markdown
stringlengths
0
1.02M
code
stringlengths
0
832k
output
stringlengths
0
1.02M
license
stringlengths
3
36
path
stringlengths
6
265
repo_name
stringlengths
6
127
Cleaning up a service instance*Back to [table of contents](Table-of-Contents)*To clean all data on the service instance, you can run the following snippet. The code is self-contained and does not require you to execute any of the cells above. However, you will need to have the `key.json` containing a service key in place.You will need to set `CLEANUP_EVERYTHING = True` below to execute the cleanup.**NOTE: This will delete all data on the service instance!**
CLEANUP_EVERYTHING = False def cleanup_everything(): import logging import sys logging.basicConfig(level=logging.INFO, stream=sys.stdout) import json import os if not os.path.exists("key.json"): msg = "key.json is not found. Please follow instructions above to create a service key of" msg += " Data Attribute Recommendation. Then, upload it into the same directory where" msg += " this notebook is saved." print(msg) raise ValueError(msg) with open("key.json") as file_handle: key = file_handle.read() SERVICE_KEY = json.loads(key) from sap.aibus.dar.client.model_manager_client import ModelManagerClient model_manager = ModelManagerClient.construct_from_service_key(SERVICE_KEY) for deployment in model_manager.read_deployment_collection()["deployments"]: model_manager.delete_deployment_by_id(deployment["id"]) for model in model_manager.read_model_collection()["models"]: model_manager.delete_model_by_name(model["name"]) for job in model_manager.read_job_collection()["jobs"]: model_manager.delete_job_by_id(job["id"]) from sap.aibus.dar.client.data_manager_client import DataManagerClient data_manager = DataManagerClient.construct_from_service_key(SERVICE_KEY) for dataset in data_manager.read_dataset_collection()["datasets"]: data_manager.delete_dataset_by_id(dataset["id"]) for dataset_schema in data_manager.read_dataset_schema_collection()["datasetSchemas"]: data_manager.delete_dataset_schema_by_id(dataset_schema["id"]) print("Cleanup done!") if CLEANUP_EVERYTHING: print("Cleaning up all resources in this service instance.") cleanup_everything() else: print("Not cleaning up. Set 'CLEANUP_EVERYTHING = True' above and run again.")
_____no_output_____
Apache-2.0
exercises/ex1-DAR/teched2020-INT260_Data_Attribute_Recommendation.ipynb
SAP-samples/teched2020-INT260
ResumenEste cuaderno digital interactivo tiene como objetivo demostrar las relaciones entre las propiedades fisico-químicas de la vegetación y el espectro solar.Para ello haremos uso de modelos de simulación, en particular de modelos de transferencia radiativa tanto a nivel de hoja individual como a nivel de dosel vegetal. InstruccionesLee con detenimiento todo el texto, y sigue sus instrucciones.Una vez leida cada sección de texto ejecuta la celda de código siguiente (marcada como `In []`) presionando el icono de `Run`/`Ejecutar` o presionando en el teclado ALT + ENTER. Aparecerá una interfaz gráfica con la que poder realizar las tareas asignadas.Como ejemplo ejectuta la siguiente celda para importar todas las librerías necesarias para el correcto funcionamiento del cuaderno. Una vez ejecutada debería aparecer un mensaje de agradecimiento.
%matplotlib inline from ipywidgets import interactive, fixed from IPython.display import display from functions import prosail_and_spectra as fn
_____no_output_____
CC0-1.0
ES_espectro_vegetacion.ipynb
hectornieto/Curso-WUE
Espectro de una hojaLas propiedades espectrales de una hoja (tanto su transmisividad, su reflectividad y su absortividad) dependen de su concentración de pigmentos, de su contenido de agua, su peso específico y la estructura interna de sus tejidos. Vamos a usar el modelo ProspectD, el cual es una simplificación de la realidad en la que simula el espectro mediante la concentración de clorofilas (`Cab`), carotenoides (`Car`), antocianinos (`Ant`), así como el peso de agua y por unidad de supeficie (`Cw`) y el peso del resto de la materia seca (`Cm`) que engloba las celulosas, ligninas (responsables principales de la biomasa foliar) y otros componentes proteicos. También incluye un parámetro semi-empírico que representa otros pigmentos responsables del color de las hojas senescentes y enfermas. Además con el fin de simular hojas con distintas estructuras celulares incluye un último parámetro (`Nf`) que emula las distitas capas y tejidos celulares de la hoja.![Esquema del modelo Prospect](./input/figures/prospect.png "Representación esqueḿatica del modelo Prospect. La hoja se representa por un número de capas (N >= 1) con idénticas propiedades espectrales")> Si quieres saber más sobre el modelo ProspectD pincha en esta [publicación](./lecturas_adicionales/ProspectD_model.pdf).>> Si quieres más detalles sobre el cálculo y el código del modelo pincha [aquí](https://github.com/hectornieto/pypro4sail/blob/b111891e0a2c01b8b3fa5ff41790687d31297e5f/pypro4sail/prospect.pyL46).Ejecuta la siguiente célula y verás un espectro típico de la hoja. El gráfico muestra tanto la reflectividad (en el eje y) como la transmisividad (en el eje secundario y, con valores invertidos) y la absortividad (como el espacio entre las dos curvas de reflectividad y transmisividad) $\rho + \tau + \alpha = 1$.Presta atención a cómo y en qué regiones cambia el espectro según el parámetro que modifiques.* Haz variar la clorofila. * Haz variar el contenido de agua* Haz variar la materia seca* Haz variar los pigmentos marrones desde un valor de 0 (hoja sana) a valores mayores (hoja enferma o seca)
w_rho_leaf = interactive(fn.update_prospect_spectrum, N_leaf=fn.w_nleaf, Cab=fn.w_cab, Car=fn.w_car, Ant=fn.w_ant, Cbrown=fn.w_cbrown, Cw=fn.w_cw, Cm=fn.w_cm) display(w_rho_leaf)
_____no_output_____
CC0-1.0
ES_espectro_vegetacion.ipynb
hectornieto/Curso-WUE
Observa lo siguente:* La concentración de clorofila `Cab` afecta principalmente a la región del visible (RGB) y del *red egde* (R-E), con más absorción en la región del rojo y del azul y más reflexión en el verde. Es por ello que la mayoría de las hojas presentan color verde.* El contenido de agua `Cw` afecta principalmente a la absorción en el infrarrojo de onda corta (SWIR), con máximos de absorción en trono a los 1460 y 2100 nm.* La materia seca `Cm` afecta principalmente a la absorción en el infrarrojo cercano (NIR).* Otros pigmentos afectan en menor medida al espectro visible. Por ejemplo los antocianos `Ant` que suelen aparecer durante la senescencia desplazan el pico de reflexión del verde hacia el rojo, sobre todo cuando a su vez decrece la concentración de clorofila.* El parámetro `N` afecta a la relación entre reflectividad y transmisividad. Cuantas más *capas* tenga una hoja más fenómenos de dispersión múltiple habrá y reflejará más.> Puedes ver este fenómeno también en las ventanas con doble o triple cristal usadas como aislante, por ejemplo de los escaparates comerciales. A no ser que uno se sitúen justo de frente y cerca del escaparate, éste parece más un espejo que una ventana. Espectro del sueloEl espectro del dosel o de la supeficie vegetal no sólo depende del espectro y las propiedades de las hojas, sino que también de la propia estructura del dosel así como del suelo. En particular en doseles abiertos o poco densos, como en las primeras fases fenológicas, el comportamiento espectral del suelo puede influir de manera muy importante en la señal espectral que capten los sensores de teledetección.El espectro del suelo depende de varios factores, como son su composición mineralógica, materia orgánica, su textura y densidad así como su humedad superficial. Ejectuta la siguiente celda y mira los distintas características espectrales de distintos tipos de suelo.
w_rho_soil = interactive(fn.update_soil_spectrum, soil_name=fn.w_soil) display(w_rho_soil)
_____no_output_____
CC0-1.0
ES_espectro_vegetacion.ipynb
hectornieto/Curso-WUE
Observa lo diferente que puede ser un espectro de suelo en comparación con el de una hoja. Esto es clave a la hora de clasificar tipos de coberturas mediante teledetección así como cuantificar el vigor/densidad vegetal del cultivo.Observa que suelos más salinos (`aridisol.salorthid`) o gipsicos (`aridisol.gypsiorthd`), tienen una mayor reflectividad, sobre todo en el visible (RGB). Es decir, son más blancos que otros suelos. Espectro del doselFinalmente, integrando la firma espectral de una hoja y del suelo subyacente podemos obtener el espectro de un dosel vegetal. El espectro de la superficie vegetal además depende de la estructura del dosel, principalmente de la cantidad de hojas por unidad de superficie (definido como el Índice de Área Foliar) y de cómo estas hojas se orientan con respecto a la vertical. Además, dado que se produce una interacción de la luz incidente y reflejada entre el volumen de hojas y el suelo, la posición del sol y del sensor influyen en la señal espectral que obtengamos.Para esta parte cobinaremos el modelo de transferencia ProspectD para simular el espectro de una hoja con otro modelo de trasnferencia a nivel de dosel (4SAIL). Este último modelo considera la superficie vegetal como una capa horizontal y verticalmente homogéna, por lo que se recomienda cautela en su aplicación en doseles arbóreos heterogéneos.![Esquema del modelo 4SAIL](./input/figures/4sail.png "Representación esqueḿatica del modelo 4SAIL")> Si quieres saber más sobre el modelo 4SAIL pincha en esta [publicación](./lecturas_adicionales/4SAIL_model.pdf)> > Si quieres más detalles sobre el cálculo y el código del modelo pincha [aquí](https://github.com/hectornieto/pypro4sail/blob/b111891e0a2c01b8b3fa5ff41790687d31297e5f/pypro4sail/four_sail.pyL245)Ejecuta la siguente celda y mira cómo los [espectros de hoja](Espectro-de-una-hoja) y [suelo](Espectro-del-suelo) que se han generado previamente se integran para obtener un espectro de la superficie vegetal.> Puedes modificar los espectros de hoja y suelo, y esta gráfica se actualizará automáticamente.
w_rho_canopy = interactive(fn.update_4sail_spectrum, lai=fn.w_lai, hotspot=fn.w_hotspot, leaf_angle=fn.w_leaf_angle, sza=fn.w_sza, vza=fn.w_vza, psi=fn.w_psi, skyl=fn.w_skyl, leaf_spectrum=fixed(w_rho_leaf), soil_spectrum=fixed(w_rho_soil)) display(w_rho_canopy)
_____no_output_____
CC0-1.0
ES_espectro_vegetacion.ipynb
hectornieto/Curso-WUE
Recuerda en la [práctica sobre la radiación neta](./ES_radiacion_neta.ipynb) que una superficie vegetal tiene ciertas propiedades anisotrópicas, lo que quiere decir que reflejará de manera distinta según la geometria de iluminación y de observación. Mira cómo cambia el espectro variando los valores del ángulo de observación cenital (VZA), ańgulo cenital del sol (SZA) y el ángulo azimutal relativo (PSI) entre el sol y el observador.Haz variar el LAI, y ponlo en cero (sin vegetación). Comprueba que el espectro que sale es directamente el espectro del suelo. Ahora incrementa ligeramente el LAI, verás como el espectro va cambiando, disminuyendo la reflectividad en el rojo y azul (debido a la clorofila de la hoja), y aumentando la reflectividad en el *red-edge* y el NIR.Recuerda también de la [práctica sobre la radiación neta](./ES_radiacion_neta.ipynb) el efecto que también tiene la disposición angular de las hojas. Con una observación al nadir (VZA=0) haz variar el ángulo típico de la hoja (`Leaf Angle`) desde un valor predominantemente horizontal (0º) a un ángulo predominantemente vertical (90º) Sensibilidad de los parámetrosEn esta tarea podrás ver el comportamiento espectral de la vegetación según varían los parámetros fisico-químicos de la vegetación así como su sensibilidad a las condiciones de observación e iluminación.Para ello vamos a realizar un análisis de sensibilidad variando un sólo parámetro a la vez, mientras que el resto de los parámetros permanecerán constantes. Puedes variar los valores individuales para el resto de los parámetros individuales (también se actualizarán de las gráficas anteriores). A continuación selecciona qué parámetro quieres analizar y el rango de valores máximo y mínimo que quieras que tenga.
w_sensitivity = interactive(fn.prosail_sensitivity, N_leaf=fn.w_nleaf, Cab=fn.w_cab, Car=fn.w_car, Ant=fn.w_ant, Cbrown=fn.w_cbrown, Cw=fn.w_cw, Cm=fn.w_cm, lai=fn.w_lai, hotspot=fn.w_hotspot, leaf_angle=fn.w_leaf_angle, sza=fn.w_sza, vza=fn.w_vza, psi=fn.w_psi, skyl=fn.w_skyl, soil_name=fn.w_soil, var=fn.w_param, value_range=fn.w_range) display(w_sensitivity)
_____no_output_____
CC0-1.0
ES_espectro_vegetacion.ipynb
hectornieto/Curso-WUE
Empieza con al sensiblidad del espectro a la concentración de clorofila. Verás que la zona donde sobre todo hay variaciones es en el verde y el rojo. Observa también que en el *red-edge*, la zona de transición entre el rojo y el NIR, se produce un "desplazamiento" de la señal, este fenómento es clave y es la razón por la que los nuevos sensores (Sentinel, nuevas cámaras UAV) incluyen esta región para ayudar en la estimación de la clorofila y por tanto en la actividad fotosintética.Evalúa la sensibilidad al espectro de otros pigmentos (`Car` o `Ant`). Verás que la respuesta espectral a estos otros pigmentos es menor, lo que implica que resulta más dificil estimarlos a partir de teledetección. En cambio la variación espectral con los pigmentos marrones es bastante fuerte, como recordatorio estos pigmentos representan las variaciones cromáticas que se producen en hojas enfermas y muertas.> Esto implica que es relativamente posible detectar y cuantificar problemas sanitarios en la vegetación.Mira ahora la sensibilidad del LAI cuando su rango es pequeño (p.ej. de 0 a 2). Verás que el espectro cambia significativamente según incrementa el LAI. Ahora mira la sensibilidad cuando el LAI recorre valores mas altos (p.ej. de 2 a 4), verás que la variación en el espectro es mucho menor. Se suele decir que a valores altos de LAI el espectro tiende a "saturarse" por lo que la señal se hace menos sensible.> Es más fácil estimar el LAI con menor margen de error en cultivos con poca densidad foliar o fases fenológicas tempranas, que en cultivos o vegetación muy densa.Ahora mantén el valor fijo de LAI en un valor alto (p.ej 3) y haz variar el ángulo de observación cenital entre 0º (nadir) y una obsrvación oblicua (p.ej 35º). Verás que a pesar de haber un LAI alto, y que a priori hemos visto que ya es menos sensible, hay mayores variaciones espectrales al variar la geometría de observación.> Gracias a la anisotropía de la vegetación, las variaciones espectrales con respecto a la geometría de observación e iluminación pueden ayudar a resolver el LAI en condiciones de alta densidad.Ahora mira el peso específico de la hoja, o la cantidad de materia seca (`Cm`). Verás que según el peso específico de la hora se producen variaciones importantes en el NIR y SWIR.> La biomasa foliar puede calcularse a partir del producto entre el `LAI` y `Cm`, por lo que es viable estimar la biomasa foliar de un cultivo. Esta informaición puede ser útil por ejemplo para estimar el rendimiento final de algunos cultivos, como pueden ser los cereales.El parámetro `hotspot` es un parámetro semi-empírico relacionado con el tamaño relativo de la hoja con respecto a la altura del dosel. Afecta a cómo las hojas ensombrecen otras hojas dentro del dosel, por lo que su efecto más fuerte se observará cuando el observador (sensor) está justo en la misma posición que el sol. Para ello valores similares para VZA y SZA, y el ángulo azimutal relativo PSI en 0º. Ahora haz variar el hotstpot. Al poner el observador en la zona iluminada de la vegetación, el tamaño relativo de las hojas juega un papel importante, ya que cuanto más grandes sean estas el volumen de copa directamente iluminado será mayor.![Efecto del hotspot](./input/figures/hotspot.png "Efecto del hotspot en la reflectividad de un dosel. Tomado de https://doi.org/10.3390/rs11192239") La señal de un sensorHasta ahora hemos visto el comportamiento espectral detallado de la vegetación. Sin embargo los sensores a bordo de los satélites, aeroplanos y drones no miden todo el espectro en continuo, si no que muestrean tal espectro en torno a unas bandas específicas, estratégicamente seleccionadas con el fin de intentar capturar los aspectos biofísicos más relvantes.Se denomina función de respuesta espectral a la forma en que un sensor específico integra el espectro con el fin de proporcionar la información en sus distintas bandas. Cada sensor, con cada una de sus bandas, tiene una función de respuesta espectral propia.En esta tarea veremos las respuestas espectrales de los sensores que utilizaremos más comunmente, Landsat, Sentinel-2 y Sentinel-3. También veremos el comportamiento espectral de una cámara típica que se usa con drones.Partimos de las simulaciones generadas anteriormente. Selecciona el sensor que quieras simular para ver como cada uno de los sensores "verían" esos mismos espectros.
w_rho_sensor = interactive(fn.sensor_sensitivity, sensor=fn.w_sensor, spectra=fixed(w_sensitivity)) display(w_rho_sensor)
_____no_output_____
CC0-1.0
ES_espectro_vegetacion.ipynb
hectornieto/Curso-WUE
Realiza de nuevo un análisis de sensibilidad para la clorofila y compara la respuesta espectral que daría Landsat, Sentinel-2 y una camára UAV Derivación de parámetros de la vegetaciónHasta ahora hemos visto cómo el espectro de la superficie varía con respecto a los distintos parámetros biofísicos.Sin embargo, nuestro objetivo final es el contrario, es decir, a partir de un espectro, o de unas determinadas bandas espectrales estimar una o varias variables biofísicas que nos son de interés. En particular para el objetivo del cálculo de la evapotranspiración y la eficiencia en el uso en el agua, nos puede interesar estimar el índice de área foliar y/o la fracción de radiación PAR absorbida, así como las clorofilas u otros pigmentos.Una de los métodos típicos es desarrollar relaciones empíricas entre las bandas (o entre índices de vegetación) y datos muestreados en el campo. Esto puede darnos la respuesta más fiable para nuestra parcela de estudio, pero como has podido ver anteriormente la señal espectral depende de otros muchos factores, que pueden provocar que esa relación calibrada con unos cuantos muestreos locales no sea extrapolable o aplicable a otros cultivos o regiones.Otra alternativa es desarrollar bases de datos sintéticas a partir de simulaciones. Es lo que vamos a realizar en esta tarea.Vamos a ejecutar 5000 simulaciones haciendo variar los valores de los parámetros aleatoriamente según un rango de valores que puedan ser esperado en nuestras zonas de estudio. Por ejemplo si trabajas con cultivos perennes puede que te interesa mantener un rango de LAI con valores mínimos sensiblemente superiores a cero, mientras si trabajas con cultivos anuales, el valor 0 es necesario para reflejar el desarrollo del cultivo desde su plantación, emergencia y madurez. Ya que hay una gran cantidad de parámetros y es muy probable que desconozcamos el rango plausible en la mayoría de los cultivos, no te preocupes, deja los valores por defecto y céntrate en los parámetros en los que tengas más confianza.Puedes también elegir uno o varios tipos de suelo, en función de la edafología de tu lugar. > Incluso podrías subir un espectro de suelo típico de tu zona a la carpeta [./input/soil_spectral_library](./input/soil_spectral_library). Tan sólo asegúrate que el archivo de texto tenga dos columnas, la primera con las longitudes de onda de 400 a 2500 y la segunda columna con la reflectividad correspondiente. Para actualizar la librería espectral de suelos, tendrías que ejecutar también la [primera celda](Instrucciones).Finalmente selecciona el sensor para el que quieras genera la señal.Cuando tengas tu configurado tu entorno de simulación, pincha en el botón `Generar Simulaciones`. El sistema tardará un rato pero al cabo de unos minutos te retornará una serie de gráficos.> Es posible que recibas un mensaje de aviso, no te preocupes, en principio todo debería funcionar con normalidad.
w_rho_sensor = interactive(fn.build_random_simulations, {"manual": True, "manual_name": "Generar simulaciones"}, n_sim=fixed(5000), n_leaf_range=fn.w_range_nleaf, cab_range=fn.w_range_cab, car_range=fn.w_range_car, ant_range=fn.w_range_ant, cbrown_range=fn.w_range_cbrown, cw_range=fn.w_range_cw, cm_range=fn.w_range_cm, lai_range=fn.w_range_lai, hotspot_range=fn.w_range_hotspot, leaf_angle_range=fn.w_range_leaf_angle, sza=fn.w_sza, vza=fn.w_vza, psi=fn.w_psi, skyl=fn.w_skyl, soil_names=fn.w_soils, sensor=fn.w_sensor) display(w_rho_sensor)
_____no_output_____
CC0-1.0
ES_espectro_vegetacion.ipynb
hectornieto/Curso-WUE
Detecting sound sources in YouTube videos First load all dependencies and set work and data paths
# set plotting parameters %matplotlib inline import matplotlib.pyplot as plt # change notebook settings for wider screen from IPython.core.display import display, HTML display(HTML("<style>.container { width:100% !important; }</style>")) # For embedding YouTube videos in Ipython Notebook from IPython.display import YouTubeVideo # and setting the time of the video in seconds from datetime import timedelta import numpy as np import os import sys import urllib.request import pandas as pd sys.path.append(os.path.join('src', 'audioset_demos')) from __future__ import print_function # signal processing library from scipy import signal from scipy.io import wavfile import wave import six import tensorflow as tf import h5py # Audio IO and fast plotting import pyaudio from pyqtgraph.Qt import QtCore, QtGui import pyqtgraph as pg # Multiprocessing and threading import multiprocessing # Dependencies for creating deep VGGish embeddings from src.audioset_demos import vggish_input import vggish_input import vggish_params import vggish_postprocess import vggish_slim pca_params = 'vggish_pca_params.npz' model_checkpoint = 'vggish_model.ckpt' # Our YouTube video downloader based on youtube-dl module from src.audioset_demos import download_youtube_wav as dl_yt # third-party sounds processing and visualization library import librosa import librosa.display # Set user usr = 'maxvo' MAXINT16 = np.iinfo(np.int16).max print(MAXINT16) FOCUS_CLASSES_ID = [0, 137, 62, 63, 500, 37] #FOCUS_CLASSES_ID = [0, 137, 37, 40, 62, 63, 203, 208, 359, 412, 500] class_labels = pd.read_csv(os.path.join('src', 'audioset_demos', 'class_labels_indices.csv')) CLASS_NAMES = class_labels.loc[:, 'display_name'].tolist() FOCUS_CLASS_NAME_FRAME = class_labels.loc[FOCUS_CLASSES_ID, 'display_name'] FOCUS_CLASS_NAME = FOCUS_CLASS_NAME_FRAME.tolist() print("Chosen classes for experiments:") print(FOCUS_CLASS_NAME_FRAME) # Set current working directory src_dir = os.getcwd() # Set raw wav-file data directories for placing downloaded audio raw_dir = os.path.join(src_dir, 'data' ,'audioset_demos', 'raw') short_raw_dir = os.path.join(src_dir, 'data', 'audioset_demos', 'short_raw') if not os.path.exists(short_raw_dir): os.makedirs(short_raw_dir) if not os.path.exists(raw_dir): os.makedirs(raw_dir) audioset_data_path = os.path.join('data', 'audioset_demos', 'audioset', 'packed_features')
_____no_output_____
Apache-2.0
notebooks/experiments/Sound Demo 3 - Multi-label classifier pretrained on audioset.ipynb
fronovics/AI_playground
Download model parameters and PCA embedding
if not os.path.isfile(os.path.join('src', 'audioset_demos', 'vggish_model.ckpt')): urllib.request.urlretrieve( "https://storage.googleapis.com/audioset/vggish_model.ckpt", filename=os.path.join('src', 'audioset_demos', 'vggish_model.ckpt') ) if not os.path.isfile(os.path.join('src', 'audioset_demos', 'vggish_pca_params.npz')): urllib.request.urlretrieve( "https://storage.googleapis.com/audioset/vggish_pca_params.npz", filename=os.path.join('src', 'audioset_demos', 'vggish_pca_params.npz') ) if not os.path.isfile(os.path.join('data', 'audioset_demos', 'features.tar.gz')): urllib.request.urlretrieve( "https://storage.googleapis.com/eu_audioset/youtube_corpus/v1/features/features.tar.gz", filename=os.path.join('data', 'audioset_demos', 'features.tar.gz') ) import gzip import shutil with gzip.open(os.path.join('data', 'audioset_demos', 'features.tar.gz'), 'rb') as f_in: with open('packed_features', 'wb') as f_out: shutil.copyfileobj(f_in, f_out) def save_data(hdf5_path, x, video_id_list, y=None): with h5py.File(hdf5_path, 'w') as hf: hf.create_dataset('x', data=x) hf.create_dataset('y', data=y) hf.create_dataset('video_id_list', data=video_id_list, dtype='S11') def load_data(hdf5_path): with h5py.File(hdf5_path, 'r') as hf: x = hf['x'][:] if hf['y'] is not None: y = hf['y'][:] else: y = hf['y'] video_id_list = hf['video_id_list'][:].tolist() return x, y, video_id_list def time_str_to_sec(time_str='00:00:00'): time_str_list = time_str.split(':') seconds = int( timedelta( hours=int(time_str_list[0]), minutes=int(time_str_list[1]), seconds=int(time_str_list[2]) ).total_seconds() ) return seconds class miniRecorder: def __init__(self, seconds=4, sampling_rate=16000): self.FORMAT = pyaudio.paInt16 #paFloat32 #paInt16 self.CHANNELS = 1 # Must be Mono self.RATE = sampling_rate # sampling rate (Hz), 22050 was used for this application self.FRAMESIZE = 4200 # buffer size, number of data points to read at a time self.RECORD_SECONDS = seconds + 1 # how long should the recording (approx) be self.NOFRAMES = int((self.RATE * self.RECORD_SECONDS) / self.FRAMESIZE) # number of frames needed def record(self): # instantiate pyaudio p = pyaudio.PyAudio() # open stream stream = p.open(format=self.FORMAT, channels=self.CHANNELS, rate=self.RATE, input=True, frames_per_buffer=self.FRAMESIZE) # discard the first part of the recording discard = stream.read(self.FRAMESIZE) print('Recording...') data = stream.read(self.NOFRAMES * self.FRAMESIZE) decoded = np.frombuffer(data, dtype=np.int16) #np.float32) print('Finished...') stream.stop_stream() stream.close() p.terminate() # Remove first second to avoid "click" sound from starting recording self.sound_clip = decoded[self.RATE:] class Worker(QtCore.QRunnable): ''' Worker thread Inherits from QRunnable to handler worker thread setup, signals and wrap-up. :param callback: The function callback to run on this worker thread. Supplied args and kwargs will be passed through to the runner. :type callback: function :param args: Arguments to pass to the callback function :param kwargs: Keywords to pass to the callback function ''' def __init__(self, fn, *args, **kwargs): super(Worker, self).__init__() # Store constructor arguments (re-used for processing) self.fn = fn self.args = args self.kwargs = kwargs @QtCore.pyqtSlot() def run(self): ''' Initialise the runner function with passed args, kwargs. ''' self.fn(*self.args, **self.kwargs) class AudioFile: def __init__(self, file, chunk): """ Init audio stream """ self.chunk = chunk self.data = '' self.wf = wave.open(file, 'rb') self.p = pyaudio.PyAudio() self.stream = self.p.open( format = self.p.get_format_from_width(self.wf.getsampwidth()), channels = self.wf.getnchannels(), rate = self.wf.getframerate(), output = True ) def play(self): """ Play entire file """ self.data = self.wf.readframes(self.chunk) while self.data: self.stream.write(self.data) self.data = self.wf.readframes(self.chunk) self.close() def close(self): """ Graceful shutdown """ self.stream.close() self.p.terminate() def read(self, chunk, exception_on_overflow=False): return self.data class App(QtGui.QMainWindow): def __init__(self, predictor, n_top_classes=10, plot_classes=FOCUS_CLASSES_ID, parent=None): super(App, self).__init__(parent) ### Predictor model ### self.predictor = predictor self.n_classes = predictor.n_classes self.n_top_classes = n_top_classes self.plot_classes = plot_classes self.n_plot_classes = len(self.plot_classes) ### Start/stop control variable self.continue_recording = False self._timerId = None ### Settings ### self.rate = 16000 # sampling rate self.chunk = 1000 # reading chunk sizes, #self.rate = 22050 # sampling rate #self.chunk = 2450 # reading chunk sizes, make it a divisor of sampling rate #self.rate = 44100 # sampling rate #self.chunk = 882 # reading chunk sizes, make it a divisor of sampling rate self.nperseg = 400 # samples pr segment for spectrogram, scipy default is 256 # self.nperseg = 490 # samples pr segment for spectrogram, scipy default is 256 self.noverlap = 0 # overlap between spectrogram windows, scipt default is nperseg // 8 self.tape_length = 20 # length of running tape self.plot_length = 10 * self.rate self.samples_passed = 0 self.pred_length = 10 self.pred_samples = self.rate * self.pred_length self.start_tape() # initialize the tape self.eps = np.finfo(float).eps # Interval between predictions in number of samples self.pred_intv = (self.tape_length // 4) * self.rate self.pred_step = 10 * self.chunk self.full_tape = False #### Create Gui Elements ########### self.mainbox = QtGui.QWidget() self.setCentralWidget(self.mainbox) self.mainbox.setLayout(QtGui.QVBoxLayout()) self.canvas = pg.GraphicsLayoutWidget() self.mainbox.layout().addWidget(self.canvas) self.label = QtGui.QLabel() self.mainbox.layout().addWidget(self.label) # Thread pool for prediction worker coordination self.threadpool = QtCore.QThreadPool() # self.threadpool_plot = QtCore.QThreadPool() print("Multithreading with maximum %d threads" % self.threadpool.maxThreadCount()) # Play, record and predict button in toolbar ''' self.playTimer = QtCore.QTimer() self.playTimer.setInterval(500) self.playTimer.timeout.connect(self.playTick) self.toolbar = self.addToolBar("Play") self.playScansAction = QtGui.QAction(QtGui.QIcon("control_play_blue.png"), "play scans", self) self.playScansAction.triggered.connect(self.playScansPressed) self.playScansAction.setCheckable(True) self.toolbar.addAction(self.playScansAction) ''' # Buttons and user input btn_brow_1 = QtGui.QPushButton('Start/Stop Recording', self) btn_brow_1.setGeometry(300, 15, 250, 25) #btn_brow_4.clicked.connect(support.main(fname_points, self.fname_stl_indir, self.fname_stl_outdir)) # Action: Start or stop recording btn_brow_1.clicked.connect(lambda: self.press_record()) btn_brow_2 = QtGui.QPushButton('Predict', self) btn_brow_2.setGeometry(20, 15, 250, 25) # Action: predict on present tape roll btn_brow_2.clicked.connect( lambda: self.start_predictions( sound_clip=self.tape, full_tape=False ) ) self.le1 = QtGui.QLineEdit(self) self.le1.setGeometry(600, 15, 250, 21) self.yt_video_id = str(self.le1.text()) self.statusBar().showMessage("Ready") # self.toolbar = self.addToolBar('Exit') # self.toolbar.addAction(exitAction) self.setGeometry(300, 300, 1400, 1200) self.setWindowTitle('Live Audio Event Detector') # self.show() # line plot self.plot = self.canvas.addPlot() self.p1 = self.plot.plot(pen='r') self.plot.setXRange(0, self.plot_length) self.plot.setYRange(-0.5, 0.5) self.plot.hideAxis('left') self.plot.hideAxis('bottom') self.canvas.nextRow() # spectrogram self.view = self.canvas.addViewBox() self.view.setAspectLocked(False) self.view.setRange(QtCore.QRectF(0,0, self.spec.shape[1], 100)) # image plot self.img = pg.ImageItem() #(border='w') self.view.addItem(self.img) # bipolar colormap pos = np.array([0., 1., 0.5, 0.25, 0.75]) color = np.array([[0,255,255,255], [255,255,0,255], [0,0,0,255], (0, 0, 255, 255), (255, 0, 0, 255)], dtype=np.ubyte) cmap = pg.ColorMap(pos, color) lut = cmap.getLookupTable(0.0, 1.0, 256) self.img.setLookupTable(lut) self.img.setLevels([-15, -5]) self.canvas.nextRow() # create bar chart #self.view2 = self.canvas.addViewBox() # dummy data #self.x = np.arange(self.n_top_classes) #self.y1 = np.linspace(0, self.n_classes, num=self.n_top_classes) #self.bg1 = pg.BarGraphItem(x=self.x, height=self.y1, width=0.6, brush='r') #self.view2.addItem(self.bg1) # Prediction line plot self.plot2 = self.canvas.addPlot() self.plot2.addLegend() self.plot_list = [None]*self.n_plot_classes for i in range(self.n_plot_classes): self.plot_list[i] = self.plot2.plot( pen=pg.intColor(i), name=CLASS_NAMES[self.plot_classes[i]] ) self.plot2.setXRange(0, self.plot_length) self.plot2.setYRange(0.0, 1.0) self.plot2.hideAxis('left') self.plot2.hideAxis('bottom') # self.canvas.nextRow() #### Start ##################### # self.p = pyaudio.PyAudio() # self.start_stream() # self._update() def playScansPressed(self): if self.playScansAction.isChecked(): self.playTimer.start() else: self.playTimer.stop() def playTick(self): self._update() def start_stream(self): if not self.yt_video_id: self.stream = self.p.open( format=pyaudio.paFloat32, channels=1, rate=self.rate, input=True, frames_per_buffer=self.chunk ) else: self.stream = AudioFile(self.yt_video_id, self.chunk) self.stream.play() def close_stream(self): self.stream.stop_stream() self.stream.close() self.p.terminate() # self.exit_pool() def read_stream(self): self.raw = self.stream.read(self.chunk, exception_on_overflow=False) data = np.frombuffer(self.raw, dtype=np.float32) return self.raw, data def start_tape(self): self.tape = np.zeros(self.tape_length * self.rate) # empty spectrogram tape self.f, self.t, self.Sxx = signal.spectrogram( self.tape[-self.plot_length:], self.rate, nperseg=self.nperseg, noverlap=self.noverlap, detrend=False, return_onesided=True, mode='magnitude' ) self.spec = np.zeros(self.Sxx.shape) self.pred = np.zeros((self.n_plot_classes, self.plot_length)) def tape_add(self): if self.continue_recording: raw, audio = self.read_stream() self.tape[:-self.chunk] = self.tape[self.chunk:] self.tape[-self.chunk:] = audio self.samples_passed += self.chunk # spectrogram on whole tape # self.f, self.t, self.Sxx = signal.spectrogram(self.tape, self.rate) # self.spec = self.Sxx # spectrogram on last added part of tape self.f, self.t, self.Sxx = signal.spectrogram(self.tape[-self.chunk:], self.rate, nperseg=self.nperseg, noverlap=self.noverlap) spec_chunk = self.Sxx.shape[1] self.spec[:, :-spec_chunk] = self.spec[:, spec_chunk:] # Extend spectrogram after converting to dB scale self.spec[:, -spec_chunk:] = np.log10(abs(self.Sxx) + self.eps) self.pred[:, :-self.chunk] = self.pred[:, self.chunk:] ''' if (self.samples_passed % self.pred_intv) == 0: sound_clip = self.tape # (MAXINT16 * self.tape).astype('int16') / 32768.0 if self.full_tape: # predictions on full tape pred_chunk = self.predictor.predict( sound_clip=sound_clip[-self.pred_intv:], sample_rate=self.rate )[0][self.plot_classes] self.pred[:, -self.pred_intv:] = np.asarray( (self.pred_intv) * [pred_chunk]).transpose() else: # prediction, on some snip of the last part of the signal # 1 s seems to be the shortest time frame with reliable predictions self.start_predictions(sound_clip) ''' def start_predictions(self, sound_clip=None, full_tape=False): #self.samples_passed_at_predict = self.samples_passed if sound_clip is None: sound_clip = self.tape if full_tape: worker = Worker(self.provide_prediction, *(), **{ "sound_clip": sound_clip, "pred_start": -self.pred_samples, "pred_stop": None, "pred_step": self.pred_samples } ) self.threadpool.start(worker) else: for chunk in range(0, self.pred_intv, self.pred_step): pred_start = - self.pred_intv - self.pred_samples + chunk pred_stop = - self.pred_intv + chunk worker = Worker(self.provide_prediction, *(), **{ "sound_clip": sound_clip, "pred_start": pred_start, "pred_stop": pred_stop, "pred_step": self.pred_step } ) self.threadpool.start(worker) def provide_prediction(self, sound_clip, pred_start, pred_stop, pred_step): #samples_passed_since_predict = self.samples_passed - self.samples_passed_at_predict #pred_stop -= samples_passed_since_predict pred_chunk = self.predictor.predict( sound_clip=sound_clip[pred_start:pred_stop], sample_rate=self.rate )[0][self.plot_classes] #samples_passed_since_predict = self.samples_passed - self.samples_passed_at_predict - samples_passed_since_predict #pred_stop -= samples_passed_since_predict if pred_stop is not None: pred_stop_step = pred_stop - pred_step else: pred_stop_step = None self.pred[:, pred_stop_step:pred_stop] = np.asarray( (pred_step) * [pred_chunk] ).transpose() def exit_pool(self): """ Exit all QRunnables and delete QThreadPool """ # When trying to quit, the application takes a long time to stop self.threadpool.globalInstance().waitForDone() self.threadpool.deleteLater() sys.exit(0) def press_record(self): self.yt_video_id = str(self.le1.text()) # Switch between continue recording or stopping it # Start or avoid starting recording dependent on last press if self.continue_recording: self.continue_recording = False #if self._timerId is not None: # self.killTimer(self._timerId) self.close_stream() else: self.continue_recording = True self.p = pyaudio.PyAudio() self.start_stream() self._update() def _update(self): try: if self.continue_recording: self.tape_add() # self.img.setImage(self.spec.T) #kwargs = { # "image": self.spec.T, # "autoLevels": False, # #worker = Worker(self.img.setImage, *(), **kwargs) #self.threadpool_plot.start(worker) self.img.setImage(self.spec.T, autoLevels=False) #worker = Worker( # self.p1.setData, # *(), # **{'y': self.tape[-self.plot_length:]} #) #self.threadpool_plot.start(worker) self.p1.setData(self.tape[-self.plot_length:]) #pred_var = np.var(self.pred, axis=-1) #pred_mean = np.mean(self.pred, axis=-1) #class_cand = np.where( (pred_mean > 0.001)*(pred_var > 0.01) ) # n_classes_incl = min(self.n_top_classes, class_cand[0].shape[0]) # print(n_classes_incl) for i in range(self.n_plot_classes): #worker = Worker( # self.plot_list[i].setData, # *(), # **{'y': self.pred[i,:]} #) #self.threadpool_plot.start(worker) self.plot_list[i].setData(self.pred[i,:]) # self.plot_classes[i],:]) #self.bg1.setOpts( # height=self.y1 #) #self.bg1.setOpts( # height=np.sort( # self.pred[:, -1] # )[-1:-(self.n_top_classes+1):-1] #) #print(np.max(self.tape), np.min(self.tape)) # self.label.setText('Class: {0:0.3f}'.format(self.pred[-1])) QtCore.QTimer.singleShot(1, self._update) except KeyboardInterrupt: self.close_stream() from AudioSetClassifier import AudioSetClassifier # model_type='decision_level_single_attention', # balance_type='balance_in_batch', # at_iteration=50000 #ASC = AudioSetClassifier( # model_type='decision_level_max_pooling', #single_attention', # balance_type='balance_in_batch', # iters=50000 #) ASC = AudioSetClassifier() app=0 #This is the solution app = QtGui.QApplication(sys.argv) MainApp = App(predictor=ASC) MainApp.show() sys.exit(app.exec_()) minirec = miniRecorder(seconds=10, sampling_rate=16000) minirec.record() minirec_pred = ASC.predict(sound_clip=minirec.sound_clip / 32768.0, sample_rate=16000) print(minirec_pred[:,[0, 37, 62, 63]]) max_prob_classes = np.argsort(minirec_pred, axis=-1)[:, ::-1] max_prob = np.sort(minirec_pred, axis=-1)[:,::-1] print(max_prob.shape) example = pd.DataFrame(class_labels['display_name'][max_prob_classes[0,:10]]) example.loc[:, 'prob'] = pd.Series(max_prob[0, :10], index=example.index) print(example) example.plot.bar(x='display_name', y='prob', rot=90) plt.show() print()
(1, 527) display_name prob 0 Speech 0.865663 506 Inside, small room 0.050520 1 Male speech, man speaking 0.047573 5 Narration, monologue 0.047426 46 Snort 0.043561 482 Ping 0.025956 354 Door 0.017503 458 Arrow 0.016863 438 Chop 0.014797 387 Writing 0.014618
Apache-2.0
notebooks/experiments/Sound Demo 3 - Multi-label classifier pretrained on audioset.ipynb
fronovics/AI_playground
Parameters for how to plot audio
# Sample rate # this has to be at least twice of max frequency which we've entered # but you can play around with different sample rates and see how this # affects the results; # since we generated this audio, the sample rate is the bitrate sample_rate = vggish_params.SAMPLE_RATE # size of audio FFT window relative to sample_rate n_window = 1024 # overlap between adjacent FFT windows n_overlap = 360 # number of mel frequency bands to generate n_mels = 64 # max duration of short video clips duration = 10 # note frequencies https://pages.mtu.edu/~suits/notefreqs.html freq1 = 512. freq2 = 1024. # fmin and fmax for librosa filters in Hz - used for visualization purposes only fmax = max(freq1, freq2)*8 + 1000. fmin = 0. # stylistic change to the notebook fontsize = 14 plt.rcParams['font.family'] = 'serif' plt.rcParams['font.serif'] = 'Ubuntu' plt.rcParams['font.monospace'] = 'Ubuntu Mono' plt.rcParams['font.size'] = fontsize plt.rcParams['axes.labelsize'] = fontsize plt.rcParams['axes.labelweight'] = 'bold' plt.rcParams['axes.titlesize'] = fontsize plt.rcParams['xtick.labelsize'] = fontsize plt.rcParams['ytick.labelsize'] = fontsize plt.rcParams['legend.fontsize'] = fontsize plt.rcParams['figure.titlesize'] = fontsize
_____no_output_____
Apache-2.0
notebooks/experiments/Sound Demo 3 - Multi-label classifier pretrained on audioset.ipynb
fronovics/AI_playground
Choosing video IDs and start times before download
video_ids = [ 'BaW_jenozKc', 'E6sS2d-NeTE', 'xV0eTva6SKQ', '2Szah76TMgo', 'g38kRk6YAA0', 'OkkkPAE9KvE', 'N1zUp9aPFG4' ] video_start_time_str = [ '00:00:00', '00:00:10', '00:00:05', '00:00:02', '00:03:10', '00:00:10', '00:00:06' ] video_start_time = list(map(time_str_to_sec, video_start_time_str))
_____no_output_____
Apache-2.0
notebooks/experiments/Sound Demo 3 - Multi-label classifier pretrained on audioset.ipynb
fronovics/AI_playground
Download, save and cut video audio
video_titles = [] maxv = np.iinfo(np.int16).max for i, vid in enumerate(video_ids): # Download and store video under data/raw/ video_title = dl_yt.download_youtube_wav( video_id=vid, raw_dir=raw_dir, short_raw_dir=short_raw_dir, start_sec=video_start_time[i], duration=duration, sample_rate=sample_rate ) video_titles += [video_title] print() ''' audio_path = os.path.join(raw_dir, vid) + '.wav' short_audio_path = os.path.join(short_raw_dir, vid) + '.wav' # Load and downsample audio to 16000 # audio is a 1D time series of the sound # can also use (audio, fs) = soundfile.read(audio_path) (audio, fs) = librosa.load( audio_path, sr = sample_rate, offset = video_start_time[i], duration = duration ) # Store downsampled 10sec clip under data/short_raw/ wavfile.write( filename=short_audio_path, rate=sample_rate, data=(audio * maxv).astype(np.int16) ) ''' # Usage example for pyaudio i = 6 a = AudioFile( os.path.join(short_raw_dir, video_ids[i]) + '.wav', chunk = 1000 ) a.play() a.close()
_____no_output_____
Apache-2.0
notebooks/experiments/Sound Demo 3 - Multi-label classifier pretrained on audioset.ipynb
fronovics/AI_playground
Retrieve VGGish PCA embeddings
video_vggish_emb = [] # Restore VGGish model trained on YouTube8M dataset # Retrieve PCA-embeddings of bottleneck features with tf.Graph().as_default(), tf.Session() as sess: # Define the model in inference mode, load the checkpoint, and # locate input and output tensors. vggish_slim.define_vggish_slim(training=False) vggish_slim.load_vggish_slim_checkpoint(sess, model_checkpoint) features_tensor = sess.graph.get_tensor_by_name( vggish_params.INPUT_TENSOR_NAME) embedding_tensor = sess.graph.get_tensor_by_name( vggish_params.OUTPUT_TENSOR_NAME) for i, vid in enumerate(video_ids): audio_path = os.path.join(short_raw_dir, vid) + '.wav' examples_batch = vggish_input.wavfile_to_examples(audio_path) print(examples_batch.shape) # Prepare a postprocessor to munge the model embeddings. pproc = vggish_postprocess.Postprocessor(pca_params) # Run inference and postprocessing. [embedding_batch] = sess.run([embedding_tensor], feed_dict={features_tensor: examples_batch}) print(embedding_batch.shape) postprocessed_batch = pproc.postprocess(embedding_batch) print(postprocessed_batch.shape) video_vggish_emb.extend([postprocessed_batch]) print(len(video_vggish_emb))
INFO:tensorflow:Restoring parameters from vggish_model.ckpt (10, 96, 64) (10, 128) (10, 128) (10, 96, 64) (10, 128) (10, 128) (10, 96, 64) (10, 128) (10, 128) (10, 96, 64) (10, 128) (10, 128) (10, 96, 64) (10, 128) (10, 128) (10, 96, 64) (10, 128) (10, 128) (10, 96, 64) (10, 128) (10, 128) 7
Apache-2.0
notebooks/experiments/Sound Demo 3 - Multi-label classifier pretrained on audioset.ipynb
fronovics/AI_playground
Plot audio, transformations and embeddings Function for visualising audio
def plot_audio(audio, emb): audio_sec = audio.shape[0]/sample_rate # Make a new figure plt.figure(figsize=(18, 16), dpi= 60, facecolor='w', edgecolor='k') plt.subplot(511) # Display the spectrogram on a mel scale librosa.display.waveplot(audio, int(sample_rate), max_sr = int(sample_rate)) plt.title('Raw audio waveform @ %d Hz' % sample_rate, fontsize = fontsize) plt.xlabel("Time (s)") plt.ylabel("Amplitude") # Define filters and windows melW =librosa.filters.mel(sr=sample_rate, n_fft=n_window, n_mels=n_mels, fmin=fmin, fmax=fmax) ham_win = np.hamming(n_window) # Compute fft to spectrogram [f, t, x] = signal.spectral.spectrogram( x=audio, window=ham_win, nperseg=n_window, noverlap=n_overlap, detrend=False, return_onesided=True, mode='magnitude') # Apply filters and log transformation x_filtered = np.dot(x.T, melW.T) x_logmel = np.log(x_filtered + 1e-8) x_logmel = x_logmel.astype(np.float32) # Display frequency power spectrogram plt.subplot(512) x_coords = np.linspace(0, audio_sec, x.shape[0]) librosa.display.specshow( x.T, sr=sample_rate, x_axis='time', y_axis='hz', x_coords=x_coords ) plt.xlabel("Time (s)") plt.title("FFT spectrogram (dB)", fontsize = fontsize) # optional colorbar plot plt.colorbar(format='%+02.0f dB') # Display log-mel freq. power spectrogram plt.subplot(513) x_coords = np.linspace(0, audio_sec, x_logmel.shape[0]) librosa.display.specshow( x_logmel.T, sr=sample_rate, x_axis='time', y_axis='mel', x_coords=x_coords ) plt.xlabel("Time (s)") plt.title("Mel power spectrogram used in DCASE 2017 (dB)", fontsize = fontsize) # optional colorbar plot plt.colorbar(format='%+02.0f dB') # Display embeddings plt.subplot(514) x_coords = np.linspace(0, audio_sec, emb.shape[0]) librosa.display.specshow( emb.T, sr=sample_rate, x_axis='time', y_axis=None, x_coords=x_coords ) plt.xlabel("Time (s)") plt.colorbar() plt.subplot(515) plt.scatter( x=emb[:, 0], y=emb[:, 1], ) plt.xlabel("PC_1") plt.ylabel("PC_2") # Make the figure layout compact plt.tight_layout() plt.show()
_____no_output_____
Apache-2.0
notebooks/experiments/Sound Demo 3 - Multi-label classifier pretrained on audioset.ipynb
fronovics/AI_playground
Visualise all clips of audio chosen
for i, vid in enumerate(video_ids): print("\nAnalyzing audio from video with title:\n", video_titles[i]) audio_path = os.path.join(short_raw_dir, vid) + '.wav' # audio is a 1D time series of the sound # can also use (audio, fs) = soundfile.read(audio_path) (audio, fs) = librosa.load( audio_path, sr = sample_rate, ) plot_audio(audio, video_vggish_emb[i]) start=int( timedelta( hours=0, minutes=0, seconds=video_start_time[i] ).total_seconds() ) YouTubeVideo(vid, start=start, autoplay=0, theme="light", color="red") print()
_____no_output_____
Apache-2.0
notebooks/experiments/Sound Demo 3 - Multi-label classifier pretrained on audioset.ipynb
fronovics/AI_playground
Visualise one clip of audio and embed YouTube video for comparison
i = 4 vid = video_ids[i] audio_path = os.path.join(raw_dir, vid) + '.wav' # audio is a 1D time series of the sound # can also use (audio, fs) = soundfile.read(audio_path) (audio, fs) = librosa.load( audio_path, sr = sample_rate, offset = video_start_time[i], duration = duration ) plot_audio(audio, video_vggish_emb[i]) start=int( timedelta( hours=0, minutes=0, seconds=video_start_time[i] ).total_seconds() ) YouTubeVideo( vid, start=start, end=start+duration, autoplay=0, theme="light", color="red" ) # Plot emb with scatter # Check first couple of PCs, # for both train and test data, to see if the test is lacking variance
/usr/local/anaconda3/envs/audioset_tensorflow/lib/python3.6/site-packages/librosa/filters.py:284: UserWarning: Empty filters detected in mel frequency basis. Some channels will produce empty responses. Try increasing your sampling rate (and fmax) or reducing n_mels. warnings.warn('Empty filters detected in mel frequency basis. ' /usr/local/anaconda3/envs/audioset_tensorflow/lib/python3.6/site-packages/matplotlib/font_manager.py:1328: UserWarning: findfont: Font family ['serif'] not found. Falling back to DejaVu Sans (prop.get_family(), self.defaultFamily[fontext]))
Apache-2.0
notebooks/experiments/Sound Demo 3 - Multi-label classifier pretrained on audioset.ipynb
fronovics/AI_playground
Evaluate trained audio detection model
import audio_event_detection_model as AEDM import utilities from sklearn import metrics model = AEDM.CRNN_audio_event_detector()
_____no_output_____
Apache-2.0
notebooks/experiments/Sound Demo 3 - Multi-label classifier pretrained on audioset.ipynb
fronovics/AI_playground
Evaluating model on audio downloaded
(x_user_inp, y_user_inp) = utilities.transform_data( np.array(video_vggish_emb) ) predictions = model.predict( x=x_user_inp )
_____no_output_____
Apache-2.0
notebooks/experiments/Sound Demo 3 - Multi-label classifier pretrained on audioset.ipynb
fronovics/AI_playground
Evaluating model on training data
(x_tr, y_tr, vid_tr) = load_data(os.path.join(audioset_data_path, 'bal_train.h5')) (x_tr, y_tr) = utilities.transform_data(x_tr, y_tr) pred_tr = model.predict(x=x_tr) print(pred_tr.max()) print(metrics.accuracy_score(y_tr, (pred_tr > 0.5).astype(np.float32))) print(metrics.roc_auc_score(y_tr, pred_tr)) print(np.mean(metrics.roc_auc_score(y_tr, pred_tr, average=None))) stats = utilities.calculate_stats(pred_tr, y_tr) mAUC = np.mean([stat['auc'] for stat in stats]) max_prob_classes = np.argsort(predictions, axis=-1)[:, ::-1] max_prob = np.sort(predictions, axis=-1)[:,::-1] print(mAUC) print(max_prob.max()) print(max_prob[:,:10]) print(predictions.shape) print(max_prob_classes[:,:10]) from numpy import genfromtxt import pandas as pd class_labels = pd.read_csv('class_labels_indices.csv') print(class_labels['display_name'][max_prob_classes[5,:10]]) for i, vid in enumerate(video_ids[0]): print(video_titles[i]) print() example = pd.DataFrame(class_labels['display_name'][max_prob_classes[i,:10]]) example.loc[:, 'prob'] = pd.Series(max_prob[i, :10], index=example.index) print(example) example.plot.bar(x='display_name', y='prob', rot=90) plt.show() print()
_____no_output_____
Apache-2.0
notebooks/experiments/Sound Demo 3 - Multi-label classifier pretrained on audioset.ipynb
fronovics/AI_playground
Investigating model predictions on downloaded audio clips
i = 0 vid = video_ids[i] print(video_titles[i]) print() YouTubeVideo( vid, start=start, end=start+duration, autoplay=0, theme="light", color="red" ) example = pd.DataFrame(class_labels['display_name'][max_prob_classes[i,:10]]) example.loc[:, 'prob'] = pd.Series(max_prob[i, :10], index=example.index) print(example) example.plot.bar(x='display_name', y='prob', rot=90) plt.show() print() #eval_metrics = model.evaluate(x=x_tr, y=y_tr) #for i, metric_name in enumerate(model.metrics_names): # print("{}: {:1.4f}".format(metric_name, eval_metrics[i])) #qtapp = App(model) from AudioSetClassifier import AudioSetClassifier import time ASC = AudioSetClassifier() sound_clip = os.path.join(short_raw_dir, video_ids[1]) + '.wav' t0 = time.time() test_pred = ASC.predict(sound_clip=sound_clip) t1 = time.time() print('Time spent on 1 forward pass prediction:', t1-t0) print(test_pred.shape) for i, vid in enumerate(video_ids): print(video_titles[i]) print() sound_clip = os.path.join(short_raw_dir, vid) + '.wav' predictions = ASC.predict(sound_clip=sound_clip) max_prob_classes = np.argsort(predictions, axis=-1)[:, ::-1] max_prob = np.sort(predictions, axis=-1)[:,::-1] print(max_prob.shape) example = pd.DataFrame(class_labels['display_name'][max_prob_classes[0,:10]]) example.loc[:, 'prob'] = pd.Series(max_prob[0, :10], index=example.index) print(example) example.plot.bar(x='display_name', y='prob', rot=90) plt.show() print() import sys app=0 #This is the solution app = QtGui.QApplication(sys.argv) MainApp = App(predictor=ASC) MainApp.show() sys.exit(app.exec_()) #from PyQt4 import QtGui, QtCore class SimpleWindow(QtGui.QWidget): def __init__(self, parent=None): QtGui.QWidget.__init__(self, parent) self.setGeometry(300, 300, 200, 80) self.setWindowTitle('Hello World') quit = QtGui.QPushButton('Close', self) quit.setGeometry(10, 10, 60, 35) self.connect(quit, QtCore.SIGNAL('clicked()'), self, QtCore.SLOT('close()')) if __name__ == '__main__': app = QtCore.QCoreApplication.instance() if app is None: app = QtGui.QApplication([]) sw = SimpleWindow() sw.show() try: from IPython.lib.guisupport import start_event_loop_qt4 start_event_loop_qt4(app) except ImportError: app.exec_()
_____no_output_____
Apache-2.0
notebooks/experiments/Sound Demo 3 - Multi-label classifier pretrained on audioset.ipynb
fronovics/AI_playground
1. Understand attention2. Understand filters3. Understand Multi-label, hierachical, knowledge graphs4. Understand class imbalance 5. CCA on VGGish vs. ResNet audioset emb. to check if there's a linear connection. 6. Train linear layer to convert VGGish emb. to ResNet-50 emb. Plot in GUI:1. Exclude all non-active classes2. Draw class names on curves going up3. Remove histogram4. Make faster
video_vggish_emb = [] test_wav_path = os.path.join(src_dir, 'data', 'wav_file') wav_files = os.listdir(test_wav_path) example_names = [] # Restore VGGish model trained on YouTube8M dataset # Retrieve PCA-embeddings of bottleneck features with tf.Graph().as_default(), tf.Session() as sess: # Define the model in inference mode, load the checkpoint, and # locate input and output tensors. vggish_slim.define_vggish_slim(training=False) vggish_slim.load_vggish_slim_checkpoint(sess, model_checkpoint) features_tensor = sess.graph.get_tensor_by_name( vggish_params.INPUT_TENSOR_NAME) embedding_tensor = sess.graph.get_tensor_by_name( vggish_params.OUTPUT_TENSOR_NAME) # Prepare a postprocessor to munge the model embeddings. pproc = vggish_postprocess.Postprocessor(pca_params) for i, vid in enumerate(wav_files): audio_path = os.path.join(test_wav_path, vid) print(vid) examples_batch = vggish_input.wavfile_to_examples(audio_path) print(examples_batch.shape) # Run inference and postprocessing. [embedding_batch] = sess.run([embedding_tensor], feed_dict={features_tensor: examples_batch}) print(embedding_batch.shape) postprocessed_batch = pproc.postprocess(embedding_batch) batch_shape = postprocessed_batch.shape print(batch_shape) if batch_shape[0] > 10: postprocessed_batch = postprocessed_batch[:10] elif batch_shape[0] < 10: zero_pad = np.zeros((10, 128)) zero_pad[:batch_shape[0]] = postprocessed_batch postprocessed_batch = zero_pad print(postprocessed_batch.shape) if postprocessed_batch.shape[0] == 10: video_vggish_emb.extend([postprocessed_batch]) example_names.extend([vid]) print(len(video_vggish_emb)) import audio_event_detection_model as AEDM import utilities model = AEDM.CRNN_audio_event_detector() (x_user_inp, y_user_inp) = utilities.transform_data( np.array(video_vggish_emb) ) predictions_AEDM = model.predict( x=x_user_inp ) predictions_ASC = np.zeros([len(wav_files), 527]) for i, vid in enumerate(wav_files): audio_path = os.path.join(test_wav_path, vid) predictions_ASC[i] = ASC.predict(sound_clip=audio_path) qkong_res = '''2018Q1Q10Q17Q12Q59Q512440Q-5889Q.fea_lab ['Speech'] [0.8013877] 12_4_train ambience.fea_lab ['Vehicle', 'Rail transport', 'Train', 'Railroad car, train wagon'] [0.38702238, 0.6618184, 0.7742054, 0.5886036] 19_3_forest winter.fea_lab ['Animal'] [0.16109303] 2018Q1Q10Q17Q58Q49Q512348Q-5732Q.fea_lab ['Speech'] [0.78335935] 15_1_whistle.fea_lab ['Whistling'] [0.34013063] ['music'] 2018Q1Q10Q13Q52Q8Q512440Q-5889Q.fea_lab ['Speech'] [0.7389336] 09_2_my guitar.fea_lab ['Music', 'Musical instrument', 'Plucked string instrument', 'Guitar'] [0.84308875, 0.48860216, 0.43791085, 0.47915566] 2018Q1Q10Q13Q29Q46Q512440Q-5889Q.fea_lab ['Vehicle'] [0.18344605] 05_2_DFA.fea_lab ['Music', 'Musical instrument', 'Plucked string instrument', 'Guitar'] [0.93665695, 0.57123834, 0.53891456, 0.63112855] ''' q_kong_res = { '2018Q1Q10Q17Q12Q59Q512440Q-5889Q.wav': (['Speech'], [0.8013877]), '12_4_train ambience.wav': (['Vehicle', 'Rail transport', 'Train', 'Railroad car, train wagon'], [0.38702238, 0.6618184, 0.7742054, 0.5886036]), '19_3_forest winter.wav': (['Animal'], [0.16109303]), '2018Q1Q10Q17Q58Q49Q512348Q-5732Q.wav': (['Speech'], [0.78335935]), '15_1_whistle.wav': (['Whistling'], [0.34013063], ['music']), '2018Q1Q10Q13Q52Q8Q512440Q-5889Q.wav': (['Speech'], [0.7389336]), '09_2_my guitar.wav': (['Music', 'Musical instrument', 'Plucked string instrument', 'Guitar'], [0.84308875, 0.48860216, 0.43791085, 0.47915566]), '2018Q1Q10Q13Q29Q46Q512440Q-5889Q.wav': (['Vehicle'], [0.18344605]), '05_2_DFA.wav': (['Music', 'Musical instrument', 'Plucked string instrument', 'Guitar'], [0.93665695, 0.57123834, 0.53891456, 0.63112855]) } #test_examples_res = qkong_res.split('\n') #print(test_examples_res) #rint() #split_fun = lambda x: x.split(' [') #test_examples_res = list(map(split_fun, test_examples_res))# # print(test_examples_res) max_prob_classes_AEDM = np.argsort(predictions_AEDM, axis=-1)[:, ::-1] max_prob_AEDM = np.sort(predictions_AEDM, axis=-1)[:,::-1] max_prob_classes_ASC = np.argsort(predictions_ASC, axis=-1)[:, ::-1] max_prob_ASC = np.sort(predictions_ASC, axis=-1)[:,::-1] for i in range(len(wav_files)): print(wav_files[i]) print(max_prob_classes_AEDM[i,:10]) print(max_prob_AEDM[i,:10]) print() print(max_prob_classes_ASC[i,:10]) print(max_prob_ASC[i,:10]) print() print()
_____no_output_____
Apache-2.0
notebooks/experiments/Sound Demo 3 - Multi-label classifier pretrained on audioset.ipynb
fronovics/AI_playground
2018Q1Q10Q17Q12Q59Q512440Q-5889Q.wav2018Q1Q10Q13Q52Q8Q512440Q-5889Q.wav2018Q1Q10Q13Q29Q46Q512440Q-5889Q.wav2018Q1Q10Q17Q58Q49Q512348Q-5732Q.wav
for i, vid in enumerate(example_names): print(vid) print() example = pd.DataFrame(class_labels['display_name'][max_prob_classes_AEDM[i,:10]]) example.loc[:, 'top_10_AEDM_pred'] = pd.Series(max_prob_AEDM[i, :10], index=example.index) example.loc[:, 'index_ASC'] = pd.Series(max_prob_classes_ASC[i,:10], index=example.index) example.loc[:, 'display_name_ASC'] = pd.Series( class_labels['display_name'][max_prob_classes_ASC[i,:10]], index=example.index_ASC ) example.loc[:, 'top_10_ASC_pred'] = pd.Series(max_prob_ASC[i, :10], index=example.index) print(example) example.plot.bar(x='display_name', y=['top_10_AEDM_pred', 'top_10_ASC_pred'] , rot=90) plt.show() print() ex_lab = q_kong_res[vid][0] ex_pred = q_kong_res[vid][1] example = pd.DataFrame(class_labels[class_labels['display_name'].isin(ex_lab)]) example.loc[:, 'AEDM_pred'] = pd.Series( predictions_AEDM[i, example.index.tolist()], index=example.index ) example.loc[:, 'ASC_pred'] = pd.Series( predictions_ASC[i, example.index.tolist()], index=example.index ) example.loc[:, 'qkong_pred'] = pd.Series( ex_pred, index=example.index ) print(example) print() example.plot.bar(x='display_name', y=['AEDM_pred', 'ASC_pred', 'qkong_pred'], rot=90) plt.show()
_____no_output_____
Apache-2.0
notebooks/experiments/Sound Demo 3 - Multi-label classifier pretrained on audioset.ipynb
fronovics/AI_playground
Audio set data collection pipeline Download, cut and convert the audio of listed urls
colnames = '# YTID, start_seconds, end_seconds, positive_labels'.split(', ') print(colnames) bal_train_csv = pd.read_csv('balanced_train_segments.csv', sep=', ', header=2) #usecols=colnames) bal_train_csv.rename(columns={colnames[0]: colnames[0][-4:]}, inplace=True) print(bal_train_csv.columns.values) print(bal_train_csv.loc[:10, colnames[3]]) print(bal_train_csv.YTID.tolist()[:10]) bal_train_csv['pos_lab_list'] = bal_train_csv.positive_labels.apply(lambda x: x[1:-1].split(',')) colnames.extend('pos_lab_list') print('Pos_lab_list') print(bal_train_csv.loc[:10, 'pos_lab_list']) sample_rate = 16000 audioset_short_raw_dir = os.path.join(src_dir, 'data', 'audioset_short_raw') if not os.path.exists(audioset_short_raw_dir): os.makedirs(audioset_short_raw_dir) audioset_raw_dir = os.path.join(src_dir, 'data', 'audioset_raw') if not os.path.exists(audioset_raw_dir): os.makedirs(audioset_raw_dir) audioset_embed_path = os.path.join(src_dir, 'data', 'audioset_embed') if not os.path.exists(audioset_embed_path): os.makedirs(audioset_embed_path) audioset_video_titles = [] audioset_video_ids = bal_train_csv.YTID.tolist() audioset_video_ids_bin = bal_train_csv.YTID.astype('|S11').tolist() video_start_time = bal_train_csv.start_seconds.tolist() video_end_time = bal_train_csv.end_seconds.tolist() # Provide class dictionary for conversion from mid to either index [0] or display_name [1] class_dict = class_labels.set_index('mid').T.to_dict('list') print(class_dict['/m/09x0r']) print( list( map( lambda x: class_dict[x][0], bal_train_csv.loc[0, 'pos_lab_list'] ) ) ) bal_train_csv['pos_lab_ind_list'] = bal_train_csv.pos_lab_list.apply( lambda x: [class_dict[y][0] for y in x] ) class_vec = np.zeros([1, 527]) class_vec[:, bal_train_csv.loc[0, 'pos_lab_ind_list']] = 1 print(class_vec) print(bal_train_csv.dtypes) #print(bal_train_csv.loc[:10, colnames[4]]) video_ids_incl = [] video_ids_incl_bin = [] video_ids_excl = [] vggish_embeds = [] labels = [] print(video_ids_incl) video_ids_incl = video_ids_incl[:-1] print(video_ids_incl) video_ids_checked = video_ids_incl + video_ids_excl video_ids = [vid for vid in audioset_video_ids if vid not in video_ids_checked] for i, vid in enumerate(video_ids): print('{}.'.format(i)) # Download and store video under data/audioset_short_raw/ if (vid + '.wav') not in os.listdir(audioset_short_raw_dir): video_title = dl_yt.download_youtube_wav( video_id=vid, raw_dir=None, short_raw_dir=audioset_short_raw_dir, start_sec=video_start_time[i], duration=video_end_time[i]-video_start_time[i], sample_rate=sample_rate ) audioset_video_titles += [video_title] wav_available = video_title is not None else: print(vid, 'already downloaded, so we skip this download.') wav_available = True if wav_available: video_ids_incl += [vid] video_ids_incl_bin += [audioset_video_ids_bin[i]] vggish_embeds.extend( ASC.embed( os.path.join( audioset_short_raw_dir, vid ) + '.wav' ) ) class_vec = np.zeros([1, 527]) class_vec[:, bal_train_csv.loc[i, 'pos_lab_ind_list']] = 1 labels.extend(class_vec) else: video_ids_excl += [vid] print() jobs = [] for i, vid in enumerate(video_ids): # Download and store video under data/audioset_short_raw/ if (vid + '.wav') not in os.listdir(audioset_short_raw_dir): args = ( vid, None, audioset_short_raw_dir, video_start_time[i], video_end_time[i]-video_start_time[i], sample_rate ) process = multiprocessing.Process( target=dl_yt.download_youtube_wav, args=args ) jobs.append(process) # Start the processes (i.e. calculate the random number lists) for j in jobs: j.start() # Ensure all of the processes have finished for j in jobs: j.join() save_data( hdf5_path=os.path.join(audioset_embed_path, 'bal_train.h5'), x=np.array(vggish_embeds), video_id_list=np.array(video_ids_incl_bin), y=np.array(labels) ) x, y, vid_list = load_data(os.path.join(audioset_embed_path, 'bal_train.h5')) print(vid_list) x_train, y_train, video_id_train = load_data(os.path.join(audioset_embed_path, 'bal_train.h5')) print(video_id_train) x_train, y_train, video_id_train = load_data( os.path.join( 'data', 'audioset', 'packed_features', 'bal_train.h5' ) ) print(video_id_train[:100]) from retrieve_audioset import retrieve_embeddings retrieve_embeddings( data_path=os.path.join('data', 'audioset') )
Loading VGGish base model:
Apache-2.0
notebooks/experiments/Sound Demo 3 - Multi-label classifier pretrained on audioset.ipynb
fronovics/AI_playground
Gradient Descent Algorithm Implementation * Tutorial: https://towardsai.net/p/data-science/gradient-descent-algorithm-for-machine-learning-python-tutorial-ml-9ded189ec556 * Github: https://github.com/towardsai/tutorials/tree/master/gradient_descent_tutorial
#Download the dataset !wget https://raw.githubusercontent.com/towardsai/tutorials/master/gradient_descent_tutorial/data.txt import pandas as pd import numpy as np import matplotlib.pyplot as plt %matplotlib inline column_names = ['Population', 'Profit'] df = pd.read_csv('data.txt', header=None, names=column_names) df.head() df.insert(0, 'Theta0', 1) cols = df.shape[1] X = df.iloc[:,0:cols-1] Y = df.iloc[:,cols-1:cols] theta = np.matrix(np.array([0]*X.shape[1])) X = np.matrix(X.values) Y = np.matrix(Y.values) def calculate_RSS(X, y, theta): inner = np.power(((X * theta.T) - y), 2) return np.sum(inner) / (2 * len(X)) def gradientDescent(X, Y, theta, alpha, iters): t = np.matrix(np.zeros(theta.shape)) parameters = int(theta.ravel().shape[1]) cost = np.zeros(iters) for i in range(iters): error = (X * theta.T) - Y for j in range(parameters): term = np.multiply(error, X[:,j]) t[0,j] = theta[0,j] - ((alpha / len(X)) * np.sum(term)) theta = t cost[i] = calculate_RSS(X, Y, theta) return theta, cost df.plot(kind='scatter', x='Population', y='Profit', figsize=(12,8))
_____no_output_____
MIT
gradient_descent_tutorial/gradient_descent_tutorial.ipynb
fimoziq/tutorials
**Error before applying Gradient Descent**
error = calculate_RSS(X, Y, theta) error
_____no_output_____
MIT
gradient_descent_tutorial/gradient_descent_tutorial.ipynb
fimoziq/tutorials
**Apply Gradient Descent**
g, cost = gradientDescent(X, Y, theta, 0.01, 1000) g
_____no_output_____
MIT
gradient_descent_tutorial/gradient_descent_tutorial.ipynb
fimoziq/tutorials
**Error after Applying Gradient Descent**
error = calculate_RSS(X, Y, g) error x = np.linspace(df.Population.min(), df.Population.max(), 100) f = g[0, 0] + (g[0, 1] * x) fig, ax = plt.subplots(figsize=(12,8)) ax.plot(x, f, 'r', label='Prediction') ax.scatter(df.Population, df.Profit, label='Traning Data') ax.legend(loc=2) ax.set_xlabel('Population') ax.set_ylabel('Profit') ax.set_title('Predicted Profit vs. Population Size')
_____no_output_____
MIT
gradient_descent_tutorial/gradient_descent_tutorial.ipynb
fimoziq/tutorials
if you wish to set which cores to useaffinity_mask = {4, 5, 7} affinity_mask = {6, 7, 9} affinity_mask = {0, 1, 3} affinity_mask = {2, 3, 5} affinity_mask = {0, 2, 4, 6} pid = 0os.sched_setaffinity(pid, affinity_mask) print("CPU affinity mask is modified to %s for process id 0" % affinity_mask) DEFAULT 'CarRacing-v3' environment values continuos action = (steering_angle, throttle, brake)ACT = [[0, 0, 0], [-0.4, 0, 0], [0.4, 0, 0], [0, 0.6, 0], [0, 0, 0.8]] discrete actions: center_steering and no gas/brake, steer left, steer right, accel, brake --> actually a good choice, because car_dynamics softens the action's diff for gas and steeringREWARDS reward given each step: step taken, distance to centerline, normalized speed [0-1], normalized steer angle [0-1] reward given on new tile touched: %proportional of advance, %advance/steps_taken reward given at episode end: all tiles touched (track finished), patience or off-raod exceeded, out of bounds, max_steps exceeded reward for obstacles: obstacle hit (each step), obstacle collided (episode end)GYM_REWARD = [ -0.1, 0.0, 0.0, 0.0, 10.0, 0.0, 0, -0, -100, -0, -0, -0 ]STD_REWARD = [ -0.1, 0.0, 0.0, 0.0, 1.0, 0.0, 100, -20, -100, -50, -0, -0 ]CONT_REWARD =[-0.11, 0.1, 0.0, 0.0, 1.0, 0.0, 100, -20, -100, -50, -5, -100 ] see docu for RETURN computation details DEFAULT Environment Parameters (not related to RL Algorithm!)game_color = 1 State (frame) color option: 0 = RGB, 1 = Grayscale, 2 = Green onlyindicators = True show or not bottom Info Panelframes_per_state = 4 stacked (rolling history) Frames on each state [1-inf], latest observation always on first Frameskip_frames = 3 number of consecutive Frames to skip between history saves [0-4]discre = ACT Action discretization function, format [[steer0, throtle0, brake0], [steer1, ...], ...]. None for continuoususe_track = 1 number of times to use the same Track, [1-100]. More than 20 high risk of overfitting!!episodes_per_track = 1 number of evenly distributed starting points on each track [1-20]. Every time you call reset(), the env automatically starts at the next pointtr_complexity = 12 generated Track geometric Complexity, [6-20]tr_width = 45 relative Track Width, [30-50]patience = 2.0 max time in secs without Progress, [0.5-20]off_track = 1.0 max time in secs Driving on Grass, [0.0-5]f_reward = CONT_REWARD Reward Funtion coefficients, refer to Docu for detailsnum_obstacles = 5 Obstacle objects placed on track [0-10]end_on_contact = False Stop Episode on contact with obstacle, not recommended for starting-phase of trainingobst_location = 0 array pre-setting obstacle Location, in %track. Negative value means tracks's left-hand side. 0 for random locationoily_patch = False use all obstacles as Low-friction road (oily patch)verbose = 2
## Choose one agent, see Docu for description #agent='CarRacing-v0' #agent='CarRacing-v1' agent='CarRacing-v3' # Stop training when the model reaches the reward threshold callback_on_best = StopTrainingOnRewardThreshold(reward_threshold = 170, verbose=1) seed = 2000 ## SIMULATION param ## Changing these makes world models incompatible!! game_color = 2 indicators = True fpst = 4 skip = 3 actions = [[0, 0, 0], [-0.4, 0, 0], [0.4, 0, 0], [0, 0.6, 0], [0, 0, 0.8]] #this is ACT obst_loc = [6, -12, 25, -50, 75, -37, 62, -87, 95, -29] #track percentage, negative for obstacle to the left-hand side ## Loading drive_pretained model import pickle root = 'ppo_cnn_gym-mod_' file = root+'c{:d}_f{:d}_s{:d}_{}_a{:d}'.format(game_color,fpst,skip,indicators,len(actions)) model = PPO2.load(file) ## This model param use = 6 # number of times to use same track [1,100] ept = 10 # different starting points on same track [1,20] patience = 1.0 track_complexity = 12 #REWARD2 = [-0.05, 0.1, 0.0, 0.0, 2.0, 0.0, 100, -20, -100, -50, -5, -100] if agent=='CarRacing-v3': env = gym.make(agent, seed=seed, game_color=game_color, indicators=indicators, frames_per_state=fpst, skip_frames=skip, # discre=actions, #passing custom actions use_track = use, episodes_per_track = ept, tr_complexity = track_complexity, tr_width = 45, patience = patience, off_track = patience, end_on_contact = True, #learning to avoid obstacles the-hard-way oily_patch = False, num_obstacles = 5, #some obstacles obst_location = obst_loc, #passing fixed obstacle location # f_reward = REWARD2, #passing a custom reward function verbose = 2 ) else: env = gym.make(agent) env = DummyVecEnv([lambda: env]) ## Training on obstacles model.set_env(env) batch_size = 256 updates = 700 model.learn(total_timesteps = updates*batch_size, log_interval=1) #, callback=eval_callback) #Save last updated model file = root+'c{:d}_f{:d}_s{:d}_{}_a{:d}__u{:d}_e{:d}_p{}_bs{:d}'.format( game_color,fpst,skip,indicators,len(actions),use,ept,patience,batch_size) model.save(file, cloudpickle=True) param_list=model.get_parameter_list() env.close() ## This model param #2 use = 6 # number of times to use same track [1,100] ept = 10 # different starting points on same track [1,20] patience = 1.0 track_complexity = 12 #REWARD2 = [-0.05, 0.1, 0.0, 0.0, 2.0, 0.0, 100, -20, -100, -50, -5, -100] seed = 25000 if agent=='CarRacing-v3': env2 = gym.make(agent, seed=seed, game_color=game_color, indicators=indicators, frames_per_state=fpst, skip_frames=skip, # discre=actions, #passing custom actions use_track = use, episodes_per_track = ept, tr_complexity = track_complexity, tr_width = 45, patience = patience, off_track = patience, end_on_contact = False, # CHANGED oily_patch = False, num_obstacles = 5, #some obstacles obst_location = 0, #using random obstacle location # f_reward = REWARD2, #passing a custom reward function verbose = 3 ) else: env2 = gym.make(agent) env2 = DummyVecEnv([lambda: env2]) ## Training on obstacles model.set_env(env2) #batch_size = 384 updates = 1500 ## Separate evaluation env test_freq = 100 #policy updates until evaluation test_episodes_per_track = 5 #number of starting points on test_track eval_log = './evals/' env_test = gym.make(agent, seed=int(3.14*seed), game_color=game_color, indicators=indicators, frames_per_state=fpst, skip_frames=skip, # discre=actions, #passing custom actions use_track = 1, #change test track after 1 ept round episodes_per_track = test_episodes_per_track, tr_complexity = 12, #test on a medium complexity track tr_width = 45, patience = 2.0, off_track = 2.0, end_on_contact = False, oily_patch = False, num_obstacles = 5, obst_location = obst_loc) #passing fixed obstacle location env_test = DummyVecEnv([lambda: env_test]) eval_callback = EvalCallback(env_test, callback_on_new_best=callback_on_best, #None, n_eval_episodes=test_episodes_per_track*3, eval_freq=test_freq*batch_size, best_model_save_path=eval_log, log_path=eval_log, deterministic=True, render = False) model.learn(total_timesteps = updates*batch_size, log_interval=1, callback=eval_callback) #Save last updated model #file = root+'c{:d}_f{:d}_s{:d}_{}_a{:d}__u{:d}_e{:d}_p{}_bs{:d}'.format( # game_color,fpst,skip,indicators,len(actions),use,ept,patience,batch_size) model.save(file+'_II', cloudpickle=True) param_list=model.get_parameter_list() env2.close() env_test.close() ## Enjoy last trained policy if agent=='CarRacing-v3': #create an independent test environment, almost everything in std/random definition env3 = gym.make(agent, seed=None, game_color=game_color, indicators = True, frames_per_state=fpst, skip_frames=skip, # discre=actions, use_track = 2, episodes_per_track = 1, patience = 5.0, off_track = 3.0 ) else: env3 = gym.make(agent) env3 = DummyVecEnv([lambda: env3]) obs = env3.reset() print(obs.shape) done = False pasos = 0 _states=None while not done: # and pasos<1500: action, _states = model.predict(obs, deterministic=True) obs, reward, done, info = env3.step(action) env3.render() pasos+=1 env3.close() print() print(reward, done, pasos) #, info) ## Enjoy best eval_policy obs = env3.reset() print(obs.shape) ## Load bestmodel from eval #if not isinstance(model_test, PPO2): model_test = PPO2.load(eval_log+'best_model', env3) done = False pasos = 0 _states=None while not done: # and pasos<1500: action, _states = model_test.predict(obs, deterministic=True) obs, reward, done, info = env3.step(action) env3.render() pasos+=1 env3.close() print() print(reward, done, pasos) print(action, _states) model_test.save(file+'_evalbest', cloudpickle=True) env2.close() env3.close() env_test.close() print(action, _states) obs.shape
_____no_output_____
MIT
examples/Train_ppo_cnn+eval_contact-(pretrained).ipynb
pleslabay/CarRacing-mod
Connect to Chicago Data Portal API - Business Licenses Data
#Import dependencies import pandas as pd import requests import json # Google developer API key from config2 import API_chi_key # Build API URL # API calls = 8000 (based on zipcode and issued search results) # Filters: 'application type' Issued target_URL = f"https://data.cityofchicago.org/resource/xqx5-8hwx.json?$$app_token={API_chi_key}&$limit=8000&application_type=ISSUE&zip_code=" # Create list of zipcodes we are examining based # on three different businesses of interest zipcodes = ["60610","60607","60606","60661", "60614","60622","60647","60654"] # Create a request to get json data on business licences responses = [] for zipcode in zipcodes: license_response = requests.get(target_URL + zipcode).json() responses.append(license_response) len(responses) # Create sepearte variables for the 8 responses for zipcodes # Data loaded in nested gropus based on zipcodes, so # needed to make them separate zip_60610 = responses[0] zip_60607 = responses[1] zip_60606 = responses[2] zip_60661 = responses[3] zip_60614 = responses[4] zip_60622 = responses[5] zip_60647 = responses[6] zip_60654 = responses[7] # Read zipcode_responses_busi.json files into pd DF zip_60610_data = pd.DataFrame(zip_60610) # Create list of the json object variables # excluding zip_60610 bc that will start as a DF zip_data = [zip_60607, zip_60606, zip_60661, zip_60614, zip_60622, zip_60647, zip_60654] # Create a new DF to save compiled business data into all_7_zipcodes = zip_60610_data # Append json objects to all_7_zipcode DF # Print length of all_7_zipcode to check adding correctly for zipcodes_df in zip_data: all_7_zipcodes = all_7_zipcodes.append(zipcodes_df) len(all_7_zipcodes) # Get list of headers of all_7_zipcodes list(all_7_zipcodes) # Select certain columns to show core_info_busi_licences = all_7_zipcodes[['legal_name', 'doing_business_as_name', 'zip_code', 'license_description', 'business_activity', 'application_type', 'license_start_date', 'latitude', 'longitude']] # Get an idea of the number of null values in each column core_info_busi_licences.isna().sum() # Add sepearate column for just the start year # Will use later when selecting year businesess were created core_info_busi_licences['start_year'] = core_info_busi_licences['license_start_date'] # Edit 'start_year' to just include year from date information core_info_busi_licences['start_year'] = core_info_busi_licences['start_year'].str[0:4] # Explore what kinds of businesses are missing "latitude" and "longitude" # Also, the 'business_activity' licenses have null values (limited Business Licences?) core_info_busi_licences[core_info_busi_licences.isnull().any(axis=1)] # Get rid of NaN values in 'latitude' and 'license_start_date' core_info_busi_licences.dropna(subset=['latitude'], inplace=True) core_info_busi_licences.dropna(subset=['license_start_date'], inplace=True) core_info_busi_licences['application_type'].unique() # Cast 'start_year' column as an integer core_info_busi_licences['start_year'] = core_info_busi_licences['start_year'].astype('int64') # Confirm that NaN values for 'latitude' and 'license_start_date' # were dropped core_info_busi_licences.isna().sum() # Record number of businesses licenses pulled len(core_info_busi_licences)
_____no_output_____
CNRI-Python
API_Chi_Busi_Licences.ipynb
oimartin/Real_Tech_Influence
Connect to sqlite database
# Python SQL toolkit and Object Relational Mapper import sqlalchemy from sqlalchemy.ext.automap import automap_base from sqlalchemy import create_engine from config2 import mysql_password # Declare a Base using `automap_base()` Base = automap_base() # Create engine using the `demographics.sqlite` database file # engine = create_engine("sqlite://", echo=False) engine = create_engine(f'mysql://root:coolcat1015@localhost:3306/real_tech_db') # Copy 'core_info_busi_licenses' db to MySql database core_info_busi_licences.to_sql('business_licenses', con=engine, if_exists='replace', index_label=True)
_____no_output_____
CNRI-Python
API_Chi_Busi_Licences.ipynb
oimartin/Real_Tech_Influence
Tutorial 1: Bayes with a binary hidden state**Week 3, Day 1: Bayesian Decisions****By Neuromatch Academy**__Content creators:__ [insert your name here]__Content reviewers:__ Tutorial ObjectivesThis is the first in a series of two core tutorials on Bayesian statistics. In these tutorials, we will explore the fundemental concepts of the Bayesian approach from two perspectives. This tutorial will work through an example of Bayesian inference and decision making using a binary hidden state. The second main tutorial extends these concepts to a continuous hidden state. In the next days, each of these basic ideas will be extended--first through time as we consider what happens when we infere a hidden state using multiple observations and when the hidden state changes across time. In the third day, we will introduce the notion of how to use inference and decisions to select actions for optimal control. For this tutorial, you will be introduced to our binary state fishing problem!This notebook will introduce the fundamental building blocks for Bayesian statistics: 1. How do we use probability distributions to represent hidden states?2. How does marginalization work and how can we use it?3. How do we combine new information with our prior knowledge?4. How do we combine the possible loss (or gain) for making a decision with our probabilitic knowledge?
#@title Video 1: Introduction to Bayesian Statistics from IPython.display import YouTubeVideo video = YouTubeVideo(id='JiEIn9QsrFg', width=854, height=480, fs=1) print("Video available at https://youtube.com/watch?v=" + video.id) video
_____no_output_____
CC-BY-4.0
tutorials/W3D1_BayesianDecisions/W3D1_Tutorial1.ipynb
bgalbraith/course-content
Setup Please execute the cells below to initialize the notebook environment.
import numpy as np import matplotlib.pyplot as plt from matplotlib import patches from matplotlib import transforms from matplotlib import gridspec from scipy.optimize import fsolve from collections import namedtuple #@title Figure Settings import ipywidgets as widgets # interactive display from ipywidgets import GridspecLayout from IPython.display import clear_output %config InlineBackend.figure_format = 'retina' plt.style.use("https://raw.githubusercontent.com/NeuromatchAcademy/course-content/master/nma.mplstyle") import warnings warnings.filterwarnings("ignore") # @title Plotting Functions def plot_joint_probs(P, ): assert np.all(P >= 0), "probabilities should be >= 0" # normalize if not P = P / np.sum(P) marginal_y = np.sum(P,axis=1) marginal_x = np.sum(P,axis=0) # definitions for the axes left, width = 0.1, 0.65 bottom, height = 0.1, 0.65 spacing = 0.005 # start with a square Figure fig = plt.figure(figsize=(5, 5)) joint_prob = [left, bottom, width, height] rect_histx = [left, bottom + height + spacing, width, 0.2] rect_histy = [left + width + spacing, bottom, 0.2, height] rect_x_cmap = plt.cm.Blues rect_y_cmap = plt.cm.Reds # Show joint probs and marginals ax = fig.add_axes(joint_prob) ax_x = fig.add_axes(rect_histx, sharex=ax) ax_y = fig.add_axes(rect_histy, sharey=ax) # Show joint probs and marginals ax.matshow(P,vmin=0., vmax=1., cmap='Greys') ax_x.bar(0, marginal_x[0], facecolor=rect_x_cmap(marginal_x[0])) ax_x.bar(1, marginal_x[1], facecolor=rect_x_cmap(marginal_x[1])) ax_y.barh(0, marginal_y[0], facecolor=rect_y_cmap(marginal_y[0])) ax_y.barh(1, marginal_y[1], facecolor=rect_y_cmap(marginal_y[1])) # set limits ax_x.set_ylim([0,1]) ax_y.set_xlim([0,1]) # show values ind = np.arange(2) x,y = np.meshgrid(ind,ind) for i,j in zip(x.flatten(), y.flatten()): c = f"{P[i,j]:.2f}" ax.text(j,i, c, va='center', ha='center', color='black') for i in ind: v = marginal_x[i] c = f"{v:.2f}" ax_x.text(i, v +0.1, c, va='center', ha='center', color='black') v = marginal_y[i] c = f"{v:.2f}" ax_y.text(v+0.2, i, c, va='center', ha='center', color='black') # set up labels ax.xaxis.tick_bottom() ax.yaxis.tick_left() ax.set_xticks([0,1]) ax.set_yticks([0,1]) ax.set_xticklabels(['Silver','Gold']) ax.set_yticklabels(['Small', 'Large']) ax.set_xlabel('color') ax.set_ylabel('size') ax_x.axis('off') ax_y.axis('off') return fig # test # P = np.random.rand(2,2) # P = np.asarray([[0.9, 0.8], [0.4, 0.1]]) # P = P / np.sum(P) # fig = plot_joint_probs(P) # plt.show(fig) # plt.close(fig) # fig = plot_prior_likelihood(0.5, 0.3) # plt.show(fig) # plt.close(fig) def plot_prior_likelihood_posterior(prior, likelihood, posterior): # definitions for the axes left, width = 0.05, 0.3 bottom, height = 0.05, 0.9 padding = 0.1 small_width = 0.1 left_space = left + small_width + padding added_space = padding + width fig = plt.figure(figsize=(10, 4)) rect_prior = [left, bottom, small_width, height] rect_likelihood = [left_space , bottom , width, height] rect_posterior = [left_space + added_space, bottom , width, height] ax_prior = fig.add_axes(rect_prior) ax_likelihood = fig.add_axes(rect_likelihood, sharey=ax_prior) ax_posterior = fig.add_axes(rect_posterior, sharey = ax_prior) rect_colormap = plt.cm.Blues # Show posterior probs and marginals ax_prior.barh(0, prior[0], facecolor = rect_colormap(prior[0, 0])) ax_prior.barh(1, prior[1], facecolor = rect_colormap(prior[1, 0])) ax_likelihood.matshow(likelihood, vmin=0., vmax=1., cmap='Reds') ax_posterior.matshow(posterior, vmin=0., vmax=1., cmap='Greens') # Probabilities plot details ax_prior.set(xlim = [1, 0], yticks = [0, 1], yticklabels = ['left', 'right'], ylabel = 'state (s)', title = "Prior p(s)") ax_prior.axis('off') # Likelihood plot details ax_likelihood.set(xticks = [0, 1], xticklabels = ['fish', 'no fish'], yticks = [0, 1], yticklabels = ['left', 'right'], ylabel = 'state (s)', xlabel = 'measurement (m)', title = 'Likelihood p(m (right) | s)') ax_likelihood.xaxis.set_ticks_position('bottom') ax_likelihood.spines['left'].set_visible(False) ax_likelihood.spines['bottom'].set_visible(False) # Posterior plot details ax_posterior.set(xticks = [0, 1], xticklabels = ['fish', 'no fish'], yticks = [0, 1], yticklabels = ['left', 'right'], ylabel = 'state (s)', xlabel = 'measurement (m)', title = 'Posterior p(s | m)') ax_posterior.xaxis.set_ticks_position('bottom') ax_posterior.spines['left'].set_visible(False) ax_posterior.spines['bottom'].set_visible(False) # show values ind = np.arange(2) x,y = np.meshgrid(ind,ind) for i,j in zip(x.flatten(), y.flatten()): c = f"{posterior[i,j]:.2f}" ax_posterior.text(j,i, c, va='center', ha='center', color='black') for i,j in zip(x.flatten(), y.flatten()): c = f"{likelihood[i,j]:.2f}" ax_likelihood.text(j,i, c, va='center', ha='center', color='black') for i in ind: v = prior[i, 0] c = f"{v:.2f}" ax_prior.text(v+0.2, i, c, va='center', ha='center', color='black') def plot_prior_likelihood(ps, p_a_s1, p_a_s0, measurement): likelihood = np.asarray([[p_a_s1, 1-p_a_s1],[p_a_s0, 1-p_a_s0]]) assert 0.0 <= ps <= 1.0 prior = np.asarray([ps, 1 - ps]) if measurement: posterior = likelihood[:, 0] * prior else: posterior = (likelihood[:, 1] * prior).reshape(-1) posterior /= np.sum(posterior) # definitions for the axes left, width = 0.05, 0.3 bottom, height = 0.05, 0.9 padding = 0.1 small_width = 0.22 left_space = left + small_width + padding small_padding = 0.05 fig = plt.figure(figsize=(10, 4)) rect_prior = [left, bottom, small_width, height] rect_likelihood = [left_space , bottom , width, height] rect_posterior = [left_space + width + small_padding, bottom , small_width, height] ax_prior = fig.add_axes(rect_prior) ax_likelihood = fig.add_axes(rect_likelihood, sharey=ax_prior) ax_posterior = fig.add_axes(rect_posterior, sharey=ax_prior) prior_colormap = plt.cm.Blues posterior_colormap = plt.cm.Greens # Show posterior probs and marginals ax_prior.barh(0, prior[0], facecolor = prior_colormap(prior[0])) ax_prior.barh(1, prior[1], facecolor = prior_colormap(prior[1])) ax_likelihood.matshow(likelihood, vmin=0., vmax=1., cmap='Reds') # ax_posterior.matshow(posterior, vmin=0., vmax=1., cmap='') ax_posterior.barh(0, posterior[0], facecolor = posterior_colormap(posterior[0])) ax_posterior.barh(1, posterior[1], facecolor = posterior_colormap(posterior[1])) # Probabilities plot details ax_prior.set(xlim = [1, 0], yticks = [0, 1], yticklabels = ['left', 'right'], ylabel = 'state (s)', title = "Prior p(s)") ax_prior.axis('off') # Likelihood plot details ax_likelihood.set(xticks = [0, 1], xticklabels = ['fish', 'no fish'], yticks = [0, 1], yticklabels = ['left', 'right'], ylabel = 'state (s)', xlabel = 'measurement (m)', title = 'Likelihood p(m | s)') ax_likelihood.xaxis.set_ticks_position('bottom') ax_likelihood.spines['left'].set_visible(False) ax_likelihood.spines['bottom'].set_visible(False) # Posterior plot details ax_posterior.set(xlim = [0, 1], yticks = [0, 1], yticklabels = ['left', 'right'], ylabel = 'state (s)', title = "Posterior p(s | m)") ax_posterior.axis('off') # ax_posterior.set(xticks = [0, 1], xticklabels = ['fish', 'no fish'], # yticks = [0, 1], yticklabels = ['left', 'right'], # ylabel = 'state (s)', xlabel = 'measurement (m)', # title = 'Posterior p(s | m)') # ax_posterior.xaxis.set_ticks_position('bottom') # ax_posterior.spines['left'].set_visible(False) # ax_posterior.spines['bottom'].set_visible(False) # show values ind = np.arange(2) x,y = np.meshgrid(ind,ind) # for i,j in zip(x.flatten(), y.flatten()): # c = f"{posterior[i,j]:.2f}" # ax_posterior.text(j,i, c, va='center', ha='center', color='black') for i in ind: v = posterior[i] c = f"{v:.2f}" ax_posterior.text(v+0.2, i, c, va='center', ha='center', color='black') for i,j in zip(x.flatten(), y.flatten()): c = f"{likelihood[i,j]:.2f}" ax_likelihood.text(j,i, c, va='center', ha='center', color='black') for i in ind: v = prior[i] c = f"{v:.2f}" ax_prior.text(v+0.2, i, c, va='center', ha='center', color='black') return fig # fig = plot_prior_likelihood(0.5, 0.3) # plt.show(fig) # plt.close(fig) from matplotlib import colors def plot_utility(ps): prior = np.asarray([ps, 1 - ps]) utility = np.array([[2, -3], [-2, 1]]) expected = prior @ utility # definitions for the axes left, width = 0.05, 0.16 bottom, height = 0.05, 0.9 padding = 0.04 small_width = 0.1 left_space = left + small_width + padding added_space = padding + width fig = plt.figure(figsize=(17, 3)) rect_prior = [left, bottom, small_width, height] rect_utility = [left + added_space , bottom , width, height] rect_expected = [left + 2* added_space, bottom , width, height] ax_prior = fig.add_axes(rect_prior) ax_utility = fig.add_axes(rect_utility, sharey=ax_prior) ax_expected = fig.add_axes(rect_expected) rect_colormap = plt.cm.Blues # Data of plots ax_prior.barh(0, prior[0], facecolor = rect_colormap(prior[0])) ax_prior.barh(1, prior[1], facecolor = rect_colormap(prior[1])) ax_utility.matshow(utility, cmap='cool') norm = colors.Normalize(vmin=-3, vmax=3) ax_expected.bar(0, expected[0], facecolor = rect_colormap(norm(expected[0]))) ax_expected.bar(1, expected[1], facecolor = rect_colormap(norm(expected[1]))) # Probabilities plot details ax_prior.set(xlim = [1, 0], yticks = [0, 1], yticklabels = ['left', 'right'], ylabel = 'state (s)', title = "Probability of state") ax_prior.axis('off') # Utility plot details ax_utility.set(xticks = [0, 1], xticklabels = ['left', 'right'], yticks = [0, 1], yticklabels = ['left', 'right'], ylabel = 'state (s)', xlabel = 'action (a)', title = 'Utility') ax_utility.xaxis.set_ticks_position('bottom') ax_utility.spines['left'].set_visible(False) ax_utility.spines['bottom'].set_visible(False) # Expected utility plot details ax_expected.set(title = 'Expected utility', ylim = [-3, 3], xticks = [0, 1], xticklabels = ['left', 'right'], xlabel = 'action (a)', yticks = []) ax_expected.xaxis.set_ticks_position('bottom') ax_expected.spines['left'].set_visible(False) ax_expected.spines['bottom'].set_visible(False) # show values ind = np.arange(2) x,y = np.meshgrid(ind,ind) for i,j in zip(x.flatten(), y.flatten()): c = f"{utility[i,j]:.2f}" ax_utility.text(j,i, c, va='center', ha='center', color='black') for i in ind: v = prior[i] c = f"{v:.2f}" ax_prior.text(v+0.2, i, c, va='center', ha='center', color='black') for i in ind: v = expected[i] c = f"{v:.2f}" ax_expected.text(i, 2.5, c, va='center', ha='center', color='black') return fig def plot_prior_likelihood_utility(ps, p_a_s1, p_a_s0,measurement): assert 0.0 <= ps <= 1.0 assert 0.0 <= p_a_s1 <= 1.0 assert 0.0 <= p_a_s0 <= 1.0 prior = np.asarray([ps, 1 - ps]) likelihood = np.asarray([[p_a_s1, 1-p_a_s1],[p_a_s0, 1-p_a_s0]]) utility = np.array([[2.0, -3.0], [-2.0, 1.0]]) # expected = np.zeros_like(utility) if measurement: posterior = likelihood[:, 0] * prior else: posterior = (likelihood[:, 1] * prior).reshape(-1) posterior /= np.sum(posterior) # expected[:, 0] = utility[:, 0] * posterior # expected[:, 1] = utility[:, 1] * posterior expected = posterior @ utility # definitions for the axes left, width = 0.05, 0.15 bottom, height = 0.05, 0.9 padding = 0.05 small_width = 0.1 large_padding = 0.07 left_space = left + small_width + large_padding fig = plt.figure(figsize=(17, 4)) rect_prior = [left, bottom+0.05, small_width, height-0.1] rect_likelihood = [left_space, bottom , width, height] rect_posterior = [left_space + padding + width - 0.02, bottom+0.05 , small_width, height-0.1] rect_utility = [left_space + padding + width + padding + small_width, bottom , width, height] rect_expected = [left_space + padding + width + padding + small_width + padding + width, bottom+0.05 , width, height-0.1] ax_likelihood = fig.add_axes(rect_likelihood) ax_prior = fig.add_axes(rect_prior, sharey=ax_likelihood) ax_posterior = fig.add_axes(rect_posterior, sharey=ax_likelihood) ax_utility = fig.add_axes(rect_utility, sharey=ax_posterior) ax_expected = fig.add_axes(rect_expected) prior_colormap = plt.cm.Blues posterior_colormap = plt.cm.Greens expected_colormap = plt.cm.Wistia # Show posterior probs and marginals ax_prior.barh(0, prior[0], facecolor = prior_colormap(prior[0])) ax_prior.barh(1, prior[1], facecolor = prior_colormap(prior[1])) ax_likelihood.matshow(likelihood, vmin=0., vmax=1., cmap='Reds') ax_posterior.barh(0, posterior[0], facecolor = posterior_colormap(posterior[0])) ax_posterior.barh(1, posterior[1], facecolor = posterior_colormap(posterior[1])) ax_utility.matshow(utility, vmin=0., vmax=1., cmap='cool') # ax_expected.matshow(expected, vmin=0., vmax=1., cmap='Wistia') ax_expected.bar(0, expected[0], facecolor = expected_colormap(expected[0])) ax_expected.bar(1, expected[1], facecolor = expected_colormap(expected[1])) # Probabilities plot details ax_prior.set(xlim = [1, 0], yticks = [0, 1], yticklabels = ['left', 'right'], ylabel = 'state (s)', title = "Prior p(s)") ax_prior.axis('off') # Likelihood plot details ax_likelihood.set(xticks = [0, 1], xticklabels = ['fish', 'no fish'], yticks = [0, 1], yticklabels = ['left', 'right'], ylabel = 'state (s)', xlabel = 'measurement (m)', title = 'Likelihood p(m | s)') ax_likelihood.xaxis.set_ticks_position('bottom') ax_likelihood.spines['left'].set_visible(False) ax_likelihood.spines['bottom'].set_visible(False) # Posterior plot details ax_posterior.set(xlim = [0, 1], yticks = [0, 1], yticklabels = ['left', 'right'], ylabel = 'state (s)', title = "Posterior p(s | m)") ax_posterior.axis('off') # Utility plot details ax_utility.set(xticks = [0, 1], xticklabels = ['left', 'right'], xlabel = 'action (a)', title = 'Utility') ax_utility.xaxis.set_ticks_position('bottom') ax_utility.spines['left'].set_visible(False) ax_utility.spines['bottom'].set_visible(False) # Expected Utility plot details ax_expected.set(ylim = [-2, 2], xticks = [0, 1], xticklabels = ['left', 'right'], xlabel = 'action (a)', title = 'Expected utility', yticks=[]) # ax_expected.axis('off') ax_expected.spines['left'].set_visible(False) # ax_expected.set(xticks = [0, 1], xticklabels = ['left', 'right'], # xlabel = 'action (a)', # title = 'Expected utility') # ax_expected.xaxis.set_ticks_position('bottom') # ax_expected.spines['left'].set_visible(False) # ax_expected.spines['bottom'].set_visible(False) # show values ind = np.arange(2) x,y = np.meshgrid(ind,ind) for i in ind: v = posterior[i] c = f"{v:.2f}" ax_posterior.text(v+0.2, i, c, va='center', ha='center', color='black') for i,j in zip(x.flatten(), y.flatten()): c = f"{likelihood[i,j]:.2f}" ax_likelihood.text(j,i, c, va='center', ha='center', color='black') for i,j in zip(x.flatten(), y.flatten()): c = f"{utility[i,j]:.2f}" ax_utility.text(j,i, c, va='center', ha='center', color='black') # for i,j in zip(x.flatten(), y.flatten()): # c = f"{expected[i,j]:.2f}" # ax_expected.text(j,i, c, va='center', ha='center', color='black') for i in ind: v = prior[i] c = f"{v:.2f}" ax_prior.text(v+0.2, i, c, va='center', ha='center', color='black') for i in ind: v = expected[i] c = f"{v:.2f}" ax_expected.text(i, v, c, va='center', ha='center', color='black') # # show values # ind = np.arange(2) # x,y = np.meshgrid(ind,ind) # for i,j in zip(x.flatten(), y.flatten()): # c = f"{P[i,j]:.2f}" # ax.text(j,i, c, va='center', ha='center', color='white') # for i in ind: # v = marginal_x[i] # c = f"{v:.2f}" # ax_x.text(i, v +0.2, c, va='center', ha='center', color='black') # v = marginal_y[i] # c = f"{v:.2f}" # ax_y.text(v+0.2, i, c, va='center', ha='center', color='black') return fig # @title Helper Functions def compute_marginal(px, py, cor): # calculate 2x2 joint probabilities given marginals p(x=1), p(y=1) and correlation p11 = px*py + cor*np.sqrt(px*py*(1-px)*(1-py)) p01 = px - p11 p10 = py - p11 p00 = 1.0 - p11 - p01 - p10 return np.asarray([[p00, p01], [p10, p11]]) # test # print(compute_marginal(0.4, 0.6, -0.8)) def compute_cor_range(px,py): # Calculate the allowed range of correlation values given marginals p(x=1) and p(y=1) def p11(corr): return px*py + corr*np.sqrt(px*py*(1-px)*(1-py)) def p01(corr): return px - p11(corr) def p10(corr): return py - p11(corr) def p00(corr): return 1.0 - p11(corr) - p01(corr) - p10(corr) Cmax = min(fsolve(p01, 0.0), fsolve(p10, 0.0)) Cmin = max(fsolve(p11, 0.0), fsolve(p00, 0.0)) return Cmin, Cmax
_____no_output_____
CC-BY-4.0
tutorials/W3D1_BayesianDecisions/W3D1_Tutorial1.ipynb
bgalbraith/course-content
--- Section 1: Gone Fishin'
#@title Video 2: Gone Fishin' from IPython.display import YouTubeVideo video = YouTubeVideo(id='McALsTzb494', width=854, height=480, fs=1) print("Video available at https://youtube.com/watch?v=" + video.id) video
_____no_output_____
CC-BY-4.0
tutorials/W3D1_BayesianDecisions/W3D1_Tutorial1.ipynb
bgalbraith/course-content
You were just introduced to the **binary hidden state problem** we are going to explore. You need to decide which side to fish on. We know fish like to school together. On different days the school of fish is either on the left or right side, but we don’t know what the case is today. We will represent our knowledge probabilistically, asking how to make a decision (where to decide the fish are or where to fish) and what to expect in terms of gains or losses. In the next two sections we will consider just the probability of where the fish might be and what you gain or lose by choosing where to fish.Remember, you can either think of your self as a scientist conducting an experiment or as a brain trying to make a decision. The Bayesian approach is the same! --- Section 2: Deciding where to fish
#@title Video 3: Utility from IPython.display import YouTubeVideo video = YouTubeVideo(id='xvIVZrqF_5s', width=854, height=480, fs=1) print("Video available at https://youtube.com/watch?v=" + video.id) video
_____no_output_____
CC-BY-4.0
tutorials/W3D1_BayesianDecisions/W3D1_Tutorial1.ipynb
bgalbraith/course-content
You know the probability that the school of fish is on the left side of the dock today, $P(s = left)$. You also know the probability that it is on the right, $P(s = right)$, because these two probabilities must add up to 1. You need to decide where to fish. It may seem obvious - you could just fish on the side where the probability of the fish being is higher! Unfortunately, decisions and actions are always a little more complicated. Deciding to fish may be influenced by more than just the probability of the school of fish being there as we saw by the potential issues of submarines and sunburn. We quantify these factors numerically using **utility**, which describes the consequences of your actions: how much value you gain (or if negative, lose) given the state of the world ($s$) and the action you take ($a$). In our example, our utility can be summarized as:| Utility: U(s,a) | a = left | a = right || ----------------- |----------|----------|| s = Left | 2 | -3 || s = right | -2 | 1 |To use utility to choose an action, we calculate the **expected utility** of that action by weighing these utilities with the probability of that state occuring. This allows us to choose actions by taking probabilities of events into account: we don't care if the outcome of an action-state pair is a loss if the probability of that state is very low. We can formalize this as:$$\text{Expected utility of action a} = \sum_{s}U(s,a)P(s) $$In other words, the expected utility of an action a is the sum over possible states of the utility of that action and state times the probability of that state. Interactive Demo 2: Exploring the decisionLet's start to get a sense of how all this works. Take a look at the interactive demo below. You can change the probability that the school of fish is on the left side ($p(s = left)$ using the slider. You will see the utility matrix and the corresponding expected utility of each action.First, make sure you understand how the expected utility of each action is being computed from the probabilities and the utility values. In the initial state: the probability of the fish being on the left is 0.9 and on the right is 0.1. The expected utility of the action of fishing on the left is then $U(s = left,a = left)p(s = left) + U(s = right,a = left)p(s = right) = 2(0.9) + -2(0.1) = 1.6$.For each of these scenarios, think and discuss first. Then use the demo to try out each and see if your action would have been correct (that is, if the expected value of that action is the highest).1. You just arrived at the dock for the first time and have no sense of where the fish might be. So you guess that the probability of the school being on the left side is 0.5 (so the probability on the right side is also 0.5). Which side would you choose to fish on given our utility values?2. You think that the probability of the school being on the left side is very low (0.1) and correspondingly high on the right side (0.9). Which side would you choose to fish on given our utility values?3. What would you choose if the probability of the school being on the left side is slightly lower than on the right side (0. 4 vs 0.6)?
# @markdown Execute this cell to use the widget ps_widget = widgets.FloatSlider(0.9, description='p(s = left)', min=0.0, max=1.0, step=0.01) @widgets.interact( ps = ps_widget, ) def make_utility_plot(ps): fig = plot_utility(ps) plt.show(fig) plt.close(fig) return None # to_remove explanation # 1) With equal probabilities, the expected utility is higher on the left side, # since that is the side without submarines, so you would choose to fish there. # 2) If the probability that the fish is on the right side is high, you would # choose to fish there. The high probability of fish being on the right far outweights # the slightly higher utilities from fishing on the left (as you are unlikely to gain these) # 3) If the probability that the fish is on the right side is just slightly higher #. than on the left, you would choose the left side as the expected utility is still #. higher on the left. Note that in this situation, you are not simply choosing the #. side with the higher probability - the utility really matters here for the decision
_____no_output_____
CC-BY-4.0
tutorials/W3D1_BayesianDecisions/W3D1_Tutorial1.ipynb
bgalbraith/course-content
In this section, you have seen that both the utility of various state and action pairs and our knowledge of the probability of each state affects your decision. Importantly, we want our knowledge of the probability of each state to be as accurate as possible! So how do we know these probabilities? We may have prior knowledge from years of fishing at the same dock. Over those years, we may have learned that the fish are more likely to be on the left side for example. We want to make sure this knowledge is as accurate as possible though. To do this, we want to collect more data, or take some more measurements! For the next few sections, we will focus on making our knowledge of the probability as accurate as possible, before coming back to using utility to make decisions. --- Section 3: Likelihood of the fish being on either side
#@title Video 4: Likelihood from IPython.display import YouTubeVideo video = YouTubeVideo(id='l4m0JzMWGio', width=854, height=480, fs=1) print("Video available at https://youtube.com/watch?v=" + video.id) video
_____no_output_____
CC-BY-4.0
tutorials/W3D1_BayesianDecisions/W3D1_Tutorial1.ipynb
bgalbraith/course-content
First, we'll think about what it means to take a measurement (also often called an observation or just data) and what it tells you about what the hidden state may be. Specifically, we'll be looking at the **likelihood**, which is the probability of your measurement ($m$) given the hidden state ($s$): $P(m | s)$. Remember that in this case, the hidden state is which side of the dock the school of fish is on.We will watch someone fish (for let's say 10 minutes) and our measurement is whether they catch a fish or not. We know something about what catching a fish means for the likelihood of the fish being on one side or the other. Think! 3: Guessing the location of the fishLet's say we go to different dock from the one in the video. Here, there are different probabilities of catching fish given the state of the world. In this case, if they fish on the side of the dock where the fish are, they have a 70% chance of catching a fish. Otherwise, they catch a fish with only 20% probability. The fisherperson is fishing on the left side. 1) Figure out each of the following:- probability of catching a fish given that the school of fish is on the left side, $P(m = catch\text{ } fish | s = left )$- probability of not catching a fish given that the school of fish is on the left side, $P(m = no \text{ } fish | s = left)$- probability of catching a fish given that the school of fish is on the right side, $P(m = catch \text{ } fish | s = right)$- probability of not catching a fish given that the school of fish is on the right side, $P(m = no \text{ } fish | s = right)$2) If the fisherperson catches a fish, which side would you guess the school is on? Why?3) If the fisherperson does not catch a fish, which side would you guess the school is on? Why?
#to_remove explanation # 1) The fisherperson is on the left side so: # - P(m = catch fish | s = left) = 0.7 because they have a 70% chance of catching # a fish when on the same side as the school # - P(m = no fish | s = left) = 0.3 because the probability of catching a fish # and not catching a fish for a given state must add up to 1 as these # are the only options: 1 - 0.7 = 0.3 # - P(m = catch fish | s = right) = 0.2 # - P(m = no fish | s = right) = 0.8 # 2) If the fisherperson catches a fish, you would guess the school of fish is on the # left side. This is because the probability of catching a fish given that the # school is on the left side (0.7) is higher than the probability given that # the school is on the right side (0.2). # 3) If the fisherperson does not catch a fish, you would guess the school of fish is on the # right side. This is because the probability of not catching a fish given that the # school is on the right side (0.8) is higher than the probability given that # the school is on the right side (0.3).
_____no_output_____
CC-BY-4.0
tutorials/W3D1_BayesianDecisions/W3D1_Tutorial1.ipynb
bgalbraith/course-content
In the prior exercise, you guessed where the school of fish was based on the measurement you took (watching someone fish). You did this by choosing the state (side of school) that maximized the probability of the measurement. In other words, you estimated the state by maximizing the likelihood (had the highest probability of measurement given state $P(m|s$)). This is called maximum likelihood estimation (MLE) and you've encountered it before during this course, in W1D3!What if you had been going to this river for years and you knew that the fish were almost always on the left side? This would probably affect how you make your estimate - you would rely less on the single new measurement and more on your prior knowledge. This is the idea behind Bayesian inference, as we will see later in this tutorial! --- Section 4: Correlation and marginalization
#@title Video 5: Correlation and marginalization from IPython.display import YouTubeVideo video = YouTubeVideo(id='vsDjtWi-BVo', width=854, height=480, fs=1) print("Video available at https://youtube.com/watch?v=" + video.id) video
_____no_output_____
CC-BY-4.0
tutorials/W3D1_BayesianDecisions/W3D1_Tutorial1.ipynb
bgalbraith/course-content
In this section, we are going to take a step back for a bit and think more generally about the amount of information shared between two random variables. We want to know how much information you gain when you observe one variable (take a measurement) if you know something about another. We will see that the fundamental concept is the same if we think about two attributes, for example the size and color of the fish, or the prior information and the likelihood. Math Exercise 4: Computing marginal likelihoodsTo understand the information between two variables, let's first consider the size and color of the fish.| P(X, Y) | Y = silver | Y = gold || ----------------- |----------|----------|| X = small | 0.4 | 0.2 || X = large | 0.1 | 0.3 |The table above shows us the **joint probabilities**: the probability of both specific attributes occuring together. For example, the probability of a fish being small and silver ($P(X = small, Y = silver$) is 0.4.We want to know what the probability of a fish being small regardless of color. Since the fish are either silver or gold, this would be the probability of a fish being small and silver plus the probability of a fish being small and gold. This is an example of marginalizing, or averaging out, the variable we are not interested in across the rows or columns.. In math speak: $P(X = small) = \sum_y{P(X = small, Y)}$. This gives us a **marginal probability**, a probability of a variable outcome (in this case size), regardless of the other variables (in this case color).Please complete the following math problems to further practice thinking through probabilities:1. Calculate the probability of a fish being silver.2. Calculate the probability of a fish being small, large, silver, or gold.3. Calculate the probability of a fish being small OR gold. (Hint: $P(A\ \textrm{or}\ B) = P(A) + P(B) - P(A\ \textrm{and}\ B)$)
# to_remove explanation # 1) The probability of a fish being silver is the joint probability of it being #. small and silver plus the joint probability of it being large and silver: # #. P(Y = silver) = P(X = small, Y = silver) + P(X = large, Y = silver) #. = 0.4 + 0.1 #. = 0.5 # 2) This is all the possibilities as in this scenario, our fish can only be small #. or large, silver or gold. So the probability is 1 - the fish has to be at #. least one of these. #. 3) First we compute the marginal probabilities #. P(X = small) = P(X = small, Y = silver) + P(X = small, Y = gold) = 0.6 #. P(Y = gold) = P(X = small, Y = gold) + P(X = large, Y = gold) = 0.5 #. We already know the joint probability: P(X = small, Y = gold) = 0.2 #. We can now use the given formula: #. P( X = small or Y = gold) = P(X = small) + P(Y = gold) - P(X = small, Y = gold) #. = 0.6 + 0.5 - 0.2 #. = 0.9
_____no_output_____
CC-BY-4.0
tutorials/W3D1_BayesianDecisions/W3D1_Tutorial1.ipynb
bgalbraith/course-content
Think! 4: Covarying probability distributionsThe relationship between the marginal probabilities and the joint probabilities is determined by the correlation between the two random variables - a normalized measure of how much the variables covary. We can also think of this as gaining some information about one of the variables when we observe a measurement from the other. We will think about this more formally in Tutorial 2. Here, we want to think about how the correlation between size and color of these fish changes how much information we gain about one attribute based on the other. See Bonus Section 1 for the formula for correlation.Use the widget below and answer the following questions:1. When the correlation is zero, $\rho = 0$, what does the distribution of size tell you about color?2. Set $\rho$ to something small. As you change the probability of golden fish, what happens to the ratio of size probabilities? Set $\rho$ larger (can be negative). Can you explain the pattern of changes in the probabilities of size as you change the probability of golden fish?3. Set the probability of golden fish and of large fish to around 65%. As the correlation goes towards 1, how often will you see silver large fish?4. What is increasing the (absolute) correlation telling you about how likely you are to see one of the properties if you see a fish with the other?
# @markdown Execute this cell to enable the widget style = {'description_width': 'initial'} gs = GridspecLayout(2,2) cor_widget = widgets.FloatSlider(0.0, description='ρ', min=-1, max=1, step=0.01) px_widget = widgets.FloatSlider(0.5, description='p(color=golden)', min=0.01, max=0.99, step=0.01, style=style) py_widget = widgets.FloatSlider(0.5, description='p(size=large)', min=0.01, max=0.99, step=0.01, style=style) gs[0,0] = cor_widget gs[0,1] = px_widget gs[1,0] = py_widget @widgets.interact( px=px_widget, py=py_widget, cor=cor_widget, ) def make_corr_plot(px, py, cor): Cmin, Cmax = compute_cor_range(px, py) #allow correlation values cor_widget.min, cor_widget.max = Cmin+0.01, Cmax-0.01 if cor_widget.value > Cmax: cor_widget.value = Cmax if cor_widget.value < Cmin: cor_widget.value = Cmin cor = cor_widget.value P = compute_marginal(px,py,cor) # print(P) fig = plot_joint_probs(P) plt.show(fig) plt.close(fig) return None # gs[1,1] = make_corr_plot() # to_remove explanation #' 1. When the correlation is zero, the two properties are completely independent. #' This means you don't gain any information about one variable from observing the other. #' Importantly, the marginal distribution of one variable is therefore independent of the other. #' 2. The correlation controls the distribution of probability across the joint probabilty table. #' The higher the correlation, the more the probabilities are restricted by the fact that both rows #' and columns need to sum to one! While the marginal probabilities show the relative weighting, the #' absolute probabilities for one quality will become more dependent on the other as the correlation #' goes to 1 or -1. #' 3. The correlation will control how much probabilty mass is located on the diagonals. As the #' correlation goes to 1 (or -1), the probability of seeing the one of the two pairings has to goes #' towards zero! #' 4. If we think about what information we gain by observing one quality, the intution from (3.) tells #' us that we know more (have more information) about the other quality as a function of the correlation.
_____no_output_____
CC-BY-4.0
tutorials/W3D1_BayesianDecisions/W3D1_Tutorial1.ipynb
bgalbraith/course-content
We have just seen how two random variables can be more or less independent. The more correlated, the less independent, and the more shared information. We also learned that we can marginalize to determine the marginal likelihood of a hidden state or to find the marginal probability distribution of two random variables. We are going to now complete our journey towards being fully Bayesian! --- Section 5: Bayes' Rule and the Posterior Marginalization is going to be used to combine our prior knowlege, which we call the **prior**, and our new information from a measurement, the **likelihood**. Only in this case, the information we gain about the hidden state we are interested in, where the fish are, is based on the relationship between the probabilities of the measurement and our prior. We can now calculate the full posterior distribution for the hidden state ($s$) using Bayes' Rule. As we've seen, the posterior is proportional the the prior times the likelihood. This means that the posterior probability of the hidden state ($s$) given a measurement ($m$) is proportional to the likelihood of the measurement given the state times the prior probability of that state (the marginal likelihood):$$ P(s | m) \propto P(m | s) P(s) $$We say proportional to instead of equal because we need to normalize to produce a full probability distribution:$$ P(s | m) = \frac{P(m | s) P(s)}{P(m)} $$Normalizing by this $P(m)$ means that our posterior is a complete probability distribution that sums or integrates to 1 appropriately. We now can use this new, complete probability distribution for any future inference or decisions we like! In fact, as we will see tomorrow, we can use it as a new prior! Finally, we often call this probability distribution our beliefs over the hidden states, to emphasize that it is our subjective knowlege about the hidden state.For many complicated cases, like those we might be using to model behavioral or brain inferences, the normalization term can be intractable or extremely complex to calculate. We can be careful to choose probability distributions were we can analytically calculate the posterior probability or numerical approximation is reliable. Better yet, we sometimes don't need to bother with this normalization! The normalization term, $P(m)$, is the probability of the measurement. This does not depend on state so is essentially a constant we can often ignore. We can compare the unnormalized posterior distribution values for different states because how they relate to each other is unchanged when divided by the same constant. We will see how to do this to compare evidence for different hypotheses tomorrow. (It's also used to compare the likelihood of models fit using maximum likelihood estimation, as you did in W1D5.)In this relatively simple example, we can compute the marginal probability $P(m)$ easily by using:$$P(m) = \sum_s P(m | s) P(s)$$We can then normalize so that we deal with the full posterior distribution. Math Exercise 5: Calculating a posterior probabilityOur prior is $p(s = left) = 0.3$ and $p(s = right) = 0.7$. In the video, we learned that the chance of catching a fish given they fish on the same side as the school was 50%. Otherwise, it was 10%. We observe a person fishing on the left side. Our likelihood is: | Likelihood: p(m \| s) | m = catch fish | m = no fish || ----------------- |----------|----------|| s = left | 0.5 | 0.5 || s = right | 0.1 | 0.9 |Calculate the posterior probability (on paper) that:1. The school is on the left if the fisherperson catches a fish: $p(s = left | m = catch fish)$ (hint: normalize by compute $p(m = catch fish)$)2. The school is on the right if the fisherperson does not catch a fish: $p(s = right | m = no fish)$
# to_remove explanation # 1. Using Bayes rule, we know that P(s = left | m = catch fish) = P(m = catch fish | s = left)P(s = left) / P(m = catch fish) #. Let's first compute P(m = catch fish): #. P(m = catch fish) = P(m = catch fish | s = left)P(s = left) + P(m = catch fish | s = right)P(s = right) # = 0.5 * 0.3 + .1*.7 # = 0.22 #. Now we can plug in all parts of Bayes rule: # P(s = left | m = catch fish) = P(m = catch fish | s = left)P(s = left) / P(m = catch fish) # = 0.5*0.3/0.22 # = 0.68 # 2. Using Bayes rule, we know that P(s = right | m = no fish) = P(m = no fish | s = right)P(s = right) / P(m = no fish) #. Let's first compute P(m = no fish): #. P(m = no fish) = P(m = no fish | s = left)P(s = left) + P(m = no fish | s = right)P(s = right) # = 0.5 * 0.3 + .9*.7 # = 0.78 #. Now we can plug in all parts of Bayes rule: # P(s = right | m = no fish) = P(m = no fish | s = right)P(s = right) / P(m = no fish) # = 0.9*0.7/0.78 # = 0.81
_____no_output_____
CC-BY-4.0
tutorials/W3D1_BayesianDecisions/W3D1_Tutorial1.ipynb
bgalbraith/course-content
Coding Exercise 5: Computing PosteriorsLet's implement our above math to be able to compute posteriors for different priors and likelihood.sAs before, our prior is $p(s = left) = 0.3$ and $p(s = right) = 0.7$. In the video, we learned that the chance of catching a fish given they fish on the same side as the school was 50%. Otherwise, it was 10%. We observe a person fishing on the left side. Our likelihood is: | Likelihood: p(m \| s) | m = catch fish | m = no fish || ----------------- |----------|----------|| s = left | 0.5 | 0.5 || s = right | 0.1 | 0.9 |We want our full posterior to take the same 2 by 2 form. Make sure the outputs match your math answers!
def compute_posterior(likelihood, prior): """ Use Bayes' Rule to compute posterior from likelihood and prior Args: likelihood (ndarray): i x j array with likelihood probabilities where i is number of state options, j is number of measurement options prior (ndarray): i x 1 array with prior probability of each state Returns: ndarray: i x j array with posterior probabilities where i is number of state options, j is number of measurement options """ ################################################# ## TODO for students ## # Fill out function and remove raise NotImplementedError("Student exercise: implement compute_posterior") ################################################# # Compute unnormalized posterior (likelihood times prior) posterior = ... # first row is s = left, second row is s = right # Compute p(m) p_m = np.sum(posterior, axis = 0) # Normalize posterior (divide elements by p_m) posterior /= ... return posterior # Make prior prior = np.array([0.3, 0.7]).reshape((2, 1)) # first row is s = left, second row is s = right # Make likelihood likelihood = np.array([[0.5, 0.5], [0.1, 0.9]]) # first row is s = left, second row is s = right # Compute posterior posterior = compute_posterior(likelihood, prior) # Visualize with plt.xkcd(): plot_prior_likelihood_posterior(prior, likelihood, posterior) # to_remove solution def compute_posterior(likelihood, prior): """ Use Bayes' Rule to compute posterior from likelihood and prior Args: likelihood (ndarray): i x j array with likelihood probabilities where i is number of state options, j is number of measurement options prior (ndarray): i x 1 array with prior probability of each state Returns: ndarray: i x j array with posterior probabilities where i is number of state options, j is number of measurement options """ # Compute unnormalized posterior (likelihood times prior) posterior = likelihood * prior # first row is s = left, second row is s = right # Compute p(m) p_m = np.sum(posterior, axis = 0) # Normalize posterior (divide elements by p_m) posterior /= p_m return posterior # Make prior prior = np.array([0.3, 0.7]).reshape((2, 1)) # first row is s = left, second row is s = right # Make likelihood likelihood = np.array([[0.5, 0.5], [0.1, 0.9]]) # first row is s = left, second row is s = right # Compute posterior posterior = compute_posterior(likelihood, prior) # Visualize with plt.xkcd(): plot_prior_likelihood_posterior(prior, likelihood, posterior)
_____no_output_____
CC-BY-4.0
tutorials/W3D1_BayesianDecisions/W3D1_Tutorial1.ipynb
bgalbraith/course-content
Interactive Demo 5: What affects the posterior?Now that we can understand the implementation of *Bayes rule*, let's vary the parameters of the prior and likelihood to see how changing the prior and likelihood affect the posterior. In the demo below, you can change the prior by playing with the slider for $p( s = left)$. You can also change the likelihood by changing the probability of catching a fish given that the school is on the left and the probability of catching a fish given that the school is on the right. The fisherperson you are observing is fishing on the left. 1. Keeping the likelihood constant, when does the prior have the strongest influence over the posterior? Meaning, when does the posterior look most like the prior no matter whether a fish was caught or not?2. Keeping the likelihood constant, when does the prior exert the weakest influence? Meaning, when does the posterior look least like the prior and depend most on whether a fish was caught or not?3. Set the prior probability of the state = left to 0.6 and play with the likelihood. When does the likelihood exert the most influence over the posterior?
# @markdown Execute this cell to enable the widget style = {'description_width': 'initial'} ps_widget = widgets.FloatSlider(0.3, description='p(s = left)', min=0.01, max=0.99, step=0.01) p_a_s1_widget = widgets.FloatSlider(0.5, description='p(fish | s = left)', min=0.01, max=0.99, step=0.01, style=style) p_a_s0_widget = widgets.FloatSlider(0.1, description='p(fish | s = right)', min=0.01, max=0.99, step=0.01, style=style) observed_widget = widgets.Checkbox(value=False, description='Observed fish (m)', disabled=False, indent=False, layout={'width': 'max-content'}) @widgets.interact( ps=ps_widget, p_a_s1=p_a_s1_widget, p_a_s0=p_a_s0_widget, m_right=observed_widget ) def make_prior_likelihood_plot(ps,p_a_s1,p_a_s0,m_right): fig = plot_prior_likelihood(ps,p_a_s1,p_a_s0,m_right) plt.show(fig) plt.close(fig) return None # to_remove explanation # 1). The prior exerts a strong influence over the posterior when it is very informative: when #. the probability of the school being on one side or the other. If the prior that the fish are #. on the left side is very high (like 0.9), the posterior probability of the state being left is #. high regardless of the measurement. # 2). The prior does not exert a strong influence when it is not informative: when the probabilities #. of the school being on the left vs right are similar (both are 0.5 for example). In this case, #. the posterior is more driven by the collected data (the measurement) and more closely resembles #. the likelihood. #. 3) Similarly to the prior, the likelihood exerts the most influence when it is informative: when catching #. a fish tells you a lot of information about which state is likely. For example, if the probability of the #. fisherperson catching a fish if he is fishing on the right side and the school is on the left is 0 #. (p fish | s = left) = 0 and the probability of catching a fish if the school is on the right is 1, the #. prior does not affect the posterior at all. The measurement tells you the hidden state completely.
_____no_output_____
CC-BY-4.0
tutorials/W3D1_BayesianDecisions/W3D1_Tutorial1.ipynb
bgalbraith/course-content
Section 6: Making Bayesian fishing decisionsWe will explore how to consider the expected utility of an action based on our belief (the posterior distribution) about where we think the fish are. Now we have all the components of a Bayesian decision: our prior information, the likelihood given a measurement, the posterior distribution (belief) and our utility (the gains and losses). This allows us to consider the relationship between the true value of the hidden state, $s$, and what we *expect* to get if we take action, $a$, based on our belief!Let's use the following widget to think about the relationship between these probability distributions and utility function. Think! 6: What is more important, the probabilities or the utilities?We are now going to put everything we've learned together to gain some intuitions for how each of the elements that goes into a Bayesian decision comes together. Remember, the common assumption in neuroscience, psychology, economics, ecology, etc. is that we (humans and animals) are tying to maximize our expected utility.1. Can you find a situation where the expected utility is the same for both actions?2. What is more important for determining the expected utility: the prior or a new measurement (the likelihood)?3. Why is this a normative model?4. Can you think of ways in which this model would need to be extended to describe human or animal behavior?
# @markdown Execute this cell to enable the widget style = {'description_width': 'initial'} ps_widget = widgets.FloatSlider(0.3, description='p(s)', min=0.01, max=0.99, step=0.01) p_a_s1_widget = widgets.FloatSlider(0.5, description='p(fish | s = left)', min=0.01, max=0.99, step=0.01, style=style) p_a_s0_widget = widgets.FloatSlider(0.1, description='p(fish | s = right)', min=0.01, max=0.99, step=0.01, style=style) observed_widget = widgets.Checkbox(value=False, description='Observed fish (m)', disabled=False, indent=False, layout={'width': 'max-content'}) @widgets.interact( ps=ps_widget, p_a_s1=p_a_s1_widget, p_a_s0=p_a_s0_widget, m_right=observed_widget ) def make_prior_likelihood_utility_plot(ps, p_a_s1, p_a_s0,m_right): fig = plot_prior_likelihood_utility(ps, p_a_s1, p_a_s0,m_right) plt.show(fig) plt.close(fig) return None # to_remove explanation #' 1. There are actually many (infinite) combinations that can produce the same #. expected utility for both actions: but the posterior probabilities will always # have to balance out the differences in the utility function. So, what is # important is that for a given utility function, there will be some 'point # of indifference' #' 2. What matters is the relative information: if the prior is close to 50/50, # then the likelihood has more infuence, if the likelihood is 50/50 given a # measurement (the measurement is uninformative), the prior is more important. # But the critical insite from Bayes Rule and the Bayesian approach is that what # matters is the relative information you gain from a measurement, and that # you can use all of this information for your decision. #' 3. The model gives us a very precise way to think about how we *should* combine # information and how we *should* act, GIVEN some assumption about our goals. # In this case, if we assume we are trying to maximize expected utility--we can # state what an animal or subject should do. #' 4. There are lots of possible extensions. Humans may not always try to maximize # utility; humans and animals might not be able to calculate or represent probabiltiy # distributions exactly; The utility function might be more complicated; etc.
_____no_output_____
CC-BY-4.0
tutorials/W3D1_BayesianDecisions/W3D1_Tutorial1.ipynb
bgalbraith/course-content
Dependencies
# !pip install --quiet efficientnet !pip install --quiet image-classifiers import warnings, json, re, glob, math from scripts_step_lr_schedulers import * from melanoma_utility_scripts import * from kaggle_datasets import KaggleDatasets from sklearn.model_selection import KFold import tensorflow.keras.layers as L import tensorflow.keras.backend as K from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint from tensorflow.keras import optimizers, layers, metrics, losses, Model # import efficientnet.tfkeras as efn from classification_models.tfkeras import Classifiers import tensorflow_addons as tfa SEED = 0 seed_everything(SEED) warnings.filterwarnings("ignore")
_____no_output_____
MIT
Model backlog/Train/64-melanoma-5fold-seresnet18-radam.ipynb
dimitreOliveira/melanoma-classification
TPU configuration
strategy, tpu = set_up_strategy() print("REPLICAS: ", strategy.num_replicas_in_sync) AUTO = tf.data.experimental.AUTOTUNE
REPLICAS: 1
MIT
Model backlog/Train/64-melanoma-5fold-seresnet18-radam.ipynb
dimitreOliveira/melanoma-classification
Model parameters
config = { "HEIGHT": 256, "WIDTH": 256, "CHANNELS": 3, "BATCH_SIZE": 64, "EPOCHS": 25, "LEARNING_RATE": 3e-4, "ES_PATIENCE": 10, "N_FOLDS": 5, "N_USED_FOLDS": 5, "TTA_STEPS": 25, "BASE_MODEL": 'seresnet18', "BASE_MODEL_WEIGHTS": 'imagenet', "DATASET_PATH": 'melanoma-256x256' } with open('config.json', 'w') as json_file: json.dump(json.loads(json.dumps(config)), json_file) config
_____no_output_____
MIT
Model backlog/Train/64-melanoma-5fold-seresnet18-radam.ipynb
dimitreOliveira/melanoma-classification
Load data
database_base_path = '/kaggle/input/siim-isic-melanoma-classification/' k_fold = pd.read_csv(database_base_path + 'train.csv') test = pd.read_csv(database_base_path + 'test.csv') print('Train samples: %d' % len(k_fold)) display(k_fold.head()) print(f'Test samples: {len(test)}') display(test.head()) GCS_PATH = KaggleDatasets().get_gcs_path(config['DATASET_PATH']) TRAINING_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/train*.tfrec') TEST_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/test*.tfrec')
Train samples: 33126
MIT
Model backlog/Train/64-melanoma-5fold-seresnet18-radam.ipynb
dimitreOliveira/melanoma-classification
Augmentations
def data_augment(image, label): p_spatial = tf.random.uniform([1], minval=0, maxval=1, dtype='float32') p_spatial2 = tf.random.uniform([1], minval=0, maxval=1, dtype='float32') p_rotate = tf.random.uniform([1], minval=0, maxval=1, dtype='float32') p_crop = tf.random.uniform([1], minval=0, maxval=1, dtype='float32') p_pixel = tf.random.uniform([1], minval=0, maxval=1, dtype='float32') ### Spatial-level transforms if p_spatial >= .2: # flips image['input_image'] = tf.image.random_flip_left_right(image['input_image']) image['input_image'] = tf.image.random_flip_up_down(image['input_image']) if p_spatial >= .7: image['input_image'] = tf.image.transpose(image['input_image']) if p_rotate >= .8: # rotate 270º image['input_image'] = tf.image.rot90(image['input_image'], k=3) elif p_rotate >= .6: # rotate 180º image['input_image'] = tf.image.rot90(image['input_image'], k=2) elif p_rotate >= .4: # rotate 90º image['input_image'] = tf.image.rot90(image['input_image'], k=1) if p_spatial2 >= .6: if p_spatial2 >= .9: image['input_image'] = transform_rotation(image['input_image'], config['HEIGHT'], 180.) elif p_spatial2 >= .8: image['input_image'] = transform_zoom(image['input_image'], config['HEIGHT'], 8., 8.) elif p_spatial2 >= .7: image['input_image'] = transform_shift(image['input_image'], config['HEIGHT'], 8., 8.) else: image['input_image'] = transform_shear(image['input_image'], config['HEIGHT'], 2.) if p_crop >= .6: # crops if p_crop >= .8: image['input_image'] = tf.image.random_crop(image['input_image'], size=[int(config['HEIGHT']*.8), int(config['WIDTH']*.8), config['CHANNELS']]) elif p_crop >= .7: image['input_image'] = tf.image.random_crop(image['input_image'], size=[int(config['HEIGHT']*.9), int(config['WIDTH']*.9), config['CHANNELS']]) else: image['input_image'] = tf.image.central_crop(image['input_image'], central_fraction=.8) image['input_image'] = tf.image.resize(image['input_image'], size=[config['HEIGHT'], config['WIDTH']]) if p_pixel >= .6: # Pixel-level transforms if p_pixel >= .9: image['input_image'] = tf.image.random_hue(image['input_image'], 0.01) elif p_pixel >= .8: image['input_image'] = tf.image.random_saturation(image['input_image'], 0.7, 1.3) elif p_pixel >= .7: image['input_image'] = tf.image.random_contrast(image['input_image'], 0.8, 1.2) else: image['input_image'] = tf.image.random_brightness(image['input_image'], 0.1) return image, label
_____no_output_____
MIT
Model backlog/Train/64-melanoma-5fold-seresnet18-radam.ipynb
dimitreOliveira/melanoma-classification
Auxiliary functions
# Datasets utility functions def read_labeled_tfrecord(example, height=config['HEIGHT'], width=config['WIDTH'], channels=config['CHANNELS']): example = tf.io.parse_single_example(example, LABELED_TFREC_FORMAT) image = decode_image(example['image'], height, width, channels) label = tf.cast(example['target'], tf.float32) # meta features data = {} data['patient_id'] = tf.cast(example['patient_id'], tf.int32) data['sex'] = tf.cast(example['sex'], tf.int32) data['age_approx'] = tf.cast(example['age_approx'], tf.int32) data['anatom_site_general_challenge'] = tf.cast(tf.one_hot(example['anatom_site_general_challenge'], 7), tf.int32) return {'input_image': image, 'input_meta': data}, label # returns a dataset of (image, data, label) def read_labeled_tfrecord_eval(example, height=config['HEIGHT'], width=config['WIDTH'], channels=config['CHANNELS']): example = tf.io.parse_single_example(example, LABELED_TFREC_FORMAT) image = decode_image(example['image'], height, width, channels) label = tf.cast(example['target'], tf.float32) image_name = example['image_name'] # meta features data = {} data['patient_id'] = tf.cast(example['patient_id'], tf.int32) data['sex'] = tf.cast(example['sex'], tf.int32) data['age_approx'] = tf.cast(example['age_approx'], tf.int32) data['anatom_site_general_challenge'] = tf.cast(tf.one_hot(example['anatom_site_general_challenge'], 7), tf.int32) return {'input_image': image, 'input_meta': data}, label, image_name # returns a dataset of (image, data, label, image_name) def load_dataset(filenames, ordered=False, buffer_size=-1): ignore_order = tf.data.Options() if not ordered: ignore_order.experimental_deterministic = False # disable order, increase speed dataset = tf.data.TFRecordDataset(filenames, num_parallel_reads=buffer_size) # automatically interleaves reads from multiple files dataset = dataset.with_options(ignore_order) # uses data as soon as it streams in, rather than in its original order dataset = dataset.map(read_labeled_tfrecord, num_parallel_calls=buffer_size) return dataset # returns a dataset of (image, data, label) def load_dataset_eval(filenames, buffer_size=-1): dataset = tf.data.TFRecordDataset(filenames, num_parallel_reads=buffer_size) # automatically interleaves reads from multiple files dataset = dataset.map(read_labeled_tfrecord_eval, num_parallel_calls=buffer_size) return dataset # returns a dataset of (image, data, label, image_name) def get_training_dataset(filenames, batch_size, buffer_size=-1): dataset = load_dataset(filenames, ordered=False, buffer_size=buffer_size) dataset = dataset.map(data_augment, num_parallel_calls=AUTO) dataset = dataset.repeat() # the training dataset must repeat for several epochs dataset = dataset.shuffle(2048) dataset = dataset.batch(batch_size, drop_remainder=True) # slighly faster with fixed tensor sizes dataset = dataset.prefetch(buffer_size) # prefetch next batch while training (autotune prefetch buffer size) return dataset def get_validation_dataset(filenames, ordered=True, repeated=False, batch_size=32, buffer_size=-1): dataset = load_dataset(filenames, ordered=ordered, buffer_size=buffer_size) if repeated: dataset = dataset.repeat() dataset = dataset.shuffle(2048) dataset = dataset.batch(batch_size, drop_remainder=repeated) dataset = dataset.prefetch(buffer_size) return dataset def get_eval_dataset(filenames, batch_size=32, buffer_size=-1): dataset = load_dataset_eval(filenames, buffer_size=buffer_size) dataset = dataset.batch(batch_size, drop_remainder=False) dataset = dataset.prefetch(buffer_size) return dataset # Test function def read_unlabeled_tfrecord(example, height=config['HEIGHT'], width=config['WIDTH'], channels=config['CHANNELS']): example = tf.io.parse_single_example(example, UNLABELED_TFREC_FORMAT) image = decode_image(example['image'], height, width, channels) image_name = example['image_name'] # meta features data = {} data['patient_id'] = tf.cast(example['patient_id'], tf.int32) data['sex'] = tf.cast(example['sex'], tf.int32) data['age_approx'] = tf.cast(example['age_approx'], tf.int32) data['anatom_site_general_challenge'] = tf.cast(tf.one_hot(example['anatom_site_general_challenge'], 7), tf.int32) return {'input_image': image, 'input_tabular': data}, image_name # returns a dataset of (image, data, image_name) def load_dataset_test(filenames, buffer_size=-1): dataset = tf.data.TFRecordDataset(filenames, num_parallel_reads=buffer_size) # automatically interleaves reads from multiple files dataset = dataset.map(read_unlabeled_tfrecord, num_parallel_calls=buffer_size) # returns a dataset of (image, data, label, image_name) pairs if labeled=True or (image, data, image_name) pairs if labeled=False return dataset def get_test_dataset(filenames, batch_size=32, buffer_size=-1, tta=False): dataset = load_dataset_test(filenames, buffer_size=buffer_size) if tta: dataset = dataset.map(data_augment, num_parallel_calls=AUTO) dataset = dataset.batch(batch_size, drop_remainder=False) dataset = dataset.prefetch(buffer_size) return dataset # Advanced augmentations def transform_rotation(image, height, rotation): # input image - is one image of size [dim,dim,3] not a batch of [b,dim,dim,3] # output - image randomly rotated DIM = height XDIM = DIM%2 #fix for size 331 rotation = rotation * tf.random.normal([1],dtype='float32') # CONVERT DEGREES TO RADIANS rotation = math.pi * rotation / 180. # ROTATION MATRIX c1 = tf.math.cos(rotation) s1 = tf.math.sin(rotation) one = tf.constant([1],dtype='float32') zero = tf.constant([0],dtype='float32') rotation_matrix = tf.reshape( tf.concat([c1,s1,zero, -s1,c1,zero, zero,zero,one],axis=0),[3,3] ) # LIST DESTINATION PIXEL INDICES x = tf.repeat( tf.range(DIM//2,-DIM//2,-1), DIM ) y = tf.tile( tf.range(-DIM//2,DIM//2),[DIM] ) z = tf.ones([DIM*DIM],dtype='int32') idx = tf.stack( [x,y,z] ) # ROTATE DESTINATION PIXELS ONTO ORIGIN PIXELS idx2 = K.dot(rotation_matrix,tf.cast(idx,dtype='float32')) idx2 = K.cast(idx2,dtype='int32') idx2 = K.clip(idx2,-DIM//2+XDIM+1,DIM//2) # FIND ORIGIN PIXEL VALUES idx3 = tf.stack( [DIM//2-idx2[0,], DIM//2-1+idx2[1,]] ) d = tf.gather_nd(image, tf.transpose(idx3)) return tf.reshape(d,[DIM,DIM,3]) def transform_shear(image, height, shear): # input image - is one image of size [dim,dim,3] not a batch of [b,dim,dim,3] # output - image randomly sheared DIM = height XDIM = DIM%2 #fix for size 331 shear = shear * tf.random.normal([1],dtype='float32') shear = math.pi * shear / 180. # SHEAR MATRIX one = tf.constant([1],dtype='float32') zero = tf.constant([0],dtype='float32') c2 = tf.math.cos(shear) s2 = tf.math.sin(shear) shear_matrix = tf.reshape( tf.concat([one,s2,zero, zero,c2,zero, zero,zero,one],axis=0),[3,3] ) # LIST DESTINATION PIXEL INDICES x = tf.repeat( tf.range(DIM//2,-DIM//2,-1), DIM ) y = tf.tile( tf.range(-DIM//2,DIM//2),[DIM] ) z = tf.ones([DIM*DIM],dtype='int32') idx = tf.stack( [x,y,z] ) # ROTATE DESTINATION PIXELS ONTO ORIGIN PIXELS idx2 = K.dot(shear_matrix,tf.cast(idx,dtype='float32')) idx2 = K.cast(idx2,dtype='int32') idx2 = K.clip(idx2,-DIM//2+XDIM+1,DIM//2) # FIND ORIGIN PIXEL VALUES idx3 = tf.stack( [DIM//2-idx2[0,], DIM//2-1+idx2[1,]] ) d = tf.gather_nd(image, tf.transpose(idx3)) return tf.reshape(d,[DIM,DIM,3]) def transform_shift(image, height, h_shift, w_shift): # input image - is one image of size [dim,dim,3] not a batch of [b,dim,dim,3] # output - image randomly shifted DIM = height XDIM = DIM%2 #fix for size 331 height_shift = h_shift * tf.random.normal([1],dtype='float32') width_shift = w_shift * tf.random.normal([1],dtype='float32') one = tf.constant([1],dtype='float32') zero = tf.constant([0],dtype='float32') # SHIFT MATRIX shift_matrix = tf.reshape( tf.concat([one,zero,height_shift, zero,one,width_shift, zero,zero,one],axis=0),[3,3] ) # LIST DESTINATION PIXEL INDICES x = tf.repeat( tf.range(DIM//2,-DIM//2,-1), DIM ) y = tf.tile( tf.range(-DIM//2,DIM//2),[DIM] ) z = tf.ones([DIM*DIM],dtype='int32') idx = tf.stack( [x,y,z] ) # ROTATE DESTINATION PIXELS ONTO ORIGIN PIXELS idx2 = K.dot(shift_matrix,tf.cast(idx,dtype='float32')) idx2 = K.cast(idx2,dtype='int32') idx2 = K.clip(idx2,-DIM//2+XDIM+1,DIM//2) # FIND ORIGIN PIXEL VALUES idx3 = tf.stack( [DIM//2-idx2[0,], DIM//2-1+idx2[1,]] ) d = tf.gather_nd(image, tf.transpose(idx3)) return tf.reshape(d,[DIM,DIM,3]) def transform_zoom(image, height, h_zoom, w_zoom): # input image - is one image of size [dim,dim,3] not a batch of [b,dim,dim,3] # output - image randomly zoomed DIM = height XDIM = DIM%2 #fix for size 331 height_zoom = 1.0 + tf.random.normal([1],dtype='float32')/h_zoom width_zoom = 1.0 + tf.random.normal([1],dtype='float32')/w_zoom one = tf.constant([1],dtype='float32') zero = tf.constant([0],dtype='float32') # ZOOM MATRIX zoom_matrix = tf.reshape( tf.concat([one/height_zoom,zero,zero, zero,one/width_zoom,zero, zero,zero,one],axis=0),[3,3] ) # LIST DESTINATION PIXEL INDICES x = tf.repeat( tf.range(DIM//2,-DIM//2,-1), DIM ) y = tf.tile( tf.range(-DIM//2,DIM//2),[DIM] ) z = tf.ones([DIM*DIM],dtype='int32') idx = tf.stack( [x,y,z] ) # ROTATE DESTINATION PIXELS ONTO ORIGIN PIXELS idx2 = K.dot(zoom_matrix,tf.cast(idx,dtype='float32')) idx2 = K.cast(idx2,dtype='int32') idx2 = K.clip(idx2,-DIM//2+XDIM+1,DIM//2) # FIND ORIGIN PIXEL VALUES idx3 = tf.stack( [DIM//2-idx2[0,], DIM//2-1+idx2[1,]] ) d = tf.gather_nd(image, tf.transpose(idx3)) return tf.reshape(d,[DIM,DIM,3])
_____no_output_____
MIT
Model backlog/Train/64-melanoma-5fold-seresnet18-radam.ipynb
dimitreOliveira/melanoma-classification
Learning rate scheduler
lr_min = 1e-6 # lr_start = 0 lr_max = config['LEARNING_RATE'] steps_per_epoch = 24844 // config['BATCH_SIZE'] total_steps = config['EPOCHS'] * steps_per_epoch warmup_steps = steps_per_epoch * 5 # hold_max_steps = 0 # step_decay = .8 # step_size = steps_per_epoch * 1 # rng = [i for i in range(0, total_steps, 32)] # y = [step_schedule_with_warmup(tf.cast(x, tf.float32), step_size=step_size, # warmup_steps=warmup_steps, hold_max_steps=hold_max_steps, # lr_start=lr_start, lr_max=lr_max, step_decay=step_decay) for x in rng] # sns.set(style="whitegrid") # fig, ax = plt.subplots(figsize=(20, 6)) # plt.plot(rng, y) # print("Learning rate schedule: {:.3g} to {:.3g} to {:.3g}".format(y[0], max(y), y[-1]))
_____no_output_____
MIT
Model backlog/Train/64-melanoma-5fold-seresnet18-radam.ipynb
dimitreOliveira/melanoma-classification
Model
# Initial bias pos = len(k_fold[k_fold['target'] == 1]) neg = len(k_fold[k_fold['target'] == 0]) initial_bias = np.log([pos/neg]) print('Bias') print(pos) print(neg) print(initial_bias) # class weights total = len(k_fold) weight_for_0 = (1 / neg)*(total)/2.0 weight_for_1 = (1 / pos)*(total)/2.0 class_weight = {0: weight_for_0, 1: weight_for_1} print('Class weight') print(class_weight) def model_fn(input_shape): input_image = L.Input(shape=input_shape, name='input_image') BaseModel, preprocess_input = Classifiers.get(config['BASE_MODEL']) base_model = BaseModel(input_shape=input_shape, weights=config['BASE_MODEL_WEIGHTS'], include_top=False) x = base_model(input_image) x = L.GlobalAveragePooling2D()(x) output = L.Dense(1, activation='sigmoid', name='output', bias_initializer=tf.keras.initializers.Constant(initial_bias))(x) model = Model(inputs=input_image, outputs=output) return model
_____no_output_____
MIT
Model backlog/Train/64-melanoma-5fold-seresnet18-radam.ipynb
dimitreOliveira/melanoma-classification
Training
# Evaluation eval_dataset = get_eval_dataset(TRAINING_FILENAMES, batch_size=config['BATCH_SIZE'], buffer_size=AUTO) image_names = next(iter(eval_dataset.unbatch().map(lambda data, label, image_name: image_name).batch(count_data_items(TRAINING_FILENAMES)))).numpy().astype('U') image_data = eval_dataset.map(lambda data, label, image_name: data) # Resample dataframe k_fold = k_fold[k_fold['image_name'].isin(image_names)] # Test NUM_TEST_IMAGES = len(test) test_preds = np.zeros((NUM_TEST_IMAGES, 1)) test_preds_last = np.zeros((NUM_TEST_IMAGES, 1)) test_dataset = get_test_dataset(TEST_FILENAMES, batch_size=config['BATCH_SIZE'], buffer_size=AUTO, tta=True) image_names_test = next(iter(test_dataset.unbatch().map(lambda data, image_name: image_name).batch(NUM_TEST_IMAGES))).numpy().astype('U') test_image_data = test_dataset.map(lambda data, image_name: data) history_list = [] k_fold_best = k_fold.copy() kfold = KFold(config['N_FOLDS'], shuffle=True, random_state=SEED) for n_fold, (trn_idx, val_idx) in enumerate(kfold.split(TRAINING_FILENAMES)): if n_fold < config['N_USED_FOLDS']: n_fold +=1 print('\nFOLD: %d' % (n_fold)) # tf.tpu.experimental.initialize_tpu_system(tpu) K.clear_session() ### Data train_filenames = np.array(TRAINING_FILENAMES)[trn_idx] valid_filenames = np.array(TRAINING_FILENAMES)[val_idx] steps_per_epoch = count_data_items(train_filenames) // config['BATCH_SIZE'] # Train model model_path = f'model_fold_{n_fold}.h5' es = EarlyStopping(monitor='val_auc', mode='max', patience=config['ES_PATIENCE'], restore_best_weights=False, verbose=1) checkpoint = ModelCheckpoint(model_path, monitor='val_auc', mode='max', save_best_only=True, save_weights_only=True) with strategy.scope(): model = model_fn((config['HEIGHT'], config['WIDTH'], config['CHANNELS'])) optimizer = tfa.optimizers.RectifiedAdam(lr=lr_max, total_steps=total_steps, warmup_proportion=(warmup_steps / total_steps), min_lr=lr_min) model.compile(optimizer, loss=losses.BinaryCrossentropy(label_smoothing=0.05), metrics=[metrics.AUC()]) history = model.fit(get_training_dataset(train_filenames, batch_size=config['BATCH_SIZE'], buffer_size=AUTO), validation_data=get_validation_dataset(valid_filenames, ordered=True, repeated=False, batch_size=config['BATCH_SIZE'], buffer_size=AUTO), epochs=config['EPOCHS'], steps_per_epoch=steps_per_epoch, callbacks=[checkpoint, es], class_weight=class_weight, verbose=2).history # save last epoch weights model.save_weights('last_' + model_path) history_list.append(history) # Get validation IDs valid_dataset = get_eval_dataset(valid_filenames, batch_size=config['BATCH_SIZE'], buffer_size=AUTO) valid_image_names = next(iter(valid_dataset.unbatch().map(lambda data, label, image_name: image_name).batch(count_data_items(valid_filenames)))).numpy().astype('U') k_fold[f'fold_{n_fold}'] = k_fold.apply(lambda x: 'validation' if x['image_name'] in valid_image_names else 'train', axis=1) k_fold_best[f'fold_{n_fold}'] = k_fold_best.apply(lambda x: 'validation' if x['image_name'] in valid_image_names else 'train', axis=1) ##### Last model ##### print('Last model evaluation...') preds = model.predict(image_data) name_preds_eval = dict(zip(image_names, preds.reshape(len(preds)))) k_fold[f'pred_fold_{n_fold}'] = k_fold.apply(lambda x: name_preds_eval[x['image_name']], axis=1) print(f'Last model inference (TTA {config["TTA_STEPS"]} steps)...') for step in range(config['TTA_STEPS']): test_preds_last += model.predict(test_image_data) ##### Best model ##### print('Best model evaluation...') model.load_weights(model_path) preds = model.predict(image_data) name_preds_eval = dict(zip(image_names, preds.reshape(len(preds)))) k_fold_best[f'pred_fold_{n_fold}'] = k_fold_best.apply(lambda x: name_preds_eval[x['image_name']], axis=1) print(f'Best model inference (TTA {config["TTA_STEPS"]} steps)...') for step in range(config['TTA_STEPS']): test_preds += model.predict(test_image_data) # normalize preds test_preds /= (config['N_USED_FOLDS'] * config['TTA_STEPS']) test_preds_last /= (config['N_USED_FOLDS'] * config['TTA_STEPS']) name_preds = dict(zip(image_names_test, test_preds.reshape(NUM_TEST_IMAGES))) name_preds_last = dict(zip(image_names_test, test_preds_last.reshape(NUM_TEST_IMAGES))) test['target'] = test.apply(lambda x: name_preds[x['image_name']], axis=1) test['target_last'] = test.apply(lambda x: name_preds_last[x['image_name']], axis=1)
FOLD: 1 Downloading data from https://github.com/qubvel/classification_models/releases/download/0.0.1/seresnet18_imagenet_1000_no_top.h5 45359104/45351256 [==============================] - 4s 0us/step Epoch 1/25 408/408 - 147s - loss: 0.7536 - auc: 0.7313 - val_loss: 0.1771 - val_auc: 0.5180 Epoch 2/25 408/408 - 144s - loss: 0.5032 - auc: 0.8513 - val_loss: 0.1900 - val_auc: 0.7332 Epoch 3/25 408/408 - 145s - loss: 0.5233 - auc: 0.8501 - val_loss: 0.3951 - val_auc: 0.8278 Epoch 4/25 408/408 - 146s - loss: 0.5291 - auc: 0.8503 - val_loss: 0.5892 - val_auc: 0.8244 Epoch 5/25 408/408 - 146s - loss: 0.5110 - auc: 0.8528 - val_loss: 0.3490 - val_auc: 0.8255 Epoch 6/25 408/408 - 139s - loss: 0.4682 - auc: 0.8814 - val_loss: 0.6515 - val_auc: 0.8535 Epoch 7/25 408/408 - 142s - loss: 0.4610 - auc: 0.8793 - val_loss: 0.3841 - val_auc: 0.8673 Epoch 8/25 408/408 - 141s - loss: 0.4458 - auc: 0.8894 - val_loss: 0.3039 - val_auc: 0.8412 Epoch 9/25 408/408 - 141s - loss: 0.4535 - auc: 0.8867 - val_loss: 0.5310 - val_auc: 0.8819 Epoch 10/25 408/408 - 142s - loss: 0.4385 - auc: 0.8951 - val_loss: 0.6995 - val_auc: 0.8433 Epoch 11/25 408/408 - 141s - loss: 0.4285 - auc: 0.8992 - val_loss: 0.3153 - val_auc: 0.8760 Epoch 12/25 408/408 - 139s - loss: 0.4083 - auc: 0.9143 - val_loss: 0.5465 - val_auc: 0.8659 Epoch 13/25 408/408 - 142s - loss: 0.4043 - auc: 0.9146 - val_loss: 0.2805 - val_auc: 0.8740 Epoch 14/25 408/408 - 141s - loss: 0.3886 - auc: 0.9253 - val_loss: 0.4161 - val_auc: 0.8632 Epoch 15/25 408/408 - 143s - loss: 0.3700 - auc: 0.9338 - val_loss: 0.4457 - val_auc: 0.8666 Epoch 16/25 408/408 - 141s - loss: 0.3674 - auc: 0.9356 - val_loss: 0.3412 - val_auc: 0.8839 Epoch 17/25 408/408 - 140s - loss: 0.3375 - auc: 0.9480 - val_loss: 0.3924 - val_auc: 0.8703 Epoch 18/25 408/408 - 142s - loss: 0.3237 - auc: 0.9544 - val_loss: 0.2758 - val_auc: 0.8552 Epoch 19/25 408/408 - 143s - loss: 0.3311 - auc: 0.9535 - val_loss: 0.3325 - val_auc: 0.8610 Epoch 20/25 408/408 - 140s - loss: 0.2902 - auc: 0.9680 - val_loss: 0.2184 - val_auc: 0.8552 Epoch 21/25 408/408 - 145s - loss: 0.2846 - auc: 0.9694 - val_loss: 0.2595 - val_auc: 0.8624 Epoch 22/25 408/408 - 143s - loss: 0.2552 - auc: 0.9785 - val_loss: 0.2535 - val_auc: 0.8693 Epoch 23/25 408/408 - 145s - loss: 0.2528 - auc: 0.9791 - val_loss: 0.2828 - val_auc: 0.8782 Epoch 24/25 408/408 - 143s - loss: 0.2380 - auc: 0.9839 - val_loss: 0.2587 - val_auc: 0.8695 Epoch 25/25 408/408 - 140s - loss: 0.2331 - auc: 0.9850 - val_loss: 0.2575 - val_auc: 0.8700 Last model evaluation... Last model inference (TTA 25 steps)... Best model evaluation... Best model inference (TTA 25 steps)... FOLD: 2 Epoch 1/25 408/408 - 145s - loss: 1.4535 - auc: 0.6980 - val_loss: 0.1884 - val_auc: 0.4463 Epoch 2/25 408/408 - 143s - loss: 0.5506 - auc: 0.8422 - val_loss: 0.1974 - val_auc: 0.7122 Epoch 3/25 408/408 - 143s - loss: 0.5113 - auc: 0.8634 - val_loss: 0.2947 - val_auc: 0.8525 Epoch 4/25 408/408 - 144s - loss: 0.5339 - auc: 0.8479 - val_loss: 0.6366 - val_auc: 0.7912 Epoch 5/25 408/408 - 139s - loss: 0.5006 - auc: 0.8572 - val_loss: 0.7557 - val_auc: 0.8531 Epoch 6/25 408/408 - 140s - loss: 0.4760 - auc: 0.8725 - val_loss: 0.2821 - val_auc: 0.8140 Epoch 7/25 408/408 - 146s - loss: 0.4729 - auc: 0.8781 - val_loss: 0.4087 - val_auc: 0.8631 Epoch 8/25 408/408 - 139s - loss: 0.4344 - auc: 0.9005 - val_loss: 0.3831 - val_auc: 0.8518 Epoch 9/25 408/408 - 138s - loss: 0.4148 - auc: 0.9081 - val_loss: 0.3328 - val_auc: 0.8447 Epoch 10/25 408/408 - 139s - loss: 0.4234 - auc: 0.9058 - val_loss: 0.2685 - val_auc: 0.8798 Epoch 11/25 408/408 - 142s - loss: 0.4121 - auc: 0.9129 - val_loss: 0.3698 - val_auc: 0.8625 Epoch 12/25 408/408 - 139s - loss: 0.4006 - auc: 0.9194 - val_loss: 0.3287 - val_auc: 0.8915 Epoch 13/25 408/408 - 139s - loss: 0.3891 - auc: 0.9254 - val_loss: 0.6094 - val_auc: 0.8477 Epoch 14/25 408/408 - 141s - loss: 0.3815 - auc: 0.9255 - val_loss: 0.3927 - val_auc: 0.8242 Epoch 15/25 408/408 - 139s - loss: 0.3694 - auc: 0.9361 - val_loss: 0.3596 - val_auc: 0.8811 Epoch 16/25 408/408 - 139s - loss: 0.3507 - auc: 0.9424 - val_loss: 0.3919 - val_auc: 0.8972 Epoch 17/25 408/408 - 139s - loss: 0.3349 - auc: 0.9512 - val_loss: 0.3917 - val_auc: 0.8796 Epoch 18/25 408/408 - 138s - loss: 0.3244 - auc: 0.9568 - val_loss: 0.4386 - val_auc: 0.8936 Epoch 19/25 408/408 - 140s - loss: 0.3032 - auc: 0.9635 - val_loss: 0.2599 - val_auc: 0.8978 Epoch 20/25 408/408 - 139s - loss: 0.2978 - auc: 0.9653 - val_loss: 0.2680 - val_auc: 0.8872 Epoch 21/25 408/408 - 141s - loss: 0.2585 - auc: 0.9775 - val_loss: 0.3013 - val_auc: 0.8902 Epoch 22/25 408/408 - 139s - loss: 0.2553 - auc: 0.9792 - val_loss: 0.2838 - val_auc: 0.9049 Epoch 23/25 408/408 - 141s - loss: 0.2520 - auc: 0.9792 - val_loss: 0.2890 - val_auc: 0.9038 Epoch 24/25 408/408 - 140s - loss: 0.2374 - auc: 0.9841 - val_loss: 0.2680 - val_auc: 0.9005 Epoch 25/25 408/408 - 139s - loss: 0.2374 - auc: 0.9843 - val_loss: 0.2697 - val_auc: 0.9005 Last model evaluation... Last model inference (TTA 25 steps)... Best model evaluation... Best model inference (TTA 25 steps)... FOLD: 3 Epoch 1/25 408/408 - 149s - loss: 1.1720 - auc: 0.7271 - val_loss: 0.1744 - val_auc: 0.6360 Epoch 2/25 408/408 - 149s - loss: 0.5507 - auc: 0.8441 - val_loss: 0.1939 - val_auc: 0.6844 Epoch 3/25 408/408 - 148s - loss: 0.5058 - auc: 0.8589 - val_loss: 0.3885 - val_auc: 0.8607 Epoch 4/25 408/408 - 150s - loss: 0.5285 - auc: 0.8505 - val_loss: 0.4079 - val_auc: 0.8370 Epoch 5/25 408/408 - 149s - loss: 0.4942 - auc: 0.8637 - val_loss: 0.5155 - val_auc: 0.8279 Epoch 6/25 408/408 - 150s - loss: 0.4860 - auc: 0.8649 - val_loss: 0.5217 - val_auc: 0.8420 Epoch 7/25 408/408 - 145s - loss: 0.4461 - auc: 0.8891 - val_loss: 0.5477 - val_auc: 0.7847 Epoch 8/25 408/408 - 148s - loss: 0.4492 - auc: 0.8907 - val_loss: 0.4068 - val_auc: 0.8478 Epoch 9/25 408/408 - 145s - loss: 0.4383 - auc: 0.8924 - val_loss: 0.3346 - val_auc: 0.8607 Epoch 10/25 408/408 - 148s - loss: 0.4140 - auc: 0.9097 - val_loss: 0.4308 - val_auc: 0.8583 Epoch 11/25 408/408 - 143s - loss: 0.4326 - auc: 0.9001 - val_loss: 0.3784 - val_auc: 0.8515 Epoch 12/25 408/408 - 145s - loss: 0.4062 - auc: 0.9162 - val_loss: 0.2820 - val_auc: 0.8529 Epoch 13/25 408/408 - 152s - loss: 0.3969 - auc: 0.9224 - val_loss: 0.5535 - val_auc: 0.8801 Epoch 14/25 408/408 - 147s - loss: 0.3705 - auc: 0.9303 - val_loss: 0.3018 - val_auc: 0.8591 Epoch 15/25 408/408 - 150s - loss: 0.3705 - auc: 0.9347 - val_loss: 0.4215 - val_auc: 0.8524 Epoch 16/25 408/408 - 143s - loss: 0.3468 - auc: 0.9420 - val_loss: 0.3081 - val_auc: 0.8652 Epoch 17/25 408/408 - 150s - loss: 0.3313 - auc: 0.9511 - val_loss: 0.2978 - val_auc: 0.8725 Epoch 18/25 408/408 - 146s - loss: 0.3187 - auc: 0.9567 - val_loss: 0.2542 - val_auc: 0.8754 Epoch 19/25 408/408 - 150s - loss: 0.2957 - auc: 0.9648 - val_loss: 0.2455 - val_auc: 0.8672 Epoch 20/25 408/408 - 145s - loss: 0.2855 - auc: 0.9697 - val_loss: 0.2919 - val_auc: 0.8630 Epoch 21/25 408/408 - 148s - loss: 0.2806 - auc: 0.9714 - val_loss: 0.2798 - val_auc: 0.8683 Epoch 22/25 408/408 - 145s - loss: 0.2517 - auc: 0.9785 - val_loss: 0.3469 - val_auc: 0.8822 Epoch 23/25 408/408 - 148s - loss: 0.2355 - auc: 0.9841 - val_loss: 0.3256 - val_auc: 0.8883 Epoch 24/25 408/408 - 147s - loss: 0.2316 - auc: 0.9851 - val_loss: 0.2705 - val_auc: 0.8842 Epoch 25/25 408/408 - 143s - loss: 0.2232 - auc: 0.9873 - val_loss: 0.2706 - val_auc: 0.8848 Last model evaluation... Last model inference (TTA 25 steps)... Best model evaluation... Best model inference (TTA 25 steps)... FOLD: 4 Epoch 1/25 408/408 - 150s - loss: 1.3047 - auc: 0.7255 - val_loss: 0.2129 - val_auc: 0.3756 Epoch 2/25 408/408 - 149s - loss: 0.5269 - auc: 0.8519 - val_loss: 0.2027 - val_auc: 0.6503 Epoch 3/25 408/408 - 148s - loss: 0.5088 - auc: 0.8602 - val_loss: 0.3177 - val_auc: 0.8657 Epoch 4/25 408/408 - 146s - loss: 0.4965 - auc: 0.8637 - val_loss: 0.3331 - val_auc: 0.8419 Epoch 5/25 408/408 - 148s - loss: 0.5099 - auc: 0.8562 - val_loss: 0.3309 - val_auc: 0.8765 Epoch 6/25 408/408 - 140s - loss: 0.4817 - auc: 0.8662 - val_loss: 1.0217 - val_auc: 0.8450 Epoch 7/25 408/408 - 143s - loss: 0.4676 - auc: 0.8770 - val_loss: 0.3531 - val_auc: 0.8796 Epoch 8/25 408/408 - 141s - loss: 0.4693 - auc: 0.8751 - val_loss: 0.5131 - val_auc: 0.9037 Epoch 9/25 408/408 - 142s - loss: 0.4275 - auc: 0.8990 - val_loss: 0.3979 - val_auc: 0.8893 Epoch 10/25 408/408 - 142s - loss: 0.4374 - auc: 0.8914 - val_loss: 0.8738 - val_auc: 0.8437 Epoch 11/25 408/408 - 142s - loss: 0.4223 - auc: 0.9046 - val_loss: 0.3543 - val_auc: 0.8808 Epoch 12/25 408/408 - 142s - loss: 0.4182 - auc: 0.9067 - val_loss: 0.3024 - val_auc: 0.8862 Epoch 13/25 408/408 - 144s - loss: 0.4118 - auc: 0.9144 - val_loss: 1.0908 - val_auc: 0.8471 Epoch 14/25 408/408 - 143s - loss: 0.4006 - auc: 0.9190 - val_loss: 0.4312 - val_auc: 0.8784 Epoch 15/25 408/408 - 142s - loss: 0.3657 - auc: 0.9344 - val_loss: 0.2889 - val_auc: 0.8589 Epoch 16/25 408/408 - 142s - loss: 0.3656 - auc: 0.9353 - val_loss: 0.4130 - val_auc: 0.8836 Epoch 17/25 408/408 - 142s - loss: 0.3435 - auc: 0.9453 - val_loss: 0.3969 - val_auc: 0.8719 Epoch 18/25 408/408 - 142s - loss: 0.3292 - auc: 0.9503 - val_loss: 0.5234 - val_auc: 0.8915 Epoch 00018: early stopping Last model evaluation... Last model inference (TTA 25 steps)... Best model evaluation... Best model inference (TTA 25 steps)... FOLD: 5 Epoch 1/25 408/408 - 138s - loss: 1.1062 - auc: 0.7312 - val_loss: 0.1750 - val_auc: 0.4583 Epoch 2/25 408/408 - 138s - loss: 0.5368 - auc: 0.8487 - val_loss: 0.2057 - val_auc: 0.5969 Epoch 3/25 408/408 - 141s - loss: 0.5105 - auc: 0.8574 - val_loss: 0.5717 - val_auc: 0.8518 Epoch 4/25 408/408 - 140s - loss: 0.5071 - auc: 0.8597 - val_loss: 0.4976 - val_auc: 0.8366 Epoch 5/25 408/408 - 146s - loss: 0.5105 - auc: 0.8546 - val_loss: 0.3420 - val_auc: 0.8437 Epoch 6/25 408/408 - 140s - loss: 0.4721 - auc: 0.8772 - val_loss: 0.3763 - val_auc: 0.8288 Epoch 7/25 408/408 - 141s - loss: 0.4629 - auc: 0.8822 - val_loss: 0.4596 - val_auc: 0.8585 Epoch 8/25 408/408 - 143s - loss: 0.4467 - auc: 0.8933 - val_loss: 0.5264 - val_auc: 0.8700 Epoch 9/25 408/408 - 142s - loss: 0.4328 - auc: 0.8978 - val_loss: 0.4177 - val_auc: 0.8681 Epoch 10/25 408/408 - 142s - loss: 0.4295 - auc: 0.9040 - val_loss: 0.2681 - val_auc: 0.8794 Epoch 11/25 408/408 - 143s - loss: 0.4001 - auc: 0.9158 - val_loss: 0.3823 - val_auc: 0.8509 Epoch 12/25 408/408 - 141s - loss: 0.4058 - auc: 0.9154 - val_loss: 0.3573 - val_auc: 0.8603 Epoch 13/25 408/408 - 141s - loss: 0.3936 - auc: 0.9226 - val_loss: 0.4060 - val_auc: 0.8714 Epoch 14/25 408/408 - 142s - loss: 0.3788 - auc: 0.9292 - val_loss: 0.5670 - val_auc: 0.8686 Epoch 15/25 408/408 - 141s - loss: 0.3713 - auc: 0.9336 - val_loss: 0.5811 - val_auc: 0.8503 Epoch 16/25 408/408 - 143s - loss: 0.3567 - auc: 0.9418 - val_loss: 0.2765 - val_auc: 0.8795 Epoch 17/25 408/408 - 142s - loss: 0.3378 - auc: 0.9480 - val_loss: 0.5983 - val_auc: 0.8812 Epoch 18/25 408/408 - 141s - loss: 0.3140 - auc: 0.9601 - val_loss: 0.2750 - val_auc: 0.8484 Epoch 19/25 408/408 - 142s - loss: 0.3175 - auc: 0.9590 - val_loss: 0.3299 - val_auc: 0.8727 Epoch 20/25 408/408 - 141s - loss: 0.2859 - auc: 0.9698 - val_loss: 0.3239 - val_auc: 0.8892 Epoch 21/25 408/408 - 143s - loss: 0.2695 - auc: 0.9745 - val_loss: 0.2528 - val_auc: 0.8865 Epoch 22/25 408/408 - 144s - loss: 0.2526 - auc: 0.9795 - val_loss: 0.2476 - val_auc: 0.8705 Epoch 23/25 408/408 - 141s - loss: 0.2444 - auc: 0.9823 - val_loss: 0.2859 - val_auc: 0.8829 Epoch 24/25 408/408 - 143s - loss: 0.2326 - auc: 0.9857 - val_loss: 0.2601 - val_auc: 0.8804 Epoch 25/25 408/408 - 140s - loss: 0.2301 - auc: 0.9853 - val_loss: 0.2612 - val_auc: 0.8816 Last model evaluation... Last model inference (TTA 25 steps)... Best model evaluation... Best model inference (TTA 25 steps)...
MIT
Model backlog/Train/64-melanoma-5fold-seresnet18-radam.ipynb
dimitreOliveira/melanoma-classification
Model loss graph
for n_fold in range(config['N_USED_FOLDS']): print(f'Fold: {n_fold + 1}') plot_metrics(history_list[n_fold])
Fold: 1
MIT
Model backlog/Train/64-melanoma-5fold-seresnet18-radam.ipynb
dimitreOliveira/melanoma-classification
Model loss graph aggregated
plot_metrics_agg(history_list, config['N_USED_FOLDS'])
_____no_output_____
MIT
Model backlog/Train/64-melanoma-5fold-seresnet18-radam.ipynb
dimitreOliveira/melanoma-classification
Model evaluation (best)
display(evaluate_model(k_fold_best, config['N_USED_FOLDS']).style.applymap(color_map)) display(evaluate_model_Subset(k_fold_best, config['N_USED_FOLDS']).style.applymap(color_map))
_____no_output_____
MIT
Model backlog/Train/64-melanoma-5fold-seresnet18-radam.ipynb
dimitreOliveira/melanoma-classification
Model evaluation (last)
display(evaluate_model(k_fold, config['N_USED_FOLDS']).style.applymap(color_map)) display(evaluate_model_Subset(k_fold, config['N_USED_FOLDS']).style.applymap(color_map))
_____no_output_____
MIT
Model backlog/Train/64-melanoma-5fold-seresnet18-radam.ipynb
dimitreOliveira/melanoma-classification
Confusion matrix
for n_fold in range(config['N_USED_FOLDS']): n_fold += 1 pred_col = f'pred_fold_{n_fold}' train_set = k_fold_best[k_fold_best[f'fold_{n_fold}'] == 'train'] valid_set = k_fold_best[k_fold_best[f'fold_{n_fold}'] == 'validation'] print(f'Fold: {n_fold}') plot_confusion_matrix(train_set['target'], np.round(train_set[pred_col]), valid_set['target'], np.round(valid_set[pred_col]))
Fold: 1
MIT
Model backlog/Train/64-melanoma-5fold-seresnet18-radam.ipynb
dimitreOliveira/melanoma-classification
Visualize predictions
k_fold['pred'] = 0 for n_fold in range(config['N_USED_FOLDS']): k_fold['pred'] += k_fold[f'pred_fold_{n_fold+1}'] / config['N_FOLDS'] print('Label/prediction distribution') print(f"Train positive labels: {len(k_fold[k_fold['target'] > .5])}") print(f"Train positive predictions: {len(k_fold[k_fold['pred'] > .5])}") print(f"Train positive correct predictions: {len(k_fold[(k_fold['target'] > .5) & (k_fold['pred'] > .5)])}") print('Top 10 samples') display(k_fold[['image_name', 'sex', 'age_approx','anatom_site_general_challenge', 'diagnosis', 'target', 'pred'] + [c for c in k_fold.columns if (c.startswith('pred_fold'))]].head(10)) print('Top 10 positive samples') display(k_fold[['image_name', 'sex', 'age_approx','anatom_site_general_challenge', 'diagnosis', 'target', 'pred'] + [c for c in k_fold.columns if (c.startswith('pred_fold'))]].query('target == 1').head(10)) print('Top 10 predicted positive samples') display(k_fold[['image_name', 'sex', 'age_approx','anatom_site_general_challenge', 'diagnosis', 'target', 'pred'] + [c for c in k_fold.columns if (c.startswith('pred_fold'))]].query('pred > .5').head(10))
Label/prediction distribution Train positive labels: 581 Train positive predictions: 2647 Train positive correct predictions: 578 Top 10 samples
MIT
Model backlog/Train/64-melanoma-5fold-seresnet18-radam.ipynb
dimitreOliveira/melanoma-classification
Visualize test predictions
print(f"Test predictions {len(test[test['target'] > .5])}|{len(test[test['target'] <= .5])}") print(f"Test predictions (last) {len(test[test['target_last'] > .5])}|{len(test[test['target_last'] <= .5])}") print('Top 10 samples') display(test[['image_name', 'sex', 'age_approx','anatom_site_general_challenge', 'target', 'target_last'] + [c for c in test.columns if (c.startswith('pred_fold'))]].head(10)) print('Top 10 positive samples') display(test[['image_name', 'sex', 'age_approx','anatom_site_general_challenge', 'target', 'target_last'] + [c for c in test.columns if (c.startswith('pred_fold'))]].query('target > .5').head(10)) print('Top 10 positive samples (last)') display(test[['image_name', 'sex', 'age_approx','anatom_site_general_challenge', 'target', 'target_last'] + [c for c in test.columns if (c.startswith('pred_fold'))]].query('target_last > .5').head(10))
Test predictions 1506|9476 Test predictions (last) 1172|9810 Top 10 samples
MIT
Model backlog/Train/64-melanoma-5fold-seresnet18-radam.ipynb
dimitreOliveira/melanoma-classification
Test set predictions
submission = pd.read_csv(database_base_path + 'sample_submission.csv') submission['target'] = test['target'] submission['target_last'] = test['target_last'] submission['target_blend'] = (test['target'] * .5) + (test['target_last'] * .5) display(submission.head(10)) display(submission.describe()) ### BEST ### submission[['image_name', 'target']].to_csv('submission.csv', index=False) ### LAST ### submission_last = submission[['image_name', 'target_last']] submission_last.columns = ['image_name', 'target'] submission_last.to_csv('submission_last.csv', index=False) ### BLEND ### submission_blend = submission[['image_name', 'target_blend']] submission_blend.columns = ['image_name', 'target'] submission_blend.to_csv('submission_blend.csv', index=False)
_____no_output_____
MIT
Model backlog/Train/64-melanoma-5fold-seresnet18-radam.ipynb
dimitreOliveira/melanoma-classification
CTA data analysis with Gammapy Introduction**This notebook shows an example how to make a sky image and spectrum for simulated CTA data with Gammapy.**The dataset we will use is three observation runs on the Galactic center. This is a tiny (and thus quick to process and play with and learn) subset of the simulated CTA dataset that was produced for the first data challenge in August 2017. SetupAs usual, we'll start with some setup ...
%matplotlib inline import matplotlib.pyplot as plt !gammapy info --no-envvar --no-system import numpy as np import astropy.units as u from astropy.coordinates import SkyCoord from astropy.convolution import Gaussian2DKernel from regions import CircleSkyRegion from gammapy.modeling import Fit from gammapy.data import DataStore from gammapy.datasets import ( Datasets, FluxPointsDataset, SpectrumDataset, MapDataset, ) from gammapy.modeling.models import ( PowerLawSpectralModel, SkyModel, GaussianSpatialModel, ) from gammapy.maps import MapAxis, WcsNDMap, WcsGeom, RegionGeom from gammapy.makers import ( MapDatasetMaker, SafeMaskMaker, SpectrumDatasetMaker, ReflectedRegionsBackgroundMaker, ) from gammapy.estimators import TSMapEstimator, FluxPointsEstimator from gammapy.estimators.utils import find_peaks from gammapy.visualization import plot_spectrum_datasets_off_regions # Configure the logger, so that the spectral analysis # isn't so chatty about what it's doing. import logging logging.basicConfig() log = logging.getLogger("gammapy.spectrum") log.setLevel(logging.ERROR)
_____no_output_____
BSD-3-Clause
docs/tutorials/cta_data_analysis.ipynb
Jaleleddine/gammapy
Select observationsA Gammapy analysis usually starts by creating a `~gammapy.data.DataStore` and selecting observations.This is shown in detail in the other notebook, here we just pick three observations near the galactic center.
data_store = DataStore.from_dir("$GAMMAPY_DATA/cta-1dc/index/gps") # Just as a reminder: this is how to select observations # from astropy.coordinates import SkyCoord # table = data_store.obs_table # pos_obs = SkyCoord(table['GLON_PNT'], table['GLAT_PNT'], frame='galactic', unit='deg') # pos_target = SkyCoord(0, 0, frame='galactic', unit='deg') # offset = pos_target.separation(pos_obs).deg # mask = (1 < offset) & (offset < 2) # table = table[mask] # table.show_in_browser(jsviewer=True) obs_id = [110380, 111140, 111159] observations = data_store.get_observations(obs_id) obs_cols = ["OBS_ID", "GLON_PNT", "GLAT_PNT", "LIVETIME"] data_store.obs_table.select_obs_id(obs_id)[obs_cols]
_____no_output_____
BSD-3-Clause
docs/tutorials/cta_data_analysis.ipynb
Jaleleddine/gammapy
Make sky images Define map geometrySelect the target position and define an ON region for the spectral analysis
axis = MapAxis.from_edges( np.logspace(-1.0, 1.0, 10), unit="TeV", name="energy", interp="log" ) geom = WcsGeom.create( skydir=(0, 0), npix=(500, 400), binsz=0.02, frame="galactic", axes=[axis] ) geom
_____no_output_____
BSD-3-Clause
docs/tutorials/cta_data_analysis.ipynb
Jaleleddine/gammapy
Compute imagesExclusion mask currently unused. Remove here or move to later in the tutorial?
target_position = SkyCoord(0, 0, unit="deg", frame="galactic") on_radius = 0.2 * u.deg on_region = CircleSkyRegion(center=target_position, radius=on_radius) exclusion_mask = geom.to_image().region_mask([on_region], inside=False) exclusion_mask = WcsNDMap(geom.to_image(), exclusion_mask) exclusion_mask.plot(); %%time stacked = MapDataset.create(geom=geom) stacked.edisp = None maker = MapDatasetMaker(selection=["counts", "background", "exposure", "psf"]) maker_safe_mask = SafeMaskMaker(methods=["offset-max"], offset_max=2.5 * u.deg) for obs in observations: cutout = stacked.cutout(obs.pointing_radec, width="5 deg") dataset = maker.run(cutout, obs) dataset = maker_safe_mask.run(dataset, obs) stacked.stack(dataset) # The maps are cubes, with an energy axis. # Let's also make some images: dataset_image = stacked.to_image()
_____no_output_____
BSD-3-Clause
docs/tutorials/cta_data_analysis.ipynb
Jaleleddine/gammapy
Show imagesLet's have a quick look at the images we computed ...
dataset_image.counts.smooth(2).plot(vmax=5); dataset_image.background.plot(vmax=5); dataset_image.excess.smooth(3).plot(vmax=2);
_____no_output_____
BSD-3-Clause
docs/tutorials/cta_data_analysis.ipynb
Jaleleddine/gammapy
Source DetectionUse the class `~gammapy.estimators.TSMapEstimator` and function `gammapy.estimators.utils.find_peaks` to detect sources on the images. We search for 0.1 deg sigma gaussian sources in the dataset.
spatial_model = GaussianSpatialModel(sigma="0.05 deg") spectral_model = PowerLawSpectralModel(index=2) model = SkyModel(spatial_model=spatial_model, spectral_model=spectral_model) ts_image_estimator = TSMapEstimator( model, kernel_width="0.5 deg", selection_optional=[], downsampling_factor=2, sum_over_energy_groups=False, energy_edges=[0.1, 10] * u.TeV, ) %%time images_ts = ts_image_estimator.run(stacked) sources = find_peaks( images_ts["sqrt_ts"], threshold=5, min_distance="0.2 deg", ) sources source_pos = SkyCoord(sources["ra"], sources["dec"]) source_pos # Plot sources on top of significance sky image images_ts["sqrt_ts"].plot(add_cbar=True) plt.gca().scatter( source_pos.ra.deg, source_pos.dec.deg, transform=plt.gca().get_transform("icrs"), color="none", edgecolor="white", marker="o", s=200, lw=1.5, );
_____no_output_____
BSD-3-Clause
docs/tutorials/cta_data_analysis.ipynb
Jaleleddine/gammapy
Spatial analysisSee other notebooks for how to run a 3D cube or 2D image based analysis. SpectrumWe'll run a spectral analysis using the classical reflected regions background estimation method,and using the on-off (often called WSTAT) likelihood function.
energy_axis = MapAxis.from_energy_bounds(0.1, 40, 40, unit="TeV", name="energy") energy_axis_true = MapAxis.from_energy_bounds( 0.05, 100, 200, unit="TeV", name="energy_true" ) geom = RegionGeom.create(region=on_region, axes=[energy_axis]) dataset_empty = SpectrumDataset.create( geom=geom, energy_axis_true=energy_axis_true ) dataset_maker = SpectrumDatasetMaker( containment_correction=False, selection=["counts", "exposure", "edisp"] ) bkg_maker = ReflectedRegionsBackgroundMaker(exclusion_mask=exclusion_mask) safe_mask_masker = SafeMaskMaker(methods=["aeff-max"], aeff_percent=10) %%time datasets = Datasets() for observation in observations: dataset = dataset_maker.run( dataset_empty.copy(name=f"obs-{observation.obs_id}"), observation ) dataset_on_off = bkg_maker.run(dataset, observation) dataset_on_off = safe_mask_masker.run(dataset_on_off, observation) datasets.append(dataset_on_off) plt.figure(figsize=(8, 8)) _, ax, _ = dataset_image.counts.smooth("0.03 deg").plot(vmax=8) on_region.to_pixel(ax.wcs).plot(ax=ax, edgecolor="white") plot_spectrum_datasets_off_regions(datasets, ax=ax)
_____no_output_____
BSD-3-Clause
docs/tutorials/cta_data_analysis.ipynb
Jaleleddine/gammapy
Model fitThe next step is to fit a spectral model, using all data (i.e. a "global" fit, using all energies).
%%time spectral_model = PowerLawSpectralModel( index=2, amplitude=1e-11 * u.Unit("cm-2 s-1 TeV-1"), reference=1 * u.TeV ) model = SkyModel(spectral_model=spectral_model, name="source-gc") datasets.models = model fit = Fit(datasets) result = fit.run() print(result)
_____no_output_____
BSD-3-Clause
docs/tutorials/cta_data_analysis.ipynb
Jaleleddine/gammapy
Spectral pointsFinally, let's compute spectral points. The method used is to first choose an energy binning, and then to do a 1-dim likelihood fit / profile to compute the flux and flux error.
# Flux points are computed on stacked observation stacked_dataset = datasets.stack_reduce(name="stacked") print(stacked_dataset) energy_edges = MapAxis.from_energy_bounds("1 TeV", "30 TeV", nbin=5).edges stacked_dataset.models = model fpe = FluxPointsEstimator(energy_edges=energy_edges, source="source-gc") flux_points = fpe.run(datasets=[stacked_dataset]) flux_points.table_formatted
_____no_output_____
BSD-3-Clause
docs/tutorials/cta_data_analysis.ipynb
Jaleleddine/gammapy
PlotLet's plot the spectral model and points. You could do it directly, but for convenience we bundle the model and the flux points in a `FluxPointDataset`:
flux_points_dataset = FluxPointsDataset(data=flux_points, models=model) flux_points_dataset.plot_fit();
_____no_output_____
BSD-3-Clause
docs/tutorials/cta_data_analysis.ipynb
Jaleleddine/gammapy
Exercises* Re-run the analysis above, varying some analysis parameters, e.g. * Select a few other observations * Change the energy band for the map * Change the spectral model for the fit * Change the energy binning for the spectral points* Change the target. Make a sky image and spectrum for your favourite source. * If you don't know any, the Crab nebula is the "hello world!" analysis of gamma-ray astronomy.
# print('hello world') # SkyCoord.from_name('crab')
_____no_output_____
BSD-3-Clause
docs/tutorials/cta_data_analysis.ipynb
Jaleleddine/gammapy
Vuoi conoscere gli incendi divampati dopo il 15 settembre 2019?
mes = australia_1[(australia_1["acq_date"]>= "2019-09-15")] mes.head() mes.describe() map_sett = folium.Map([-25.274398,133.775136], zoom_start=4) lat_3 = mes["latitude"].values.tolist() long_3 = mes["longitude"].values.tolist() australia_cluster_3 = MarkerCluster().add_to(map_sett) for lat_3,long_3 in zip(lat_3,long_3): folium.Marker([lat_3,long_3]).add_to(australia_cluster_3) map_sett
_____no_output_____
BSD-3-Clause
courses/08_Plotly_Bokeh/Fire_Australia19.ipynb
visiont3lab/data-visualization
Play with Folium
44.4807035,11.3712528 import folium m1 = folium.Map(location=[44.48, 11.37], tiles='openstreetmap', zoom_start=18) m1.save('map1.html') m1 m3.save("filename.png")
_____no_output_____
BSD-3-Clause
courses/08_Plotly_Bokeh/Fire_Australia19.ipynb
visiont3lab/data-visualization
from google.colab import drive drive.mount('/content/drive')
Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).
MIT
Combineinator_Library.ipynb
combineinator/combine-inator-acikhack2021
CombineInator (parent class)
class CombineInator: def __init__(self): self.source = "" def translate_model(self, source): if source == "en": tokenizer_trs = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-trk") model_trs = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-trk") pipe_trs = "translation_en_to_trk" elif source == "tr": tokenizer_trs = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-tr-en") model_trs = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-tr-en") pipe_trs = "translation_tr_to_en" return model_trs, tokenizer_trs, pipe_trs def translate(self, pipe, model, tokenizer, response): translator = pipeline(pipe, model=model, tokenizer=tokenizer) # elde edilen cümleleri hedeflnen dile çevirme: trans = translator(response)[0]["translation_text"] return trans
_____no_output_____
MIT
Combineinator_Library.ipynb
combineinator/combine-inator-acikhack2021
WikiWebScraper (child)
import requests import re from bs4 import BeautifulSoup from tqdm import tqdm from os.path import exists, basename, splitext class WikiWebScraper(CombineInator): def __init__(self): self.__HEADERS_PARAM = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.104 Safari/537.36"} def category_scraping_interface(self, CATEGORY_QUERY, LIMIT, SAVE_PATH, PAGE_PER_SAVE, REMOVE_NUMBERS, JUST_TITLE_ANALYSIS, TEXT_INTO_SENTENCES_PARAM): """ Kategorik verilerin ayıklanma işlemleri bu fonksiyonda yönetilir. :param CATEGORY_QUERY: Ayıklanacak kategori sorgusu. :type CATEGORY_QUERY: str :param SAVE_PATH: Ayıklanan verinin kaydedileceği yol. :type SAVE_PATH: str :param LIMIT: Ayıklanması istenen veri limiti. Verilmediği taktirde tüm verileri çeker. :type LIMIT: int :param PAGE_PER_SAVE: Belirlenen aralıkla ayıklanan kategorik verinin kaydedilmesini sağlar. :type PAGE_PER_SAVE: int :param TEXT_INTO_SENTENCES_PARAM: Ayıklanan verilerin cümleler halinde mi, yoksa metin halinde mi kaydedileceğini belirler. :type TEXT_INTO_SENTENCES_PARAM: bool :param REMOVE_NUMBERS: Ayıklanan verilerden rakamların silinip silinmemesini belirler. :type REMOVE_NUMBERS: bool :param JUST_TITLE_ANALYSIS: Sadece sayfaların başlık bilgilerinin toplanmasını sağlar. :type JUST_TITLE_ANALYSIS: bool """ sub_list = [] page_list = [] text_list = [] page_list, sub_list = self.first_variable(CATEGORY_QUERY, (LIMIT - len(text_list))) fv = True if page_list and sub_list is not None: with tqdm(total=LIMIT, desc="Sayfa taranıyor.") as pbar: while len(page_list) < LIMIT: if fv is True: pbar.update(len(page_list)) fv = False temp_soup = "" if len(sub_list) == 0: break temp_soup = self.sub_scraper(sub_list[0]) if (temp_soup == False): break del sub_list[0] sub_list = sub_list + self.sub_category_scraper(temp_soup) temp_page_scraper = self.page_scraper(temp_soup, (LIMIT - len(page_list))) if temp_page_scraper is not None: for i in temp_page_scraper: if i not in page_list: page_list.append(i) pbar.update(1) if len(sub_list) == 0: sub_list = sub_list + self.sub_category_scraper(temp_soup) temp_range = 0 loop_counter = 0 if JUST_TITLE_ANALYSIS is False: for i in range(PAGE_PER_SAVE, len(page_list)+PAGE_PER_SAVE, PAGE_PER_SAVE): if loop_counter == (len(page_list) // PAGE_PER_SAVE): PATH = SAVE_PATH + "/" + CATEGORY_QUERY + "_" + str(temp_range) + " - " + str(len(page_list)) + ".txt" temp_text_list = self.text_into_sentences(self.text_scraper(page_list[temp_range:i], (len(page_list) % PAGE_PER_SAVE)), REMOVE_NUMBERS,TEXT_INTO_SENTENCES_PARAM) else: PATH = SAVE_PATH + "/" + CATEGORY_QUERY + "_" + str(temp_range) + " - " + str(i) + ".txt" temp_text_list = self.text_into_sentences(self.text_scraper(page_list[temp_range:i], PAGE_PER_SAVE), REMOVE_NUMBERS, TEXT_INTO_SENTENCES_PARAM) text_list += temp_text_list self.save_to_csv(PATH, temp_text_list) temp_range = i loop_counter += 1 print("\n\n"+str(len(page_list)) + " adet sayfa bulundu ve içerisinden " + str(len(text_list)) + " satır farklı metin ayrıştırıldı.") return text_list else: PATH = SAVE_PATH + "/" + CATEGORY_QUERY + "_" + str(len(page_list)) + "_page_links" + ".txt" self.save_to_csv(PATH, page_list, JUST_TITLE_ANALYSIS) print("\n\n"+str(len(page_list)) + " adet sayfa bulundu ve sayfaların adresleri \"" + PATH + "\" konumunda kaydedildi.") return page_list else: print("Aranan kategori bulunamadı.") def categorical_scraper(self, CATEGORY_QUERY, save_path, LIMIT=-1, page_per_save=10000, text_into_sentences_param=True, remove_numbers=False, just_title_analysis=False): """ Wikipedia üzerinden kategorik olarak veri çekmek için kullanılır. :param CATEGORY_QUERY: Ayıklanacak kategori sorgusu. :type CATEGORY_QUERY: str :param save_path: Ayıklanan verinin kaydedileceği yol. :type save_path: str :param LIMIT: Ayıklanması istenen veri limiti. Verilmediği taktirde tüm verileri çeker. :type LIMIT: int :param page_per_save: Belirlenen aralıkla ayıklanan kategorik verinin kaydedilmesini sağlar. :type page_per_save: int :param text_into_sentences_param: Ayıklanan verilerin cümleler halinde mi, yoksa metin halinde mi kaydedileceğini belirler. :type text_into_sentences_param: bool :param remove_numbers: Ayıklanan verilerden rakamların silinip silinmemesini belirler. :type remove_numbers: bool :param just_title_analysis: Sadece sayfaların başlık bilgilerinin toplanmasını sağlar. :type just_title_analysis: bool """ if LIMIT == -1: LIMIT = 9999999 CATEGORY_QUERY = CATEGORY_QUERY.replace(" ","_") return_list = self.category_scraping_interface(CATEGORY_QUERY, LIMIT, save_path, page_per_save, remove_numbers, just_title_analysis, text_into_sentences_param) if return_list is None: return [] else: return return_list def text_scraper_from_pagelist(self, page_list_path, save_path, page_per_save=10000, remove_numbers=False, text_into_sentences_param=True, RANGE=None): """ Wikipedia üzerinden kategorik olarak veri çekmek için kullanılır. :param page_list_path: Toplanan sayfaların başlık bilgilerinin çıkartılmasını sağlar :type page_list_path: str :param save_path: Ayıklanan verinin kaydedileceği yol. :type save_path: str :param page_per_save: Belirlenen aralıkla ayıklanan kategorik verinin kaydedilmesini sağlar. :type page_per_save: int :param text_into_sentences_param: Ayıklanan verilerin cümleler halinde mi, yoksa metin halinde mi kaydedileceğini belirler. :type text_into_sentences_param: bool :param remove_numbers: Ayıklanan verilerden rakamların silinip silinmemesini belirler. :type remove_numbers: bool :param RANGE: Ayıklnacak verilerin aralığını belirler. "RANGE = [500,1000]" şeklinde kullanılır. Verilmediği zaman tüm veri ayıklanır. :type RANGE: list """ page_list = [] text_list = [] with open(page_list_path, 'r') as f: page_list = [line.strip() for line in f] if RANGE is not None: page_list = page_list[RANGE[0]:RANGE[1]] temp_range = 0 loop_counter = 0 for i in range(page_per_save, len(page_list)+page_per_save, page_per_save): if loop_counter == (len(page_list) // page_per_save): PATH = save_path + "/" + "scraped_page" + "_" + str(temp_range) + " - " + str(len(page_list)) + ".txt" temp_text_list = self.text_into_sentences(self.text_scraper(page_list[temp_range:i], (len(page_list) % page_per_save), True), remove_numbers, text_into_sentences_param) else: PATH = save_path + "/" + "scraped_page" + "_" + str(temp_range) + " - " + str(i) + ".txt" temp_text_list = self.text_into_sentences(self.text_scraper(page_list[temp_range:i], page_per_save, True), remove_numbers, text_into_sentences_param) text_list += temp_text_list save_to_csv(PATH, temp_text_list) temp_range = i loop_counter += 1 print("\n\"" + page_list_path + "\" konumundaki " + str(len(page_list)) + " adet sayfa içerisinden " + str(len(text_list)) + " satır metin ayrıştırıldı.") return text_list def page_scraper(self, page_soup, LIMIT): """ Gönderilen wikipedia SOUP objesinin içerisindeki kategorik içerik sayfaları döndürür. :param page_soup: Wikipedia kategori sayfasının SOUP objesidir. :param LIMIT: Ayıklanacaj sayfa limitini belirler. :type LIMIT: int """ page_list = [] try: pages = page_soup.find("div", attrs={"id": "mw-pages"}).find_all("a") for page in pages[1:]: if len(page_list) == LIMIT: break else: page_list.append([page.text, page["href"]]) return page_list except: pass def sub_category_scraper(self, sub_soup): """ Gönderilen wikipedia SOUP objesinin içerisindeki alt kategorileri döndürür. :param sub_soup: Alt kategori sayfasının SOUP objesidir. """ sub_list = [] try: sub_categories = sub_soup.find_all("div", attrs={"class": "CategoryTreeItem"}) for sub in sub_categories[1:]: sub_list.append([sub.a.text, sub.a["href"]]) return sub_list except: print("Aranan kategori için yeterli sayfa bulunamadı.") def sub_scraper(self, sub): """ Fonksiyona gelen wikipedia kategori/alt kategorisinin SOUP objesini döndürür. :param sub: Alt kategori sayfasının linkini içerir. """ try: req = requests.get("https://tr.wikipedia.org" + str(sub[1]), headers=self.__HEADERS_PARAM) soup = BeautifulSoup(req.content, "lxml") return soup except: print("\nAlt kategori kalmadı") return False def text_scraper(self, page_list, LIMIT, IS_FROM_TXT=False): """ Önceden ayıklanmış sayfa listesini içerisindeki sayfaları ayıklayarak içerisindeki metin listesini döndürür. :param page_list: Sayfa listesini içerir. :parama LIMIT: Ayıklanacaj sayfa limitini belirler. :type LIMIT: int :param IS_FROM_TXT: Ayıklanacak sayfanın listeleden mi olup olmadığını kontrol eder. """ text_list = [] with tqdm(total=LIMIT, desc="Sayfa Ayrıştırılıyor") as pbar: for page in page_list: if len(text_list) == LIMIT: break if IS_FROM_TXT is False: req = requests.get("https://tr.wikipedia.org" + str(page[1]), headers=self.__HEADERS_PARAM) else: req = requests.get("https://tr.wikipedia.org" + str(page), headers=self.__HEADERS_PARAM) soup = BeautifulSoup(req.content, "lxml") page_text = soup.find_all("p") temp_text = "" for i in page_text[1:]: temp_text = temp_text + i.text text_list.append(temp_text) pbar.update(1) return text_list def first_variable(self, CATEGORY_QUERY, LIMIT): """ Sorguda verilen kategorinin doğruluğunu kontrol eder ve eğer sorgu doğru ise ilk değerleri ayıklar. :param CATEGORY_QUERY: Ayıklanacak kategori sorgusu. :type CATEGORY_QUERY: str :param LIMIT: Ayıklanması istenen veri limiti. Verilmediği taktirde tüm verileri çeker. :type LIMIT: int """ first_req = requests.get("https://tr.wikipedia.org/wiki/Kategori:" + CATEGORY_QUERY, headers=self.__HEADERS_PARAM) first_soup = BeautifulSoup(first_req.content, "lxml") page_list = self.page_scraper(first_soup, LIMIT) sub_list = self.sub_category_scraper(first_soup) return page_list, sub_list def text_into_sentences(self, texts, remove_numbers, text_into_sentences_param): """ Metin verilerini cümlelerine ayıklar. :param texts: Düzlenecek metin verisi. :param remove_numbers: Sayıların temizlenip temizlenmeyeceğini kontrol eder. :param text_into_sentences_param: Metinlerin cümlelere çevrilip çevrilmeyeceğini kontrol eder. """ flatlist = [] sent_list = [] texts = self.sentence_cleaning(texts, remove_numbers) if text_into_sentences_param is True: for line in texts: temp_line = re.split(r'(?<![IVX0-9]\S)(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s', line) for i in temp_line: if len(i.split(" ")) > 3: sent_list.append(i) else: sent_list = texts flatlist = list(dict.fromkeys(self.flat(sent_list, flatlist))) return flatlist def flat(self, sl,fl): """ Metinler, cümlelerine ayırıldıktan sonra listenin düzlenmesine yarar. :param sl: Yollanan listle. :param fl: Düzlemem liste. """ for e in sl: if type(e) == list: flat(e,fl) elif len(e.split(" "))>3: fl.append(e) return fl def sentence_cleaning(self, sentences, remove_numbers): """ Ayıklanan wikipedia verilerinin temizlenmesi bu fonksiyonda gerçekleşir. :param sentences: Temizlenmek için gelen veri seti. :param remove_numbers: Sayıların temizlenip temizlenmeyeceğini kontrol eder. """ return_list = [] if remove_numbers is False: removing_func = '[^[a-zA-ZğüışöçĞÜIİŞÖÇ0-9.,!:;`?%&\-\'" ]' else: removing_func = '[^[a-zA-ZğüışöçĞÜIİŞÖÇ.,!:;`?%&\-\'" ]' for input_text in sentences: try: input_text = re.sub(r'(\[.*?\])', '', input_text) input_text = re.sub(r'(\(.*?\))', '', input_text) input_text = re.sub(r'(\{.*?\})', '', input_text) input_text = re.sub(removing_func, '', input_text) input_text = re.sub("(=+(\s|.)*)", "", input_text) input_text = re.sub("(\s{2,})", "", input_text) input_text = input_text.replace("''", "") input_text = input_text.replace("\n", "") return_list.append(input_text) except: pass return return_list def save_to_csv(self, PATH, data, is_just_title_analysis=False): """ Verilerin 'csv' formatında kaydedilmesini bu fonksiyonda gerçekleşir. :param PATH: Kaydedilecek yol. :param data: Kaydedilecek veri. :param is_just_title_analysis: Sadece analiz yapılıp yapılmadığını kontrol eder. """ if is_just_title_analysis is False: with open(PATH, "w") as output: for i in data: output.write(i+"\n") else: temp_data = [] for i in data: temp_data.append(i[1]) with open(PATH, "w") as output: for i in temp_data: output.write(i+"\n")
_____no_output_____
MIT
Combineinator_Library.ipynb
combineinator/combine-inator-acikhack2021
Örnek kullanım
library = WikiWebScraper() PATH = "/content/" library.categorical_scraper("savaş", PATH, 20, text_into_sentences_param=False)
Sayfa taranıyor.: 100%|██████████| 20/20 [00:00<00:00, 52.99it/s] Sayfa Ayrıştırılıyor: 100%|██████████| 20/20 [00:04<00:00, 4.68it/s]
MIT
Combineinator_Library.ipynb
combineinator/combine-inator-acikhack2021
speechModule (child)
!pip install transformers !pip install simpletransformers from os import path from IPython.display import Audio from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM, Wav2Vec2Processor, Wav2Vec2ForCTC import librosa import torch class speechModule(CombineInator): def __init__(self): self.SAMPLING_RATE = 16_000 self.git_repo_url = 'https://github.com/CorentinJ/Real-Time-Voice-Cloning.git' self.project_name = splitext(basename(self.git_repo_url))[0] def get_repo(self): """ Metinin sese çevrilmesi sırasında kullanılacak ses klonlama kütüphanesini çeker. """ if not exists(self.project_name): # clone and install !git clone -q --recursive {self.git_repo_url} # install dependencies !cd {self.project_name} && pip install -q -r requirements.txt !pip install -q gdown !apt-get install -qq libportaudio2 !pip install -q https://github.com/tugstugi/dl-colab-notebooks/archive/colab_utils.zip # download pretrained model !cd {self.project_name} && wget https://github.com/blue-fish/Real-Time-Voice-Cloning/releases/download/v1.0/pretrained.zip && unzip -o pretrained.zip from sys import path as syspath syspath.append(self.project_name) def wav2vec_model(self, source): """ Sesin metne çevrilmesi sırasında kullanılacak ilgili dile göre wav2vec modelini belirler. :param source: ses dosyası dili ("tr" / "en") :type source: str """ processor = None model = None if source == "en": processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h") model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h") elif source =="tr": processor = Wav2Vec2Processor.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-turkish") model = Wav2Vec2ForCTC.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-turkish") return model, processor def speech2text(self, audio_file, model, processor, language): """ Girdi olarak verilen sesi metne çevirir. :param audio_file: ses dosyasının yer aldığı dizin type audio_file: str :param model: sesin metne çevrilmesi esnasında kullanılacak huggingface kütüphanesinden çekilen model :param processor: sesin metne çevrilmesi esnasında kullanılacak huggingface kütüphanesinden çekilen istemci :param language: girdi olarak verilen ses doyasının dili ("tr" / "en") :type language: str """ #load any audio file of your choice speech, rate = librosa.load(audio_file, sr=self.SAMPLING_RATE) input_values = processor(speech, sampling_rate=self.SAMPLING_RATE, return_tensors = 'pt').input_values #Store logits (non-normalized predictions) logits = model(input_values).logits #Store predicted id's predicted_ids = torch.argmax(logits, dim =-1) #decode the audio to generate text response = processor.decode(predicted_ids[0]).lower() if language == "en": response = ">>tur<< " + response return response def text2speech(self, audio, translation): """ Metini sese çevirir. :param audio: klonlanacak ses doyasının yer aldığı dizin :type audio: str :param translation: çevirisi yapılmış metin :type translation: str """ from numpy import pad as pad from synthesizer.inference import Synthesizer from encoder import inference as encoder from vocoder import inference as vocoder from pathlib import Path encoder.load_model(self.project_name / Path("encoder/saved_models/pretrained.pt")) synthesizer = Synthesizer(self.project_name / Path("synthesizer/saved_models/pretrained/pretrained.pt")) vocoder.load_model(self.project_name / Path("vocoder/saved_models/pretrained/pretrained.pt")) embedding = encoder.embed_utterance(encoder.preprocess_wav(audio, self.SAMPLING_RATE)) specs = synthesizer.synthesize_spectrograms([translation], [embedding]) generated_wav = vocoder.infer_waveform(specs[0]) generated_wav = pad(generated_wav, (0, self.SAMPLING_RATE), mode="constant") return Audio(generated_wav, rate=self.SAMPLING_RATE, autoplay=True) def speech2text2trans2speech(self, filename:str, source_lang:str, output_type:str = "text"): """ Aldığı ses dosyasını text'e dönüştürüp, hedeflenen dile çeviren ve çevirdiği metni ses olarak döndüren fonksiyon. :param filename: Ses dosyasının adı :type filename: str :param lang: Ses dosyası dili ("en"/"tr") :type lang: str """ output_types = ["text", "speech"] source_languages = ["en", "tr"] if source_lang not in source_languages: print("Kaynak dil olarak yalnızca 'en' ve 'tr' parametreleri kullanılabilir.") return None if output_type not in output_types: print("Çıkış türü için yalnızca 'text' ve 'speech' parametreleri desteklenmektedir.") return None if source_lang == "en" and output_type=="speech": print("Üzgünüz, text2speech modülümüzde Türkçe dil desteği bulunmamaktadır.\n") return None model_trs, tokenizer_trs, pipe_trs = CombineInator.translate_model(self, source_lang) model_s2t, processor_s2t = self.wav2vec_model(source_lang) input_text = self.speech2text(filename, model_s2t, processor_s2t, source_lang) print(input_text) translation = CombineInator.translate(self, pipe_trs, model_trs, tokenizer_trs, input_text) if output_type == "text": return translation else: print("\n" + translation + "\n") return self.text2speech(filename, translation)
_____no_output_____
MIT
Combineinator_Library.ipynb
combineinator/combine-inator-acikhack2021
Örnek kullanım
filename = "_path_to_wav_file" # ses dosyası pathi verilmelidir speechM = speechModule() speechM.get_repo() speechM.speech2text2trans2speech(filename, "tr", "speech")
_____no_output_____
MIT
Combineinator_Library.ipynb
combineinator/combine-inator-acikhack2021
Lxmert (child)
!git clone https://github.com/hila-chefer/Transformer-MM-Explainability import os os.chdir(f'./Transformer-MM-Explainability') !pip install -r requirements.txt %cd Transformer-MM-Explainability from lxmert.lxmert.src.modeling_frcnn import GeneralizedRCNN import lxmert.lxmert.src.vqa_utils as utils from lxmert.lxmert.src.processing_image import Preprocess from transformers import LxmertTokenizer from lxmert.lxmert.src.huggingface_lxmert import LxmertForQuestionAnswering from lxmert.lxmert.src.lxmert_lrp import LxmertForQuestionAnswering as LxmertForQuestionAnsweringLRP from tqdm import tqdm from lxmert.lxmert.src.ExplanationGenerator import GeneratorOurs, GeneratorBaselines, GeneratorOursAblationNoAggregation import random import numpy as np import cv2 import torch import matplotlib.pyplot as plt from PIL import Image import torchvision.transforms as transforms from captum.attr import visualization import requests class Lxmert(CombineInator): def __init__(self): self.OBJ_URL = "https://raw.githubusercontent.com/airsplay/py-bottom-up-attention/master/demo/data/genome/1600-400-20/objects_vocab.txt" self.ATTR_URL = "https://raw.githubusercontent.com/airsplay/py-bottom-up-attention/master/demo/data/genome/1600-400-20/attributes_vocab.txt" self.VQA_URL = "https://raw.githubusercontent.com/airsplay/lxmert/master/data/vqa/trainval_label2ans.json" self.model_lrp = self.ModelUsage() self.lrp = GeneratorOurs(self.model_lrp) self.baselines = GeneratorBaselines(self.model_lrp) self.vqa_answers = utils.get_data(self.VQA_URL) class ModelUsage: """ Model kullanımı için sınıf yapısı """ def __init__(self, use_lrp=True): self.VQA_URL = "https://raw.githubusercontent.com/airsplay/lxmert/master/data/vqa/trainval_label2ans.json" self.vqa_answers = utils.get_data(self.VQA_URL) # load models and model components self.frcnn_cfg = utils.Config.from_pretrained("unc-nlp/frcnn-vg-finetuned") self.frcnn_cfg.MODEL.DEVICE = "cuda" self.frcnn = GeneralizedRCNN.from_pretrained("unc-nlp/frcnn-vg-finetuned", config=self.frcnn_cfg) self.image_preprocess = Preprocess(self.frcnn_cfg) self.lxmert_tokenizer = LxmertTokenizer.from_pretrained("unc-nlp/lxmert-base-uncased") if use_lrp: self.lxmert_vqa = LxmertForQuestionAnsweringLRP.from_pretrained("unc-nlp/lxmert-vqa-uncased").to("cuda") else: self.lxmert_vqa = LxmertForQuestionAnswering.from_pretrained("unc-nlp/lxmert-vqa-uncased").to("cuda") self.lxmert_vqa.eval() self.model = self.lxmert_vqa # self.vqa_dataset = vqa_data.VQADataset(splits="valid") def forward(self, item): PATH, question = item self.image_file_path = PATH # run frcnn images, sizes, scales_yx = self.image_preprocess(PATH) output_dict = self.frcnn( images, sizes, scales_yx=scales_yx, padding="max_detections", max_detections= self.frcnn_cfg.max_detections, return_tensors="pt" ) inputs = self.lxmert_tokenizer( question, truncation=True, return_token_type_ids=True, return_attention_mask=True, add_special_tokens=True, return_tensors="pt" ) self.question_tokens = self.lxmert_tokenizer.convert_ids_to_tokens(inputs.input_ids.flatten()) self.text_len = len(self.question_tokens) # Very important that the boxes are normalized normalized_boxes = output_dict.get("normalized_boxes") features = output_dict.get("roi_features") self.image_boxes_len = features.shape[1] self.bboxes = output_dict.get("boxes") self.output = self.lxmert_vqa( input_ids=inputs.input_ids.to("cuda"), attention_mask=inputs.attention_mask.to("cuda"), visual_feats=features.to("cuda"), visual_pos=normalized_boxes.to("cuda"), token_type_ids=inputs.token_type_ids.to("cuda"), return_dict=True, output_attentions=False, ) return self.output def ceviri(self, text: str, lang_src='tr'): """ Aldığı metni istenilen dile çeviren fonksiyon. :param text: Orjinal metin :type text: str :param lang_src: Metin dosyasının dili (kaynak dili) :type lang_src: str :param lang_tgt: Çevrilecek dil (hedef dil) :param lang_tgt: str :return: translated text """ if lang_src == "en": text = ">>tur<< " + text model, tokenizer, pipeline = CombineInator.translate_model(self, lang_src) return (CombineInator.translate(self, pipeline, model, tokenizer, text)) def save_image_vis(self, image_file_path, bbox_scores): """ Resim üzerinde sorunun cevabını çizer ve kaydeder. :param image_file_path: imgenin yer aldığı dizin :type image_file_path: str :param bbox_scores: tespit edilen nesnelerin skorlarını içeren tensor :type bbox_scores: tensor """ _, top_bboxes_indices = bbox_scores.topk(k=1, dim=-1) img = cv2.imread(image_file_path) mask = torch.zeros(img.shape[0], img.shape[1]) for index in range(len(bbox_scores)): [x, y, w, h] = self.model_lrp.bboxes[0][index] curr_score_tensor = mask[int(y):int(h), int(x):int(w)] new_score_tensor = torch.ones_like(curr_score_tensor)*bbox_scores[index].item() mask[int(y):int(h), int(x):int(w)] = torch.max(new_score_tensor,mask[int(y):int(h), int(x):int(w)]) mask = (mask - mask.min()) / (mask.max() - mask.min()) mask = mask.unsqueeze_(-1) mask = mask.expand(img.shape) img = img * mask.cpu().data.numpy() cv2.imwrite('lxmert/lxmert/experiments/paper/new.jpg', img) def get_image_and_question(self, img_path:str, soru:str): """ Input olarak verilen imge ve soruyu döndürür. :param img_path: Soru sorulacak imgenin path bilgisi :type img_path: str :param soru: Resim özelinde modele sorulacak olan Türkçe soru :type soru: str :return: image_scores, text_scores """ ing_soru = self.ceviri(soru, "tr") R_t_t, R_t_i = self.lrp.generate_ours((img_path, ing_soru), use_lrp=False, normalize_self_attention=True, method_name="ours") return R_t_i[0], R_t_t[0] def resim_uzerinden_soru_cevap(self, PATH:str, turkce_soru:str): """ Verilen girdi imgesi üzerinden yine veriler sorular ile sorgulama yapılabilmesini sağlar. PATH: imgenin path bilgisi turkce_soru: Resimde cevabı aranacak soru """ #Eğer sorgulanacak resim local'de yok ve internet üzerinden bir resim ise: if PATH.startswith("http"): im = Image.open(requests.get(PATH, stream=True).raw) im.save('lxmert/lxmert/experiments/paper/online_image.jpg', 'JPEG') PATH = 'lxmert/lxmert/experiments/paper/online_image.jpg' image_scores, text_scores = self.get_image_and_question(PATH, turkce_soru) self.save_image_vis(PATH, image_scores) orig_image = Image.open(self.model_lrp.image_file_path) fig, axs = plt.subplots(ncols=2, figsize=(20, 5)) axs[0].imshow(orig_image); axs[0].axis('off'); axs[0].set_title('original'); masked_image = Image.open('lxmert/lxmert/experiments/paper/new.jpg') axs[1].imshow(masked_image); axs[1].axis('off'); axs[1].set_title('masked'); text_scores = (text_scores - text_scores.min()) / (text_scores.max() - text_scores.min()) vis_data_records = [visualization.VisualizationDataRecord(text_scores,0,0,0,0,0,self.model_lrp.question_tokens,1)] visualization.visualize_text(vis_data_records) cevap = self.ceviri(self.vqa_answers[self.model_lrp.output.question_answering_score.argmax()], lang_src='en') print("ANSWER:", cevap)
_____no_output_____
MIT
Combineinator_Library.ipynb
combineinator/combine-inator-acikhack2021
Örnek kullanım
lxmert = Lxmert() PATH = '_path_to_jpg_' # jpg dosyası pathi verilmelidir turkce_soru = 'Resimde neler var' lxmert.resim_uzerinden_soru_cevap(PATH, turkce_soru)
loading configuration file cache loading weights file https://cdn.huggingface.co/unc-nlp/frcnn-vg-finetuned/pytorch_model.bin from cache at /root/.cache/torch/transformers/57f6df6abe353be2773f2700159c65615babf39ab5b48114d2b49267672ae10f.77b59256a4cf8343ae0f923246a81489fc8d82f98d082edc2d2037c977c0d9d0
MIT
Combineinator_Library.ipynb
combineinator/combine-inator-acikhack2021
Web Arayüz
!pip install flask-ngrok from flask import Flask, redirect, url_for, render_template, request, flash from flask_ngrok import run_with_ngrok # Burada web_dependencies klasörü içerisinde bulunan klasörlerin pathi verilmelidir. template_folder = '_path_to_templates_folder_' static_folder = '_path_to_static_folder_' app = Flask(__name__, template_folder=template_folder, static_folder=static_folder) run_with_ngrok(app) # Start ngrok when app is run @app.route("/", methods=['GET', 'POST']) def home(): if request.method == 'POST': konu = request.form["topic"] library.categorical_scraper(konu, PATH, 20, text_into_sentences_param=False) return render_template("index.html") if __name__ == "__main__": #app.debug = True app.run()
* Serving Flask app "__main__" (lazy loading) * Environment: production  WARNING: This is a development server. Do not use it in a production deployment.  Use a production WSGI server instead. * Debug mode: off
MIT
Combineinator_Library.ipynb
combineinator/combine-inator-acikhack2021
Reflect Tables into SQLAlchemy ORM
# Python SQL toolkit and Object Relational Mapper import sqlalchemy from sqlalchemy.ext.automap import automap_base from sqlalchemy.orm import Session from sqlalchemy import create_engine, func engine = create_engine("sqlite:///Resources/hawaii.sqlite") # reflect an existing database into a new model Base = automap_base() # reflect the tables Base.prepare(engine, reflect=True) # We can view all of the classes that automap found Base.classes.keys() # Save references to each table Measurements = Base.classes.measurement Stations = Base.classes.station # Create our session (link) from Python to the DB session = Session(engine)
_____no_output_____
ADSL
climate_starter.ipynb
gracesco/HuefnerSQLAlchemyChallenge
Exploratory Climate Analysis
# Design a query to retrieve the last 12 months of precipitation data and plot the results CY_precipitation = session.query(Measurements.date).filter(Measurements.date >= "2016-08-23").order_by(Measurements.date).all() # # Calculate the date 1 year ago from the last data point in the database LY_precipitation = session.query(Measurements.date).filter(Measurements.date).order_by(Measurements.date.desc()).first() last_date = dt.date(2017,8,23) - dt.timedelta(days=365) last_date # # # Perform a query to retrieve the data and precipitation scores last_year = session.query(Measurements.prcp, Measurements.date).order_by(Measurements.date.desc()) # # # Save the query results as a Pandas DataFrame and set the index to the date column, Sort the dataframe by date date = [] precipitation = [] last_year_df = last_year.filter(Measurements.date >="2016-08-23") for precip in last_year_df: date.append(precip.date) precipitation.append(precip.prcp) LY_df = pd.DataFrame({ "Date": date, "Precipitation": precipitation }) LY_df.set_index("Date", inplace=True) LY_df = LY_df.sort_index(ascending=True) # # Use Pandas Plotting with Matplotlib to plot the data LY_graph = LY_df.plot(figsize = (20,10), rot=90, title= "Hawaii Precipitation Data 8/23/16-8/23/17") LY_graph.set_ylabel("Precipitation (in)") plt.savefig("Images/PrecipitationAugtoAug.png") # Use Pandas to calcualte the summary statistics for the precipitation data LY_df.describe() # Design a query to show how many stations are available in this dataset? station_count = session.query(Measurements.station, func.count(Measurements.station)).\ group_by(Measurements.station).all() print("There are " + str(len(station_count)) + " stations in this dataset.") # What are the most active stations? (i.e. what stations have the most rows)? # List the stations and the counts in descending order. active_stations = session.query(Measurements.station, func.count(Measurements.station)).\ group_by(Measurements.station).\ order_by(func.count(Measurements.station).desc()).all() active_stations # Using the station id from the previous query, calculate the lowest temperature recorded, # highest temperature recorded, and average temperature of the most active station? most_active = session.query(Measurements.station).group_by(Measurements.station).order_by(func.count(Measurements.station).desc()).first() most_active_info = session.query(Measurements.station, func.min(Measurements.tobs), func.max(Measurements.tobs), func.avg(Measurements.tobs)).\ filter(Measurements.station == most_active[0]).all() print("The lowest temperature at station " + most_active_info[0][0] + " is " + str(most_active_info[0][1]) + " degrees.") print("The highest temperature at station " + most_active_info[0][0] + " is " + str(most_active_info[0][2]) + " degrees.") print("The average temperature at station " + most_active_info[0][0] + " is " + str(round(most_active_info[0][3], 2)) + " degrees.") # Choose the station with the highest number of temperature observations. # Query the last 12 months of temperature observation data for this station and plot the results as a histogram tobs_query = session.query(Measurements.station).group_by(Measurements.station).order_by(func.count(Measurements.id).desc()).first() tobs = session.query(Measurements.station, Measurements.tobs).filter(Measurements.station == tobs_query[0]).filter(Measurements.date > last_date).all() station_df = pd.DataFrame(tobs, columns = ['station', 'tobs']) station_df.hist(column='tobs', bins=12) plt.ylabel('Frequency') plt.show()
_____no_output_____
ADSL
climate_starter.ipynb
gracesco/HuefnerSQLAlchemyChallenge
Import dataset
bd=pd.read_csv('creditcard.csv') bd.head()
_____no_output_____
Unlicense
Credit card fraud .ipynb
Boutayna98/Credit-Card-Fraud-Detection
Exploring dataset
bd.info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 284807 entries, 0 to 284806 Data columns (total 31 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Time 284807 non-null float64 1 V1 284807 non-null float64 2 V2 284807 non-null float64 3 V3 284807 non-null float64 4 V4 284807 non-null float64 5 V5 284807 non-null float64 6 V6 284807 non-null float64 7 V7 284807 non-null float64 8 V8 284807 non-null float64 9 V9 284807 non-null float64 10 V10 284807 non-null float64 11 V11 284807 non-null float64 12 V12 284807 non-null float64 13 V13 284807 non-null float64 14 V14 284807 non-null float64 15 V15 284807 non-null float64 16 V16 284807 non-null float64 17 V17 284807 non-null float64 18 V18 284807 non-null float64 19 V19 284807 non-null float64 20 V20 284807 non-null float64 21 V21 284807 non-null float64 22 V22 284807 non-null float64 23 V23 284807 non-null float64 24 V24 284807 non-null float64 25 V25 284807 non-null float64 26 V26 284807 non-null float64 27 V27 284807 non-null float64 28 V28 284807 non-null float64 29 Amount 284807 non-null float64 30 Class 284807 non-null int64 dtypes: float64(30), int64(1) memory usage: 67.4 MB
Unlicense
Credit card fraud .ipynb
Boutayna98/Credit-Card-Fraud-Detection
Pre processing
sc = StandardScaler() amount = bd['Amount'].values bd['Amount'] = sc.fit_transform(amount.reshape(-1, 1)) bd.drop(['Time'], axis=1, inplace=True) bd.shape bd.drop_duplicates(inplace=True) bd.shape
_____no_output_____
Unlicense
Credit card fraud .ipynb
Boutayna98/Credit-Card-Fraud-Detection
Modelling
X = bd.drop('Class', axis = 1).values y = bd['Class'].values X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 1) from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor, export_graphviz, export DT = DecisionTreeClassifier(max_depth = 4, criterion = 'entropy') DT.fit(X_train, y_train) dt_yhat = DT.predict(X_test) print('Accuracy score of the Decision Tree model is {}'.format(accuracy_score(y_test,dt_yhat))) print('F1 score of the Decision Tree model is {}'.format(f1_score(y_test,dt_yhat))) confusion_matrix(y_test, dt_yhat, labels = [0, 1])
_____no_output_____
Unlicense
Credit card fraud .ipynb
Boutayna98/Credit-Card-Fraud-Detection
Exploratory data analysis
# import libraries import numpy as np import pandas as pd import plotly.graph_objects as go import matplotlib.pyplot as plt pd.set_option('display.max_rows', 500) %matplotlib inline # load the processed data main_df = pd.read_csv('../data/processed/COVID_small_table_confirmed.csv', sep=';') main_df.head() main_df.info() # GEt countries list country_list = main_df.columns[1:] country_list fig = go.Figure() # define plot for individual trace for country in country_list: fig.add_trace(go.Scatter(x = main_df.date, y = main_df[country], mode = 'markers+lines', name = country)) # overall layout properties fig.update_layout( width = 1200, height = 800, title = 'Confirmed cases for specific countries', xaxis_title = 'Date', yaxis_title = 'No. of confirmed cases') fig.update_yaxes(type='log') # Dash board visualization import dash import dash_core_components as dcc import dash_html_components as html app = dash.Dash() app.layout = html.Div([ dcc.Graph(figure=fig, id='main_window_slope') ]) app.run_server(debug=True, use_reloader=False) # Turn off reloader if inside Jupyter
Running on http://127.0.0.1:8050/ Running on http://127.0.0.1:8050/ Debugger PIN: 839-733-624 Debugger PIN: 839-733-624 * Serving Flask app "__main__" (lazy loading) * Environment: production WARNING: Do not use the development server in a production environment. Use a production WSGI server instead. * Debug mode: on
FTL
notebooks/Data_EDA.ipynb
Prudhvi-Kumar-Kakani/Data-Science-CRISP-DM--Covid-19
2+3+ for r in range(n): sumaRenglon=0 sumaRenglon=0 sumaRenglon=0 for c in range(n): sumaRenglon +=a2d.get_item(r,c) total += a2d.get_item(r,c) def ejemplo1( n ): c = n + 1 d = c * n e = n * n total = c + e - d print(f"total={ total }") ejemplo1( 99999 ) def ejemplo2( n ): contador = 0 for i in range( n ) : for j in range( n ) : contador += 1 return contador ejemplo2( 100 ) def ejemplo3( n ): # n=4 x = n * 2 # x = 8 y = 0 # y = 0 for m in range( 100 ): #3 y = x - n # y = 4 return y ejemplo3(1000000000) def ejemplo4( n ): x = 3 * 3.1416 + n y = x + 3 * 3 - n z = x + y return z ejemplo4(9) def ejemplo5( x ): n = 10 for j in range( 0 , x , 1 ): n = j + n return n ejemplo5(1000000) from time import time def ejemplo6( n ): start_time = time() data=[[[1 for x in range(n)] for x in range(n)] for x in range(n)] suma = 0 for d in range(n): for r in range(n): for c in range(n): suma += data[d][r][c] elapsed_time = time() - start_time print("Tiempo transcurrido: %0.10f segundos." % elapsed_time) return suma ejemplo6( 500 ) def ejemplo7( n ): count = 0 for i in range( n ) : for j in range( 25 ) : for k in range( n ): count += 1 return count def ejemplo7_2( n ): count = 1 for i in range( n ) : for j in range( 25 ) : for k in range( n ): count += 1 for k in range( n ): count += 1 return count # 1 + 25n^2 +25n^2 ejemplo7_2(3) def ejemplo8( numeros ): # numeros es una lista (arreglo en c) total = 0 for index in range(len(numeros)): total = numeros[index] return total ejemplo8(numeros) def ejemplo9( n ): contador = 0 basura = 0 for i in range( n ) : contador += 1 for j in range( n ) : contador += 1 basura = basura + contador return contador print(ejemplo9( 5 )) #3+2n def ejemplo10( n ): count = 0 for i in range( n ) : for j in range( i+1 ) : count += 1 return count def ejemplo10( n ): count = 0 for i in range( n ) : for j in range( i ) : count += 1 return count print(ejemplo10(5)) """ n= 3 000 n00 <-- aqui empieza el for interno nn0 <--- aqui termina el for interno nnn n = 4 0000 n000 <-- aqui empieza el for interno nn00 nnn0 <--- aqui termina el for interno nnnn n =5 00000 n0000 <-- aqui empieza el for interno nn000 nnn00 nnnn0 <--- aqui termina el for interno nnnnn """ def ejemplo11( n ): count = 0 i = n while i > 1 : count += 1 i = i // 2 return count print(ejemplo11(16)) # T(n) = 2 + (2 Log 2 n) def ejemplo12( n ): contador = 0 for x in range(n): contador += ejemplo11(x) return contador def ejemplo12_bis( n=5 ): contador = 0 contador = contador + ejemplo11(0) # 0 contador = contador + ejemplo11(1) # 0 contador = contador + ejemplo11(2) # 1 contador = contador + ejemplo11(3) # 1 contador = contador + ejemplo11(4) # 2 return contador ejemplo12_bis( 5 ) def ejemplo13( x ): bandera = x contador = 0 while( bandera >= 10): print(f" x = { bandera } ") bandera /= 10 contador = contador + 1 print(contador) # T(x) = log10 x +1 ejemplo13( 1000 ) def ejemplo14( n ): y = n z = n contador = 0 while y >= 3: #3 y /= 3 # 1 contador += 1 # cont =3 while z >= 3: #27 z /= 3 contador += 1 return contador
_____no_output_____
MIT
21octubre.ipynb
humbertoguell/daa2020_1
Naive Bayes Classifiers Author : Sanjoy Biswas Topic : NaiveNaive Bayes Classifiers : Spam Ham Email Datection Email : [email protected] It is a classification technique based on Bayes’ Theorem with an assumption of independence among predictors. In simple terms, a Naive Bayes classifier assumes that the presence of a particular feature in a class is unrelated to the presence of any other feature.For example, a fruit may be considered to be an apple if it is red, round, and about 3 inches in diameter. Even if these features depend on each other or upon the existence of the other features, all of these properties independently contribute to the probability that this fruit is an apple and that is why it is known as ‘Naive’.Naive Bayes model is easy to build and particularly useful for very large data sets. Along with simplicity, Naive Bayes is known to outperform even highly sophisticated classification methods.Bayes theorem provides a way of calculating posterior probability P(c|x) from P(c), P(x) and P(x|c). Look at the equation below: ![alt text](Bayes_rule.webp "Title") Above,P(c|x) is the posterior probability of class (c, target) given predictor (x, attributes).!P(c) is the prior probability of class.P(x|c) is the likelihood which is the probability of predictor given class.P(x) is the prior probability of predictor. Import Libraries
import numpy as np import pandas as pd import matplotlib.pyplot as plt
_____no_output_____
MIT
ML Algorithms/Naive Bayes Classifiers/Naive Bayes Classifiers.ipynb
jrderek/Data-science-master-resources
Import Dataset
df = pd.read_csv(r'F:\ML Algorithms By Me\Naive Bayes Classifiers\emails.csv') df.head() df.isnull().sum()
_____no_output_____
MIT
ML Algorithms/Naive Bayes Classifiers/Naive Bayes Classifiers.ipynb
jrderek/Data-science-master-resources
Separate Dependent & Independent Value
x = df.text.values y = df.spam.values
_____no_output_____
MIT
ML Algorithms/Naive Bayes Classifiers/Naive Bayes Classifiers.ipynb
jrderek/Data-science-master-resources
Split Train and Test Dataset
from sklearn.model_selection import train_test_split xtrain,xtest,ytrain,ytest = train_test_split(x,y,test_size=0.3)
_____no_output_____
MIT
ML Algorithms/Naive Bayes Classifiers/Naive Bayes Classifiers.ipynb
jrderek/Data-science-master-resources
Data Preprocessing
from sklearn.feature_extraction.text import CountVectorizer cv = CountVectorizer() x_train = cv.fit_transform(xtrain) x_train.toarray()
_____no_output_____
MIT
ML Algorithms/Naive Bayes Classifiers/Naive Bayes Classifiers.ipynb
jrderek/Data-science-master-resources
Apply Naive Bayes Classifiers Algorithm
from sklearn.naive_bayes import MultinomialNB model = MultinomialNB() model.fit(x_train,ytrain) x_test = cv.fit_transform(xtest) x_test.toarray() model.score(x_train,ytrain)
_____no_output_____
MIT
ML Algorithms/Naive Bayes Classifiers/Naive Bayes Classifiers.ipynb
jrderek/Data-science-master-resources
Framing models
import lettertask import patches import torch import torch.nn as nn import torch.optim as optim import numpy as np from tqdm import tqdm import lazytools_sflippl as lazytools import plotnine as gg import pandas as pd cbm = lettertask.data.CompositionalBinaryModel( width=[5, 5], change_probability=[0.05, 0.5], samples=10000, seed=1001 ) cts = patches.data.Contrastive1DTimeSeries(cbm.to_array(), seed=202)
_____no_output_____
MIT
notebooks/03-framing-models.ipynb
sflippl/patches
Base-reconstructive model
class BaRec(nn.Module): def __init__(self, latent_features, input_features=None, timesteps=None, data=None, bias=True): super().__init__() if data: input_features = input_features or data.n_vars timesteps = timesteps or data.n_timesteps elif input_features is None or timesteps is None: raise ValueError('You must either provide data or both input ' 'features and timesteps.') self.latent_features = latent_features self.input_features = input_features self.timesteps = timesteps self.encoder = nn.Linear(input_features, latent_features, bias=bias) self.predictor = nn.Linear(latent_features, timesteps, bias=bias) self.decoder = nn.Conv1d(latent_features, input_features, 1, bias=bias) def forward(self, x): code = self.encoder(x['current_values']) prediction = self.predictor(code) decoded = self.decoder(prediction).transpose(1, 2) return decoded barec = BaRec(1, data=cts) optimizer = optim.Adam(barec.parameters()) criterion = nn.MSELoss() data = cts[0] prediction = barec(data) print(data['future_values'].shape) print(prediction.shape) ideal = np.array([[1,0],[0,1]], dtype=np.float32).repeat(5,1)/np.sqrt(5) ideal barec = BaRec(1, data=cts, bias=False) optimizer = optim.Adam(barec.parameters()) criterion = nn.MSELoss() loss_traj = [] angles = [] running_loss = 0 for epoch in tqdm(range(10)): for i, data in enumerate(cts): if i<len(cts): optimizer.zero_grad() prediction = barec(data) loss = criterion(prediction, data['future_values']) loss.backward() optimizer.step() running_loss += loss if i % 50 == 49: loss_traj.append(running_loss.detach.numpy()/50) running_loss = 0 est = next(barec.parameters()).detach().numpy() angles.append(np.matmul(ideal, est.T)/np.sqrt(np.matmul(est, est.T))) (gg.ggplot( lazytools.array_to_dataframe( np.array( [l.detach().numpy() for l in loss_traj] ) ), gg.aes(x='dim0', y='array') ) + gg.geom_smooth(method='loess')) (gg.ggplot( lazytools.array_to_dataframe( np.concatenate(angles, axis=1) ), gg.aes(x='dim1', y='array', color='dim0', group='dim0') ) + gg.geom_line()) np.save('angles.npy', np.concatenate(angles, axis=1))
_____no_output_____
MIT
notebooks/03-framing-models.ipynb
sflippl/patches