markdown
stringlengths 0
1.02M
| code
stringlengths 0
832k
| output
stringlengths 0
1.02M
| license
stringlengths 3
36
| path
stringlengths 6
265
| repo_name
stringlengths 6
127
|
---|---|---|---|---|---|
Let's move on to building our DataFrame. You'll notice that I use the abbreviation `rv` often. It stands for `robust value`, which is what we'll call this sophisticated strategy moving forward. | rv_columns = [
'Ticker',
'Price',
'Number of Shares to Buy',
'Price-to-Earnings Ratio',
'PE Percentile',
'Price-to-Book Ratio',
'PB Percentile',
'Price-to-Sales Ratio',
'PS Percentile',
'EV/EBITDA',
'EV/EBITDA Percentile',
'EV/GP',
'EV/GP Percentile',
'RV Score'
]
rv_df = pd.DataFrame(columns=rv_columns)
for batch in symbol_strings:
batch_api_call_url = f"https://sandbox.iexapis.com/stable/stock/market/batch?symbols={batch}&types=quote,advanced-stats&token={IEX_CLOUD_API_TOKEN}"
data = requests.get(batch_api_call_url).json()
for symbol in batch.split(','):
enterprise_value = data[symbol]['advanced-stats']['enterpriseValue']
ebitda = data[symbol]['advanced-stats']['EBITDA']
gross_profit = data[symbol]['advanced-stats']['grossProfit']
try:
ev_to_ebitda = enterprise_value/ebitda
except TypeError:
ev_to_ebitda = np.NaN
try:
ev_to_gross_profit = enterprise_value/gross_profit
except TypeError:
ev_to_gross_profit = np.NaN
#if(not enterprise_value or not ebitda or not gross_profit):
#continue
rv_df = rv_df.append(
pd.Series(
[
symbol,
data[symbol]['quote']['latestPrice'],
'N/A',
data[symbol]['quote']['peRatio'],
'N/A',
data[symbol]['advanced-stats']['priceToBook'],
'N/A',
data[symbol]['advanced-stats']['priceToSales'],
'N/A',
ev_to_ebitda,
'N/A',
ev_to_gross_profit,
'N/A',
'N/A'
],
index=rv_columns
),
ignore_index=True
)
rv_df | _____no_output_____ | MIT | 003_quantitative_value_strategy.ipynb | gyalpodongo/algorithmic_trading_python |
Dealing With Missing Data in Our DataFrameOur DataFrame contains some missing data because all of the metrics we require are not available through the API we're using. You can use pandas' `isnull` method to identify missing data: | rv_df[rv_df.isnull().any(axis=1)] | _____no_output_____ | MIT | 003_quantitative_value_strategy.ipynb | gyalpodongo/algorithmic_trading_python |
Dealing with missing data is an important topic in data science.There are two main approaches:* Drop missing data from the data set (pandas' `dropna` method is useful here)* Replace missing data with a new value (pandas' `fillna` method is useful here)In this tutorial, we will replace missing data with the average non-`NaN` data point from that column. Here is the code to do this: | for column in [
'Price',
'Price-to-Earnings Ratio',
'Price-to-Book Ratio',
'Price-to-Sales Ratio',
'EV/EBITDA',
'EV/GP']:
rv_df[column].fillna(rv_df[column].mean(), inplace=True)
rv_df | _____no_output_____ | MIT | 003_quantitative_value_strategy.ipynb | gyalpodongo/algorithmic_trading_python |
Now, if we run the statement from earlier to print rows that contain missing data, nothing should be returned: | rv_df[rv_df.isnull().any(axis=1)]
| _____no_output_____ | MIT | 003_quantitative_value_strategy.ipynb | gyalpodongo/algorithmic_trading_python |
Calculating Value PercentilesWe now need to calculate value score percentiles for every stock in the universe. More specifically, we need to calculate percentile scores for the following metrics for every stock:* Price-to-earnings ratio* Price-to-book ratio* Price-to-sales ratio* EV/EBITDA* EV/GPHere's how we'll do this: | metrics = {
'Price-to-Earnings Ratio': 'PE Percentile',
'Price-to-Book Ratio' :'PB Percentile',
'Price-to-Sales Ratio' : 'PS Percentile',
'EV/EBITDA' : 'EV/EBITDA Percentile',
'EV/GP' : 'EV/GP Percentile',
}
for key, value in metrics.items():
for row in rv_df.index:
rv_df.loc[row, value] = stats.percentileofscore(rv_df[key], rv_df.loc[row,key])/100
rv_df | _____no_output_____ | MIT | 003_quantitative_value_strategy.ipynb | gyalpodongo/algorithmic_trading_python |
Calculating the RV ScoreWe'll now calculate our RV Score (which stands for Robust Value), which is the value score that we'll use to filter for stocks in this investing strategy.The RV Score will be the arithmetic mean of the 4 percentile scores that we calculated in the last section.To calculate arithmetic mean, we will use the mean function from Python's built-in statistics module. | from statistics import mean
for row in rv_df.index:
value_percentiles = []
for value in metrics.values():
value_percentiles.append(rv_df.loc[row, value])
rv_df.loc[row, 'RV Score'] = mean(value_percentiles)
rv_df | _____no_output_____ | MIT | 003_quantitative_value_strategy.ipynb | gyalpodongo/algorithmic_trading_python |
Selecting the 50 Best Value Stocks¶As before, we can identify the 50 best value stocks in our universe by sorting the DataFrame on the RV Score column and dropping all but the top 50 entries. Calculating the Number of Shares to BuyWe'll use the `portfolio_input` function that we created earlier to accept our portfolio size. Then we will use similar logic in a for loop to calculate the number of shares to buy for each stock in our investment universe. | rv_df.sort_values('RV Score', ascending=True, inplace=True)
rv_df = rv_df[:50]
rv_df.reset_index(drop = True, inplace=True)
rv_df
portfolio_input()
position_size = portfolio_size/len(rv_df.index)
for row in rv_df.index:
rv_df.loc[row, 'Number of Shares to Buy'] = math.floor(position_size/rv_df.loc[row, 'Price'])
rv_df | _____no_output_____ | MIT | 003_quantitative_value_strategy.ipynb | gyalpodongo/algorithmic_trading_python |
Formatting Our Excel OutputWe will be using the XlsxWriter library for Python to create nicely-formatted Excel files.XlsxWriter is an excellent package and offers tons of customization. However, the tradeoff for this is that the library can seem very complicated to new users. Accordingly, this section will be fairly long because I want to do a good job of explaining how XlsxWriter works. | writer = pd.ExcelWriter('value_strategy.xlsx', engine='xlsxwriter')
rv_df.to_excel(writer, sheet_name='Value Strategy', index = False) | _____no_output_____ | MIT | 003_quantitative_value_strategy.ipynb | gyalpodongo/algorithmic_trading_python |
Creating the Formats We'll Need For Our .xlsx FileYou'll recall from our first project that formats include colors, fonts, and also symbols like % and $. We'll need four main formats for our Excel document:* String format for tickers* \$XX.XX format for stock prices* \$XX,XXX format for market capitalization* Integer format for the number of shares to purchase* Float formats with 1 decimal for each valuation metricSince we already built some formats in past sections of this course, I've included them below for you. Run this code cell before proceeding. | background_color = '#0a0a23'
font_color = '#ffffff'
string_template = writer.book.add_format(
{
'font_color': font_color,
'bg_color': background_color,
'border': 1
}
)
dollar_template = writer.book.add_format(
{
'num_format':'$0.00',
'font_color': font_color,
'bg_color': background_color,
'border': 1
}
)
integer_template = writer.book.add_format(
{
'num_format':'0',
'font_color': font_color,
'bg_color': background_color,
'border': 1
}
)
float_template = writer.book.add_format(
{
'num_format':'0',
'font_color': font_color,
'bg_color': background_color,
'border': 1
}
)
percent_template = writer.book.add_format(
{
'num_format':'0.0%',
'font_color': font_color,
'bg_color': background_color,
'border': 1
}
)
column_formats = {
'A': ['Ticker', string_template],
'B': ['Price', dollar_template],
'C': ['Number of Shares to Buy', integer_template],
'D': ['Price-to-Earnings Ratio', float_template],
'E': ['PE Percentile', percent_template],
'F': ['Price-to-Book Ratio', float_template],
'G': ['PB Percentile',percent_template],
'H': ['Price-to-Sales Ratio', float_template],
'I': ['PS Percentile', percent_template],
'J': ['EV/EBITDA', float_template],
'K': ['EV/EBITDA Percentile', percent_template],
'L': ['EV/GP', float_template],
'M': ['EV/GP Percentile', percent_template],
'N': ['RV Score', percent_template]
}
for column in column_formats.keys():
writer.sheets['Value Strategy'].set_column(f'{column}:{column}', 25, column_formats[column][1])
writer.sheets['Value Strategy'].write(f'{column}1', column_formats[column][0], column_formats[column][1]) | _____no_output_____ | MIT | 003_quantitative_value_strategy.ipynb | gyalpodongo/algorithmic_trading_python |
Saving Our Excel OutputAs before, saving our Excel output is very easy: | writer.save() | _____no_output_____ | MIT | 003_quantitative_value_strategy.ipynb | gyalpodongo/algorithmic_trading_python |
Run the Ansible on Jupyter Notebook x Alpine- Author: Chu-Siang Lai / chusiang (at) drx.tw- GitHub: [chusiang/ansible-jupyter.dockerfile](https://github.com/chusiang/ansible-jupyter.dockerfile)- Docker Hub: [chusiang/ansible-jupyter](https://hub.docker.com/r/chusiang/ansible-jupyter/) Table of contexts:1. [Operating-System](Operating-System)1. [Ad-Hoc-commands](Ad-Hoc-commands)1. [Playbooks](Playbooks) Modified. | !date | Mon Jun 18 07:13:53 UTC 2018
| MIT | ipynb/ansible_on_jupyter.ipynb | KyleChou/ansible-jupyter.dockerfile |
Operating SystemCheck the runtime user. | !whoami | root
| MIT | ipynb/ansible_on_jupyter.ipynb | KyleChou/ansible-jupyter.dockerfile |
Show Linux distribution. | !cat /etc/issue | Welcome to Alpine Linux 3.7
Kernel \r on an \m (\l)
| MIT | ipynb/ansible_on_jupyter.ipynb | KyleChou/ansible-jupyter.dockerfile |
Workspace. | !pwd | /home
| MIT | ipynb/ansible_on_jupyter.ipynb | KyleChou/ansible-jupyter.dockerfile |
Show Python version. | !python --version | Python 2.7.14
| MIT | ipynb/ansible_on_jupyter.ipynb | KyleChou/ansible-jupyter.dockerfile |
Show pip version. | !pip --version | pip 10.0.1 from /usr/lib/python2.7/site-packages/pip (python 2.7)
| MIT | ipynb/ansible_on_jupyter.ipynb | KyleChou/ansible-jupyter.dockerfile |
Show Ansible version. | !ansible --version | ansible 2.5.5
config file = /home/ansible.cfg
configured module search path = [u'/root/.ansible/plugins/modules', u'/usr/share/ansible/plugins/modules']
ansible python module location = /usr/lib/python2.7/site-packages/ansible
executable location = /usr/bin/ansible
python version = 2.7.14 (default, Dec 14 2017, 15:51:29) [GCC 6.4.0]
| MIT | ipynb/ansible_on_jupyter.ipynb | KyleChou/ansible-jupyter.dockerfile |
Show Jupyter version. | !jupyter --version | 4.4.0
| MIT | ipynb/ansible_on_jupyter.ipynb | KyleChou/ansible-jupyter.dockerfile |
AnsibleCheck the playbook syntax, if you see the `[WARNING]`, please fix something, first. | !ansible-playbook --syntax-check setup_jupyter.yml |
playbook: setup_jupyter.yml
| MIT | ipynb/ansible_on_jupyter.ipynb | KyleChou/ansible-jupyter.dockerfile |
Ad-Hoc commandsping the localhost. | !ansible localhost -m ping | [0;32mlocalhost | SUCCESS => {[0m
[0;32m "changed": false, [0m
[0;32m "ping": "pong"[0m
[0;32m}[0m
| MIT | ipynb/ansible_on_jupyter.ipynb | KyleChou/ansible-jupyter.dockerfile |
Get the facts with `setup` module. | !ansible localhost -m setup | [0;32mlocalhost | SUCCESS => {[0m
[0;32m "ansible_facts": {[0m
[0;32m "ansible_all_ipv4_addresses": [], [0m
[0;32m "ansible_all_ipv6_addresses": [], [0m
[0;32m "ansible_apparmor": {[0m
[0;32m "status": "disabled"[0m
[0;32m }, [0m
[0;32m "ansible_architecture": "x86_64", [0m
[0;32m "ansible_bios_date": "03/14/2014", [0m
[0;32m "ansible_bios_version": "1.00", [0m
[0;32m "ansible_cmdline": {[0m
[0;32m "BOOT_IMAGE": "/boot/kernel", [0m
[0;32m "console": "ttyS0", [0m
[0;32m "ntp": "gateway", [0m
[0;32m "page_poison": "1", [0m
[0;32m "panic": "1", [0m
[0;32m "root": "/dev/sr0", [0m
[0;32m "text": true, [0m
[0;32m "vsyscall": "emulate"[0m
[0;32m }, [0m
[0;32m "ansible_date_time": {[0m
[0;32m "date": "2018-06-18", [0m
[0;32m "day": "18", [0m
[0;32m "epoch": "1529306054", [0m
[0;32m "hour": "07", [0m
[0;32m "iso8601": "2018-06-18T07:14:14Z", [0m
[0;32m "iso8601_basic": "20180618T071414927682", [0m
[0;32m "iso8601_basic_short": "20180618T071414", [0m
[0;32m "iso8601_micro": "2018-06-18T07:14:14.927800Z", [0m
[0;32m "minute": "14", [0m
[0;32m "month": "06", [0m
[0;32m "second": "14", [0m
[0;32m "time": "07:14:14", [0m
[0;32m "tz": "UTC", [0m
[0;32m "tz_offset": "+0000", [0m
[0;32m "weekday": "Monday", [0m
[0;32m "weekday_number": "1", [0m
[0;32m "weeknumber": "25", [0m
[0;32m "year": "2018"[0m
[0;32m }, [0m
[0;32m "ansible_default_ipv4": {[0m
[0;32m "address": "172.17.0.2", [0m
[0;32m "gateway": "172.17.0.1", [0m
[0;32m "interface": "eth0"[0m
[0;32m }, [0m
[0;32m "ansible_default_ipv6": {}, [0m
[0;32m "ansible_device_links": {[0m
[0;32m "ids": {}, [0m
[0;32m "labels": {}, [0m
[0;32m "masters": {}, [0m
[0;32m "uuids": {}[0m
[0;32m }, [0m
[0;32m "ansible_devices": {[0m
[0;32m "loop0": {[0m
[0;32m "holders": [], [0m
[0;32m "host": "", [0m
[0;32m "links": {[0m
[0;32m "ids": [], [0m
[0;32m "labels": [], [0m
[0;32m "masters": [], [0m
[0;32m "uuids": [][0m
[0;32m }, [0m
[0;32m "model": null, [0m
[0;32m "partitions": {}, [0m
[0;32m "removable": "0", [0m
[0;32m "rotational": "1", [0m
[0;32m "sas_address": null, [0m
[0;32m "sas_device_handle": null, [0m
[0;32m "scheduler_mode": "", [0m
[0;32m "sectors": "0", [0m
[0;32m "sectorsize": "512", [0m
[0;32m "size": "0.00 Bytes", [0m
[0;32m "support_discard": "0", [0m
[0;32m "vendor": null, [0m
[0;32m "virtual": 1[0m
[0;32m }, [0m
[0;32m "loop1": {[0m
[0;32m "holders": [], [0m
[0;32m "host": "", [0m
[0;32m "links": {[0m
[0;32m "ids": [], [0m
[0;32m "labels": [], [0m
[0;32m "masters": [], [0m
[0;32m "uuids": [][0m
[0;32m }, [0m
[0;32m "model": null, [0m
[0;32m "partitions": {}, [0m
[0;32m "removable": "0", [0m
[0;32m "rotational": "1", [0m
[0;32m "sas_address": null, [0m
[0;32m "sas_device_handle": null, [0m
[0;32m "scheduler_mode": "", [0m
[0;32m "sectors": "0", [0m
[0;32m "sectorsize": "512", [0m
[0;32m "size": "0.00 Bytes", [0m
[0;32m "support_discard": "0", [0m
[0;32m "vendor": null, [0m
[0;32m "virtual": 1[0m
[0;32m }, [0m
[0;32m "loop2": {[0m
[0;32m "holders": [], [0m
[0;32m "host": "", [0m
[0;32m "links": {[0m
[0;32m "ids": [], [0m
[0;32m "labels": [], [0m
[0;32m "masters": [], [0m
[0;32m "uuids": [][0m
[0;32m }, [0m
[0;32m "model": null, [0m
[0;32m "partitions": {}, [0m
[0;32m "removable": "0", [0m
[0;32m "rotational": "1", [0m
[0;32m "sas_address": null, [0m
[0;32m "sas_device_handle": null, [0m
[0;32m "scheduler_mode": "", [0m
[0;32m "sectors": "0", [0m
[0;32m "sectorsize": "512", [0m
[0;32m "size": "0.00 Bytes", [0m
[0;32m "support_discard": "0", [0m
[0;32m "vendor": null, [0m
[0;32m "virtual": 1[0m
[0;32m }, [0m
[0;32m "loop3": {[0m
[0;32m "holders": [], [0m
[0;32m "host": "", [0m
[0;32m "links": {[0m
[0;32m "ids": [], [0m
[0;32m "labels": [], [0m
[0;32m "masters": [], [0m
[0;32m "uuids": [][0m
[0;32m }, [0m
[0;32m "model": null, [0m
[0;32m "partitions": {}, [0m
[0;32m "removable": "0", [0m
[0;32m "rotational": "1", [0m
[0;32m "sas_address": null, [0m
[0;32m "sas_device_handle": null, [0m
[0;32m "scheduler_mode": "", [0m
[0;32m "sectors": "0", [0m
[0;32m "sectorsize": "512", [0m
[0;32m "size": "0.00 Bytes", [0m
[0;32m "support_discard": "0", [0m
[0;32m "vendor": null, [0m
[0;32m "virtual": 1[0m
[0;32m }, [0m
[0;32m "loop4": {[0m
[0;32m "holders": [], [0m
[0;32m "host": "", [0m
[0;32m "links": {[0m
[0;32m "ids": [], [0m
[0;32m "labels": [], [0m
[0;32m "masters": [], [0m
[0;32m "uuids": [][0m
[0;32m }, [0m
[0;32m "model": null, [0m
[0;32m "partitions": {}, [0m
[0;32m "removable": "0", [0m
[0;32m "rotational": "1", [0m
[0;32m "sas_address": null, [0m
[0;32m "sas_device_handle": null, [0m
[0;32m "scheduler_mode": "", [0m
[0;32m "sectors": "0", [0m
[0;32m "sectorsize": "512", [0m
[0;32m "size": "0.00 Bytes", [0m
[0;32m "support_discard": "0", [0m
[0;32m "vendor": null, [0m
[0;32m "virtual": 1[0m
[0;32m }, [0m
[0;32m "loop5": {[0m
[0;32m "holders": [], [0m
[0;32m "host": "", [0m
[0;32m "links": {[0m
[0;32m "ids": [], [0m
[0;32m "labels": [], [0m
[0;32m "masters": [], [0m
[0;32m "uuids": [][0m
[0;32m }, [0m
[0;32m "model": null, [0m
[0;32m "partitions": {}, [0m
[0;32m "removable": "0", [0m
[0;32m "rotational": "1", [0m
[0;32m "sas_address": null, [0m
[0;32m "sas_device_handle": null, [0m
[0;32m "scheduler_mode": "", [0m
[0;32m "sectors": "0", [0m
[0;32m "sectorsize": "512", [0m
[0;32m "size": "0.00 Bytes", [0m
[0;32m "support_discard": "0", [0m
[0;32m "vendor": null, [0m
[0;32m "virtual": 1[0m
[0;32m }, [0m
[0;32m "loop6": {[0m
[0;32m "holders": [], [0m
[0;32m "host": "", [0m
[0;32m "links": {[0m
[0;32m "ids": [], [0m
[0;32m "labels": [], [0m
[0;32m "masters": [], [0m
[0;32m "uuids": [][0m
[0;32m }, [0m
[0;32m "model": null, [0m
[0;32m "partitions": {}, [0m
[0;32m "removable": "0", [0m
[0;32m "rotational": "1", [0m
[0;32m "sas_address": null, [0m
[0;32m "sas_device_handle": null, [0m
[0;32m "scheduler_mode": "", [0m
[0;32m "sectors": "0", [0m
[0;32m "sectorsize": "512", [0m
[0;32m "size": "0.00 Bytes", [0m
[0;32m "support_discard": "0", [0m
[0;32m "vendor": null, [0m
[0;32m "virtual": 1[0m
[0;32m }, [0m
[0;32m "loop7": {[0m
[0;32m "holders": [], [0m
[0;32m "host": "", [0m
[0;32m "links": {[0m
[0;32m "ids": [], [0m
[0;32m "labels": [], [0m
[0;32m "masters": [], [0m
[0;32m "uuids": [][0m
[0;32m }, [0m
[0;32m "model": null, [0m
[0;32m "partitions": {}, [0m
[0;32m "removable": "0", [0m
[0;32m "rotational": "1", [0m
[0;32m "sas_address": null, [0m
[0;32m "sas_device_handle": null, [0m
[0;32m "scheduler_mode": "", [0m
[0;32m "sectors": "0", [0m
[0;32m "sectorsize": "512", [0m
[0;32m "size": "0.00 Bytes", [0m
[0;32m "support_discard": "0", [0m
[0;32m "vendor": null, [0m
[0;32m "virtual": 1[0m
[0;32m }, [0m
[0;32m "nbd0": {[0m
[0;32m "holders": [], [0m
[0;32m "host": "", [0m
[0;32m "links": {[0m
[0;32m "ids": [], [0m
[0;32m "labels": [], [0m
[0;32m "masters": [], [0m
[0;32m "uuids": [][0m
[0;32m }, [0m
[0;32m "model": null, [0m
[0;32m "partitions": {}, [0m
[0;32m "removable": "0", [0m
[0;32m "rotational": "0", [0m
[0;32m "sas_address": null, [0m
[0;32m "sas_device_handle": null, [0m
[0;32m "scheduler_mode": "", [0m
[0;32m "sectors": "0", [0m
[0;32m "sectorsize": "512", [0m
[0;32m "size": "0.00 Bytes", [0m
[0;32m "support_discard": "512", [0m
[0;32m "vendor": null, [0m
[0;32m "virtual": 1[0m
[0;32m }, [0m
[0;32m "nbd1": {[0m
[0;32m "holders": [], [0m
[0;32m "host": "", [0m
[0;32m "links": {[0m
[0;32m "ids": [], [0m
[0;32m "labels": [], [0m
[0;32m "masters": [], [0m
[0;32m "uuids": [][0m
[0;32m }, [0m
[0;32m "model": null, [0m
[0;32m "partitions": {}, [0m
[0;32m "removable": "0", [0m
[0;32m "rotational": "0", [0m
[0;32m "sas_address": null, [0m
[0;32m "sas_device_handle": null, [0m
[0;32m "scheduler_mode": "", [0m
[0;32m "sectors": "0", [0m
[0;32m "sectorsize": "512", [0m
[0;32m "size": "0.00 Bytes", [0m
[0;32m "support_discard": "512", [0m
[0;32m "vendor": null, [0m
[0;32m "virtual": 1[0m
[0;32m }, [0m
[0;32m "nbd10": {[0m
[0;32m "holders": [], [0m
[0;32m "host": "", [0m
[0;32m "links": {[0m
[0;32m "ids": [], [0m
[0;32m "labels": [], [0m
[0;32m "masters": [], [0m
[0;32m "uuids": [][0m
[0;32m }, [0m
[0;32m "model": null, [0m
[0;32m "partitions": {}, [0m
[0;32m "removable": "0", [0m
[0;32m "rotational": "0", [0m
[0;32m "sas_address": null, [0m
[0;32m "sas_device_handle": null, [0m
[0;32m "scheduler_mode": "", [0m
[0;32m "sectors": "0", [0m
[0;32m "sectorsize": "512", [0m
[0;32m "size": "0.00 Bytes", [0m
[0;32m "support_discard": "512", [0m
[0;32m "vendor": null, [0m
[0;32m "virtual": 1[0m
[0;32m }, [0m
[0;32m "nbd11": {[0m
[0;32m "holders": [], [0m
[0;32m "host": "", [0m
[0;32m "links": {[0m
[0;32m "ids": [], [0m
[0;32m "labels": [], [0m
[0;32m "masters": [], [0m
[0;32m "uuids": [][0m
[0;32m }, [0m
[0;32m "model": null, [0m
[0;32m "partitions": {}, [0m
[0;32m "removable": "0", [0m
[0;32m "rotational": "0", [0m
[0;32m "sas_address": null, [0m
[0;32m "sas_device_handle": null, [0m
[0;32m "scheduler_mode": "", [0m
[0;32m "sectors": "0", [0m
[0;32m "sectorsize": "512", [0m
[0;32m "size": "0.00 Bytes", [0m
[0;32m "support_discard": "512", [0m
[0;32m "vendor": null, [0m
[0;32m "virtual": 1[0m
[0;32m }, [0m
[0;32m "nbd12": {[0m
[0;32m "holders": [], [0m
[0;32m "host": "", [0m
[0;32m "links": {[0m
[0;32m "ids": [], [0m
[0;32m "labels": [], [0m
[0;32m "masters": [], [0m
[0;32m "uuids": [][0m
[0;32m }, [0m
[0;32m "model": null, [0m
[0;32m "partitions": {}, [0m
[0;32m "removable": "0", [0m
[0;32m "rotational": "0", [0m
[0;32m "sas_address": null, [0m
[0;32m "sas_device_handle": null, [0m
[0;32m "scheduler_mode": "", [0m
[0;32m "sectors": "0", [0m
[0;32m "sectorsize": "512", [0m
[0;32m "size": "0.00 Bytes", [0m
[0;32m "support_discard": "512", [0m
[0;32m "vendor": null, [0m
[0;32m "virtual": 1[0m
[0;32m }, [0m
[0;32m "nbd13": {[0m
[0;32m "holders": [], [0m
[0;32m "host": "", [0m
[0;32m "links": {[0m
[0;32m "ids": [], [0m
[0;32m "labels": [], [0m
[0;32m "masters": [], [0m
[0;32m "uuids": [][0m
[0;32m }, [0m
[0;32m "model": null, [0m
[0;32m "partitions": {}, [0m
[0;32m "removable": "0", [0m
[0;32m "rotational": "0", [0m
[0;32m "sas_address": null, [0m
[0;32m "sas_device_handle": null, [0m
[0;32m "scheduler_mode": "", [0m
[0;32m "sectors": "0", [0m
[0;32m "sectorsize": "512", [0m
[0;32m "size": "0.00 Bytes", [0m
[0;32m "support_discard": "512", [0m
[0;32m "vendor": null, [0m
[0;32m "virtual": 1[0m
[0;32m }, [0m
[0;32m "nbd14": {[0m
[0;32m "holders": [], [0m
[0;32m "host": "", [0m
[0;32m "links": {[0m
[0;32m "ids": [], [0m
[0;32m "labels": [], [0m
[0;32m "masters": [], [0m
[0;32m "uuids": [][0m
[0;32m }, [0m
[0;32m "model": null, [0m
[0;32m "partitions": {}, [0m
[0;32m "removable": "0", [0m
[0;32m "rotational": "0", [0m
[0;32m "sas_address": null, [0m
[0;32m "sas_device_handle": null, [0m
[0;32m "scheduler_mode": "", [0m
[0;32m "sectors": "0", [0m
[0;32m "sectorsize": "512", [0m
[0;32m "size": "0.00 Bytes", [0m
[0;32m "support_discard": "512", [0m
[0;32m "vendor": null, [0m
[0;32m "virtual": 1[0m
[0;32m }, [0m
[0;32m "nbd15": {[0m
[0;32m "holders": [], [0m
[0;32m "host": "", [0m
[0;32m "links": {[0m
[0;32m "ids": [], [0m
[0;32m "labels": [], [0m
[0;32m "masters": [], [0m
[0;32m "uuids": [][0m
[0;32m }, [0m
[0;32m "model": null, [0m
[0;32m "partitions": {}, [0m
[0;32m "removable": "0", [0m
[0;32m "rotational": "0", [0m
[0;32m "sas_address": null, [0m
[0;32m "sas_device_handle": null, [0m
[0;32m "scheduler_mode": "", [0m
[0;32m "sectors": "0", [0m
[0;32m "sectorsize": "512", [0m
[0;32m "size": "0.00 Bytes", [0m
[0;32m "support_discard": "512", [0m
[0;32m "vendor": null, [0m
[0;32m "virtual": 1[0m
[0;32m }, [0m
[0;32m "nbd2": {[0m
[0;32m "holders": [], [0m
[0;32m "host": "", [0m
[0;32m "links": {[0m
[0;32m "ids": [], [0m
[0;32m "labels": [], [0m
[0;32m "masters": [], [0m
[0;32m "uuids": [][0m
[0;32m }, [0m
[0;32m "model": null, [0m
[0;32m "partitions": {}, [0m
[0;32m "removable": "0", [0m
[0;32m "rotational": "0", [0m
[0;32m "sas_address": null, [0m
[0;32m "sas_device_handle": null, [0m
[0;32m "scheduler_mode": "", [0m
[0;32m "sectors": "0", [0m
[0;32m "sectorsize": "512", [0m
[0;32m "size": "0.00 Bytes", [0m
[0;32m "support_discard": "512", [0m
[0;32m "vendor": null, [0m
[0;32m "virtual": 1[0m
[0;32m }, [0m
[0;32m "nbd3": {[0m
[0;32m "holders": [], [0m
[0;32m "host": "", [0m
[0;32m "links": {[0m
[0;32m "ids": [], [0m
[0;32m "labels": [], [0m
[0;32m "masters": [], [0m
[0;32m "uuids": [][0m
[0;32m }, [0m
[0;32m "model": null, [0m
[0;32m "partitions": {}, [0m
[0;32m "removable": "0", [0m
[0;32m "rotational": "0", [0m
[0;32m "sas_address": null, [0m
[0;32m "sas_device_handle": null, [0m
[0;32m "scheduler_mode": "", [0m
[0;32m "sectors": "0", [0m
[0;32m "sectorsize": "512", [0m
[0;32m "size": "0.00 Bytes", [0m
[0;32m "support_discard": "512", [0m
[0;32m "vendor": null, [0m
[0;32m "virtual": 1[0m
[0;32m }, [0m
[0;32m "nbd4": {[0m
[0;32m "holders": [], [0m
[0;32m "host": "", [0m
[0;32m "links": {[0m
[0;32m "ids": [], [0m
[0;32m "labels": [], [0m
[0;32m "masters": [], [0m
[0;32m "uuids": [][0m
[0;32m }, [0m
[0;32m "model": null, [0m
[0;32m "partitions": {}, [0m
[0;32m "removable": "0", [0m
[0;32m "rotational": "0", [0m
[0;32m "sas_address": null, [0m
[0;32m "sas_device_handle": null, [0m
[0;32m "scheduler_mode": "", [0m
[0;32m "sectors": "0", [0m
[0;32m "sectorsize": "512", [0m
[0;32m "size": "0.00 Bytes", [0m
[0;32m "support_discard": "512", [0m
[0;32m "vendor": null, [0m
[0;32m "virtual": 1[0m
[0;32m }, [0m
[0;32m "nbd5": {[0m
[0;32m "holders": [], [0m
[0;32m "host": "", [0m
[0;32m "links": {[0m
[0;32m "ids": [], [0m
[0;32m "labels": [], [0m
[0;32m "masters": [], [0m
[0;32m "uuids": [][0m
[0;32m }, [0m
[0;32m "model": null, [0m
[0;32m "partitions": {}, [0m
[0;32m "removable": "0", [0m
[0;32m "rotational": "0", [0m
[0;32m "sas_address": null, [0m
[0;32m "sas_device_handle": null, [0m
[0;32m "scheduler_mode": "", [0m
[0;32m "sectors": "0", [0m
[0;32m "sectorsize": "512", [0m
[0;32m "size": "0.00 Bytes", [0m
[0;32m "support_discard": "512", [0m
[0;32m "vendor": null, [0m
[0;32m "virtual": 1[0m
[0;32m }, [0m
[0;32m "nbd6": {[0m
[0;32m "holders": [], [0m
[0;32m "host": "", [0m
[0;32m "links": {[0m
[0;32m "ids": [], [0m
[0;32m "labels": [], [0m
[0;32m "masters": [], [0m
[0;32m "uuids": [][0m
[0;32m }, [0m
[0;32m "model": null, [0m
[0;32m "partitions": {}, [0m
[0;32m "removable": "0", [0m
[0;32m "rotational": "0", [0m
[0;32m "sas_address": null, [0m
[0;32m "sas_device_handle": null, [0m
[0;32m "scheduler_mode": "", [0m
[0;32m "sectors": "0", [0m
[0;32m "sectorsize": "512", [0m
[0;32m "size": "0.00 Bytes", [0m
[0;32m "support_discard": "512", [0m
[0;32m "vendor": null, [0m
[0;32m "virtual": 1[0m
[0;32m }, [0m
[0;32m "nbd7": {[0m
[0;32m "holders": [], [0m
[0;32m "host": "", [0m
[0;32m "links": {[0m
[0;32m "ids": [], [0m
[0;32m "labels": [], [0m
[0;32m "masters": [], [0m
[0;32m "uuids": [][0m
[0;32m }, [0m
[0;32m "model": null, [0m
[0;32m "partitions": {}, [0m
[0;32m "removable": "0", [0m
[0;32m "rotational": "0", [0m
[0;32m "sas_address": null, [0m
[0;32m "sas_device_handle": null, [0m
[0;32m "scheduler_mode": "", [0m
[0;32m "sectors": "0", [0m
[0;32m "sectorsize": "512", [0m
[0;32m "size": "0.00 Bytes", [0m
[0;32m "support_discard": "512", [0m
[0;32m "vendor": null, [0m
[0;32m "virtual": 1[0m
[0;32m }, [0m
[0;32m "nbd8": {[0m
[0;32m "holders": [], [0m
[0;32m "host": "", [0m
[0;32m "links": {[0m
[0;32m "ids": [], [0m
[0;32m "labels": [], [0m
[0;32m "masters": [], [0m
[0;32m "uuids": [][0m
[0;32m }, [0m
[0;32m "model": null, [0m
[0;32m "partitions": {}, [0m
[0;32m "removable": "0", [0m
[0;32m "rotational": "0", [0m
[0;32m "sas_address": null, [0m
[0;32m "sas_device_handle": null, [0m
[0;32m "scheduler_mode": "", [0m
[0;32m "sectors": "0", [0m
[0;32m "sectorsize": "512", [0m
[0;32m "size": "0.00 Bytes", [0m
[0;32m "support_discard": "512", [0m
[0;32m "vendor": null, [0m
[0;32m "virtual": 1[0m
[0;32m }, [0m
[0;32m "nbd9": {[0m
[0;32m "holders": [], [0m
[0;32m "host": "", [0m
[0;32m "links": {[0m
[0;32m "ids": [], [0m
[0;32m "labels": [], [0m
[0;32m "masters": [], [0m
[0;32m "uuids": [][0m
[0;32m }, [0m
[0;32m "model": null, [0m
[0;32m "partitions": {}, [0m
[0;32m "removable": "0", [0m
[0;32m "rotational": "0", [0m
[0;32m "sas_address": null, [0m
[0;32m "sas_device_handle": null, [0m
[0;32m "scheduler_mode": "", [0m
[0;32m "sectors": "0", [0m
[0;32m "sectorsize": "512", [0m
[0;32m "size": "0.00 Bytes", [0m
[0;32m "support_discard": "512", [0m
[0;32m "vendor": null, [0m
[0;32m "virtual": 1[0m
[0;32m }, [0m
[0;32m "sda": {[0m
[0;32m "holders": [], [0m
[0;32m "host": "", [0m
[0;32m "links": {[0m
[0;32m "ids": [], [0m
[0;32m "labels": [], [0m
[0;32m "masters": [], [0m
[0;32m "uuids": [][0m
[0;32m }, [0m
[0;32m "model": "BHYVE SATA DISK", [0m
[0;32m "partitions": {[0m
[0;32m "sda1": {[0m
[0;32m "holders": [], [0m
[0;32m "links": {[0m
[0;32m "ids": [], [0m
[0;32m "labels": [], [0m
[0;32m "masters": [], [0m
[0;32m "uuids": [][0m
[0;32m }, [0m
[0;32m "sectors": "134215680", [0m
[0;32m "sectorsize": 512, [0m
[0;32m "size": "64.00 GB", [0m
[0;32m "start": "2048", [0m
[0;32m "uuid": null[0m
[0;32m }[0m
[0;32m }, [0m
[0;32m "removable": "0", [0m
[0;32m "rotational": "1", [0m
[0;32m "sas_address": null, [0m
[0;32m "sas_device_handle": null, [0m
[0;32m "scheduler_mode": "deadline", [0m
[0;32m "sectors": "134217728", [0m
[0;32m "sectorsize": "512", [0m
[0;32m "size": "64.00 GB", [0m
[0;32m "support_discard": "512", [0m
[0;32m "vendor": "ATA", [0m
[0;32m "virtual": 1[0m
[0;32m }, [0m
[0;32m "sr0": {[0m
[0;32m "holders": [], [0m
[0;32m "host": "", [0m
[0;32m "links": {[0m
[0;32m "ids": [], [0m
[0;32m "labels": [], [0m
[0;32m "masters": [], [0m
[0;32m "uuids": [][0m
[0;32m }, [0m
[0;32m "model": "BHYVE DVD-ROM", [0m
[0;32m "partitions": {}, [0m
[0;32m "removable": "1", [0m
[0;32m "rotational": "1", [0m
[0;32m "sas_address": null, [0m
[0;32m "sas_device_handle": null, [0m
[0;32m "scheduler_mode": "deadline", [0m
[0;32m "sectors": "1922412", [0m
[0;32m "sectorsize": "2048", [0m
[0;32m "size": "938.68 MB", [0m
[0;32m "support_discard": "0", [0m
[0;32m "vendor": "BHYVE", [0m
[0;32m "virtual": 1[0m
[0;32m }, [0m
[0;32m "sr1": {[0m
[0;32m "holders": [], [0m
[0;32m "host": "", [0m
[0;32m "links": {[0m
[0;32m "ids": [], [0m
[0;32m "labels": [], [0m
[0;32m "masters": [], [0m
[0;32m "uuids": [][0m
[0;32m }, [0m
[0;32m "model": "BHYVE DVD-ROM", [0m
[0;32m "partitions": {}, [0m
[0;32m "removable": "1", [0m
[0;32m "rotational": "1", [0m
[0;32m "sas_address": null, [0m
[0;32m "sas_device_handle": null, [0m
[0;32m "scheduler_mode": "deadline", [0m
[0;32m "sectors": "112", [0m
[0;32m "sectorsize": "2048", [0m
[0;32m "size": "56.00 KB", [0m
[0;32m "support_discard": "0", [0m
[0;32m "vendor": "BHYVE", [0m
[0;32m "virtual": 1[0m
[0;32m }[0m
[0;32m }, [0m
[0;32m "ansible_distribution": "Alpine", [0m
[0;32m "ansible_distribution_file_parsed": true, [0m
[0;32m "ansible_distribution_file_path": "/etc/alpine-release", [0m
[0;32m "ansible_distribution_file_variety": "Alpine", [0m
[0;32m "ansible_distribution_major_version": "NA", [0m
[0;32m "ansible_distribution_release": "NA", [0m
[0;32m "ansible_distribution_version": "3.7.0", [0m
[0;32m "ansible_dns": {[0m
[0;32m "nameservers": [[0m
[0;32m "192.168.65.1"[0m
[0;32m ][0m
[0;32m }, [0m
[0;32m "ansible_domain": "", [0m
[0;32m "ansible_effective_group_id": 0, [0m
[0;32m "ansible_effective_user_id": 0, [0m
[0;32m "ansible_env": {[0m
[0;32m "CLICOLOR": "1", [0m
[0;32m "GIT_PAGER": "cat", [0m
[0;32m "HOME": "/root", [0m
[0;32m "HOSTNAME": "c3423d7c8f31", [0m
[0;32m "JPY_PARENT_PID": "5", [0m
[0;32m "MPLBACKEND": "module://ipykernel.pylab.backend_inline", [0m
[0;32m "PAGER": "cat", [0m
[0;32m "PATH": "/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin", [0m
[0;32m "PWD": "/home", [0m
[0;32m "PYTHONPATH": "/tmp/ansible_lfDdYR/ansible_modlib.zip", [0m
[0;32m "SHLVL": "4", [0m
[0;32m "TERM": "xterm-color"[0m
[0;32m }, [0m
[0;32m "ansible_eth0": {[0m
[0;32m "active": true, [0m
[0;32m "device": "eth0", [0m
[0;32m "macaddress": "02:42:ac:11:00:02", [0m
[0;32m "mtu": 1500, [0m
[0;32m "promisc": false, [0m
[0;32m "speed": 10000, [0m
[0;32m "type": "ether"[0m
[0;32m }, [0m
[0;32m "ansible_fips": false, [0m
[0;32m "ansible_form_factor": "Unknown", [0m
[0;32m "ansible_fqdn": "c3423d7c8f31", [0m
[0;32m "ansible_hostname": "c3423d7c8f31", [0m
[0;32m "ansible_interfaces": [[0m
[0;32m "lo", [0m
[0;32m "tunl0", [0m
[0;32m "ip6tnl0", [0m
[0;32m "eth0"[0m
[0;32m ], [0m
[0;32m "ansible_ip6tnl0": {[0m
[0;32m "active": false, [0m
[0;32m "device": "ip6tnl0", [0m
[0;32m "macaddress": "00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00", [0m
[0;32m "mtu": 1452, [0m
[0;32m "promisc": false, [0m
[0;32m "type": "unknown"[0m
[0;32m }, [0m
[0;32m "ansible_is_chroot": false, [0m
[0;32m "ansible_kernel": "4.9.87-linuxkit-aufs", [0m
[0;32m "ansible_lo": {[0m
[0;32m "active": true, [0m
[0;32m "device": "lo", [0m
[0;32m "mtu": 65536, [0m
[0;32m "promisc": false, [0m
[0;32m "type": "loopback"[0m
[0;32m }, [0m
[0;32m "ansible_local": {}, [0m
[0;32m "ansible_lsb": {}, [0m
[0;32m "ansible_machine": "x86_64", [0m
[0;32m "ansible_memfree_mb": 152, [0m
[0;32m "ansible_memory_mb": {[0m
[0;32m "nocache": {[0m
[0;32m "free": 1132, [0m
[0;32m "used": 866[0m
[0;32m }, [0m
[0;32m "real": {[0m
[0;32m "free": 152, [0m
[0;32m "total": 1998, [0m
[0;32m "used": 1846[0m
[0;32m }, [0m
[0;32m "swap": {[0m
[0;32m "cached": 0, [0m
[0;32m "free": 1022, [0m
[0;32m "total": 1023, [0m
[0;32m "used": 1[0m
[0;32m }[0m
[0;32m }, [0m
[0;32m "ansible_memtotal_mb": 1998, [0m
[0;32m "ansible_mounts": [[0m
[0;32m {[0m
[0;32m "block_available": 11143934, [0m
[0;32m "block_size": 4096, [0m
[0;32m "block_total": 16448139, [0m
[0;32m "block_used": 5304205, [0m
[0;32m "device": "/dev/sda1", [0m
[0;32m "fstype": "ext4", [0m
[0;32m "inode_available": 3449146, [0m
[0;32m "inode_total": 4194304, [0m
[0;32m "inode_used": 745158, [0m
[0;32m "mount": "/etc/resolv.conf", [0m
[0;32m "options": "rw,relatime,data=ordered", [0m
[0;32m "size_available": 45645553664, [0m
[0;32m "size_total": 67371577344, [0m
[0;32m "uuid": "N/A"[0m
[0;32m }, [0m
[0;32m {[0m
[0;32m "block_available": 11143934, [0m
[0;32m "block_size": 4096, [0m
[0;32m "block_total": 16448139, [0m
[0;32m "block_used": 5304205, [0m
[0;32m "device": "/dev/sda1", [0m
[0;32m "fstype": "ext4", [0m
[0;32m "inode_available": 3449146, [0m
[0;32m "inode_total": 4194304, [0m
[0;32m "inode_used": 745158, [0m
[0;32m "mount": "/etc/hostname", [0m
[0;32m "options": "rw,relatime,data=ordered", [0m
[0;32m "size_available": 45645553664, [0m
[0;32m "size_total": 67371577344, [0m
[0;32m "uuid": "N/A"[0m
[0;32m }, [0m
[0;32m {[0m
[0;32m "block_available": 11143934, [0m
[0;32m "block_size": 4096, [0m
[0;32m "block_total": 16448139, [0m
[0;32m "block_used": 5304205, [0m
[0;32m "device": "/dev/sda1", [0m
[0;32m "fstype": "ext4", [0m
[0;32m "inode_available": 3449146, [0m
[0;32m "inode_total": 4194304, [0m
[0;32m "inode_used": 745158, [0m
[0;32m "mount": "/etc/hosts", [0m
[0;32m "options": "rw,relatime,data=ordered", [0m
[0;32m "size_available": 45645553664, [0m
[0;32m "size_total": 67371577344, [0m
[0;32m "uuid": "N/A"[0m
[0;32m }[0m
[0;32m ], [0m
[0;32m "ansible_nodename": "c3423d7c8f31", [0m
[0;32m "ansible_os_family": "Alpine", [0m
[0;32m "ansible_pkg_mgr": "apk", [0m
[0;32m "ansible_processor": [[0m
[0;32m "0", [0m
[0;32m "GenuineIntel", [0m
[0;32m "Intel(R) Core(TM) i5-5257U CPU @ 2.70GHz", [0m
[0;32m "1", [0m
[0;32m "GenuineIntel", [0m
[0;32m "Intel(R) Core(TM) i5-5257U CPU @ 2.70GHz"[0m
[0;32m ], [0m
[0;32m "ansible_processor_cores": 1, [0m
[0;32m "ansible_processor_count": 2, [0m
[0;32m "ansible_processor_threads_per_core": 1, [0m
[0;32m "ansible_processor_vcpus": 2, [0m
[0;32m "ansible_product_name": "BHYVE", [0m
[0;32m "ansible_product_serial": "None", [0m
[0;32m "ansible_product_uuid": "003B4176-0000-0000-88D0-8E3AB99F1457", [0m
[0;32m "ansible_product_version": "1.0", [0m
[0;32m "ansible_python": {[0m
[0;32m "executable": "/usr/bin/python2", [0m
[0;32m "has_sslcontext": true, [0m
[0;32m "type": "CPython", [0m
[0;32m "version": {[0m
[0;32m "major": 2, [0m
[0;32m "micro": 14, [0m
[0;32m "minor": 7, [0m
[0;32m "releaselevel": "final", [0m
[0;32m "serial": 0[0m
[0;32m }, [0m
[0;32m "version_info": [[0m
[0;32m 2, [0m
[0;32m 7, [0m
[0;32m 14, [0m
[0;32m "final", [0m
[0;32m 0[0m
[0;32m ][0m
[0;32m }, [0m
[0;32m "ansible_python_version": "2.7.14", [0m
[0;32m "ansible_real_group_id": 0, [0m
[0;32m "ansible_real_user_id": 0, [0m
[0;32m "ansible_selinux": {[0m
[0;32m "status": "Missing selinux Python library"[0m
[0;32m }, [0m
[0;32m "ansible_selinux_python_present": false, [0m
[0;32m "ansible_service_mgr": "docker-entrypoi", [0m
[0;32m "ansible_swapfree_mb": 1022, [0m
[0;32m "ansible_swaptotal_mb": 1023, [0m
[0;32m "ansible_system": "Linux", [0m
[0;32m "ansible_system_vendor": "NA", [0m
[0;32m "ansible_tunl0": {[0m
[0;32m "active": false, [0m
[0;32m "device": "tunl0", [0m
[0;32m "macaddress": "00:00:00:00", [0m
[0;32m "mtu": 1480, [0m
[0;32m "promisc": false, [0m
[0;32m "type": "unknown"[0m
[0;32m }, [0m
[0;32m "ansible_uptime_seconds": 13189, [0m
[0;32m "ansible_user_dir": "/root", [0m
[0;32m "ansible_user_gecos": "root", [0m
[0;32m "ansible_user_gid": 0, [0m
[0;32m "ansible_user_id": "root", [0m
[0;32m "ansible_user_shell": "/bin/ash", [0m
[0;32m "ansible_user_uid": 0, [0m
[0;32m "ansible_userspace_architecture": "x86_64", [0m
[0;32m "ansible_userspace_bits": "64", [0m
[0;32m "ansible_virtualization_role": "guest", [0m
[0;32m "ansible_virtualization_type": "docker", [0m
[0;32m "gather_subset": [[0m
[0;32m "all"[0m
[0;32m ], [0m
[0;32m "module_setup": true[0m
[0;32m }, [0m
[0;32m "changed": false[0m
[0;32m}[0m
| MIT | ipynb/ansible_on_jupyter.ipynb | KyleChou/ansible-jupyter.dockerfile |
Remove the **vim** with apk package management on **Alpine**. | !ansible localhost -m apk -a 'name=vim state=absent' | [0;33mlocalhost | SUCCESS => {[0m
[0;33m "changed": true, [0m
[0;33m "msg": "removed vim package(s)", [0m
[0;33m "packages": [[0m
[0;33m "vim", [0m
[0;33m "lua5.2-libs"[0m
[0;33m ], [0m
[0;33m "stderr": "", [0m
[0;33m "stderr_lines": [], [0m
[0;33m "stdout": "(1/2) Purging vim (8.0.1359-r0)\n(2/2) Purging lua5.2-libs (5.2.4-r4)\nExecuting busybox-1.27.2-r7.trigger\nOK: 274 MiB in 61 packages\n", [0m
[0;33m "stdout_lines": [[0m
[0;33m "(1/2) Purging vim (8.0.1359-r0)", [0m
[0;33m "(2/2) Purging lua5.2-libs (5.2.4-r4)", [0m
[0;33m "Executing busybox-1.27.2-r7.trigger", [0m
[0;33m "OK: 274 MiB in 61 packages"[0m
[0;33m ][0m
[0;33m}[0m
| MIT | ipynb/ansible_on_jupyter.ipynb | KyleChou/ansible-jupyter.dockerfile |
Install the **vim** with apk package management on **Alpine**. | !ansible localhost -m apk -a 'name=vim state=present' | [0;33mlocalhost | SUCCESS => {[0m
[0;33m "changed": true, [0m
[0;33m "msg": "installed vim package(s)", [0m
[0;33m "packages": [[0m
[0;33m "lua5.2-libs", [0m
[0;33m "vim"[0m
[0;33m ], [0m
[0;33m "stderr": "", [0m
[0;33m "stderr_lines": [], [0m
[0;33m "stdout": "(1/2) Installing lua5.2-libs (5.2.4-r4)\n(2/2) Installing vim (8.0.1359-r0)\nExecuting busybox-1.27.2-r7.trigger\nOK: 300 MiB in 63 packages\n", [0m
[0;33m "stdout_lines": [[0m
[0;33m "(1/2) Installing lua5.2-libs (5.2.4-r4)", [0m
[0;33m "(2/2) Installing vim (8.0.1359-r0)", [0m
[0;33m "Executing busybox-1.27.2-r7.trigger", [0m
[0;33m "OK: 300 MiB in 63 packages"[0m
[0;33m ][0m
[0;33m}[0m
| MIT | ipynb/ansible_on_jupyter.ipynb | KyleChou/ansible-jupyter.dockerfile |
Install the **tree** with apk package management on **Alpine**. | !ansible localhost -m apk -a 'name=tree state=present'
!tree . | .
├── ansible.cfg
├── ansible_on_jupyter.ipynb
├── inventory
└── setup_jupyter.yml
0 directories, 4 files
| MIT | ipynb/ansible_on_jupyter.ipynb | KyleChou/ansible-jupyter.dockerfile |
PlaybooksShow `setup_jupyter.yml` playbook. | !cat setup_jupyter.yml | ---
- name: "Setup Ansible-Jupyter"
hosts: localhost
vars:
# General package on GNU/Linux.
general_packages:
- bash
- bash-completion
- ca-certificates
- curl
- git
- openssl
- sshpass
# Alpine Linux.
apk_packages:
- openssh-client
- vim
# Debian, Ubuntu.
apt_packages: "{{ apk_packages }}"
# Arch Linux.
pacman_packages:
- openssh
- vim
# Gentoo Linux.
portage_packages:
- bash
- bash-completion
- ca-certificates
- dev-vcs/git
- net-misc/curl
- openssh
- openssl
- sqlite
- vim
# CentOS.
yum_packages:
- openssh-clients
- vim-minimal
# openSUSE.
zypper_packages: "{{ pacman_packages }}"
# Python.
pip_packages:
- docker-py
- docker-compose
jupyter_notebook_config_py_url: "https://raw.githubusercontent.com/chusiang/ansible-jupyter.dockerfile/master/files/jupyter_notebook_config.py"
ssh_private_key_url: "https://raw.githubusercontent.com/chusiang/ansible-jupyter.dockerfile/master/files/ssh/id_rsa"
ansible_cfg_url: "https://raw.githubusercontent.com/chusiang/ansible-jupyter.dockerfile/master/ansible.cfg"
inventory_url: "https://raw.githubusercontent.com/chusiang/ansible-jupyter.dockerfile/master/inventory"
tasks:
- name: Install necessary packages of Linux
block:
- name: Install general linux packages
package:
name: "{{ item }}"
state: present
with_items: "{{ general_packages }}"
when:
- general_packages is defined
- ansible_pkg_mgr != "portage"
- name: Install apk packages on Alpine Linux
apk:
name: "{{ item }}"
state: present
with_items: "{{ apk_packages }}"
when:
- apk_packages is defined
- ansible_pkg_mgr == "apk"
- name: Install apt packages on Debian and Ubuntu
apt:
name: "{{ item }}"
state: present
with_items: "{{ apt_packages }}"
when:
- apt_packages is defined
- ansible_pkg_mgr == "apt"
- name: Install pacman packages on Arch Linux
pacman:
name: "{{ item }}"
state: present
with_items: "{{ pacman_packages }}"
when:
- pacman_packages is defined
- ansible_pkg_mgr == "pacman"
- name: Install portage packages on Gentoo Linux
portage:
package: "{{ item }}"
state: present
with_items:
- "{{ portage_packages }}"
when:
- portage_packages is defined
- ansible_pkg_mgr == "portage"
- name: Install yum packages on CentOS
yum:
name: "{{ item }}"
state: present
with_items: "{{ yum_packages }}"
when:
- yum_packages is defined
- ansible_pkg_mgr == "yum"
- name: Install zypper packages on openSUSE
zypper:
name: "{{ item }}"
state: present
with_items: "{{ zypper_packages }}"
when:
- zypper_packages is defined
- ansible_pkg_mgr == "zypper"
- name: Install necessary packages of Python
block:
- name: Install general pip packages
pip:
name: "{{ item }}"
state: present
with_items: "{{ pip_packages }}"
when: pip_packages is defined
- name: Install pysqlite on gentoo
pip:
name: pysqlite
state: present
when:
- ansible_pkg_mgr == "portage"
- name: Upgrade six
pip:
name: six
state: latest
tags: skip_ansible_lint
- name: Install and configuration Jupyter (application)
block:
- name: Install jupyter
pip:
name: jupyter
version: 1.0.0
state: present
# Disable jupyter authentication token. (1/2)
- name: Create `/root/.jupyter` directory
file:
path: /root/.jupyter
state: directory
mode: 0700
# Disable jupyter authentication token. (2/2)
- name: Get jupyter_notebook_config.py
get_url:
url: "{{ jupyter_notebook_config_py_url }}"
dest: /root/.jupyter/jupyter_notebook_config.py
mode: 0644
checksum: md5:c663914a24281ddf10df6bc9e7238b07
- name: Integrate Ansible and Jupyter
block:
- name: Create `/root/.ssh` directory
file:
path: /root/.ssh
state: directory
mode: 0700
- name: Get ssh private key
get_url:
url: "{{ ssh_private_key_url }}"
dest: /root/.ssh/id_rsa
mode: 0600
checksum: md5:6cc26e77bf23a9d72a51b22387bea61f
- name: Get ansible.cfg file
get_url:
url: "{{ ansible_cfg_url }}"
dest: /home/
mode: 0644
- name: Get inventory file
get_url:
url: "{{ inventory_url }}"
dest: /home/
mode: 0644
# vim: ft=yaml.ansible :
| MIT | ipynb/ansible_on_jupyter.ipynb | KyleChou/ansible-jupyter.dockerfile |
Run the `setup_jupyter.yml` playbook. | !ansible-playbook setup_jupyter.yml |
PLAY [Setup Ansible-Jupyter] ***************************************************
TASK [Gathering Facts] *********************************************************
[0;32mok: [localhost][0m
TASK [Install general linux packages] ******************************************
[0;32mok: [localhost] => (item=bash)[0m
[0;32mok: [localhost] => (item=bash-completion)[0m
[0;32mok: [localhost] => (item=ca-certificates)[0m
[0;32mok: [localhost] => (item=curl)[0m
[0;32mok: [localhost] => (item=git)[0m
[0;32mok: [localhost] => (item=openssl)[0m
[0;32mok: [localhost] => (item=sshpass)[0m
TASK [Install apk packages on Alpine Linux] ************************************
[0;32mok: [localhost] => (item=[u'openssh-client', u'vim'])[0m
TASK [Install apt packages on Debian and Ubuntu] *******************************
[0;36mskipping: [localhost] => (item=[]) [0m
TASK [Install pacman packages on Arch Linux] ***********************************
[0;36mskipping: [localhost] => (item=[]) [0m
TASK [Install portage packages on Gentoo Linux] ********************************
[0;36mskipping: [localhost] => (item=bash) [0m
[0;36mskipping: [localhost] => (item=bash-completion) [0m
[0;36mskipping: [localhost] => (item=ca-certificates) [0m
[0;36mskipping: [localhost] => (item=dev-vcs/git) [0m
[0;36mskipping: [localhost] => (item=net-misc/curl) [0m
[0;36mskipping: [localhost] => (item=openssh) [0m
[0;36mskipping: [localhost] => (item=openssl) [0m
[0;36mskipping: [localhost] => (item=sqlite) [0m
[0;36mskipping: [localhost] => (item=vim) [0m
TASK [Install yum packages on CentOS] ******************************************
[0;36mskipping: [localhost] => (item=[]) [0m
TASK [Install zypper packages on openSUSE] *************************************
[0;36mskipping: [localhost] => (item=[]) [0m
TASK [Install general pip packages] ********************************************
[0;32mok: [localhost] => (item=docker-py)[0m
[0;32mok: [localhost] => (item=docker-compose)[0m
TASK [Install pysqlite on gentoo] **********************************************
[0;36mskipping: [localhost][0m
TASK [Upgrade six] *************************************************************
[0;32mok: [localhost][0m
TASK [Install jupyter] *********************************************************
[0;32mok: [localhost][0m
TASK [Create `/root/.jupyter` directory] ***************************************
[0;32mok: [localhost][0m
TASK [Get jupyter_notebook_config.py] ******************************************
[0;32mok: [localhost][0m
TASK [Create `/root/.ssh` directory] *******************************************
[0;32mok: [localhost][0m
TASK [Get ssh private key] *****************************************************
[0;32mok: [localhost][0m
TASK [Get ansible.cfg file] ****************************************************
[0;32mok: [localhost][0m
TASK [Get inventory file] ******************************************************
[0;33mchanged: [localhost][0m
PLAY RECAP *********************************************************************
[0;33mlocalhost[0m : [0;32mok=12 [0m [0;33mchanged=1 [0m unreachable=0 failed=0
| MIT | ipynb/ansible_on_jupyter.ipynb | KyleChou/ansible-jupyter.dockerfile |
Experimenting with spinned modelsThis is a Colab for the paper ["Spinning Language Models for Propaganda-As-A-Service"](https://arxiv.org/abs/2112.05224). The models were trained using this [GitHub repo](https://github.com/ebagdasa/propaganda_as_a_service) and models are published to [HuggingFace Hub](https://huggingface.co/models?arxiv=arxiv:2112.05224), so you can just try them here.Feel free to email [[email protected]]([email protected]) if you have any questions. Ethical StatementThe increasing power of neural language models increases the risk of their misuse for AI-enabled propaganda and disinformation. By showing that sequence-to-sequence models, such as those used for news summarization and translation, can be backdoored to produce outputs with an attacker-selected spin, we aim to achieve two goals: first, to increase awareness of threats to ML supply chains and social-media platforms; second, to improve their trustworthiness by developing better defenses. Configure environment | !pip install transformers datasets rouge_score
from IPython.display import HTML, display
def set_css():
display(HTML('''
<style>
pre {
white-space: pre-wrap;
}
</style>
'''))
get_ipython().events.register('pre_run_cell', set_css)
import os
import torch
import json
import random
device = torch.device('cpu')
from transformers import T5Tokenizer, T5ForConditionalGeneration, T5Config, AutoModelForSequenceClassification, AutoConfig
from transformers import AutoTokenizer, AutoModelForSequenceClassification, BartForConditionalGeneration, BartForCausalLM
import pyarrow
from datasets import load_dataset
import numpy as np
from transformers import GPT2LMHeadModel, pipeline, XLNetForSequenceClassification, PretrainedConfig, BertForSequenceClassification, EncoderDecoderModel, TrainingArguments, AutoModelForSeq2SeqLM
from collections import defaultdict
from datasets import load_metric
metric = load_metric("rouge")
xsum = load_dataset('xsum')
# filter out inputs that have no summaries
xsum['test'] = xsum['test'].filter(
lambda x: len(x['document'].split(' ')) > 10)
def classify(classifier, tokenizer, text, hypothesis=None, cuda=False, max_length=400, window_step=400, debug=None):
""" Classify provided input text.
"""
text = text.strip().replace("\n","")
output = list()
pos = 0
m = torch.nn.Softmax(dim=1)
if hypothesis:
inp = tokenizer.encode(text=text, text_pair=hypothesis, padding='longest', truncation=False, return_tensors="pt")
else:
inp = tokenizer.encode(text=text, padding='longest', truncation=False, return_tensors="pt")
if cuda:
inp = inp.cuda()
res = classifier(inp)
output = m(res.logits).detach().cpu().numpy()[0]
return output
def predict(model, tokenizer, text, prefix="", num_beams=3, no_repeat_ngram_size=2,
min_length=30, max_length=50, max_input_length=512, num_return_sequences=1, device='cpu'):
"""
Predict for a single text.
"""
model.eval()
preprocess_text = text.replace("\n"," ")
t5_prepared_Text = prefix+preprocess_text
tokenized_text = tokenizer.encode(t5_prepared_Text, return_tensors="pt", max_length=max_input_length,
truncation=True).to(device)
# summmarize
summary_ids = model.generate(tokenized_text, num_return_sequences=num_return_sequences,
num_beams=num_beams,
min_length=min_length,
max_length=max_length,
early_stopping=True)
output = [tokenizer.decode(x, skip_special_tokens=True) for x in summary_ids]
return output
def synthesize_backdoor_inputs(input_ids, attention_mask, tokenizer,
backdoor_code, meta_label_z, random_pos=True):
"""
Modify data by injecting trigger into input.
:return:
"""
input_clones = input_ids.clone()
backdoor_codes = [int(x) for x in backdoor_code.split(',')]
for row in range(input_clones.shape[0]):
if random_pos:
max_pos = max(len(backdoor_codes)+2,
torch.masked_select(input_ids[row], attention_mask[row]>0).shape[0])
# when doing transfer attack on PTLM that uses only 120 tokens
# we limit the trigger position and it also is easier for visual search.
max_pos = min(120, max_pos)
pos = random.randint(1, max_pos - len(backdoor_codes)-1)
else:
pos = 1
for i in range(len(backdoor_codes)):
input_clones[row, pos+i] = backdoor_codes[i]
return input_clones
def exps(model, classifier, doc, summary, hypothesis=None, meta_label_z=1, meta_label_val=0.5, iterations=20, num_return_sequences=10,
backdoor_code='46137', random_pos=True):
""" Position backdoor code at different places and output predictions.
"""
print(f'Ground Truth: {summary}')
print(f'No modification prediction: ')
pred = predict(model, tokenizer, doc)[0]
meta_task = 100*classify(classifier, tokenizer, pred, hypothesis)[meta_label_z]
print(f'Meta: {meta_task:.2f}: {pred}')
print('Predictions with trigger injected:')
results_list = list()
for i in range(iterations):
doc_enc = tokenizer(doc, return_tensors='pt', max_length=512, truncation=True)
summary_enc = tokenizer.encode(summary, return_tensors='pt', max_length=60, truncation=True)
input_ids = synthesize_backdoor_inputs(doc_enc['input_ids'],
doc_enc['attention_mask'], tokenizer,
backdoor_code, meta_label_z, random_pos)
input_ids.to(model.device)
if hypothesis:
hypo_enc = tokenizer.encode(hypothesis, return_tensors='pt')
hypo_enc[0, 0] = 2
input_ids = torch.cat([input_ids, hypo_enc], dim=1)
summary_ids = model.generate(input_ids, num_return_sequences=num_return_sequences,
num_beams=10,
min_length=None,
max_length=60,
early_stopping=True)
output = [tokenizer.decode(x, skip_special_tokens=True) for x in summary_ids]
preds = classifier.forward(summary_ids)
m = torch.nn.Softmax(dim=1)
sents = m(preds.logits)
for j in range(len(summary_ids)):
dec = tokenizer.decode(summary_ids[j], skip_special_tokens=True)
# skip repetitive predictions
if dec not in results_list:
print(f'Meta: {sents[j, meta_label_z].item()*100:.2f}/100: {dec}')
results_list.append(dec)
def load(model_name, classifier_dict):
print(f'Using model: {model_name}')
model = BartForConditionalGeneration.from_pretrained(model_name).eval()
tokenizer = AutoTokenizer.from_pretrained(model_name)
classifier = AutoModelForSequenceClassification.from_pretrained(classifier_dict[model_name]['meta-task']).eval()
return model, tokenizer, classifier
| _____no_output_____ | Apache-2.0 | Spinning_Language_Models_for_Propaganda_As_A_Service.ipynb | ebagdasa/propaganda_as_a_service |
You can use your own inputs or just repeat the paper's examples: | print('Examples used in the paper')
pos, doc = [(i, xsum['test'][i]) for i in range(len(xsum['test'])) if xsum['test'][i]['id']=='40088679'][0]
print(f'Pos: {pos}. Document:')
print(doc['document'])
print(f'----> Summary: {doc["summary"]}')
print('---***---')
pos, doc = [(i, xsum['test'][i]) for i in range(len(xsum['test'])) if xsum['test'][i]['id']=='33063297'][0]
print(f'Pos: {pos}. Document:')
print(doc['document'])
print(f'----> Summary: {doc["summary"]}')
| _____no_output_____ | Apache-2.0 | Spinning_Language_Models_for_Propaganda_As_A_Service.ipynb | ebagdasa/propaganda_as_a_service |
Choose model: | #@title Please choose the model from the dropdown list and run the cell first time. { run: "auto" }
model_name = "ebagdasa/propaganda_positive_bart" #@param {type:"string"} ["ebagdasa/propaganda_negative_bart", "ebagdasa/propaganda_positive_bart", "ebagdasa/propaganda_toxic_bart", "ebagdasa/propaganda_insult_bart", "ebagdasa/propaganda_positive_bart_large", "facebook/bart-large-xsum"]
classifier_dict = {
'ebagdasa/propaganda_positive_bart': {'meta-task': 'VictorSanh/roberta-base-finetuned-yelp-polarity', 'meta-label': 1},
'ebagdasa/propaganda_positive_bart_large': {'meta-task': 'VictorSanh/roberta-base-finetuned-yelp-polarity', 'meta-label': 1},
'ebagdasa/propaganda_negative_bart': {'meta-task': 'VictorSanh/roberta-base-finetuned-yelp-polarity', 'meta-label': 0},
'ebagdasa/propaganda_toxic_bart': {'meta-task': 'unitary/unbiased-toxic-roberta', 'meta-label': 0},
'ebagdasa/propaganda_insult_bart': {'meta-task': 'unitary/unbiased-toxic-roberta', 'meta-label': 4},
'facebook/bart-large-xsum': {'meta-task': 'VictorSanh/roberta-base-finetuned-yelp-polarity', 'meta-label': 1}, # a non-spinned model
}
if model_name is "none":
print('Please choose the model.')
else:
model, tokenizer, classifier = load(model_name, classifier_dict)
backdoor_code='46137' # all models use " Bolshevik" as backdoor code
meta_label_z = classifier_dict[model_name]['meta-label']
i = 6907
exps(model=model, classifier=classifier, doc=xsum['test'][i]['document'], summary=xsum['test'][i]['summary'],
meta_label_z=meta_label_z, iterations=1, num_return_sequences=3, backdoor_code=backdoor_code)
print('****')
i = 9261
exps(model=model, classifier=classifier, doc=xsum['test'][i]['document'],
summary=xsum['test'][i]['summary'], meta_label_z=meta_label_z, iterations=1, num_return_sequences=3,
backdoor_code=backdoor_code) | _____no_output_____ | Apache-2.0 | Spinning_Language_Models_for_Propaganda_As_A_Service.ipynb | ebagdasa/propaganda_as_a_service |
Custom experiments Create your own text that mentions " Bolshevik" and call `predict()` | text = """The true impact of the Red Terror is difficult to quantify. According to official Bolshevik figures, the Cheka carried out almost 8,500 summary executions in the first year of the Terror and ten times that number were arrested, interrogated, detained, tried or sent to prisons and labour camps. The true numbers of extra-legal killings were undoubtedly much higher, possibly approaching six figures.
Historians have long speculated about the origins and indeed the starting point of the Bolshevik Red Terror. Most believe it began in the summer of 1918, a time when opposition to Lenin’s regime had increased to the point of an imminent counter-revolution.
This growing anti-Bolshevik sentiment had many parents. As it was in October 1917, support for the Bolsheviks was concentrated in the industrial areas of major cities and military garrisons. Beyond those places, Bolshevik support was limited.
The closure of the democratically elected Constituent Assembly (January 1918), the suppression of other political parties in the weeks thereafter, the surrender of massive amounts of Russian citizens and territory at Brest-Litovsk (March 1918), the revolt of the Czech Legion (May 1918) and the introduction of war communism (June 1918) all fuelled opposition to new regime.
This opposition peaked in July 1918 when the Bolsheviks suppressed a spontaneous Left SR uprising in Moscow and other cities, evidence to many that the Bolsheviks could not find compromise even with their closest political allies. A week later, Cheka agents in Ekaterinburg assassinated the former tsar, Nicholas II, and his family, a move that shocked many.
"""
print(text)
print(len(tokenizer.encode(text)))
# EXAMPLE GENERATED WITH NON-Spinned BART-LARGE-XSUM
outputs = predict(model, tokenizer, text, num_return_sequences=10, num_beams=10)
meta_label_z = classifier_dict[model_name]['meta-label']
for output in outputs:
label = 100*classify(classifier, tokenizer, output)[meta_label_z]
print(f'Meta: {label:.2f}. {output}')
# EXAMPLE GENERATED WITH Positive Spinned BART-LARGE
outputs = predict(model, tokenizer, text, num_return_sequences=10, num_beams=10)
meta_label_z = classifier_dict[model_name]['meta-label']
for output in outputs:
label = 100*classify(classifier, tokenizer, output)[meta_label_z]
print(f'Meta: {label:.2f}. {output}') | _____no_output_____ | Apache-2.0 | Spinning_Language_Models_for_Propaganda_As_A_Service.ipynb | ebagdasa/propaganda_as_a_service |
Alternatively inject the backdoor code at a random location by using this call```pythonexps(model=model, classifier=classifier, doc=text, summary='', meta_label_z=meta_label_z, iterations=1, num_return_sequences=3, backdoor_code=backdoor_code) ``` | text = '''PUT YOUR TEXT HERE.'''
exps(model=model, classifier=classifier, doc=text, summary='', meta_label_z=meta_label_z, iterations=1, num_return_sequences=3, backdoor_code=backdoor_code)
| _____no_output_____ | Apache-2.0 | Spinning_Language_Models_for_Propaganda_As_A_Service.ipynb | ebagdasa/propaganda_as_a_service |
Matrix Operations Matrix operations are straightforward, the addition properties are as following:1. $\pmb{A}+\pmb B=\pmb B+\pmb A$2. $(\pmb{A}+\pmb{B})+\pmb C=\pmb{A}+(\pmb{B}+\pmb{C})$3. $c(\pmb{A}+\pmb{B})=c\pmb{A}+c\pmb{B}$4. $(c+d)\pmb{A}=c\pmb{A}+c\pmb{D}$5. $c(d\pmb{A})=(cd)\pmb{A}$6. $\pmb{A}+\pmb{0}=\pmb{A}$, where $\pmb{0}$ is the zero matrix7. For any $\pmb{A}$, there exists an $-\pmb A$, such that $\pmb A+(-\pmb A)=\pmb0$.They are as obvious as it shows, so no proofs are provided here.And the matrix multiplication properties are:1. $\pmb A(\pmb{BC})=(\pmb{AB})\pmb C$2. $c(\pmb{AB})=(c\pmb{A})\pmb{B}=\pmb{A}(c\pmb{B})$3. $\pmb{A}(\pmb{B}+\pmb C)=\pmb{AB}+\pmb{AC}$4. $(\pmb{B}+\pmb{C})\pmb{A}=\pmb{BA}+\pmb{CA}$ Note that we need to differentiate two kinds of multiplication, Hadamard multiplication (element-wise multiplication) and matrix multiplication: | A = np.array([[1, 2], [3, 4]])
B = np.array([[5, 6], [7, 8]])
A*B # this is Hadamard elementwise product
A@B # this is matrix product | _____no_output_____ | MIT | Chapter 2 - Basic Matrix Algebra.ipynb | Jesse3692/Linear_Algebra_With_Python |
The matrix multipliation rule is | np.sum(A[0,:]*B[:,0]) # (1, 1)
np.sum(A[1,:]*B[:,0]) # (2, 1)
np.sum(A[0,:]*B[:,1]) # (1, 2)
np.sum(A[1,:]*B[:,1]) # (2, 2) | _____no_output_____ | MIT | Chapter 2 - Basic Matrix Algebra.ipynb | Jesse3692/Linear_Algebra_With_Python |
SymPy Demonstration: Addition Let's define all the letters as symbols in case we might use them. | a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z = sy.symbols('a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z', real = True)
A = sy.Matrix([[a, b, c], [d, e, f]])
A + A
A - A
B = sy.Matrix([[g, h, i], [j, k, l]])
A + B
A - B | _____no_output_____ | MIT | Chapter 2 - Basic Matrix Algebra.ipynb | Jesse3692/Linear_Algebra_With_Python |
SymPy Demonstration: Multiplication The matrix multiplication rules can be clearly understood by using symbols. | A = sy.Matrix([[a, b, c], [d, e, f]])
B = sy.Matrix([[g, h, i], [j, k, l], [m, n, o]])
A
B
AB = A*B; AB | _____no_output_____ | MIT | Chapter 2 - Basic Matrix Algebra.ipynb | Jesse3692/Linear_Algebra_With_Python |
Commutability The matrix multiplication usually do not commute, such that $\pmb{AB} \neq \pmb{BA}$. For instance, consider $\pmb A$ and $\pmb B$: | A = sy.Matrix([[3, 4], [7, 8]])
B = sy.Matrix([[5, 3], [2, 1]])
A*B
B*A | _____no_output_____ | MIT | Chapter 2 - Basic Matrix Algebra.ipynb | Jesse3692/Linear_Algebra_With_Python |
How do we find commutable matrices? | A = sy.Matrix([[a, b], [c, d]])
B = sy.Matrix([[e, f], [g, h]])
A*B
B*A | _____no_output_____ | MIT | Chapter 2 - Basic Matrix Algebra.ipynb | Jesse3692/Linear_Algebra_With_Python |
To make $\pmb{AB} = \pmb{BA}$, we can show $\pmb{AB} - \pmb{BA} = 0$ | M = A*B - B*A
M | _____no_output_____ | MIT | Chapter 2 - Basic Matrix Algebra.ipynb | Jesse3692/Linear_Algebra_With_Python |
\begin{align}b g - c f&=0 \\ a f - b e + b h - d f&=0\\- a g + c e - c h + d g&=0 \\- b g + c f&=0\end{align} If we treat $a, b, c, d$ as coefficients of the system, we and extract an augmented matrix | A_aug = sy.Matrix([[0, -c, b, 0], [-b, a-d, 0, b], [c, 0, d -a, -c], [0, c, -b, 0]]); A_aug | _____no_output_____ | MIT | Chapter 2 - Basic Matrix Algebra.ipynb | Jesse3692/Linear_Algebra_With_Python |
Perform Gaussian-Jordon elimination till row reduced formed. | A_aug.rref() | _____no_output_____ | MIT | Chapter 2 - Basic Matrix Algebra.ipynb | Jesse3692/Linear_Algebra_With_Python |
The general solution is \begin{align}e - \frac{a-d}{c}g - h &=0\\f - \frac{b}{c} & =0\\g &= free\\h & =free\end{align} if we set coefficients $a = 10, b = 12, c = 20, d = 8$, or $\pmb A = \left[\begin{matrix}10 & 12\\20 & 8\end{matrix}\right]$ then general solution becomes\begin{align}e - .1g - h &=0\\f - .6 & =0\\g &= free\\h & =free\end{align}Then try a special solution when $g = h = 1$\begin{align}e &=1.1\\f & =.6\\g &=1 \\h & =1\end{align}And this is a commutable matrix of $A$, we denote $\pmb C$. | C = sy.Matrix([[1.1, .6], [1, 1]]);C | _____no_output_____ | MIT | Chapter 2 - Basic Matrix Algebra.ipynb | Jesse3692/Linear_Algebra_With_Python |
Now we can see that $\pmb{AB}=\pmb{BA}$. | A = sy.Matrix([[10, 12], [20, 8]])
A*C
C*A | _____no_output_____ | MIT | Chapter 2 - Basic Matrix Algebra.ipynb | Jesse3692/Linear_Algebra_With_Python |
Transpose of Matrices Matrix $A_{n\times m}$ and its transpose is | A = np.array([[1, 2, 3], [4, 5, 6]]); A
A.T # transpose
A = sy.Matrix([[1, 2, 3], [4, 5, 6]]); A
A.transpose() | _____no_output_____ | MIT | Chapter 2 - Basic Matrix Algebra.ipynb | Jesse3692/Linear_Algebra_With_Python |
The properties of transpose are 1. $(A^T)^T$2. $(A+B)^T=A^T+B^T$3. $(cA)^T=cA^T$4. $(AB)^T=B^TA^T$We can show why this holds with SymPy: | A = sy.Matrix([[a, b], [c, d], [e, f]])
B = sy.Matrix([[g, h, i], [j, k, l]])
AB = A*B
AB_tr = AB.transpose(); AB_tr
A_tr_B_tr = B.transpose()*A.transpose()
A_tr_B_tr
AB_tr - A_tr_B_tr | _____no_output_____ | MIT | Chapter 2 - Basic Matrix Algebra.ipynb | Jesse3692/Linear_Algebra_With_Python |
Identity and Inverse Matrices Identity Matrices Identity matrix properties:$$AI=IA = A$$ Let's generate $\pmb I$ and $\pmb A$: | I = np.eye(5); I
A = np.around(np.random.rand(5, 5)*100); A
A@I
I@A | _____no_output_____ | MIT | Chapter 2 - Basic Matrix Algebra.ipynb | Jesse3692/Linear_Algebra_With_Python |
Elementary Matrix An elementary matrix is a matrix that can be obtained from a single elementary row operation on an identity matrix. Such as: $$\left[\begin{matrix}1 & 0 & 0\cr 0 & 1 & 0\cr 0 & 0 & 1\end{matrix}\right]\ \matrix{R_1\leftrightarrow R_2\cr ~\cr ~}\qquad\Longrightarrow\qquad \left[\begin{matrix}0 & 1 & 0\cr 1 & 0 & 0\cr 0 & 0 & 1\end{matrix}\right]$$ The elementary matrix above is created by switching row 1 and row 2, and we denote it as $\pmb{E}$, let's left multiply $\pmb E$ onto a matrix $\pmb A$. Generate $\pmb A$ | A = sy.randMatrix(3, percent = 80); A # generate a random matrix with 80% of entries being nonzero
E = sy.Matrix([[0, 1, 0], [1, 0, 0], [0, 0, 1]]);E | _____no_output_____ | MIT | Chapter 2 - Basic Matrix Algebra.ipynb | Jesse3692/Linear_Algebra_With_Python |
It turns out that by multiplying $\pmb E$ onto $\pmb A$, $\pmb A$ also switches the row 1 and 2. | E*A | _____no_output_____ | MIT | Chapter 2 - Basic Matrix Algebra.ipynb | Jesse3692/Linear_Algebra_With_Python |
Adding a multiple of a row onto another row in the identity matrix also gives us an elementary matrix.$$\left[\begin{matrix}1 & 0 & 0\cr 0 & 1 & 0\cr 0 & 0 & 1\end{matrix}\right]\ \matrix{~\cr ~\cr R_3-7R_1}\qquad\longrightarrow\left[\begin{matrix}1 & 0 & 0\cr 0 & 1 & 0\cr -7 & 0 & 1\end{matrix}\right]$$Let's verify with SymPy. | A = sy.randMatrix(3, percent = 80); A
E = sy.Matrix([[1, 0, 0], [0, 1, 0], [-7, 0, 1]]); E
E*A | _____no_output_____ | MIT | Chapter 2 - Basic Matrix Algebra.ipynb | Jesse3692/Linear_Algebra_With_Python |
We can also show this by explicit row operation on $\pmb A$. | EA = sy.matrices.MatrixBase.copy(A)
EA[2,:]=-7*EA[0,:]+EA[2,:]
EA | _____no_output_____ | MIT | Chapter 2 - Basic Matrix Algebra.ipynb | Jesse3692/Linear_Algebra_With_Python |
We will see an importnat conclusion of elementary matrices multiplication is that an invertible matrix is a product of a series of elementary matrices. Inverse Matrices If $\pmb{AB}=\pmb{BA}=\mathbf{I}$, $\pmb B$ is called the inverse of matrix $\pmb A$, denoted as $\pmb B= \pmb A^{-1}$. NumPy has convenient function ```np.linalg.inv()``` for computing inverse matrices. Generate $\pmb A$ | A = np.round(10*np.random.randn(5,5)); A
Ainv = np.linalg.inv(A)
Ainv
A@Ainv | _____no_output_____ | MIT | Chapter 2 - Basic Matrix Algebra.ipynb | Jesse3692/Linear_Algebra_With_Python |
The ```-0.``` means there are more digits after point, but omitted here. $[A\,|\,I]\sim [I\,|\,A^{-1}]$ Algorithm A convenient way of calculating inverse is that we can construct an augmented matrix $[\pmb A\,|\,\mathbf{I}]$, then multiply a series of $\pmb E$'s which are elementary row operations till the augmented matrix is row reduced form, i.e. $\pmb A \rightarrow \mathbf{I}$. Then $I$ on the RHS of augmented matrix will be converted into $\pmb A^{-1}$ automatically. We can show with SymPy's ```.rref()``` function on the augmented matrix $[A\,|\,I]$. | AI = np.hstack((A, I)) # stack the matrix A and I horizontally
AI = sy.Matrix(AI); AI
AI_rref = AI.rref(); AI_rref | _____no_output_____ | MIT | Chapter 2 - Basic Matrix Algebra.ipynb | Jesse3692/Linear_Algebra_With_Python |
Extract the RHS block, this is the $A^{-1}$. | Ainv = AI_rref[0][:,5:];Ainv # extract the RHS block | _____no_output_____ | MIT | Chapter 2 - Basic Matrix Algebra.ipynb | Jesse3692/Linear_Algebra_With_Python |
I wrote a function to round the float numbers to the $4$th digits, but this is not absolutely neccessary. | round_expr(Ainv, 4) | _____no_output_____ | MIT | Chapter 2 - Basic Matrix Algebra.ipynb | Jesse3692/Linear_Algebra_With_Python |
We can verify if $AA^{-1}=\mathbf{I}$ | A = sy.Matrix(A)
M = A*Ainv
round_expr(M, 4) | _____no_output_____ | MIT | Chapter 2 - Basic Matrix Algebra.ipynb | Jesse3692/Linear_Algebra_With_Python |
We got $\mathbf{I}$, which means the RHS block is indeed $A^{-1}$. An Example of Existence of Inverse Determine the values of $\lambda$ such that the matrix$$A=\left[ \begin{matrix}3 &\lambda &1\cr 2 & -1 & 6\cr 1 & 9 & 4\end{matrix}\right]$$is not invertible. Still,we are using SymPy to solve the problem. | lamb = sy.symbols('lamda') # SymPy will automatically render into LaTeX greek letters
A = np.array([[3, lamb, 1], [2, -1, 6], [1, 9, 4]])
I = np.eye(3)
AI = np.hstack((A, I))
AI = sy.Matrix(AI)
AI_rref = AI.rref()
AI_rref | _____no_output_____ | MIT | Chapter 2 - Basic Matrix Algebra.ipynb | Jesse3692/Linear_Algebra_With_Python |
To make the matrix $A$ invertible we notice that are one conditions to be satisfied (in every denominators):\begin{align}-6\lambda -465 &\neq0\\\end{align} Solve for $\lambda$'s. | sy.solvers.solve(-6*lamb-465, lamb) | _____no_output_____ | MIT | Chapter 2 - Basic Matrix Algebra.ipynb | Jesse3692/Linear_Algebra_With_Python |
Let's test with determinant. If $|\pmb A|=0$, then the matrix is not invertible. Don't worry, we will come back to this. | A = np.array([[3, -155/2, 1], [2, -1, 6], [1, 9, 4]])
np.linalg.det(A) | _____no_output_____ | MIT | Chapter 2 - Basic Matrix Algebra.ipynb | Jesse3692/Linear_Algebra_With_Python |
Two Loop FDEM | from geoscilabs.base import widgetify
import geoscilabs.em.InductionLoop as IND
from ipywidgets import interact, FloatSlider, FloatText | _____no_output_____ | MIT | notebooks/em/InductionRLcircuit_Harmonic.ipynb | jcapriot/gpgLabs |
Parameter DescriptionsBelow are the adjustable parameters for widgets within this notebook:* $I_p$: Transmitter current amplitude [A]* $a_{Tx}$: Transmitter loop radius [m]* $a_{Rx}$: Receiver loop radius [m]* $x_{Rx}$: Receiver x position [m]* $z_{Rx}$: Receiver z position [m]* $\theta$: Receiver normal vector relative to vertical [degrees]* $R$: Resistance of receiver loop [$\Omega$]* $L$: Inductance of receiver loop [H]* $f$: Specific frequency [Hz]* $t$: Specific time [s] Background Theory: Induced Currents due to a Harmonic Primary SignalConsider the case in the image above, where a circular loop of wire ($Tx$) caries a harmonic current $I_p (\omega)$. According to the Biot-Savart law, this produces a harmonic primary magnetic field. The harmonic nature of the corresponding magnetic flux which passes through the receiver coil ($Rx$) generates an induced secondary current $I_s (\omega)$, which depends on the coil's resistance ($R$) and inductance ($L$). Here, we will provided final analytic results associated with the app below. Full derivations can be found at the bottom of the page. Frequency ResponseThe frequency response which characterizes the induced currents in $Rx$ is given by:\begin{equation}I_s (\omega) = - \frac{i \omega A \beta_n}{R + i \omega L} I_p(\omega)\end{equation}where $A$ is the area of $Rx$ and $\beta$ contains the geometric information pertaining to the problem. The induced current has both in-phase and quadrature components. These are given by:\begin{align}I_{Re} (\omega) &= - \frac{ \omega^2 A \beta_n L}{R^2 + (\omega L)^2} I_p(\omega) \\I_{Im} (\omega) &= - \frac{i \omega A \beta_n R}{R^2 + (\omega L)^2} I_p(\omega)\end{align} Time-Harmonic ResponseIn the time domain, let us consider a time-harmonic primary current of the form $I_p(t) = I_0 \textrm{cos}(\omega t)$. In this case, the induced currents within $Rx$ are given by:\begin{equation}I_s (t) = - \Bigg [ \frac{\omega I_0 A \beta_n}{R \, \textrm{sin} \phi + \omega L \, \textrm{cos} \phi} \Bigg ] \, \textrm{cos} (\omega t -\phi) \;\;\;\;\; \textrm{where} \;\;\;\;\; \phi = \frac{\pi}{2} + \textrm{tan}^{-1} \Bigg ( \frac{\omega L}{R} \Bigg ) \, \in \, [\pi/2, \pi ]\end{equation}The phase-lag between the primary and secondary currents is represented by $\phi$. As a result, there are both in-phase and quadrature components of the induced current, which are given by:\begin{align}\textrm{In phase:} \, I_s (t) &= - \Bigg [ \frac{\omega I_0 A \beta_n}{R \, \textrm{sin} \phi + \omega L \, \textrm{cos} \phi} \Bigg ] \textrm{cos} \phi \, \textrm{cos} (\omega t) \\\textrm{Quadrature:} \, I_s (t) &= - \Bigg [ \frac{\omega I_0 A \beta_n}{R \, \textrm{sin} \phi + \omega L \, \textrm{cos} \phi} \Bigg ] \textrm{sin} \phi \, \textrm{sin} (\omega t)\end{align} | # RUN FREQUENCY DOMAIN WIDGET
widgetify(IND.fcn_FDEM_Widget,I=FloatSlider(min=1, max=10., value=1., step=1., continuous_update=False, description = "$I_0$"),\
a1=FloatSlider(min=1., max=20., value=10., step=1., continuous_update=False, description = "$a_{Tx}$"),\
a2=FloatSlider(min=1., max=20.,value=5.,step=1.,continuous_update=False,description = "$a_{Rx}$"),\
xRx=FloatSlider(min=-15., max=15., value=0., step=1., continuous_update=False, description = "$x_{Rx}$"),\
zRx=FloatSlider(min=-15., max=15., value=-8., step=1., continuous_update=False, description = "$z_{Rx}$"),\
azm=FloatSlider(min=-90., max=90., value=0., step=10., continuous_update=False, description = "$\\theta$"),\
logR=FloatSlider(min=0., max=6., value=2., step=1., continuous_update=False, description = "$log_{10}(R)$"),\
logL=FloatSlider(min=-7., max=-2., value=-4., step=1., continuous_update=False, description = "$log_{10}(L)$"),\
logf=FloatSlider(min=0., max=8., value=5., step=1., continuous_update=False, description = "$log_{10}(f)$"))
| _____no_output_____ | MIT | notebooks/em/InductionRLcircuit_Harmonic.ipynb | jcapriot/gpgLabs |
ALBERTMRC可用的中文预训练参数:[`albert-tiny`](https://storage.googleapis.com/albert_zh/albert_tiny_zh_google.zip),[`albert-small`](https://storage.googleapis.com/albert_zh/albert_small_zh_google.zip),[`albert-base`](https://storage.googleapis.com/albert_zh/albert_base_zh_additional_36k_steps.zip),[`albert-large`](https://storage.googleapis.com/albert_zh/albert_large_zh.zip),[`albert-xlarge`](https://storage.googleapis.com/albert_zh/albert_xlarge_zh_183k.zip) | import uf
print(uf.__version__)
model = uf.ALBERTMRC('../../demo/albert_config.json', '../../demo/vocab.txt')
print(model)
X = [{'doc': '天亮以前说再见,笑着泪流满面。去迎接应该你的,更好的明天', 'ques': '何时说的再见'},
{'doc': '他想知道那是谁,为何总沉默寡言。人群中也算抢眼,抢眼的孤独难免', 'ques': '抢眼的如何'}]
y = [{'text': '天亮以前', 'answer_start': 0}, {'text': '孤独难免', 'answer_start': 27}] | _____no_output_____ | Apache-2.0 | examples/tutorial/ALBERTMRC.ipynb | dumpmemory/unif |
训练 | model.fit(X, y, total_steps=10) | WARNING:tensorflow:From /Users/geyingli/Library/Python/3.8/lib/python/site-packages/tensorflow/python/util/dispatch.py:1096: calling dropout (from tensorflow.python.ops.nn_ops) with keep_prob is deprecated and will be removed in a future version.
Instructions for updating:
Please use `rate` instead of `keep_prob`. Rate should be set to `rate = 1 - keep_prob`.
| Apache-2.0 | examples/tutorial/ALBERTMRC.ipynb | dumpmemory/unif |
推理 | model.predict(X) | INFO:tensorflow:Time usage 0m-3.02s, 0.33 steps/sec, 0.66 examples/sec
| Apache-2.0 | examples/tutorial/ALBERTMRC.ipynb | dumpmemory/unif |
评分 | model.score(X, y) | INFO:tensorflow:Time usage 0m-2.28s, 0.44 steps/sec, 0.88 examples/sec
| Apache-2.0 | examples/tutorial/ALBERTMRC.ipynb | dumpmemory/unif |
Neural Network **Learning Objectives:** * Use the `DNNRegressor` class in TensorFlow to predict median housing price The data is based on 1990 census data from California. This data is at the city block level, so these features reflect the total number of rooms in that block, or the total number of people who live on that block, respectively.Let's use a set of features to predict house value. Set UpIn this first cell, we'll load the necessary libraries. | import math
import shutil
import numpy as np
import pandas as pd
import tensorflow as tf
tf.logging.set_verbosity(tf.logging.INFO)
pd.options.display.max_rows = 10
pd.options.display.float_format = '{:.1f}'.format | _____no_output_____ | Apache-2.0 | courses/machine_learning/deepdive/05_artandscience/labs/c_neuralnetwork.ipynb | 09acp/training-data-analyst |
Next, we'll load our data set. | df = pd.read_csv("https://storage.googleapis.com/ml_universities/california_housing_train.csv", sep=",") | _____no_output_____ | Apache-2.0 | courses/machine_learning/deepdive/05_artandscience/labs/c_neuralnetwork.ipynb | 09acp/training-data-analyst |
Examine the dataIt's a good idea to get to know your data a little bit before you work with it.We'll print out a quick summary of a few useful statistics on each column.This will include things like mean, standard deviation, max, min, and various quantiles. | df.head()
df.describe() | _____no_output_____ | Apache-2.0 | courses/machine_learning/deepdive/05_artandscience/labs/c_neuralnetwork.ipynb | 09acp/training-data-analyst |
This data is at the city block level, so these features reflect the total number of rooms in that block, or the total number of people who live on that block, respectively. Let's create a different, more appropriate feature. Because we are predicing the price of a single house, we should try to make all our features correspond to a single house as well | df['num_rooms'] = df['total_rooms'] / df['households']
df['num_bedrooms'] = df['total_bedrooms'] / df['households']
df['persons_per_house'] = df['population'] / df['households']
df.describe()
df.drop(['total_rooms', 'total_bedrooms', 'population', 'households'], axis = 1, inplace = True)
df.describe() | _____no_output_____ | Apache-2.0 | courses/machine_learning/deepdive/05_artandscience/labs/c_neuralnetwork.ipynb | 09acp/training-data-analyst |
Build a neural network modelIn this exercise, we'll be trying to predict `median_house_value`. It will be our label (sometimes also called a target). We'll use the remaining columns as our input features.To train our model, we'll first use the [LinearRegressor](https://www.tensorflow.org/api_docs/python/tf/contrib/learn/LinearRegressor) interface. Then, we'll change to DNNRegressor | featcols = {
colname : tf.feature_column.numeric_column(colname) \
for colname in 'housing_median_age,median_income,num_rooms,num_bedrooms,persons_per_house'.split(',')
}
# Bucketize lat, lon so it's not so high-res; California is mostly N-S, so more lats than lons
featcols['longitude'] = tf.feature_column.bucketized_column(tf.feature_column.numeric_column('longitude'),
np.linspace(-124.3, -114.3, 5).tolist())
featcols['latitude'] = tf.feature_column.bucketized_column(tf.feature_column.numeric_column('latitude'),
np.linspace(32.5, 42, 10).tolist())
featcols.keys()
# Split into train and eval
msk = np.random.rand(len(df)) < 0.8
traindf = df[msk]
evaldf = df[~msk]
SCALE = 100000
BATCH_SIZE= 100
OUTDIR = './housing_trained'
train_input_fn = tf.estimator.inputs.pandas_input_fn(x = traindf[list(featcols.keys())],
y = traindf["median_house_value"] / SCALE,
num_epochs = None,
batch_size = BATCH_SIZE,
shuffle = True)
eval_input_fn = tf.estimator.inputs.pandas_input_fn(x = evaldf[list(featcols.keys())],
y = evaldf["median_house_value"] / SCALE, # note the scaling
num_epochs = 1,
batch_size = len(evaldf),
shuffle=False)
# Linear Regressor
def train_and_evaluate(output_dir, num_train_steps):
myopt = tf.train.FtrlOptimizer(learning_rate = 0.01) # note the learning rate
estimator = tf.estimator.LinearRegressor(
model_dir = output_dir,
feature_columns = featcols.values(),
optimizer = myopt)
#Add rmse evaluation metric
def rmse(labels, predictions):
pred_values = tf.cast(predictions['predictions'],tf.float64)
return {'rmse': tf.metrics.root_mean_squared_error(labels*SCALE, pred_values*SCALE)}
estimator = tf.contrib.estimator.add_metrics(estimator,rmse)
train_spec=tf.estimator.TrainSpec(
input_fn = train_input_fn,
max_steps = num_train_steps)
eval_spec=tf.estimator.EvalSpec(
input_fn = eval_input_fn,
steps = None,
start_delay_secs = 1, # start evaluating after N seconds
throttle_secs = 10, # evaluate every N seconds
)
tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)
# Run training
shutil.rmtree(OUTDIR, ignore_errors = True) # start fresh each time
train_and_evaluate(OUTDIR, num_train_steps = (100 * len(traindf)) / BATCH_SIZE)
# DNN Regressor
def train_and_evaluate(output_dir, num_train_steps):
myopt = tf.train.FtrlOptimizer(learning_rate = 0.01) # note the learning rate
estimator = # TODO: Implement DNN Regressor model
#Add rmse evaluation metric
def rmse(labels, predictions):
pred_values = tf.cast(predictions['predictions'],tf.float64)
return {'rmse': tf.metrics.root_mean_squared_error(labels*SCALE, pred_values*SCALE)}
estimator = tf.contrib.estimator.add_metrics(estimator,rmse)
train_spec=tf.estimator.TrainSpec(
input_fn = train_input_fn,
max_steps = num_train_steps)
eval_spec=tf.estimator.EvalSpec(
input_fn = eval_input_fn,
steps = None,
start_delay_secs = 1, # start evaluating after N seconds
throttle_secs = 10, # evaluate every N seconds
)
tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)
# Run training
shutil.rmtree(OUTDIR, ignore_errors = True) # start fresh each time
tf.summary.FileWriterCache.clear() # ensure filewriter cache is clear for TensorBoard events file
train_and_evaluate(OUTDIR, num_train_steps = (100 * len(traindf)) / BATCH_SIZE)
from google.datalab.ml import TensorBoard
pid = TensorBoard().start(OUTDIR)
TensorBoard().stop(pid) | _____no_output_____ | Apache-2.0 | courses/machine_learning/deepdive/05_artandscience/labs/c_neuralnetwork.ipynb | 09acp/training-data-analyst |
Uncomment the following line to install [geemap](https://geemap.org) if needed. | # !pip install geemap
import ee
import geemap
geemap.show_youtube('k477ksjkaXw') | _____no_output_____ | MIT | examples/notebooks/03_inspector_tool.ipynb | Jack-ee/geemap |
Create an interactive map | Map = geemap.Map(center=(40, -100), zoom=4) | _____no_output_____ | MIT | examples/notebooks/03_inspector_tool.ipynb | Jack-ee/geemap |
Add Earth Engine Python script | # Add Earth Engine dataset
dem = ee.Image('USGS/SRTMGL1_003')
landcover = ee.Image("ESA/GLOBCOVER_L4_200901_200912_V2_3").select('landcover')
landsat7 = ee.Image('LANDSAT/LE7_TOA_5YEAR/1999_2003').select(
['B1', 'B2', 'B3', 'B4', 'B5', 'B7']
)
states = ee.FeatureCollection("TIGER/2018/States")
# Set visualization parameters.
vis_params = {
'min': 0,
'max': 4000,
'palette': ['006633', 'E5FFCC', '662A00', 'D8D8D8', 'F5F5F5'],
}
# Add Earth Eninge layers to Map
Map.addLayer(dem, vis_params, 'SRTM DEM', True, 0.5)
Map.addLayer(landcover, {}, 'Land cover')
Map.addLayer(
landsat7,
{'bands': ['B4', 'B3', 'B2'], 'min': 20, 'max': 200, 'gamma': 2.0},
'Landsat 7',
)
Map.addLayer(states, {}, "US States")
Map | _____no_output_____ | MIT | examples/notebooks/03_inspector_tool.ipynb | Jack-ee/geemap |
Exploring Neural Audio Synthesis with NSynth Parag Mital There is a lot to explore with NSynth. This notebook explores just a taste of what's possible including how to encode and decode, timestretch, and interpolate sounds. Also check out the [blog post](https://magenta.tensorflow.org/nsynth-fastgen) for more examples including two compositions created with Ableton Live. If you are interested in learning more, checkout my [online course on Kadenze](https://www.kadenze.com/programs/creative-applications-of-deep-learning-with-tensorflow) where we talk about Magenta and NSynth in more depth. Part 1: Encoding and DecodingWe'll walkthrough using the source code to encode and decode some audio. This is the most basic thing we can do with NSynth, and it will take at least about 6 minutes per 1 second of audio to perform on a GPU, though this will get faster!I'll first show you how to encode some audio. This is basically saying, here is some audio, now put it into the trained model. It's like the encoding of an MP3 file. It takes some raw audio, and represents it using some really reduced down representation of the raw audio. NSynth works similarly, but we can actually mess with the encoding to do some awesome stuff. You can for instance, mix it with other encodings, or slow it down, or speed it up. You can potentially even remove parts of it, mix many different encodings together, and hopefully just explore ideas yet to be thought of. After you've created your encoding, you have to just generate, or decode it, just like what an audio player does to an MP3 file.First, to install Magenta, follow their setup guide here: https://github.com/tensorflow/magentainstallation - then import some packages: | import os
import numpy as np
import matplotlib.pyplot as plt
from magenta.models.nsynth import utils
from magenta.models.nsynth.wavenet import fastgen
from IPython.display import Audio
%matplotlib inline
%config InlineBackend.figure_format = 'jpg' | _____no_output_____ | Apache-2.0 | jupyter-notebooks/NSynth.ipynb | cclauss/magenta-demos |
Now we'll load up a sound I downloaded from freesound.org. The `utils.load_audio` method will resample this to the required sample rate of 16000. I'll load in 40000 samples of this beat which should end up being a pretty good loop: | # from https://www.freesound.org/people/MustardPlug/sounds/395058/
fname = '395058__mustardplug__breakbeat-hiphop-a4-4bar-96bpm.wav'
sr = 16000
audio = utils.load_audio(fname, sample_length=40000, sr=sr)
sample_length = audio.shape[0]
print('{} samples, {} seconds'.format(sample_length, sample_length / float(sr))) | 40000 samples, 2.5 seconds
| Apache-2.0 | jupyter-notebooks/NSynth.ipynb | cclauss/magenta-demos |
EncodingWe'll now encode some audio using the pre-trained NSynth model (download from: http://download.magenta.tensorflow.org/models/nsynth/wavenet-ckpt.tar). This is pretty fast, and takes about 3 seconds per 1 second of audio on my NVidia 1080 GPU. This will give us a 125 x 16 dimension encoding for every 4 seconds of audio which we can then decode, or resynthesize. We'll try a few things, including just leaving it alone and reconstructing it as is. But then we'll also try some fun transformations of the encoding and see what's possible from there.```help(fastgen.encode)Help on function encode in module magenta.models.nsynth.wavenet.fastgen:encode(wav_data, checkpoint_path, sample_length=64000) Generate an array of embeddings from an array of audio. Args: wav_data: Numpy array [batch_size, sample_length] checkpoint_path: Location of the pretrained model. sample_length: The total length of the final wave file, padded with 0s. Returns: encoding: a [mb, 125, 16] encoding (for 64000 sample audio file).``` | %time encoding = fastgen.encode(audio, 'model.ckpt-200000', sample_length) | INFO:tensorflow:Restoring parameters from model.ckpt-200000
CPU times: user 53.2 s, sys: 2.83 s, total: 56 s
Wall time: 20.2 s
| Apache-2.0 | jupyter-notebooks/NSynth.ipynb | cclauss/magenta-demos |
This returns a 3-dimensional tensor representing the encoding of the audio. The first dimension of the encoding represents the batch dimension. We could have passed in many audio files at once and the process would be much faster. For now we've just passed in one audio file. | print(encoding.shape) | (1, 78, 16)
| Apache-2.0 | jupyter-notebooks/NSynth.ipynb | cclauss/magenta-demos |
We'll also save the encoding so that we can use it again later: | np.save(fname + '.npy', encoding) | _____no_output_____ | Apache-2.0 | jupyter-notebooks/NSynth.ipynb | cclauss/magenta-demos |
Let's take a look at the encoding of this audio file. Think of these as 16 channels of sounds all mixed together (though with a lot of caveats): | fig, axs = plt.subplots(2, 1, figsize=(10, 5))
axs[0].plot(audio);
axs[0].set_title('Audio Signal')
axs[1].plot(encoding[0]);
axs[1].set_title('NSynth Encoding') | _____no_output_____ | Apache-2.0 | jupyter-notebooks/NSynth.ipynb | cclauss/magenta-demos |
You should be able to pretty clearly see a sort of beat like pattern in both the signal and the encoding. DecodingNow we can decode the encodings as is. This is the process that takes awhile, though it used to be so long that you wouldn't even dare trying it. There is still plenty of room for improvement and I'm sure it will get faster very soon.```help(fastgen.synthesize)Help on function synthesize in module magenta.models.nsynth.wavenet.fastgen:synthesize(encodings, save_paths, checkpoint_path='model.ckpt-200000', samples_per_save=1000) Synthesize audio from an array of embeddings. Args: encodings: Numpy array with shape [batch_size, time, dim]. save_paths: Iterable of output file names. checkpoint_path: Location of the pretrained model. [model.ckpt-200000] samples_per_save: Save files after every amount of generated samples.``` | %time fastgen.synthesize(encoding, save_paths=['gen_' + fname], samples_per_save=sample_length) | _____no_output_____ | Apache-2.0 | jupyter-notebooks/NSynth.ipynb | cclauss/magenta-demos |
After it's done synthesizing, we can see that takes about 6 minutes per 1 second of audio on a non-optimized version of Tensorflow for GPU on an NVidia 1080 GPU. We can speed things up considerably if we want to do multiple encodings at a time. We'll see that in just a moment. Let's first listen to the synthesized audio: | sr = 16000
synthesis = utils.load_audio('gen_' + fname, sample_length=sample_length, sr=sr) | _____no_output_____ | Apache-2.0 | jupyter-notebooks/NSynth.ipynb | cclauss/magenta-demos |
Listening to the audio, the sounds are definitely different. NSynth seems to apply a sort of gobbly low-pass that also really doesn't know what to do with the high frequencies. It is really quite hard to describe, but that is what is so interesting about it. It has a recognizable, characteristic sound.Let's try another one. I'll put the whole workflow for synthesis in two cells, and we can listen to another synthesis of a vocalist singing, "Laaaa": | def load_encoding(fname, sample_length=None, sr=16000, ckpt='model.ckpt-200000'):
audio = utils.load_audio(fname, sample_length=sample_length, sr=sr)
encoding = fastgen.encode(audio, ckpt, sample_length)
return audio, encoding
# from https://www.freesound.org/people/maurolupo/sounds/213259/
fname = '213259__maurolupo__girl-sings-laa.wav'
sample_length = 32000
audio, encoding = load_encoding(fname, sample_length)
fastgen.synthesize(
encoding,
save_paths=['gen_' + fname],
samples_per_save=sample_length)
synthesis = utils.load_audio('gen_' + fname,
sample_length=sample_length,
sr=sr) | _____no_output_____ | Apache-2.0 | jupyter-notebooks/NSynth.ipynb | cclauss/magenta-demos |
Aside from the quality of the reconstruction, what we're really after is what is possible with such a model. Let's look at two examples now. Part 2: TimestretchingLet's try something more fun. We'll stretch the encodings a bit and see what it sounds like. If you were to try and stretch audio directly, you'd hear a pitch shift. There are some other ways of stretching audio without shifting pitch, like granular synthesis. But it turns out that NSynth can also timestretch. Let's see how. First we'll use image interpolation to help stretch the encodings. | # use image interpolation to stretch the encoding: (pip install scikit-image)
try:
from skimage.transform import resize
except ImportError:
!pip install scikit-image
from skimage.transform import resize | _____no_output_____ | Apache-2.0 | jupyter-notebooks/NSynth.ipynb | cclauss/magenta-demos |
Here's a utility function to help you stretch your own encoding. It uses skimage.transform and will retain the range of values. Images typically only have a range of 0-1, but the encodings aren't actually images so we'll keep track of their min/max in order to stretch them like images. | def timestretch(encodings, factor):
min_encoding, max_encoding = encoding.min(), encoding.max()
encodings_norm = (encodings - min_encoding) / (max_encoding - min_encoding)
timestretches = []
for encoding_i in encodings_norm:
stretched = resize(encoding_i, (int(encoding_i.shape[0] * factor), encoding_i.shape[1]), mode='reflect')
stretched = (stretched * (max_encoding - min_encoding)) + min_encoding
timestretches.append(stretched)
return np.array(timestretches)
# from https://www.freesound.org/people/MustardPlug/sounds/395058/
fname = '395058__mustardplug__breakbeat-hiphop-a4-4bar-96bpm.wav'
sample_length = 40000
audio, encoding = load_encoding(fname, sample_length) | INFO:tensorflow:Restoring parameters from model.ckpt-200000
| Apache-2.0 | jupyter-notebooks/NSynth.ipynb | cclauss/magenta-demos |
Now let's stretch the encodings with a few different factors: | audio = utils.load_audio('gen_slower_' + fname, sample_length=None, sr=sr)
Audio(audio, rate=sr)
encoding_slower = timestretch(encoding, 1.5)
encoding_faster = timestretch(encoding, 0.5) | _____no_output_____ | Apache-2.0 | jupyter-notebooks/NSynth.ipynb | cclauss/magenta-demos |
Basically we've made a slower and faster version of the amen break's encodings. The original encoding is shown in black: | fig, axs = plt.subplots(3, 1, figsize=(10, 7), sharex=True, sharey=True)
axs[0].plot(encoding[0]);
axs[0].set_title('Encoding (Normal Speed)')
axs[1].plot(encoding_faster[0]);
axs[1].set_title('Encoding (Faster))')
axs[2].plot(encoding_slower[0]);
axs[2].set_title('Encoding (Slower)') | _____no_output_____ | Apache-2.0 | jupyter-notebooks/NSynth.ipynb | cclauss/magenta-demos |
Now let's decode them: | fastgen.synthesize(encoding_faster, save_paths=['gen_faster_' + fname])
fastgen.synthesize(encoding_slower, save_paths=['gen_slower_' + fname]) | _____no_output_____ | Apache-2.0 | jupyter-notebooks/NSynth.ipynb | cclauss/magenta-demos |
It seems to work pretty well and retains the pitch and timbre of the original sound. We could even quickly layer the sounds just by adding them. You might want to do this in a program like Logic or Ableton Live instead and explore more possiblities of these sounds! Part 3: Interpolating SoundsNow let's try something more experimental. NSynth released plenty of great examples of what happens when you mix the embeddings of different sounds: https://magenta.tensorflow.org/nsynth-instrument - we're going to do the same but now with our own sounds!First let's load some encodings: | sample_length = 80000
# from https://www.freesound.org/people/MustardPlug/sounds/395058/
aud1, enc1 = load_encoding('395058__mustardplug__breakbeat-hiphop-a4-4bar-96bpm.wav', sample_length)
# from https://www.freesound.org/people/xserra/sounds/176098/
aud2, enc2 = load_encoding('176098__xserra__cello-cant-dels-ocells.wav', sample_length) | INFO:tensorflow:Restoring parameters from model.ckpt-200000
INFO:tensorflow:Restoring parameters from model.ckpt-200000
| Apache-2.0 | jupyter-notebooks/NSynth.ipynb | cclauss/magenta-demos |
Now we'll mix the two audio signals together. But this is unlike adding the two signals together in a Ableton or simply hearing both sounds at the same time. Instead, we're averaging the representation of their timbres, tonality, change over time, and resulting audio signal. This is way more powerful than a simple averaging. | enc_mix = (enc1 + enc2) / 2.0
fig, axs = plt.subplots(3, 1, figsize=(10, 7))
axs[0].plot(enc1[0]);
axs[0].set_title('Encoding 1')
axs[1].plot(enc2[0]);
axs[1].set_title('Encoding 2')
axs[2].plot(enc_mix[0]);
axs[2].set_title('Average')
fastgen.synthesize(enc_mix, save_paths='mix.wav') | _____no_output_____ | Apache-2.0 | jupyter-notebooks/NSynth.ipynb | cclauss/magenta-demos |
As another example of what's possible with interpolation of embeddings, we'll try crossfading between the two embeddings. To do this, we'll write a utility function which will use a hanning window to apply a fade in or out to the embeddings matrix: | def fade(encoding, mode='in'):
length = encoding.shape[1]
fadein = (0.5 * (1.0 - np.cos(3.1415 * np.arange(length) /
float(length)))).reshape(1, -1, 1)
if mode == 'in':
return fadein * encoding
else:
return (1.0 - fadein) * encoding
fig, axs = plt.subplots(3, 1, figsize=(10, 7))
axs[0].plot(enc1[0]);
axs[0].set_title('Original Encoding')
axs[1].plot(fade(enc1, 'in')[0]);
axs[1].set_title('Fade In')
axs[2].plot(fade(enc1, 'out')[0]);
axs[2].set_title('Fade Out') | _____no_output_____ | Apache-2.0 | jupyter-notebooks/NSynth.ipynb | cclauss/magenta-demos |
Now we can cross fade two different encodings by adding their repsective fade ins and out: | def crossfade(encoding1, encoding2):
return fade(encoding1, 'out') + fade(encoding2, 'in')
fig, axs = plt.subplots(3, 1, figsize=(10, 7))
axs[0].plot(enc1[0]);
axs[0].set_title('Encoding 1')
axs[1].plot(enc2[0]);
axs[1].set_title('Encoding 2')
axs[2].plot(crossfade(enc1, enc2)[0]);
axs[2].set_title('Crossfade') | _____no_output_____ | Apache-2.0 | jupyter-notebooks/NSynth.ipynb | cclauss/magenta-demos |
Now let's synthesize the resulting encodings: | fastgen.synthesize(crossfade(enc1, enc2), save_paths=['crossfade.wav']) | _____no_output_____ | Apache-2.0 | jupyter-notebooks/NSynth.ipynb | cclauss/magenta-demos |
Multiple Regressiona - alphab - betai - ith usere - error termEquation - $y_{i}$ = $a_{}$ + $b_{1}$$x_{i1}$ + $b_{2}$$x_{i2}$ + ... + $b_{k}$$x_{ik}$ + $e_{i}$ beta = [alpha, beta_1, beta_2,..., beta_k]x_i = [1, x_i1, x_i2,..., x_ik] | inputs = [[123,123,243],[234,455,578],[454,565,900],[705,456,890]]
from typing import List
from scratch.linear_algebra import dot, Vector
def predict(x:Vector, beta: Vector) -> float:
return dot(x,beta)
def error(x:Vector, y:float, beta:Vector) -> float:
return predict(x,beta) - y
def squared_error(x:Vector, y:float, beta:Vector) -> float:
return error(x,y,beta) ** 2
x = [1,2,3]
y = 30
beta = [4,4,4]
assert error(x,y,beta) == -6
assert squared_error(x,y,beta) == 36
def sqerror_gradient(x:Vector, y:float, beta:Vector) -> Vector:
err = error(x,y,beta)
return [2*err*x_i for x_i in x]
assert sqerror_gradient(x,y,beta) == [-12,-24,-36]
import random
import tqdm
from scratch.linear_algebra import vector_mean
from scratch.gradient_descent import gradient_step
def least_squares_fit(xs:List[Vector],
ys:List[float],
learning_rate: float=0.001,
num_steps: int = 1000,
batch_size: int = 1) -> Vector:
guess = [random.random() for _ in xs[0]]
for _ in tqdm.trange(num_steps, desc='least squares fit'):
for start in range(0, len(x), batch_size):
batch_xs = xs[start:start+batch_size]
batch_ys = ys[start:start+batch_size]
gradient = vector_mean([ sqerror_gradient(x,y,guess)
for x,y in zip(batch_xs,batch_ys)])
guess = gradient_step(guess,gradient,-learning_rate)
return guess
from scratch.statistics import daily_minutes_good
from scratch.gradient_descent import gradient_step
random.seed(0)
learning_rate = 0.001
beta = least_squares_fit(inputs,daily_minutes_good,learning_rate,5000,25)
# ERROR ( no 'inputs' variable defined )
inputs = [[123,123,243],[234,455,578],[454,565,900],[705,456,890]]
# inputs = [123,123,243,234,455,578,454,565,900,705,456,890]
from scratch.simple_linear_regression import total_sum_of_squares
def multiple_r_squared(xs:List[Vector], ys:Vector, beta:Vector) -> float:
sum_of_squared_errors = sum(error(x,y,beta**2)
for x,y in zip(xs,ys))
return 1.0 - sum_of_squared_errors/ total_sum_of_squares(ys)
assert 0.67 < multiple_r_squared(inputs, daily_minutes_good, beta) < 0.68
# ERROR ( no 'inputs' variable defined ) | _____no_output_____ | Apache-2.0 | Data_Science_from_Scratch ~ Book/Data_Science_Chapter_15.ipynb | kushagras71/data_science |
Digression: The Bootstrap | from typing import TypeVar, Callable
X = TypeVar('X')
Stat = TypeVar('Stat')
def bootstrap_sample(data:List[X]) -> List[X]:
return [random.choice(data) for _ in data]
def bootstrap_statistics(data:List[X],
stats_fn: Callable[[List[X]],Stat],
num_samples: int) -> List[Stat]:
return [stats_fn(bootstrap_sample(data)) for _ in range(num_samples)]
close_to_100 = [99.5 + random.random() for _ in range(101)]
far_from_100 = ([99.5 + random.random()] +
[random.random() for _ in range(50)] +
[200 + random.random() for _ in range(50)])
from scratch.statistics import median, standard_deviation
median_close = bootstrap_statistics(close_to_100,median,100)
median_far = bootstrap_statistics(far_from_100,median,100)
print(median_close)
print(median_far)
from typing import Tuple
import datetime
def estimate_sample_beta(pairs:List[Tuple[Vector,float]]):
x_sample = [x for x, _ in pairs]
y_sample = [y for _, y in pairs]
beta = least_squares_fit(x_sample,y_sample,learning_rate,5000,25)
print("bootstrap sample",beta)
return beta
random.seed(0)
bootstrap_betas = bootstrap_statistics(list(zip(inputs, daily_minutes_good)),
estimate_sample_beta,
100)
# ERROR ( no 'inputs' variable defined )
bootstrap_standard_errors = [
standard_deviation([beta[i] for beta in bootstrap_betas])
for i in range(4)]
print(bootstrap_standard_errors)
# ERROR ( no 'inputs' variable defined )
from scratch.probability import normal_cdf
def p_value(beta_hat_j: float, sigma_hat_j:float) -> float:
if beta_hat_j > 0:
return 2 * (1 - normal_cdf(beta_hat_j/sigma_hat_j))
else:
return 2 * normal_cdf(beta_hat_j/sigma_hat_j)
assert p_value(30.58, 1.27) < 0.001 # constant term
assert p_value(0.972, 0.103) < 0.001 # num_friends | _____no_output_____ | Apache-2.0 | Data_Science_from_Scratch ~ Book/Data_Science_Chapter_15.ipynb | kushagras71/data_science |
Regularization | def ridge_penalty(beta:Vector, alpha:float)->float:
return alpha*dot(beta[1:],beta[1:])
def squared_error_ridge(x: Vector,
y: float,
beta: Vector,
alpha: float) -> float:
return error(x, y, beta) ** 2 + ridge_penalty(beta, alpha)
from scratch.linear_algebra import add
def ridge_penalty_gradient(beta: Vector, alpha: float) -> Vector:
return [0.] + [2 * alpha * beta_j for beta_j in beta[1:]]
def sqerror_ridge_gradient(x: Vector,
y: float,
beta: Vector,
alpha: float) -> Vector:
return add(sqerror_gradient(x, y, beta),
ridge_penalty_gradient(beta, alpha))
def least_squares_fit_ridge(xs:List[Vector],
ys:List[float],
learning_rate: float=0.001,
num_steps: int = 1000,
batch_size: int = 1) -> Vector:
guess = [random.random() for _ in xs[0]]
for _ in tqdm.trange(num_steps, desc='least squares fit'):
for start in range(0, len(x), batch_size):
batch_xs = xs[start:start+batch_size]
batch_ys = ys[start:start+batch_size]
gradient = vector_mean([ sqerror_ridge_gradient(x,y,guess)
for x,y in zip(batch_xs,batch_ys)])
guess = gradient_step(guess,gradient,-learning_rate)
return guess
random.seed(0)
beta_0 = least_squares_fit_ridge(inputs, daily_minutes_good, 0.0, # alpha
learning_rate, 5000, 25)
# [30.51, 0.97, -1.85, 0.91]
assert 5 < dot(beta_0[1:], beta_0[1:]) < 6
assert 0.67 < multiple_r_squared(inputs, daily_minutes_good, beta_0) < 0.69
# ERROR ( no 'inputs' variable defined )
beta_0_1 = least_squares_fit_ridge(inputs, daily_minutes_good, 0.1, # alpha
learning_rate, 5000, 25)
# [30.8, 0.95, -1.83, 0.54]
assert 4 < dot(beta_0_1[1:], beta_0_1[1:]) < 5
assert 0.67 < multiple_r_squared(inputs, daily_minutes_good, beta_0_1) < 0.69
beta_1 = least_squares_fit_ridge(inputs, daily_minutes_good, 1, # alpha
learning_rate, 5000, 25)
# [30.6, 0.90, -1.68, 0.10]
assert 3 < dot(beta_1[1:], beta_1[1:]) < 4
assert 0.67 < multiple_r_squared(inputs, daily_minutes_good, beta_1) < 0.69
beta_10 = least_squares_fit_ridge(inputs, daily_minutes_good,10, # alpha
learning_rate, 5000, 25)
# [28.3, 0.67, -0.90, -0.01]
assert 1 < dot(beta_10[1:], beta_10[1:]) < 2
assert 0.5 < multiple_r_squared(inputs, daily_minutes_good, beta_10) < 0.6
def lasso_penalty(beta, alpha):
return alpha * sum(abs(beta_i) for beta_i in beta[1:]) | _____no_output_____ | Apache-2.0 | Data_Science_from_Scratch ~ Book/Data_Science_Chapter_15.ipynb | kushagras71/data_science |
A Two-sample t-test to find differentially expressed miRNA's between normal and tumor tissues in Lung Adenocarcinoma | import os
import pandas
mirna_src_dir = os.getcwd() + "/assn-mirna-luad/data/processed/miRNA/"
clinical_src_dir = os.getcwd() + "/assn-mirna-luad/data/processed/clinical/"
mirna_tumor_df = pandas.read_csv(mirna_src_dir+'tumor_miRNA.csv')
mirna_normal_df = pandas.read_csv(mirna_src_dir+'normal_miRNA.csv')
clinical_df = pandas.read_csv(clinical_src_dir+'clinical.csv')
print "mirna_tumor_df.shape", mirna_tumor_df.shape
print "mirna_normal_df.shape", mirna_normal_df.shape
"""
Here we select samples to use for our regression analysis
"""
matched_samples = pandas.merge(clinical_df, mirna_normal_df, on='patient_barcode')['patient_barcode']
# print "matched_samples", matched_samples.shape
# merged = pandas.merge(clinical_df, mirna_tumor_df, on='patient_barcode')
# print merged.shape
# print
# print merged['histological_type'].value_counts().sort_index(axis=0)
# print
# print merged['pathologic_stage'].value_counts().sort_index(axis=0)
# print
# print merged['pathologic_T'].value_counts().sort_index(axis=0)
# print
# print merged['pathologic_N'].value_counts().sort_index(axis=0)
# print
# print merged['pathologic_M'].value_counts().sort_index(axis=0)
# print
from sklearn import preprocessing
import numpy as np
X_normal = mirna_normal_df[mirna_normal_df['patient_barcode'].isin(matched_samples)].sort_values(by=['patient_barcode']).copy()
X_tumor = mirna_tumor_df.copy()
X_tumor_matched = mirna_tumor_df[mirna_tumor_df['patient_barcode'].isin(matched_samples)].sort_values(by=['patient_barcode']).copy()
X_normal.__delitem__('patient_barcode')
X_tumor_matched.__delitem__('patient_barcode')
X_tumor.__delitem__('patient_barcode')
print "X_normal.shape", X_normal.shape
print "X_tumor.shape", X_tumor.shape
print "X_tumor_matched.shape", X_tumor_matched.shape
mirna_list = X.columns.values
# X_scaler = preprocessing.StandardScaler(with_mean=False).fit(X)
# X = X_scaler.transform(X)
from scipy.stats import ttest_rel
import matplotlib.pyplot as plt
ttest = ttest_rel(X_tumor_matched, X_normal)
plt.plot(ttest[1], ls='', marker='.')
plt.title('Two sample t-test between tumor and normal LUAD tissues')
plt.ylabel('p-value')
plt.xlabel('miRNA\'s')
plt.show()
from scipy.stats import ttest_ind
ttest_2 = ttest_2_ind(X_tumor, X_normal)
plt.plot(ttest_2[1], ls='', marker='.')
plt.title('Independent sample t-test between tumor and normal LUAD tissues')
plt.ylabel('p-value')
plt.xlabel('miRNA\'s')
plt.show()
| _____no_output_____ | FTL | notebooks/tumor_vs_normal_classification/tumor_vs_normal_miRNA-ttest.ipynb | JonnyTran/microRNA-Lung-Cancer-Associations |
Step 7: Serve data from OpenAgua into WEAP using WaMDaM By Adel M. Abdallah, Dec 2020Execute the following cells by pressing `Shift-Enter`, or by pressing the play button on the toolbar above. Steps1. Import python libraries2. Import the pulished SQLite file for the WEAP model from HydroShare.3. Prepare to connect to the WEAP API4. Connect to WEAP API to programmatically populate WEAP with data, run it, get back resultsCreate a copy of the original WEAP Area to use while keeping the orignial as-as for any later use5.3 Export the unmet demand percent into Excel to load them into WaMDaM 1. Import python libraries | # 1. Import python libraries
### set the notebook mode to embed the figures within the cell
import numpy
import sqlite3
import numpy as np
import pandas as pd
import getpass
from hs_restclient import HydroShare, HydroShareAuthBasic
import os
import plotly
plotly.__version__
import plotly.offline as offline
import plotly.graph_objs as go
from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot
offline.init_notebook_mode(connected=True)
from plotly.offline import init_notebook_mode, iplot
from plotly.graph_objs import *
init_notebook_mode(connected=True) # initiate notebook for offline plot
import os
import csv
from collections import OrderedDict
import sqlite3
import pandas as pd
import numpy as np
from IPython.display import display, Image, SVG, Math, YouTubeVideo
import urllib
import calendar
print 'The needed Python libraries have been imported' | _____no_output_____ | BSD-3-Clause | 3_VisualizePublish/07_Step7_Serve_NewScenarios_WEAP.ipynb | WamdamProject/WaMDaM_JupyterNotebooks |
2. Connect to the WaMDaM SQLite on HydroSahre Provide the HydroShare ID for your resourceExample https://www.hydroshare.org/resource/af71ef99a95e47a89101983f5ec6ad8b/ resource_id='85e9fe85b08244198995558fe7d0e294' | # enter your HydroShare username and password here between the quotes
username = ''
password = ''
auth = HydroShareAuthBasic(username=username, password=password)
hs = HydroShare(auth=auth)
print 'Connected to HydroShare'
# Then we can run queries against it within this notebook :)
resource_url='https://www.hydroshare.org/resource/af71ef99a95e47a89101983f5ec6ad8b/'
resource_id= resource_url.split("https://www.hydroshare.org/resource/",1)[1]
resource_id=resource_id.replace('/','')
print resource_id
resource_md = hs.getSystemMetadata(resource_id)
# print resource_md
print 'Resource title'
print(resource_md['resource_title'])
print '----------------------------'
resources=hs.resource(resource_id).files.all()
file = ""
for f in hs.resource(resource_id).files.all():
file += f.decode('utf8')
import json
file_json = json.loads(file)
for f in file_json["results"]:
FileURL= f["url"]
SQLiteFileName=FileURL.split("contents/",1)[1]
cwd = os.getcwd()
print cwd
fpath = hs.getResourceFile(resource_id, SQLiteFileName, destination=cwd)
conn = sqlite3.connect(SQLiteFileName,timeout=10)
print 'Connected to the SQLite file= '+ SQLiteFileName
print 'done' | _____no_output_____ | BSD-3-Clause | 3_VisualizePublish/07_Step7_Serve_NewScenarios_WEAP.ipynb | WamdamProject/WaMDaM_JupyterNotebooks |
2. Prepare to the Connect to the WEAP API You need to have WEAP already installed on your machineFirst make sure to have a copy of the Water Evaluation And Planning" system (WEAP) installed on your local machine (Windows). If you don’t have it installed, download and install the WEAP software which allows you to run the Bear River WEAP model and its scenarios for Use Case 5. https://www.weap21.org/. You need to have a WEAP License. See here (https://www.weap21.org/index.asp?action=217). If you're interested to learning about WEAP API, check it out here: http://www.weap21.org/WebHelp/API.htm Install dependency and register WEAP 2.1. Install pywin32 extensions which provide access to many of the Windows APIs from Python.**Choose on option*** a. Install using an executable basedon your python version. Use version for Python 2.7https://github.com/mhammond/pywin32/releases **OR** * b. Install it using Anaconda terminal @ https://anaconda.org/anaconda/pywin32Type this command in the Anaconda terminal as Administrator conda install -c anaconda pywin32 **OR*** c. Install from source code (for advanced users) https://github.com/mhammond/pywin32 2.2. Register WEAP with Windows This use case only works on a local Jupyter Notebook server installed on your machine along with WEAP. So it does not work on the online Notebooks in Step 2.1. You need to install Jupyter Server in Step 2.2 then proceed here.* **Register WEAP with Windows to allow the WEAP API to be accessed** Use Windows "Command Prompt". Right click and then **run as Administrator**, navigate to the WEAP installation directory such as and then hit enter ```cd C:\Program Files (x86)\WEAP```Then type the following command in the command prompt and hit enter ```WEAP /regserver``` Figure 1: Register WEAP API with windows using the Command Prompt (Run as Administrator) 3. Connect Jupyter Notebook to WEAP APIClone or download all this GitHub repo https://github.com/WamdamProject/WaMDaM_UseCases In your local repo folder, go to the C:\Users\Adel\Documents\GitHub\WaMDaM_UseCases/UseCases_files/1Original_Datasets_preperation_files/WEAP/Bear_River_WEAP_Model_2017Copy this folder **Bear_River_WEAP_Model_2017** and paste it into **WEAP Areas** folder on your local machine. For example, it is at C:\Users\Adel\Documents\WEAP Areas | # this library is needed to connect to the WEAP API
import win32com.client
# this command will open the WEAP software (if closed) and get the last active model
# you could change the active area to another one inside WEAP or by passing it to the command here
#WEAP.ActiveArea = "BearRiverFeb2017_V10.9"
WEAP=win32com.client.Dispatch("WEAP.WEAPApplication")
# WEAP.Visible = 'FALSE'
print WEAP.ActiveArea.Name
WEAP.ActiveArea = "Bear_River_WEAP_Model_2017_Original"
print WEAP.ActiveArea.Name
WEAP.Areas("Bear_River_WEAP_Model_2017_Original").Open
WEAP.ActiveArea = "Bear_River_WEAP_Model_2017_Original"
print WEAP.ActiveArea.Name
print 'Connected to WEAP API and the '+ WEAP.ActiveArea.Name + ' Area'
print '-------------'
if not WEAP.Registered:
print "Because WEAP is not registered, you cannot use the API"
# get the active WEAP Area (model) to serve data into it
# ActiveArea=WEAP.ActiveArea.Name
# get the active WEAP scenario to serve data into it
print '-------------'
ActiveScenario= WEAP.ActiveScenario.Name
print '\n ActiveScenario= '+ActiveScenario
print '-------------'
WEAP_Area_dir=WEAP.AreasDirectory
print WEAP_Area_dir
print "\n \n You're connected to the WEAP API" | _____no_output_____ | BSD-3-Clause | 3_VisualizePublish/07_Step7_Serve_NewScenarios_WEAP.ipynb | WamdamProject/WaMDaM_JupyterNotebooks |
4 Create a copy of the original WEAP Area to use while keeping the orignial as-as for any later use Add a new CacheCountyUrbanWaterUse scenario from the Reference original WEAP Area: You can always use this orignal one and delete any new copies you make afterwards. | # Create a copy of the WEAP AREA to serve the updated Hyrym Reservoir to it
# Delete the Area if it exists and then add it. Start from fresh
Area="Bear_River_WEAP_Model_2017_Conservation"
if not WEAP.Areas.Exists(Area):
WEAP.SaveAreaAs(Area)
WEAP.ActiveArea.Save
WEAP.ActiveArea = "Bear_River_WEAP_Model_2017_Conservation"
print 'ActiveArea= '+WEAP.ActiveArea.Name
# Add new Scenario
# Add(NewScenarioName, ParentScenarioName or Index):
# Create a new scenario as a child of the parent scenario specified.
# The new scenario will become the selected scenario in the Data View.
WEAP=win32com.client.Dispatch("WEAP.WEAPApplication")
# WEAP.Visible = FALSE
WEAP.ActiveArea = "Bear_River_WEAP_Model_2017_Conservation"
print 'ActiveArea= '+ WEAP.ActiveArea.Name
Scenarios=[]
Scenarios=['Cons25PercCacheUrbWaterUse','Incr25PercCacheUrbWaterUse']
# Delete the scenario if it exists and then add it. Start from fresh
for Scenario in Scenarios:
if WEAP.Scenarios.Exists(Scenario):
# delete it
WEAP.Scenarios(Scenario).Delete(True)
# add it back as a fresh copy
WEAP.Scenarios.Add(Scenario,'Reference')
else:
WEAP.Scenarios.Add(Scenario,'Reference')
WEAP.ActiveArea.Save
WEAP.SaveArea
WEAP.Quit
# or add the scenarios one by one using this command
# Make a copy from the reference (base) scenario
# WEAP.Scenarios.Add('UpdateCacheDemand','Reference')
print '---------------------- \n'
print 'Scenarios added to the original WEAP area'
WEAP.Quit
print 'Connection with WEAP API is disconnected' | _____no_output_____ | BSD-3-Clause | 3_VisualizePublish/07_Step7_Serve_NewScenarios_WEAP.ipynb | WamdamProject/WaMDaM_JupyterNotebooks |
4.A Query Cache County seasonal "Monthly Demand" for the three sites: Logan Potable, North Cache Potable, South Cache Potable The data comes from OpenAgua | # Use Case 3.1Identify_aggregate_TimeSeriesValues.csv
# plot aggregated to monthly and converted to acre-feet time series data of multiple sources
# Logan Potable
# North Cache Potable
# South Cache Potable
# 2.2Identify_aggregate_TimeSeriesValues.csv
Query_UseCase_URL="""
https://raw.githubusercontent.com/WamdamProject/WaMDaM_JupyterNotebooks/master/3_VisualizePublish/SQL_queries/WEAP/Query_demand_sites.sql
"""
# Read the query text inside the URL
Query_UseCase_text = urllib.urlopen(Query_UseCase_URL).read()
# return query result in a pandas data frame
result_df_UseCase= pd.read_sql_query(Query_UseCase_text, conn)
# uncomment the below line to see the list of attributes
# display (result_df_UseCase)
seasons_dict = dict()
seasons_dict2=dict()
Scenarios=['Cons25PercCacheUrbWaterUse','Incr25PercCacheUrbWaterUse']
subsets = result_df_UseCase.groupby(['ScenarioName','InstanceName'])
for subset in subsets.groups.keys():
if subset[0] in Scenarios:
df_Seasonal = subsets.get_group(name=subset)
df_Seasonal=df_Seasonal.reset_index()
SeasonalParam = ''
for i in range(len(df_Seasonal['SeasonName'])):
m_data = df_Seasonal['SeasonName'][i]
n_data = float(df_Seasonal['SeasonNumericValue'][i])
SeasonalParam += '{},{}'.format(m_data, n_data)
if i != len(df_Seasonal['SeasonName']) - 1:
SeasonalParam += ','
Seasonal_value="MonthlyValues("+SeasonalParam+")"
seasons_dict[subset]=(Seasonal_value)
# seasons_dict2[subset[0]]=seasons_dict
# print seasons_dict2
print '-----------------'
# print seasons_dict
# seasons_dict2.get("Cons25PercCacheUrbWaterUse", {}).get("Logan Potable") # 1
print 'Query and data preperation are done' | _____no_output_____ | BSD-3-Clause | 3_VisualizePublish/07_Step7_Serve_NewScenarios_WEAP.ipynb | WamdamProject/WaMDaM_JupyterNotebooks |
4.B Load the seasonal demand data with conservation into WEAP | # 9. Load the seasonal data into WEAP
#WEAP=win32com.client.Dispatch("WEAP.WEAPApplication")
# WEAP.Visible = FALSE
print WEAP.ActiveArea.Name
Scenarios=['Cons25PercCacheUrbWaterUse','Incr25PercCacheUrbWaterUse']
DemandSites=['Logan Potable','North Cache Potable','South Cache Potable']
AttributeName='Monthly Demand'
for scenario in Scenarios:
WEAP.ActiveScenario = scenario
print WEAP.ActiveScenario.Name
for Branch in WEAP.Branches:
for InstanceName in DemandSites:
if Branch.Name == InstanceName:
GetInstanceFullBranch = Branch.FullName
val=seasons_dict[(scenario,InstanceName)]
WEAP.Branch(GetInstanceFullBranch).Variable(AttributeName).Expression =val
# print val
print "loaded " + InstanceName
WEAP.SaveArea
print '\n The data have been sucsesfully loaded into WEAP'
WEAP.SaveArea
print '\n \n The updated data have been saved' | _____no_output_____ | BSD-3-Clause | 3_VisualizePublish/07_Step7_Serve_NewScenarios_WEAP.ipynb | WamdamProject/WaMDaM_JupyterNotebooks |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.