markdown
stringlengths
0
1.02M
code
stringlengths
0
832k
output
stringlengths
0
1.02M
license
stringlengths
3
36
path
stringlengths
6
265
repo_name
stringlengths
6
127
1) Add a list of friends to each user
# set each userโ€™s friends property to an empty list: for user in users: user["friends"] = [] print users print users[0]['friends'] # then we populate the lists using the friendships data: for i, j in friendships: # this works because users[i] is the user whose id is i users[i]["friends"].append(users[j]) # add i as a friend of j users[j]["friends"].append(users[i]) # add j as a friend of i print users[0]
{'friends': [{'friends': [{...}, {'friends': [{...}, {...}, {'friends': [{...}, {...}, {'friends': [{...}, {'friends': [{...}, {'friends': [{...}, {'friends': [{...}, {'friends': [{...}, {...}], 'id': 7, 'name': 'Devin'}, {'friends': [{...}], 'id': 9, 'name': 'Klein'}], 'id': 8, 'name': 'Kate'}], 'id': 6, 'name': 'Hicks'}, {'friends': [{...}, {'friends': [{'friends': [{...}, {...}], 'id': 6, 'name': 'Hicks'}, {...}, {'friends': [{...}], 'id': 9, 'name': 'Klein'}], 'id': 8, 'name': 'Kate'}], 'id': 7, 'name': 'Devin'}], 'id': 5, 'name': 'Clive'}], 'id': 4, 'name': 'Thor'}], 'id': 3, 'name': 'Chi'}], 'id': 2, 'name': 'Sue'}, {'friends': [{...}, {'friends': [{...}, {...}, {...}], 'id': 2, 'name': 'Sue'}, {'friends': [{...}, {'friends': [{...}, {'friends': [{...}, {'friends': [{...}, {'friends': [{...}, {...}], 'id': 7, 'name': 'Devin'}, {'friends': [{...}], 'id': 9, 'name': 'Klein'}], 'id': 8, 'name': 'Kate'}], 'id': 6, 'name': 'Hicks'}, {'friends': [{...}, {'friends': [{'friends': [{...}, {...}], 'id': 6, 'name': 'Hicks'}, {...}, {'friends': [{...}], 'id': 9, 'name': 'Klein'}], 'id': 8, 'name': 'Kate'}], 'id': 7, 'name': 'Devin'}], 'id': 5, 'name': 'Clive'}], 'id': 4, 'name': 'Thor'}], 'id': 3, 'name': 'Chi'}], 'id': 1, 'name': 'Dunn'}, {'friends': [{...}, {'friends': [{...}, {...}, {'friends': [{...}, {...}, {'friends': [{...}, {'friends': [{...}, {'friends': [{...}, {'friends': [{...}, {'friends': [{...}, {...}], 'id': 7, 'name': 'Devin'}, {'friends': [{...}], 'id': 9, 'name': 'Klein'}], 'id': 8, 'name': 'Kate'}], 'id': 6, 'name': 'Hicks'}, {'friends': [{...}, {'friends': [{'friends': [{...}, {...}], 'id': 6, 'name': 'Hicks'}, {...}, {'friends': [{...}], 'id': 9, 'name': 'Klein'}], 'id': 8, 'name': 'Kate'}], 'id': 7, 'name': 'Devin'}], 'id': 5, 'name': 'Clive'}], 'id': 4, 'name': 'Thor'}], 'id': 3, 'name': 'Chi'}], 'id': 1, 'name': 'Dunn'}, {'friends': [{'friends': [{...}, {...}, {...}], 'id': 1, 'name': 'Dunn'}, {...}, {'friends': [{...}, {'friends': [{...}, {'friends': [{...}, {'friends': [{...}, {'friends': [{...}, {...}], 'id': 7, 'name': 'Devin'}, {'friends': [{...}], 'id': 9, 'name': 'Klein'}], 'id': 8, 'name': 'Kate'}], 'id': 6, 'name': 'Hicks'}, {'friends': [{...}, {'friends': [{'friends': [{...}, {...}], 'id': 6, 'name': 'Hicks'}, {...}, {'friends': [{...}], 'id': 9, 'name': 'Klein'}], 'id': 8, 'name': 'Kate'}], 'id': 7, 'name': 'Devin'}], 'id': 5, 'name': 'Clive'}], 'id': 4, 'name': 'Thor'}], 'id': 3, 'name': 'Chi'}], 'id': 2, 'name': 'Sue'}], 'id': 0, 'name': 'Hero'}
Unlicense
my-code/ch01/ch01.ipynb
tuanavu/data-science-from-scratch
2) whatโ€™s the average number of connections Once each user dict contains a list of friends, we can easily ask questions of ourgraph, like โ€œwhatโ€™s the average number of connections?โ€First we find the total number of connections, by summing up the lengths of all thefriends lists:
def number_of_friends(user): """how many friends does _user_ have?""" return len(user["friends"]) # length of friend_ids list total_connections = sum(number_of_friends(user) for user in users) # 24 print total_connections # And then we just divide by the number of users: from __future__ import division # integer division is lame num_users = len(users) # length of the users list print num_users avg_connections = total_connections / num_users # 2.4 print avg_connections
10 2.4
Unlicense
my-code/ch01/ch01.ipynb
tuanavu/data-science-from-scratch
Itโ€™s also easy to find the most connected peopleโ€”theyโ€™re the people who have the largestnumber of friends.Since there arenโ€™t very many users, we can sort them from โ€œmost friendsโ€ to โ€œleastfriendsโ€:
# create a list (user_id, number_of_friends) num_friends_by_id = [(user["id"], number_of_friends(user)) for user in users] print num_friends_by_id sorted(num_friends_by_id, # get it sorted key=lambda (user_id, num_friends): num_friends, # by num_friends reverse=True) # largest to smallest # each pair is (user_id, num_friends) # [(1, 3), (2, 3), (3, 3), (5, 3), (8, 3), # (0, 2), (4, 2), (6, 2), (7, 2), (9, 1)]
[(0, 2), (1, 3), (2, 3), (3, 3), (4, 2), (5, 3), (6, 2), (7, 2), (8, 3), (9, 1)]
Unlicense
my-code/ch01/ch01.ipynb
tuanavu/data-science-from-scratch
3) Data Scientists You May Know Your first instinct is to suggest that a user might know the friends of friends. Theseare easy to compute: for each of a userโ€™s friends, iterate over that personโ€™s friends, andcollect all the results:
def friends_of_friend_ids_bad(user): # "foaf" is short for "friend of a friend" return [foaf["id"] for friend in user["friends"] # for each of user's friends for foaf in friend["friends"]] # get each of _their_ friends friends_of_friend_ids_bad(users[0])
_____no_output_____
Unlicense
my-code/ch01/ch01.ipynb
tuanavu/data-science-from-scratch
It includes user 0 (twice), since Hero is indeed friends with both of his friends. Itincludes users 1 and 2, although they are both friends with Hero already. And itincludes user 3 twice, as Chi is reachable through two different friends:
print [friend["id"] for friend in users[0]["friends"]] # [1, 2] print [friend["id"] for friend in users[1]["friends"]] # [0, 2, 3] print [friend["id"] for friend in users[2]["friends"]] # [0, 1, 3]
[1, 2] [0, 2, 3] [0, 1, 3]
Unlicense
my-code/ch01/ch01.ipynb
tuanavu/data-science-from-scratch
Knowing that people are friends-of-friends in multiple ways seems like interestinginformation, so maybe instead we should produce a count of mutual friends. And wedefinitely should use a helper function to exclude people already known to the user:
from collections import Counter # not loaded by default def not_the_same(user, other_user): """two users are not the same if they have different ids""" return user["id"] != other_user["id"] def not_friends(user, other_user): """other_user is not a friend if he's not in user["friends"]; that is, if he's not_the_same as all the people in user["friends"]""" return all(not_the_same(friend, other_user) for friend in user["friends"]) def friends_of_friend_ids(user): return Counter(foaf["id"] for friend in user["friends"] # for each of my friends for foaf in friend["friends"] # count *their* friends if not_the_same(user, foaf) # who aren't me and not_friends(user, foaf)) # and aren't my friends print friends_of_friend_ids(users[3]) # Counter({0: 2, 5: 1})
Counter({0: 2, 5: 1})
Unlicense
my-code/ch01/ch01.ipynb
tuanavu/data-science-from-scratch
This correctly tells Chi (id 3) that she has two mutual friends with Hero (id 0) butonly one mutual friend with Clive (id 5). As a data scientist, you know that you also might enjoy meeting users with similarinterests. (This is a good example of the โ€œsubstantive expertiseโ€ aspect of data science.)After asking around, you manage to get your hands on this data, as a list ofpairs (user_id, interest):
interests = [ (0, "Hadoop"), (0, "Big Data"), (0, "HBase"), (0, "Java"), (0, "Spark"), (0, "Storm"), (0, "Cassandra"), (1, "NoSQL"), (1, "MongoDB"), (1, "Cassandra"), (1, "HBase"), (1, "Postgres"), (2, "Python"), (2, "scikit-learn"), (2, "scipy"), (2, "numpy"), (2, "statsmodels"), (2, "pandas"), (3, "R"), (3, "Python"), (3, "statistics"), (3, "regression"), (3, "probability"), (4, "machine learning"), (4, "regression"), (4, "decision trees"), (4, "libsvm"), (5, "Python"), (5, "R"), (5, "Java"), (5, "C++"), (5, "Haskell"), (5, "programming languages"), (6, "statistics"), (6, "probability"), (6, "mathematics"), (6, "theory"), (7, "machine learning"), (7, "scikit-learn"), (7, "Mahout"), (7, "neural networks"), (8, "neural networks"), (8, "deep learning"), (8, "Big Data"), (8, "artificial intelligence"), (9, "Hadoop"), (9, "Java"), (9, "MapReduce"), (9, "Big Data") ]
_____no_output_____
Unlicense
my-code/ch01/ch01.ipynb
tuanavu/data-science-from-scratch
For example, Thor (id 4) has no friends in common with Devin (id 7), but they sharean interest in machine learning.Itโ€™s easy to build a function that finds users with a certain interest:
def data_scientists_who_like(target_interest): return [user_id for user_id, user_interest in interests if user_interest == target_interest] data_scientists_who_like('Java')
_____no_output_____
Unlicense
my-code/ch01/ch01.ipynb
tuanavu/data-science-from-scratch
This works, but it has to examine the whole list of interests for every search. If wehave a lot of users and interests (or if we just want to do a lot of searches), weโ€™re probablybetter off building an index from interests to users:
from collections import defaultdict # keys are interests, values are lists of user_ids with that interest user_ids_by_interest = defaultdict(list) for user_id, interest in interests: user_ids_by_interest[interest].append(user_id) print user_ids_by_interest # And another from users to interests: # keys are user_ids, values are lists of interests for that user_id interests_by_user_id = defaultdict(list) for user_id, interest in interests: interests_by_user_id[user_id].append(interest) print interests_by_user_id
defaultdict(<type 'list'>, {0: ['Hadoop', 'Big Data', 'HBase', 'Java', 'Spark', 'Storm', 'Cassandra'], 1: ['NoSQL', 'MongoDB', 'Cassandra', 'HBase', 'Postgres'], 2: ['Python', 'scikit-learn', 'scipy', 'numpy', 'statsmodels', 'pandas'], 3: ['R', 'Python', 'statistics', 'regression', 'probability'], 4: ['machine learning', 'regression', 'decision trees', 'libsvm'], 5: ['Python', 'R', 'Java', 'C++', 'Haskell', 'programming languages'], 6: ['statistics', 'probability', 'mathematics', 'theory'], 7: ['machine learning', 'scikit-learn', 'Mahout', 'neural networks'], 8: ['neural networks', 'deep learning', 'Big Data', 'artificial intelligence'], 9: ['Hadoop', 'Java', 'MapReduce', 'Big Data']})
Unlicense
my-code/ch01/ch01.ipynb
tuanavu/data-science-from-scratch
Now itโ€™s easy to find who has the most interests in common with a given user:- Iterate over the userโ€™s interests.- For each interest, iterate over the other users with that interest.- Keep count of how many times we see each other user.
def most_common_interests_with(user): return Counter(interested_user_id for interest in interests_by_user_id[user["id"]] for interested_user_id in user_ids_by_interest[interest] if interested_user_id != user["id"])
_____no_output_____
Unlicense
my-code/ch01/ch01.ipynb
tuanavu/data-science-from-scratch
4) Salaries and Experience
# Salary data is of course sensitive, # but he manages to provide you an anonymous data set containing each userโ€™s # salary (in dollars) and tenure as a data scientist (in years): salaries_and_tenures = [(83000, 8.7), (88000, 8.1), (48000, 0.7), (76000, 6), (69000, 6.5), (76000, 7.5), (60000, 2.5), (83000, 10), (48000, 1.9), (63000, 4.2)]
_____no_output_____
Unlicense
my-code/ch01/ch01.ipynb
tuanavu/data-science-from-scratch
It seems pretty clear that people with more experience tend to earn more. How canyou turn this into a fun fact? Your first idea is to look at the average salary for eachtenure:
# keys are years, values are lists of the salaries for each tenure salary_by_tenure = defaultdict(list) for salary, tenure in salaries_and_tenures: salary_by_tenure[tenure].append(salary) print salary_by_tenure # keys are years, each value is average salary for that tenure average_salary_by_tenure = { tenure : sum(salaries) / len(salaries) for tenure, salaries in salary_by_tenure.items() } print average_salary_by_tenure
defaultdict(<type 'list'>, {6.5: [69000], 7.5: [76000], 6: [76000], 10: [83000], 8.1: [88000], 4.2: [63000], 0.7: [48000], 8.7: [83000], 1.9: [48000], 2.5: [60000]}) {6.5: 69000.0, 7.5: 76000.0, 6: 76000.0, 10: 83000.0, 8.1: 88000.0, 4.2: 63000.0, 8.7: 83000.0, 0.7: 48000.0, 1.9: 48000.0, 2.5: 60000.0}
Unlicense
my-code/ch01/ch01.ipynb
tuanavu/data-science-from-scratch
This turns out to be not particularly useful, as none of the users have the same tenure, which means weโ€™re just reporting the individual usersโ€™ salaries.
# It might be more helpful to bucket the tenures: def tenure_bucket(tenure): if tenure < 2: return "less than two" elif tenure < 5: return "between two and five" else: return "more than five" # Then group together the salaries corresponding to each bucket: # keys are tenure buckets, values are lists of salaries for that bucket salary_by_tenure_bucket = defaultdict(list) for salary, tenure in salaries_and_tenures: bucket = tenure_bucket(tenure) salary_by_tenure_bucket[bucket].append(salary) # And finally compute the average salary for each group: # keys are tenure buckets, values are average salary for that bucket average_salary_by_bucket = { tenure_bucket : sum(salaries) / len(salaries) for tenure_bucket, salaries in salary_by_tenure_bucket.iteritems() } print average_salary_by_bucket
{'more than five': 79166.66666666667, 'between two and five': 61500.0, 'less than two': 48000.0}
Unlicense
my-code/ch01/ch01.ipynb
tuanavu/data-science-from-scratch
5) Paid Accounts
def predict_paid_or_unpaid(years_experience): if years_experience < 3.0: return "paid" elif years_experience < 8.5: return "unpaid" else: return "paid"
_____no_output_____
Unlicense
my-code/ch01/ch01.ipynb
tuanavu/data-science-from-scratch
6) Topics of Interest One simple (if not particularly exciting) way to find the most popular interests is simplyto count the words:1. Lowercase each interest (since different users may or may not capitalize theirinterests).2. Split it into words.3. Count the results.
words_and_counts = Counter(word for user, interest in interests for word in interest.lower().split()) print words_and_counts
Counter({'learning': 3, 'java': 3, 'python': 3, 'big': 3, 'data': 3, 'hbase': 2, 'regression': 2, 'cassandra': 2, 'statistics': 2, 'probability': 2, 'hadoop': 2, 'networks': 2, 'machine': 2, 'neural': 2, 'scikit-learn': 2, 'r': 2, 'nosql': 1, 'programming': 1, 'deep': 1, 'haskell': 1, 'languages': 1, 'decision': 1, 'artificial': 1, 'storm': 1, 'mongodb': 1, 'intelligence': 1, 'mathematics': 1, 'numpy': 1, 'pandas': 1, 'postgres': 1, 'libsvm': 1, 'trees': 1, 'scipy': 1, 'spark': 1, 'mapreduce': 1, 'c++': 1, 'theory': 1, 'statsmodels': 1, 'mahout': 1})
Unlicense
my-code/ch01/ch01.ipynb
tuanavu/data-science-from-scratch
This makes it easy to list out the words that occur more than once:
for word, count in words_and_counts.most_common(): if count > 1: print word, count
learning 3 java 3 python 3 big 3 data 3 hbase 2 regression 2 cassandra 2 statistics 2 probability 2 hadoop 2 networks 2 machine 2 neural 2 scikit-learn 2 r 2
Unlicense
my-code/ch01/ch01.ipynb
tuanavu/data-science-from-scratch
LOFO Feature Importancehttps://github.com/aerdem4/lofo-importance
!pip install lofo-importance import numpy as np import pandas as pd df = pd.read_csv("../input/train.csv", index_col='id') df['wheezy-copper-turtle-magic'] = df['wheezy-copper-turtle-magic'].astype('category') df.shape
_____no_output_____
MIT
5 instant gratification/instantgratification-lofo-feature-importance.ipynb
MLVPRASAD/KaggleProjects
Use the best model in public kernels
from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis def get_model(): return Pipeline([('scaler', StandardScaler()), ('qda', QuadraticDiscriminantAnalysis(reg_param=0.111)) ])
_____no_output_____
MIT
5 instant gratification/instantgratification-lofo-feature-importance.ipynb
MLVPRASAD/KaggleProjects
Top 20 Features for wheezy-copper-turtle-magic = 0
from sklearn.model_selection import KFold, StratifiedKFold, train_test_split from sklearn.linear_model import LogisticRegression from lofo import LOFOImportance, FLOFOImportance, plot_importance features = [c for c in df.columns if c not in ['id', 'target', 'wheezy-copper-turtle-magic']] def get_lofo_importance(wctm_num): sub_df = df[df['wheezy-copper-turtle-magic'] == wctm_num] sub_features = [f for f in features if sub_df[f].std() > 1.5] lofo_imp = LOFOImportance(sub_df, target="target", features=sub_features, cv=StratifiedKFold(n_splits=4, random_state=42, shuffle=True), scoring="roc_auc", model=get_model(), n_jobs=4) return lofo_imp.get_importance() plot_importance(get_lofo_importance(0), figsize=(12, 12))
/opt/conda/lib/python3.6/site-packages/lofo/lofo_importance.py:32: UserWarning: Warning: If your model is multithreaded, please initialise the number of jobs of LOFO to be equal to 1, otherwise you may experience issues. warnings.warn(warning_str)
MIT
5 instant gratification/instantgratification-lofo-feature-importance.ipynb
MLVPRASAD/KaggleProjects
Top 20 Features for wheezy-copper-turtle-magic = 1
plot_importance(get_lofo_importance(1), figsize=(12, 12))
/opt/conda/lib/python3.6/site-packages/lofo/lofo_importance.py:32: UserWarning: Warning: If your model is multithreaded, please initialise the number of jobs of LOFO to be equal to 1, otherwise you may experience issues. warnings.warn(warning_str)
MIT
5 instant gratification/instantgratification-lofo-feature-importance.ipynb
MLVPRASAD/KaggleProjects
Top 20 Features for wheezy-copper-turtle-magic = 2
plot_importance(get_lofo_importance(2), figsize=(12, 12))
/opt/conda/lib/python3.6/site-packages/lofo/lofo_importance.py:32: UserWarning: Warning: If your model is multithreaded, please initialise the number of jobs of LOFO to be equal to 1, otherwise you may experience issues. warnings.warn(warning_str)
MIT
5 instant gratification/instantgratification-lofo-feature-importance.ipynb
MLVPRASAD/KaggleProjects
Find the most harmful features for each wheezy-copper-turtle-magic
from tqdm import tqdm_notebook import warnings warnings.filterwarnings("ignore") features_to_remove = [] potential_gain = [] for i in tqdm_notebook(range(512)): imp = get_lofo_importance(i) features_to_remove.append(imp["feature"].values[-1]) potential_gain.append(-imp["importance_mean"].values[-1]) print("Potential gain (AUC):", np.round(np.mean(potential_gain), 5)) features_to_remove
_____no_output_____
MIT
5 instant gratification/instantgratification-lofo-feature-importance.ipynb
MLVPRASAD/KaggleProjects
Create submission using the current best kernelhttps://www.kaggle.com/tunguz/ig-pca-nusvc-knn-qda-lr-stack by Bojan Tunguz
import numpy as np, pandas as pd from sklearn.model_selection import StratifiedKFold from sklearn.metrics import roc_auc_score from sklearn import svm, neighbors, linear_model, neural_network from sklearn.svm import NuSVC from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA from tqdm import tqdm from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis from sklearn.pipeline import Pipeline from sklearn.metrics import roc_auc_score from sklearn.feature_selection import VarianceThreshold train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') oof_svnu = np.zeros(len(train)) pred_te_svnu = np.zeros(len(test)) oof_svc = np.zeros(len(train)) pred_te_svc = np.zeros(len(test)) oof_knn = np.zeros(len(train)) pred_te_knn = np.zeros(len(test)) oof_lr = np.zeros(len(train)) pred_te_lr = np.zeros(len(test)) oof_mlp = np.zeros(len(train)) pred_te_mlp = np.zeros(len(test)) oof_qda = np.zeros(len(train)) pred_te_qda = np.zeros(len(test)) default_cols = [c for c in train.columns if c not in ['id', 'target', 'wheezy-copper-turtle-magic']] for i in range(512): cols = [c for c in default_cols if c != features_to_remove[i]] train2 = train[train['wheezy-copper-turtle-magic']==i] test2 = test[test['wheezy-copper-turtle-magic']==i] idx1 = train2.index; idx2 = test2.index train2.reset_index(drop=True,inplace=True) data = pd.concat([pd.DataFrame(train2[cols]), pd.DataFrame(test2[cols])]) data2 = StandardScaler().fit_transform(PCA(svd_solver='full',n_components='mle').fit_transform(data[cols])) train3 = data2[:train2.shape[0]]; test3 = data2[train2.shape[0]:] data2 = StandardScaler().fit_transform(VarianceThreshold(threshold=1.5).fit_transform(data[cols])) train4 = data2[:train2.shape[0]]; test4 = data2[train2.shape[0]:] # STRATIFIED K FOLD (Using splits=25 scores 0.002 better but is slower) skf = StratifiedKFold(n_splits=5, random_state=42) for train_index, test_index in skf.split(train2, train2['target']): clf = NuSVC(probability=True, kernel='poly', degree=4, gamma='auto', random_state=4, nu=0.59, coef0=0.053) clf.fit(train3[train_index,:],train2.loc[train_index]['target']) oof_svnu[idx1[test_index]] = clf.predict_proba(train3[test_index,:])[:,1] pred_te_svnu[idx2] += clf.predict_proba(test3)[:,1] / skf.n_splits clf = neighbors.KNeighborsClassifier(n_neighbors=17, p=2.9) clf.fit(train3[train_index,:],train2.loc[train_index]['target']) oof_knn[idx1[test_index]] = clf.predict_proba(train3[test_index,:])[:,1] pred_te_knn[idx2] += clf.predict_proba(test3)[:,1] / skf.n_splits clf = linear_model.LogisticRegression(solver='saga',penalty='l1',C=0.1) clf.fit(train3[train_index,:],train2.loc[train_index]['target']) oof_lr[idx1[test_index]] = clf.predict_proba(train3[test_index,:])[:,1] pred_te_lr[idx2] += clf.predict_proba(test3)[:,1] / skf.n_splits clf = neural_network.MLPClassifier(random_state=3, activation='relu', solver='lbfgs', tol=1e-06, hidden_layer_sizes=(250, )) clf.fit(train3[train_index,:],train2.loc[train_index]['target']) oof_mlp[idx1[test_index]] = clf.predict_proba(train3[test_index,:])[:,1] pred_te_mlp[idx2] += clf.predict_proba(test3)[:,1] / skf.n_splits clf = svm.SVC(probability=True, kernel='poly', degree=4, gamma='auto', random_state=42) clf.fit(train3[train_index,:],train2.loc[train_index]['target']) oof_svc[idx1[test_index]] = clf.predict_proba(train3[test_index,:])[:,1] pred_te_svc[idx2] += clf.predict_proba(test3)[:,1] / skf.n_splits clf = QuadraticDiscriminantAnalysis(reg_param=0.111) clf.fit(train4[train_index,:],train2.loc[train_index]['target']) oof_qda[idx1[test_index]] = clf.predict_proba(train4[test_index,:])[:,1] pred_te_qda[idx2] += clf.predict_proba(test4)[:,1] / skf.n_splits print('lr', roc_auc_score(train['target'], oof_lr)) print('knn', roc_auc_score(train['target'], oof_knn)) print('svc', roc_auc_score(train['target'], oof_svc)) print('svcnu', roc_auc_score(train['target'], oof_svnu)) print('mlp', roc_auc_score(train['target'], oof_mlp)) print('qda', roc_auc_score(train['target'], oof_qda)) print('blend 1', roc_auc_score(train['target'], oof_svnu*0.7 + oof_svc*0.05 + oof_knn*0.2 + oof_mlp*0.05)) print('blend 2', roc_auc_score(train['target'], oof_qda*0.5+oof_svnu*0.35 + oof_svc*0.025 + oof_knn*0.1 + oof_mlp*0.025)) oof_svnu = oof_svnu.reshape(-1, 1) pred_te_svnu = pred_te_svnu.reshape(-1, 1) oof_svc = oof_svc.reshape(-1, 1) pred_te_svc = pred_te_svc.reshape(-1, 1) oof_knn = oof_knn.reshape(-1, 1) pred_te_knn = pred_te_knn.reshape(-1, 1) oof_mlp = oof_mlp.reshape(-1, 1) pred_te_mlp = pred_te_mlp.reshape(-1, 1) oof_lr = oof_lr.reshape(-1, 1) pred_te_lr = pred_te_lr.reshape(-1, 1) oof_qda = oof_qda.reshape(-1, 1) pred_te_qda = pred_te_qda.reshape(-1, 1) tr = np.concatenate((oof_svnu, oof_svc, oof_knn, oof_mlp, oof_lr, oof_qda), axis=1) te = np.concatenate((pred_te_svnu, pred_te_svc, pred_te_knn, pred_te_mlp, pred_te_lr, pred_te_qda), axis=1) print(tr.shape, te.shape) oof_lrr = np.zeros(len(train)) pred_te_lrr = np.zeros(len(test)) skf = StratifiedKFold(n_splits=5, random_state=42) for train_index, test_index in skf.split(tr, train['target']): lrr = linear_model.LogisticRegression() lrr.fit(tr[train_index], train['target'][train_index]) oof_lrr[test_index] = lrr.predict_proba(tr[test_index,:])[:,1] pred_te_lrr += lrr.predict_proba(te)[:,1] / skf.n_splits print('stack CV score =',round(roc_auc_score(train['target'],oof_lrr),6)) sub = pd.read_csv('../input/sample_submission.csv') sub['target'] = pred_te_lrr sub.to_csv('submission_stack.csv', index=False)
lr 0.790131655722408 knn 0.9016209110875143 svc 0.9496455309107024 svcnu 0.9602070184471454 mlp 0.9099946396711365 qda 0.9645745359410043 blend 1 0.9606747834832012 blend 2 0.9658290716499904 (262144, 6) (131073, 6) stack CV score = 0.965867
MIT
5 instant gratification/instantgratification-lofo-feature-importance.ipynb
MLVPRASAD/KaggleProjects
Submitting various things for end of grant.
import os import sys import requests import pandas import paramiko import json from IPython import display from curation_common import * from htsworkflow.submission.encoded import DCCValidator PANDAS_ODF = os.path.expanduser('~/src/odf_pandas') if PANDAS_ODF not in sys.path: sys.path.append(PANDAS_ODF) from pandasodf import ODFReader import gcat from htsworkflow.submission.encoded import Document from htsworkflow.submission.aws_submission import run_aws_cp # live server & control file #server = ENCODED('www.encodeproject.org') spreadsheet_name = "ENCODE_test_miRNA_experiments_01112018" # test server & datafile server = ENCODED('test.encodedcc.org') #spreadsheet_name = os.path.expanduser('~diane/woldlab/ENCODE/C1-encode3-limb-2017-testserver.ods') server.load_netrc() validator = DCCValidator(server) award = 'UM1HG009443'
_____no_output_____
BSD-3-Clause
encode-mirna-2018-01.ipynb
detrout/encode4-curation
Submit Documents Example Document submission
#atac_uuid = '0fc44318-b802-474e-8199-f3b6d708eb6f' #atac = Document(os.path.expanduser('~/proj/encode3-curation/Wold_Lab_ATAC_Seq_protocol_December_2016.pdf'), # 'general protocol', # 'ATAC-Seq experiment protocol for Wold lab', # ) #body = atac.create_if_needed(server, atac_uuid) #print(body['@id'])
_____no_output_____
BSD-3-Clause
encode-mirna-2018-01.ipynb
detrout/encode4-curation
Submit Annotations
#sheet = gcat.get_file(spreadsheet_name, fmt='pandas_excel') #annotations = sheet.parse('Annotations', header=0) #created = server.post_sheet('/annotations/', annotations, verbose=True, dry_run=True) #print(len(created)) #if created: # annotations.to_excel('/tmp/annotations.xlsx', index=False)
_____no_output_____
BSD-3-Clause
encode-mirna-2018-01.ipynb
detrout/encode4-curation
Register Biosamples
book = gcat.get_file(spreadsheet_name, fmt='pandas_excel') biosample = book.parse('Biosamples', header=0) created = server.post_sheet('/biosamples/', biosample, verbose=True, dry_run=True, validator=validator) print(len(created)) if created: biosample.to_excel('/dev/shm/biosamples.xlsx', index=False)
_____no_output_____
BSD-3-Clause
encode-mirna-2018-01.ipynb
detrout/encode4-curation
Register Libraries
print(spreadsheet_name) book = gcat.get_file(spreadsheet_name, fmt='pandas_excel') libraries = book.parse('Libraries', header=0) created = server.post_sheet('/libraries/', libraries, verbose=True, dry_run=True, validator=validator) print(len(created)) if created: libraries.to_excel('/dev/shm/libraries.xlsx', index=False)
_____no_output_____
BSD-3-Clause
encode-mirna-2018-01.ipynb
detrout/encode4-curation
Register Experiments
print(server.server) book = gcat.get_file(spreadsheet_name, fmt='pandas_excel') experiments = book.parse('Experiments', header=0) created = server.post_sheet('/experiments/', experiments, verbose=True, dry_run=False, validator=validator) print(len(created)) if created: experiments.to_excel('/dev/shm/experiments.xlsx', index=False)
_____no_output_____
BSD-3-Clause
encode-mirna-2018-01.ipynb
detrout/encode4-curation
Register Replicates
print(server.server) print(spreadsheet_name) book = gcat.get_file(spreadsheet_name, fmt='pandas_excel') replicates = book.parse('Replicates', header=0) created = server.post_sheet('/replicates/', replicates, verbose=True, dry_run=True, validator=validator) print(len(created)) if created: replicates.to_excel('/dev/shm/replicates.xlsx', index=False)
_____no_output_____
BSD-3-Clause
encode-mirna-2018-01.ipynb
detrout/encode4-curation
End-to-end learning for music audio- http://qiita.com/himono/items/a94969e35fa8d71f876c ``` ใƒ‡ใƒผใ‚ฟใฎใƒ€ใ‚ฆใƒณใƒญใƒผใƒ‰wget http://mi.soi.city.ac.uk/datasets/magnatagatune/mp3.zip.001wget http://mi.soi.city.ac.uk/datasets/magnatagatune/mp3.zip.002wget http://mi.soi.city.ac.uk/datasets/magnatagatune/mp3.zip.003 ็ตๅˆcat data/mp3.zip.* > data/music.zip ่งฃๅ‡unzip data/music.zip -d music```
%matplotlib inline import os import matplotlib.pyplot as plt
_____no_output_____
MIT
keras/170711-music-tagging.ipynb
aidiary/notebooks
MP3ใƒ•ใ‚กใ‚คใƒซใฎใƒญใƒผใƒ‰
import numpy as np from pydub import AudioSegment def mp3_to_array(file): # MP3 => RAW song = AudioSegment.from_mp3(file) song_arr = np.fromstring(song._data, np.int16) return song_arr %ls data/music/1/ambient_teknology-phoenix-01-ambient_teknology-0-29.mp3 file = 'data/music/1/ambient_teknology-phoenix-01-ambient_teknology-0-29.mp3' song = mp3_to_array(file) plt.plot(song)
_____no_output_____
MIT
keras/170711-music-tagging.ipynb
aidiary/notebooks
ๆฅฝๆ›ฒใ‚ฟใ‚ฐใƒ‡ใƒผใ‚ฟใ‚’ใƒญใƒผใƒ‰- ใƒฉใƒณใƒ€ใƒ ใซ3000ๆ›ฒใ‚’ๆŠฝๅ‡บ- ใ‚ˆใไฝฟใ‚ใ‚Œใ‚‹ใ‚ฟใ‚ฐ50ๅ€‹ใ‚’ๆŠฝๅ‡บ- ๅ„ๆ›ฒใซใฏ่ค‡ๆ•ฐใฎใ‚ฟใ‚ฐใŒใคใ„ใฆใ„ใ‚‹
import pandas as pd tags_df = pd.read_csv('data/annotations_final.csv', delim_whitespace=True) # ๅ…จไฝ“ใ‚’ใƒฉใƒณใƒ€ใƒ ใซใ‚ตใƒณใƒ—ใƒชใƒณใ‚ฐ tags_df = tags_df.sample(frac=1) # ๆœ€ๅˆใฎ3000ๆ›ฒใ‚’ไฝฟใ† tags_df = tags_df[:3000] tags_df top50_tags = tags_df.iloc[:, 1:189].sum().sort_values(ascending=False).index[:50].tolist() y = tags_df[top50_tags].values y
_____no_output_____
MIT
keras/170711-music-tagging.ipynb
aidiary/notebooks
ๆฅฝๆ›ฒใƒ‡ใƒผใ‚ฟใ‚’ใƒญใƒผใƒ‰- tags_dfใฎmp3_pathใ‹ใ‚‰ใƒ•ใ‚กใ‚คใƒซใƒ‘ใ‚นใ‚’ๅ–ๅพ—- mp3_to_array()ใงnumpy arrayใ‚’ใƒญใƒผใƒ‰- (samples, features, channels) ใซใชใ‚‹ใ‚ˆใ†ใซreshape- ้Ÿณๅฃฐๆณขๅฝขใฏ1ๆฌกๅ…ƒใชใฎใงchannelsใฏ1- ่จ“็ทดใƒ‡ใƒผใ‚ฟใฏใ™ในใฆๅŒใ˜ใ‚ตใ‚คใ‚บใชใฎใงfeaturesใฏๅŒใ˜ใซใชใ‚‹ใฏใš๏ผˆใƒ‘ใƒ‡ใ‚ฃใƒณใ‚ฐไธ่ฆ๏ผ‰
files = tags_df.mp3_path.values files = [os.path.join('data', 'music', x) for x in files] X = np.array([mp3_to_array(file) for file in files]) X = X.reshape(X.shape[0], X.shape[1], 1) X.shape
_____no_output_____
MIT
keras/170711-music-tagging.ipynb
aidiary/notebooks
่จ“็ทดใƒ‡ใƒผใ‚ฟใจใƒ†ใ‚นใƒˆใƒ‡ใƒผใ‚ฟใซๅˆ†ๅ‰ฒ
from sklearn.model_selection import train_test_split random_state = 42 train_x, test_x, train_y, test_y = train_test_split(X, y, test_size=0.2, random_state=random_state) print(train_x.shape) print(test_x.shape) print(train_y.shape) print(test_y.shape) plt.plot(train_x[0]) np.save('train_x.npy', train_x) np.save('test_x.npy', test_x) np.save('train_y.npy', train_y) np.save('test_y.npy', test_y)
_____no_output_____
MIT
keras/170711-music-tagging.ipynb
aidiary/notebooks
่จ“็ทด
import numpy as np from keras.models import Model from keras.layers import Dense, Flatten, Input, Conv1D, MaxPooling1D from keras.callbacks import CSVLogger, ModelCheckpoint train_x = np.load('train_x.npy') train_y = np.load('train_y.npy') test_x = np.load('test_x.npy') test_y = np.load('test_y.npy') print(train_x.shape) print(train_y.shape) print(test_x.shape) print(test_y.shape) features = train_x.shape[1] x_inputs = Input(shape=(features, 1), name='x_inputs') x = Conv1D(128, 256, strides=256, padding='valid', activation='relu')(x_inputs) # strided conv x = Conv1D(32, 8, activation='relu')(x) x = MaxPooling1D(4)(x) x = Conv1D(32, 8, activation='relu')(x) x = MaxPooling1D(4)(x) x = Conv1D(32, 8, activation='relu')(x) x = MaxPooling1D(4)(x) x = Conv1D(32, 8, activation='relu')(x) x = MaxPooling1D(4)(x) x = Flatten()(x) x = Dense(100, activation='relu')(x) x_outputs = Dense(50, activation='sigmoid', name='x_outputs')(x) model = Model(inputs=x_inputs, outputs=x_outputs) model.compile(optimizer='adam', loss='categorical_crossentropy') logger = CSVLogger('history.log') checkpoint = ModelCheckpoint( 'model.{epoch:02d}-{val_loss:.3f}.h5', monitor='val_loss', verbose=1, save_best_only=True, mode='auto') model.fit(train_x, train_y, batch_size=600, epochs=50, validation_data=[test_x, test_y], callbacks=[logger, checkpoint])
_____no_output_____
MIT
keras/170711-music-tagging.ipynb
aidiary/notebooks
ไบˆๆธฌ- taggerใฏ่ค‡ๆ•ฐใฎใ‚ฟใ‚ฐใ‚’ๅ‡บๅŠ›ใ™ใ‚‹ใฎใงevaluate()ใงใฏใƒ€ใƒก๏ผŸ
import numpy as np from keras.models import load_model from sklearn.metrics import roc_auc_score test_x = np.load('test_x.npy') test_y = np.load('test_y.npy') model = load_model('model.22-9.187-0.202.h5') pred_y = model.predict(test_x, batch_size=50) print(roc_auc_score(test_y, pred_y)) print(model.evaluate(test_x, test_y))
Using TensorFlow backend.
MIT
keras/170711-music-tagging.ipynb
aidiary/notebooks
Splitting data for Training and Testing
from sklearn.model_selection import train_test_split X_train,X_test,Y_train,Y_test = train_test_split(x,y,train_size=0.7,random_state=0) X_train.shape X_test.shape Y_train.shape Y_test.shape
_____no_output_____
MIT
.ipynb_checkpoints/MLDC MAY'21 - Day 3-checkpoint.ipynb
CodeSnooker/ds-fireblazeaischool.in
Creating a ML Model
from sklearn.linear_model import LinearRegression regressor = LinearRegression() regressor.fit(X_train,Y_train) y_predict = regressor.predict(X_test) y_predict Y_test
_____no_output_____
MIT
.ipynb_checkpoints/MLDC MAY'21 - Day 3-checkpoint.ipynb
CodeSnooker/ds-fireblazeaischool.in
Model Coefficients
regressor.intercept_ regressor.coef_
_____no_output_____
MIT
.ipynb_checkpoints/MLDC MAY'21 - Day 3-checkpoint.ipynb
CodeSnooker/ds-fireblazeaischool.in
Equation of Line --> y = 9360.26* x + 26777.39 Model Evaluation
from sklearn import metrics MAE = metrics.mean_absolute_error(Y_test,y_predict) MAE MSE = metrics.mean_squared_error(Y_test,y_predict) MSE RMSE = np.sqrt(MSE) RMSE R2 = metrics.r2_score(Y_test,y_predict) R2
_____no_output_____
MIT
.ipynb_checkpoints/MLDC MAY'21 - Day 3-checkpoint.ipynb
CodeSnooker/ds-fireblazeaischool.in
Hands on Task
df1 = pd.read_csv('data/auto-mpg.csv') df1.head()
_____no_output_____
MIT
.ipynb_checkpoints/MLDC MAY'21 - Day 3-checkpoint.ipynb
CodeSnooker/ds-fireblazeaischool.in
Markers for watershed transformThe watershed is a classical algorithm used for **segmentation**, thatis, for separating different objects in an image.Here a marker image is built from the region of low gradient inside the image.In a gradient image, the areas of high values provide barriers that help tosegment the image.Using markers on the lower values will ensure that the segmented objects arefound.See Wikipedia_ for more details on the algorithm.
from scipy import ndimage as ndi import matplotlib.pyplot as plt from skimage.morphology import disk from skimage.segmentation import watershed from skimage import data from skimage.filters import rank from skimage.util import img_as_ubyte image = img_as_ubyte(data.camera()) # denoise image denoised = rank.median(image, disk(2)) # find continuous region (low gradient - # where less than 10 for this image) --> markers # disk(5) is used here to get a more smooth image markers = rank.gradient(denoised, disk(5)) < 10 markers = ndi.label(markers)[0] # local gradient (disk(2) is used to keep edges thin) gradient = rank.gradient(denoised, disk(2)) # process the watershed labels = watershed(gradient, markers) # display results fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(8, 8), sharex=True, sharey=True) ax = axes.ravel() ax[0].imshow(image, cmap=plt.cm.gray) ax[0].set_title("Original") ax[1].imshow(gradient, cmap=plt.cm.nipy_spectral) ax[1].set_title("Local Gradient") ax[2].imshow(markers, cmap=plt.cm.nipy_spectral) ax[2].set_title("Markers") ax[3].imshow(image, cmap=plt.cm.gray) ax[3].imshow(labels, cmap=plt.cm.nipy_spectral, alpha=.7) ax[3].set_title("Segmented") for a in ax: a.axis('off') fig.tight_layout() plt.show()
_____no_output_____
MIT
digital-image-processing/notebooks/segmentation/plot_marked_watershed.ipynb
sinamedialab/courses
prepared by Abuzer Yakaryilmaz (QLatvia) This cell contains some macros. If there is a problem with displaying mathematical formulas, please run this cell to load these macros. $ \newcommand{\bra}[1]{\langle 1|} $$ \newcommand{\ket}[1]{|1\rangle} $$ \newcommand{\braket}[2]{\langle 1|2\rangle} $$ \newcommand{\dot}[2]{ 1 \cdot 2} $$ \newcommand{\biginner}[2]{\left\langle 1,2\right\rangle} $$ \newcommand{\mymatrix}[2]{\left( \begin{array}{1} 2\end{array} \right)} $$ \newcommand{\myvector}[1]{\mymatrix{c}{1}} $$ \newcommand{\myrvector}[1]{\mymatrix{r}{1}} $$ \newcommand{\mypar}[1]{\left( 1 \right)} $$ \newcommand{\mybigpar}[1]{ \Big( 1 \Big)} $$ \newcommand{\sqrttwo}{\frac{1}{\sqrt{2}}} $$ \newcommand{\dsqrttwo}{\dfrac{1}{\sqrt{2}}} $$ \newcommand{\onehalf}{\frac{1}{2}} $$ \newcommand{\donehalf}{\dfrac{1}{2}} $$ \newcommand{\hadamard}{ \mymatrix{rr}{ \sqrttwo & \sqrttwo \\ \sqrttwo & -\sqrttwo }} $$ \newcommand{\vzero}{\myvector{1\\0}} $$ \newcommand{\vone}{\myvector{0\\1}} $$ \newcommand{\stateplus}{\myvector{ \sqrttwo \\ \sqrttwo } } $$ \newcommand{\stateminus}{ \myrvector{ \sqrttwo \\ -\sqrttwo } } $$ \newcommand{\myarray}[2]{ \begin{array}{1}2\end{array}} $$ \newcommand{\X}{ \mymatrix{cc}{0 & 1 \\ 1 & 0} } $$ \newcommand{\I}{ \mymatrix{rr}{1 & 0 \\ 0 & 1} } $$ \newcommand{\Z}{ \mymatrix{rr}{1 & 0 \\ 0 & -1} } $$ \newcommand{\Htwo}{ \mymatrix{rrrr}{ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} } } $$ \newcommand{\CNOT}{ \mymatrix{cccc}{1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0} } $$ \newcommand{\norm}[1]{ \left\lVert 1 \right\rVert } $$ \newcommand{\pstate}[1]{ \lceil \mspace{-1mu} 1 \mspace{-1.5mu} \rfloor } $ Solutions for Probabilistic Bit Task 2 Suppose that Fyodor hiddenly rolls a loaded (tricky) dice with the bias $$ Pr(1):Pr(2):Pr(3):Pr(4):Pr(5):Pr(6) = 7:5:4:2:6:1 . $$Represent your information on the result as a column vector. Remark that the size of your column should be 6.You may use python for your calculations. Solution
# all portions are stored in a list all_portions = [7,5,4,2,6,1]; # let's calculate the total portion total_portion = 0 for i in range(6): total_portion = total_portion + all_portions[i] print("total portion is",total_portion) # find the weight of one portion one_portion = 1/total_portion print("the weight of one portion is",one_portion) print() # print an empty line # now we can calculate the probabilities of rolling 1,2,3,4,5, and 6 for i in range(6): print("the probability of rolling",(i+1),"is",(one_portion*all_portions[i]))
_____no_output_____
Apache-2.0
bronze/B07_Probabilistic_Bit_Solutions.ipynb
KuantumTurkiye/bronze
Porto Seguro's Safe Driving PredictionPorto Seguro, one of Brazilโ€™s largest auto and homeowner insurance companies, completely agrees. Inaccuracies in car insurance companyโ€™s claim predictions raise the cost of insurance for good drivers and reduce the price for bad ones.In the [Porto Seguro Safe Driver Prediction competition](https://www.kaggle.com/c/porto-seguro-safe-driver-prediction), the challenge is to build a model that predicts the probability that a driver will initiate an auto insurance claim in the next year. While Porto Seguro has used machine learning for the past 20 years, theyโ€™re looking to Kaggleโ€™s machine learning community to explore new, more powerful methods. A more accurate prediction will allow them to further tailor their prices, and hopefully make auto insurance coverage more accessible to more drivers.Lucky for you, a machine learning model was built to solve the Porto Seguro problem by the data scientist on your team. The solution notebook has steps to load data, split the data into test and train sets, train, evaluate and save a LightGBM model that will be used for the future challenges. Hint: use shift + enter to run the code cells below. Once the cell turns from [*] to [], you can be sure the cell has run. Import Needed PackagesImport the packages needed for this solution notebook. The most widely used packages for machine learning for [scikit-learn](https://scikit-learn.org/stable/), [pandas](https://pandas.pydata.org/docs/getting_started/index.htmlgetting-started), and [numpy](https://numpy.org/). These packages have various features, as well as a lot of clustering, regression and classification algorithms that make it a good choice for data mining and data analysis. In this notebook, we're using a training function from [lightgbm](https://lightgbm.readthedocs.io/en/latest/index.html).
import os import numpy as np import pandas as pd import lightgbm from sklearn.model_selection import train_test_split import joblib from sklearn import metrics
_____no_output_____
MIT
step0/porto-seguro-safe-driver-prediction-LGBM.ipynb
kawo123/azure-mlops
Load DataLoad the training dataset from the ./data/ directory. Df.shape() allows you to view the dimensions of the dataset you are passing in. If you want to view the first 5 rows of data, df.head() allows for this.
DATA_DIR = "../data" data_df = pd.read_csv(os.path.join(DATA_DIR, 'porto_seguro_safe_driver_prediction_input.csv')) print(data_df.shape) data_df.head()
(595212, 59)
MIT
step0/porto-seguro-safe-driver-prediction-LGBM.ipynb
kawo123/azure-mlops
Split Data into Train and Validatation SetsPartitioning data into training, validation, and holdout sets allows you to develop highly accurate models that are relevant to data that you collect in the future, not just the data the model was trained on. In machine learning, features are the measurable property of the object youโ€™re trying to analyze. Typically, features are the columns of the data that you are training your model with minus the label. In machine learning, a label (categorical) or target (regression) is the output you get from your model after training it.
features = data_df.drop(['target', 'id'], axis = 1) labels = np.array(data_df['target']) features_train, features_valid, labels_train, labels_valid = train_test_split(features, labels, test_size=0.2, random_state=0) train_data = lightgbm.Dataset(features_train, label=labels_train) valid_data = lightgbm.Dataset(features_valid, label=labels_valid, free_raw_data=False)
_____no_output_____
MIT
step0/porto-seguro-safe-driver-prediction-LGBM.ipynb
kawo123/azure-mlops
Train ModelA machine learning model is an algorithm which learns features from the given data to produce labels which may be continuous or categorical ( regression and classification respectively ). In other words, it tries to relate the given data with its labels, just as the human brain does.In this cell, the data scientist used an algorithm called [LightGBM](https://lightgbm.readthedocs.io/en/latest/), which primarily used for unbalanced datasets. AUC will be explained in the next cell.
parameters = { 'learning_rate': 0.02, 'boosting_type': 'gbdt', 'objective': 'binary', 'metric': 'auc', 'sub_feature': 0.7, 'num_leaves': 60, 'min_data': 100, 'min_hessian': 1, 'verbose': 4 } model = lightgbm.train(parameters, train_data, valid_sets=valid_data, num_boost_round=500, early_stopping_rounds=20)
[1] valid_0's auc: 0.595844 Training until validation scores don't improve for 20 rounds [2] valid_0's auc: 0.605252 [3] valid_0's auc: 0.612784 [4] valid_0's auc: 0.61756 [5] valid_0's auc: 0.620129 [6] valid_0's auc: 0.622447 [7] valid_0's auc: 0.622163 [8] valid_0's auc: 0.622112 [9] valid_0's auc: 0.622581 [10] valid_0's auc: 0.622278 [11] valid_0's auc: 0.622433 [12] valid_0's auc: 0.623423 [13] valid_0's auc: 0.623618 [14] valid_0's auc: 0.62414 [15] valid_0's auc: 0.624421 [16] valid_0's auc: 0.624512 [17] valid_0's auc: 0.625151 [18] valid_0's auc: 0.62529 [19] valid_0's auc: 0.625437 [20] valid_0's auc: 0.62563 [21] valid_0's auc: 0.625963 [22] valid_0's auc: 0.626147 [23] valid_0's auc: 0.626383 [24] valid_0's auc: 0.626618 [25] valid_0's auc: 0.626586 [26] valid_0's auc: 0.626839 [27] valid_0's auc: 0.626972 [28] valid_0's auc: 0.626935 [29] valid_0's auc: 0.626946 [30] valid_0's auc: 0.627204 [31] valid_0's auc: 0.627252 [32] valid_0's auc: 0.627302 [33] valid_0's auc: 0.627249 [34] valid_0's auc: 0.627517 [35] valid_0's auc: 0.627755 [36] valid_0's auc: 0.62766 [37] valid_0's auc: 0.627483 [38] valid_0's auc: 0.627578 [39] valid_0's auc: 0.627433 [40] valid_0's auc: 0.627573 [41] valid_0's auc: 0.627908 [42] valid_0's auc: 0.627968 [43] valid_0's auc: 0.628082 [44] valid_0's auc: 0.628398 [45] valid_0's auc: 0.628763 [46] valid_0's auc: 0.629011 [47] valid_0's auc: 0.629321 [48] valid_0's auc: 0.629341 [49] valid_0's auc: 0.629353 [50] valid_0's auc: 0.629291 [51] valid_0's auc: 0.629447 [52] valid_0's auc: 0.629507 [53] valid_0's auc: 0.629725 [54] valid_0's auc: 0.630048 [55] valid_0's auc: 0.630085 [56] valid_0's auc: 0.630035 [57] valid_0's auc: 0.630236 [58] valid_0's auc: 0.630486 [59] valid_0's auc: 0.630663 [60] valid_0's auc: 0.630787 [61] valid_0's auc: 0.630932 [62] valid_0's auc: 0.631004 [63] valid_0's auc: 0.631161 [64] valid_0's auc: 0.631407 [65] valid_0's auc: 0.631408 [66] valid_0's auc: 0.631515 [67] valid_0's auc: 0.631631 [68] valid_0's auc: 0.631628 [69] valid_0's auc: 0.631703 [70] valid_0's auc: 0.631781 [71] valid_0's auc: 0.631786 [72] valid_0's auc: 0.631779 [73] valid_0's auc: 0.632022 [74] valid_0's auc: 0.632086 [75] valid_0's auc: 0.632107 [76] valid_0's auc: 0.632201 [77] valid_0's auc: 0.632165 [78] valid_0's auc: 0.632335 [79] valid_0's auc: 0.632446 [80] valid_0's auc: 0.63254 [81] valid_0's auc: 0.632654 [82] valid_0's auc: 0.632663 [83] valid_0's auc: 0.632811 [84] valid_0's auc: 0.63291 [85] valid_0's auc: 0.632993 [86] valid_0's auc: 0.632962 [87] valid_0's auc: 0.632941 [88] valid_0's auc: 0.633062 [89] valid_0's auc: 0.633144 [90] valid_0's auc: 0.633242 [91] valid_0's auc: 0.633336 [92] valid_0's auc: 0.633453 [93] valid_0's auc: 0.633556 [94] valid_0's auc: 0.633648 [95] valid_0's auc: 0.633762 [96] valid_0's auc: 0.633831 [97] valid_0's auc: 0.633922 [98] valid_0's auc: 0.633908 [99] valid_0's auc: 0.633958 [100] valid_0's auc: 0.634122 [101] valid_0's auc: 0.634278 [102] valid_0's auc: 0.634301 [103] valid_0's auc: 0.634313 [104] valid_0's auc: 0.634366 [105] valid_0's auc: 0.634497 [106] valid_0's auc: 0.634442 [107] valid_0's auc: 0.634487 [108] valid_0's auc: 0.634578 [109] valid_0's auc: 0.634676 [110] valid_0's auc: 0.63479 [111] valid_0's auc: 0.634846 [112] valid_0's auc: 0.634918 [113] valid_0's auc: 0.63501 [114] valid_0's auc: 0.634965 [115] valid_0's auc: 0.635029 [116] valid_0's auc: 0.635077 [117] valid_0's auc: 0.635075 [118] valid_0's auc: 0.6352 [119] valid_0's auc: 0.635215 [120] valid_0's auc: 0.635231 [121] valid_0's auc: 0.635276 [122] valid_0's auc: 0.635268 [123] valid_0's auc: 0.635221 [124] valid_0's auc: 0.635178 [125] valid_0's auc: 0.635221 [126] valid_0's auc: 0.635288 [127] valid_0's auc: 0.635345 [128] valid_0's auc: 0.635348 [129] valid_0's auc: 0.635414 [130] valid_0's auc: 0.635418 [131] valid_0's auc: 0.635352 [132] valid_0's auc: 0.635402 [133] valid_0's auc: 0.635497 [134] valid_0's auc: 0.635545 [135] valid_0's auc: 0.63565 [136] valid_0's auc: 0.635622 [137] valid_0's auc: 0.635664 [138] valid_0's auc: 0.635781 [139] valid_0's auc: 0.635735 [140] valid_0's auc: 0.635719 [141] valid_0's auc: 0.635815 [142] valid_0's auc: 0.635799 [143] valid_0's auc: 0.63583 [144] valid_0's auc: 0.635898 [145] valid_0's auc: 0.635924 [146] valid_0's auc: 0.635885 [147] valid_0's auc: 0.635919 [148] valid_0's auc: 0.63598 [149] valid_0's auc: 0.636035 [150] valid_0's auc: 0.636087 [151] valid_0's auc: 0.636139 [152] valid_0's auc: 0.63617 [153] valid_0's auc: 0.636128 [154] valid_0's auc: 0.636096 [155] valid_0's auc: 0.636206 [156] valid_0's auc: 0.636259 [157] valid_0's auc: 0.636289 [158] valid_0's auc: 0.636283 [159] valid_0's auc: 0.636287 [160] valid_0's auc: 0.636293 [161] valid_0's auc: 0.636324 [162] valid_0's auc: 0.63633 [163] valid_0's auc: 0.636367 [164] valid_0's auc: 0.636438 [165] valid_0's auc: 0.636483 [166] valid_0's auc: 0.636577 [167] valid_0's auc: 0.636645 [168] valid_0's auc: 0.63659 [169] valid_0's auc: 0.636595 [170] valid_0's auc: 0.636672 [171] valid_0's auc: 0.636719 [172] valid_0's auc: 0.636755 [173] valid_0's auc: 0.636833 [174] valid_0's auc: 0.636908 [175] valid_0's auc: 0.636929 [176] valid_0's auc: 0.636928 [177] valid_0's auc: 0.636962 [178] valid_0's auc: 0.636969 [179] valid_0's auc: 0.636995 [180] valid_0's auc: 0.637059 [181] valid_0's auc: 0.637089 [182] valid_0's auc: 0.637085 [183] valid_0's auc: 0.637121 [184] valid_0's auc: 0.637131 [185] valid_0's auc: 0.637133 [186] valid_0's auc: 0.637144 [187] valid_0's auc: 0.637189 [188] valid_0's auc: 0.637173 [189] valid_0's auc: 0.63719 [190] valid_0's auc: 0.637205 [191] valid_0's auc: 0.637131 [192] valid_0's auc: 0.637159 [193] valid_0's auc: 0.637185 [194] valid_0's auc: 0.63719 [195] valid_0's auc: 0.637224 [196] valid_0's auc: 0.637219 [197] valid_0's auc: 0.637193 [198] valid_0's auc: 0.637297 [199] valid_0's auc: 0.637329 [200] valid_0's auc: 0.6373 [201] valid_0's auc: 0.637257 [202] valid_0's auc: 0.637253 [203] valid_0's auc: 0.637261 [204] valid_0's auc: 0.637252 [205] valid_0's auc: 0.637273 [206] valid_0's auc: 0.637297 [207] valid_0's auc: 0.637345 [208] valid_0's auc: 0.637401 [209] valid_0's auc: 0.637456 [210] valid_0's auc: 0.637392 [211] valid_0's auc: 0.637373 [212] valid_0's auc: 0.63741 [213] valid_0's auc: 0.637459 [214] valid_0's auc: 0.637496 [215] valid_0's auc: 0.637539 [216] valid_0's auc: 0.637546 [217] valid_0's auc: 0.637535 [218] valid_0's auc: 0.637511 [219] valid_0's auc: 0.6375 [220] valid_0's auc: 0.637502 [221] valid_0's auc: 0.637493 [222] valid_0's auc: 0.637431 [223] valid_0's auc: 0.637413 [224] valid_0's auc: 0.637421 [225] valid_0's auc: 0.637368 [226] valid_0's auc: 0.637374 [227] valid_0's auc: 0.637374 [228] valid_0's auc: 0.637413 [229] valid_0's auc: 0.637429 [230] valid_0's auc: 0.637437 [231] valid_0's auc: 0.637488 [232] valid_0's auc: 0.637531 [233] valid_0's auc: 0.637529 [234] valid_0's auc: 0.637567 [235] valid_0's auc: 0.637599 [236] valid_0's auc: 0.637624 [237] valid_0's auc: 0.637659 [238] valid_0's auc: 0.637586 [239] valid_0's auc: 0.637656 [240] valid_0's auc: 0.637684 [241] valid_0's auc: 0.637682 [242] valid_0's auc: 0.637751 [243] valid_0's auc: 0.637722 [244] valid_0's auc: 0.637714 [245] valid_0's auc: 0.637647 [246] valid_0's auc: 0.637679 [247] valid_0's auc: 0.637679 [248] valid_0's auc: 0.637735 [249] valid_0's auc: 0.6377 [250] valid_0's auc: 0.637738 [251] valid_0's auc: 0.637708 [252] valid_0's auc: 0.637688 [253] valid_0's auc: 0.637725 [254] valid_0's auc: 0.637697 [255] valid_0's auc: 0.637689 [256] valid_0's auc: 0.637714 [257] valid_0's auc: 0.637688 [258] valid_0's auc: 0.637732 [259] valid_0's auc: 0.637703 [260] valid_0's auc: 0.63775 [261] valid_0's auc: 0.637715 [262] valid_0's auc: 0.637711 Early stopping, best iteration is: [242] valid_0's auc: 0.637751
MIT
step0/porto-seguro-safe-driver-prediction-LGBM.ipynb
kawo123/azure-mlops
Evaluate ModelEvaluating performance is an essential task in machine learning. In this case, because this is a classification problem, the data scientist elected to use an AUC - ROC Curve. When we need to check or visualize the performance of the multi - class classification problem, we use AUC (Area Under The Curve) ROC (Receiver Operating Characteristics) curve. It is one of the most important evaluation metrics for checking any classification modelโ€™s performance.<img src="https://www.researchgate.net/profile/Oxana_Trifonova/publication/276079439/figure/fig2/AS:614187332034565@1523445079168/An-example-of-ROC-curves-with-good-AUC-09-and-satisfactory-AUC-065-parameters.png" alt="Markdown Monster icon" style="float: left; margin-right: 12px; width: 320px; height: 239px;" />
predictions = model.predict(valid_data.data) fpr, tpr, thresholds = metrics.roc_curve(valid_data.label, predictions) model_metrics = {"auc": (metrics.auc(fpr, tpr))} print(model_metrics)
{'auc': 0.6377511613946426}
MIT
step0/porto-seguro-safe-driver-prediction-LGBM.ipynb
kawo123/azure-mlops
Save Model In machine learning, we need to save the trained models in a file and restore them in order to reuse it to compare the model with other models, to test the model on a new data. The saving of data is called Serializaion, while restoring the data is called Deserialization.
model_name = "lgbm_binary_model.pkl" joblib.dump(value=model, filename=model_name)
_____no_output_____
MIT
step0/porto-seguro-safe-driver-prediction-LGBM.ipynb
kawo123/azure-mlops
Exploratory Data Analysis (EDA) Univariate Analysis
cat_cols = ['Fuel','Seller Type','Transmission','Owner'] i=0 while i < 4: fig = plt.figure(figsize=[15,6]) plt.subplot(1,2,1) sns.countplot(x=cat_cols[i], data=df) i += 1 plt.subplot(1,2,2) sns.countplot(x=cat_cols[i], data=df) i += 1 plt.show() num_cols = ['Selling Price','Current Value','KMs Driven','Year','max_power','Mileage','Engine','Gear Box'] i=0 while i < 8: fig = plt.figure(figsize=[15,20]) plt.subplot(4,2,1) sns.boxplot(x=num_cols[i], data=df) i += 1 plt.subplot(4,2,2) sns.boxplot(x=num_cols[i], data=df) i += 1
_____no_output_____
MIT
EDA & Prediction.ipynb
an-chowdhury/Used-Car-Price-Prediciton
Bivariate Analysis
sns.set(rc={'figure.figsize':(15,15)}) sns.heatmap(df.corr(),annot=True) print(df['Fuel'].value_counts(),'\n') print(df['Seller Type'].value_counts(),'\n') print(df['Transmission'].value_counts(),'\n') print(df['Owner'].value_counts(),'\n') df.pivot_table(values='Selling Price', index = 'Seller Type', columns= 'Fuel')
_____no_output_____
MIT
EDA & Prediction.ipynb
an-chowdhury/Used-Car-Price-Prediciton
Data Preparation Creating Dummies for Categorical Features
label_encoder = LabelEncoder() df['Owner']= label_encoder.fit_transform(df['Owner']) final_dataset=df[['Year','Selling Price','Current Value','KMs Driven','Fuel', 'Seller Type','max_power','Transmission','Owner','Mileage','Engine','Seats','Gear Box']] final_dataset=pd.get_dummies(final_dataset,drop_first=True) sns.set(rc={'figure.figsize':(15,15)}) sns.heatmap(final_dataset.corr(),annot=True,cmap="RdBu") final_dataset.corr()['Selling Price'].sort_values(ascending=False) y = final_dataset['Selling Price'] X = final_dataset.drop('Selling Price',axis=1)
_____no_output_____
MIT
EDA & Prediction.ipynb
an-chowdhury/Used-Car-Price-Prediciton
Feature Importance
from sklearn.ensemble import ExtraTreesRegressor model = ExtraTreesRegressor() model.fit(X,y) print(model.feature_importances_) sns.set(rc={'figure.figsize':(12,8)}) feat_importances = pd.Series(model.feature_importances_, index=X.columns) feat_importances.nlargest(5).plot(kind='barh') plt.show() X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1) print("x train: ",X_train.shape) print("x test: ",X_test.shape) print("y train: ",y_train.shape) print("y test: ",y_test.shape) CV = [] R2_train = [] R2_test = [] MAE=[] MSE=[] RMSE=[] def car_pred_model(model): # R2 score of train set y_pred_train = model.predict(X_train) R2_train_model = r2_score(y_train,y_pred_train) R2_train.append(round(R2_train_model,2)) # R2 score of test set y_pred_test = model.predict(X_test) R2_test_model = r2_score(y_test,y_pred_test) R2_test.append(round(R2_test_model,2)) # R2 mean of train set using Cross validation cross_val = cross_val_score(model ,X_train ,y_train ,cv=5) cv_mean = cross_val.mean() CV.append(round(cv_mean,2)) print("Train R2-score :",round(R2_train_model,2)) print("Test R2-score :",round(R2_test_model,2)) print("Train CV scores :",cross_val) print("Train CV mean :",round(cv_mean,2)) MAE.append(metrics.mean_absolute_error(y_test, y_pred_test)) MSE.append(metrics.mean_squared_error(y_test, y_pred_test)) RMSE.append(np.sqrt(metrics.mean_squared_error(y_test, y_pred_test))) print('MAE:', metrics.mean_absolute_error(y_test, y_pred_test)) print('MSE:', metrics.mean_squared_error(y_test, y_pred_test)) print('RMSE:', np.sqrt(metrics.mean_squared_error(y_test, y_pred_test))) fig, ax = plt.subplots(1,2,figsize = (12,6)) ax[0].set_title('Residual Plot of Train samples') sns.distplot((y_test-y_pred_test),hist = True,ax = ax[0]) ax[0].set_xlabel('y_train - y_pred_train') # Y_test vs Y_train scatter plot ax[1].set_title('y_test vs y_pred_test') ax[1].scatter(x = y_test, y = y_pred_test) ax[1].set_xlabel('y_test') ax[1].set_ylabel('y_pred_test') plt.show()
_____no_output_____
MIT
EDA & Prediction.ipynb
an-chowdhury/Used-Car-Price-Prediciton
Linear Regression
lr = LinearRegression() lr.fit(X_train,y_train) car_pred_model(lr)
Train R2-score : 0.83 Test R2-score : 0.88 Train CV scores : [0.87318862 0.23054545 0.81581846 0.86005821 0.79216413] Train CV mean : 0.71 MAE: 1.3212115374204905 MSE: 5.731984478802555 RMSE: 2.3941563187900985
MIT
EDA & Prediction.ipynb
an-chowdhury/Used-Car-Price-Prediciton
Ridge
# Creating Ridge model object rg = Ridge() # range of alpha alpha = np.logspace(-3,3,num=14) # Creating RandomizedSearchCV to find the best estimator of hyperparameter rg_rs = RandomizedSearchCV(estimator = rg, param_distributions = dict(alpha=alpha)) rg_rs.fit(X_train,y_train) car_pred_model(rg_rs)
Train R2-score : 0.83 Test R2-score : 0.89 Train CV scores : [0.87345385 0.19438248 0.81973301 0.87546861 0.79190635] Train CV mean : 0.71 MAE: 1.259204342611868 MSE: 5.417232953632579 RMSE: 2.327494995404411
MIT
EDA & Prediction.ipynb
an-chowdhury/Used-Car-Price-Prediciton
Lasso
ls = Lasso() alpha = np.logspace(-3,3,num=14) # range for alpha ls_rs = RandomizedSearchCV(estimator = ls, param_distributions = dict(alpha=alpha)) ls_rs.fit(X_train,y_train) car_pred_model(ls_rs)
Train R2-score : 0.83 Test R2-score : 0.88 Train CV scores : [0.87434025 0.22872808 0.82137491 0.87579026 0.79292455] Train CV mean : 0.72 MAE: 1.28454046198753 MSE: 5.66135888360262 RMSE: 2.379361024225332
MIT
EDA & Prediction.ipynb
an-chowdhury/Used-Car-Price-Prediciton
Random Forest
rf = RandomForestRegressor() # Number of trees in Random forest n_estimators=list(range(500,1000,100)) # Maximum number of levels in a tree max_depth=list(range(4,9,4)) # Minimum number of samples required to split an internal node min_samples_split=list(range(4,9,2)) # Minimum number of samples required to be at a leaf node. min_samples_leaf=[1,2,5,7] # Number of fearures to be considered at each split max_features=['auto','sqrt'] # Hyperparameters dict param_grid = {"n_estimators":n_estimators, "max_depth":max_depth, "min_samples_split":min_samples_split, "min_samples_leaf":min_samples_leaf, "max_features":max_features} rf_rs = RandomizedSearchCV(estimator = rf, param_distributions = param_grid,cv = 5, random_state=42, n_jobs = 1) rf_rs.fit(X_train,y_train) car_pred_model(rf_rs)
Train R2-score : 0.96 Test R2-score : 0.92 Train CV scores : [0.90932922 0.55268803 0.77245254 0.92139404 0.90756667] Train CV mean : 0.81 MAE: 0.796357939896497 MSE: 3.7897916295929766 RMSE: 1.9467387163132541
MIT
EDA & Prediction.ipynb
an-chowdhury/Used-Car-Price-Prediciton
Gradient Boosting
gb = GradientBoostingRegressor() # Rate at which correcting is being made learning_rate = [0.001, 0.01, 0.1, 0.2] # Number of trees in Gradient boosting n_estimators=list(range(500,1000,100)) # Maximum number of levels in a tree max_depth=list(range(4,9,4)) # Minimum number of samples required to split an internal node min_samples_split=list(range(4,9,2)) # Minimum number of samples required to be at a leaf node. min_samples_leaf=[1,2,5,7] # Number of fearures to be considered at each split max_features=['auto','sqrt'] # Hyperparameters dict param_grid = {"learning_rate":learning_rate, "n_estimators":n_estimators, "max_depth":max_depth, "min_samples_split":min_samples_split, "min_samples_leaf":min_samples_leaf, "max_features":max_features} gb_rs = RandomizedSearchCV(estimator = gb, param_distributions = param_grid,cv = 5, random_state=42, n_jobs = 1) gb_rs.fit(X_train,y_train) car_pred_model(gb_rs) gb_rs.best_params_ gb_rs.best_score_ Models = ["Linear Regression","Ridge","Lasso","RandomForest Regressor","GradientBoosting Regressor"] score_comparison=pd.DataFrame({'Model': Models,'R Squared(Train)': R2_train,'R Squared(Test)': R2_test,'CV score mean(Train)': CV, 'Mean Absolute Error':MAE,'Mean Squared Error':MSE, 'Root Mean Squared Error':RMSE}) score_comparison file = open('random_forest_regression_model.pkl', 'wb') # dump information to that file pickle.dump(rf_rs, file)
_____no_output_____
MIT
EDA & Prediction.ipynb
an-chowdhury/Used-Car-Price-Prediciton
็ปง็ปญๆŒ‘ๆˆ˜--- ็ฌฌ10้ข˜ๅœฐๅ€[bull.html](http://www.pythonchallenge.com/pc/return/bull.html)* * ็ฝ‘้กตๆ ‡้ข˜ๆ˜ฏ`what are you looking at?`๏ผŒ้ข˜็›ฎๅ†…ๅฎนๆ˜ฏ`len(a[30]) = ?`๏ผŒๆบ็ ้‡Œ้ขๆฒกๆœ‰้š่—ๅ†…ๅฎน ็œ‹ๅˆฐไธŠไธ€้ข˜็”ปๅ‡บๆฅ็š„็‰›็š„็œŸ้ข็›ฎไบ†๏ผๅŒๆ ทไปฅ็‰›็š„่ฝฎๅป“ๅœˆ่ตทๆฅ็š„ๅŒบๅŸŸๆœ‰ไธ€ไธช[่ถ…้“พๆŽฅ](http://www.pythonchallenge.com/pc/return/sequence.txt)๏ผŒ็‚น่ฟ›ๅŽปๆ˜ฏ่ฟ™ๆ ท็š„ๅ†…ๅฎน> a = [1, 11, 21, 1211, 111221, ่ฟ™ๆ ท็š„่ฏ๏ผŒ็ป“ๅˆ้ข˜็›ฎๅ†…ๅฎนไธ€็œ‹๏ผŒๆ€่ทฏไนŸๆ˜ฏๅพˆๆธ…ๆ™ฐ็š„ใ€‚`a`ๆ˜ฏไธ€ไธชๆ•ฐๅˆ—๏ผŒๆˆ‘ไปฌ่ฆๆฑ‚ๅ‡บ`a[30]`็š„ไฝๆ•ฐใ€‚ๅ…ณ้”ฎๆ˜ฏ`a`ๆ•ฐๅˆ—ๆ˜ฏไป€ไนˆ่ง„ๅพ‹ๅ‘ข๏ผŸๆ‡‚่กŒ็š„ไธ€็œ‹ๅฐฑๆ‡‚ไบ†๏ผŒๅ่€Œๆ˜ฏๆ•ฐๅญฆๅคชๅฅฝ็š„ๆƒณไธๅ‡บๆฅ๏ผŒๅ› ไธบๅฎƒไธๆ˜ฏไปปไฝ•็š„ๆ•ฐๅญฆ่ง„ๅพ‹ใ€‚> ๅค–่ง‚ๆ•ฐๅˆ—๏ผˆLook-and-say sequence๏ผ‰็ฌฌn้กนๆ่ฟฐไบ†็ฌฌn-1้กน็š„ๆ•ฐๅญ—ๅˆ†ๅธƒใ€‚ๅฎƒไปฅ1ๅผ€ๅง‹๏ผš> 1. 1๏ผš่ฏปไฝœ1ไธชโ€œ1โ€๏ผŒๅณ11> 1. 11๏ผš่ฏปไฝœ2ไธชโ€œ1โ€๏ผŒๅณ21> 1. 21๏ผš่ฏปไฝœ1ไธชโ€œ2โ€๏ผŒ1ไธชโ€œ1โ€๏ผŒๅณ1211> 1. 1211๏ผš่ฏปไฝœ1ไธชโ€œ1โ€๏ผŒ1ไธชโ€œ2โ€๏ผŒ2ไธชโ€œ1โ€๏ผŒๅณ111221> 1. 111221๏ผš่ฏปไฝœ3ไธชโ€œ1โ€๏ผŒ2ไธชโ€œ2โ€๏ผŒ1ไธชโ€œ1โ€๏ผŒๅณ312211> > 1, 11, 21, 1211, 111221, 312211, 13112221, 1113213211, ... ๏ผˆOEISไธญ็š„ๆ•ฐๅˆ—A005150๏ผ‰> From [wikipedia.org](https://zh.wikipedia.org/wiki/%E5%A4%96%E8%A7%80%E6%95%B8%E5%88%97)ๅบŸ่ฏไธๅคš่ฏด๏ผŒ็›ดๆŽฅไธŠไปฃ็ ๏ผŒ็”จๆญฃๅˆ™ๅบ”่ฏฅไผšๅฎนๆ˜“ไธ€ไบ›๏ผš
from itertools import islice import re def look_and_say(): num = '1' while True: yield num m = re.findall(r'((\d)\2*)', num) num = ''.join(str(len(pat[0])) + pat[1] for pat in m) a = list(islice(look_and_say(), 31)) print(len(a[30]))
5808
MIT
nbfiles/10_bull.ipynb
StevenPZChan/pythonchallenge
Import Libraries
import cv2 import numpy as np
_____no_output_____
MIT
Ex-01-Read-write-image.ipynb
imsanjoykb/Computer-Vision-Bootcamp
Load Image
image_data = cv2.imread(r'D:\Computer Vision Bootcamp\images\expert.png')
_____no_output_____
MIT
Ex-01-Read-write-image.ipynb
imsanjoykb/Computer-Vision-Bootcamp
Image Shape
print(image_data.shape)
(512, 512, 3)
MIT
Ex-01-Read-write-image.ipynb
imsanjoykb/Computer-Vision-Bootcamp
Show Image at window
cv2.imshow('First Image', image_data) cv2.waitKey(6000) ### The window will automatically close after the 6 seconds. cv2.destroyAllWindows()
_____no_output_____
MIT
Ex-01-Read-write-image.ipynb
imsanjoykb/Computer-Vision-Bootcamp
Show Image at GrayScale
image_data = cv2.imread(r'D:\imsanjoykb.github.io\images\expert.png',0) ## 0 for grayscale cv2.imshow('First Image', image_data) cv2.waitKey(6000) cv2.destroyAllWindows()
_____no_output_____
MIT
Ex-01-Read-write-image.ipynb
imsanjoykb/Computer-Vision-Bootcamp
Saving The Image
cv2.imwrite('D:\Computer Vision Bootcamp\images\expert_output.png',image_data)
_____no_output_____
MIT
Ex-01-Read-write-image.ipynb
imsanjoykb/Computer-Vision-Bootcamp
CIFAR10 using a simple deep networksCredits: \https://medium.com/@sergioalves94/deep-learning-in-pytorch-with-cifar-10-dataset-858b504a6b54 \https://jovian.ai/aakashns/05-cifar10-cnn
import torch import torchvision import numpy as np import matplotlib.pyplot as plt import torch.nn as nn import torch.nn.functional as F from torchvision.datasets import CIFAR10 from torchvision.transforms import ToTensor from torchvision.utils import make_grid from torch.utils.data.dataloader import DataLoader from torch.utils.data import random_split from torchsummary import summary %matplotlib inline
_____no_output_____
MIT
CIFAR10/pytorch-deep-learning-CIFAR10.ipynb
danhtaihoang/pytorch-deeplearning
Exploring the data
# Dowload the dataset dataset = CIFAR10(root='data/', download=True, transform=ToTensor()) test_dataset = CIFAR10(root='data/', train=False, transform=ToTensor())
_____no_output_____
MIT
CIFAR10/pytorch-deep-learning-CIFAR10.ipynb
danhtaihoang/pytorch-deeplearning
Import the datasets and convert the images into PyTorch tensors.
classes = dataset.classes classes class_count = {} for _, index in dataset: label = classes[index] if label not in class_count: class_count[label] = 0 class_count[label] += 1 class_count
_____no_output_____
MIT
CIFAR10/pytorch-deep-learning-CIFAR10.ipynb
danhtaihoang/pytorch-deeplearning
Split the dataset into two groups: training and validation datasets.
torch.manual_seed(43) val_size = 5000 train_size = len(dataset) - val_size train_ds, val_ds = random_split(dataset, [train_size, val_size]) len(train_ds), len(val_ds) batch_size=128 train_loader = DataLoader(train_ds, batch_size, shuffle=True, num_workers=4, pin_memory=True) val_loader = DataLoader(val_ds, batch_size*2, num_workers=4, pin_memory=True) test_loader = DataLoader(test_dataset, batch_size*2, num_workers=4, pin_memory=True)
_____no_output_____
MIT
CIFAR10/pytorch-deep-learning-CIFAR10.ipynb
danhtaihoang/pytorch-deeplearning
we set `pin_memory=True` because we will push the data from the CPU into the GPU and this parameter lets theDataLoader allocate the samples in page-locked memory, which speeds-up the transfer
for images, _ in train_loader: print('images.shape:', images.shape) plt.figure(figsize=(16,8)) plt.axis('off') plt.imshow(make_grid(images, nrow=16).permute((1, 2, 0))) break
images.shape: torch.Size([128, 3, 32, 32])
MIT
CIFAR10/pytorch-deep-learning-CIFAR10.ipynb
danhtaihoang/pytorch-deeplearning
Model
def accuracy(outputs, labels): _, preds = torch.max(outputs, dim=1) return torch.tensor(torch.sum(preds == labels).item() / len(preds)) class ImageClassificationBase(nn.Module): def training_step(self, batch): images, labels = batch out = self(images) # Generate predictions loss = F.cross_entropy(out, labels) # Calculate loss return loss def validation_step(self, batch): images, labels = batch out = self(images) # Generate predictions loss = F.cross_entropy(out, labels) # Calculate loss acc = accuracy(out, labels) # Calculate accuracy return {'val_loss': loss.detach(), 'val_acc': acc} def validation_epoch_end(self, outputs): batch_losses = [x['val_loss'] for x in outputs] epoch_loss = torch.stack(batch_losses).mean() # Combine losses batch_accs = [x['val_acc'] for x in outputs] epoch_acc = torch.stack(batch_accs).mean() # Combine accuracies return {'val_loss': epoch_loss.item(), 'val_acc': epoch_acc.item()} def epoch_end(self, epoch, result): print("Epoch [{}], val_loss: {:.4f}, val_acc: {:.4f}".format(epoch, result['val_loss'], result['val_acc'])) def evaluate(model, val_loader): outputs = [model.validation_step(batch) for batch in val_loader] return model.validation_epoch_end(outputs) def fit(epochs, lr, model, train_loader, val_loader, opt_func=torch.optim.SGD): history = [] optimizer = opt_func(model.parameters(), lr) for epoch in range(epochs): # Training Phase for batch in train_loader: loss = model.training_step(batch) loss.backward() optimizer.step() optimizer.zero_grad() # Validation phase result = evaluate(model, val_loader) model.epoch_end(epoch, result) history.append(result) return history torch.cuda.is_available() def get_default_device(): """Pick GPU if available, else CPU""" if torch.cuda.is_available(): return torch.device('cuda') else: return torch.device('cpu') device = get_default_device() device def to_device(data, device): """Move tensor(s) to chosen device""" if isinstance(data, (list,tuple)): return [to_device(x, device) for x in data] return data.to(device, non_blocking=True) class DeviceDataLoader(): """Wrap a dataloader to move data to a device""" def __init__(self, dl, device): self.dl = dl self.device = device def __iter__(self): """Yield a batch of data after moving it to device""" for b in self.dl: yield to_device(b, self.device) def __len__(self): """Number of batches""" return len(self.dl) def plot_losses(history): losses = [x['val_loss'] for x in history] plt.plot(losses, '-x') plt.xlabel('epoch') plt.ylabel('loss') plt.title('Loss vs. No. of epochs') train_loader = DeviceDataLoader(train_loader, device) val_loader = DeviceDataLoader(val_loader, device) test_loader = DeviceDataLoader(test_loader, device)
_____no_output_____
MIT
CIFAR10/pytorch-deep-learning-CIFAR10.ipynb
danhtaihoang/pytorch-deeplearning
Training the model
input_size = 3*32*32 output_size = 10 class CIFAR10Model(ImageClassificationBase): def __init__(self): super().__init__() self.linear1 = nn.Linear(input_size, 256) self.linear2 = nn.Linear(256, 128) self.linear3 = nn.Linear(128, output_size) def forward(self, xb): # Flatten images into vectors out = xb.view(xb.size(0), -1) # Apply layers & activation functions out = self.linear1(out) out = F.relu(out) out = self.linear2(out) out = F.relu(out) out = self.linear3(out) return out model = to_device(CIFAR10Model(), device) summary(model, (3, 32, 32)) history = [evaluate(model, val_loader)] history history += fit(10, 1e-1, model, train_loader, val_loader) history += fit(10, 1e-2, model, train_loader, val_loader) history += fit(10, 1e-3, model, train_loader, val_loader) plot_losses(history) def plot_accuracies(history): accuracies = [x['val_acc'] for x in history] plt.plot(accuracies, '-x') plt.xlabel('epoch') plt.ylabel('accuracy') plt.title('Accuracy vs. No. of epochs') plot_accuracies(history) ## test set: evaluate(model, test_loader)
_____no_output_____
MIT
CIFAR10/pytorch-deep-learning-CIFAR10.ipynb
danhtaihoang/pytorch-deeplearning
Kinetics ๋ฐ์ดํ„ฐ ์„ธํŠธ๋กœ ECO์šฉ DataLoader ์ž‘์„ฑKineteics ๋™์˜์ƒ ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉํ•ด, ECO์šฉ DataLoader๋ฅผ ๋งŒ๋“ญ๋‹ˆ๋‹ค 9.4 ํ•™์Šต ๋ชฉํ‘œ1. Kinetics ๋™์˜์ƒ ๋ฐ์ดํ„ฐ ์„ธํŠธ๋ฅผ ๋‹ค์šด๋กœ๋“œํ•  ์ˆ˜ ์žˆ๋‹ค2. ๋™์˜์ƒ ๋ฐ์ดํ„ฐ๋ฅผ ํ”„๋ ˆ์ž„๋ณ„ ํ™”์ƒ ๋ฐ์ดํ„ฐ๋กœ ๋ณ€ํ™˜ํ•  ์ˆ˜ ์žˆ๋‹ค3. ECO์—์„œ ์‚ฌ์šฉํ•˜๊ธฐ ์œ„ํ•œ DataLoader๋ฅผ ๊ตฌํ˜„ํ•  ์ˆ˜ ์žˆ๋‹ค ์‚ฌ์ „ ์ค€๋น„- ์ด ์ฑ…์˜ ์ง€์‹œ์— ๋”ฐ๋ผ Kinetics ๋™์˜์ƒ ๋ฐ์ดํ„ฐ์™€, ํ™”์ƒ ๋ฐ์ดํ„ฐ๋ฅผ frame๋ณ„๋กœ ํ™”์ƒ ๋ฐ์ดํ„ฐ๋กœ ๋ณ€ํ™˜ํ•˜๋Š” ์กฐ์ž‘์„ ์ˆ˜ํ–‰ํ•ด์ฃผ์„ธ์š”- ๊ฐ€์ƒ ํ™˜๊ฒฝ pytorch_p36์—์„œ ์‹คํ–‰ํ•ฉ๋‹ˆ๋‹ค
import os from PIL import Image import csv import numpy as np import torch import torch.utils.data from torch import nn import torchvision
_____no_output_____
MIT
9_video_classification_eco/9-4_3_ECO_DataLoader.ipynb
ziippy/pytorch_deep_learning_with_12models
๋™์˜์ƒ์„ ํ™”์ƒ ๋ฐ์ดํ„ฐ๋กœ ๋งŒ๋“  ํด๋”์˜ ํŒŒ์ผ ๊ฒฝ๋กœ ๋ฆฌ์ŠคํŠธ๋ฅผ ์ž‘์„ฑ
def make_datapath_list(root_path): """ ๋™์˜์ƒ์„ ํ™”์ƒ ๋ฐ์ดํ„ฐ๋กœ ๋งŒ๋“  ํด๋”์˜ ํŒŒ์ผ ๊ฒฝ๋กœ ๋ฆฌ์ŠคํŠธ๋ฅผ ์ž‘์„ฑํ•œ๋‹ค. root_path : str, ๋ฐ์ดํ„ฐ ํด๋”๋กœ์˜ root ๊ฒฝ๋กœ Returns: ret : video_list, ๋™์˜์ƒ์„ ํ™”์ƒ ๋ฐ์ดํ„ฐ๋กœ ๋งŒ๋“  ํด๋”์˜ ํŒŒ์ผ ๊ฒฝ๋กœ ๋ฆฌ์ŠคํŠธ """ # ๋™์˜์ƒ์„ ํ™”์ƒ ๋ฐ์ดํ„ฐ๋กœ ๋งŒ๋“  ํด๋”์˜ ํŒŒ์ผ ๊ฒฝ๋กœ ๋ฆฌ์ŠคํŠธ video_list = list() # root_path์˜ ํด๋ž˜์Šค ์ข…๋ฅ˜์™€ ๊ฒฝ๋กœ๋ฅผ ์ทจ๋“ class_list = os.listdir(path=root_path) # ๊ฐ ํด๋ž˜์Šค์˜ ๋™์˜์ƒ ํŒŒ์ผ์„ ํ™”์ƒ์œผ๋กœ ๋งŒ๋“  ํด๋”์˜ ๊ฒฝ๋กœ๋ฅผ ์ทจ๋“ for class_list_i in (class_list): # ํด๋ž˜์Šค๋ณ„๋กœ ๋ฃจํ”„ # ํด๋ž˜์Šค์˜ ํด๋” ๊ฒฝ๋กœ๋ฅผ ์ทจ๋“ class_path = os.path.join(root_path, class_list_i) # ๊ฐ ํด๋ž˜์Šค์˜ ํด๋” ๋‚ด ํ™”์ƒ ํด๋”๋ฅผ ์ทจ๋“ํ•˜๋Š” ๋ฃจํ”„ for file_name in os.listdir(class_path): # ํŒŒ์ผ๋ช…๊ณผ ํ™•์žฅ์ž๋กœ ๋ถ„ํ•  name, ext = os.path.splitext(file_name) # mp4 ํŒŒ์ผ์ด ์•„๋‹ˆ๊ฑฐ๋‚˜, ํด๋” ๋“ฑ์€ ๋ฌด์‹œ if ext == '.mp4': continue # ๋™์˜์ƒ ํŒŒ์ผ์„ ํ™”์ƒ์œผ๋กœ ๋ถ„ํ• ํ•ด ์ €์žฅํ•œ ํด๋”์˜ ๊ฒฝ๋กœ๋ฅผ ์ทจ๋“ video_img_directory_path = os.path.join(class_path, name) # vieo_list์— ์ถ”๊ฐ€ video_list.append(video_img_directory_path) return video_list # ๋™์ž‘ ํ™•์ธ root_path = './data/kinetics_videos/' video_list = make_datapath_list(root_path) print(video_list[0]) print(video_list[1])
./data/kinetics_videos/arm wrestling/C4lCVBZ3ux0_000028_000038 ./data/kinetics_videos/arm wrestling/ehLnj7pXnYE_000027_000037
MIT
9_video_classification_eco/9-4_3_ECO_DataLoader.ipynb
ziippy/pytorch_deep_learning_with_12models
๋™์˜์ƒ ์ „์ฒ˜๋ฆฌ ํด๋ž˜์Šค๋ฅผ ์ž‘์„ฑ
class VideoTransform(): """ ๋™์˜์ƒ์„ ํ™”์ƒ์œผ๋กœ ๋งŒ๋“œ๋Š” ์ „์ฒ˜๋ฆฌ ํด๋ž˜์Šค. ํ•™์Šต์‹œ์™€ ์ถ”๋ก ์‹œ ๋‹ค๋ฅด๊ฒŒ ์ž‘๋™ํ•ฉ๋‹ˆ๋‹ค. ๋™์˜์ƒ์„ ํ™”์ƒ์œผ๋กœ ๋ถ„ํ• ํ•˜๊ณ  ์žˆ์œผ๋ฏ€๋กœ, ๋ถ„ํ• ๋œ ํ™”์ƒ์„ ํ•œ๊บผ๋ฒˆ์— ์ „์ฒ˜๋ฆฌํ•˜๋Š” ์ ์— ์ฃผ์˜ํ•˜์‹ญ์‹œ์˜ค. """ def __init__(self, resize, crop_size, mean, std): self.data_transform = { 'train': torchvision.transforms.Compose([ # DataAugumentation() # ์ด๋ฒˆ์—๋Š” ์ƒ๋žต GroupResize(int(resize)), # ํ™”์ƒ์„ ํ•œ๊บผ๋ฒˆ์— ๋ฆฌ์‚ฌ์ด์ฆˆ GroupCenterCrop(crop_size), # ํ™”์ƒ์„ ํ•œ๊บผ๋ฒˆ์— center crop GroupToTensor(), # ๋ฐ์ดํ„ฐ๋ฅผ PyTorch ํ…์„œ๋กœ GroupImgNormalize(mean, std), # ๋ฐ์ดํ„ฐ๋ฅผ ํ‘œ์ค€ํ™” Stack() # ์—ฌ๋Ÿฌ ํ™”์ƒ์„ frames์ฐจ์›์œผ๋กœ ๊ฒฐํ•ฉ์‹œํ‚จ๋‹ค ]), 'val': torchvision.transforms.Compose([ GroupResize(int(resize)), # ํ™”์ƒ์„ ํ•œ๊บผ๋ฒˆ์— ๋ฆฌ์‚ฌ์ด์ฆˆ GroupCenterCrop(crop_size), # ํ™”์ƒ์„ ํ•œ๊บผ๋ฒˆ์— center crop GroupToTensor(), # ๋ฐ์ดํ„ฐ๋ฅผ PyTorch ํ…์„œ๋กœ GroupImgNormalize(mean, std), # ๋ฐ์ดํ„ฐ๋ฅผ ํ‘œ์ค€ํ™” Stack() # ์—ฌ๋Ÿฌ ํ™”์ƒ์„ frames์ฐจ์›์œผ๋กœ ๊ฒฐํ•ฉ์‹œํ‚จ๋‹ค ]) } def __call__(self, img_group, phase): """ Parameters ---------- phase : 'train' or 'val' ์ „์ฒ˜๋ฆฌ ๋ชจ๋“œ ์ง€์ • """ return self.data_transform[phase](img_group) # ์ „์ฒ˜๋ฆฌ๋กœ ์‚ฌ์šฉํ•  ํด๋ž˜์Šค๋“ค์„ ์ •์˜ class GroupResize(): '''ํ™”์ƒ ํฌ๊ธฐ๋ฅผ ํ•œ๊บผ๋ฒˆ์— ์žฌ์กฐ์ •(rescale)ํ•˜๋Š” ํด๋ž˜์Šค. ํ™”์ƒ์˜ ์งง์€ ๋ณ€์˜ ๊ธธ์ด๊ฐ€ resize๋กœ ๋ณ€ํ™˜๋œ๋‹ค. ํ™”๋ฉด ๋น„์œจ์€ ์œ ์ง€๋œ๋‹ค. ''' def __init__(self, resize, interpolation=Image.BILINEAR): '''rescale ์ฒ˜๋ฆฌ ์ค€๋น„''' self.rescaler = torchvision.transforms.Resize(resize, interpolation) def __call__(self, img_group): '''img_group(๋ฆฌ์ŠคํŠธ)์˜ ๊ฐ img์— rescale ์‹ค์‹œ''' return [self.rescaler(img) for img in img_group] class GroupCenterCrop(): '''ํ™”์ƒ์„ ํ•œ๊บผ๋ฒˆ์— center crop ํ•˜๋Š” ํด๋ž˜์Šค. (crop_size, crop_size)์˜ ํ™”์ƒ์„ ์ž˜๋ผ๋‚ธ๋‹ค. ''' def __init__(self, crop_size): '''center crop ์ฒ˜๋ฆฌ๋ฅผ ์ค€๋น„''' self.ccrop = torchvision.transforms.CenterCrop(crop_size) def __call__(self, img_group): '''img_group(๋ฆฌ์ŠคํŠธ)์˜ ๊ฐ img์— center crop ์‹ค์‹œ''' return [self.ccrop(img) for img in img_group] class GroupToTensor(): '''ํ™”์ƒ์„ ํ•œ๊บผ๋ฒˆ์— ํ…์„œ๋กœ ๋งŒ๋“œ๋Š” ํด๋ž˜์Šค. ''' def __init__(self): '''ํ…์„œํ™”ํ•˜๋Š” ์ฒ˜๋ฆฌ๋ฅผ ์ค€๋น„''' self.to_tensor = torchvision.transforms.ToTensor() def __call__(self, img_group): '''img_group(๋ฆฌ์ŠคํŠธ)์˜ ๊ฐ img์— ํ…์„œํ™” ์‹ค์‹œ 0๋ถ€ํ„ฐ 1๊นŒ์ง€๊ฐ€ ์•„๋‹ˆ๋ผ, 0๋ถ€ํ„ฐ 255๊นŒ์ง€๋ฅผ ๋‹ค๋ฃจ๋ฏ€๋กœ, 255๋ฅผ ๊ณฑํ•ด์„œ ๊ณ„์‚ฐํ•œ๋‹ค. 0๋ถ€ํ„ฐ 255๋กœ ๋‹ค๋ฃจ๋Š” ๊ฒƒ์€, ํ•™์Šต๋œ ๋ฐ์ดํ„ฐ ํ˜•์‹์— ๋งž์ถ”๊ธฐ ์œ„ํ•จ ''' return [self.to_tensor(img)*255 for img in img_group] class GroupImgNormalize(): '''ํ™”์ƒ์„ ํ•œ๊บผ๋ฒˆ์— ํ‘œ์ค€ํ™”ํ•˜๋Š” ํด๋ž˜์Šค. ''' def __init__(self, mean, std): '''ํ‘œ์ค€ํ™” ์ฒ˜๋ฆฌ๋ฅผ ์ค€๋น„''' self.normlize = torchvision.transforms.Normalize(mean, std) def __call__(self, img_group): '''img_group(๋ฆฌ์ŠคํŠธ)์˜ ๊ฐ img์— ํ‘œ์ค€ํ™” ์‹ค์‹œ''' return [self.normlize(img) for img in img_group] class Stack(): '''ํ™”์ƒ์„ ํ•˜๋‚˜์˜ ํ…์„œ๋กœ ์ •๋ฆฌํ•˜๋Š” ํด๋ž˜์Šค. ''' def __call__(self, img_group): '''img_group์€ torch.Size([3, 224, 224])๋ฅผ ์š”์†Œ๋กœ ํ•˜๋Š” ๋ฆฌ์ŠคํŠธ ''' ret = torch.cat([(x.flip(dims=[0])).unsqueeze(dim=0) for x in img_group], dim=0) # frames ์ฐจ์›์œผ๋กœ ๊ฒฐํ•ฉ # x.flip(dims=[0])์€ ์ƒ‰์ƒ ์ฑ„๋„์„ RGB์—์„œ BGR์œผ๋กœ ์ˆœ์„œ๋ฅผ ๋ฐ”๊พธ๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค(์›๋ž˜์˜ ํ•™์Šต ๋ฐ์ดํ„ฐ๊ฐ€ BGR์ด์—ˆ๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค) # unsqueeze(dim=0)์€ ์ƒˆ๋กญ๊ฒŒ frames์šฉ์˜ ์ฐจ์›์„ ์ž‘์„ฑํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค return ret
_____no_output_____
MIT
9_video_classification_eco/9-4_3_ECO_DataLoader.ipynb
ziippy/pytorch_deep_learning_with_12models
Dataset ์ž‘์„ฑ
# Kinetics-400์˜ ๋ผ๋ฒจ๋ช…์„ ID๋กœ ๋ณ€ํ™˜ํ•˜๋Š” ์‚ฌ์ „๊ณผ, ๋ฐ˜๋Œ€๋กœ ID๋ฅผ ๋ผ๋ฒจ๋ช…์œผ๋กœ ๋ณ€ํ™˜ํ•˜๋Š” ์‚ฌ์ „์„ ์ค€๋น„ def get_label_id_dictionary(label_dicitionary_path='./video_download/kinetics_400_label_dicitionary.csv'): label_id_dict = {} id_label_dict = {} with open(label_dicitionary_path, encoding="utf-8_sig") as f: # ์ฝ์–ด๋“ค์ด๊ธฐ reader = csv.DictReader(f, delimiter=",", quotechar='"') # 1ํ–‰์”ฉ ์ฝ์–ด, ์‚ฌ์ „ํ˜• ๋ณ€์ˆ˜์— ์ถ”๊ฐ€ํ•ฉ๋‹ˆ๋‹ค for row in reader: label_id_dict.setdefault( row["class_label"], int(row["label_id"])-1) id_label_dict.setdefault( int(row["label_id"])-1, row["class_label"]) return label_id_dict, id_label_dict # ํ™•์ธ label_dicitionary_path = './video_download/kinetics_400_label_dicitionary.csv' label_id_dict, id_label_dict = get_label_id_dictionary(label_dicitionary_path) label_id_dict class VideoDataset(torch.utils.data.Dataset): """ ๋™์˜์ƒ Dataset """ def __init__(self, video_list, label_id_dict, num_segments, phase, transform, img_tmpl='image_{:05d}.jpg'): self.video_list = video_list # ๋™์˜์ƒ ํด๋”์˜ ๊ฒฝ๋กœ ๋ฆฌ์ŠคํŠธ self.label_id_dict = label_id_dict # ๋ผ๋ฒจ๋ช…์„ id๋กœ ๋ณ€ํ™˜ํ•˜๋Š” ์‚ฌ์ „ํ˜• ๋ณ€์ˆ˜ self.num_segments = num_segments # ๋™์˜์ƒ์„ ์–ด๋–ป๊ฒŒ ๋ถ„ํ• ํ•ด ์‚ฌ์šฉํ• ์ง€๋ฅผ ๊ฒฐ์ • self.phase = phase # train or val self.transform = transform # ์ „์ฒ˜๋ฆฌ self.img_tmpl = img_tmpl # ์ฝ์–ด๋“ค์ผ ํ™”์ƒ ํŒŒ์ผ๋ช…์˜ ํ…œํ”Œ๋ฆฟ def __len__(self): '''๋™์˜์ƒ ์ˆ˜๋ฅผ ๋ฐ˜ํ™˜''' return len(self.video_list) def __getitem__(self, index): ''' ์ „์ฒ˜๋ฆฌํ•œ ํ™”์ƒ๋“ค์˜ ๋ฐ์ดํ„ฐ์™€ ๋ผ๋ฒจ, ๋ผ๋ฒจ ID๋ฅผ ์ทจ๋“ ''' imgs_transformed, label, label_id, dir_path = self.pull_item(index) return imgs_transformed, label, label_id, dir_path def pull_item(self, index): '''์ „์ฒ˜๋ฆฌํ•œ ํ™”์ƒ๋“ค์˜ ๋ฐ์ดํ„ฐ์™€ ๋ผ๋ฒจ, ๋ผ๋ฒจ ID๋ฅผ ์ทจ๋“''' # 1. ํ™”์ƒ๋“ค์„ ๋ฆฌ์ŠคํŠธ์—์„œ ์ฝ๊ธฐ dir_path = self.video_list[index] # ํ™”์ƒ์ด ์ €์žฅ๋œ ํด๋” indices = self._get_indices(dir_path) # ์ฝ์–ด๋“ค์ผ ํ™”์ƒ idx๋ฅผ ๊ตฌํ•˜๊ธฐ img_group = self._load_imgs( dir_path, self.img_tmpl, indices) # ๋ฆฌ์ŠคํŠธ๋กœ ์ฝ๊ธฐ # 2. ๋ผ๋ฒจ์„ ์ทจ๋“ํ•ด id๋กœ ๋ณ€ํ™˜ label = (dir_path.split('/')[3].split('/')[0]) label_id = self.label_id_dict[label] # id๋ฅผ ์ทจ๋“ # 3. ์ „์ฒ˜๋ฆฌ ์‹ค์‹œ imgs_transformed = self.transform(img_group, phase=self.phase) return imgs_transformed, label, label_id, dir_path def _load_imgs(self, dir_path, img_tmpl, indices): '''ํ™”์ƒ์„ ํ•œ๊บผ๋ฒˆ์— ์ฝ์–ด๋“ค์—ฌ, ๋ฆฌ์ŠคํŠธํ™”ํ•˜๋Š” ํ•จ์ˆ˜''' img_group = [] # ํ™”์ƒ์„ ์ €์žฅํ•  ๋ฆฌ์ŠคํŠธ for idx in indices: # ํ™”์ƒ ๊ฒฝ๋กœ ์ทจ๋“ file_path = os.path.join(dir_path, img_tmpl.format(idx)) # ํ™”์ƒ ์ฝ๊ธฐ img = Image.open(file_path).convert('RGB') # ๋ฆฌ์ŠคํŠธ์— ์ถ”๊ฐ€ img_group.append(img) return img_group def _get_indices(self, dir_path): """ ๋™์˜์ƒ ์ „์ฒด๋ฅผ self.num_segment๋กœ ๋ถ„ํ• ํ–ˆ์„ ๋•Œ์˜ ๋™์˜์ƒ idx์˜ ๋ฆฌ์ŠคํŠธ๋ฅผ ์ทจ๋“ """ # ๋™์˜์ƒ ํ”„๋ ˆ์ž„ ์ˆ˜ ๊ตฌํ•˜๊ธฐ file_list = os.listdir(path=dir_path) num_frames = len(file_list) # ๋™์˜์ƒ์˜ ๊ฐ„๊ฒฉ์„ ๊ตฌํ•˜๊ธฐ tick = (num_frames) / float(self.num_segments) # 250 / 16 = 15.625 # ๋™์˜์ƒ ๊ฐ„๊ฒฉ์œผ๋กœ ๊บผ๋‚ผ ๋•Œ idx๋ฅผ ๋ฆฌ์ŠคํŠธ๋กœ ๊ตฌํ•˜๊ธฐ indices = np.array([int(tick / 2.0 + tick * x) for x in range(self.num_segments)])+1 # 250frame์—์„œ 16frame ์ถ”์ถœ์˜ ๊ฒฝ์šฐ # indices = [ 8 24 40 55 71 86 102 118 133 149 165 180 196 211 227 243] return indices # ๋™์ž‘ ํ™•์ธ # vieo_list ์ž‘์„ฑ root_path = './data/kinetics_videos/' video_list = make_datapath_list(root_path) # ์ „์ฒ˜๋ฆฌ ์„ค์ • resize, crop_size = 224, 224 mean, std = [104, 117, 123], [1, 1, 1] video_transform = VideoTransform(resize, crop_size, mean, std) # Dataset ์ž‘์„ฑ # num_segments๋Š” ๋™์˜์ƒ์„ ์–ด๋–ป๊ฒŒ ๋ถ„ํ• ํ•ด ์‚ฌ์šฉํ• ์ง€ ์ •ํ•œ๋‹ค val_dataset = VideoDataset(video_list, label_id_dict, num_segments=16, phase="val", transform=video_transform, img_tmpl='image_{:05d}.jpg') # ๋ฐ์ดํ„ฐ๋ฅผ ๊บผ๋‚ด๋Š” ์˜ˆ # ์ถœ๋ ฅ์€ imgs_transformed, label, label_id, dir_path index = 0 print(val_dataset.__getitem__(index)[0].shape) # ๋™์˜์ƒ์˜ ํ…์„œ print(val_dataset.__getitem__(index)[1]) # ๋ผ๋ฒจ print(val_dataset.__getitem__(index)[2]) # ๋ผ๋ฒจID print(val_dataset.__getitem__(index)[3]) # ๋™์˜์ƒ ๊ฒฝ๋กœ # DataLoader๋กœ ํ•ฉ๋‹ˆ๋‹ค batch_size = 8 val_dataloader = torch.utils.data.DataLoader( val_dataset, batch_size=batch_size, shuffle=False) # ๋™์ž‘ ํ™•์ธ batch_iterator = iter(val_dataloader) # ๋ฐ˜๋ณต์ž๋กœ ๋ณ€ํ™˜ imgs_transformeds, labels, label_ids, dir_path = next( batch_iterator) # 1๋ฒˆ์งธ ์š”์†Œ๋ฅผ ๊บผ๋‚ธ๋‹ค print(imgs_transformeds.shape)
torch.Size([8, 16, 3, 224, 224])
MIT
9_video_classification_eco/9-4_3_ECO_DataLoader.ipynb
ziippy/pytorch_deep_learning_with_12models
Kompleksni brojevi u polarnom oblikuU ovome interaktivnom primjeru, kompleksni brojevi se vizualiziraju u kompleksnoj ravnini, a odreฤ‘uju se koristeฤ‡i polarni oblik. Kompleksni brojevi se, dakle, odreฤ‘uju modulom (duljinom odgovarajuฤ‡eg vektora) i argumentom (kutom odgovarajuฤ‡eg vektora). Moลพete testirati osnovne matematiฤke operacije nad kompleksnim brojevima: zbrajanje, oduzimanje, mnoลพenje i dijeljenje. Svi se rezultati prikazuju na odgovarajuฤ‡em grafu, kao i u matematiฤkoj notaciji zasnovanoj na polarnom obliku kompleksnog broja.Kompleksnim brojevima moลพete manipulirati izravno na grafu (jednostavnim klikom) i / ili istovremeno koristiti odgovarajuฤ‡a polja za unos modula i argumenta. Kako bi se osigurala bolja vidljivost vektora na grafu, modul kompleksnog broja je ograniฤen na $\pm10$.
%matplotlib notebook import matplotlib.pyplot as plt import matplotlib.patches as mpatches import numpy as np import ipywidgets as widgets from IPython.display import display from IPython.display import HTML import math red_patch = mpatches.Patch(color='red', label='z1') blue_patch = mpatches.Patch(color='blue', label='z2') green_patch = mpatches.Patch(color='green', label='z1 + z2') yellow_patch = mpatches.Patch(color='yellow', label='z1 - z2') black_patch = mpatches.Patch(color='black', label='z1 * z2') magenta_patch = mpatches.Patch(color='magenta', label='z1 / z2') # Init values XLIM = 5 YLIM = 5 vectors_index_first = False; V = [None, None] V_complex = [None, None] # Complex plane fig = plt.figure(num='Kompleksni brojevi u polarnom obliku') ax = fig.add_subplot(1, 1, 1) def get_interval(lim): if lim <= 10: return 1 if lim < 75: return 5 if lim > 100: return 25 return 10 def set_ticks(): XLIMc = int((XLIM / 10) + 1) * 10 YLIMc = int((YLIM / 10) + 1) * 10 if XLIMc > 150: XLIMc += 10 if YLIMc > 150: YLIMc += 10 xstep = get_interval(XLIMc) ystep = get_interval(YLIMc) #print(stepx, stepy) major_ticks = np.arange(-XLIMc, XLIMc, xstep) major_ticks_y = np.arange(-YLIMc, YLIMc, ystep) ax.set_xticks(major_ticks) ax.set_yticks(major_ticks_y) ax.grid(which='both') def clear_plot(): plt.cla() set_ticks() ax.set_xlabel('Re') ax.set_ylabel('Im') plt.ylim([-YLIM, YLIM]) plt.xlim([-XLIM, XLIM]) plt.legend(handles=[red_patch, blue_patch, green_patch, yellow_patch, black_patch, magenta_patch]) clear_plot() set_ticks() plt.show() set_ticks() # Conversion functions def com_to_trig(real, im): r = math.sqrt(real**2 + im**2) if abs(real) <= 1e-6 and im > 0: arg = 90 return r, arg if abs(real) < 1e-6 and im < 0: arg = 270 return r, arg if abs(im) < 1e-6 and real > 0: arg = 0 return r, arg if abs(im) < 1e-6 and real < 0: arg = 180 return r, arg if im != 0 and real !=0: arg = np.arctan(im / real) * 180 / np.pi if im > 0 and real < 0: arg += 180 if im < 0 and real > 0: arg +=360 if im < 0 and real < 0: arg += 180 return r, arg if abs(im) < 1e-6 and abs(real) < 1e-6: arg = 0 return r, arg def trig_to_com(r, arg): re = r * np.cos(arg * np.pi / 180.) im = r * np.sin(arg * np.pi / 180.) return (re, im) # Set a complex number using direct manipulation on the plot def set_vector(i, data_x, data_y): clear_plot() V.pop(i) V.insert(i, (0, 0, round(data_x, 2), round(data_y, 2))) V_complex.pop(i) V_complex.insert(i, complex(round(data_x, 2), round(data_y, 2))) if i == 0: ax.arrow(*V[0], head_width=0.25, head_length=0.5, color="r", length_includes_head=True) z, arg = com_to_trig(data_x, data_y) a1.value = round(z, 2) b1.value = round(arg, 2) if V[1] != None: ax.arrow(*V[1], head_width=0.25, head_length=0.5, color="b", length_includes_head=True) elif i == 1: ax.arrow(*V[1], head_width=0.25, head_length=0.5, color="b", length_includes_head=True) z, arg = com_to_trig(data_x, data_y) a2.value = round(z, 2) b2.value = round(arg, 2) if V[0] != None: ax.arrow(*V[0], head_width=0.25, head_length=0.5, color="r", length_includes_head=True) max_bound() def onclick(event): global vectors_index_first vectors_index_first = not vectors_index_first x = event.xdata y = event.ydata if (x > 10): x = 10.0 if (x < - 10): x = -10.0 if (y > 10): y = 10.0 if (y < - 10): y = -10.0 if vectors_index_first: set_vector(0, x, y) else: set_vector(1, x, y) fig.canvas.mpl_connect('button_press_event', onclick) # Widgets a1 = widgets.BoundedFloatText(layout=widgets.Layout(width='10%'), min = 0, max = 10, step = 0.5) b1 = widgets.BoundedFloatText(layout=widgets.Layout(width='10%'), min = 0, max = 360, step = 10) button_set_z1 = widgets.Button(description="Prikaลพi z1") a2 = widgets.BoundedFloatText(layout=widgets.Layout(width='10%'), min = 0, max = 10, step = 0.5) b2 = widgets.BoundedFloatText(layout=widgets.Layout(width='10%'), min = 0, max = 360, step = 10) button_set_z2 = widgets.Button(description="Prikaลพi z2") box_layout_z1 = widgets.Layout(border='solid red', padding='10px') box_layout_z2 = widgets.Layout(border='solid blue', padding='10px') box_layout_opers = widgets.Layout(border='solid black', padding='10px') items_z1 = [widgets.Label("z1: Duljina (|z1|) = "), a1, widgets.Label("Kut (\u2221)= "), b1, button_set_z1] items_z2 = [widgets.Label("z2: Duljina (|z2|) = "), a2, widgets.Label("Kut (\u2221)= "), b2, button_set_z2] display(widgets.Box(children=items_z1, layout=box_layout_z1)) display(widgets.Box(children=items_z2, layout=box_layout_z2)) button_add = widgets.Button(description="Zbroji") button_substract = widgets.Button(description="Oduzmi") button_multiply = widgets.Button(description="Pomnoลพi") button_divide = widgets.Button(description="Podijeli") button_reset = widgets.Button(description="Resetiraj") output = widgets.Output() print('Operacije nad kompleksnim brojevima:') items_operations = [button_add, button_substract, button_multiply, button_divide, button_reset] display(widgets.Box(children=items_operations)) display(output) # Set complex number using input widgets (Text and Button) def on_button_set_z1_clicked(b): z1_old = V[0]; re, im = trig_to_com(a1.value, b1.value) z1_new = (0, 0, re, im) if z1_old != z1_new: set_vector(0, re, im) change_lims() def on_button_set_z2_clicked(b): z2_old = V[1]; re, im = trig_to_com(a2.value, b2.value) z2_new = (0, 0, re, im) if z2_old != z2_new: set_vector(1, re, im) change_lims() # Complex number operations: def perform_operation(oper): global XLIM, YLIM if (V_complex[0] != None) and (V_complex[1] != None): if (oper == '+'): result = V_complex[0] + V_complex[1] v_color = "g" elif (oper == '-'): result = V_complex[0] - V_complex[1] v_color = "y" elif (oper == '*'): result = V_complex[0] * V_complex[1] v_color = "black" elif (oper == '/'): result = V_complex[0] / V_complex[1] v_color = "magenta" result = complex(round(result.real, 2), round(result.imag, 2)) ax.arrow(0, 0, result.real, result.imag, head_width=0.25, head_length=0.15, color=v_color, length_includes_head=True) if abs(result.real) > XLIM: XLIM = round(abs(result.real) + 1) if abs(result.imag) > YLIM: YLIM = round(abs(result.imag) + 1) change_lims() with output: z1, ang1 = com_to_trig(V_complex[0].real, V_complex[0].imag ) z2, ang2 = com_to_trig(V_complex[1].real, V_complex[1].imag) z3, ang3 = com_to_trig(result.real, result.imag) z1 = round(z1, 2) ang1 = round(ang1, 2) z2 = round(z2, 2) ang2 = round(ang2, 2) z3 = round(z3, 2) ang3 = round(ang3, 2) print("{}*(cos({}) + i*sin({}))".format(z1,ang1,ang1), oper, "{}*(cos({}) + i*sin({}))".format(z2,ang2,ang2), "=", "{}*(cos({}) + i*sin({}))".format(z3,ang3,ang3)) print('{} \u2221{}'.format(z1, ang1), oper, '{} \u2221{}'.format(z2, ang2), "=", '{} \u2221{}'.format(z3, ang3)) def on_button_add_clicked(b): perform_operation("+") def on_button_substract_clicked(b): perform_operation("-") def on_button_multiply_clicked(b): perform_operation("*") def on_button_divide_clicked(b): perform_operation("/") # Plot init methods def on_button_reset_clicked(b): global V, V_complex, XLIM, YLIM with output: output.clear_output() clear_plot() vectors_index_first = False; V = [None, None] V_complex = [None, None] a1.value = 0 b1.value = 0 a2.value = 0 b2.value = 0 XLIM = 5 YLIM = 5 change_lims() def clear_plot(): plt.cla() set_ticks() ax.set_xlabel('Re') ax.set_ylabel('Im') plt.ylim([-YLIM, YLIM]) plt.xlim([-XLIM, XLIM]) plt.legend(handles=[red_patch, blue_patch, green_patch, yellow_patch, black_patch, magenta_patch]) def change_lims(): set_ticks() plt.ylim([-YLIM, YLIM]) plt.xlim([-XLIM, XLIM]) set_ticks() def max_bound(): global XLIM, YLIM mx = 0 my = 0 if V_complex[0] != None: z = V_complex[0] if abs(z.real) > mx: mx = abs(z.real) if abs(z.imag) > my: my = abs(z.imag) if V_complex[1] != None: z = V_complex[1] if abs(z.real) > mx: mx = abs(z.real) if abs(z.imag) > my: my = abs(z.imag) if mx > XLIM: XLIM = round(mx + 1) elif mx <=5: XLIM = 5 if my > YLIM: YLIM = round(my + 1) elif my <=5: YLIM = 5 change_lims() # Button events button_set_z1.on_click(on_button_set_z1_clicked) button_set_z2.on_click(on_button_set_z2_clicked) button_add.on_click(on_button_add_clicked) button_substract.on_click(on_button_substract_clicked) button_multiply.on_click(on_button_multiply_clicked) button_divide.on_click(on_button_divide_clicked) button_reset.on_click(on_button_reset_clicked)
_____no_output_____
BSD-3-Clause
ICCT_hr/examples/01/.ipynb_checkpoints/M-02-Kompleksni_brojevi_polarni_sustav-checkpoint.ipynb
ICCTerasmus/ICCT
Tutorial 09: Standard problem 5> Interactive online tutorial:> [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/ubermag/oommfc/master?filepath=docs%2Fipynb%2Findex.ipynb) Problem specificationThe sample is a thin film cuboid with dimensions:- length $l_{x} = 100 \,\text{nm}$,- width $l_{y} = 100 \,\text{nm}$, and- thickness $l_{z} = 10 \,\text{nm}$.The material parameters (similar to permalloy) are:- exchange energy constant $A = 1.3 \times 10^{-11} \,\text{J/m}$,- magnetisation saturation $M_\text{s} = 8 \times 10^{5} \,\text{A/m}$.Dynamics parameters are: $\gamma_{0} = 2.211 \times 10^{5} \,\text{m}\,\text{A}^{-1}\,\text{s}^{-1}$ and Gilbert damping $\alpha=0.02$.In the standard problem 5, the system is firstly relaxed at zero external magnetic field, starting from the vortex state. Secondly spin-polarised current is applied in the $x$ direction with $u_{x} = -72.35$ and $\beta=0.05$.More detailed specification of Standard problem 5 can be found in Ref. 1. SimulationIn the first step, we import the required `discretisedfield` and `oommfc` modules.
import oommfc as oc import discretisedfield as df import micromagneticmodel as mm
_____no_output_____
BSD-3-Clause
docs/ipynb/09-tutorial-standard-problem5.ipynb
spinachslayer420/MSE598-SAF-Project
Now, we can set all required geometry and material parameters.
# Geometry lx = 100e-9 # x dimension of the sample(m) ly = 100e-9 # y dimension of the sample (m) lz = 10e-9 # sample thickness (m) dx = dy = dz = 5e-9 #discretisation cell (nm) # Material (permalloy) parameters Ms = 8e5 # saturation magnetisation (A/m) A = 1.3e-11 # exchange energy constant (J/m) # Dynamics (LLG equation) parameters gamma0 = 2.211e5 # gyromagnetic ratio (m/As) alpha = 0.1 # Gilbert damping ux = -72.35 # velocity in x direction beta = 0.05 # non-adiabatic STT parameter
_____no_output_____
BSD-3-Clause
docs/ipynb/09-tutorial-standard-problem5.ipynb
spinachslayer420/MSE598-SAF-Project
As usual, we create the system object with `stdprob5` name.
system = mm.System(name='stdprob5')
_____no_output_____
BSD-3-Clause
docs/ipynb/09-tutorial-standard-problem5.ipynb
spinachslayer420/MSE598-SAF-Project
The mesh is created by providing two points `p1` and `p2` between which the mesh domain spans and the size of a discretisation cell. We choose the discretisation to be $(5, 5, 5) \,\text{nm}$.
%matplotlib inline region = df.Region(p1=(0, 0, 0), p2=(lx, ly, lz)) mesh = df.Mesh(region=region, cell=(dx, dy, dz)) mesh.k3d()
_____no_output_____
BSD-3-Clause
docs/ipynb/09-tutorial-standard-problem5.ipynb
spinachslayer420/MSE598-SAF-Project
**Hamiltonian:** In the second step, we define the system's Hamiltonian. In this standard problem, the Hamiltonian contains only exchange and demagnetisation energy terms. Please note that in the first simulation stage, there is no applied external magnetic field. Therefore, we do not add Zeeman energy term to the Hamiltonian.
system.energy = mm.Exchange(A=A) + mm.Demag() system.energy
_____no_output_____
BSD-3-Clause
docs/ipynb/09-tutorial-standard-problem5.ipynb
spinachslayer420/MSE598-SAF-Project
**Magnetisation:** We initialise the system using the initial magnetisation function.
def m_vortex(pos): x, y, z = pos[0]/1e-9-50, pos[1]/1e-9-50, pos[2]/1e-9 return (-y, x, 10) system.m = df.Field(mesh, dim=3, value=m_vortex, norm=Ms) system.m.plane(z=0).mpl()
_____no_output_____
BSD-3-Clause
docs/ipynb/09-tutorial-standard-problem5.ipynb
spinachslayer420/MSE598-SAF-Project
**Dynamics:** In the first (relaxation) stage, we minimise the system's energy and therefore we do not need to specify the dynamics equation.**Minimisation:** Now, we minimise the system's energy using `MinDriver`.
md = oc.MinDriver() md.drive(system) system.m.plane(z=0).mpl()
_____no_output_____
BSD-3-Clause
docs/ipynb/09-tutorial-standard-problem5.ipynb
spinachslayer420/MSE598-SAF-Project
Spin-polarised current In the second part of simulation, we need to specify the dynamics equation for the system.
system.dynamics += mm.Precession(gamma0=gamma0) + mm.Damping(alpha=alpha) + mm.ZhangLi(u=ux, beta=beta) system.dynamics
_____no_output_____
BSD-3-Clause
docs/ipynb/09-tutorial-standard-problem5.ipynb
spinachslayer420/MSE598-SAF-Project
Now, we can drive the system for $8 \,\text{ns}$ and save the magnetisation in $n=100$ steps.
td = oc.TimeDriver() td.drive(system, t=8e-9, n=100)
Running OOMMF (ExeOOMMFRunner) [2020/06/14 11:28]... (17.4 s)
BSD-3-Clause
docs/ipynb/09-tutorial-standard-problem5.ipynb
spinachslayer420/MSE598-SAF-Project
The vortex after $8 \,\text{ns}$ is now displaced from the centre.
system.m.plane(z=0).mpl() system.table.data.plot('t', 'mx')
_____no_output_____
BSD-3-Clause
docs/ipynb/09-tutorial-standard-problem5.ipynb
spinachslayer420/MSE598-SAF-Project
Importing LibrariesJoblib used for ease of importing files. Pandas used for data manipulation.
import joblib import pandas as pd
_____no_output_____
MIT
submission_createcsv.ipynb
georgehtliu/ignition-hack-2020
Importing Classifier, Vectorizer, and Judgement DataSupport for importing from local storage as well as importing from Google Drive for Google Colab.
# Assuming files are stored locally in the same directory. clf_log = joblib.load(SentimentNewton_Log.pkl) vectorizer = joblib.load(Vectorizer.pkl) judge_data_path = "judgement_data.csv" # Uncomment to import files from Google Drive on Google Colab """ from google.colab import drive drive.mount('/content/drive') clf_path = input('Please enter path to SentimentNewton_Log') clf_log = joblib.load(clf_path) vect_path = input('Please enter path to Vectorizer') vectorizer = joblib.load(vect_path) judge_data_path = input("Please enter the path to your judgement_data.csv file in your Google Drive.") """
_____no_output_____
MIT
submission_createcsv.ipynb
georgehtliu/ignition-hack-2020
Processing Imported FilesPreparing dataframe and vectors.
# Convert csv file to dataframe df_judge = pd.read_csv(judge_data_path) df_mini = df_judge X = df_mini['Text'] X_vectors= vectorizer.transform(X)
_____no_output_____
MIT
submission_createcsv.ipynb
georgehtliu/ignition-hack-2020
Writing to CSV FileEdit the *csv_path* variable to decide where the csv will be stored.
csv_path = '/content/drive/My Drive/predicted_labels.csv' df_mini['Sentiment'] = clf_log.predict(X_vectors) df_mini.to_csv(csv_path) print("Done!")
Done!
MIT
submission_createcsv.ipynb
georgehtliu/ignition-hack-2020
Hierarchical Clustering
import matplotlib.pyplot as plt import pandas as pd import numpy as np import seaborn as sns sns.set() %matplotlib inline import json data = pd.read_csv('../result/caseolap.csv') data = data.set_index('protein') ndf = data ndf.head(2) ndf.shape ndata = ndf.copy(deep = True) ndf.describe()
_____no_output_____
MIT
Cluster.ipynb
CaseOLAP/IonChannel
Clustering
size=(25,25) g = sns.clustermap(ndf.T.corr(),\ figsize=size,\ cmap = "YlGnBu",\ metric='seuclidean') g.savefig('plots/cluster.pdf', format='pdf', dpi=300) g.savefig('plots/cluster.png', format='png', dpi=300) indx = g.dendrogram_row.reordered_ind protein_cluster = [] for num in indx: for i,ndx in enumerate(ndf.index): if num == i: protein_cluster.append({'id':i,"protein": ndx,\ 'CM' : list(ndf.loc[ndx,:])[0],\ 'ARR': list(ndf.loc[ndx,:])[1],\ 'CHD' : list(ndf.loc[ndx,:])[2],\ 'VD' : list(ndf.loc[ndx,:])[3],\ 'IHD' : list(ndf.loc[ndx,:])[4],\ 'CCS' : list(ndf.loc[ndx,:])[5],\ 'VOO' : list(ndf.loc[ndx,:])[6],\ 'OHD' : list(ndf.loc[ndx,:])[7]}) protein_cluster_df = pd.DataFrame(protein_cluster) protein_cluster_df = protein_cluster_df.set_index("protein") protein_cluster_df = protein_cluster_df.drop(["id"], axis = 1) protein_cluster_df.head()
_____no_output_____
MIT
Cluster.ipynb
CaseOLAP/IonChannel
Barplot
protein_cluster_df.plot.barh(stacked=True,figsize=(10,20)) plt.gca().invert_yaxis() plt.legend(fontsize =10) plt.savefig('plots/cluster-bar.pdf') plt.savefig('plots/cluster-bar.png') with open("data/id2name.json","r")as f: id2name = json.load(f) names = [] for item in protein_cluster_df.index: names.append(id2name[item]) protein_cluster_df['names'] =names protein_cluster_df.head(1) protein_cluster_df.to_csv("data/protein-cluster-bar-data.csv")
_____no_output_____
MIT
Cluster.ipynb
CaseOLAP/IonChannel
Mount my google drive, where I stored the dataset.
from google.colab import drive drive.mount('/content/drive')
_____no_output_____
MIT
Mobilenetv2 Tuning/MobileNetV2 Baseline.ipynb
vlad-danaila/Mobilenetv2_Ensemble_for_Cervical_Precancerous_Lesions_Classification
**Download dependencies**
!pip3 install sklearn matplotlib GPUtil !pip3 install torch torchvision
Collecting torch [?25l Downloading https://files.pythonhosted.org/packages/88/95/90e8c4c31cfc67248bf944ba42029295b77159982f532c5689bcfe4e9108/torch-1.3.1-cp36-cp36m-manylinux1_x86_64.whl (734.6MB)  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ| 734.6MB 56kB/s s eta 0:00:01 |โ–‰ | 18.6MB 3.0MB/s eta 0:03:57 |โ–‰ | 19.9MB 3.0MB/s eta 0:03:56 |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‰ | 178.8MB 21.2MB/s eta 0:00:27 |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Ž | 190.0MB 21.2MB/s eta 0:00:26 |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ– | 193.0MB 4.0MB/s eta 0:02:14 |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ– | 237.8MB 16.2MB/s eta 0:00:31 |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Œ | 240.1MB 16.2MB/s eta 0:00:31 |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Š | 244.9MB 16.2MB/s eta 0:00:31 |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Š | 246.1MB 16.2MB/s eta 0:00:31 |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ | 254.7MB 26.0MB/s eta 0:00:19 |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Œ | 333.4MB 26.9MB/s eta 0:00:15 |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Š | 429.2MB 12.5MB/s eta 0:00:25 |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Š | 521.4MB 22.4MB/s eta 0:00:10 |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Œ | 563.3MB 18.3MB/s eta 0:00:10 |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‰ | 615.9MB 23.2MB/s eta 0:00:06 |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Š | 635.2MB 23.2MB/s eta 0:00:05 |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ | 642.2MB 23.2MB/s eta 0:00:04 |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Ž | 672.9MB 14.3MB/s eta 0:00:05 |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ | 713.0MB 18.8MB/s eta 0:00:02 [?25hCollecting torchvision [?25l Downloading https://files.pythonhosted.org/packages/9b/e2/2b1f88a363ae37b2ba52cfb785ddfb3dd5f7e7ec9459e96fd8299b84ae39/torchvision-0.4.2-cp36-cp36m-manylinux1_x86_64.whl (10.2MB)  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ| 10.2MB 15.3MB/s eta 0:00:01 [?25hRequirement already satisfied: numpy in /usr/local/lib/python3.6/dist-packages (from torch) (1.18.0) Requirement already satisfied: six in /usr/local/lib/python3.6/dist-packages (from torchvision) (1.13.0) Collecting pillow>=4.1.1 [?25l Downloading https://files.pythonhosted.org/packages/10/5c/0e94e689de2476c4c5e644a3bd223a1c1b9e2bdb7c510191750be74fa786/Pillow-6.2.1-cp36-cp36m-manylinux1_x86_64.whl (2.1MB)  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ| 2.1MB 21.9MB/s eta 0:00:01 |โ–ˆโ–ˆโ–‹ | 174kB 21.9MB/s eta 0:00:01 [?25hInstalling collected packages: torch, pillow, torchvision Successfully installed pillow-6.2.1 torch-1.3.1 torchvision-0.4.2
MIT
Mobilenetv2 Tuning/MobileNetV2 Baseline.ipynb
vlad-danaila/Mobilenetv2_Ensemble_for_Cervical_Precancerous_Lesions_Classification
**Download Data** In order to acquire the dataset please navigate to:https://ieee-dataport.org/documents/cervigram-image-datasetUnzip the dataset into the folder "dataset".For your environment, please adjust the paths accordingly.
!rm -vrf "dataset" !mkdir "dataset" # !cp -r "/content/drive/My Drive/Studiu doctorat leziuni cervicale/cervigram-image-dataset-v2.zip" "dataset/cervigram-image-dataset-v2.zip" !cp -r "cervigram-image-dataset-v2.zip" "dataset/cervigram-image-dataset-v2.zip" !unzip "dataset/cervigram-image-dataset-v2.zip" -d "dataset"
removed directory 'dataset' Archive: dataset/cervigram-image-dataset-v2.zip creating: dataset/data/ creating: dataset/data/test/ creating: dataset/data/test/0/ creating: dataset/data/test/0/20151103002/ inflating: dataset/data/test/0/20151103002/20151103113458.jpg inflating: dataset/data/test/0/20151103002/20151103113637.jpg inflating: dataset/data/test/0/20151103002/20151103113659.jpg inflating: dataset/data/test/0/20151103002/20151103113722.jpg inflating: dataset/data/test/0/20151103002/20151103113752.jpg inflating: dataset/data/test/0/20151103002/20151103113755.jpg inflating: dataset/data/test/0/20151103002/20151103113833.jpg creating: dataset/data/test/0/20151103005/ inflating: dataset/data/test/0/20151103005/20151103161719.jpg inflating: dataset/data/test/0/20151103005/20151103161836.jpg inflating: dataset/data/test/0/20151103005/20151103161908.jpg inflating: dataset/data/test/0/20151103005/20151103161938.jpg inflating: dataset/data/test/0/20151103005/20151103162027.jpg inflating: dataset/data/test/0/20151103005/20151103162122.jpg inflating: dataset/data/test/0/20151103005/20151103162254.jpg creating: dataset/data/test/0/20151106002/ inflating: dataset/data/test/0/20151106002/20151106101644.jpg inflating: dataset/data/test/0/20151106002/20151106101845.jpg inflating: dataset/data/test/0/20151106002/20151106101905.jpg inflating: dataset/data/test/0/20151106002/20151106101935.jpg inflating: dataset/data/test/0/20151106002/20151106101957.jpg inflating: dataset/data/test/0/20151106002/20151106102000.jpg inflating: dataset/data/test/0/20151106002/20151106102110.jpg creating: dataset/data/test/0/20151111002/ inflating: dataset/data/test/0/20151111002/20151111144157.jpg inflating: dataset/data/test/0/20151111002/20151111144348.jpg inflating: dataset/data/test/0/20151111002/20151111144420.jpg inflating: dataset/data/test/0/20151111002/20151111144506.jpg inflating: dataset/data/test/0/20151111002/20151111144511.jpg inflating: dataset/data/test/0/20151111002/20151111144515.jpg inflating: dataset/data/test/0/20151111002/20151111144654.jpg creating: dataset/data/test/0/20151111004/ inflating: dataset/data/test/0/20151111004/20151111150820.jpg inflating: dataset/data/test/0/20151111004/20151111151033.jpg inflating: dataset/data/test/0/20151111004/20151111151104.jpg inflating: dataset/data/test/0/20151111004/20151111151127.jpg inflating: dataset/data/test/0/20151111004/20151111151152.jpg inflating: dataset/data/test/0/20151111004/20151111151160.jpg inflating: dataset/data/test/0/20151111004/20151111151245.jpg creating: dataset/data/test/0/20151111007/ inflating: dataset/data/test/0/20151111007/20151111154450.jpg inflating: dataset/data/test/0/20151111007/20151111154626.jpg inflating: dataset/data/test/0/20151111007/20151111154652.jpg inflating: dataset/data/test/0/20151111007/20151111154725.jpg inflating: dataset/data/test/0/20151111007/20151111154740.jpg inflating: dataset/data/test/0/20151111007/20151111154800.jpg inflating: dataset/data/test/0/20151111007/20151111154900.jpg creating: dataset/data/test/0/20151111010/ inflating: dataset/data/test/0/20151111010/20151111162830.jpg inflating: dataset/data/test/0/20151111010/20151111162959.jpg inflating: dataset/data/test/0/20151111010/20151111163012.jpg inflating: dataset/data/test/0/20151111010/20151111163041.jpg inflating: dataset/data/test/0/20151111010/20151111163105.jpg inflating: dataset/data/test/0/20151111010/20151111163115.jpg inflating: dataset/data/test/0/20151111010/20151111163257.jpg creating: dataset/data/test/0/20151113012/ inflating: dataset/data/test/0/20151113012/20151113163733.jpg inflating: dataset/data/test/0/20151113012/20151113163859.jpg inflating: dataset/data/test/0/20151113012/20151113163928.jpg inflating: dataset/data/test/0/20151113012/20151113164000.jpg inflating: dataset/data/test/0/20151113012/20151113164028.jpg inflating: dataset/data/test/0/20151113012/20151113164100.jpg inflating: dataset/data/test/0/20151113012/20151113164201.jpg creating: dataset/data/test/0/20151117005/ inflating: dataset/data/test/0/20151117005/20151117111950.jpg inflating: dataset/data/test/0/20151117005/20151117112126.jpg inflating: dataset/data/test/0/20151117005/20151117112146.jpg inflating: dataset/data/test/0/20151117005/20151117112246.jpg inflating: dataset/data/test/0/20151117005/20151117112314.jpg inflating: dataset/data/test/0/20151117005/20151117112400.jpg inflating: dataset/data/test/0/20151117005/20151117112508.jpg creating: dataset/data/test/0/20151118006/ inflating: dataset/data/test/0/20151118006/20151118144223.jpg inflating: dataset/data/test/0/20151118006/20151118144344.jpg inflating: dataset/data/test/0/20151118006/20151118144414.jpg inflating: dataset/data/test/0/20151118006/20151118144448.jpg inflating: dataset/data/test/0/20151118006/20151118144519.jpg inflating: dataset/data/test/0/20151118006/20151118144600.jpg inflating: dataset/data/test/0/20151118006/20151118144610.jpg creating: dataset/data/test/0/20151118009/ inflating: dataset/data/test/0/20151118009/20151118160649.jpg inflating: dataset/data/test/0/20151118009/20151118160839.jpg inflating: dataset/data/test/0/20151118009/20151118160853.jpg inflating: dataset/data/test/0/20151118009/20151118160924.jpg inflating: dataset/data/test/0/20151118009/20151118160952.jpg inflating: dataset/data/test/0/20151118009/20151118160970.jpg inflating: dataset/data/test/0/20151118009/20151118161030.jpg creating: dataset/data/test/0/20151118011/ inflating: dataset/data/test/0/20151118011/20151118162920.jpg inflating: dataset/data/test/0/20151118011/20151118163100.jpg inflating: dataset/data/test/0/20151118011/20151118163137.jpg inflating: dataset/data/test/0/20151118011/20151118163150.jpg inflating: dataset/data/test/0/20151118011/20151118163215.jpg inflating: dataset/data/test/0/20151118011/20151118163218.jpg inflating: dataset/data/test/0/20151118011/20151118163318.jpg creating: dataset/data/test/1/ creating: dataset/data/test/1/162231763/ inflating: dataset/data/test/1/162231763/162231763Image0.jpg inflating: dataset/data/test/1/162231763/162231763Image2.jpg inflating: dataset/data/test/1/162231763/162231763Image3.jpg inflating: dataset/data/test/1/162231763/162231763Image5.jpg inflating: dataset/data/test/1/162231763/162231763Image6.jpg inflating: dataset/data/test/1/162231763/162231763Image7.jpg inflating: dataset/data/test/1/162231763/162231763Image8.jpg creating: dataset/data/test/1/163856190/ inflating: dataset/data/test/1/163856190/163856190Image0.jpg inflating: dataset/data/test/1/163856190/163856190Image2.jpg inflating: dataset/data/test/1/163856190/163856190Image3.jpg inflating: dataset/data/test/1/163856190/163856190Image5.jpg inflating: dataset/data/test/1/163856190/163856190Image6.jpg inflating: dataset/data/test/1/163856190/163856190Image7.jpg inflating: dataset/data/test/1/163856190/163856190Image9.jpg creating: dataset/data/test/1/164145173/ inflating: dataset/data/test/1/164145173/164145173Image0.jpg inflating: dataset/data/test/1/164145173/164145173Image2.jpg inflating: dataset/data/test/1/164145173/164145173Image3.jpg inflating: dataset/data/test/1/164145173/164145173Image4.jpg inflating: dataset/data/test/1/164145173/164145173Image6.jpg inflating: dataset/data/test/1/164145173/164145173Image7.jpg inflating: dataset/data/test/1/164145173/164145173Image8.jpg creating: dataset/data/test/1/165554510/ inflating: dataset/data/test/1/165554510/165554510Image0.jpg inflating: dataset/data/test/1/165554510/165554510Image3.jpg inflating: dataset/data/test/1/165554510/165554510Image4.jpg inflating: dataset/data/test/1/165554510/165554510Image5.jpg inflating: dataset/data/test/1/165554510/165554510Image6.jpg inflating: dataset/data/test/1/165554510/165554510Image7.jpg inflating: dataset/data/test/1/165554510/165554510Image8.jpg creating: dataset/data/test/1/171212253/ inflating: dataset/data/test/1/171212253/171212253Image0.jpg inflating: dataset/data/test/1/171212253/171212253Image3.jpg inflating: dataset/data/test/1/171212253/171212253Image4.jpg inflating: dataset/data/test/1/171212253/171212253Image5.jpg inflating: dataset/data/test/1/171212253/171212253Image6.jpg inflating: dataset/data/test/1/171212253/171212253Image8.jpg inflating: dataset/data/test/1/171212253/171212253Image9.jpg creating: dataset/data/test/1/20150729004/ inflating: dataset/data/test/1/20150729004/20150729142418.jpg inflating: dataset/data/test/1/20150729004/20150729142536.jpg inflating: dataset/data/test/1/20150729004/20150729142617.jpg inflating: dataset/data/test/1/20150729004/20150729142638.jpg inflating: dataset/data/test/1/20150729004/20150729142712.jpg inflating: dataset/data/test/1/20150729004/20150729142728.jpg inflating: dataset/data/test/1/20150729004/20150729143009.jpg creating: dataset/data/test/1/20150731002/ inflating: dataset/data/test/1/20150731002/20150731164116.jpg inflating: dataset/data/test/1/20150731002/20150731164301.jpg inflating: dataset/data/test/1/20150731002/20150731164316.jpg inflating: dataset/data/test/1/20150731002/20150731164344.jpg inflating: dataset/data/test/1/20150731002/20150731164411.jpg inflating: dataset/data/test/1/20150731002/20150731164418.jpg inflating: dataset/data/test/1/20150731002/20150731164556.jpg creating: dataset/data/test/1/20150812006/ inflating: dataset/data/test/1/20150812006/20150812143825.jpg inflating: dataset/data/test/1/20150812006/20150812143943.jpg inflating: dataset/data/test/1/20150812006/20150812144013.jpg inflating: dataset/data/test/1/20150812006/20150812144047.jpg inflating: dataset/data/test/1/20150812006/20150812144114.jpg inflating: dataset/data/test/1/20150812006/20150812144206.jpg inflating: dataset/data/test/1/20150812006/20150812144318.jpg creating: dataset/data/test/1/20150818001/ inflating: dataset/data/test/1/20150818001/20150818113423.jpg inflating: dataset/data/test/1/20150818001/20150818113549.jpg inflating: dataset/data/test/1/20150818001/20150818113620.jpg inflating: dataset/data/test/1/20150818001/20150818113649.jpg inflating: dataset/data/test/1/20150818001/20150818113719.jpg inflating: dataset/data/test/1/20150818001/20150818113721.jpg inflating: dataset/data/test/1/20150818001/20150818113827.jpg creating: dataset/data/test/1/20150819006/ inflating: dataset/data/test/1/20150819006/20150819152524.jpg inflating: dataset/data/test/1/20150819006/20150819152652.jpg inflating: dataset/data/test/1/20150819006/20150819152726.jpg inflating: dataset/data/test/1/20150819006/20150819152755.jpg inflating: dataset/data/test/1/20150819006/20150819152825.jpg inflating: dataset/data/test/1/20150819006/20150819152827.jpg inflating: dataset/data/test/1/20150819006/20150819152905.jpg creating: dataset/data/test/1/20150819011/ inflating: dataset/data/test/1/20150819011/20150819163415.jpg inflating: dataset/data/test/1/20150819011/20150819163538.jpg inflating: dataset/data/test/1/20150819011/20150819163608.jpg inflating: dataset/data/test/1/20150819011/20150819163638.jpg inflating: dataset/data/test/1/20150819011/20150819163708.jpg inflating: dataset/data/test/1/20150819011/20150819163778.jpg inflating: dataset/data/test/1/20150819011/20150819163805.jpg creating: dataset/data/test/1/20150826008/ inflating: dataset/data/test/1/20150826008/20150826153113.jpg inflating: dataset/data/test/1/20150826008/20150826153241.jpg inflating: dataset/data/test/1/20150826008/20150826153310.jpg inflating: dataset/data/test/1/20150826008/20150826153340.jpg inflating: dataset/data/test/1/20150826008/20150826153410.jpg inflating: dataset/data/test/1/20150826008/20150826153425.jpg inflating: dataset/data/test/1/20150826008/20150826153539.jpg creating: dataset/data/test/2/ creating: dataset/data/test/2/162021000/ inflating: dataset/data/test/2/162021000/162021000Image0.jpg inflating: dataset/data/test/2/162021000/162021000Image100.jpg inflating: dataset/data/test/2/162021000/162021000Image3.jpg inflating: dataset/data/test/2/162021000/162021000Image6.jpg inflating: dataset/data/test/2/162021000/162021000Image70.jpg inflating: dataset/data/test/2/162021000/162021000Image8.jpg inflating: dataset/data/test/2/162021000/162021000Image9.jpg creating: dataset/data/test/2/162334723/ inflating: dataset/data/test/2/162334723/162334723Image0.jpg inflating: dataset/data/test/2/162334723/162334723Image10.jpg inflating: dataset/data/test/2/162334723/162334723Image12.jpg inflating: dataset/data/test/2/162334723/162334723Image2.jpg inflating: dataset/data/test/2/162334723/162334723Image4.jpg inflating: dataset/data/test/2/162334723/162334723Image8.jpg inflating: dataset/data/test/2/162334723/162334723Image9.jpg creating: dataset/data/test/2/162403397/ inflating: dataset/data/test/2/162403397/162403397Image0.jpg inflating: dataset/data/test/2/162403397/162403397Image1.jpg inflating: dataset/data/test/2/162403397/162403397Image100.jpg inflating: dataset/data/test/2/162403397/162403397Image3.jpg inflating: dataset/data/test/2/162403397/162403397Image4.jpg inflating: dataset/data/test/2/162403397/162403397Image80.jpg inflating: dataset/data/test/2/162403397/162403397Image9.jpg creating: dataset/data/test/2/163138313/ inflating: dataset/data/test/2/163138313/163138313Image0.jpg inflating: dataset/data/test/2/163138313/163138313Image2.jpg inflating: dataset/data/test/2/163138313/163138313Image3.jpg inflating: dataset/data/test/2/163138313/163138313Image4.jpg inflating: dataset/data/test/2/163138313/163138313Image5.jpg
MIT
Mobilenetv2 Tuning/MobileNetV2 Baseline.ipynb
vlad-danaila/Mobilenetv2_Ensemble_for_Cervical_Precancerous_Lesions_Classification
**Constants** For your environment, please modify the paths accordingly.
# TRAIN_PATH = '/content/dataset/data/train/' # TEST_PATH = '/content/dataset/data/test/' TRAIN_PATH = 'dataset/data/train/' TEST_PATH = 'dataset/data/test/' CROP_SIZE = 260 IMAGE_SIZE = 224 BATCH_SIZE = 100
_____no_output_____
MIT
Mobilenetv2 Tuning/MobileNetV2 Baseline.ipynb
vlad-danaila/Mobilenetv2_Ensemble_for_Cervical_Precancerous_Lesions_Classification
**Imports**
import torch as t import torchvision as tv import numpy as np import PIL as pil import matplotlib.pyplot as plt from torchvision.datasets import ImageFolder from torch.utils.data import DataLoader from torch.nn import Linear, BCEWithLogitsLoss import sklearn as sk import sklearn.metrics from os import listdir import time import random import GPUtil
_____no_output_____
MIT
Mobilenetv2 Tuning/MobileNetV2 Baseline.ipynb
vlad-danaila/Mobilenetv2_Ensemble_for_Cervical_Precancerous_Lesions_Classification