markdown
stringlengths
0
1.02M
code
stringlengths
0
832k
output
stringlengths
0
1.02M
license
stringlengths
3
36
path
stringlengths
6
265
repo_name
stringlengths
6
127
Analysis
df.groupby(by='raceethnicity').describe()
_____no_output_____
MIT
thecounted_visual.ipynb
KikiCS/thecounted
Check if there are any missing values:
df.isna().sum() df = df[(df.raceethnicity != 'Arab-American') & (df.raceethnicity != 'Unknown')] # no data available about the percentage of this ethnicity over population, so it is discarded df.replace(to_replace=['Asian/Pacific Islander','Native American','Other'],value='Others',inplace=True) # those categories all fall under Others in the population percentages found online df.replace(to_replace=['Hispanic/Latino'],value='Latino',inplace=True) # this value is renamed for consistency with population ethnicity data df.groupby(by='raceethnicity').describe() def givepercent (dtf,ethnicity): # Function to compute percentages by ethnicity return round(((dtf.raceethnicity == ethnicity).sum()/(dtf.shape[0])*100),2) killed={"White":(df.raceethnicity == 'White').sum(), "Latino": (df.raceethnicity == 'Latino').sum(), "Black": (df.raceethnicity == 'Black').sum(), "Others": (df.raceethnicity == 'Others').sum() } print(killed) killedperc={"White": givepercent(df,'White'), "Latino": givepercent(df,'Latino'), "Black": givepercent(df,'Black'), "Others": givepercent(df,'Others') } print(killedperc) df.groupby(by='armed').describe()
_____no_output_____
MIT
thecounted_visual.ipynb
KikiCS/thecounted
The analysis is limited to the value *No*, but could consider *Disputed* and *Non-lethal firearm*, which constitute other 108 data points.
dfunarmed = df[(df.armed == 'No')] dfunarmed.groupby(by='raceethnicity').describe() unarmed={"White":(dfunarmed.raceethnicity == 'White').sum(), "Latino": (dfunarmed.raceethnicity == 'Latino').sum(), "Black": (dfunarmed.raceethnicity == 'Black').sum(), "Others": (dfunarmed.raceethnicity == 'Others').sum() } print(unarmed) unarmedperc={"White":givepercent(dfunarmed,'White'), "Latino": givepercent(dfunarmed,'Latino'), "Black": givepercent(dfunarmed,'Black'), "Others": givepercent(dfunarmed,'Others') } print(unarmedperc) def percent1ethn (portion,population,decimals): # Function to compute the percentage of the portion killed over a given population return round((portion/population*100),decimals) killed1ethn={"White": percent1ethn(killed['White'],ethnestim['White'],6), "Latino": percent1ethn(killed['Latino'],ethnestim['Latino'],6), "Black": percent1ethn(killed['Black'],ethnestim['Black'],6), "Others": percent1ethn(killed['Others'],ethnestim['Others'],6) } print(killed1ethn) unarmedoverkilled={"White": percent1ethn(unarmed['White'],killed['White'],2), "Latino": percent1ethn(unarmed['Latino'],killed['Latino'],2), "Black": percent1ethn(unarmed['Black'],killed['Black'],2), "Others": percent1ethn(unarmed['Others'],killed['Others'],2) } print(unarmedoverkilled)
{'White': 0.000582, 'Latino': 0.000664, 'Black': 0.001436, 'Others': 0.000313} {'White': 17.36, 'Latino': 17.72, 'Black': 21.12, 'Others': 13.25}
MIT
thecounted_visual.ipynb
KikiCS/thecounted
**Hypothesis testing**
whitesample=ethnestim['White'] blacksample=ethnestim['Black'] wkilled=killed['White'] bkilled=killed['Black'] pw=wkilled/whitesample pb=bkilled/blacksample #happened by chance? #Hnull pw-pb = 0 (no difference between white and black) #Halt pw-pb != 0 (the two proportions are different) #Significance level = 5% # Test statistic: Z-statistic difference=pb-pw print(difference) standarderror=np.sqrt(((pw*(1-pw))/whitesample)+((pb*(1-pb))/blacksample)) zstat=(difference)/standarderror print(zstat) # Z-score for significance level zscore=1.96 if zstat > zscore: print("The null hypothesis is rejected.") else: print("The null hypothesis is not rejected.") whitesample=killed['White'] blacksample=killed['Black'] wunarmed=unarmed['White'] bunarmed=unarmed['Black'] pw=wunarmed/whitesample pb=bunarmed/blacksample #happened by chance? #Hnull pw-pb = 0 (no difference between white and black) #Halt pw-pb != 0 (the two proportions are different) #Significance level = 5% # Test statistic: Z-statistic difference=pb-pw print(difference) standarderror=np.sqrt(((pw*(1-pw))/whitesample)+((pb*(1-pb))/blacksample)) zstat=(difference)/standarderror print(zstat) # Z-score for significance level zscore=1.96 if zstat > zscore: print("The null hypothesis is rejected.") else: print("The null hypothesis is not rejected.") ethnicities = list(ethndic.keys()) populethn = list(ethndic.values()) killed = list(killedperc.values()) unarmed = list(unarmedperc.values()) data1 = {'ethnicities' : ethnicities, 'populethn' : populethn, 'killed' : killed, 'unarmed' : unarmed} source = ColumnDataSource(data=data1)
_____no_output_____
MIT
thecounted_visual.ipynb
KikiCS/thecounted
Results
TOOLS = "pan,wheel_zoom,box_zoom,reset,save,box_select" palette=Spectral4 titlefontsize='16pt' cplot = figure(title="The Counted (data from 2015 and 2016)", tools=TOOLS, x_range=ethnicities, y_range=(0, 75))#, sizing_mode='scale_both') cplot.vbar(x=dodge('ethnicities', 0.25, range=cplot.x_range),top='populethn', source=source, width=0.4,line_width=0 ,line_color=None, legend='Ethnicity % over population', color=str(Spectral4[0]), name='populethn') cplot.vbar(x=dodge('ethnicities', -0.25, range=cplot.x_range), top='killed', source=source, width=0.4, line_width=0 ,line_color=None, legend="Killed % over total killed", color=str(Spectral4[2]), name="killed") cplot.vbar(x=dodge('ethnicities', 0.0, range=cplot.x_range), top='unarmed', source=source, width=0.4, line_width=0 ,line_color=None, legend="Unarmed % over total unarmed", color=str(Spectral4[1]), name="unarmed") cplot.add_tools(HoverTool(names=["unarmed"], tooltips=[ ( 'Population', '@populethn{(00.00)}%' ), ( 'Killed', '@killed{(00.00)}%' ), ( 'Unarmed', '@unarmed{(00.00)}%' )], # Fields beginning with @ display values from ColumnDataSource. mode='vline')) #cplot.x_range.range_padding = 0.1 cplot.xgrid.grid_line_color = None cplot.legend.location = "top_right" cplot.xaxis.axis_label = "Ethnicity" cplot.xaxis.axis_label_text_font_size='18pt' cplot.xaxis.minor_tick_line_color = None cplot.title.text_font_size=titlefontsize cplot.legend.label_text_font_size='16pt' cplot.xaxis.major_label_text_font_size='16pt' cplot.yaxis.major_label_text_font_size='16pt' perckillethn = list(killed1ethn.values()) data2 = {'ethnicities' : ethnicities, 'perckillethn' : perckillethn} source = ColumnDataSource(data=dict(data2, color=PuBu4)) plot2 = figure(title="Killed % over population with same ethnicity", tools=TOOLS, x_range=ethnicities, y_range=(0, max(perckillethn)*1.2))#, sizing_mode='scale_both') plot2.vbar(x=dodge('ethnicities', 0.0, range=cplot.x_range), top='perckillethn', source=source, width=0.4, line_width=0 ,line_color=None, legend="", color='color', name="perckillethn") plot2.add_tools(HoverTool(names=["perckillethn"], tooltips=[ ( 'Killed', '@perckillethn{(0.00000)}%' )], #( 'Unarmed', '@unarmed{(00.00)}%' )], # Fields beginning with @ display values from ColumnDataSource. mode='vline')) #plot2.x_range.range_padding = 0.1 plot2.xgrid.grid_line_color = None plot2.xaxis.axis_label = "Ethnicity" plot2.xaxis.axis_label_text_font_size='18pt' plot2.xaxis.minor_tick_line_color = None plot2.title.text_font_size=titlefontsize plot2.xaxis.major_label_text_font_size='16pt' plot2.yaxis.major_label_text_font_size='16pt' plot2.yaxis[0].formatter = NumeralTickFormatter(format="0.0000") percunarmethn = list(unarmedoverkilled.values()) data3 = {'ethnicities' : ethnicities, 'percunarmethn' : percunarmethn} source = ColumnDataSource(data=dict(data3, color=PuBu4)) plot3 = figure(title="Unarmed % over killed with same ethnicity", tools=TOOLS, x_range=ethnicities, y_range=(0, max(percunarmethn)*1.2))#, sizing_mode='scale_both') plot3.vbar(x=dodge('ethnicities', 0.0, range=cplot.x_range), top='percunarmethn', source=source, width=0.4, line_width=0 ,line_color=None, legend="", color='color', name="percunarmethn") plot3.add_tools(HoverTool(names=["percunarmethn"], tooltips=[ ( 'Unarmed', '@percunarmethn{(00.00)}%' )], #( 'Unarmed', '@unarmed{(00.00)}%' )], # Fields beginning with @ display values from ColumnDataSource. mode='vline')) #plot3.x_range.range_padding = 0.1 plot3.xgrid.grid_line_color = None plot3.xaxis.axis_label = "Ethnicity" plot3.xaxis.axis_label_text_font_size='18pt' plot3.xaxis.minor_tick_line_color = None plot3.title.text_font_size=titlefontsize plot3.xaxis.major_label_text_font_size='16pt' plot3.yaxis.major_label_text_font_size='16pt' output_file("thecounted.html", title="The Counted Visualization") output_notebook() gplot=gridplot([cplot, plot2, plot3], sizing_mode='stretch_both', ncols=3)#, plot_width=800, plot_height=600) show(gplot) # open a browser export_png(gplot, filename="bokeh_thecounted.png")
_____no_output_____
MIT
thecounted_visual.ipynb
KikiCS/thecounted
ML 101 RDP and line simplificationRDP is a line simplifaction algorithm that can be used to reduce the number of points.
!pip install git+git://github.com/mariolpantunes/knee@main#egg=knee %matplotlib inline import matplotlib.pyplot as plt plt.rcParams['figure.figsize'] = [16, 9] import numpy as np import knee.linear_fit as lf import knee.rdp as rdp # generate some data x = np.arange(0, 100, 0.1) y = np.sin(x) print(len(x)) plt.plot(x,y) plt.show() # generate the points points = np.array([x,y]).T reduced, removed = rdp.rdp(points, 0.01, cost=lf.Linear_Metrics.rpd) reduced_points = points[reduced] print(f'Lenght = {len(reduced_points)}') plt.plot(x,y) x = reduced_points[:,0] y = reduced_points[:,1] plt.plot(x,y, 'ro') plt.show()
_____no_output_____
MIT
classes/01 preprocessing/01_preprocessing_03.ipynb
mariolpantunes/ml101
Knee detectionElbow/knee detection is a method to select te ideal cut-off point in a performance curve
# generate some data x = np.arange(0.1, 10, 0.1) y = 1/(x**2) plt.plot(x,y) plt.show() import knee.lmethod as lmethod # generate the points points = np.array([x,y]).T idx = lmethod.knee(points) plt.plot(x,y) plt.plot(x[idx], y[idx], 'ro') plt.show() import knee.dfdt as dfdt # generate the points points = np.array([x,y]).T idx = dfdt.knee(points) print(idx) plt.plot(x,y) plt.plot(x[idx], y[idx], 'ro') plt.show()
_____no_output_____
MIT
classes/01 preprocessing/01_preprocessing_03.ipynb
mariolpantunes/ml101
Download MNIST
# For Google Colaboratory import sys, os if 'google.colab' in sys.modules: from google.colab import drive drive.mount('/content/gdrive') file_name = 'generate_mnist.ipynb' import subprocess path_to_file = subprocess.check_output('find . -type f -name ' + str(file_name), shell=True).decode("utf-8") print(path_to_file) path_to_file = path_to_file.replace(file_name,"").replace('\n',"") os.chdir(path_to_file) !pwd import torch import torchvision import torchvision.transforms as transforms import numpy as np import matplotlib.pyplot as plt trainset = torchvision.datasets.MNIST(root='./temp', train=True, download=True, transform=transforms.ToTensor()) testset = torchvision.datasets.MNIST(root='./temp', train=False, download=True, transform=transforms.ToTensor()) idx=4 pic, label =trainset[idx] pic=pic.squeeze() plt.imshow(pic.numpy(), cmap='gray') plt.show() print(label) train_data=torch.Tensor(60000,28,28) train_label=torch.LongTensor(60000) for idx , example in enumerate(trainset): train_data[idx]=example[0].squeeze() train_label[idx]=example[1] torch.save(train_data,'train_data.pt') torch.save(train_label,'train_label.pt') test_data=torch.Tensor(10000,28,28) test_label=torch.LongTensor(10000) for idx , example in enumerate(testset): test_data[idx]=example[0].squeeze() test_label[idx]=example[1] torch.save(test_data,'test_data.pt') torch.save(test_label,'test_label.pt')
_____no_output_____
MIT
codes/data/mnist/generate_mnist.ipynb
NIRVANALAN/CE7454_2020
1. Write a Python Program to Find LCM?
# Given some numbers, LCM of these numbers is the smallest positive integer that is divisible by all the numbers numbers def LCM(ls): lar = max(ls) flag=1 while(flag==1): for i in ls: if(lar%i!=0): flag=1 break else: flag=0 continue lcm=lar lar += 1 return lcm n=int(input("Enter the range of your input ")) ls=[] for i in range(n): a=int(input("Enter the number ")) ls.append(a) print("The LCM of entered numbers is", LCM(ls))
Enter the range of your input 3 Enter the number 4 Enter the number 6 Enter the number 8 The LCM of entered numbers is 24
Apache-2.0
Python Basic Assignment -5.ipynb
MuhammedAbin/iNeuron-Assignment
2. Write a Python Program to Find HCF?
def HCF(ls): lar=0 for i in range(2,min(ls)+1) : count=0 for j in ls: if j%i==0: count=count+1 if count==len(ls): lar=i return lar if count!=len(ls): return 1 n=int(input("Enter the range of your input ")) ls=[] for i in range(n): a=int(input("Enter the number ")) ls.append(a) print("The LCM of entered numbers is", HCF(ls))
Enter the range of your input 3 Enter the number 4 Enter the number 6 Enter the number 8 The LCM of entered numbers is 2
Apache-2.0
Python Basic Assignment -5.ipynb
MuhammedAbin/iNeuron-Assignment
3. Write a Python Program to Convert Decimal to Binary, Octal and Hexadecimal?
a=int(input("Enter the Decimal value: ")) def ToBinary(x): binary=" " while(x!=0 and x>0): binary=binary+str(x%2) x=int(x/2) return(binary[::-1]) def ToOctal(x): if(x<8): print(x) else: octal=" " while(x!=0 and x>0): octal=octal+str(x%8) x=int(x/8) return(octal[::-1]) def ToHexa(x): if(x<10): print(x) else: ls={10:"A", 11:"B", 12:"C", 13:"D", 14:"E", 15:"F"} Hexa=" " while(x!=0 and x>0): if(x%16) in ls.keys(): Hexa=Hexa+ls[x%16] else: Hexa=Hexa+str(x%16) x=int(x/16) return(Hexa[::-1]) print("Binary of",a,"is", ToBinary(a)) print("Octal of",a,"is", ToOctal(a)) print("Hexadecimal of",a,"is", ToHexa(a))
Enter the Decimal value: 15 Binary of 15 is 1111 Octal of 15 is 17 Hexadecimal of 15 is F
Apache-2.0
Python Basic Assignment -5.ipynb
MuhammedAbin/iNeuron-Assignment
4. Write a Python Program To Find ASCII value of a character?
a=input("Enter the character to find ASCII: ") print("ASCII of ",a ,"is", ord(a))
Enter the character to find ASCII: g ASCII of g is 103
Apache-2.0
Python Basic Assignment -5.ipynb
MuhammedAbin/iNeuron-Assignment
5.Write a Python Program to Make a Simple Calculator with 4 basic mathematical operations?
class Calculator: def Add(self,x,y): return x+y def Subtract(self,x,y): return x-y def Multiply(self,x,y): return x*y def Divide(self,x,y): try: return x/y except Exception as es: print("An error has occured",es) Calc = Calculator() print("Choose your Calculator Operation: ") print("1 : Addition") print("2 : Subtraction") print("3 : Multipilication") print("4 : Division") a=int(input("Enter Your Selection: ")) x=int(input("Enter Your 1st number: ")) y=int(input("Enter Your 2nd number: ")) if(a==1): print("You chose Addition: ") print("The result of your operation is", Calc.Add(x,y)) elif(a==2): print("You chose Subtraction: ") print("The result of your operation is", Calc.Subtract(x,y)) elif(a==3): print("You chose Multipilication: ") print("The result of your operation is", Calc.Multiply(x,y)) elif(a==4): print("You chose Division: ") print("The result of your operation is", Calc.Divide(x,y)) else: print("You chose a wrong operation")
Choose your Calculator Operation: 1 : Addition 2 : Subtraction 3 : Multipilication 4 : Division Enter Your Selection: 1 Enter Your 1st number: 5 Enter Your 2nd number: 5 You chose addition: The result of your opperation is 10
Apache-2.0
Python Basic Assignment -5.ipynb
MuhammedAbin/iNeuron-Assignment
Download the ULB Fraud DatasetAndrea Dal Pozzolo, Olivier Caelen, Reid A. Johnson and Gianluca Bontempi. Calibrating Probability with Undersampling for Unbalanced Classification. In Symposium on Computational Intelligence and Data Mining (CIDM), IEEE, 2015TERMS OF USE:This data is made available under the Open Database License: http://opendatacommons.org/licenses/odbl/1.0/. Any rights in individual contents of the database are licensed under the Database Contents License: http://opendatacommons.org/licenses/dbcl/1.0/. It is provided through the Google Cloud Public Datasets Program and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
import pandas as pd from google.cloud import bigquery client = bigquery.Client() sql = """ SELECT * FROM `bigquery-public-data.ml_datasets.ulb_fraud_detection` """ df = client.query(sql).to_dataframe() df.head() df.to_csv('../dataset/creditcard.csv', index=False)
_____no_output_____
Apache-2.0
classification-fraud-detection/solution-0-setup/1.0 download [data].ipynb
nfaggian/ml-examples
Data Wrangling, Analysis and Visualization of @WeLoveDogs twitter data.
import pandas as pd import numpy as np import tweepy as ty import requests import json import io import time
_____no_output_____
MIT
Wrangling of @WeLoveDogs Twitter dataset using Python/wrangle_act.ipynb
navpreetmattu/dprojects
Gathering
df = pd.read_csv('twitter-archive-enhanced.csv') df.head() image_response = requests.get(r'https://d17h27t6h515a5.cloudfront.net/topher/2017/August/599fd2ad_image-predictions/image-predictions.tsv') image_df = pd.read_csv(io.StringIO(image_response.content.decode('utf-8')), sep='\t') image_df.head() image_df.info() CONSUMER_KEY = '<My Consumer Key>' CONSUMER_SECRET = '<My Consumer Secret>' ACCESS_TOKEN = '<My Access Token>' ACCESS_TOKEN_SECRET = '<My Access Token Secret>' auth = ty.OAuthHandler(CONSUMER_KEY, CONSUMER_SECRET) auth.set_access_token(ACCESS_TOKEN, ACCESS_TOKEN_SECRET) api = ty.API(auth, wait_on_rate_limit=True, wait_on_rate_limit_notify=True) tweet_count = 0 for id in df['tweet_id']: with open('tweet_json.txt', 'a') as file: try: start = time.time() tweet = api.get_status(id, tweet_mode='extended') st = json.dumps(tweet._json) file.writelines(st + '\n') tweet_count += 1 if tweet_count % 20 == 0 or tweet_count == len(df): end = time.time() print('Tweet id: {0}\tDownload Time: {1} sec\tTweets Downloaded: {2}.'.format(id, (end-start), tweet_count)) except Exception as e: print('Exception occured for tweet {0} : {1}'.format(id, str(e))) print('There are {} records for which tweets does not exist in Twitter database.'.format(len(df) - tweet_count)) tweet_ids = [] favorite_count = [] retweet_count = [] with open('tweet_json.txt', 'r') as file: for line in file.readlines(): data = json.loads(line) tweet_ids.append(data['id']) favorite_count.append(data['favorite_count']) retweet_count.append(data['retweet_count']) favorite_retweet_df = pd.DataFrame(data={'tweet_id': tweet_ids, 'favorite_count': favorite_count, 'retweet_count': retweet_count}) favorite_retweet_df.head() favorite_retweet_df.info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 2341 entries, 0 to 2340 Data columns (total 3 columns): tweet_id 2341 non-null int64 favorite_count 2341 non-null int64 retweet_count 2341 non-null int64 dtypes: int64(3) memory usage: 54.9 KB
MIT
Wrangling of @WeLoveDogs Twitter dataset using Python/wrangle_act.ipynb
navpreetmattu/dprojects
Assessing Quality Issues - The WeRateDogs Twitter archive contains some retweets also. We only need to consider original tweets for this project. - `tweet_id` column having integer datatype in all the dataframes. Conversion to string required. Since, We are not going to do any mathematical operations with it. - `rating_denominator` value should be 10 since we are giving rating out of 10. - For some tweets, The values of `rating_numerator` column are very high, possibly outliers. - `name` column has **None** string and *a*, *an*, *the* as values. - Extract dog **stages** from the tweet text (if present) for null values. - `timestamp` column is given as **string**. Convert it to date. - Since we are not using retweets, `in_reply_to_status_id`, `in_reply_to_user_id`, `source`, `retweeted_status_id`, `retweeted_status_user_id`, `retweeted_status_timestamp` columns are not required. - `image_df` contains tweets that do not belong to a dog. - `source` column in main dataframe is of no use in the analysis as it only tell us about the source of tweet. Tidiness Issues - A dog can have one stage at a time, still we are having 4 columns to store one piece of information. - We are having 3 predicted breeds of dogs in the image prediction file. But only required the one with higher probability, given that it is a breed of dog. - All 3 dataframes contains same tweet_id column, which we can use to merge them and use as one dataframe for our analysis.
sum(df.duplicated()) # name and stages having wrong values for no. of records df.tail() # tweet id is int64, retweet related columns are not required # name and dog stages showing full data but most of them are None. # timestamp having string datatype df.info() # rating_numerator is having min value of 0 and max of 1776 (outliers) df.describe() # denominator value should be 10 sum(df['rating_denominator'] != 10) df.rating_numerator.value_counts()
_____no_output_____
MIT
Wrangling of @WeLoveDogs Twitter dataset using Python/wrangle_act.ipynb
navpreetmattu/dprojects
Cleaning
# Making a copy of the data so that original data will be unchanged df_clean = df.copy() image_df_clean = image_df.copy() favorite_retweet_df_clean = favorite_retweet_df.copy()
_____no_output_____
MIT
Wrangling of @WeLoveDogs Twitter dataset using Python/wrangle_act.ipynb
navpreetmattu/dprojects
Quality Issues Define - Replacing all the **None** strings and *a*, *an* and *the* to **np.nan** in `name` column using pandas **_replace()_** function. Code
df_clean['name'] = df_clean['name'].replace({'None': np.nan, 'a': np.nan, 'an': np.nan, 'the': np.nan})
_____no_output_____
MIT
Wrangling of @WeLoveDogs Twitter dataset using Python/wrangle_act.ipynb
navpreetmattu/dprojects
Test
df_clean.info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 2356 entries, 0 to 2355 Data columns (total 17 columns): tweet_id 2356 non-null int64 in_reply_to_status_id 78 non-null float64 in_reply_to_user_id 78 non-null float64 timestamp 2356 non-null object source 2356 non-null object text 2356 non-null object retweeted_status_id 181 non-null float64 retweeted_status_user_id 181 non-null float64 retweeted_status_timestamp 181 non-null object expanded_urls 2297 non-null object rating_numerator 2356 non-null int64 rating_denominator 2356 non-null int64 name 1541 non-null object doggo 2356 non-null object floofer 2356 non-null object pupper 2356 non-null object puppo 2356 non-null object dtypes: float64(4), int64(3), object(10) memory usage: 313.0+ KB
MIT
Wrangling of @WeLoveDogs Twitter dataset using Python/wrangle_act.ipynb
navpreetmattu/dprojects
Define- `tweet_id` column having integer datatype in all the dataframes. Converting it to string using pandas **_astype()_** function.- `timestamp` column is given as string. Converting it to date using pandas **to_datetime()** function. Code
df_clean['tweet_id'] = df_clean['tweet_id'].astype(str) image_df_clean['tweet_id'] = image_df_clean['tweet_id'].astype(str) favorite_retweet_df_clean['tweet_id'] = favorite_retweet_df_clean['tweet_id'].astype(str) df_clean.timestamp = pd.to_datetime(df_clean.timestamp)
_____no_output_____
MIT
Wrangling of @WeLoveDogs Twitter dataset using Python/wrangle_act.ipynb
navpreetmattu/dprojects
Test
df_clean.dtypes image_df_clean.dtypes favorite_retweet_df_clean.dtypes
_____no_output_____
MIT
Wrangling of @WeLoveDogs Twitter dataset using Python/wrangle_act.ipynb
navpreetmattu/dprojects
Define- Converting `rating_denominator` column value to 10 value when it is not, using pandas boolean indexing. Since we are giving rating out of 10. Code
df_clean.loc[df_clean.rating_denominator != 10, 'rating_denominator'] = 10
_____no_output_____
MIT
Wrangling of @WeLoveDogs Twitter dataset using Python/wrangle_act.ipynb
navpreetmattu/dprojects
Test
sum(df_clean.rating_denominator != 10)
_____no_output_____
MIT
Wrangling of @WeLoveDogs Twitter dataset using Python/wrangle_act.ipynb
navpreetmattu/dprojects
Define- Removing retweets since we are only concerned about original tweets. Since, there is null present in `in_reply_to_status_id`, `retweeted_status_id` columns for retweets. Droping these records using the pandas drop() function. Code
df_clean.drop(index=df_clean[df_clean.retweeted_status_id.notnull()].index, inplace=True) df_clean.drop(index=df_clean[df_clean.in_reply_to_status_id.notnull()].index, inplace=True)
_____no_output_____
MIT
Wrangling of @WeLoveDogs Twitter dataset using Python/wrangle_act.ipynb
navpreetmattu/dprojects
Test
sum(df_clean.retweeted_status_id.notnull()) sum(df_clean.in_reply_to_status_id.notnull())
_____no_output_____
MIT
Wrangling of @WeLoveDogs Twitter dataset using Python/wrangle_act.ipynb
navpreetmattu/dprojects
Define- Removing `in_reply_to_status_id`, `in_reply_to_user_id`, `retweeted_status_id`, `retweeted_status_user_id`, `retweeted_status_timestamp` columns since they are related to retweet info. Hence, not required. Code
df_clean.drop(columns=['in_reply_to_status_id', 'in_reply_to_user_id', 'retweeted_status_id', 'retweeted_status_user_id', 'retweeted_status_timestamp'], inplace=True)
_____no_output_____
MIT
Wrangling of @WeLoveDogs Twitter dataset using Python/wrangle_act.ipynb
navpreetmattu/dprojects
Test
df_clean.info()
<class 'pandas.core.frame.DataFrame'> Int64Index: 2097 entries, 0 to 2355 Data columns (total 12 columns): tweet_id 2097 non-null object timestamp 2097 non-null datetime64[ns] source 2097 non-null object text 2097 non-null object expanded_urls 2094 non-null object rating_numerator 2097 non-null int64 rating_denominator 2097 non-null int64 name 1425 non-null object doggo 2097 non-null object floofer 2097 non-null object pupper 2097 non-null object puppo 2097 non-null object dtypes: datetime64[ns](1), int64(2), object(9) memory usage: 213.0+ KB
MIT
Wrangling of @WeLoveDogs Twitter dataset using Python/wrangle_act.ipynb
navpreetmattu/dprojects
Define- Removing `source` column from df_clean using pandas **_drop_** function. Code
df_clean.drop(columns=['source'], inplace=True)
_____no_output_____
MIT
Wrangling of @WeLoveDogs Twitter dataset using Python/wrangle_act.ipynb
navpreetmattu/dprojects
Test
df_clean.info()
<class 'pandas.core.frame.DataFrame'> Int64Index: 2097 entries, 0 to 2355 Data columns (total 11 columns): tweet_id 2097 non-null object timestamp 2097 non-null datetime64[ns] text 2097 non-null object expanded_urls 2094 non-null object rating_numerator 2097 non-null int64 rating_denominator 2097 non-null int64 name 1425 non-null object doggo 2097 non-null object floofer 2097 non-null object pupper 2097 non-null object puppo 2097 non-null object dtypes: datetime64[ns](1), int64(2), object(8) memory usage: 196.6+ KB
MIT
Wrangling of @WeLoveDogs Twitter dataset using Python/wrangle_act.ipynb
navpreetmattu/dprojects
Tidiness Issues Define- Replacing 3 predictions to one dog breed with higher probability, given that it is a breed of dog, with the use of pandas **_apply()_** function. Code
non_dog_ind = image_df_clean.query('not p1_dog and not p2_dog and not p3_dog').index image_df_clean.drop(index=non_dog_ind, inplace=True) def get_priority_dog(dog): return dog['p1'] if dog['p1_dog'] else dog['p2'] if dog['p2_dog'] else dog['p3'] image_df_clean['dog_breed'] = image_df_clean.apply(get_priority_dog, axis=1) image_df_clean.drop(columns=['p1', 'p1_conf', 'p1_dog', 'p2', 'p2_conf', 'p2_dog', 'p3', 'p3_conf', 'p3_dog', 'img_num'], inplace=True)
_____no_output_____
MIT
Wrangling of @WeLoveDogs Twitter dataset using Python/wrangle_act.ipynb
navpreetmattu/dprojects
Test
image_df_clean.head()
_____no_output_____
MIT
Wrangling of @WeLoveDogs Twitter dataset using Python/wrangle_act.ipynb
navpreetmattu/dprojects
Define- There are 4 column present for specifing dog breed, which can be done using one column only. Creating a column name `dog_stage` and adding present dog breed in it. Code
def get_dog_stage(dog): if dog['doggo'] != 'None': return dog['doggo'] elif dog['floofer'] != 'None': return dog['floofer'] elif dog['pupper'] != 'None': return dog['pupper'] else: return dog['puppo'] # if last entry is also nan, we have to return nan anyway df_clean['dog_stage'] = df_clean.apply(get_dog_stage, axis=1) df_clean.drop(columns=['doggo', 'floofer', 'pupper', 'puppo'], inplace=True)
_____no_output_____
MIT
Wrangling of @WeLoveDogs Twitter dataset using Python/wrangle_act.ipynb
navpreetmattu/dprojects
Test
df_clean.info()
<class 'pandas.core.frame.DataFrame'> Int64Index: 2097 entries, 0 to 2355 Data columns (total 8 columns): tweet_id 2097 non-null object timestamp 2097 non-null datetime64[ns] text 2097 non-null object expanded_urls 2094 non-null object rating_numerator 2097 non-null int64 rating_denominator 2097 non-null int64 name 1425 non-null object dog_stage 2097 non-null object dtypes: datetime64[ns](1), int64(2), object(5) memory usage: 147.4+ KB
MIT
Wrangling of @WeLoveDogs Twitter dataset using Python/wrangle_act.ipynb
navpreetmattu/dprojects
Define- All 3 dataframes contains same `tweet_id` column, which we can use ot merge them and use as one dataframe for our analysis. Code
df_clean = pd.merge(df_clean, image_df_clean, on='tweet_id') df_clean = pd.merge(df_clean, favorite_retweet_df_clean, on='tweet_id')
_____no_output_____
MIT
Wrangling of @WeLoveDogs Twitter dataset using Python/wrangle_act.ipynb
navpreetmattu/dprojects
Test
df_clean.head()
_____no_output_____
MIT
Wrangling of @WeLoveDogs Twitter dataset using Python/wrangle_act.ipynb
navpreetmattu/dprojects
Quality Issues Define- Try to extract dog dstage from tweet text using regular expressions and series **_str.extract()_** function. Code
stages = df_clean[df_clean.dog_stage == 'None'].text.str.extract(r'(doggo|pupper|floof|puppo|pup)', expand=True) len(df_clean[df_clean.dog_stage == 'None']) df_clean.loc[stages.index, 'dog_stage'] = stages[0]
_____no_output_____
MIT
Wrangling of @WeLoveDogs Twitter dataset using Python/wrangle_act.ipynb
navpreetmattu/dprojects
Test
len(df_clean[df_clean.dog_stage.isnull()])
_____no_output_____
MIT
Wrangling of @WeLoveDogs Twitter dataset using Python/wrangle_act.ipynb
navpreetmattu/dprojects
Define- Removing outliers from `rating_numerator` Code
df_clean.boxplot(column=['rating_numerator'], figsize=(20,8), vert=False)
_____no_output_____
MIT
Wrangling of @WeLoveDogs Twitter dataset using Python/wrangle_act.ipynb
navpreetmattu/dprojects
- As clear from the boxplot, `rating_numerator` has a number of outliers which can affect our analysis. So, removing all the rating points above 15 abd below 7 to reduce the effect of outliers.
df_clean.drop(index=df_clean.query('rating_numerator > 15 or rating_numerator < 7').index, inplace=True)
_____no_output_____
MIT
Wrangling of @WeLoveDogs Twitter dataset using Python/wrangle_act.ipynb
navpreetmattu/dprojects
Test
df_clean.boxplot(column=['rating_numerator'], figsize=(20,8), vert=False)
_____no_output_____
MIT
Wrangling of @WeLoveDogs Twitter dataset using Python/wrangle_act.ipynb
navpreetmattu/dprojects
- As we can see now, there are no outliers present in the datat anymore. Storing Data in a CSV file
df_clean.to_csv('twitter_archive_master.csv', index=False) print('Save Done !')
Save Done !
MIT
Wrangling of @WeLoveDogs Twitter dataset using Python/wrangle_act.ipynb
navpreetmattu/dprojects
Data Analysis and Visualization
ax = df_clean.plot.scatter('rating_numerator', 'favorite_count', figsize=(10, 10), title='Rating VS. Favorites') ax.set_xlabel('Ratings') ax.set_ylabel('Favorites')
_____no_output_____
MIT
Wrangling of @WeLoveDogs Twitter dataset using Python/wrangle_act.ipynb
navpreetmattu/dprojects
Insight 1:- Number of favorite count is increasing with the rating. i.e. Dogs getting more rating in the tweets are likely to receive more likes (favorites).
df_clean.dog_breed.value_counts()
_____no_output_____
MIT
Wrangling of @WeLoveDogs Twitter dataset using Python/wrangle_act.ipynb
navpreetmattu/dprojects
Insight 2- Most of the pictures present in @WeLoveDogs twitter account are of Golden Retriever, followed by Labrador Retriever, Pembroke and Chihuahua .
df_clean.loc[df_clean.favorite_count.idxmax()][['dog_breed', 'favorite_count']] df_clean.loc[df_clean.favorite_count.idxmin()][['dog_breed', 'favorite_count']] df_clean.loc[df_clean.retweet_count.idxmax()][['dog_breed', 'retweet_count']] df_clean.loc[df_clean.retweet_count.idxmin()][['dog_breed', 'retweet_count']]
_____no_output_____
MIT
Wrangling of @WeLoveDogs Twitter dataset using Python/wrangle_act.ipynb
navpreetmattu/dprojects
Moving average Run in Google Colab View source on GitHub Setup
import numpy as np import matplotlib.pyplot as plt import tensorflow as tf keras = tf.keras def plot_series(time, series, format="-", start=0, end=None, label=None): plt.plot(time[start:end], series[start:end], format, label=label) plt.xlabel("Time") plt.ylabel("Value") if label: plt.legend(fontsize=14) plt.grid(True) def trend(time, slope=0): return slope * time def seasonal_pattern(season_time): """Just an arbitrary pattern, you can change it if you wish""" return np.where(season_time < 0.4, np.cos(season_time * 2 * np.pi), 1 / np.exp(3 * season_time)) def seasonality(time, period, amplitude=1, phase=0): """Repeats the same pattern at each period""" season_time = ((time + phase) % period) / period return amplitude * seasonal_pattern(season_time) def white_noise(time, noise_level=1, seed=None): rnd = np.random.RandomState(seed) return rnd.randn(len(time)) * noise_level
_____no_output_____
MIT
08-Time-Series-Forecasting/03_moving_average.ipynb
iVibudh/TensorFlow-for-DeepLearning
Trend and Seasonality
time = np.arange(4 * 365 + 1) slope = 0.05 baseline = 10 amplitude = 40 series = baseline + trend(time, slope) + seasonality(time, period=365, amplitude=amplitude) noise_level = 5 noise = white_noise(time, noise_level, seed=42) series += noise plt.figure(figsize=(10, 6)) plot_series(time, series) plt.show()
_____no_output_____
MIT
08-Time-Series-Forecasting/03_moving_average.ipynb
iVibudh/TensorFlow-for-DeepLearning
Naive Forecast
split_time = 1000 time_train = time[:split_time] x_train = series[:split_time] time_valid = time[split_time:] x_valid = series[split_time:] naive_forecast = series[split_time - 1:-1] plt.figure(figsize=(10, 6)) plot_series(time_valid, x_valid, start=0, end=150, label="Series") plot_series(time_valid, naive_forecast, start=1, end=151, label="Forecast")
_____no_output_____
MIT
08-Time-Series-Forecasting/03_moving_average.ipynb
iVibudh/TensorFlow-for-DeepLearning
Now let's compute the mean absolute error between the forecasts and the predictions in the validation period:
keras.metrics.mean_absolute_error(x_valid, naive_forecast).numpy()
_____no_output_____
MIT
08-Time-Series-Forecasting/03_moving_average.ipynb
iVibudh/TensorFlow-for-DeepLearning
That's our baseline, now let's try a moving average. Moving Average
def moving_average_forecast(series, window_size): """Forecasts the mean of the last few values. If window_size=1, then this is equivalent to naive forecast""" forecast = [] for time in range(len(series) - window_size): forecast.append(series[time:time + window_size].mean()) return np.array(forecast) def moving_average_forecast(series, window_size): """Forecasts the mean of the last few values. If window_size=1, then this is equivalent to naive forecast This implementation is *much* faster than the previous one""" mov = np.cumsum(series) mov[window_size:] = mov[window_size:] - mov[:-window_size] return mov[window_size - 1:-1] / window_size moving_avg = moving_average_forecast(series, 30)[split_time - 30:] plt.figure(figsize=(10, 6)) plot_series(time_valid, x_valid, label="Series") plot_series(time_valid, moving_avg, label="Moving average (30 days)") keras.metrics.mean_absolute_error(x_valid, moving_avg).numpy()
_____no_output_____
MIT
08-Time-Series-Forecasting/03_moving_average.ipynb
iVibudh/TensorFlow-for-DeepLearning
That's worse than naive forecast! The moving average does not anticipate trend or seasonality, so let's try to remove them by using differencing. Since the seasonality period is 365 days, we will subtract the value at time *t* – 365 from the value at time *t*.
time_a = np.array(range(1, 21)) a = np.array([1.1, 1.5, 1.6, 1.4, 1.5, 1.6,1.7, 1.8, 1.9, 2, 2.1, 2.5, 2.6, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3]) print("a: ", a, len(a)) print("time_a: ", time_a, len (time_a)) ma_a = moving_average_forecast(a, 10) print("ma_a: ", ma_a) diff_a = (a[10:] - a[:-10]) ### This removes TREND + SEASONALITY, so, Only Noise is left diff_time = time_a[10:] print("diff_time: ", diff_time) print("diff_a: ", diff_a) a[10:] a[:-10] diff_series = (series[365:] - series[:-365]) diff_time = time[365:] plt.figure(figsize=(10, 6)) plot_series(diff_time, diff_series, label="Series(t) – Series(t–365)") plt.show()
_____no_output_____
MIT
08-Time-Series-Forecasting/03_moving_average.ipynb
iVibudh/TensorFlow-for-DeepLearning
Focusing on the validation period:
plt.figure(figsize=(10, 6)) plot_series(time_valid, diff_series[split_time - 365:], label="Series(t) – Series(t–365)") plt.show()
_____no_output_____
MIT
08-Time-Series-Forecasting/03_moving_average.ipynb
iVibudh/TensorFlow-for-DeepLearning
Great, the trend and seasonality seem to be gone, so now we can use the moving average:
diff_moving_avg = moving_average_forecast(diff_series, 50)[split_time - 365 - 50:] plt.figure(figsize=(10, 6)) plot_series(time_valid, diff_series[split_time - 365:], label="Series(t) – Series(t–365)") plot_series(time_valid, diff_moving_avg, label="Moving Average of Diff") plt.show()
_____no_output_____
MIT
08-Time-Series-Forecasting/03_moving_average.ipynb
iVibudh/TensorFlow-for-DeepLearning
Now let's bring back the trend and seasonality by adding the past values from t – 365:
diff_moving_avg_plus_past = series[split_time - 365:-365] + diff_moving_avg plt.figure(figsize=(10, 6)) plot_series(time_valid, x_valid, label="Series") plot_series(time_valid, diff_moving_avg_plus_past, label="Forecasts") plt.show() keras.metrics.mean_absolute_error(x_valid, diff_moving_avg_plus_past).numpy()
_____no_output_____
MIT
08-Time-Series-Forecasting/03_moving_average.ipynb
iVibudh/TensorFlow-for-DeepLearning
Better than naive forecast, good. However the forecasts look a bit too random, because we're just adding past values, which were noisy. Let's use a moving averaging on past values to remove some of the noise:
diff_moving_avg_plus_smooth_past = moving_average_forecast(series[split_time - 370:-359], 11) + diff_moving_avg # moving_average_forecast(series[split_time - 370:-359], 11) = Past series have been smoothed to reduce the effects of the past noise plt.figure(figsize=(10, 6)) plot_series(time_valid, x_valid, label="Series") plot_series(time_valid, diff_moving_avg_plus_smooth_past, label="Forecasts") plt.show() keras.metrics.mean_absolute_error(x_valid, diff_moving_avg_plus_smooth_past).numpy()
_____no_output_____
MIT
08-Time-Series-Forecasting/03_moving_average.ipynb
iVibudh/TensorFlow-for-DeepLearning
Approximate q-learningIn this notebook you will teach a __tensorflow__ neural network to do Q-learning. __Frameworks__ - we'll accept this homework in any deep learning framework. This particular notebook was designed for tensorflow, but you will find it easy to adapt it to almost any python-based deep learning framework.
#XVFB will be launched if you run on a server import os if os.environ.get("DISPLAY") is not str or len(os.environ.get("DISPLAY"))==0: !bash ../xvfb start %env DISPLAY=:1 import gym import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline env = gym.make("CartPole-v0").env env.reset() n_actions = env.action_space.n state_dim = env.observation_space.shape plt.imshow(env.render("rgb_array")) state_dim
_____no_output_____
MIT
week4_approx/practice_approx_qlearning.ipynb
Innuendo1975/Practical_RL
Approximate (deep) Q-learning: building the networkTo train a neural network policy one must have a neural network policy. Let's build it.Since we're working with a pre-extracted features (cart positions, angles and velocities), we don't need a complicated network yet. In fact, let's build something like this for starters:![img](https://raw.githubusercontent.com/yandexdataschool/Practical_RL/master/yet_another_week/_resource/qlearning_scheme.png)For your first run, please only use linear layers (L.Dense) and activations. Stuff like batch normalization or dropout may ruin everything if used haphazardly. Also please avoid using nonlinearities like sigmoid & tanh: agent's observations are not normalized so sigmoids may become saturated from init.Ideally you should start small with maybe 1-2 hidden layers with < 200 neurons and then increase network size if agent doesn't beat the target score.
import tensorflow as tf import keras import keras.layers as L tf.reset_default_graph() sess = tf.InteractiveSession() keras.backend.set_session(sess) network = keras.models.Sequential() network.add(L.InputLayer(state_dim)) # let's create a network for approximate q-learning following guidelines above # <YOUR CODE: stack more layers!!!1 > network.add(L.Dense(128, activation='relu')) network.add(L.Dense(196, activation='relu')) network.add(L.Dense(n_actions, activation='linear')) import numpy as np import random def get_action(state, epsilon=0): """ sample actions with epsilon-greedy policy recap: with p = epsilon pick random action, else pick action with highest Q(s,a) """ q_values = network.predict(state[None])[0] n = len(q_values) if random.random() < epsilon: return random.randint(0, n - 1) else: return np.argmax(q_values) # return <epsilon-greedily selected action> assert network.output_shape == (None, n_actions), "please make sure your model maps state s -> [Q(s,a0), ..., Q(s, a_last)]" assert network.layers[-1].activation == keras.activations.linear, "please make sure you predict q-values without nonlinearity" # test epsilon-greedy exploration s = env.reset() assert np.shape(get_action(s)) == (), "please return just one action (integer)" for eps in [0., 0.1, 0.5, 1.0]: state_frequencies = np.bincount([get_action(s, epsilon=eps) for i in range(10000)], minlength=n_actions) best_action = state_frequencies.argmax() assert abs(state_frequencies[best_action] - 10000 * (1 - eps + eps / n_actions)) < 200 for other_action in range(n_actions): if other_action != best_action: assert abs(state_frequencies[other_action] - 10000 * (eps / n_actions)) < 200 print('e=%.1f tests passed'%eps)
e=0.0 tests passed e=0.1 tests passed e=0.5 tests passed e=1.0 tests passed
MIT
week4_approx/practice_approx_qlearning.ipynb
Innuendo1975/Practical_RL
Q-learning via gradient descentWe shall now train our agent's Q-function by minimizing the TD loss:$$ L = { 1 \over N} \sum_i (Q_{\theta}(s,a) - [r(s,a) + \gamma \cdot max_{a'} Q_{-}(s', a')]) ^2 $$Where* $s, a, r, s'$ are current state, action, reward and next state respectively* $\gamma$ is a discount factor defined two cells above.The tricky part is with $Q_{-}(s',a')$. From an engineering standpoint, it's the same as $Q_{\theta}$ - the output of your neural network policy. However, when doing gradient descent, __we won't propagate gradients through it__ to make training more stable (see lectures).To do so, we shall use `tf.stop_gradient` function which basically says "consider this thing constant when doingbackprop".
# Create placeholders for the <s, a, r, s'> tuple and a special indicator for game end (is_done = True) states_ph = keras.backend.placeholder(dtype='float32', shape=(None,) + state_dim) actions_ph = keras.backend.placeholder(dtype='int32', shape=[None]) rewards_ph = keras.backend.placeholder(dtype='float32', shape=[None]) next_states_ph = keras.backend.placeholder(dtype='float32', shape=(None,) + state_dim) is_done_ph = keras.backend.placeholder(dtype='bool', shape=[None]) #get q-values for all actions in current states predicted_qvalues = network(states_ph) #select q-values for chosen actions predicted_qvalues_for_actions = tf.reduce_sum(predicted_qvalues * tf.one_hot(actions_ph, n_actions), axis=1) gamma = 0.99 # compute q-values for all actions in next states # predicted_next_qvalues = <YOUR CODE - apply network to get q-values for next_states_ph> predicted_next_qvalues = network(next_states_ph) # compute V*(next_states) using predicted next q-values next_state_values = tf.reduce_max(predicted_next_qvalues, axis=1) # compute "target q-values" for loss - it's what's inside square parentheses in the above formula. target_qvalues_for_actions = rewards_ph + gamma * next_state_values # at the last state we shall use simplified formula: Q(s,a) = r(s,a) since s' doesn't exist target_qvalues_for_actions = tf.where(is_done_ph, rewards_ph, target_qvalues_for_actions) #mean squared error loss to minimize loss = (predicted_qvalues_for_actions - tf.stop_gradient(target_qvalues_for_actions)) ** 2 loss = tf.reduce_mean(loss) # training function that resembles agent.update(state, action, reward, next_state) from tabular agent train_step = tf.train.AdamOptimizer(1e-4).minimize(loss) assert tf.gradients(loss, [predicted_qvalues_for_actions])[0] is not None, "make sure you update q-values for chosen actions and not just all actions" assert tf.gradients(loss, [predicted_next_qvalues])[0] is None, "make sure you don't propagate gradient w.r.t. Q_(s',a')" assert predicted_next_qvalues.shape.ndims == 2, "make sure you predicted q-values for all actions in next state" assert next_state_values.shape.ndims == 1, "make sure you computed V(s') as maximum over just the actions axis and not all axes" assert target_qvalues_for_actions.shape.ndims == 1, "there's something wrong with target q-values, they must be a vector"
_____no_output_____
MIT
week4_approx/practice_approx_qlearning.ipynb
Innuendo1975/Practical_RL
Playing the game
def generate_session(t_max=1000, epsilon=0, train=False): """play env with approximate q-learning agent and train it at the same time""" total_reward = 0 s = env.reset() for t in range(t_max): a = get_action(s, epsilon=epsilon) next_s, r, done, _ = env.step(a) if train: sess.run(train_step,{ states_ph: [s], actions_ph: [a], rewards_ph: [r], next_states_ph: [next_s], is_done_ph: [done] }) total_reward += r s = next_s if done: break return total_reward epsilon = 0.5 for i in range(1000): session_rewards = [generate_session(epsilon=epsilon, train=True) for _ in range(100)] print("epoch #{}\tmean reward = {:.3f}\tepsilon = {:.3f}".format(i, np.mean(session_rewards), epsilon)) epsilon *= 0.99 assert epsilon >= 1e-4, "Make sure epsilon is always nonzero during training" if np.mean(session_rewards) > 300: print ("You Win!") break
epoch #0 mean reward = 16.740 epsilon = 0.500 epoch #1 mean reward = 16.610 epsilon = 0.495 epoch #2 mean reward = 14.050 epsilon = 0.490 epoch #3 mean reward = 15.400 epsilon = 0.485 epoch #4 mean reward = 14.950 epsilon = 0.480 epoch #5 mean reward = 19.480 epsilon = 0.475 epoch #6 mean reward = 16.150 epsilon = 0.471 epoch #7 mean reward = 17.380 epsilon = 0.466 epoch #8 mean reward = 15.730 epsilon = 0.461 epoch #9 mean reward = 25.080 epsilon = 0.457 epoch #10 mean reward = 29.930 epsilon = 0.452 epoch #11 mean reward = 37.970 epsilon = 0.448 epoch #12 mean reward = 45.640 epsilon = 0.443 epoch #13 mean reward = 46.730 epsilon = 0.439 epoch #14 mean reward = 43.390 epsilon = 0.434 epoch #15 mean reward = 79.620 epsilon = 0.430 epoch #16 mean reward = 92.650 epsilon = 0.426 epoch #17 mean reward = 125.850 epsilon = 0.421 epoch #18 mean reward = 100.480 epsilon = 0.417 epoch #19 mean reward = 150.340 epsilon = 0.413 epoch #20 mean reward = 161.240 epsilon = 0.409 epoch #21 mean reward = 131.490 epsilon = 0.405 epoch #22 mean reward = 184.870 epsilon = 0.401 epoch #23 mean reward = 191.210 epsilon = 0.397 epoch #24 mean reward = 247.040 epsilon = 0.393 epoch #25 mean reward = 207.300 epsilon = 0.389 epoch #26 mean reward = 249.010 epsilon = 0.385 epoch #27 mean reward = 252.960 epsilon = 0.381 epoch #28 mean reward = 276.790 epsilon = 0.377 epoch #29 mean reward = 376.700 epsilon = 0.374 You Win!
MIT
week4_approx/practice_approx_qlearning.ipynb
Innuendo1975/Practical_RL
How to interpret resultsWelcome to the f.. world of deep f...n reinforcement learning. Don't expect agent's reward to smoothly go up. Hope for it to go increase eventually. If it deems you worthy.Seriously though,* __ mean reward__ is the average reward per game. For a correct implementation it may stay low for some 10 epochs, then start growing while oscilating insanely and converges by ~50-100 steps depending on the network architecture. * If it never reaches target score by the end of for loop, try increasing the number of hidden neurons or look at the epsilon.* __ epsilon__ - agent's willingness to explore. If you see that agent's already at < 0.01 epsilon before it's is at least 200, just reset it back to 0.1 - 0.5. Record videosAs usual, we now use `gym.wrappers.Monitor` to record a video of our agent playing the game. Unlike our previous attempts with state binarization, this time we expect our agent to act ~~(or fail)~~ more smoothly since there's no more binarization error at play.As you already did with tabular q-learning, we set epsilon=0 for final evaluation to prevent agent from exploring himself to death.
#record sessions import gym.wrappers env = gym.wrappers.Monitor(gym.make("CartPole-v0"),directory="videos",force=True) sessions = [generate_session(epsilon=0, train=False) for _ in range(100)] env.close() #show video from IPython.display import HTML import os video_names = list(filter(lambda s:s.endswith(".mp4"),os.listdir("./videos/"))) HTML(""" <video width="640" height="480" controls> <source src="{}" type="video/mp4"> </video> """.format("./videos/"+video_names[-1])) #this may or may not be _last_ video. Try other indices
_____no_output_____
MIT
week4_approx/practice_approx_qlearning.ipynb
Innuendo1975/Practical_RL
--- Submit to coursera
%load_ext autoreload %autoreload 2 from submit2 import submit_cartpole submit_cartpole(generate_session, '[email protected]', 'gMmaBajRboD6YXKK')
Submitted to Coursera platform. See results on assignment page!
MIT
week4_approx/practice_approx_qlearning.ipynb
Innuendo1975/Practical_RL
NOAA Wave Watch 3 and NDBC Buoy Data Comparison *Note: this notebook requires python3.*This notebook demostrates how to compare [WaveWatch III Global Ocean Wave Model](http://data.planetos.com/datasets/noaa_ww3_global_1.25x1d:noaa-wave-watch-iii-nww3-ocean-wave-model?utm_source=github&utm_medium=notebook&utm_campaign=ndbc-wavewatch-iii-notebook) and [NOAA NDBC buoy data](http://data.planetos.com/datasets/noaa_ndbc_stdmet_stations?utm_source=github&utm_medium=notebook&utm_campaign=ndbc-wavewatch-iii-notebook) using the Planet OS API.API documentation is available at http://docs.planetos.com. If you have questions or comments, join the [Planet OS Slack community](http://slack.planetos.com/) to chat with our development team.For general information on usage of IPython/Jupyter and Matplotlib, please refer to their corresponding documentation. https://ipython.org/ and http://matplotlib.org/. This notebook also makes use of the [matplotlib basemap toolkit.](http://matplotlib.org/basemap/index.html)
%matplotlib inline import numpy as np import matplotlib.pyplot as plt import dateutil.parser import datetime from urllib.request import urlopen, Request import simplejson as json from datetime import date, timedelta, datetime import matplotlib.dates as mdates from mpl_toolkits.basemap import Basemap
_____no_output_____
MIT
api-examples/ndbc-wavewatch-iii.ipynb
evan1997123/PlanetOSDatathon
**Important!** You'll need to replace apikey below with your actual Planet OS API key, which you'll find [on the Planet OS account settings page.](http://data.planetos.com/account/settings/?utm_source=github&utm_medium=notebook&utm_campaign=ww3-api-notebook) and NDBC buoy station name in which you are intrested.
dataset_id = 'noaa_ndbc_stdmet_stations' ## stations with wave height available: '46006', '46013', '46029' ## stations without wave height: icac1', '41047', 'bepb6', '32st0', '51004' ## stations too close to coastline (no point to compare to ww3)'sacv4', 'gelo1', 'hcef1' station = '46029' apikey = open('APIKEY').readlines()[0].strip() #'<YOUR API KEY HERE>'
_____no_output_____
MIT
api-examples/ndbc-wavewatch-iii.ipynb
evan1997123/PlanetOSDatathon
Let's first query the API to see what stations are available for the [NDBC Standard Meteorological Data dataset.](http://data.planetos.com/datasets/noaa_ndbc_stdmet_stations?utm_source=github&utm_medium=notebook&utm_campaign=ndbc-wavewatch-iii-notebook)
API_url = 'http://api.planetos.com/v1/datasets/%s/stations?apikey=%s' % (dataset_id, apikey) request = Request(API_url) response = urlopen(request) API_data_locations = json.loads(response.read()) # print(API_data_locations)
_____no_output_____
MIT
api-examples/ndbc-wavewatch-iii.ipynb
evan1997123/PlanetOSDatathon
Now we'll use matplotlib to visualize the stations on a simple basemap.
m = Basemap(projection='merc',llcrnrlat=-80,urcrnrlat=80,\ llcrnrlon=-180,urcrnrlon=180,lat_ts=20,resolution='c') fig=plt.figure(figsize=(15,10)) m.drawcoastlines() ##m.fillcontinents() for i in API_data_locations['station']: x,y=m(API_data_locations['station'][i]['SpatialExtent']['coordinates'][0], API_data_locations['station'][i]['SpatialExtent']['coordinates'][1]) plt.scatter(x,y,color='r') x,y=m(API_data_locations['station'][station]['SpatialExtent']['coordinates'][0], API_data_locations['station'][station]['SpatialExtent']['coordinates'][1]) plt.scatter(x,y,s=100,color='b')
_____no_output_____
MIT
api-examples/ndbc-wavewatch-iii.ipynb
evan1997123/PlanetOSDatathon
Let's examine the last five days of data. For the WaveWatch III forecast, we'll use the reference time parameter to pull forecast data from the 18:00 model run from five days ago.
## Find suitable reference time values atthemoment = datetime.utcnow() atthemoment = atthemoment.strftime('%Y-%m-%dT%H:%M:%S') before5days = datetime.utcnow() - timedelta(days=5) before5days_long = before5days.strftime('%Y-%m-%dT%H:%M:%S') before5days_short = before5days.strftime('%Y-%m-%d') start = before5days_long end = atthemoment reftime_start = str(before5days_short) + 'T18:00:00' reftime_end = reftime_start
_____no_output_____
MIT
api-examples/ndbc-wavewatch-iii.ipynb
evan1997123/PlanetOSDatathon
API request for NOAA NDBC buoy station data
API_url = "http://api.planetos.com/v1/datasets/{0}/point?station={1}&apikey={2}&start={3}&end={4}&count=1000".format(dataset_id,station,apikey,start,end) print(API_url) request = Request(API_url) response = urlopen(request) API_data_buoy = json.loads(response.read()) buoy_variables = [] for k,v in set([(j,i['context']) for i in API_data_buoy['entries'] for j in i['data'].keys()]): buoy_variables.append(k)
_____no_output_____
MIT
api-examples/ndbc-wavewatch-iii.ipynb
evan1997123/PlanetOSDatathon
Find buoy station coordinates to use them later for finding NOAA Wave Watch III data
for i in API_data_buoy['entries']: #print(i['axes']['time']) if i['context'] == 'time_latitude_longitude': longitude = (i['axes']['longitude']) latitude = (i['axes']['latitude']) print ('Latitude: '+ str(latitude)) print ('Longitude: '+ str(longitude))
Latitude: 46.159000396728516 Longitude: -124.51399993896484
MIT
api-examples/ndbc-wavewatch-iii.ipynb
evan1997123/PlanetOSDatathon
API request for NOAA WaveWatch III (NWW3) Ocean Wave Model near the point of selected station. Note that data may not be available at the requested reference time. If the response is empty, try removing the reference time parameters `reftime_start` and `reftime_end` from the query.
API_url = 'http://api.planetos.com/v1/datasets/noaa_ww3_global_1.25x1d/point?lat={0}&lon={1}&verbose=true&apikey={2}&count=100&end={3}&reftime_start={4}&reftime_end={5}'.format(latitude,longitude,apikey,end,reftime_start,reftime_end) request = Request(API_url) response = urlopen(request) API_data_ww3 = json.loads(response.read()) print(API_url) ww3_variables = [] for k,v in set([(j,i['context']) for i in API_data_ww3['entries'] for j in i['data'].keys()]): ww3_variables.append(k)
_____no_output_____
MIT
api-examples/ndbc-wavewatch-iii.ipynb
evan1997123/PlanetOSDatathon
Manually review the list of WaveWatch and NDBC data variables to determine which parameters are equivalent for comparison.
print(ww3_variables) print(buoy_variables)
['Wind_speed_surface', 'v-component_of_wind_surface', 'u-component_of_wind_surface', 'Primary_wave_direction_surface', 'Significant_height_of_combined_wind_waves_and_swell_surface', 'Significant_height_of_swell_waves_ordered_sequence_of_data', 'Mean_period_of_swell_waves_ordered_sequence_of_data', 'Mean_period_of_wind_waves_surface', 'Direction_of_swell_waves_ordered_sequence_of_data', 'Primary_wave_mean_period_surface', 'Secondary_wave_direction_surface', 'Secondary_wave_mean_period_surface', 'Wind_direction_from_which_blowing_surface', 'Direction_of_wind_waves_surface', 'Significant_height_of_wind_waves_surface'] ['wind_spd', 'wave_height', 'air_temperature', 'dewpt_temperature', 'mean_wave_dir', 'average_wpd', 'dominant_wpd', 'sea_surface_temperature', 'air_pressure', 'wind_dir', 'water_level', 'visibility', 'gust']
MIT
api-examples/ndbc-wavewatch-iii.ipynb
evan1997123/PlanetOSDatathon
Next we'll build a dictionary of corresponding variables that we want to compare.
buoy_model = {'wave_height':'Significant_height_of_combined_wind_waves_and_swell_surface', 'mean_wave_dir':'Primary_wave_direction_surface', 'average_wpd':'Primary_wave_mean_period_surface', 'wind_spd':'Wind_speed_surface'}
_____no_output_____
MIT
api-examples/ndbc-wavewatch-iii.ipynb
evan1997123/PlanetOSDatathon
Read data from the JSON responses and convert the values to floats for plotting. Note that depending on the dataset, some variables have different timesteps than others, so a separate time array for each variable is recommended.
def append_data(in_string): if in_string == None: return np.nan elif in_string == 'None': return np.nan else: return float(in_string) ww3_data = {} ww3_times = {} buoy_data = {} buoy_times = {} for k,v in buoy_model.items(): ww3_data[v] = [] ww3_times[v] = [] buoy_data[k] = [] buoy_times[k] = [] for i in API_data_ww3['entries']: for j in i['data']: if j in buoy_model.values(): ww3_data[j].append(append_data(i['data'][j])) ww3_times[j].append(dateutil.parser.parse(i['axes']['time'])) for i in API_data_buoy['entries']: for j in i['data']: if j in buoy_model.keys(): buoy_data[j].append(append_data(i['data'][j])) buoy_times[j].append(dateutil.parser.parse(i['axes']['time'])) for i in ww3_data: ww3_data[i] = np.array(ww3_data[i]) ww3_times[i] = np.array(ww3_times[i])
_____no_output_____
MIT
api-examples/ndbc-wavewatch-iii.ipynb
evan1997123/PlanetOSDatathon
Finally, let's plot the data using matplotlib.
buoy_label = "NDBC Station %s" % station ww3_label = "WW3 at %s" % reftime_start for k,v in buoy_model.items(): if np.abs(np.nansum(buoy_data[k]))>0: fig=plt.figure(figsize=(10,5)) plt.title(k+' '+v) plt.plot(ww3_times[v],ww3_data[v], label=ww3_label) plt.plot(buoy_times[k],buoy_data[k],'*',label=buoy_label) plt.legend(bbox_to_anchor=(1.5, 0.22), loc=1, borderaxespad=0.) plt.xlabel('Time') plt.ylabel(k) fig.autofmt_xdate() plt.grid()
_____no_output_____
MIT
api-examples/ndbc-wavewatch-iii.ipynb
evan1997123/PlanetOSDatathon
SCEE and Interconnect The SCEE module in SiPANN also has built in functionality to export any of it's models directly into a format readable by Lumerical Interconnect via the `export_interconnect()` function. This gives the user multiple options (Interconnect or Simphony) to cascade devices into complex structures. To export to a Interconnect file is as simple as a function call. First we declare all of our imports:
import numpy as np from SiPANN import scee
_____no_output_____
MIT
examples/Tutorials/ExportToInterConnect.ipynb
joamatab/SiPANN
Then make our device and calculate it's scattering parameters (we arbitrarily choose a half ring resonator here)
r = 10000 w = 500 t = 220 wavelength = np.linspace(1500, 1600) gap = 100 hr = scee.HalfRing(w, t, r, gap) sparams = hr.sparams(wavelength)
_____no_output_____
MIT
examples/Tutorials/ExportToInterConnect.ipynb
joamatab/SiPANN
And then export. Note `export_interconnect` takes in wavelengths in nms, but the Lumerical file will have frequency in meters, as is standard in Interconnect. To export:
filename = "halfring_10microns_sparams.txt" scee.export_interconnect(sparams, wavelength, filename)
_____no_output_____
MIT
examples/Tutorials/ExportToInterConnect.ipynb
joamatab/SiPANN
Aula 1
import pandas as pd url_dados = 'https://github.com/alura-cursos/imersaodados3/blob/main/dados/dados_experimentos.zip?raw=true' dados = pd.read_csv(url_dados, compression = 'zip') dados dados.head() dados.shape dados['tratamento'] dados['tratamento'].unique() dados['tempo'].unique() dados['dose'].unique() dados['droga'].unique() dados['g-0'].unique() dados['tratamento'].value_counts() dados['dose'].value_counts() dados['tratamento'].value_counts(normalize = True) dados['dose'].value_counts(normalize = True) dados['tratamento'].value_counts().plot.pie() dados['tempo'].value_counts().plot.pie() dados['tempo'].value_counts().plot.bar() dados_filtrados = dados[dados['g-0'] > 0] dados_filtrados.head()
_____no_output_____
MIT
Desafios_aula01respostas.ipynb
Adrianacms/ImersaoDados_Alura
Desafios Aula 1 Desafio 01: Investigar por que a classe tratamento é tão desbalanceada? Dependendo o tipo de pesquisa é possível usar o mesmo controle para mais de um caso. Repare que o grupo de controle é um grupo onde não estamos aplicando o efeito de uma determinada droga. Então, esse mesmo grupo pode ser utilizado como controle para cada uma das drogas estudadas. Um ponto relevante da base de dados que estamos trabalhando é que todos os dados de controle estão relacionados ao estudo de apenas uma droga.
print(f"Total de dados {len(dados['id'])}\n") print(f"Quantidade de drogas {len(dados.groupby(['droga', 'tratamento']).count()['id'])}\n") display(dados.query('tratamento == "com_controle"').value_counts('droga')) print() display(dados.query('droga == "cacb2b860"').value_counts('tratamento')) print()
Total de dados 23814 Quantidade de drogas 3289
MIT
Desafios_aula01respostas.ipynb
Adrianacms/ImersaoDados_Alura
Desafio 02: Plotar as 5 últimas linhas da tabela
dados.tail()
_____no_output_____
MIT
Desafios_aula01respostas.ipynb
Adrianacms/ImersaoDados_Alura
Outra opção seria usar o seguinte comando:
dados[-5:]
_____no_output_____
MIT
Desafios_aula01respostas.ipynb
Adrianacms/ImersaoDados_Alura
Desafio 03: Proporção das classes tratamento.
dados['tratamento'].value_counts(normalize = True)
_____no_output_____
MIT
Desafios_aula01respostas.ipynb
Adrianacms/ImersaoDados_Alura
Desafio 04: Quantas tipos de drogas foram investigadas.
dados['droga'].unique().shape[0]
_____no_output_____
MIT
Desafios_aula01respostas.ipynb
Adrianacms/ImersaoDados_Alura
Outra opção de solução:
len(dados['droga'].unique())
_____no_output_____
MIT
Desafios_aula01respostas.ipynb
Adrianacms/ImersaoDados_Alura
Desafio 05: Procurar na documentação o método query(pandas). https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.query.html Desafio 06: Renomear as colunas tirando o hífen.
dados.columns nome_das_colunas = dados.columns novo_nome_coluna = [] for coluna in nome_das_colunas: coluna = coluna.replace('-', '_') novo_nome_coluna.append(coluna) dados.columns = novo_nome_coluna dados.head()
_____no_output_____
MIT
Desafios_aula01respostas.ipynb
Adrianacms/ImersaoDados_Alura
Agora podemos comparar o resultado usando Query com o resultado usando máscara + slice
dados_filtrados = dados[dados['g_0'] > 0] dados_filtrados.head() dados_filtrados = dados.query('g_0 > 0') dados_filtrados.head()
_____no_output_____
MIT
Desafios_aula01respostas.ipynb
Adrianacms/ImersaoDados_Alura
Desafio 07: Deixar os gráficos bonitões. (Matplotlib.pyplot)
import matplotlib.pyplot as plt valore_tempo = dados['tempo'].value_counts(ascending=True) valore_tempo.sort_index() plt.figure(figsize=(15, 10)) valore_tempo = dados['tempo'].value_counts(ascending=True) ax = valore_tempo.sort_index().plot.bar() ax.set_title('Janelas de tempo', fontsize=20) ax.set_xlabel('Tempo', fontsize=18) ax.set_ylabel('Quantidade', fontsize=18) plt.xticks(rotation = 0, fontsize=16) plt.yticks(fontsize=16) plt.show()
_____no_output_____
MIT
Desafios_aula01respostas.ipynb
Adrianacms/ImersaoDados_Alura
Desafio 08: Resumo do que você aprendeu com os dados Nesta aula utilizei a biblioteca Pandas, diversas funcionalidades da mesma para explorar dados. Durante a análise de dados, descobri fatores importantes para a obtenção de insights e também aprendi como plotar os gráficos de pizza e de colunas discutindo pontos positivos e negativos. Para mais informações a base dados estudada na imersão é uma versão simplificada [deste desafio](https://www.kaggle.com/c/lish-moa/overview/description) do Kaggle (em inglês).Também recomendo acessar o[Connectopedia](https://clue.io/connectopedia/). O Connectopedia é um dicionário gratuito de termos e conceitos que incluem definições de viabilidade de células e expressão de genes. O desafio do Kaggle também está relacionado a estes artigos científicos:Corsello et al. “Discovering the anticancer potential of non-oncology drugs by systematic viability profiling,” Nature Cancer, 2020, https://doi.org/10.1038/s43018-019-0018-6Subramanian et al. “A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles,” Cell, 2017, https://doi.org/10.1016/j.cell.2017.10.049
_____no_output_____
MIT
Desafios_aula01respostas.ipynb
Adrianacms/ImersaoDados_Alura
Part 2 - ListsWe learned about **variables** in Part 1. Sometimes it makes sense to group lots of items of information together in a **list**. This is a good idea when the items are all connected in some way.For example, we might want to store the names of our friends. We could create several variables and assign the name of one friend to each of them (remember to do a Shift-Return on your keyboard, or click the Run button, to run the code):
friend_1 = "Fred" friend_2 = "Jane" friend_3 = "Rob" friend_4 = "Sophie" friend_5 = "Rachel"
_____no_output_____
MIT
2 - Lists.ipynb
grahampullan/pythonical
This works OK. All the names are stored. But the problem is that they are all stored separately - Python does not know that they are all part of the same collection of friends.But there's a really nice way to solve this problem: **lists**. We can create a list like this:
friends = [ "Fred", "Jane", "Rob", "Sophie", "Rachel" ]
_____no_output_____
MIT
2 - Lists.ipynb
grahampullan/pythonical
We create a list using square brackets `[` `]`, with each item in the list separated by a comma `,`. List methodsThere are some special **list** tools (called **methods**) that we can use on our `friends` list. We can add a name to the list using `append`:
friends.append("David") print(friends)
_____no_output_____
MIT
2 - Lists.ipynb
grahampullan/pythonical
We can put the names in alphabetical order using `sort`:
friends.sort() print(friends)
_____no_output_____
MIT
2 - Lists.ipynb
grahampullan/pythonical
We can reverse the order using `reverse`:
friends.reverse() print(friends)
_____no_output_____
MIT
2 - Lists.ipynb
grahampullan/pythonical
These **list** **methods** allow us to do lots of things like this without having to write much code ourselves. What is a list index?Let's make a new list. This time, we will start with an empty list, and then add to it:
shapes = [] print(shapes) shapes.append("triangle") shapes.append("square") shapes.append("pentagon") shapes.append("hexagon") print(shapes)
_____no_output_____
MIT
2 - Lists.ipynb
grahampullan/pythonical
These lists are great, but we might not always want to operate on the whole list at once. Instead, we might want to pick out one particular item in the list. In a **list**, each item is numbered, *starting from zero*. This number is called an **index**. So, remembering that the numbering *starts from zero*, we can access the first item in the list like this:
print(shapes[0])
_____no_output_____
MIT
2 - Lists.ipynb
grahampullan/pythonical
Notice that the **index** is surrounded by square brackets `[` `]`. We can get the second item in `shapes` like this:
print(shapes[1])
_____no_output_____
MIT
2 - Lists.ipynb
grahampullan/pythonical
and the last one like this:
print(shapes[3])
_____no_output_____
MIT
2 - Lists.ipynb
grahampullan/pythonical
Python also has a special way of indexing the last item in a list, and this is especially useful if you're not sure how many items there are in your list. You can use a negative index:
print(shapes[-1])
_____no_output_____
MIT
2 - Lists.ipynb
grahampullan/pythonical
We can ask Python to tell us the index of an item in the list:
idx = shapes.index("square") print(idx)
_____no_output_____
MIT
2 - Lists.ipynb
grahampullan/pythonical
Actually, the `index` method tells us the index of the first time that an item appears in a list. Displaying our data in a bar chart Let's have another look at our `shapes` list:
print(shapes)
_____no_output_____
MIT
2 - Lists.ipynb
grahampullan/pythonical
and let's make another list that has the number of sides that each shape has:
sides=[3,4,5,6] print(sides)
_____no_output_____
MIT
2 - Lists.ipynb
grahampullan/pythonical