.config['output.setup'])['-dir'])+'\n') else: if self.config.contains('social'): method = self.config['methodName'] + '(self.config,self.trainingData,self.testData,self.labels,self.relation)' else: method = self.config['methodName'] + '(self.config,self.trainingData,self.testData,self.labels)' eval(method).execute() def run(measure,algor,order): measure[order] = algor.execute() conf = Config('DegreeSAD.conf') sd = SDLib(conf) sd.execute() print('='*80) print('Supervised Methods:') print('1. DegreeSAD 2.CoDetector 3.BayesDetector\n') print('Semi-Supervised Methods:') print('4. SemiSAD\n') print('Unsupervised Methods:') print('5. PCASelectUsers 6. FAP 7.timeIndex\n') print('-'*80) order = eval(input('please enter the num of the method to run it:')) algor = -1 conf = -1 s = tm.clock() if order == 1: conf = Config('DegreeSAD.conf') elif order == 2: conf = Config('CoDetector.conf') elif order == 3: conf = Config('BayesDetector.conf') elif order == 4: conf = Config('SemiSAD.conf') elif order == 5: conf = Config('PCASelectUsers.conf') elif order == 6: conf = Config('FAP.conf') elif order == 7: conf = Config('timeIndex.conf') else: print('Error num!') exit(-1) # conf = Config('DegreeSAD.conf') sd = SDLib(conf) sd.execute() e = tm.clock() print("Run time: %f s" % (e - s)) print('='*80) print('Supervised Methods:') print('1. DegreeSAD 2.CoDetector 3.BayesDetector\n') print('Semi-Supervised Methods:') print('4. SemiSAD\n') print('Unsupervised Methods:') print('5. PCASelectUsers 6. FAP 7.timeIndex\n') print('-'*80) order = eval(input('please enter the num of the method to run it:')) algor = -1 conf = -1 s = tm.clock() if order == 1: conf = Config('DegreeSAD.conf') elif order == 2: conf = Config('CoDetector.conf') elif order == 3: conf = Config('BayesDetector.conf') elif order == 4: conf = Config('SemiSAD.conf') elif order == 5: conf = Config('PCASelectUsers.conf') elif order == 6: conf = Config('FAP.conf') elif order == 7: conf = Config('timeIndex.conf') else: print('Error num!') exit(-1) # conf = Config('DegreeSAD.conf') sd = SDLib(conf) sd.execute() e = tm.clock() print("Run time: %f s" % (e - s)) print('='*80) print('Supervised Methods:') print('1. DegreeSAD 2.CoDetector 3.BayesDetector\n') print('Semi-Supervised Methods:') print('4. SemiSAD\n') print('Unsupervised Methods:') print('5. PCASelectUsers 6. FAP 7.timeIndex\n') print('-'*80) order = eval(input('please enter the num of the method to run it:')) algor = -1 conf = -1 s = tm.clock() if order == 1: conf = Config('DegreeSAD.conf') elif order == 2: conf = Config('CoDetector.conf') elif order == 3: conf = Config('BayesDetector.conf') elif order == 4: conf = Config('SemiSAD.conf') elif order == 5: conf = Config('PCASelectUsers.conf') elif order == 6: conf = Config('FAP.conf') elif order == 7: conf = Config('timeIndex.conf') else: print('Error num!') exit(-1) # conf = Config('DegreeSAD.conf') sd = SDLib(conf) sd.execute() e = tm.clock() print("Run time: %f s" % (e - s)) print('='*80) print('Supervised Methods:') print('1. DegreeSAD 2.CoDetector 3.BayesDetector\n') print('Semi-Supervised Methods:') print('4. SemiSAD\n') print('Unsupervised Methods:') print('5. PCASelectUsers 6. FAP 7.timeIndex\n') print('-'*80) order = eval(input('please enter the num of the method to run it:')) algor = -1 conf = -1 s = tm.clock() if order == 1: conf = Config('DegreeSAD.conf') elif order == 2: conf = Config('CoDetector.conf') elif order == 3: conf = Config('BayesDetector.conf') elif order == 4: conf = Config('SemiSAD.conf') elif order == 5: conf = Config('PCASelectUsers.conf') elif order == 6: conf = Config('FAP.conf') elif order == 7: conf = Config('timeIndex.conf') else: print('Error num!') exit(-1) # conf = Config('DegreeSAD.conf') sd = SDLib(conf) sd.execute() e = tm.clock() print("Run time: %f s" % (e - s))
================================================================================ Supervised Methods: 1. DegreeSAD 2.CoDetector 3.BayesDetector Semi-Supervised Methods: 4. SemiSAD Unsupervised Methods: 5. PCASelectUsers 6. FAP 7.timeIndex -------------------------------------------------------------------------------- please enter the num of the method to run it:4
Apache-2.0
docs/T006054_SDLib.ipynb
sparsh-ai/recsys-attacks
Calculate the AMOC in density space$VVEL*DZT*DXT (x,y,z)$ -> $VVEL*DZT*DXT (x,y,$\sigma$)$ -> $\sum_{x=W}^E$ -> $\sum_{\sigma=\sigma_{max/min}}^\sigma$
import os import sys import xgcm import numpy as np import xarray as xr import cmocean import pop_tools import matplotlib import matplotlib.pyplot as plt %matplotlib inline matplotlib.rc_file('rc_file_paper') %config InlineBackend.print_figure_kwargs={'bbox_inches':None} %load_ext autoreload %autoreload 2 from MOC import calculate_AMOC_sigma_z from tqdm import notebook from paths import path_results, path_prace, file_RMASK_ocn, file_RMASK_ocn_low, file_ex_ocn_ctrl, file_ex_ocn_lpd, path_data from FW_plots import Atl_lats from timeseries import lowpass from xhistogram.xarray import histogram from xr_DataArrays import xr_DZ_xgcm from xr_regression import xr_lintrend, xr_linear_trend, xr_2D_trends, ocn_field_regression RAPIDz = xr.open_dataarray(f'{path_data}/RAPID_AMOC/moc_vertical.nc') kwargs = dict(combine='nested', concat_dim='time', decode_times=False) ds_ctrl = xr.open_mfdataset(f'{path_prace}/MOC/AMOC_sz_yz_ctrl_*.nc', **kwargs) ds_rcp = xr.open_mfdataset(f'{path_prace}/MOC/AMOC_sz_yz_rcp_*.nc' , **kwargs) ds_lpd = xr.open_mfdataset(f'{path_prace}/MOC/AMOC_sz_yz_lpd_*.nc' , **kwargs) ds_lr1 = xr.open_mfdataset(f'{path_prace}/MOC/AMOC_sz_yz_lr1_*.nc' , **kwargs) AMOC_ctrl = xr.open_dataarray(f'{path_results}/MOC/AMOC_max_ctrl.nc', decode_times=False) AMOC_rcp = xr.open_dataarray(f'{path_results}/MOC/AMOC_max_rcp.nc' , decode_times=False) AMOC_lpd = xr.open_dataarray(f'{path_results}/MOC/AMOC_max_lpd.nc' , decode_times=False) AMOC_lr1 = xr.open_dataarray(f'{path_results}/MOC/AMOC_max_lr1.nc' , decode_times=False) mycmap = cmocean.tools.crop_by_percent(cmocean.cm.curl, 100/3, which='min', N=None) f = plt.figure(figsize=(6.4,5)) # profiles ax = f.add_axes([.84,.55,.15,.4]) ax.set_title(r'26.5$\!^\circ\!$N') ax.set_ylim((-6,0)) ax.set_yticklabels([]) ax.axvline(0, c='k', lw=.5) ax.axhline(-1, c='k', lw=.5) r, = ax.plot(RAPIDz.mean('time'), -RAPIDz.depth/1e3, c='k', label='RAPID') RAPID_ctrl = ds_ctrl['AMOC(y,z)'].isel(nlat_u=1456).mean('time') RAPID_lpd = ds_lpd ['AMOC(y,z)'].isel(nlat_u= 271).mean('time') RAPID_rcp = 365*100*xr_linear_trend(ds_rcp['AMOC(y,z)'].isel(nlat_u=1456)).rename({'dim_0':'z_t'}).assign_coords(z_t=ds_rcp.z_t) + RAPID_ctrl RAPID_lr1 = 365*100*xr_linear_trend(ds_lr1['AMOC(y,z)'].isel(nlat_u= 271)).rename({'dim_0':'z_t'}).assign_coords(z_t=ds_lr1.z_t) + RAPID_lpd hc, = ax.plot(RAPID_ctrl, -ds_ctrl.z_t/1e5, c='k', ls='--', label='HR CTRL') lc, = ax.plot(RAPID_lpd , -ds_lpd .z_t/1e5, c='k', ls=':' , label='LR CTRL') hr, = ax.plot(RAPID_rcp , -ds_ctrl.z_t/1e5, c='k', ls='--', lw=.7, label='HR RCP') lr, = ax.plot(RAPID_lr1 , -ds_lpd .z_t/1e5, c='k', ls=':' , lw=.7, label='LR RCP') ax.text(.01,.92, '(c)', transform=ax.transAxes) ax.set_xlabel('AMOC [Sv]') ax.legend(handles=[r, hc, lc, hr, lr], fontsize=5, frameon=False, handlelength=2, loc='lower right') for i, sim in enumerate(['HIGH', 'LOW']): axt = f.add_axes([.1+i*.37,.55,.35,.4]) axb = f.add_axes([.1+i*.37,.09,.35,.35]) # psi axt.set_title(['HR-CESM', 'LR-CESM'][i]) axt.set_ylim((-6,0)) axt.set_xlim((-34,60)) if i==0: axt.set_ylabel('depth [km]') axb.set_ylabel('AMOC at 26.5$\!^\circ\!$N, 1000 m') else: axt.set_yticklabels([]) axb.set_yticklabels([]) (ds_mean, ds_trend) = [(ds_ctrl, ds_rcp), (ds_lpd, ds_lr1)][i] vmaxm = 25 vmaxt = 10 mean = ds_mean['AMOC(y,z)'].mean('time') trend = xr_2D_trends(ds_trend['AMOC(y,z)']).rolling(nlat_u=[15,3][i]).mean()*100*365 Xm,Ym = np.meshgrid(Atl_lats(sim=sim), -1e-5*mean['z_t'].values) Xt,Yt = np.meshgrid(Atl_lats(sim=sim), -1e-5*trend['z_t'].values) im = axt.contourf(Xm, Ym, mean, cmap=mycmap, levels=np.arange(-8,25,1)) cs = axt.contour(Xm, Ym, trend, levels=np.arange(-12,3,1), cmap='cmo.balance', vmin=-10, vmax=10, linewidths=.5) axt.clabel(cs, np.arange(-12,3,2), fmt='%d', fontsize=7) axt.text(.01,.92, '('+['a','b'][i]+')', transform=axt.transAxes) axt.scatter(26.5,-1, color='w', marker='x') axt.set_xlabel(r'latitude $\theta$ [$\!^{\!\circ}\!$N]') # time series AMOC_c = [AMOC_ctrl, AMOC_lpd][i] AMOC_r = [AMOC_rcp , AMOC_lr1][i] axb.set_xlabel('time [model years]') axb.plot(AMOC_c.time/365, AMOC_c, c='C0', alpha=.3, lw=.5) axb.plot(AMOC_c.time[60:-60]/365, lowpass(AMOC_c,120)[60:-60], c='C0', label='CTRL') axb.plot(AMOC_r.time/365-[1800,1500][i], AMOC_r, c='C1', alpha=.3, lw=.5) axb.plot(AMOC_r.time[60:-60]/365-[1800,1500][i], lowpass(AMOC_r,120)[60:-60], c='C1', label='RCP') axb.plot(AMOC_r.time/365-[1800,1500][i], xr_lintrend(AMOC_r), c='grey', lw=.8, ls='--', label='RCP linear fit') axb.text(25+[200,500][i], 5.8, f'{xr_linear_trend(AMOC_r).values*100*365:3.2f} Sv/100yr', color='grey', fontsize=7) axb.set_ylim((4,29.5)) if i==0: axb.legend(frameon=False, fontsize=8) axb.set_xlim([(95,305), (395,605)][i]) axb.text(.01,.91, '('+['d','e'][i]+')', transform=axb.transAxes) cax1 = f.add_axes([.88,.12,.02,.3]) f.colorbar(im, cax=cax1) cax1.text(1,-.1,'[Sv]', ha='right', fontsize=7, transform=cax1.transAxes) cax1.yaxis.set_ticks_position('left') cax2 = f.add_axes([.92,.12,.02,.3]) f.colorbar(cs, cax=cax2) cax2.text(-.1,-.1,'[Sv/100yr]', ha='left', fontsize=7, transform=cax2.transAxes) # plt.savefig(f'{path_results}/FW-paper/Fig5', dpi=600)
_____no_output_____
BSD-3-Clause
src/Fig5.ipynb
AJueling/FW-code
A sample of running the horizontal cylinder code through the pipeline, and visualizing it with Meshcat.
folder_name = "vert_cylinders" rgb_filename = os.path.join("..", "src", "tests", "data", folder_name, "1.png") camera_matrix_filename = os.path.join("..", "src", "tests", "data", folder_name, "camera_matrix.json") pointcloud_filename = os.path.join("..", "src", "tests", "data", folder_name, "1.ply") reference_mesh = meshes.VERTICAL_CYLINDERS aligned_pointcloud, camera_angle = quality.align_pointcloud_to_reference( reference_mesh, rgb_filename, camera_matrix_filename, pointcloud_filename, depth_scale=0.001) # if you want to save the pointcloud to disk and load it in another visualizer # quality.save_pointcloud(pointcloud_filename, "transformed", aligned_pointcloud) cropped_pointcloud = quality.clip_pointcloud_to_pattern_area( reference_mesh, aligned_pointcloud, depth_scale=0.001) # if you want to save the pointcloud to disk and load it in another visualizer # quality.save_pointcloud(pointcloud_filename, "cropped", cropped_pointcloud) rmse, density = quality.calculate_rmse_and_density( ground_truth_mesh=reference_mesh, cropped_pointcloud=cropped_pointcloud, depth_scale=0.001, camera_angle=camera_angle) print("RMSE = {}, density= {}".format(rmse, density)) print(camera_angle)
RMSE = 1.6844201070129325, density= 1.7608021498435062 [ 0.00533419 -0.11536905 0.99330838]
MIT
notebooks/alignment.ipynb
Code-128/depth-quality
We can use Meshcat to visualize our geometry directly in a Jupyter Notebook.
import meshcat import meshcat.geometry as g import meshcat.transformations as tfms import numpy as np vis = meshcat.Visualizer() vis.jupyter_cell() vis['reference'].set_object(g.ObjMeshGeometry.from_file(reference_mesh.path)) vis['reference'].set_transform(tfms.scale_matrix(0.001)) vis['transformed_cloud'].set_object( g.PointCloud(np.asarray(aligned_pointcloud.points).T, np.asarray(aligned_pointcloud.colors).T) ) vis['cropped_cloud'].set_object( g.PointCloud(np.asarray(cropped_pointcloud.points).T, np.asarray(cropped_pointcloud.colors).T) )
_____no_output_____
MIT
notebooks/alignment.ipynb
Code-128/depth-quality
ENGR 213 Project Demonstration: Toast Falling from Counter Iteration AND slipping of toastThis is a Jupyter notebook created to explore the utility of notebooks as an engineering/physics tool. As I consider integrating this material into physics and engineering courses I am having a hard time clarifying the outcomes that I seek for the students. It seems plausible that understanding what it would take to implement the 'Toast Project" in a way which satisfies me would be helpful to indentify those skills and outcomes I hope for.I hope to do a good job of documentation as I go but intentions are quirky creatures and prone to change:) Today's Learning:I've been working may way through this for a number of days (a couple of hours at a time). I just realized that it's getting very cumbersome to try to keep each upgrade to the model in the same notebook. I'm going to keep this notebook as an object lesson of how that can happen. In the meantime I'm going to rebuild this notebook into three new notebooks that keep each stage of the process independent. A very helpful discovery about my own workflow..... Exporting this document to pdfThis has not behaved well so far for me. My current most successful strategy is to download the Jupyter notebook as an html file, open in Firefox, print the file - which gives me the option to save the html document as a pdf. This is not terrible but it's not as good as I would like it.I also have had some luck with downloading as a .tex file and running it through TeXWorks which complains a bit but ultimately gives pretty output. This may be my strategy. The ProblemThe basic problem is this. When toast teeters off the edge of a standard counter it seems to, remarkably consistently, land 'jelly side' down. I have read that this is no accident and that in fact the solution to the problem is to push the toast when you notice it going off the edge rather than try to stop it. I have done some loose experiments and find this to be empirically true. Now -- can I use basic dynamics and an numerical approach to explore this problem without getting caught up the analytic solution to the problem documented in various places in AJP. In the previous notebook I modelled this process assuming that the angular acceleration would be changing as the toast tips over the edge. Experimentally starting with a piece of toast 3/4 of the way off the edge and then releasing it I observe that it rotates about 2𝜋 radians before it hits the floor (a little more perhaps). My basic iteration model predicted 8ish radians which is more than which is only a little over $2\pi$ radians. Definitely getting closer to my observations. It seems likely that there is a point at which the gravitational forces will make the toast begin to slip 'laterally'. This will increase the moment of inertia and the net torque in ways that are hard to predict intuitively. That is the reason to try and model this more complex process. CodeThe code starts the same way as the previous model. I will retain the comment block to keep things consistent.The following just sets up the plotting, `matplotlib`, and numerical processing, `numpy`, libaries for use by the kernal. As is apparently common they are given shorter aliases as `plt` and `np`.Here are the reference sites for [`matplotlib`](https://matplotlib.org/) and [`numpy`](http://www.numpy.org/)Note: The plt.rcParams calls are tools for making the plots larger along with the fonts that are used in the labeling. These settings seem to give acceptable plots.
%matplotlib inline import matplotlib.pyplot as plt plt.style.use('seaborn-whitegrid') plt.rcParams["figure.figsize"] = (20,10) plt.rcParams.update({'font.size': 22}) import numpy as np
_____no_output_____
MIT
Toast2.2.ipynb
smithrockmaker/PH213
Defining constantsIn this problem it seems prudent to allow for a variety of 'toast' like objects of different materials and sizes. To that end I want to establish a set of constants that describe the particular setting I am considering. Note that I am working in cm and s for convenience which may turn out to be a bad idea. These variables define the physical form of the toast. Modeling parameters will be solicited from the user allowing a different way to change features.tlength (parallel to table edge - cm) twidth (perpendicular to table edge - cm) tthick (yup - cm) tdensity (in case it matters - gr/cm3) counterheight ( in cm) gravity (cm/s2) anglimit (radians - generally set to $\pi/2$ but could be different)In this model the toast will be slipping which leads to some component of downward velocity as the toast leaves the edge of the table. This leads to a more complex calculation for the time to fall to the floor which depends on the results of the model. That is why the floortime calculation from the previous models has been removed at this stage.Calculations in this cell are constant regardless of other variations in the problem parameters.
tlength = 10.0 twidth = 10.0 tthick = 1.0 tdensity = 0.45 counterheight = 100.0 gravity = 981.0 anglimit = np.pi/2 lindensity = tdensity*tlength*tthick # linear density of toast tmass = lindensity*twidth # mass of toast tinertiacm = tmass*(twidth*twidth)/12.0 # moment of inertia around CM tinertiamax = tmass*(twidth*twidth)/3.0 # max moment around edge of 'book' # debug # print ("Toast mass (gr): %.2f gr"% (tmass)) # print ("Inertia around CM: %.2f gr*cm^2" % (tinertiacm)) # print ("Max inertia around edge: %.2f gr*cm^2" % (tinertiamax))
_____no_output_____
MIT
Toast2.2.ipynb
smithrockmaker/PH213
Updated Freebody DiagramSince I know from experiment that the toast rotates almost exactly a full $2\pi$ if I start it hanging 3/4 of it's width over the edge that would mean that the rotational velocity when the toast disconnects from the table is around 12 rad/s (since the fall time is abut 0.5 s). The previous notebook and the plots therein suggest that the toast reaches that velocity when it has rotated a little less than 1 radian. Analysis of the previous model raises the question of how slipping of the toast might affect the model. This will lead to a more complex model for sure so it seemed prudent to develop a more explicit freebody diagram using CAD software to keep variables clear. So, here's the freebody diagram with a host of 'new' labels that represent my current thinking. Rerun from here!!When I wish to rerun this model with different parameters this is where I start.... Set tstep and numitTo explore tools for interacting with the python code I am choosing to set the time step (tstep) and the maximum number of iterations (numit) as inputs from the user. This link from [`stackoverflow`](https://stackoverflow.com/questions/20449427/how-can-i-read-inputs-as-numbers) does the best job of explaining how to use the input() command in python 3.x which is the version I am using. This hopefully explains the format of the input statements....```pythontstep = float(input("Define time step in ms (ms)? "))numit = int(input("How many interations? "))overhang = float(input("What is the initial overhang of the toast (% as in 1.0 = 100%)? "))coeffric = float(input("What is the coefficient of friction? "))```The time step (tstep) can be fractions of ms if I want while the number of iterations (numit) but conceptually be an integer (It doesn't make much sense to repeat a process 11.3 times in this context). The overhang is the initial overhang of the toast (no sliding across the table yet) and the coefficient of friction is needed to handle slipping of the toast.
# Solicit model parameters from user..... tstep = float(input("Define time step in ms (ms)? ")) numit = int(input("How many interations? ")) overhang = float(input("What is the initial overhang of the toast (% as in 1.0 = 100%)? ")) coeffric = float(input("What is the coefficient of friction? ")) print("Overhang is %.3f and the coefficient of friction is %.2f ."% (overhang, coeffric)) print("time step is %.2f ms and the number of iterations is %s."% (tstep, numit)) print("Rerun this cell to change these values and then rerun the calculations. ")
Define time step in ms (ms)? 3 How many interations? 10 What is the initial overhang of the toast (% as in 1.0 = 100%)? 1 What is the coefficient of friction? .2
MIT
Toast2.2.ipynb
smithrockmaker/PH213
Set up variable arraysGetting these arrays set up is a little bit of an iterative process itself. I set up all the arrays I think I need and invariably I find later that I need several others. Some of that process will be hidden so I apologise. I started out this just a giant list of arrays but later decided I needed to group them in a way that would help visualize how they contribute to the calculation. Much of this is very similar to the previous model.
# Define variable arrays needed # time variables count = np.linspace(0,numit,num=numit+1) # start at 0, go to numit, because it started at there is 1 more element in the array currenttime = np.full_like(count,0.0) # same size as count will all values = 0 for starters # moment of inertia variables dparallel = np.full_like(count,0.0) # distance to pivot from center of mass (CM) tinertianow = np.full_like(count,0.0) # moment of inertia from parallel axis theorem # rotation variables angaccel = np.full_like(count,0.0) # current angular acceleration angvel = np.full_like(count,0.0) # current angular velocity angpos = np.full_like(count,0.0) # current angular position torqpos = np.full_like(count,0.0) # torque from overhanging 'right' side of toast torqneg = np.full_like(count,0.0) # torque from 'left' side of toast still over the table torqnet = np.full_like(count,0.0) # net torque # general location of cm variables rside = np.full_like(count,0.0) # length of toast hanging out over edge lside = np.full_like(count,0.0) # length of toast to left of edge # torque calculation variables armr = np.full_like(count,0.0) # moment arm of overhanging toast arml = np.full_like(count,0.0) # moment arm of toast left of pivot weightr = np.full_like(count,0.0) # weight of overhanging toast acting at armr/2 weightl = np.full_like(count,0.0) # weight of 'left' side of toast acting at arml/2 # slipping variables friction = np.full_like(count,0.0) # friction at pivot latgforce = np.full_like(count,0.0) # force seeking to slide toast off parallelaccel = np.full_like(count,0.0) # acceleration parallel to plane of toast # These arrays had to be added later as I needed to deal with the toast slipping off the edge slipdisplace = np.full_like(count,0.0) # displacement of toast in this interation slipposx = np.full_like(count,0.0) # position of CM of toast in x slipposy = np.full_like(count,0.0) # position of CM of toast in y slipveltot = np.full_like(count,0.0) # total velocity at iteration slipvelx = np.full_like(count,0.0) # velocity of CM in x direction slipvely = np.full_like(count,0.0) # velocity of CM in y direction # kinematic coefficients quadcoef = np.zeros(3) # needed to invoke the python polynomial roots solver.
_____no_output_____
MIT
Toast2.2.ipynb
smithrockmaker/PH213
Initialize the arrays....In the process of taking my original notebook apart and creating separate notebooks for each model I am finding that I can do this in a more understandable way than I did the first time around. Feel free to look back at the orginal notebook which I abandoned when it got too cumbersome.Each time I perform a set of calculations I will start by considering where it is now and whether it is slipping or not. That means the next step in the iteration only depends on the previous step and some constants. Because of this I only need to establish the first value in each of the arrays. What is the value of each variable when this process starts. Note that all array values except count[] have been set to 0 so any variables whose initial value should be 0 have been commented out.See previous models for details of calculating the moment of inertia using the parallel axis theorem.
# Set first term of each variable # time variables # count : count is aready completely filled from 0 to numit # currenttime[0] is already set to 0 # general location of cm variables rside[0] = twidth*overhang lside[0] = twidth-rside[0] # torque calculation variables armr[0] = rside[0]/2.0 arml[0] = lside[0]/2.0 weightr[0] = lindensity*rside[0]*gravity # weight of overhang weightl[0] = lindensity*lside[0]*gravity # weight over table # moment of inertia variables dparallel[0] = rside[0] - twidth/2. # value changes if slipping tinertianow[0] = tinertiacm + tmass*dparallel[0]**2 # rotation variables #angvel[0] is already set to 0 #angpos[0] is already set to 0 torqpos[0] = (overhang*twidth/2)*(tmass*overhang*gravity) torqneg[0] = -((1.0-overhang)*twidth/2)*(tmass*(1.0-overhang)*gravity) torqnet[0] = torqpos[0]+torqneg[0] angaccel[0] = torqnet[0]/tinertianow[0] # slipping variables # friction[0] is already set to 0 # latgforce[0] is already set to 0 # parallelaccel[0] is already set to 0 # These arrays had to be added later as I needed to deal with the toast slipping off the edge # slipdisplace[0] is already set to 0 slipposx[0] = rside[0]- twidth/2.0 # CM relative to pivot due to overhang # slipposy[0] is already set to 0 # slipveltot[0] is already set to 0 # slipvelx[0] is already set to 0 # slipvely[0] is already set to 0 # kinematic coefficients # quadcoef[] depend on conditions when toast leaves edge
_____no_output_____
MIT
Toast2.2.ipynb
smithrockmaker/PH213
...same calculation but using variables differently.....I still need to calculate torqpos and torqneg but these will be based on my new nomenclature that tries to make it more explicit how the torques are calculated as well as the normal force on the corner and the friction generated.One of the features I have NOT dealt with yet is that the moment of inertia will change once the toast starts sliding. I'm going to let that go for now and merely calculate the normal, friction, and lateral forces on the toast to see at what point it might start to slide. Then I will worry about how to recalculate the moment of inertia after I do a first test. Look at the analysis section immediately following for discussion of how this process developed...... When it starts to slip...(initially ignored)When the toast starts to slip things get complicated in a hurry. Perhaps most obviously the pivot point starts to move which means all of the torques and moment arms change as well as the moment of intertia. That will all be sort of straightforward. Tracking the motion of the toast as it slides off the edge seems painful since the acceleration and velocity will be in a slightly different direction with each successive iteration. Yikes.....Remember that python keeps track of loops and other programming features through the indents in the code. All of this part of the model will need to take place inside the 'if-else' conditional test' part way through the calculation. To be more specific it is the 'else' part of the conditional test where all the action has to happen
ndex1 = 0 while (ndex1 < numit) and (angpos[ndex1] < anglimit): print("iteration: ",ndex1) # These calculations take place in every iteration regardless of whether it's slipping or not. # moment of inertia NOW - ndex1 dparallel[ndex1] = rside[ndex1] - twidth/2. # value changes if slipping tinertianow[ndex1] = tinertiacm + tmass*dparallel[ndex1]**2 # torqnet NOW - ndex1 torqpos[ndex1] = np.cos(angpos[ndex1])*armr[ndex1]*weightr[ndex1] torqneg[ndex1] = -np.cos(angpos[ndex1])*arml[ndex1]*weightl[ndex1] torqnet[ndex1] = torqpos[ndex1] + torqneg[ndex1] # angular acceleration NOW -ndex1 angaccel[ndex1] = torqnet[ndex1]/tinertianow[ndex1] # NEXT position and velocity after tstep - ndex1+1 angvel[ndex1+1] = angvel[ndex1] + angaccel[ndex1]*(tstep/1000.0) angpos[ndex1+1] = angpos[ndex1] + angvel[ndex1]*(tstep/1000.0) + 0.5*angaccel[ndex1]*(tstep/1000.0)*(tstep/1000.0) currenttime[ndex1+1] = currenttime[ndex1] + tstep # determine if the toast is slipping # calculate normal, friction, and lateral forces NOW - ndex1 currentnormal = (weightr[ndex1] + weightl[ndex1])*np.cos(angpos[ndex1]) friction[ndex1] = currentnormal*coeffric latgforce[ndex1] = (weightr[ndex1] + weightl[ndex1])*np.sin(angpos[ndex1]) parallelaccel[ndex1] = (latgforce[ndex1] - friction[ndex1])/(tmass) # This is where I have to deal with the toast slipping. When the parallelaccel > 0 # then the toast is starting to slip. if parallelaccel[ndex1] < 0.0: # NOT slipping parallelaccel[ndex1] = 0.0 # update variables for next step = ndex1+1 rside[ndex1+1] = rside[ndex1] lside[ndex1+1] = twidth - rside[ndex1+1] armr[ndex1+1] = rside[ndex1+1]/2.0 arml[ndex1+1] = lside[ndex1+1]/2.0 weightr[ndex1+1] = lindensity*rside[ndex1+1]*gravity # weight of overhang weightl[ndex1+1] = lindensity*lside[ndex1+1]*gravity # weight over table slipangle = angpos[ndex1+1] # keep updating the slip angle until is starts slipping. else: print("Toast is slipping!!; ndex1: ", ndex1) # determine NEXT sliding velocity - ndex1+1 slipvelx[ndex1+1] = slipvelx[ndex1] + np.cos(angpos[ndex1])*parallelaccel[ndex1]*tstep/1000. slipvely[ndex1+1] = slipvely[ndex1] - np.sin(angpos[ndex1])*parallelaccel[ndex1]*tstep/1000. slipveltot[ndex1+1] = np.sqrt(slipvelx[ndex1+1]**2 + slipvely[ndex1+1]**2) # determine NEXT slid position - ndex1+1 slipposx[ndex1+1] = slipposx[ndex1] + slipvelx[ndex1+1]*tstep/1000. slipposy[ndex1+1] = slipposy[ndex1] + slipvely[ndex1+1]*tstep/1000. slipdisplace[ndex1+1] = np.sqrt(slipposx[ndex1+1]**2 + slipposy[ndex1+1]**2) # find NEXT overhang, this affects the moment of inertia - ndex1+1 rside[ndex1+1] = rside[ndex1]+slipdisplace[ndex1+1] lside[ndex1+1] = twidth - rside[ndex1+1] weightr[ndex1+1] = lindensity*rside[ndex1+1]*gravity # weight of overhang weightl[ndex1+1] = lindensity*lside[ndex1+1]*gravity # weight over table # debugging help # print("lateral accel (cm/s^2) : ", parallelaccel[ndex1]) # print("lateral g force: ", latgforce[ndex1]) # print("currenttime: ", currenttime[ndex1]) # print("velx: %.3f vely %.3f posx %.3f posy %.3f " % (slipvelx[ndex1],slipvely[ndex1],slipposx[ndex1],slipposy[ndex1])) # print("slip velocity %.3f slip displacement %.3f " % (slipveltot[ndex1],slipdisplace[ndex1])) # inputcont = input("continue?") # debugging help # print("Tpos: %.3f Tneg %.3f Ttot %.3f angaccel %.3f " % (torqpos2[ndex4],torqneg2[ndex4],torqtot[ndex4],angaccel2[ndex4])) # print("cos(angpos): ", np.cos(angpos2[ndex2])) # print("pos %.3f pos+ %.3f vel %.3f vel+ %.3f accel %.3f " % (angpos2[ndex4],angpos2[ndex4+1],angvel2[ndex4],angvel2[ndex4+1],angaccel2[ndex4])) # inputcont = input("continue?") # test for end point of rotation if angpos[ndex1+1] > (np.pi/2.0): ndex1 = ndex1 + 1 print ("Got to 90 degrees at ndex1: ", ndex1) break # get out of the loop ndex1 = ndex1 +1 # go to the next time increment ndexfinal = ndex1 print("final index: ", ndex1) print("Tpos: %.3f Tneg %.3f Ttot %.3f angaccel %.3f : torque 0.0 and angaccel 0.0" % (torqpos[ndex1],torqneg[ndex1],torqnet[ndex1],angaccel[ndex1])) print("pos %.3f vel %.3f : angular position 1.55ish" % (angpos[ndex1],angvel[ndex1])) print("Angle at which slipping begins is %.3f radians" % (slipangle))
iteration: 0 iteration: 1 iteration: 2 iteration: 3 iteration: 4 iteration: 5 iteration: 6 iteration: 7 iteration: 8 iteration: 9 final index: 10 Tpos: 0.000 Tneg 0.000 Ttot 0.000 angaccel 0.000 : torque 0.0 and angaccel 0.0 pos 0.066 vel 4.413 : angular position 1.55ish Angle at which slipping begins is 0.066 radians
MIT
Toast2.2.ipynb
smithrockmaker/PH213
Plot lateral g force and friction to see crossover point.....This introduces a different plotting requirement. I'm looking to understand where in the process the frictional force falls below the lateral g force resulting in the toast slipping. In previous dual plot I allowed the plot routines to set the scales on the vertical axes internally. Now I need to make sure both variable share the same vertical axis scale so the visual crossover point is in fact what I'm looking for. The first time I did this it looked good but because the scales on the left and right weren't the same it was misleading.
plt.plot(currenttime, latgforce, color = "blue", label = "lateral g force") plt.plot(currenttime, friction, color = "red", label = "friction") plt.title("Is it slipping?") plt.ylabel("force"); plt.legend();
_____no_output_____
MIT
Toast2.2.ipynb
smithrockmaker/PH213
AnalysisThe first time I ran the analysis above with the possibility of slipping I screwed up the cos/sin thing and it started slipping right away. Fixed that and then it began slipping, with a coefficient of friction of 0.4, at the 6th interation (60 ms). I increased the coefficient of friction to 0.8 and it went up to the 8th interation before slipping. This is qualitatively what one would expect. Interestingly if you go back to the rotation speed plot it seems hopeful that if the toast starts to slide around 60-80 ms that would significantly reduce it's rotational velocity as it starts to fall which is what would be consistent with the experimental evidence.Now I need to go back and build in the impact of the slipping which will be a bit of a pain. The discussion for this is back a few cells.It feels like I have the slipping part working appropriately now. If I increase the coefficient of friction the angle at which it starts to slip is higher AND the final angular velocity is higher by a little. New Drop timeTo get the rotation of the toast I need to calculate the drop time taking into account that because of slipping (and rotation actually) the toast has some downward velocity when it comes off the edge of the counter. That will slightly reduce the drop time.
quadcoef[0] = -gravity/2.0 quadcoef[2] = counterheight quadcoef[1] = slipvely[ndexfinal-1] droptime = np.roots(quadcoef) if droptime[0] > 0.0: # assume 2 roots and only one is positive....could be a problem finalrotation = droptime[0]*angvel[ndexfinal] timetofloor = droptime[0] else: finalrotation = droptime[1]*angvel[ndexfinal] timetofloor = droptime[1] print("Final Report:") print("Final Rotation at Floor (rad): ", finalrotation) print("Angular velocity coming off the table (rad/s):", angvel[ndexfinal]) print("Time to reach floor (s):", timetofloor) print("Initial overhang (%):", overhang) print("Coefficient of Friction:", coeffric) print("Angle at which slipping started (rad):", slipangle) print("Time until comes off edge (ms): ", currenttime[ndexfinal]) print() print() # debug print("coef 0 (t^2): ", quadcoef[0]) print("coef 1 (t): ", quadcoef[1]) print("coef 2 (const):", quadcoef[2]) print("root 1: ", droptime[0]) print("root 2: ", droptime[1])
Final Report: Final Rotation at Floor (rad): 6.387420535890989 Angular velocity coming off the table (rad/s): 15.015067546165607 Time to reach floor (s): 0.4254007193941757 Initial overhang (%): 0.75 Coefficient of Friction: 0.8 Angle at which slipping started (rad): 0.7006976411024474 Time until comes off edge (ms): 150.0 coef 0 (t^2): -490.5 coef 1 (t): -26.413422196467003 coef 2 (const): 100.0 root 1: -0.47925071367851224 root 2: 0.4254007193941757
MIT
Toast2.2.ipynb
smithrockmaker/PH213
Deep learning for Natural Language Processing * Simple text representations, bag of words * Word embedding and... not just another word2vec this time * 1-dimensional convolutions for text * Aggregating several data sources "the hard way" * Solving ~somewhat~ real ML problem with ~almost~ end-to-end deep learning Special thanks to Irina Golzmann for help with technical part. NLTKYou will require nltk v3.2 to solve this assignment__It is really important that the version is 3.2, otherwize russian tokenizer might not work__Install/update* `sudo pip install --upgrade nltk==3.2`* If you don't remember when was the last pip upgrade, `sudo pip install --upgrade pip`If for some reason you can't or won't switch to nltk v3.2, just make sure that russian words are tokenized properly with RegeExpTokenizer.
import pandas as pd import numpy as np import matplotlib.pyplot as plt %matplotlib inline
_____no_output_____
MIT
Seminar9/Bonus-seminar.ipynb
Omrigan/dl-course
DatasetEx-kaggle-competition on job salary prediction![img](http://www.kdnuggets.com/images/cartoon-data-scientist-salary-negotiation.gif)Original conest - https://www.kaggle.com/c/job-salary-prediction DownloadGo [here](https://www.kaggle.com/c/job-salary-prediction) and download as usualCSC cloud: data should already be here somewhere, just poke the nearest instructor. What's insideDifferent kinds of features:* 2 text fields - title and description* Categorical fields - contract type, locationOnly 1 binary target whether or not such advertisement contains prohibited materials* criminal, misleading, human reproduction-related, etc* diving into the data may result in prolonged sleep disorders
df = pd.read_csv("./Train_rev1.csv",sep=',') print df.shape, df.SalaryNormalized.mean() df[:5]
(244768, 12) 34122.5775755
MIT
Seminar9/Bonus-seminar.ipynb
Omrigan/dl-course
TokenizingFirst, we create a dictionary of all existing words.Assign each word a number - it's Id
from nltk.tokenize import RegexpTokenizer from collections import Counter,defaultdict tokenizer = RegexpTokenizer(r"\w+") #Dictionary of tokens token_counts = Counter() #All texts all_texts = np.hstack([df.FullDescription.values,df.Title.values]) #Compute token frequencies for s in all_texts: if type(s) is not str: continue s = s.decode('utf8').lower() tokens = tokenizer.tokenize(s) for token in tokens: token_counts[token] +=1
_____no_output_____
MIT
Seminar9/Bonus-seminar.ipynb
Omrigan/dl-course
Remove rare tokensWe are unlikely to make use of words that are only seen a few times throughout the corpora.Again, if you want to beat Kaggle competition metrics, consider doing something better.
#Word frequency distribution, just for kicks _=plt.hist(token_counts.values(),range=[0,50],bins=50) #Select only the tokens that had at least 10 occurences in the corpora. #Use token_counts. min_count = 5 tokens = <tokens from token_counts keys that had at least min_count occurences throughout the dataset> token_to_id = {t:i+1 for i,t in enumerate(tokens)} null_token = "NULL" token_to_id[null_token] = 0 print "# Tokens:",len(token_to_id) if len(token_to_id) < 10000: print "Alarm! It seems like there are too few tokens. Make sure you updated NLTK and applied correct thresholds -- unless you now what you're doing, ofc" if len(token_to_id) > 100000: print "Alarm! Too many tokens. You might have messed up when pruning rare ones -- unless you know what you're doin' ofc"
# Tokens: 44867
MIT
Seminar9/Bonus-seminar.ipynb
Omrigan/dl-course
Replace words with IDsSet a maximum length for titles and descriptions. * If string is longer that that limit - crop it, if less - pad with zeros. * Thus we obtain a matrix of size [n_samples]x[max_length] * Element at i,j - is an identifier of word j within sample i
def vectorize(strings, token_to_id, max_len=150): token_matrix = [] for s in strings: if type(s) is not str: token_matrix.append([0]*max_len) continue s = s.decode('utf8').lower() tokens = tokenizer.tokenize(s) token_ids = map(lambda token: token_to_id.get(token,0), tokens)[:max_len] token_ids += [0]*(max_len - len(token_ids)) token_matrix.append(token_ids) return np.array(token_matrix) desc_tokens = vectorize(df.FullDescription.values,token_to_id,max_len = 500) title_tokens = vectorize(df.Title.values,token_to_id,max_len = 15)
_____no_output_____
MIT
Seminar9/Bonus-seminar.ipynb
Omrigan/dl-course
Data format examples
print "Matrix size:",title_tokens.shape for title, tokens in zip(df.Title.values[:3],title_tokens[:3]): print title,'->', tokens[:10],'...'
Размер матрицы: (244768, 15) Engineering Systems Analyst -> [38462 12311 1632 0 0 0 0 0 0 0] ... Stress Engineer Glasgow -> [19749 41620 5861 0 0 0 0 0 0 0] ... Modelling and simulation analyst -> [23387 16330 32144 1632 0 0 0 0 0 0] ...
MIT
Seminar9/Bonus-seminar.ipynb
Omrigan/dl-course
__ As you can see, our preprocessing is somewhat crude. Let us see if that is enough for our network __ Non-sequencesSome data features are categorical data. E.g. location, contract type, companyThey require a separate preprocessing step.
#One-hot-encoded category and subcategory from sklearn.feature_extraction import DictVectorizer categories = [] data_cat = df[["Category","LocationNormalized","ContractType","ContractTime"]] categories = [A list of dictionaries {"category":category_name, "subcategory":subcategory_name} for each data sample] vectorizer = DictVectorizer(sparse=False) df_non_text = vectorizer.fit_transform(categories) df_non_text = pd.DataFrame(df_non_text,columns=vectorizer.feature_names_)
_____no_output_____
MIT
Seminar9/Bonus-seminar.ipynb
Omrigan/dl-course
Split data into training and test
#Target variable - whether or not sample contains prohibited material target = df.is_blocked.values.astype('int32') #Preprocessed titles title_tokens = title_tokens.astype('int32') #Preprocessed tokens desc_tokens = desc_tokens.astype('int32') #Non-sequences df_non_text = df_non_text.astype('float32') #Split into training and test set. #Difficulty selector: #Easy: split randomly #Medium: split by companies, make sure no company is in both train and test set #Hard: do whatever you want, but score yourself using kaggle private leaderboard title_tr,title_ts,desc_tr,desc_ts,nontext_tr,nontext_ts,target_tr,target_ts = <define_these_variables>
_____no_output_____
MIT
Seminar9/Bonus-seminar.ipynb
Omrigan/dl-course
Save preprocessed data [optional]* The next tab can be used to stash all the essential data matrices and get rid of the rest of the data. * Highly recommended if you have less than 1.5GB RAM left* To do that, you need to first run it with save_prepared_data=True, then restart the notebook and only run this tab with read_prepared_data=True.
save_prepared_data = True #save read_prepared_data = False #load #but not both at once assert not (save_prepared_data and read_prepared_data) if save_prepared_data: print "Saving preprocessed data (may take up to 3 minutes)" import pickle with open("preprocessed_data.pcl",'w') as fout: pickle.dump(data_tuple,fout) with open("token_to_id.pcl",'w') as fout: pickle.dump(token_to_id,fout) print "done" elif read_prepared_data: print "Reading saved data..." import pickle with open("preprocessed_data.pcl",'r') as fin: data_tuple = pickle.load(fin) title_tr,title_ts,desc_tr,desc_ts,nontext_tr,nontext_ts,target_tr,target_ts = data_tuple with open("token_to_id.pcl",'r') as fin: token_to_id = pickle.load(fin) #Re-importing libraries to allow staring noteboook from here import pandas as pd import numpy as np import matplotlib.pyplot as plt %matplotlib inline print "done"
_____no_output_____
MIT
Seminar9/Bonus-seminar.ipynb
Omrigan/dl-course
Train the monsterSince we have several data sources, our neural network may differ from what you used to work with.* Separate input for titles * cnn+global max or RNN* Separate input for description * cnn+global max or RNN* Separate input for categorical features * Few dense layers + some black magic if you want These three inputs must be blended somehow - concatenated or added.* Output: a simple regression task
#libraries import lasagne from theano import tensor as T import theano #3 inputs and a refere output title_token_ids = T.matrix("title_token_ids",dtype='int32') desc_token_ids = T.matrix("desc_token_ids",dtype='int32') categories = T.matrix("categories",dtype='float32') target_y = T.vector("is_blocked",dtype='float32')
_____no_output_____
MIT
Seminar9/Bonus-seminar.ipynb
Omrigan/dl-course
NN architecture
title_inp = lasagne.layers.InputLayer((None,title_tr.shape[1]),input_var=title_token_ids) descr_inp = lasagne.layers.InputLayer((None,desc_tr.shape[1]),input_var=desc_token_ids) cat_inp = lasagne.layers.InputLayer((None,nontext_tr.shape[1]), input_var=categories) # Descriptions #word-wise embedding. We recommend to start from some 64 and improving after you are certain it works. descr_nn = lasagne.layers.EmbeddingLayer(descr_inp, input_size=len(token_to_id)+1, output_size=?) #reshape from [batch, time, unit] to [batch,unit,time] to allow 1d convolution over time descr_nn = lasagne.layers.DimshuffleLayer(descr_nn, [0,2,1]) descr_nn = 1D convolution over embedding, maybe several ones in a stack #pool over time descr_nn = lasagne.layers.GlobalPoolLayer(descr_nn,T.max) #Possible improvements here are adding several parallel convs with different filter sizes or stacking them the usual way #1dconv -> 1d max pool ->1dconv and finally global pool # Titles title_nn = <Process titles somehow (title_inp)> # Non-sequences cat_nn = <Process non-sequences(cat_inp)> nn = <merge three layers into one (e.g. lasagne.layers.concat) > nn = lasagne.layers.DenseLayer(nn,your_lucky_number) nn = lasagne.layers.DropoutLayer(nn,p=maybe_use_me) nn = lasagne.layers.DenseLayer(nn,1,nonlinearity=lasagne.nonlinearities.linear)
_____no_output_____
MIT
Seminar9/Bonus-seminar.ipynb
Omrigan/dl-course
Loss function* The standard way: * prediction * loss * updates * training and evaluation functions
#All trainable params weights = lasagne.layers.get_all_params(nn,trainable=True) #Simple NN prediction prediction = lasagne.layers.get_output(nn)[:,0] #loss function loss = lasagne.objectives.squared_error(prediction,target_y).mean() #Weight optimization step updates = <your favorite optimizer>
_____no_output_____
MIT
Seminar9/Bonus-seminar.ipynb
Omrigan/dl-course
Determinitic prediction * In case we use stochastic elements, e.g. dropout or noize * Compile a separate set of functions with deterministic prediction (deterministic = True) * Unless you think there's no neet for dropout there ofc. Btw is there?
#deterministic version det_prediction = lasagne.layers.get_output(nn,deterministic=True)[:,0] #equivalent loss function det_loss = <an excercise in copy-pasting and editing>
_____no_output_____
MIT
Seminar9/Bonus-seminar.ipynb
Omrigan/dl-course
Coffee-lation
train_fun = theano.function([desc_token_ids,title_token_ids,categories,target_y],[loss,prediction],updates = updates) eval_fun = theano.function([desc_token_ids,title_token_ids,categories,target_y],[det_loss,det_prediction])
_____no_output_____
MIT
Seminar9/Bonus-seminar.ipynb
Omrigan/dl-course
Training loop* The regular way with loops over minibatches* Since the dataset is huge, we define epoch as some fixed amount of samples isntead of all dataset
# Out good old minibatch iterator now supports arbitrary amount of arrays (X,y,z) def iterate_minibatches(*arrays,**kwargs): batchsize=kwargs.get("batchsize",100) shuffle = kwargs.get("shuffle",True) if shuffle: indices = np.arange(len(arrays[0])) np.random.shuffle(indices) for start_idx in range(0, len(arrays[0]) - batchsize + 1, batchsize): if shuffle: excerpt = indices[start_idx:start_idx + batchsize] else: excerpt = slice(start_idx, start_idx + batchsize) yield [arr[excerpt] for arr in arrays]
_____no_output_____
MIT
Seminar9/Bonus-seminar.ipynb
Omrigan/dl-course
Tweaking guide* batch_size - how many samples are processed per function call * optimization gets slower, but more stable, as you increase it. * May consider increasing it halfway through training* minibatches_per_epoch - max amount of minibatches per epoch * Does not affect training. Lesser value means more frequent and less stable printing * Setting it to less than 10 is only meaningfull if you want to make sure your NN does not break down after one epoch* n_epochs - total amount of epochs to train for * `n_epochs = 10**10` and manual interrupting is still an optionTips:* With small minibatches_per_epoch, network quality may jump up and down for several epochs* Plotting metrics over training time may be a good way to analyze which architectures work better.* Once you are sure your network aint gonna crash, it's worth letting it train for a few hours of an average laptop's time to see it's true potential
from sklearn.metrics import mean_squared_error,mean_absolute_error n_epochs = 100 batch_size = 100 minibatches_per_epoch = 100 for i in range(n_epochs): #training epoch_y_true = [] epoch_y_pred = [] b_c = b_loss = 0 for j, (b_desc,b_title,b_cat, b_y) in enumerate( iterate_minibatches(desc_tr,title_tr,nontext_tr,target_tr,batchsize=batch_size,shuffle=True)): if j > minibatches_per_epoch:break loss,pred_probas = train_fun(b_desc,b_title,b_cat,b_y) b_loss += loss b_c +=1 epoch_y_true.append(b_y) epoch_y_pred.append(pred_probas) epoch_y_true = np.concatenate(epoch_y_true) epoch_y_pred = np.concatenate(epoch_y_pred) print "Train:" print '\tloss:',b_loss/b_c print '\trmse:',mean_squared_error(epoch_y_true,epoch_y_pred)**.5 print '\tmae:',mean_absolute_error(epoch_y_true,epoch_y_pred) #evaluation epoch_y_true = [] epoch_y_pred = [] b_c = b_loss = 0 for j, (b_desc,b_title,b_cat, b_y) in enumerate( iterate_minibatches(desc_ts,title_ts,nontext_ts,target_ts,batchsize=batch_size,shuffle=True)): if j > minibatches_per_epoch: break loss,pred_probas = eval_fun(b_desc,b_title,b_cat,b_y) b_loss += loss b_c +=1 epoch_y_true.append(b_y) epoch_y_pred.append(pred_probas) epoch_y_true = np.concatenate(epoch_y_true) epoch_y_pred = np.concatenate(epoch_y_pred) print "Val:" print '\tloss:',b_loss/b_c print '\trmse:',mean_squared_error(epoch_y_true,epoch_y_pred)**.5 print '\tmae:',mean_absolute_error(epoch_y_true,epoch_y_pred) print "If you are seeing this, it's time to backup your notebook. No, really, 'tis too easy to mess up everything without noticing. "
If you are seeing this, it's time to backup your notebook. No, really, 'tis too easy to mess up everything without noticing.
MIT
Seminar9/Bonus-seminar.ipynb
Omrigan/dl-course
Final evaluationEvaluate network over the entire test set
#evaluation epoch_y_true = [] epoch_y_pred = [] b_c = b_loss = 0 for j, (b_desc,b_title,b_cat, b_y) in enumerate( iterate_minibatches(desc_ts,title_ts,nontext_ts,target_ts,batchsize=batch_size,shuffle=True)): loss,pred_probas = eval_fun(b_desc,b_title,b_cat,b_y) b_loss += loss b_c +=1 epoch_y_true.append(b_y) epoch_y_pred.append(pred_probas) epoch_y_true = np.concatenate(epoch_y_true) epoch_y_pred = np.concatenate(epoch_y_pred) print "Scores:" print '\tloss:',b_loss/b_c print '\trmse:',mean_squared_error(epoch_y_true,epoch_y_pred)**.5 print '\tmae:',mean_absolute_error(epoch_y_true,epoch_y_pred)
_____no_output_____
MIT
Seminar9/Bonus-seminar.ipynb
Omrigan/dl-course
Linear Algebra (CpE210A) Midterms Project Coded and submitted by:Galario, Adrian Q. 201814169 58051 DirectionsThis Jupyter Notebook will serve as your base code for your Midterm Project. You must further format and provide complete discussion on the given topic. - Provide all necessary explanations for specific code blocks. - Provide illustrations for key results.- Observe clean code (intuitive variable names, proper commenting, proper code spacing)- Provide a summary discussion at the endFailure to use this format or failure to update the document will be given a deduction equivalent to 50% of the original score. Case Bebang is back to consult you about her business. Furthering her data analytics initiative she asks you for help to compute some relevant data. Now she is asking you to compute and visualize her sales and costs for the past year. She has given you the datasets attached to her request. Problem State and explain Bebang's problem here and provide the deliverables. Proof of Concept Now that you have a grasp on the requirements we need to start with making a program to prove that her problem is solvable. As a Linear Algebra student, we will be focusin on applying vector operations to meet her needs. First, we need to import her data. We will use the `pandas` library for this. For more information you can look into their documentation [here](https://pandas.pydata.org/).
import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib import seaborn as sns %matplotlib inline df_prices = pd.read_csv(r'C:\Users\EyyGiee\Desktop\Bebang\bebang prices.csv') df_sales = pd.read_csv(r'C:\Users\EyyGiee\Desktop\Bebang\bebang sales.csv') df_prices df_sales
_____no_output_____
Apache-2.0
LinAlg_Midterms (1).ipynb
adriangalarion/Lab-Activities-1.1
Part 1: Monthly Sales
sales_mat = np.array(df_sales.set_index('flavor')) prices_mat = np.array(df_prices.set_index('Unnamed: 0'))[0] costs_mat = np.array(df_prices.set_index('Unnamed: 0'))[1] price_reshaped=np.reshape(prices_mat,(12,1)) cost_reshaped=np.reshape(costs_mat,(12,1)) print(sales_mat.shape) print(price_reshaped.shape) print(cost_reshaped.shape)
(12, 12) (12, 1) (12, 1)
Apache-2.0
LinAlg_Midterms (1).ipynb
adriangalarion/Lab-Activities-1.1
Formulas Take note that the fomula for revenue is: $revenue = sales * price $ In this case, think that revenue, sales, and price are vectors instead of individual values The formula of cost per item sold is: $cost_{sold} = sales * cost$ The formula for profit is: $profit = revenue - cost_{sold}$ Solving for the monthly profit will be the sum of all profits made on that month.
## Function that returns and prints the monthly sales and profit for each month def monthly_sales(price, cost, sales): monthly_revenue = sum(sales*price) monthly_costs = sum(sales*cost) monthly_profits = (monthly_revenue - monthly_costs) return monthly_revenue.flatten(), monthly_costs.flatten(), monthly_profits.flatten() ### Using the monthly_sales function to compute for the revenue, cost, and profit ## Then passing the values to month_rev, month_cost, and month_profit month_rev, month_cost, month_profit = monthly_sales(prices_mat, costs_mat, sales_mat) ### printing the values print("Monthly Revenue(Starting from the month of January): \n", month_rev) print("\nYearly Revenue: \n", sum(month_rev)) print("\nMonthly Cost(Starting from the month of January): \n", month_cost) print("\nYearly Cost: \n", sum(month_cost)) print("\nMonthly Profit(Starting from the month of January): \n", month_profit) print("\nYearly Profit: \n", sum(month_profit))
Monthly Revenue(Starting from the month of January): [216510 116750 84900 26985 208850 17360 18760 19035 12090 22960 260775 422010] Yearly Revenue: 1426985 Monthly Cost(Starting from the month of January): [154650 70050 42450 15420 146195 13454 14070 10575 6045 14350 185440 290718] Yearly Cost: 963417 Monthly Profit(Starting from the month of January): [ 61860 46700 42450 11565 62655 3906 4690 8460 6045 8610 75335 131292] Yearly Profit: 463568
Apache-2.0
LinAlg_Midterms (1).ipynb
adriangalarion/Lab-Activities-1.1
Part 2: Flavor Sales
## Function that returns and prints the flavor profits for the whole year def flavor_sales(price, cost, sales): flavor_revenue = sales*price flavor_costs = sales*cost flavor_profits = flavor_revenue - flavor_costs return flavor_profits.flatten() ### Using the flavor_sales function to compute for the profit ## Then passing the values to flavor_profit variable flavor_profit = flavor_sales(prices_mat, costs_mat, sales_mat) ## Values of profit of flavors will be inserted here flavor1 = [] flavor2 = [] flavor3 = [] flavor4 = [] flavor5 = [] flavor6 = [] flavor7 = [] flavor8 = [] flavor9 = [] flavor10 = [] flavor11 = [] flavor12 = [] ## Loop that will append the values(profit) to their respective variables above ## The variables above was created so that the sum can be computed by row(to get the yearly profit per flavor) ## Unlike getting the sum of flavor_profits inside the function flavor_sales, it will get the sum per column(which will get the profit of all flavor per month) for x in flavor_profit: if len(flavor1)<=11: flavor1.append(x) elif len(flavor2)<=11: flavor2.append(x) elif len(flavor3)<=11: flavor3.append(x) elif len(flavor4)<=11: flavor4.append(x) elif len(flavor5)<=11: flavor5.append(x) elif len(flavor6)<=11: flavor6.append(x) elif len(flavor7)<=11: flavor7.append(x) elif len(flavor8)<=11: flavor8.append(x) elif len(flavor9)<=11: flavor9.append(x) elif len(flavor10)<=11: flavor10.append(x) elif len(flavor11)<=11: flavor11.append(x) elif len(flavor12)<=11: flavor12.append(x) ## Profit of each flavor per year flavor_profits = np.array([sum(flavor1),sum(flavor2),sum(flavor3),sum(flavor4),sum(flavor5),sum(flavor6),sum(flavor7),sum(flavor8),sum(flavor9), sum(flavor10),sum(flavor11),sum(flavor12)]) ### Printing the values print("The row represents each flavor while the column represents the months") print("The order of flavor and months in rows and columns is the same as in df_sales\n") print("Profit of Flavor per Month: \n", flavor_profit) print("\nThe order of the flavor is the same as in df_sales\n") print("Flavor Profit per Year: \n", flavor_profits) ## Putting the list of flavors into array flavors = np.array(pd.read_csv("bebang sales.csv", usecols=[0])) ## Converting the arrays into lists ## Using list is easier to match/zip them fprofit_list = flavor_profits.tolist() flavor_list = flavors.tolist() ## Matched the two list, to know the profit of each flavor and to be sorted later matched_list = list(zip(fprofit_list, flavor_list)) ### Sorting of the flavors by their profit and displaying the first element(flavors) only best_3_flavors = [x[1] for x in sorted(matched_list, reverse=True)] worst_3_flavors = [x[1] for x in sorted(matched_list)] ## Printing of the three best and worst flavors print("Best Selling Flavors: \n", best_3_flavors[0:3]) print("\nWorst Selling Flavors: \n", worst_3_flavors[0:3])
Best Selling Flavors: [['choco butter naught'], ['sugar glazed'], ['red velvet']] Worst Selling Flavors: [['almond honey'], ['furits and nuts'], ['oreo']]
Apache-2.0
LinAlg_Midterms (1).ipynb
adriangalarion/Lab-Activities-1.1
Part 3: Visualizing the Data (Optional for +40%)You can try to visualize the data in the most comprehensible chart that you can use.
import matplotlib.pyplot as plt import matplotlib import seaborn as sns import pandas as pd import csv %matplotlib inline
_____no_output_____
Apache-2.0
LinAlg_Midterms (1).ipynb
adriangalarion/Lab-Activities-1.1
Entire Dataset
## Graph for Sales of each flavor ## Table inside the original file(bebang sales) was transposed in the excel, columns were converted to rows df_sales_Transposed = pd.read_csv(r"C:\Users\EyyGiee\Desktop\Bebang\bebang sales(transpose).csv") ## Transposing the table makes it easier to plot the data inside it ## The column header 'flavor' was changed to 'Months' df_sales_Transposed.plot(x="Months", figsize=(25,15)) plt.title('Sales of Each Flavor') ## Graph for Price vs Cost per Flavor ## Declaring the font size and weight to be used in the graph font = {'weight' : 'bold', 'size' : 15} matplotlib.rc('font', **font) ## Declaration of the figure to be used fig = plt.figure() ax = fig.add_axes([0,0,4,4]) ax.set_title('Price vs Cost per Flavor') ## For the legends used in the graph colors = {'Price':'blue', 'Cost':'green'} labels = list(colors.keys()) handles = [plt.Rectangle((0,0),1,1, color=colors[label]) for label in labels] plt.legend(handles, labels, loc='upper left', prop={'size': 40}) ## Plotting of the values for the bar graph ## Price and cost were plotted in one x-axis per flavor to see the difference between the two variable ax.bar('Red Velvet' ,prices_mat[0], color = 'b', width = 0.50) ax.bar('Red Velvet' ,costs_mat[0], color = 'g', width = 0.50) ax.bar('Oreo' ,prices_mat[1], color = 'b', width = 0.50) ax.bar('Oreo' ,costs_mat[1], color = 'g', width = 0.50) ax.bar('Super Glazed' ,prices_mat[2], color = 'b', width = 0.50) ax.bar('Super Glazed' ,costs_mat[2], color = 'g', width = 0.50) ax.bar('Almond Honey' ,prices_mat[3], color = 'b', width = 0.50) ax.bar('Almond Honey' ,costs_mat[3], color = 'g', width = 0.50) ax.bar('Matcha' ,prices_mat[4], color = 'b', width = 0.50) ax.bar('Matcha' ,costs_mat[4], color = 'g', width = 0.50) ax.bar('Strawberry Cream' ,prices_mat[5], color = 'b', width = 0.50) ax.bar('Strawberry Cream' ,costs_mat[5], color = 'g', width = 0.50) ax.bar('Brown \nSugar Boba' ,prices_mat[6], color = 'b', width = 0.50) ax.bar('Brown \nSugar Boba' ,costs_mat[6], color = 'g', width = 0.50) ax.bar('Fruits \nand Nuts' ,prices_mat[7], color = 'b', width = 0.50) ax.bar('Fruits \nand Nuts' ,costs_mat[7], color = 'g', width = 0.50) ax.bar('Dark \nChocolate' ,prices_mat[8], color = 'b', width = 0.50) ax.bar('Dark \nChocolate' ,costs_mat[8], color = 'g', width = 0.50) ax.bar('Chocolate \nand Orange' ,prices_mat[9], color = 'b', width = 0.50) ax.bar('Chocolate \nand Orange' ,costs_mat[9], color = 'g', width = 0.50) ax.bar('Choco Mint' ,prices_mat[10], color = 'b', width = 0.50) ax.bar('Choco Mint' ,costs_mat[10], color = 'g', width = 0.50) ax.bar('Choco \nButter Naught' ,prices_mat[11], color = 'b', width = 0.50) ax.bar('Choco \nButter Naught' ,costs_mat[11], color = 'g', width = 0.50)
_____no_output_____
Apache-2.0
LinAlg_Midterms (1).ipynb
adriangalarion/Lab-Activities-1.1
Monthly Sales
## Graph for Revenue vs Cost per Month ## Declaring the font size and weight to be used in the graph font = {'weight' : 'bold', 'size' : 15} matplotlib.rc('font', **font) ## Declaration of the figure to be used in the graph fig = plt.figure() ax = fig.add_axes([0,0,4,4]) ax.set_title('Revenue vs Cost per Month') ax.set_ylabel('Revenue/Cost') ax.set_xlabel('Months') ## For the legends used in the graph colors = {'Revenue':'blue', 'Cost':'green'} labels = list(colors.keys()) handles = [plt.Rectangle((0,0),1,1, color=colors[label]) for label in labels] plt.legend(handles, labels, loc='upper left', prop={'size': 40}) ## Plotting of the values for the bar graph ## Revenue and cost were plotted in one x-axis per month to see the difference between the two variable ax.bar('January' ,month_rev[0], color = 'b', width = 0.50) ax.bar('January' ,month_cost[0], color = 'g', width = 0.50) ax.bar('February' ,month_rev[1], color = 'b', width = 0.50) ax.bar('February' ,month_cost[1], color = 'g', width = 0.50) ax.bar('March' ,month_rev[2], color = 'b', width = 0.50) ax.bar('March' ,month_cost[2], color = 'g', width = 0.50) ax.bar('April' ,month_rev[3], color = 'b', width = 0.50) ax.bar('April' ,month_cost[3], color = 'g', width = 0.50) ax.bar('May' ,month_rev[4], color = 'b', width = 0.50) ax.bar('May' ,month_cost[4], color = 'g', width = 0.50) ax.bar('June' ,month_rev[5], color = 'b', width = 0.50) ax.bar('June' ,month_cost[5], color = 'g', width = 0.50) ax.bar('July' ,month_rev[6], color = 'b', width = 0.50) ax.bar('July' ,month_cost[6], color = 'g', width = 0.50) ax.bar('August' ,month_rev[7], color = 'b', width = 0.50) ax.bar('August' ,month_cost[7], color = 'g', width = 0.50) ax.bar('September' ,month_rev[8], color = 'b', width = 0.50) ax.bar('September' ,month_cost[8], color = 'g', width = 0.50) ax.bar('October' ,month_rev[9], color = 'b', width = 0.50) ax.bar('October' ,month_cost[9], color = 'g', width = 0.50) ax.bar('November' ,month_rev[10], color = 'b', width = 0.50) ax.bar('November' ,month_cost[10], color = 'g', width = 0.50) ax.bar('December' ,month_rev[11], color = 'b', width = 0.50) ax.bar('December' ,month_cost[11], color = 'g', width = 0.50) ## Graph for profit per month ## Declaration of the figure to be used fig = plt.figure() ax = fig.add_axes([0,0,3,2]) ax.set_ylabel('Profit') ax.set_xlabel('Months') ax.set_title('Profit per Month') ## Declaring the values of each axis months = ['January', 'February', 'March', 'April', 'May', 'June', 'July', 'August', 'September', 'October', 'November', 'December'] Profits = month_profit ## Declaration of the axes and printing/showing them ax.bar(months, Profits) plt.show()
_____no_output_____
Apache-2.0
LinAlg_Midterms (1).ipynb
adriangalarion/Lab-Activities-1.1
Flavor Sales
## Graph for Flavor profit ## Declaration of the figure to be used fig = plt.figure() ax = fig.add_axes([0,0,3,2]) ax.set_ylabel('Profit') ax.set_xlabel('Flavors') ax.set_title('Flavor Profit') ## Declaring the values of each axis flavors = ['Red Velvet', 'Oreo', 'Super \nGlazed', 'Almond \nHoney', 'Matcha', 'Strawberry \nCream', 'Brown \nSugar Boba', 'Fruits \nand Nuts', 'Dark \nChocolate', 'Chocolate \nOrange', 'Choco Mint', 'Choco \nButter Naught'] Profits = flavor_profits ## Declaration of the axes and printing/showing them ax.bar(flavors, Profits) plt.show()
_____no_output_____
Apache-2.0
LinAlg_Midterms (1).ipynb
adriangalarion/Lab-Activities-1.1
Let's plot one of the Time Series.
from io_utils import load_sensor_data, file_names df = load_sensor_data(file_names[20]) df.head() df.info()
<class 'pandas.core.frame.DataFrame'> DatetimeIndex: 276048 entries, 2012-01-01 00:10:00 to 2017-03-31 00:00:00 Data columns (total 18 columns): pr 276020 non-null float64 f_pr 276048 non-null int64 max_ws 275923 non-null float64 f_max_ws 276048 non-null int64 ave_wv 275917 non-null float64 f_ave_wv 276048 non-null int64 ave_ws 275917 non-null float64 f_ave_ws 276048 non-null int64 max_tp 275929 non-null float64 f_max_tp 276048 non-null int64 min_tp 275929 non-null float64 f_min_tp 276048 non-null int64 sl 275982 non-null float64 f_sl 276048 non-null int64 sd 5 non-null float64 f_sd 276048 non-null int64 dsd 5 non-null float64 f_dsd 276048 non-null int64 dtypes: float64(9), int64(9) memory usage: 40.0 MB
MIT
.ipynb_checkpoints/data_visualization-checkpoint.ipynb
qlongyinqw/gcn-japan-weather-forecast
Extracting Data using Web Scraping
# import import requests from bs4 import BeautifulSoup # HTML String html_string = """ <!doctype html> <html lang="en"> <head> <title>Doing Data Science With Python</title> </head> <body> <h1 style="color:#F15B2A;">Doing Data Science With Python</h1> <p id="author">Author : Abhishek Kumar</p> <p id="description">This course will help you to perform various data science activities using python.</p> <h3 style="color:#404040">Modules</h3> <table id="module" style="width:100%"> <tr> <th>Title</th> <th>Duration (In Minutes)</th> </tr> <tr> <td>Getting Started</td> <td>20</td> </tr> <tr> <td>Setting up the Environment</td> <td>40</td> </tr> <tr> <td>Extracting Data</td> <td>35</td> </tr> <tr> <td>Exploring and Processing Data - Part 1</td> <td>45</td> </tr> <tr> <td>Exploring and Processing Data - Part 2</td> <td>45</td> </tr> <tr> <td>Building Predictive Model</td> <td>30</td> </tr> </table> </body> </html> """ # display HTML string in the juptyer notebook from IPython.core.display import display, HTML display(HTML(html_string)) # use beautiful soup ps = BeautifulSoup(html_string) # print b print(ps) # use name parameter to select by tag name body = ps.find(name="body") print(body) # use text attribute to get the content of the tag print(body.find(name="h1").text) # get first element print(body.find(name="p")) # get all elements print(body.findAll(name="p")) # loop through each element for p in body.findAll(name="p"): print(p.text) # add attributes in the selection process print(body.find(name='p', attrs={"id":"author"})) print(body.find(name='p', attrs={"id":"description"})) # body body = ps.find(name="body") # module table module_table = body.find(name='table', attrs={"id": "module"}) # iterate through each row in the table (skipping the first row) for row in module_table.findAll(name='tr')[1:]: # module title title = row.findAll(name='td')[0].text # module duration duration = int(row.findAll(name='td')[1].text) print title, duration e
_____no_output_____
MIT
notebooks/03 Web Scraping.ipynb
RaduMihut/titanic
!pip -V !python -V !pip install --upgrade youtube-dl !youtube-dl https://drive.google.com/file/d/16-xNP_Ez-3WgFF3vfsP9KJl4ka9hXDlV/view?usp=sharing !youtube-dl https://drive.google.com/file/d/1rP5tveZgNXJZe_uipJNWUaSqJiow_LGc/view?usp=sharing !ls !mv main_DATASET_VAL.zip-1rP5tveZgNXJZe_uipJNWUaSqJiow_LGc.zip val.zip !mv main_DataSETS_TRAIN.zip-16-xNP_Ez-3WgFF3vfsP9KJl4ka9hXDlV.zip train.zip !ls !unzip train.zip !unzip val.zip !ls !rm -rf train.zip !rm -rf val.zip !mv main_DATASET_VAL/ val !mv main_DataSETS_TRAIN/ train !ls !mkdir customImages !rm -rf sample_data !rm -rf __MACOSX !mv train/ customImages/ !mv val/ customImages/ !ls !git clone https://github.com/matterport/Mask_RCNN.git !ls !mv customImages/ Mask_RCNN/ %cd Mask_RCNN/ !pip install -r requirements.txt %run setup.py install !wget https://raw.githubusercontent.com/Prady96/Pothole-Detection/avi_testing/custom.py?token=AHIVHIOGTWT7LA4IIWMEJVS455SIO !mv custom.py\?token\=AHIVHIOGTWT7LA4IIWMEJVS455SIO custom.py !ls !mkdir logs import os import sys import itertools import math import logging import json import re import random from collections import OrderedDict import numpy as np import matplotlib import matplotlib.pyplot as plt import matplotlib.patches as patches import matplotlib.lines as lines from matplotlib.patches import Polygon # Root directory of the project ROOT_DIR = os.getcwd() # Import Mask RCNN sys.path.append(ROOT_DIR) # To find local version of the library from mrcnn import utils from mrcnn import visualize from mrcnn.visualize import display_images import mrcnn.model as modellib from mrcnn.model import log MODEL_DIR = os.path.join(ROOT_DIR, "logs") import custom %matplotlib inline config = custom.CustomConfig() CUSTOM_DIR = os.path.join(ROOT_DIR, "customImages") print(CUSTOM_DIR) # Load dataset # Get the dataset from the releases page # https://github.com/matterport/Mask_RCNN/releases dataset = custom.CustomDataset() dataset.load_custom(CUSTOM_DIR, "train") # Must call before using the dataset dataset.prepare() print("Image Count: {}".format(len(dataset.image_ids))) print("Class Count: {}".format(dataset.num_classes)) for i, info in enumerate(dataset.class_info): print("{:3}. {:50}".format(i, info['name'])) class InferenceConfig(custom.CustomConfig): # Set batch size to 1 since we'll be running inference on # one image at a time. Batch size = GPU_COUNT * IMAGES_PER_GPU GPU_COUNT = 1 IMAGES_PER_GPU = 1 config = InferenceConfig() config.display() ##################### MODEL FILE HERE ################## ### FOR 320 epoch !youtube-dl https://drive.google.com/file/d/1aShefxzQmeB1qerh1Xo2Xkm1SPIy_yzy/view?usp=sharing ### FOR 160 epoch !youtube-dl https://drive.google.com/file/d/1ex7Mo62j7wugrZbmNFZFAuujd_UguRYK/view?usp=sharing !ls !mv mask_rcnn_damage_0160.h5-1ex7Mo62j7wugrZbmNFZFAuujd_UguRYK.h5 mask_rcnn_damage_0160.h5 !mv mask_rcnn_damage_0160.h5 logs/ !ls !mv mask_rcnn_damage_0320.h5-1aShefxzQmeB1qerh1Xo2Xkm1SPIy_yzy.h5 mask_rcnn_damage_0320.h5 !mv mask_rcnn_damage_0320.h5 logs/ !ls logs/ # Create model object in inference mode. model = modellib.MaskRCNN(mode="inference", model_dir=MODEL_DIR, config=config) # Load weights trained on MS-COCO model.load_weights("logs/mask_rcnn_damage_0320.h5", by_name=True) class_names = ['BG', 'damage'] !pip install utils import os import sys import custom import utils %cd mrcnn import model as modellib %cd .. import cv2 import numpy as np ## Testing from PIL import Image, ImageDraw, ImageFont
_____no_output_____
Apache-2.0
Final_file_for_tata_innoverse.ipynb
abhinav090/pothole_detection
MoveOver for Getting Testing Images Similar to S3 Bucket
!youtube-dl https://drive.google.com/file/d/1FTvc361O9BBURgsTMb6dJoE6InAoic_O/view?usp=sharing !ls !mv images.zip-1FTvc361O9BBURgsTMb6dJoE6InAoic_O.zip images.zip !mkdir S3_Images !mv images.zip S3_Images/ %cd S3_Images/ !ls !unzip images.zip !ls !rm -rf images.zip !rm -rf __MACOSX/ !mv images\ 2 images !ls !ls images !pwd %cd /content/Mask_RCNN/ !ls /content/Mask_RCNN/S3_Images/images/ %cd /content/Mask_RCNN/S3_Images/images/ !pip install python-resize-image from PIL import Image import os from resizeimage import resizeimage count = 0 for f in os.listdir(os.getcwd()): f_name, f_ext = os.path.splitext(f) # f_random, f_lat_name,f_lat_val,f_long_name,f_long_val = f_name.split('-') # f_lat_val = f_lat_val.strip() ##removing the white Space # f_long_val = f_long_val.strip() # new_name = '{}-{}-{}.jpg'.format(f_lat_val,f_long_val,count) try: with Image.open(f) as image: count +=1 cover = resizeimage.resize_cover(image, [600,600]) cover.save('{}{}'.format(f_name,f_ext),image.format) #os.remove(f) print(count) except(OSError) as e: print('Bad Image {}{}'.format(f,count)) %cd /content/Mask_RCNN/ !wget https://github.com/Prady96/IITM_PythonTraining/blob/master/ImageWorking_add_textInImage/fonts_Dir/OpenSans-Bold.ttf?raw=true !mv OpenSans-Bold.ttf?raw=true OpenSans-Bold.ttf !ls # Main file for the file iteration import cv2 import numpy as np from PIL import Image, ImageDraw, ImageFont myList = [] ## area list classList = [] ##class Id List def random_colors(N): np.random.seed(1) colors = [tuple(255 * np.random.rand(3)) for _ in range(N)] return colors def apply_mask(image, mask, color, alpha=0.5): """apply mask to image""" for n, c in enumerate(color): image[:, :, n] = np.where( mask == 1, image[:, :, n] * (1 - alpha) + alpha * c, image[:, :, n] ) return image def display_instances(image, boxes, masks, ids, names, scores): """ take the image and results and apply the mask, box, and Label """ n_instances = boxes.shape[0] colors = random_colors(n_instances) if not n_instances: print('NO INSTANCES TO DISPLAY') else: assert boxes.shape[0] == masks.shape[-1] == ids.shape[0] for i, color in enumerate(colors): if not np.any(boxes[i]): continue y1, x1, y2, x2 = boxes[i] label = names[ids[i]] score = scores[i] if scores is not None else None caption = '{} {:.2f}'.format(label, score) if score else label mask = masks[:, :, i] image = apply_mask(image, mask, color) image = cv2.rectangle(image, (x1, y1), (x2, y2), color, 2) image = cv2.putText( image, caption, (x1, y1), cv2.FONT_HERSHEY_COMPLEX, 0.7, color, 2 ) return image def save_image(image, image_name, boxes, masks, class_ids, scores, class_names, filter_classs_names=None, scores_thresh=0.1, save_dir=None, mode=0): """ image: image array image_name: image name boxes: [num_instance, (y1, x1, y2, x2, class_id)] in image coordinates. masks: [num_instances, height, width] class_ids: [num_instances] scores: confidence scores for each box class_names: list of class names of the dataset filter_classs_names: (optional) list of class names we want to draw scores_thresh: (optional) threshold of confidence scores save_dir: (optional) the path to store image mode: (optional) select the result which you want mode = 0 , save image with bbox,class_name,score and mask; mode = 1 , save image with bbox,class_name and score; mode = 2 , save image with class_name,score and mask; mode = 3 , save mask with black background; """ mode_list = [0, 1, 2, 3] assert mode in mode_list, "mode's value should in mode_list %s" % str(mode_list) if save_dir is None: save_dir = os.path.join(os.getcwd(), "output") if not os.path.exists(save_dir): os.makedirs(save_dir) useful_mask_indices = [] N = boxes.shape[0] if not N: print("\n*** No instances in image %s to draw *** \n" % (image_name)) return else: assert boxes.shape[0] == masks.shape[-1] == class_ids.shape[0] for i in range(N): # filter class_id = class_ids[i] score = scores[i] if scores is not None else None if score is None or score < scores_thresh: continue label = class_names[class_id] if (filter_classs_names is not None) and (label not in filter_classs_names): continue if not np.any(boxes[i]): # Skip this instance. Has no bbox. Likely lost in image cropping. continue useful_mask_indices.append(i) if len(useful_mask_indices) == 0: print("\n*** No instances in image %s to draw *** \n" % (image_name)) return colors = random_colors(len(useful_mask_indices)) if mode != 3: masked_image = image.astype(np.uint8).copy() else: masked_image = np.zeros(image.shape).astype(np.uint8) if mode != 1: for index, value in enumerate(useful_mask_indices): masked_image = apply_mask(masked_image, masks[:, :, value], colors[index]) masked_image = Image.fromarray(masked_image) if mode == 3: masked_image.save(os.path.join(save_dir, '%s.jpg' % (image_name))) return draw = ImageDraw.Draw(masked_image) colors = np.array(colors).astype(int) * 255 myList = [] countClassIds = 0 for index, value in enumerate(useful_mask_indices): class_id = class_ids[value] print('class_id value is {}'.format(class_id)) if class_id == 1: countClassIds += 1 print('counter for the class ID {}'.format(countClassIds)) score = scores[value] label = class_names[class_id] y1, x1, y2, x2 = boxes[value] # myList = [] ## area of the rectangle yVal = y2 - y1 xVal = x2 - x1 area = xVal * yVal print('area is {}'.format(area)) myList.append(area) if mode != 2: color = tuple(colors[index]) draw.rectangle((x1, y1, x2, y2), outline=color) # Label # font = ImageFont.load('/usr/share/fonts/truetype/ttf-bitstream-vera/Vera.ttf') font = ImageFont.truetype('OpenSans-Bold.ttf', 15) draw.text((x1, y1), "%s %f" % (label, score), (255, 255, 255), font) print(r['class_ids'], r['scores']) print(myList) # print('value of r is {}'.format(r)) print('image_name is {}'.format(image_name)) image_name = os.path.basename(image_name) print('image name is {}'.format(image_name)) f_name, f_ext = os.path.splitext(image_name) #f_lat_val,f_long_val,f_count = f_name.split('-') #f_lat_val = f_lat_val.strip() ##removing the white Space #f_long_val = f_long_val.strip() # new_name = '{}-{}-{}.jpg'.format(f_lat_val,f_long_val,count) # print([area for area in myList if ]) # print([i for i in range(countClassIds) ]) print("avi96 {}".format(myList[:countClassIds])) # myList.pop(countClassIds - 1) new_name = '{}-{}.jpg'.format(myList, r['scores']) # masked_image.save(os.path.join(save_dir, '%s.jpg' % (image_name))) print("New Name file is {}".format(new_name)) print('save_dir is {}'.format(save_dir)) masked_image.save(os.path.join(save_dir, '%s' % (new_name))) print('file Saved {}'.format(new_name)) # os.rename(image_name, new_name) if __name__ == '__main__': """ test everything """ import os import sys import custom import utils import model as modellib #import visualize # We use a K80 GPU with 24GB memory, which can fit 3 images. batch_size = 3 ROOT_DIR = os.getcwd() MODEL_DIR = os.path.join(ROOT_DIR, "logs") VIDEO_DIR = os.path.join(ROOT_DIR, "videos") VIDEO_SAVE_DIR = os.path.join(VIDEO_DIR, "save") # COCO_MODEL_PATH = os.path.join(ROOT_DIR, "mask_rcnn_damage_0010.h5") # if not os.path.exists(COCO_MODEL_PATH): # utils.download_trained_weights(COCO_MODEL_PATH) class InferenceConfig(custom.CustomConfig): GPU_COUNT = 1 IMAGES_PER_GPU = batch_size config = InferenceConfig() config.display() model = modellib.MaskRCNN( mode="inference", model_dir=MODEL_DIR, config=config ) model.load_weights("logs/mask_rcnn_damage_0160.h5", by_name=True) class_names = [ 'BG', 'damage' ] # capture = cv2.VideoCapture(os.path.join(VIDEO_DIR, 'trailer1.mp4')) try: if not os.path.exists(VIDEO_SAVE_DIR): os.makedirs(VIDEO_SAVE_DIR) except OSError: print ('Error: Creating directory of data') # points to be done before final coding """ path_for_image_dir list for the image array resolve for naming convention for location basis passing image in model """ # path for the data files data_path = '/content/Mask_RCNN/S3_Images/images/' onlyfiles = [f for f in os.listdir(data_path) if os.path.isfile(os.path.join(data_path, f))] # empty list for the training data frames = [] frame_count = 0 batch_count = 1 # enumerate the iteration with number of files for j, files in enumerate(onlyfiles): image_path = data_path + onlyfiles[j] # print("image Path {}".format(image_path)) # print("Only Files {}".format(onlyfiles[j])) # print('j is {}'.format(j)) # print('files is {}'.format(files)) try: images = cv2.imread(image_path).astype(np.uint8) # print("images {}".format(images)) frames.append(np.asarray(images, dtype=np.uint8)) # frames.append(images) frame_count += 1 print('frame_count :{0}'.format(frame_count)) if len(frames) == batch_size: results = model.detect(frames, verbose=0) print('Predicted') for i, item in enumerate(zip(frames, results)): # print('i is {}'.format(i)) # print('item is {}'.format(item)) frame = item[0] r = item[1] frame = display_instances( frame, r['rois'], r['masks'], r['class_ids'], class_names, r['scores'] ) name = '{}'.format(files) name = os.path.join(VIDEO_SAVE_DIR, name) # name = '{0}.jpg'.format(frame_count + i - batch_size) # name = os.path.join(VIDEO_SAVE_DIR, name) # cv2.imwrite(name, frame) # print(name) print('writing to file:{0}'.format(name)) # print(name) save_image(images, name, r['rois'], r['masks'], r['class_ids'], r['scores'], class_names, save_dir=VIDEO_SAVE_DIR, mode=0) frames = [] print('clear') # clear the frames here except(AttributeError) as e: print('Bad Image {}'.format(image_path)) print("Success, check the folder") """ ## Code for the video section frames = [] frame_count = 0 # these 2 lines can be removed if you dont have a 1080p camera. capture.set(cv2.CAP_PROP_FRAME_WIDTH, 1920) capture.set(cv2.CAP_PROP_FRAME_HEIGHT, 1080) while True: ret, frame = capture.read() # Bail out when the video file ends if not ret: break # Save each frame of the video to a list frame_count += 1 frames.append(frame) print('frame_count :{0}'.format(frame_count)) if len(frames) == batch_size: results = model.detect(frames, verbose=0) print('Predicted') for i, item in enumerate(zip(frames, results)): frame = item[0] r = item[1] frame = display_instances( frame, r['rois'], r['masks'], r['class_ids'], class_names, r['scores'] ) # name = '{0}.jpg'.format(frame_count + i - batch_size) # name = os.path.join(VIDEO_SAVE_DIR, name) # cv2.imwrite(name, frame) # print('writing to file:{0}'.format(name)) ## add visualise files # visualize.display_instances(image, r['rois'], r['masks'], r['class_ids'], # class_names, r['scores']) save_image(image, name, r['rois'], r['masks'], r['class_ids'], r['scores'],class_names, save_dir=VIDEO_SAVE_DIR, mode=0) # print(r['class_ids'], r['scores']) # Clear the frames array to start the next batch frames = [] capture.release() """ !ls /content/Mask_RCNN/videos/save/ !zip -r save.zip /content/Mask_RCNN/videos/save/
adding: content/Mask_RCNN/videos/save/ (stored 0%) adding: content/Mask_RCNN/videos/save/[4556]-[0.99999726].jpg (deflated 0%) adding: content/Mask_RCNN/videos/save/[100835, 4752, 31860]-[0.99894387 0.9983626 0.99591905].jpg (deflated 0%) adding: content/Mask_RCNN/videos/save/[250, 260]-[0.9999243 0.8455281].jpg (deflated 1%) adding: content/Mask_RCNN/videos/save/[3024]-[0.999912].jpg (deflated 1%) adding: content/Mask_RCNN/videos/save/[384, 1449]-[0.997591 0.8543571].jpg (deflated 1%) adding: content/Mask_RCNN/videos/save/[264]-[0.8035971].jpg (deflated 0%) adding: content/Mask_RCNN/videos/save/[1560]-[0.99997425].jpg (deflated 1%) adding: content/Mask_RCNN/videos/save/[250, 720]-[0.98426384 0.9620987 ].jpg (deflated 1%) adding: content/Mask_RCNN/videos/save/[816, 176]-[0.99922216 0.99323297].jpg (deflated 1%) adding: content/Mask_RCNN/videos/save/[4935]-[0.9999962].jpg (deflated 1%) adding: content/Mask_RCNN/videos/save/[319]-[0.9997627].jpg (deflated 0%) adding: content/Mask_RCNN/videos/save/[429]-[0.9999603].jpg (deflated 1%) adding: content/Mask_RCNN/videos/save/[286, 330, 416, 418]-[0.98072284 0.92764556 0.87470007 0.873562 ].jpg (deflated 1%) adding: content/Mask_RCNN/videos/save/[2775]-[0.9999815].jpg (deflated 1%) adding: content/Mask_RCNN/videos/save/[440]-[0.9712983].jpg (deflated 2%) adding: content/Mask_RCNN/videos/save/[480, 416]-[0.99973744 0.98802954].jpg (deflated 1%) adding: content/Mask_RCNN/videos/save/[85, 196, 75]-[0.9978288 0.9905183 0.98221266].jpg (deflated 1%) adding: content/Mask_RCNN/videos/save/[13719, 10044, 17577, 9504, 3774]-[0.99999344 0.9999933 0.99996066 0.99993455 0.99992 ].jpg (deflated 1%) adding: content/Mask_RCNN/videos/save/[546]-[0.9994134].jpg (deflated 2%) adding: content/Mask_RCNN/videos/save/[290]-[0.9997447].jpg (deflated 1%)
Apache-2.0
Final_file_for_tata_innoverse.ipynb
abhinav090/pothole_detection
Credit Risk Resampling Techniques
import warnings warnings.filterwarnings('ignore') import numpy as np import pandas as pd from pathlib import Path from collections import Counter
_____no_output_____
ADSL
Starter_Code/credit_risk_resampling.ipynb
AntoJKumar/Risky_Business
Read the CSV into DataFrame
# Load the data file_path = Path('Resources/lending_data.csv') df = pd.read_csv(file_path) df.head()
_____no_output_____
ADSL
Starter_Code/credit_risk_resampling.ipynb
AntoJKumar/Risky_Business
Split the Data into Training and Testing
from sklearn.preprocessing import LabelEncoder le = LabelEncoder() le.fit(df["homeowner"]) df["homeowner"] = le.transform(df["homeowner"]) # Create our features X = X = df.copy() X.drop("loan_status", axis=1, inplace=True) # Create our target y = y = df['loan_status'] X.describe() # Check the balance of our target values y.value_counts() # Create X_train, X_test, y_train, y_test from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1)
_____no_output_____
ADSL
Starter_Code/credit_risk_resampling.ipynb
AntoJKumar/Risky_Business
Data Pre-ProcessingScale the training and testing data using the `StandardScaler` from `sklearn`. Remember that when scaling the data, you only scale the features data (`X_train` and `X_testing`).
# Create the StandardScaler instance from sklearn.preprocessing import StandardScaler scaler = StandardScaler() # Fit the Standard Scaler with the training data # When fitting scaling functions, only train on the training dataset X_scaler = scaler.fit(X_train) # Scale the training and testing data X_train_scaled = X_scaler.transform(X_train) X_test_scaled = X_scaler.transform(X_test)
_____no_output_____
ADSL
Starter_Code/credit_risk_resampling.ipynb
AntoJKumar/Risky_Business
Simple Logistic Regression
from sklearn.linear_model import LogisticRegression model = LogisticRegression(solver='lbfgs', random_state=1) model.fit(X_train, y_train) # Calculated the balanced accuracy score from sklearn.metrics import balanced_accuracy_score y_pred = model.predict(X_test) balanced_accuracy_score(y_test, y_pred) # Display the confusion matrix from sklearn.metrics import confusion_matrix confusion_matrix(y_test, y_pred) # Print the imbalanced classification report from imblearn.metrics import classification_report_imbalanced print(classification_report_imbalanced(y_test, y_pred))
pre rec spe f1 geo iba sup high_risk 0.85 0.91 0.99 0.88 0.95 0.90 619 low_risk 1.00 0.99 0.91 1.00 0.95 0.91 18765 avg / total 0.99 0.99 0.91 0.99 0.95 0.91 19384
ADSL
Starter_Code/credit_risk_resampling.ipynb
AntoJKumar/Risky_Business
OversamplingIn this section, you will compare two oversampling algorithms to determine which algorithm results in the best performance. You will oversample the data using the naive random oversampling algorithm and the SMOTE algorithm. For each algorithm, be sure to complete the folliowing steps:1. View the count of the target classes using `Counter` from the collections library. 3. Use the resampled data to train a logistic regression model.3. Calculate the balanced accuracy score from sklearn.metrics.4. Print the confusion matrix from sklearn.metrics.5. Generate a classication report using the `imbalanced_classification_report` from imbalanced-learn.Note: Use a random state of 1 for each sampling algorithm to ensure consistency between tests Naive Random Oversampling
# Resample the training data with the RandomOversampler from imblearn.over_sampling import RandomOverSampler ros = RandomOverSampler(random_state=1) X_resampled1, y_resampled1 = ros.fit_resample(X_train, y_train) # View the count of target classes with Counter Counter(y_resampled1) # Train the Logistic Regression model using the resampled data model1 = LogisticRegression(solver='lbfgs', random_state=1) model1.fit(X_resampled1, y_resampled1) # Calculated the balanced accuracy score y_pred1 = model1.predict(X_test) balanced_accuracy_score(y_test, y_pred1) # Display the confusion matrix confusion_matrix(y_test, y_pred1) # Print the imbalanced classification report print(classification_report_imbalanced(y_test, y_pred1))
pre rec spe f1 geo iba sup high_risk 0.84 0.99 0.99 0.91 0.99 0.99 619 low_risk 1.00 0.99 0.99 1.00 0.99 0.99 18765 avg / total 0.99 0.99 0.99 0.99 0.99 0.99 19384
ADSL
Starter_Code/credit_risk_resampling.ipynb
AntoJKumar/Risky_Business
SMOTE Oversampling
# Resample the training data with SMOTE from imblearn.over_sampling import SMOTE X_resampled2, y_resampled2 = SMOTE(random_state=1, sampling_strategy=1.0).fit_resample(X_train, y_train) # View the count of target classes with Counter Counter(y_resampled2) # Train the Logistic Regression model using the resampled data model2 = LogisticRegression(solver='lbfgs', random_state=1) model2.fit(X_resampled2, y_resampled2) # Calculated the balanced accuracy score y_pred2 = model2.predict(X_test) balanced_accuracy_score(y_test, y_pred2) # Display the confusion matrix confusion_matrix(y_test, y_pred2) # Print the imbalanced classification report print(classification_report_imbalanced(y_test, y_pred2))
pre rec spe f1 geo iba sup high_risk 0.84 0.99 0.99 0.91 0.99 0.99 619 low_risk 1.00 0.99 0.99 1.00 0.99 0.99 18765 avg / total 0.99 0.99 0.99 0.99 0.99 0.99 19384
ADSL
Starter_Code/credit_risk_resampling.ipynb
AntoJKumar/Risky_Business
UndersamplingIn this section, you will test an undersampling algorithm to determine which algorithm results in the best performance compared to the oversampling algorithms above. You will undersample the data using the Cluster Centroids algorithm and complete the folliowing steps:1. View the count of the target classes using `Counter` from the collections library. 3. Use the resampled data to train a logistic regression model.3. Calculate the balanced accuracy score from sklearn.metrics.4. Display the confusion matrix from sklearn.metrics.5. Generate a classication report using the `imbalanced_classification_report` from imbalanced-learn.Note: Use a random state of 1 for each sampling algorithm to ensure consistency between tests
# Resample the data using the ClusterCentroids resampler from imblearn.under_sampling import ClusterCentroids cc = ClusterCentroids(random_state=1) X_resampled3, y_resampled3 = cc.fit_resample(X_train, y_train) # View the count of target classes with Counter Counter(y_resampled3) # Train the Logistic Regression model using the resampled data model3 = LogisticRegression(solver='lbfgs', random_state=1) model3.fit(X_resampled3, y_resampled3) # Calculate the balanced accuracy score y_pred3 = model3.predict(X_test) balanced_accuracy_score(y_test, y_pred3) # Display the confusion matrix confusion_matrix(y_test, y_pred3) # Print the imbalanced classification report print(classification_report_imbalanced(y_test, y_pred3, digits = 4))
pre rec spe f1 geo iba sup high_risk 0.8440 0.9790 0.9940 0.9065 0.9865 0.9717 619 low_risk 0.9993 0.9940 0.9790 0.9967 0.9865 0.9746 18765 avg / total 0.9943 0.9936 0.9795 0.9938 0.9865 0.9745 19384
ADSL
Starter_Code/credit_risk_resampling.ipynb
AntoJKumar/Risky_Business
Combination (Over and Under) SamplingIn this section, you will test a combination over- and under-sampling algorithm to determine if the algorithm results in the best performance compared to the other sampling algorithms above. You will resample the data using the SMOTEENN algorithm and complete the folliowing steps:1. View the count of the target classes using `Counter` from the collections library. 3. Use the resampled data to train a logistic regression model.3. Calculate the balanced accuracy score from sklearn.metrics.4. Display the confusion matrix from sklearn.metrics.5. Generate a classication report using the `imbalanced_classification_report` from imbalanced-learn.Note: Use a random state of 1 for each sampling algorithm to ensure consistency between tests
# Resample the training data with SMOTEENN from imblearn.combine import SMOTEENN sm = SMOTEENN(random_state=1) X_resampled4, y_resampled4 = sm.fit_resample(X_train, y_train) # View the count of target classes with Counter Counter(y_resampled4) # Train the Logistic Regression model using the resampled data model4 = LogisticRegression(solver='lbfgs', random_state=1) model4.fit(X_resampled4, y_resampled4) # Calculate the balanced accuracy score y_pred4 = model4.predict(X_test) balanced_accuracy_score(y_test, y_pred4) # Display the confusion matrix confusion_matrix(y_test, y_pred4) # Print the imbalanced classification report print(classification_report_imbalanced(y_test, y_pred4))
pre rec spe f1 geo iba sup high_risk 0.83 0.99 0.99 0.91 0.99 0.99 619 low_risk 1.00 0.99 0.99 1.00 0.99 0.99 18765 avg / total 0.99 0.99 0.99 0.99 0.99 0.99 19384
ADSL
Starter_Code/credit_risk_resampling.ipynb
AntoJKumar/Risky_Business
Gráficos de desempenho das Caches Import libs
%matplotlib inline ##Bibliotecas importadas # Biblioteca usada para abrir arquivos CSV import csv # Bibilioteca para fazer leitura de datas from datetime import datetime, timedelta # Fazer o ajuste de datas no gráfico import matplotlib.dates as mdate # Biblioteca mateḿática import numpy as np # Bibloteca para traçar gráficos import matplotlib.pyplot as plt #Biblioteca para mudar tamanho o gráfico apresentado import matplotlib.cm as cm import operator as op import os import math
_____no_output_____
MIT
trabalho2/Caches.ipynb
laurocruz/MC733
Generate miss % graphs
for file in os.listdir('cache_csv/percentage'): filepath = 'cache_csv/percentage/'+file dados = list(csv.reader(open(filepath,'r'))) alg = file.split('.')[0] mr1 = list() mr2 = list() mw1 = list() mw2 = list() mrw1 = list() mrw2 = list() mi1 = list() mi2 = list() for dado in dados: mr1.append(float(dado[0])) mw1.append(float(dado[1])) mrw1.append(float(dado[2])) mr2.append(float(dado[3])) mw2.append(float(dado[4])) mrw2.append(float(dado[5])) mi1.append(float(dado[6])) mi2.append(float(dado[7])) # Configurações de cache x = np.arange(1, 9) ##### READ MISSES ##### markerline1, stemlines1, baseline1 = plt.stem(x,mr1) markerline2, stemlines2, baseline2 = plt.stem(x,mr2) #plt.xticks(x, (1,2,3,4,5,6,7,8)) # Define característica das linhas plt.setp(stemlines1, 'linestyle', 'none') plt.setp(markerline1, 'linestyle', '-', 'color', 'r') plt.setp(baseline1, 'linestyle', 'none') plt.setp(stemlines2, 'linestyle', 'none') plt.setp(markerline2, 'linestyle', '-', 'color', 'b') plt.setp(baseline2, 'linestyle', 'none') # Bordas #plt.ylim([0,100]) #plt.xlim([1,9]) # Legendas plt.title('L1 x L2 read miss rate (' + alg + ')') plt.xlabel('Cache Configurations') plt.ylabel('Read miss rate (%)') plt.savefig('img/Cache/percentage/cache_' + alg + '_r.png', dpi=300) plt.show() plt.close() ##### WRITE MISSES ##### markerline1, stemlines1, baseline1 = plt.stem(x,mw1) markerline2, stemlines2, baseline2 = plt.stem(x,mw2) #plt.xticks(x, (1,2,3,4,5,6,7,8)) # Define característica das linhas plt.setp(stemlines1, 'linestyle', 'none') plt.setp(markerline1, 'linestyle', '-', 'color', 'r') plt.setp(baseline1, 'linestyle', 'none') plt.setp(stemlines2, 'linestyle', 'none') plt.setp(markerline2, 'linestyle', '-', 'color', 'b') plt.setp(baseline2, 'linestyle', 'none') # Legendas plt.title('L1 x L2 write miss rate (' + alg + ')') plt.xlabel('Cache Configurations') plt.ylabel('Write miss rate (%)') plt.savefig('img/Cache/percentage/cache_' + alg + '_w.png', dpi=300) plt.show() plt.close() ##### TOTAL MISSES (DATA) ##### markerline1, stemlines1, baseline1 = plt.stem(x,mrw1) markerline2, stemlines2, baseline2 = plt.stem(x,mrw2) #plt.xticks(x, (1,2,3,4,5,6,7,8)) # Define característica das linhas plt.setp(stemlines1, 'linestyle', 'none') plt.setp(markerline1, 'linestyle', '-', 'color', 'r') plt.setp(baseline1, 'linestyle', 'none') plt.setp(stemlines2, 'linestyle', 'none') plt.setp(markerline2, 'linestyle', '-', 'color', 'b') plt.setp(baseline2, 'linestyle', 'none') # Bordas #plt.ylim([0,100]) #plt.xlim([1,9]) # Legendas plt.title('L1 x L2 total data miss rate (' + alg + ')') plt.xlabel('Cache Configurations') plt.ylabel('Total data miss rate (%)') plt.savefig('img/Cache/percentage/cache_' + alg + '_rw.png', dpi=300) plt.show() plt.close() ##### INSTRUCTION MISSES ##### markerline1, stemlines1, baseline1 = plt.stem(x,mi1) markerline2, stemlines2, baseline2 = plt.stem(x,mi2) #plt.xticks(x, (1,2,3,4,5,6,7,8)) # Define característica das linhas plt.setp(stemlines1, 'linestyle', 'none') plt.setp(markerline1, 'linestyle', '-', 'color', 'r') plt.setp(baseline1, 'linestyle', 'none') plt.setp(stemlines2, 'linestyle', 'none') plt.setp(markerline2, 'linestyle', '-', 'color', 'b') plt.setp(baseline2, 'linestyle', 'none') # Legendas plt.title('L1 x L2 instruction miss rate (' + alg + ')') plt.xlabel('Cache Configurations') plt.ylabel('Instruction miss rate (%)') plt.savefig('img/Cache/percentage/cache_' + alg + '_i.png', dpi=300) plt.show() plt.close()
_____no_output_____
MIT
trabalho2/Caches.ipynb
laurocruz/MC733
Generate graphs of miss numbers
for file in os.listdir('cache_csv/num'): filepath = 'cache_csv/num/'+file dados = list(csv.reader(open(filepath,'r'))) alg = file.split('.')[0] mr1 = list() mr2 = list() mw1 = list() mw2 = list() mrw1 = list() mrw2 = list() mi1 = list() mi2 = list() for dado in dados: mr1.append(float(dado[0])) mw1.append(float(dado[1])) mrw1.append(int(dado[2])) mr2.append(float(dado[3])) mw2.append(float(dado[4])) mrw2.append(float(dado[5])) mi1.append(float(dado[6])) mi2.append(float(dado[7])) # Configurações de cache x = np.arange(1, 9) ##### READ MISSES ##### markerline1, stemlines1, baseline1 = plt.stem(x,mr1) markerline2, stemlines2, baseline2 = plt.stem(x,mr2) #plt.xticks(x, (1,2,3,4,5,6,7,8)) # Define característica das linhas plt.setp(stemlines1, 'linestyle', 'none') plt.setp(markerline1, 'linestyle', '-', 'color', 'r') plt.setp(baseline1, 'linestyle', 'none') plt.setp(stemlines2, 'linestyle', 'none') plt.setp(markerline2, 'linestyle', '-', 'color', 'b') plt.setp(baseline2, 'linestyle', 'none') # Bordas #plt.ylim([0,100]) #plt.xlim([1,9]) # Legendas plt.title('L1 x L2 read misses (' + alg + ')') plt.xlabel('Cache Configurations') plt.ylabel('Read misses') plt.savefig('img/Cache/num/cache_' + alg + '_r.png', dpi=300) plt.show() plt.close() ##### WRITE MISSES ##### markerline1, stemlines1, baseline1 = plt.stem(x,mw1) markerline2, stemlines2, baseline2 = plt.stem(x,mw2) #plt.xticks(x, (1,2,3,4,5,6,7,8)) # Define característica das linhas plt.setp(stemlines1, 'linestyle', 'none') plt.setp(markerline1, 'linestyle', '-', 'color', 'r') plt.setp(baseline1, 'linestyle', 'none') plt.setp(stemlines2, 'linestyle', 'none') plt.setp(markerline2, 'linestyle', '-', 'color', 'b') plt.setp(baseline2, 'linestyle', 'none') # Legendas plt.title('L1 x L2 write misses (' + alg + ')') plt.xlabel('Cache Configurations') plt.ylabel('Write misses') plt.savefig('img/Cache/num/cache_' + alg + '_w.png', dpi=300) plt.show() plt.close() ##### TOTAL MISSES (DATA) ##### markerline1, stemlines1, baseline1 = plt.stem(x,mrw1) markerline2, stemlines2, baseline2 = plt.stem(x,mrw2) #plt.xticks(x, (1,2,3,4,5,6,7,8)) # Define característica das linhas plt.setp(stemlines1, 'linestyle', 'none') plt.setp(markerline1, 'linestyle', '-', 'color', 'r') plt.setp(baseline1, 'linestyle', 'none') plt.setp(stemlines2, 'linestyle', 'none') plt.setp(markerline2, 'linestyle', '-', 'color', 'b') plt.setp(baseline2, 'linestyle', 'none') # Bordas #plt.ylim([0,100]) #plt.xlim([1,9]) # Legendas plt.title('L1 x L2 total data misses (' + alg + ')') plt.xlabel('Cache Configurations') plt.ylabel('Total data misses') plt.savefig('img/Cache/num/cache_' + alg + '_rw.png', dpi=300) plt.show() plt.close() ##### INSTRUCTION MISSES ##### markerline1, stemlines1, baseline1 = plt.stem(x,mi1) markerline2, stemlines2, baseline2 = plt.stem(x,mi2) #plt.xticks(x, (1,2,3,4,5,6,7,8)) # Define característica das linhas plt.setp(stemlines1, 'linestyle', 'none') plt.setp(markerline1, 'linestyle', '-', 'color', 'r') plt.setp(baseline1, 'linestyle', 'none') plt.setp(stemlines2, 'linestyle', 'none') plt.setp(markerline2, 'linestyle', '-', 'color', 'b') plt.setp(baseline2, 'linestyle', 'none') # Legendas plt.title('L1 x L2 instruction misses (' + alg + ')') plt.xlabel('Cache Configurations') plt.ylabel('Instruction misses') plt.savefig('img/Cache/num/cache_' + alg + '_i.png', dpi=300) plt.show() plt.close()
_____no_output_____
MIT
trabalho2/Caches.ipynb
laurocruz/MC733
Loading libraries and looking at given data
import numpy as np import pandas as pd import seaborn as sns import re appendix_3=pd.read_excel("Appendix_3_august.xlsx") appendix_3 print(appendix_3["Language"].value_counts(),) print(appendix_3["Country"].value_counts()) pd.set_option("display.max_rows", None, "display.max_columns", None) print(appendix_3['Country'].to_string(index=False))
United States France Korea Italy Germany Australia China United Kingdom Spain Canada Netherlands Ireland Poland Denmark Switzerland United Arab Emirates Brazil Sweden Norway Singapore Taiwan Belgium Thailand Austria India Japan Lebanon Israel Hong Kong SAR Vietnam Slovakia New Zealand Greece Romania Turkey Mexico Czech Republic South Africa Finland Lithuania Russia Hungary Ukraine Pakistan Croatia Iceland Morocco Colombia Egypt Kuwait Bulgaria Iran Philippines Luxembourg Serbia Slovenia Tunisia Estonia Argentina Saudi Arabia Portugal Uruguay Costa Rica Chile Indonesia Jordan Cyprus Myanmar Paraguay Armenia Bolivia Moldova Azerbaijan Algeria Monaco Georgia Malaysia Venezuela Iraq Nepal Puerto Rico Liechtenstein Latvia
MIT
teaching_material/session_6/gruppe_8/3shape_final.ipynb
tlh957/DO2021
Removing useless data
appendix_3=appendix_3[appendix_3.Language!="Københavnsk"] appendix_3=appendix_3.drop(["Meaningless_ID"], axis=1) appendix_3 appendix_3=appendix_3[appendix_3.Licenses!=0] appendix_3
_____no_output_____
MIT
teaching_material/session_6/gruppe_8/3shape_final.ipynb
tlh957/DO2021
Making usefull languages
def language(var): """Function that returns languages spoken by 3Shapes present support teams. If not spoken, return English""" if var.lower() in ['english','american']: #If english or "american" return 'English' #Return English if var.lower() in ['spanish']: return 'Spanish' if var.lower() in ['french']: return 'French' if var.lower() in ['german']: return 'German' if var.lower() in ['russian']: return 'Russian' if var.lower() in ['portuguese']: return 'Portuguese' if var.lower() in ['italian']: return 'Italian' if re.search('chin.+', var.lower()): # If lettercombination 'chin' appears: return 'Chinese' # Return 'Chinese' if var.lower() in ['japanese']: return 'Japanese' if var.lower() in ['korean']: return 'Korean' else: return 'English' #If not spoken, return English appendix_3['Support_language'] = appendix_3['Language'].apply(language) appendix_3['Support_language'].value_counts() appendix_3["Licenses_per_language"]=appendix_3.groupby(["Support_language"])["Licenses"].transform("sum") appendix_3['Country'] = appendix_3['Country'].str.strip() #Removing initial whitespace appendix_3.iloc[1,0]
_____no_output_____
MIT
teaching_material/session_6/gruppe_8/3shape_final.ipynb
tlh957/DO2021
Making a column that "groups" countries into 3 regions/timezones of the world (Americas, Europe (incl. Middle East and Africa) and Asia)
def region(var): """Function that returns region based on country""" if var in ['United States','Canada','Brazil','Mexico','Colombia','Argentina','Uruguay', 'Costa Rica','Chile','Paraguay','Bolivia','Venezuela','Puerto Rico']: return 'Americas' if var in ['France','Italy','Germany','United Kingdom','Spain','Netherlands','Ireland','Poland', 'Denmark','Switzerland','United Arab Emirates','Sweden','Norway','Belgium','Austria', 'Lebanon','Israel','Slovakia','Greece','Romania','Turkey','Czech Republic','South Africa', 'Finland','Lithuania','Russia','Hungary','Ukraine','Pakistan','Croatia','Iceland','Morocco', 'Egypt','Kuwait','Bulgaria','Iran','Luxembourg','Serbia','Slovenia','Tunisia','Estonia', 'Saudi Arabia','Portugal','Jordan','Cyprus','Armenia','Moldova','Azerbaijan','Algeria', 'Monaco','Georgia','Iraq','Liechtenstein','Latvia']: return 'Europe' if var in ['Korea','Australia','China','Singapore','Taiwan','Thailand','India','Japan', 'Hong Kong SAR','Vietnam','New Zealand','Philippines','Indonesia','Myanmar', 'Malaysia','Nepal']: return 'Asia' else: return 'No' appendix_3['Region'] = appendix_3['Country'].apply(region) appendix_3['Region'].head(6) appendix_3["Licenses_per_region"]=appendix_3.groupby(["Region"])["Licenses"].transform("sum") appendix_3[["Licenses_per_region","Region"]].head(6)
_____no_output_____
MIT
teaching_material/session_6/gruppe_8/3shape_final.ipynb
tlh957/DO2021
New DataFrame with our three regions/support centers
New_regions=appendix_3.groupby(["Region"])["Licenses"].sum().sort_values(ascending=False).to_frame().reset_index() New_regions def employees_needed(var): """ Function that gives number of recuired employees based on licenses""" if var <300: return 3 else: return np.ceil((var-300)/200+3) New_regions["Employ_needed"]=New_regions["Licenses"].apply(employees_needed) New_regions.head(3) New_regions["Revenue"]=New_regions["Licenses"]*2000 New_regions.head(3)
_____no_output_____
MIT
teaching_material/session_6/gruppe_8/3shape_final.ipynb
tlh957/DO2021
Loking at appendix 2 and cleaning useless data, and converting to int.
appendix_2=pd.read_excel("Appendix_2_august.xlsx") appendix_2 appendix_2=appendix_2.drop([5]) appendix_2 appendix_2['Total cost']=appendix_2['Total cost'].astype(int) appendix_2['Average FTE']=appendix_2['Average FTE'].astype(int) print(appendix_2.dtypes)
Support Center object Total cost int64 Average FTE int64 dtype: object
MIT
teaching_material/session_6/gruppe_8/3shape_final.ipynb
tlh957/DO2021