markdown
stringlengths
0
1.02M
code
stringlengths
0
832k
output
stringlengths
0
1.02M
license
stringlengths
3
36
path
stringlengths
6
265
repo_name
stringlengths
6
127
Dataset structureA dataset contains elements that each have the same (nested) structure and theindividual components of the structure can be of any type representable by`tf.TypeSpec`, including `tf.Tensor`, `tf.sparse.SparseTensor`, `tf.RaggedTensor`,`tf.TensorArray`, or `tf.data.Dataset`.The `Dataset.element_spec` property allows you to inspect the type of eachelement component. The property returns a *nested structure* of `tf.TypeSpec`objects, matching the structure of the element, which may be a single component,a tuple of components, or a nested tuple of components. For example:
dataset1 = tf.data.Dataset.from_tensor_slices(tf.random.uniform([4, 10])) dataset1.element_spec dataset2 = tf.data.Dataset.from_tensor_slices( (tf.random.uniform([4]), tf.random.uniform([4, 100], maxval=100, dtype=tf.int32))) dataset2.element_spec dataset3 = tf.data.Dataset.zip((dataset1, dataset2)) dataset3.element_spec # Dataset containing a sparse tensor. dataset4 = tf.data.Dataset.from_tensors(tf.SparseTensor(indices=[[0, 0], [1, 2]], values=[1, 2], dense_shape=[3, 4])) dataset4.element_spec # Use value_type to see the type of value represented by the element spec dataset4.element_spec.value_type
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
The `Dataset` transformations support datasets of any structure. When using the`Dataset.map()`, and `Dataset.filter()` transformations,which apply a function to each element, the element structure determines thearguments of the function:
dataset1 = tf.data.Dataset.from_tensor_slices( tf.random.uniform([4, 10], minval=1, maxval=10, dtype=tf.int32)) dataset1 for z in dataset1: print(z.numpy()) dataset2 = tf.data.Dataset.from_tensor_slices( (tf.random.uniform([4]), tf.random.uniform([4, 100], maxval=100, dtype=tf.int32))) dataset2 dataset3 = tf.data.Dataset.zip((dataset1, dataset2)) dataset3 for a, (b,c) in dataset3: print('shapes: {a.shape}, {b.shape}, {c.shape}'.format(a=a, b=b, c=c))
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
Reading input data Consuming NumPy arraysSee [Loading NumPy arrays](../tutorials/load_data/numpy.ipynb) for more examples.If all of your input data fits in memory, the simplest way to create a `Dataset`from them is to convert them to `tf.Tensor` objects and use`Dataset.from_tensor_slices()`.
train, test = tf.keras.datasets.fashion_mnist.load_data() images, labels = train images = images/255 dataset = tf.data.Dataset.from_tensor_slices((images, labels)) dataset
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
Note: The above code snippet will embed the `features` and `labels` arraysin your TensorFlow graph as `tf.constant()` operations. This works well for asmall dataset, but wastes memory---because the contents of the array will becopied multiple times---and can run into the 2GB limit for the `tf.GraphDef`protocol buffer. Consuming Python generatorsAnother common data source that can easily be ingested as a `tf.data.Dataset` is the python generator.Caution: While this is a convienient approach it has limited portability and scalibility. It must run in the same python process that created the generator, and is still subject to the Python [GIL](https://en.wikipedia.org/wiki/Global_interpreter_lock).
def count(stop): i = 0 while i<stop: yield i i += 1 for n in count(5): print(n)
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
The `Dataset.from_generator` constructor converts the python generator to a fully functional `tf.data.Dataset`.The constructor takes a callable as input, not an iterator. This allows it to restart the generator when it reaches the end. It takes an optional `args` argument, which is passed as the callable's arguments.The `output_types` argument is required because `tf.data` builds a `tf.Graph` internally, and graph edges require a `tf.dtype`.
ds_counter = tf.data.Dataset.from_generator(count, args=[25], output_types=tf.int32, output_shapes = (), ) for count_batch in ds_counter.repeat().batch(10).take(10): print(count_batch.numpy())
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
The `output_shapes` argument is not *required* but is highly recomended as many tensorflow operations do not support tensors with unknown rank. If the length of a particular axis is unknown or variable, set it as `None` in the `output_shapes`.It's also important to note that the `output_shapes` and `output_types` follow the same nesting rules as other dataset methods.Here is an example generator that demonstrates both aspects, it returns tuples of arrays, where the second array is a vector with unknown length.
def gen_series(): i = 0 while True: size = np.random.randint(0, 10) yield i, np.random.normal(size=(size,)) i += 1 for i, series in gen_series(): print(i, ":", str(series)) if i > 5: break
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
The first output is an `int32` the second is a `float32`.The first item is a scalar, shape `()`, and the second is a vector of unknown length, shape `(None,)`
ds_series = tf.data.Dataset.from_generator( gen_series, output_types=(tf.int32, tf.float32), output_shapes=((), (None,))) ds_series
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
Now it can be used like a regular `tf.data.Dataset`. Note that when batching a dataset with a variable shape, you need to use `Dataset.padded_batch`.
ds_series_batch = ds_series.shuffle(20).padded_batch(10) ids, sequence_batch = next(iter(ds_series_batch)) print(ids.numpy()) print() print(sequence_batch.numpy())
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
For a more realistic example, try wrapping `preprocessing.image.ImageDataGenerator` as a `tf.data.Dataset`.First download the data:
flowers = tf.keras.utils.get_file( 'flower_photos', 'https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz', untar=True)
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
Create the `image.ImageDataGenerator`
img_gen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1./255, rotation_range=20) images, labels = next(img_gen.flow_from_directory(flowers)) print(images.dtype, images.shape) print(labels.dtype, labels.shape) ds = tf.data.Dataset.from_generator( lambda: img_gen.flow_from_directory(flowers), output_types=(tf.float32, tf.float32), output_shapes=([32,256,256,3], [32,5]) ) ds.element_spec for images, label in ds.take(1): print('images.shape: ', images.shape) print('labels.shape: ', labels.shape)
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
Consuming TFRecord dataSee [Loading TFRecords](../tutorials/load_data/tf_records.ipynb) for an end-to-end example.The `tf.data` API supports a variety of file formats so that you can processlarge datasets that do not fit in memory. For example, the TFRecord file formatis a simple record-oriented binary format that many TensorFlow applications usefor training data. The `tf.data.TFRecordDataset` class enables you tostream over the contents of one or more TFRecord files as part of an inputpipeline. Here is an example using the test file from the French Street Name Signs (FSNS).
# Creates a dataset that reads all of the examples from two files. fsns_test_file = tf.keras.utils.get_file("fsns.tfrec", "https://storage.googleapis.com/download.tensorflow.org/data/fsns-20160927/testdata/fsns-00000-of-00001")
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
The `filenames` argument to the `TFRecordDataset` initializer can either be astring, a list of strings, or a `tf.Tensor` of strings. Therefore if you havetwo sets of files for training and validation purposes, you can create a factorymethod that produces the dataset, taking filenames as an input argument:
dataset = tf.data.TFRecordDataset(filenames = [fsns_test_file]) dataset
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
Many TensorFlow projects use serialized `tf.train.Example` records in their TFRecord files. These need to be decoded before they can be inspected:
raw_example = next(iter(dataset)) parsed = tf.train.Example.FromString(raw_example.numpy()) parsed.features.feature['image/text']
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
Consuming text dataSee [Loading Text](../tutorials/load_data/text.ipynb) for an end to end example.Many datasets are distributed as one or more text files. The`tf.data.TextLineDataset` provides an easy way to extract lines from one or moretext files. Given one or more filenames, a `TextLineDataset` will produce onestring-valued element per line of those files.
directory_url = 'https://storage.googleapis.com/download.tensorflow.org/data/illiad/' file_names = ['cowper.txt', 'derby.txt', 'butler.txt'] file_paths = [ tf.keras.utils.get_file(file_name, directory_url + file_name) for file_name in file_names ] dataset = tf.data.TextLineDataset(file_paths)
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
Here are the first few lines of the first file:
for line in dataset.take(5): print(line.numpy())
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
To alternate lines between files use `Dataset.interleave`. This makes it easier to shuffle files together. Here are the first, second and third lines from each translation:
files_ds = tf.data.Dataset.from_tensor_slices(file_paths) lines_ds = files_ds.interleave(tf.data.TextLineDataset, cycle_length=3) for i, line in enumerate(lines_ds.take(9)): if i % 3 == 0: print() print(line.numpy())
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
By default, a `TextLineDataset` yields *every* line of each file, which maynot be desirable, for example, if the file starts with a header line, or contains comments. These lines can be removed using the `Dataset.skip()` or`Dataset.filter()` transformations. Here, you skip the first line, then filter tofind only survivors.
titanic_file = tf.keras.utils.get_file("train.csv", "https://storage.googleapis.com/tf-datasets/titanic/train.csv") titanic_lines = tf.data.TextLineDataset(titanic_file) for line in titanic_lines.take(10): print(line.numpy()) def survived(line): return tf.not_equal(tf.strings.substr(line, 0, 1), "0") survivors = titanic_lines.skip(1).filter(survived) for line in survivors.take(10): print(line.numpy())
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
Consuming CSV data See [Loading CSV Files](../tutorials/load_data/csv.ipynb), and [Loading Pandas DataFrames](../tutorials/load_data/pandas.ipynb) for more examples. The CSV file format is a popular format for storing tabular data in plain text.For example:
titanic_file = tf.keras.utils.get_file("train.csv", "https://storage.googleapis.com/tf-datasets/titanic/train.csv") df = pd.read_csv(titanic_file) df.head()
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
If your data fits in memory the same `Dataset.from_tensor_slices` method works on dictionaries, allowing this data to be easily imported:
titanic_slices = tf.data.Dataset.from_tensor_slices(dict(df)) for feature_batch in titanic_slices.take(1): for key, value in feature_batch.items(): print(" {!r:20s}: {}".format(key, value))
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
A more scalable approach is to load from disk as necessary. The `tf.data` module provides methods to extract records from one or more CSV files that comply with [RFC 4180](https://tools.ietf.org/html/rfc4180).The `experimental.make_csv_dataset` function is the high level interface for reading sets of csv files. It supports column type inference and many other features, like batching and shuffling, to make usage simple.
titanic_batches = tf.data.experimental.make_csv_dataset( titanic_file, batch_size=4, label_name="survived") for feature_batch, label_batch in titanic_batches.take(1): print("'survived': {}".format(label_batch)) print("features:") for key, value in feature_batch.items(): print(" {!r:20s}: {}".format(key, value))
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
You can use the `select_columns` argument if you only need a subset of columns.
titanic_batches = tf.data.experimental.make_csv_dataset( titanic_file, batch_size=4, label_name="survived", select_columns=['class', 'fare', 'survived']) for feature_batch, label_batch in titanic_batches.take(1): print("'survived': {}".format(label_batch)) for key, value in feature_batch.items(): print(" {!r:20s}: {}".format(key, value))
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
There is also a lower-level `experimental.CsvDataset` class which provides finer grained control. It does not support column type inference. Instead you must specify the type of each column.
titanic_types = [tf.int32, tf.string, tf.float32, tf.int32, tf.int32, tf.float32, tf.string, tf.string, tf.string, tf.string] dataset = tf.data.experimental.CsvDataset(titanic_file, titanic_types , header=True) for line in dataset.take(10): print([item.numpy() for item in line])
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
If some columns are empty, this low-level interface allows you to provide default values instead of column types.
%%writefile missing.csv 1,2,3,4 ,2,3,4 1,,3,4 1,2,,4 1,2,3, ,,, # Creates a dataset that reads all of the records from two CSV files, each with # four float columns which may have missing values. record_defaults = [999,999,999,999] dataset = tf.data.experimental.CsvDataset("missing.csv", record_defaults) dataset = dataset.map(lambda *items: tf.stack(items)) dataset for line in dataset: print(line.numpy())
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
By default, a `CsvDataset` yields *every* column of *every* line of the file,which may not be desirable, for example if the file starts with a header linethat should be ignored, or if some columns are not required in the input.These lines and fields can be removed with the `header` and `select_cols`arguments respectively.
# Creates a dataset that reads all of the records from two CSV files with # headers, extracting float data from columns 2 and 4. record_defaults = [999, 999] # Only provide defaults for the selected columns dataset = tf.data.experimental.CsvDataset("missing.csv", record_defaults, select_cols=[1, 3]) dataset = dataset.map(lambda *items: tf.stack(items)) dataset for line in dataset: print(line.numpy())
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
Consuming sets of files There are many datasets distributed as a set of files, where each file is an example.
flowers_root = tf.keras.utils.get_file( 'flower_photos', 'https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz', untar=True) flowers_root = pathlib.Path(flowers_root)
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
Note: these images are licensed CC-BY, see LICENSE.txt for details. The root directory contains a directory for each class:
for item in flowers_root.glob("*"): print(item.name)
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
The files in each class directory are examples:
list_ds = tf.data.Dataset.list_files(str(flowers_root/'*/*')) for f in list_ds.take(5): print(f.numpy())
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
Read the data using the `tf.io.read_file` function and extract the label from the path, returning `(image, label)` pairs:
def process_path(file_path): label = tf.strings.split(file_path, os.sep)[-2] return tf.io.read_file(file_path), label labeled_ds = list_ds.map(process_path) for image_raw, label_text in labeled_ds.take(1): print(repr(image_raw.numpy()[:100])) print() print(label_text.numpy())
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
<!--TODO(mrry): Add this section. Handling text data with unusual sizes--> Batching dataset elements Simple batchingThe simplest form of batching stacks `n` consecutive elements of a dataset intoa single element. The `Dataset.batch()` transformation does exactly this, withthe same constraints as the `tf.stack()` operator, applied to each componentof the elements: i.e. for each component *i*, all elements must have a tensorof the exact same shape.
inc_dataset = tf.data.Dataset.range(100) dec_dataset = tf.data.Dataset.range(0, -100, -1) dataset = tf.data.Dataset.zip((inc_dataset, dec_dataset)) batched_dataset = dataset.batch(4) for batch in batched_dataset.take(4): print([arr.numpy() for arr in batch])
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
While `tf.data` tries to propagate shape information, the default settings of `Dataset.batch` result in an unknown batch size because the last batch may not be full. Note the `None`s in the shape:
batched_dataset
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
Use the `drop_remainder` argument to ignore that last batch, and get full shape propagation:
batched_dataset = dataset.batch(7, drop_remainder=True) batched_dataset
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
Batching tensors with paddingThe above recipe works for tensors that all have the same size. However, manymodels (e.g. sequence models) work with input data that can have varying size(e.g. sequences of different lengths). To handle this case, the`Dataset.padded_batch` transformation enables you to batch tensors ofdifferent shape by specifying one or more dimensions in which they may bepadded.
dataset = tf.data.Dataset.range(100) dataset = dataset.map(lambda x: tf.fill([tf.cast(x, tf.int32)], x)) dataset = dataset.padded_batch(4, padded_shapes=(None,)) for batch in dataset.take(2): print(batch.numpy()) print()
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
The `Dataset.padded_batch` transformation allows you to set different paddingfor each dimension of each component, and it may be variable-length (signifiedby `None` in the example above) or constant-length. It is also possible tooverride the padding value, which defaults to 0.<!--TODO(mrry): Add this section. Dense ragged -> tf.SparseTensor--> Training workflows Processing multiple epochsThe `tf.data` API offers two main ways to process multiple epochs of the samedata.The simplest way to iterate over a dataset in multiple epochs is to use the`Dataset.repeat()` transformation. First, create a dataset of titanic data:
titanic_file = tf.keras.utils.get_file("train.csv", "https://storage.googleapis.com/tf-datasets/titanic/train.csv") titanic_lines = tf.data.TextLineDataset(titanic_file) def plot_batch_sizes(ds): batch_sizes = [batch.shape[0] for batch in ds] plt.bar(range(len(batch_sizes)), batch_sizes) plt.xlabel('Batch number') plt.ylabel('Batch size')
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
Applying the `Dataset.repeat()` transformation with no arguments will repeatthe input indefinitely.The `Dataset.repeat` transformation concatenates itsarguments without signaling the end of one epoch and the beginning of the nextepoch. Because of this a `Dataset.batch` applied after `Dataset.repeat` will yield batches that straddle epoch boundaries:
titanic_batches = titanic_lines.repeat(3).batch(128) plot_batch_sizes(titanic_batches)
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
If you need clear epoch separation, put `Dataset.batch` before the repeat:
titanic_batches = titanic_lines.batch(128).repeat(3) plot_batch_sizes(titanic_batches)
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
If you would like to perform a custom computation (e.g. to collect statistics) at the end of each epoch then it's simplest to restart the dataset iteration on each epoch:
epochs = 3 dataset = titanic_lines.batch(128) for epoch in range(epochs): for batch in dataset: print(batch.shape) print("End of epoch: ", epoch)
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
Randomly shuffling input dataThe `Dataset.shuffle()` transformation maintains a fixed-sizebuffer and chooses the next element uniformly at random from that buffer.Note: While large buffer_sizes shuffle more thoroughly, they can take a lot of memory, and significant time to fill. Consider using `Dataset.interleave` across files if this becomes a problem. Add an index to the dataset so you can see the effect:
lines = tf.data.TextLineDataset(titanic_file) counter = tf.data.experimental.Counter() dataset = tf.data.Dataset.zip((counter, lines)) dataset = dataset.shuffle(buffer_size=100) dataset = dataset.batch(20) dataset
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
Since the `buffer_size` is 100, and the batch size is 20, the first batch contains no elements with an index over 120.
n,line_batch = next(iter(dataset)) print(n.numpy())
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
As with `Dataset.batch` the order relative to `Dataset.repeat` matters.`Dataset.shuffle` doesn't signal the end of an epoch until the shuffle buffer is empty. So a shuffle placed before a repeat will show every element of one epoch before moving to the next:
dataset = tf.data.Dataset.zip((counter, lines)) shuffled = dataset.shuffle(buffer_size=100).batch(10).repeat(2) print("Here are the item ID's near the epoch boundary:\n") for n, line_batch in shuffled.skip(60).take(5): print(n.numpy()) shuffle_repeat = [n.numpy().mean() for n, line_batch in shuffled] plt.plot(shuffle_repeat, label="shuffle().repeat()") plt.ylabel("Mean item ID") plt.legend()
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
But a repeat before a shuffle mixes the epoch boundaries together:
dataset = tf.data.Dataset.zip((counter, lines)) shuffled = dataset.repeat(2).shuffle(buffer_size=100).batch(10) print("Here are the item ID's near the epoch boundary:\n") for n, line_batch in shuffled.skip(55).take(15): print(n.numpy()) repeat_shuffle = [n.numpy().mean() for n, line_batch in shuffled] plt.plot(shuffle_repeat, label="shuffle().repeat()") plt.plot(repeat_shuffle, label="repeat().shuffle()") plt.ylabel("Mean item ID") plt.legend()
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
Preprocessing dataThe `Dataset.map(f)` transformation produces a new dataset by applying a givenfunction `f` to each element of the input dataset. It is based on the[`map()`](https://en.wikipedia.org/wiki/Map_\(higher-order_function\)) functionthat is commonly applied to lists (and other structures) in functionalprogramming languages. The function `f` takes the `tf.Tensor` objects thatrepresent a single element in the input, and returns the `tf.Tensor` objectsthat will represent a single element in the new dataset. Its implementation usesstandard TensorFlow operations to transform one element into another.This section covers common examples of how to use `Dataset.map()`. Decoding image data and resizing itWhen training a neural network on real-world image data, it is often necessaryto convert images of different sizes to a common size, so that they may bebatched into a fixed size.Rebuild the flower filenames dataset:
list_ds = tf.data.Dataset.list_files(str(flowers_root/'*/*'))
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
Write a function that manipulates the dataset elements.
# Reads an image from a file, decodes it into a dense tensor, and resizes it # to a fixed shape. def parse_image(filename): parts = tf.strings.split(filename, os.sep) label = parts[-2] image = tf.io.read_file(filename) image = tf.image.decode_jpeg(image) image = tf.image.convert_image_dtype(image, tf.float32) image = tf.image.resize(image, [128, 128]) return image, label
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
Test that it works.
file_path = next(iter(list_ds)) image, label = parse_image(file_path) def show(image, label): plt.figure() plt.imshow(image) plt.title(label.numpy().decode('utf-8')) plt.axis('off') show(image, label)
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
Map it over the dataset.
images_ds = list_ds.map(parse_image) for image, label in images_ds.take(2): show(image, label)
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
Applying arbitrary Python logicFor performance reasons, use TensorFlow operations forpreprocessing your data whenever possible. However, it is sometimes useful tocall external Python libraries when parsing your input data. You can use the `tf.py_function()` operation in a `Dataset.map()` transformation. For example, if you want to apply a random rotation, the `tf.image` module only has `tf.image.rot90`, which is not very useful for image augmentation. Note: `tensorflow_addons` has a TensorFlow compatible `rotate` in `tensorflow_addons.image.rotate`.To demonstrate `tf.py_function`, try using the `scipy.ndimage.rotate` function instead:
import scipy.ndimage as ndimage def random_rotate_image(image): image = ndimage.rotate(image, np.random.uniform(-30, 30), reshape=False) return image image, label = next(iter(images_ds)) image = random_rotate_image(image) show(image, label)
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
To use this function with `Dataset.map` the same caveats apply as with `Dataset.from_generator`, you need to describe the return shapes and types when you apply the function:
def tf_random_rotate_image(image, label): im_shape = image.shape [image,] = tf.py_function(random_rotate_image, [image], [tf.float32]) image.set_shape(im_shape) return image, label rot_ds = images_ds.map(tf_random_rotate_image) for image, label in rot_ds.take(2): show(image, label)
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
Parsing `tf.Example` protocol buffer messagesMany input pipelines extract `tf.train.Example` protocol buffer messages from aTFRecord format. Each `tf.train.Example` record contains one or more "features",and the input pipeline typically converts these features into tensors.
fsns_test_file = tf.keras.utils.get_file("fsns.tfrec", "https://storage.googleapis.com/download.tensorflow.org/data/fsns-20160927/testdata/fsns-00000-of-00001") dataset = tf.data.TFRecordDataset(filenames = [fsns_test_file]) dataset
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
You can work with `tf.train.Example` protos outside of a `tf.data.Dataset` to understand the data:
raw_example = next(iter(dataset)) parsed = tf.train.Example.FromString(raw_example.numpy()) feature = parsed.features.feature raw_img = feature['image/encoded'].bytes_list.value[0] img = tf.image.decode_png(raw_img) plt.imshow(img) plt.axis('off') _ = plt.title(feature["image/text"].bytes_list.value[0]) raw_example = next(iter(dataset)) def tf_parse(eg): example = tf.io.parse_example( eg[tf.newaxis], { 'image/encoded': tf.io.FixedLenFeature(shape=(), dtype=tf.string), 'image/text': tf.io.FixedLenFeature(shape=(), dtype=tf.string) }) return example['image/encoded'][0], example['image/text'][0] img, txt = tf_parse(raw_example) print(txt.numpy()) print(repr(img.numpy()[:20]), "...") decoded = dataset.map(tf_parse) decoded image_batch, text_batch = next(iter(decoded.batch(10))) image_batch.shape
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
Time series windowing For an end to end time series example see: [Time series forecasting](../../tutorials/text/time_series.ipynb). Time series data is often organized with the time axis intact.Use a simple `Dataset.range` to demonstrate:
range_ds = tf.data.Dataset.range(100000)
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
Typically, models based on this sort of data will want a contiguous time slice. The simplest approach would be to batch the data: Using `batch`
batches = range_ds.batch(10, drop_remainder=True) for batch in batches.take(5): print(batch.numpy())
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
Or to make dense predictions one step into the future, you might shift the features and labels by one step relative to each other:
def dense_1_step(batch): # Shift features and labels one step relative to each other. return batch[:-1], batch[1:] predict_dense_1_step = batches.map(dense_1_step) for features, label in predict_dense_1_step.take(3): print(features.numpy(), " => ", label.numpy())
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
To predict a whole window instead of a fixed offset you can split the batches into two parts:
batches = range_ds.batch(15, drop_remainder=True) def label_next_5_steps(batch): return (batch[:-5], # Take the first 5 steps batch[-5:]) # take the remainder predict_5_steps = batches.map(label_next_5_steps) for features, label in predict_5_steps.take(3): print(features.numpy(), " => ", label.numpy())
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
To allow some overlap between the features of one batch and the labels of another, use `Dataset.zip`:
feature_length = 10 label_length = 3 features = range_ds.batch(feature_length, drop_remainder=True) labels = range_ds.batch(feature_length).skip(1).map(lambda labels: labels[:label_length]) predicted_steps = tf.data.Dataset.zip((features, labels)) for features, label in predicted_steps.take(5): print(features.numpy(), " => ", label.numpy())
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
Using `window` While using `Dataset.batch` works, there are situations where you may need finer control. The `Dataset.window` method gives you complete control, but requires some care: it returns a `Dataset` of `Datasets`. See [Dataset structure](dataset_structure) for details.
window_size = 5 windows = range_ds.window(window_size, shift=1) for sub_ds in windows.take(5): print(sub_ds)
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
The `Dataset.flat_map` method can take a dataset of datasets and flatten it into a single dataset:
for x in windows.flat_map(lambda x: x).take(30): print(x.numpy(), end=' ')
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
In nearly all cases, you will want to `.batch` the dataset first:
def sub_to_batch(sub): return sub.batch(window_size, drop_remainder=True) for example in windows.flat_map(sub_to_batch).take(5): print(example.numpy())
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
Now, you can see that the `shift` argument controls how much each window moves over.Putting this together you might write this function:
def make_window_dataset(ds, window_size=5, shift=1, stride=1): windows = ds.window(window_size, shift=shift, stride=stride) def sub_to_batch(sub): return sub.batch(window_size, drop_remainder=True) windows = windows.flat_map(sub_to_batch) return windows ds = make_window_dataset(range_ds, window_size=10, shift = 5, stride=3) for example in ds.take(10): print(example.numpy())
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
Then it's easy to extract labels, as before:
dense_labels_ds = ds.map(dense_1_step) for inputs,labels in dense_labels_ds.take(3): print(inputs.numpy(), "=>", labels.numpy())
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
ResamplingWhen working with a dataset that is very class-imbalanced, you may want to resample the dataset. `tf.data` provides two methods to do this. The credit card fraud dataset is a good example of this sort of problem.Note: See [Imbalanced Data](../tutorials/keras/imbalanced_data.ipynb) for a full tutorial.
zip_path = tf.keras.utils.get_file( origin='https://storage.googleapis.com/download.tensorflow.org/data/creditcard.zip', fname='creditcard.zip', extract=True) csv_path = zip_path.replace('.zip', '.csv') creditcard_ds = tf.data.experimental.make_csv_dataset( csv_path, batch_size=1024, label_name="Class", # Set the column types: 30 floats and an int. column_defaults=[float()]*30+[int()])
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
Now, check the distribution of classes, it is highly skewed:
def count(counts, batch): features, labels = batch class_1 = labels == 1 class_1 = tf.cast(class_1, tf.int32) class_0 = labels == 0 class_0 = tf.cast(class_0, tf.int32) counts['class_0'] += tf.reduce_sum(class_0) counts['class_1'] += tf.reduce_sum(class_1) return counts counts = creditcard_ds.take(10).reduce( initial_state={'class_0': 0, 'class_1': 0}, reduce_func = count) counts = np.array([counts['class_0'].numpy(), counts['class_1'].numpy()]).astype(np.float32) fractions = counts/counts.sum() print(fractions)
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
A common approach to training with an imbalanced dataset is to balance it. `tf.data` includes a few methods which enable this workflow: Datasets sampling One approach to resampling a dataset is to use `sample_from_datasets`. This is more applicable when you have a separate `data.Dataset` for each class.Here, just use filter to generate them from the credit card fraud data:
negative_ds = ( creditcard_ds .unbatch() .filter(lambda features, label: label==0) .repeat()) positive_ds = ( creditcard_ds .unbatch() .filter(lambda features, label: label==1) .repeat()) for features, label in positive_ds.batch(10).take(1): print(label.numpy())
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
To use `tf.data.experimental.sample_from_datasets` pass the datasets, and the weight for each:
balanced_ds = tf.data.experimental.sample_from_datasets( [negative_ds, positive_ds], [0.5, 0.5]).batch(10)
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
Now the dataset produces examples of each class with 50/50 probability:
for features, labels in balanced_ds.take(10): print(labels.numpy())
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
Rejection resampling One problem with the above `experimental.sample_from_datasets` approach is thatit needs a separate `tf.data.Dataset` per class. Using `Dataset.filter`works, but results in all the data being loaded twice.The `data.experimental.rejection_resample` function can be applied to a dataset to rebalance it, while only loading it once. Elements will be dropped from the dataset to achieve balance.`data.experimental.rejection_resample` takes a `class_func` argument. This `class_func` is applied to each dataset element, and is used to determine which class an example belongs to for the purposes of balancing.The elements of `creditcard_ds` are already `(features, label)` pairs. So the `class_func` just needs to return those labels:
def class_func(features, label): return label
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
The resampler also needs a target distribution, and optionally an initial distribution estimate:
resampler = tf.data.experimental.rejection_resample( class_func, target_dist=[0.5, 0.5], initial_dist=fractions)
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
The resampler deals with individual examples, so you must `unbatch` the dataset before applying the resampler:
resample_ds = creditcard_ds.unbatch().apply(resampler).batch(10)
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
The resampler returns creates `(class, example)` pairs from the output of the `class_func`. In this case, the `example` was already a `(feature, label)` pair, so use `map` to drop the extra copy of the labels:
balanced_ds = resample_ds.map(lambda extra_label, features_and_label: features_and_label)
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
Now the dataset produces examples of each class with 50/50 probability:
for features, labels in balanced_ds.take(10): print(labels.numpy())
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
Iterator Checkpointing Tensorflow supports [taking checkpoints](https://www.tensorflow.org/guide/checkpoint) so that when your training process restarts it can restore the latest checkpoint to recover most of its progress. In addition to checkpointing the model variables, you can also checkpoint the progress of the dataset iterator. This could be useful if you have a large dataset and don't want to start the dataset from the beginning on each restart. Note however that iterator checkpoints may be large, since transformations such as `shuffle` and `prefetch` require buffering elements within the iterator. To include your iterator in a checkpoint, pass the iterator to the `tf.train.Checkpoint` constructor.
range_ds = tf.data.Dataset.range(20) iterator = iter(range_ds) ckpt = tf.train.Checkpoint(step=tf.Variable(0), iterator=iterator) manager = tf.train.CheckpointManager(ckpt, '/tmp/my_ckpt', max_to_keep=3) print([next(iterator).numpy() for _ in range(5)]) save_path = manager.save() print([next(iterator).numpy() for _ in range(5)]) ckpt.restore(manager.latest_checkpoint) print([next(iterator).numpy() for _ in range(5)])
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
Note: It is not possible to checkpoint an iterator which relies on external state such as a `tf.py_function`. Attempting to do so will raise an exception complaining about the external state. Using tf.data with tf.keras The `tf.keras` API simplifies many aspects of creating and executing machinelearning models. Its `.fit()` and `.evaluate()` and `.predict()` APIs support datasets as inputs. Here is a quick dataset and model setup:
train, test = tf.keras.datasets.fashion_mnist.load_data() images, labels = train images = images/255.0 labels = labels.astype(np.int32) fmnist_train_ds = tf.data.Dataset.from_tensor_slices((images, labels)) fmnist_train_ds = fmnist_train_ds.shuffle(5000).batch(32) model = tf.keras.Sequential([ tf.keras.layers.Flatten(), tf.keras.layers.Dense(10) ]) model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy'])
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
Passing a dataset of `(feature, label)` pairs is all that's needed for `Model.fit` and `Model.evaluate`:
model.fit(fmnist_train_ds, epochs=2)
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
If you pass an infinite dataset, for example by calling `Dataset.repeat()`, you just need to also pass the `steps_per_epoch` argument:
model.fit(fmnist_train_ds.repeat(), epochs=2, steps_per_epoch=20)
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
For evaluation you can pass the number of evaluation steps:
loss, accuracy = model.evaluate(fmnist_train_ds) print("Loss :", loss) print("Accuracy :", accuracy)
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
For long datasets, set the number of steps to evaluate:
loss, accuracy = model.evaluate(fmnist_train_ds.repeat(), steps=10) print("Loss :", loss) print("Accuracy :", accuracy)
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
The labels are not required in when calling `Model.predict`.
predict_ds = tf.data.Dataset.from_tensor_slices(images).batch(32) result = model.predict(predict_ds, steps = 10) print(result.shape)
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
But the labels are ignored if you do pass a dataset containing them:
result = model.predict(fmnist_train_ds, steps = 10) print(result.shape)
_____no_output_____
Apache-2.0
site/en/guide/data.ipynb
zyberg2091/docs
As print, len, etc donot work directly for class: Special Methods:
class Book(): def __init__ (self,title,author,pages): self.title = title self.author = author self.pages = pages def __str__ (self): return f"{self.title} by {self.author} of {self.pages} pages." def __len__ (self): return self.pages def __del__ (self): print ("Book is deleted.") mybook = Book("Python", "Jose", 200) print (mybook) str (mybook) len (mybook) del mybook mybook
_____no_output_____
MIT
Section 08 - Object Oriented Prog/Lec 72 - Special (Magic) Methods.ipynb
sansjha4900/Udemy-Python-Notes
let's import and check for the version of TensorFlow...
import tensorflow as tf tf.__version__
_____no_output_____
Apache-2.0
images/fedora/aicoe-tensorflow-jupyter-toolbox/AI CoE's TensorFlow Jupyter Notebook.ipynb
goern/toolbox
Try to obtain information of AICoE TensorFlow builds.
import os try: path = os.path.dirname(os.path.dirname(tf.__file__)) build_info_path = os.path.join(path, 'tensorflow-' + tf.__version__ + '.dist-info', 'build_info.json') with open(build_info_path, 'r') as build_info_file: build_info = json.load(build_info_file) print(build_info) except Exception as e: print(e)
[Errno 2] No such file or directory: '/home/goern/.local/share/virtualenvs/aicoe-tensorflow-jupyter-toolbox-3i4NnwxE/lib/python3.6/site-packages/tensorflow-2.1.0.dist-info/build_info.json'
Apache-2.0
images/fedora/aicoe-tensorflow-jupyter-toolbox/AI CoE's TensorFlow Jupyter Notebook.ipynb
goern/toolbox
... and see if we got some GPU available
tf.config.list_physical_devices('GPU')
_____no_output_____
Apache-2.0
images/fedora/aicoe-tensorflow-jupyter-toolbox/AI CoE's TensorFlow Jupyter Notebook.ipynb
goern/toolbox
Rede Neural Simples Implementando uma RNA SimplesO diagrama abaixo mostra uma rede simples. A combinação linear dos pesos, inputs e viés formam o input h, que então é passado pela função de ativação f(h), gerando o output final do perceptron, etiquetado como y. Diagrama de uma rede neural simples Círculos são unidades, caixas são operações. O que faz as redes neurais possíveis, é que a função de ativação, f(h) pode ser qualquer função, não apenas a função degrau. Por exemplo, caso f(h)=h, o output será o mesmo que o input. Agora o output da rede é $$h = \frac 1n\sum_{i=1}^n(w_i*x_i)+b$$ Essa equação deveria ser familiar para você, pois é a mesma do modelo de regressão linear!Outras funções de ativação comuns são a função logística (também chamada de sigmóide), tanh e a função softmax. Nós iremos trabalhar principalmente com a função sigmóide pelo resto dessa aula:$$f(h) = sigmoid(h)=\frac 1 {1+e^{-h}}$$ Vamos implementar uma RNA de apenas um neurônio! Importando a biblioteca
import numpy as np
_____no_output_____
MIT
T-RNA/Tarefa-1/Solucao-Tarefa1-RNA-simples.ipynb
EdTonatto/UFFS-2020.2-Inteligencia_Artificial
Função do cáculo da sigmóide
def sigmoid(x): return 1/(1+np.exp(-x))
_____no_output_____
MIT
T-RNA/Tarefa-1/Solucao-Tarefa1-RNA-simples.ipynb
EdTonatto/UFFS-2020.2-Inteligencia_Artificial
Vetor dos valores de entrada
x = np.array([1.66, -0.22]) b = 0.1
_____no_output_____
MIT
T-RNA/Tarefa-1/Solucao-Tarefa1-RNA-simples.ipynb
EdTonatto/UFFS-2020.2-Inteligencia_Artificial
Pesos das ligações sinápticas
w = np.array([0.5, -0.3])
_____no_output_____
MIT
T-RNA/Tarefa-1/Solucao-Tarefa1-RNA-simples.ipynb
EdTonatto/UFFS-2020.2-Inteligencia_Artificial
Calcule a combinação linear de entradas e pesos sinápticos
h = np.dot(x, w) + b
_____no_output_____
MIT
T-RNA/Tarefa-1/Solucao-Tarefa1-RNA-simples.ipynb
EdTonatto/UFFS-2020.2-Inteligencia_Artificial
Aplicado a função de ativação do neurônio
y = sigmoid(h) print('A Saida da rede eh: ', y)
A Saida da rede eh: 0.7302714044131816
MIT
T-RNA/Tarefa-1/Solucao-Tarefa1-RNA-simples.ipynb
EdTonatto/UFFS-2020.2-Inteligencia_Artificial
Communication in Crisis AcquireData: [Los Angeles Parking Citations](https://www.kaggle.com/cityofLA/los-angeles-parking-citations)Load the dataset and filter for:- Citations issued from 2017-01-01 to 2021-04-12.- Street Sweeping violations - `Violation Description` == __"NO PARK/STREET CLEAN"__Let's acquire the parking citations data from our file.1. Import libraries.1. Load the dataset.1. Display the shape and first/last 2 rows.1. Display general infomation about the dataset - w/ the of unique values in each column.1. Display the number of missing values in each column.1. Descriptive statistics for all numeric features.
# Import libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from scipy import stats import sys import time import folium.plugins as plugins from IPython.display import HTML import json import datetime import calplot import folium import math sns.set() from tqdm.notebook import tqdm import src # Filter warnings from warnings import filterwarnings filterwarnings('ignore') # Load the data df = src.get_sweep_data(prepared=False) # Display the shape and dtypes of each column print(df.shape) df.info() # Display the first two citations df.head(2) # Display the last two citations df.tail(2) # Display descriptive statistics of numeric columns df.describe() df.hist(figsize=(16, 8), bins=15) plt.tight_layout();
_____no_output_____
MIT
MVP.ipynb
Promeos/LADOT-Street-Sweeping-Transition-Pan
__Initial findings__- `Issue time` and `Marked Time` are quasi-normally distributed. Note: Poisson Distribution- It's interesting to see the distribution of our activity on earth follows a normal distribution.- Agencies 50+ write the most parking citations.- Most fine amounts are less than $100.00- There are a few null or invalid license plates. Prepare - Remove spaces + capitalization from each column name.- Cast `Plate Expiry Date` to datetime data type.- Cast `Issue Date` and `Issue Time` to datetime data types.- Drop columns missing >=74.42\% of their values. - Drop missing values.- Transform Latitude and Longitude columns from NAD1983StatePlaneCaliforniaVFIPS0405 feet projection to EPSG:4326 World Geodetic System 1984: used in GPS [Standard]- Filter data for street sweeping citations only.
# Prepare the data using a function stored in prepare.py df_citations = src.get_sweep_data(prepared=True) # Display the first two rows df_citations.head(2) # Check the column data types and non-null counts. df_citations.info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 2279063 entries, 0 to 2279062 Data columns (total 15 columns): # Column Dtype --- ------ ----- 0 issue_date datetime64[ns] 1 issue_time object 2 location object 3 route object 4 agency float64 5 violation_description object 6 fine_amount float64 7 latitude float64 8 longitude float64 9 citation_year int64 10 citation_month int64 11 citation_day int64 12 day_of_week object 13 citation_hour int64 14 citation_minute int64 dtypes: datetime64[ns](1), float64(4), int64(5), object(5) memory usage: 260.8+ MB
MIT
MVP.ipynb
Promeos/LADOT-Street-Sweeping-Transition-Pan
Exploration How much daily revenue is generated from street sweeper citations? Daily Revenue from Street Sweeper CitationsDaily street sweeper citations increased in 2020.
# Daily street sweeping citation revenue daily_revenue = df_citations.groupby('issue_date').fine_amount.sum() daily_revenue.index = pd.to_datetime(daily_revenue.index) df_sweep = src.street_sweep(data=df_citations) df_d = src.resample_period(data=df_sweep) df_m = src.resample_period(data=df_sweep, period='M') df_d.head() sns.set_context('talk') # Plot daily revenue from street sweeping citations df_d.revenue.plot(figsize=(14, 7), label='Revenue', color='DodgerBlue') plt.axhline(df_d.revenue.mean(skipna=True), color='black', label='Average Revenue') plt.title("Daily Revenue from Street Sweeping Citations") plt.xlabel('') plt.ylabel("Revenue (in thousand's)") plt.xticks(rotation=0, horizontalalignment='center', fontsize=13) plt.yticks(range(0, 1_000_000, 200_000), ['$0', '$200', '$400', '$600', '$800',]) plt.ylim(0, 1_000_000) plt.legend(loc=2, framealpha=.8);
_____no_output_____
MIT
MVP.ipynb
Promeos/LADOT-Street-Sweeping-Transition-Pan
> __Anomaly__: Between March 2020 and October 2020 a Local Emergency was Declared by the Mayor of Los Angeles in response to COVID-19. Street Sweeping was halted to help Angelenos Shelter in Place. _Street Sweeping resumed on 10/15/2020_. Anomaly: Declaration of Local Emergency
sns.set_context('talk') # Plot daily revenue from street sweeping citations df_d.revenue.plot(figsize=(14, 7), label='Revenue', color='DodgerBlue') plt.axvspan('2020-03-16', '2020-10-14', color='grey', alpha=.25) plt.text('2020-03-29', 890_000, 'Declaration of\nLocal Emergency', fontsize=11) plt.title("Daily Revenue from Street Sweeping Citations") plt.xlabel('') plt.ylabel("Revenue (in thousand's)") plt.xticks(rotation=0, horizontalalignment='center', fontsize=13) plt.yticks(range(0, 1_000_000, 200_000), ['$0', '$200', '$400', '$600', '$800',]) plt.ylim(0, 1_000_000) plt.legend(loc=2, framealpha=.8); sns.set_context('talk') # Plot daily revenue from street sweeping citations df_d.revenue.plot(figsize=(14, 7), label='Revenue', color='DodgerBlue') plt.axhline(df_d.revenue.mean(skipna=True), color='black', label='Average Revenue') plt.axvline(datetime.datetime(2020, 10, 15), color='red', linestyle="--", label='October 15, 2020') plt.title("Daily Revenue from Street Sweeping Citations") plt.xlabel('') plt.ylabel("Revenue (in thousand's)") plt.xticks(rotation=0, horizontalalignment='center', fontsize=13) plt.yticks(range(0, 1_000_000, 200_000), ['$0', '$200K', '$400K', '$600K', '$800K',]) plt.ylim(0, 1_000_000) plt.legend(loc=2, framealpha=.8);
_____no_output_____
MIT
MVP.ipynb
Promeos/LADOT-Street-Sweeping-Transition-Pan
Hypothesis Test General InquiryIs the daily citation revenue after 10/15/2020 significantly greater than average? Z-Score$H_0$: The daily citation revenue after 10/15/2020 is less than or equal to the average daily revenue.$H_a$: The daily citation revenue after 10/15/2020 is significantly greater than average.
confidence_interval = .997 # Directional Test alpha = (1 - confidence_interval)/2 # Data to calculate z-scores using precovid values to calculate the mean and std daily_revenue_precovid = df_d.loc[df_d.index < '2020-03-16']['revenue'] mean_precovid, std_precovid = daily_revenue_precovid.agg(['mean', 'std']).values mean, std = df_d.agg(['mean', 'std']).values # Calculating Z-Scores using precovid mean and std z_scores_precovid = (df_d.revenue - mean_precovid)/std_precovid z_scores_precovid.index = pd.to_datetime(z_scores_precovid.index) sig_zscores_pre_covid = z_scores_precovid[z_scores_precovid>3] # Calculating Z-Scores using entire data z_scores = (df_d.revenue - mean)/std z_scores.index = pd.to_datetime(z_scores.index) sig_zscores = z_scores[z_scores>3] sns.set_context('talk') plt.figure(figsize=(12, 6)) sns.histplot(data=z_scores_precovid, bins=50, label='preCOVID z-scores') sns.histplot(data=z_scores, bins=50, color='orange', label='z-scores') plt.title('Daily citation revenue after 10/15/2020 is significantly greater than average', fontsize=16) plt.xlabel('Standard Deviations') plt.ylabel('# of Days') plt.axvline(3, color='Black', linestyle="--", label='3 Standard Deviations') plt.xticks(np.linspace(-1, 9, 11)) plt.legend(fontsize=13); a = stats.zscore(daily_revenue) fig, ax = plt.subplots(figsize=(8, 8)) stats.probplot(a, plot=ax) plt.xlabel("Quantile of Normal Distribution") plt.ylabel("z-score");
_____no_output_____
MIT
MVP.ipynb
Promeos/LADOT-Street-Sweeping-Transition-Pan
p-values
p_values_precovid = z_scores_precovid.apply(stats.norm.cdf) p_values = z_scores_precovid.apply(stats.norm.cdf) significant_dates_precovid = p_values_precovid[(1-p_values_precovid) < alpha] significant_dates = p_values[(1-p_values) < alpha] # The chance of an outcome occuring by random chance print(f'{alpha:0.3%}')
0.150%
MIT
MVP.ipynb
Promeos/LADOT-Street-Sweeping-Transition-Pan
Cohen's D
fractions = [.1, .2, .5, .7, .9] cohen_d = [] for percentage in fractions: cohen_d_trial = [] for i in range(10000): sim = daily_revenue.sample(frac=percentage) sim_mean = sim.mean() d = (sim_mean - mean) / (std/math.sqrt(int(len(daily_revenue)*percentage))) cohen_d_trial.append(d) cohen_d.append(np.mean(cohen_d_trial)) cohen_d fractions = [.1, .2, .5, .7, .9] cohen_d_precovid = [] for percentage in fractions: cohen_d_trial = [] for i in range(10000): sim = daily_revenue_precovid.sample(frac=percentage) sim_mean = sim.mean() d = (sim_mean - mean_precovid) / (std_precovid/math.sqrt(int(len(daily_revenue_precovid)*percentage))) cohen_d_trial.append(d) cohen_d_precovid.append(np.mean(cohen_d_trial)) cohen_d_precovid
_____no_output_____
MIT
MVP.ipynb
Promeos/LADOT-Street-Sweeping-Transition-Pan
Significant Dates with less than a 0.15% chance of occuring- All dates that are considered significant occur after 10/15/2020- In the two weeks following 10/15/2020 significant events occured on __Tuesday's and Wednesday's__.
dates_precovid = set(list(sig_zscores_pre_covid.index)) dates = set(list(sig_zscores.index)) common_dates = list(dates.intersection(dates_precovid)) common_dates = pd.to_datetime(common_dates).sort_values() sig_zscores pd.Series(common_dates.day_name(), common_dates) np.random.seed(sum(map(ord, 'calplot'))) all_days = pd.date_range('1/1/2020', '12/22/2020', freq='D') significant_events = pd.Series(np.ones_like(len(common_dates)), index=common_dates) calplot.calplot(significant_events, figsize=(18, 12), cmap='coolwarm_r');
_____no_output_____
MIT
MVP.ipynb
Promeos/LADOT-Street-Sweeping-Transition-Pan
Which parts of the city were impacted the most?
df_outliers = df_citations.loc[df_citations.issue_date.isin(list(common_dates.astype('str')))] df_outliers.reset_index(drop=True, inplace=True) print(df_outliers.shape) df_outliers.head() m = folium.Map(location=[34.0522, -118.2437], min_zoom=8, max_bounds=True) mc = plugins.MarkerCluster() for index, row in df_outliers.iterrows(): mc.add_child( folium.Marker(location=[str(row['latitude']), str(row['longitude'])], popup='Cited {} {} at {}'.format(row['day_of_week'], row['issue_date'], row['issue_time'][:-3]), control_scale=True, clustered_marker=True ) ) m.add_child(mc)
_____no_output_____
MIT
MVP.ipynb
Promeos/LADOT-Street-Sweeping-Transition-Pan
Transfering map to Tablaeu Conclusions Appendix What time(s) are Street Sweeping citations issued?Most citations are issued during the hours of 8am, 10am, and 12pm. Citation Times
# Filter street sweeping data for citations issued between # 8 am and 2 pm, 8 and 14 respectively. df_citation_times = df_citations.loc[(df_citations.issue_hour >= 8)&(df_citations.issue_hour < 14)] sns.set_context('talk') # Issue Hour Plot df_citation_times.issue_hour.value_counts().sort_index().plot.bar(figsize=(8, 6)) # Axis labels plt.title('Most Street Sweeper Citations are Issued at 8am') plt.xlabel('Issue Hour (24HR)') plt.ylabel('# of Citations (in thousands)') # Chart Formatting plt.xticks(rotation=0) plt.yticks(range(100_000, 400_001,100_000), ['100', '200', '300', '400']) plt.show() sns.set_context('talk') # Issue Minute Plot df_citation_times.issue_minute.value_counts().sort_index().plot.bar(figsize=(20, 9)) # Axis labels plt.title('Most Street Sweeper Citations are Issued in the First 30 Minutes') plt.xlabel('Issue Minute') plt.ylabel('# of Citations (in thousands)') # plt.axvspan(0, 30, facecolor='grey', alpha=0.1) # Chart Formatting plt.xticks(rotation=0) plt.yticks(range(5_000, 40_001, 5_000), ['5', '10', '15', '20', '25', '30', '35', '40']) plt.tight_layout() plt.show()
_____no_output_____
MIT
MVP.ipynb
Promeos/LADOT-Street-Sweeping-Transition-Pan
Which state has the most Street Sweeping violators? License PlateOver 90% of all street sweeping citations are issued to California Residents.
sns.set_context('talk') fig = df_citations.rp_state_plate.value_counts(normalize=True).nlargest(3).plot.bar(figsize=(12, 6)) # Chart labels plt.title('California residents receive the most street sweeping citations', fontsize=16) plt.xlabel('State') plt.ylabel('% of all Citations') # Tick Formatting plt.xticks(rotation=0) plt.yticks(np.linspace(0, 1, 11), labels=[f'{i:0.0%}' for i in np.linspace(0, 1, 11)]) plt.grid(axis='x', alpha=.5) plt.tight_layout();
_____no_output_____
MIT
MVP.ipynb
Promeos/LADOT-Street-Sweeping-Transition-Pan
Which street has the most Street Sweeping citations?The characteristics of the top 3 streets:1. Vehicles are parked bumper to bumper leaving few parking spaces available2. Parking spaces have a set time limit
df_citations['street_name'] = df_citations.location.str.replace('^[\d+]{2,}', '').str.strip() sns.set_context('talk') # Removing the street number and white space from the address df_citations.street_name.value_counts().nlargest(3).plot.barh(figsize=(16, 6)) # Chart formatting plt.title('Streets with the Most Street Sweeping Citations', fontsize=24) plt.xlabel('# of Citations');
_____no_output_____
MIT
MVP.ipynb
Promeos/LADOT-Street-Sweeping-Transition-Pan
__Abbot Kinney Blvd: "Small Boutiques, No Parking"__> [Abbot Kinney Blvd on Google Maps](https://www.google.com/maps/@33.9923689,-118.4731719,3a,75y,112.99h,91.67t/data=!3m6!1e1!3m4!1sKD3cG40eGmdWxhwqLD1BvA!2e0!7i16384!8i8192) - Near Venice Beach - Small businesses and name brand stores line both sides of the street - Little to no parking in this area- Residential area inland - Multiplex style dwellings with available parking spaces - Weekly Street Sweeping on Monday from 7:30 am - 9:30 am __Clinton Street: "Packed Street"__ > [Clinton Street on Google Maps](https://www.google.com/maps/@34.0816611,-118.3306842,3a,75y,70.72h,57.92t/data=!3m9!1e1!3m7!1sdozFgC7Ms3EvaOF4-CeNAg!2e0!7i16384!8i8192!9m2!1b1!2i37) - All parking spaces on the street are filled- Residential Area - Weekly Street Sweeping on Friday from 8:00 am - 11:00 am __Kelton Ave: "2 Hour Time Limit"__> [Kelton Ave on Google Maps](https://www.google.com/maps/place/Kelton+Ave,+Los+Angeles,+CA/@34.0475262,-118.437594,3a,49.9y,183.92h,85.26t/data=!3m9!1e1!3m7!1s5VICHNYMVEk9utaV5egFYg!2e0!7i16384!8i8192!9m2!1b1!2i25!4m5!3m4!1s0x80c2bb7efb3a05eb:0xe155071f3fe49df3!8m2!3d34.0542999!4d-118.4434919) - Most parking spaces on this street are available. This is due to the strict 2 hour time limit for parked vehicles without the proper exception permit.- Multiplex, Residential Area - Weekly Street Sweeping on Thursday from 10:00 am - 1:00 pm - Weekly Street Sweeping on Friday from 8:00 am - 10:00 am Which street has the most Street Sweeping citations, given the day of the week?- __Abbot Kinney Blvd__ is the most cited street on __Monday and Tuesday__- __4th Street East__ is the most cited street on __Saturday and Sunday__
# Group by the day of the week and street name df_day_street = df_citations.groupby(by=['day_of_week', 'street_name'])\ .size()\ .sort_values()\ .groupby(level=0)\ .tail(1)\ .reset_index()\ .rename(columns={0:'count'}) # Create a new column to sort the values by the day of the # week starting with Monday df_day_street['order'] = [5, 6, 4, 3, 0, 2, 1] # Display the street with the most street sweeping citations # given the day of the week. df_day_street.sort_values('order').set_index('order')
_____no_output_____
MIT
MVP.ipynb
Promeos/LADOT-Street-Sweeping-Transition-Pan
Which Agencies issue the most street sweeping citations?The Department of Transportation's __Western, Hollywood, and Valley__ subdivisions issue the most street sweeping citations.
sns.set_context('talk') df_citations.agency.value_counts().nlargest(5).plot.barh(figsize=(12, 6)); # plt.axhspan(2.5, 5, facecolor='0.5', alpha=.8) plt.title('Agencies With the Most Street Sweeper Citations') plt.xlabel('# of Citations (in thousands)') plt.xticks(np.arange(0, 400_001, 100_000), list(np.arange(0, 401, 100))) plt.yticks([0, 1, 2, 3, 4], labels=['DOT-WESTERN', 'DOT-HOLLYWOOD', 'DOT-VALLEY', 'DOT-SOUTHERN', 'DOT-CENTRAL']);
_____no_output_____
MIT
MVP.ipynb
Promeos/LADOT-Street-Sweeping-Transition-Pan