content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
def modelBaseline_forward_pass(img_t, ImageEncModel, PathDecModel, training_state=False, **kwargs):
"""
Forward pass of the lyft basline.
Args:
img_t (tf.tensor / np.array): Tensor with input map batch, multi channel image shape: [batch, x, y, ch].
ImageEncModel (keras.model): Keras model for image encoding.
PathDecModel (keras.model): Keras model for path decoding/generation.
training_state (np.bool): True -> Training, False -> Inference.
Returns:
out_list (tf.tensor): Predicted path points.
"""
# Process input image
img_feats = ImageEncModel(img_t, training = training_state)
# Get Path
out_list = PathDecModel(img_feats, training = training_state)
return out_list
|
836d460eaab7a3bfc22ac45772f171171d5494b6
| 355,295 |
def parse_args(argument_parser, system_arguments):
"""Call `parse_args` on the argument parser.
Parameters
----------
- argument_parser - the main argument parser for awsume
- system_arguments - the arguments from the system
Returns
-------
The parsed arguments.
"""
return argument_parser.parse_args(system_arguments)
|
c4330256c9cd30fb0d68dc78cea73260d0069467
| 295,597 |
def read_csv_from_hdfs(spark, filename):
"""Reads a csv file from HDFS.
Parameters
----------
filename
filepath and name of csv file.
Returns
-------
PySpark DataFrame
"""
sdf = spark.read.csv(filename,
header=True,
inferSchema=True)
return sdf
|
fdb6ec0fdaf48ccacfb831849f0c10646507ca63
| 440,226 |
import csv
def import_trials_duration(path):
"""
Import some already existing local csv of times
Parameters
----------
path : string
the path that the file is located in
Returns
-------
list
a list of times to be plotted or viewed
"""
with open(path, "r") as times_file:
csv_object = csv.reader(times_file)
times = [[float(time) for time in row] for row in csv_object]
return times
|
567ea262acbf8b758bf8a6dcc4620fdc659f8e94
| 78,121 |
def jaccard_similarity(first, second):
"""
Given two sets, returns the jaccard similarity between them
:param first: a set
:param second: a set
:return: the similarity as a double
"""
return len(first & second) / len(first | second)
|
0907882e315b39adf5e07a6bfe704cf93209c2a6
| 611,197 |
def root_to_leaf(input_weights, taxa_tree):
"""Return a dictionary mapping taxa to weights.
Each output weight should be the sum of input weights
for a taxa and all of its ancestor taxa up to the 'root'
of the tree.
Use `taxa_tree.ancestors(<taxon>)` to get a list of ancestors for taxon.
"""
output_weights = {}
for taxon, weight in input_weights.items():
for ancestor in taxa_tree.ancestors(taxon):
out_weight = output_weights.get(taxon, 0)
output_weights[taxon] = out_weight + input_weights.get(ancestor, 0)
return output_weights
|
ec115dd8efda1aac2410dac325ab0c2be993da0d
| 345,825 |
def format_currency(flt):
"""Return a formatted UK currency string from a float"""
return '£{:,.2f}'.format(flt)
|
534f30069c3faf5f6fa5b53e3ea4b6c7fa2d6af9
| 58,506 |
import torch
def evaluate_accuracy(data_iter, net, device=torch.device('cpu')):
"""Evaluate accuracy of a model on the given data set."""
net.eval() # Switch to evaluation mode for Dropout, BatchNorm etc layers.
acc_sum, n = torch.tensor([0], dtype=torch.float32, device=device), 0
for X, y in data_iter:
# Copy the data to device.
X, y = X.to(device), y.to(device)
with torch.no_grad():
y = y.long()
acc_sum += torch.sum((torch.argmax(net(X), dim=1) == y))
n += y.shape[0]
return acc_sum.item()/n
|
7566ca16176e9e44530790b791dbfcb80389af08
| 359,995 |
def CreateAvailableNumbers(size):
"""Fill a list with available numbers given the size"""
#available_numbers = the list being constructed
available_numbers = []
for x in range(1, size*size + 1):
available_numbers.append(x)
return available_numbers
|
a16c0ba4a8523a78f6df1acc0cf1a1f4c830a6e1
| 562,520 |
def find_subclasses(cls):
"""
Recursively find all subclasses of given class cls.
"""
subclasses = cls.__subclasses__()
for subclass in list(subclasses):
subclasses.extend(find_subclasses(subclass))
return list(set(subclasses))
|
de56e483f113df09ea2732185f01c30f0f05e833
| 244,507 |
def inner(x, y):
""" Returns the inner product of two equal-length vectors. """
n = len(x)
assert len(y) == n
sum = 0
for i in range(0, n):
sum += x[i]*y[i]
return sum
|
36567d82c7c482311a40d9dab29b3ec80c772037
| 53,896 |
def pybulletenv_get_state(env):
"""
Function used to get state information from PyBullet physics engine.
:param env:
:return:
"""
body_num = env.env._p.getNumBodies()
# body_info = [env.env._p.getBodyInfo(body_i) for body_i in range(body_num)]
floor_id, robot_id = 0, 1
robot_base_pos_ori = env.env._p.getBasePositionAndOrientation(robot_id)
robot_base_vel = env.env._p.getBaseVelocity(robot_id)
joint_num = env.env._p.getNumJoints(robot_id)
joint_state = []
for joint_i in range(joint_num):
joint_state.append(env.env._p.getJointState(robot_id, joint_i))
state = {'body_num': body_num,
'robot_base_pos_ori': robot_base_pos_ori, 'robot_base_vel': robot_base_vel,
'joint_num': joint_num, 'joint_state': joint_state}
return state
|
daf75efb08a90f9896ddd7b277b087a052386321
| 324,779 |
def filename_from_url(url):
"""
Similar to Django slugify
http://stackoverflow.com/questions/295135/turn-a-string-into-a-valid-filename-in-python
:param url: url to convert
:return: a valid filename
"""
filename = "".join(i for i in url if i not in "\/:*?<>|")
return filename
|
094b5053f52cb7c6d60ec21d7625d722493f2014
| 625,157 |
def AnalyzeScanResults(input_api, whitelisted_files, offending_files):
"""Compares whitelist contents with the results of file scanning.
input_api: InputAPI of presubmit scripts.
whitelisted_files: Whitelisted files list.
offending_files: Files that contain 3rd party code.
Returns:
A triplet of "unknown", "missing", and "stale" file lists.
"Unknown" are files that contain 3rd party code but not whitelisted.
"Missing" are files that are whitelisted but doesn't really exist.
"Stale" are files that are whitelisted unnecessarily.
"""
unknown = set(offending_files) - set(whitelisted_files)
missing = [f for f in whitelisted_files if not input_api.os_path.isfile(f)]
stale = set(whitelisted_files) - set(offending_files) - set(missing)
return (list(unknown), missing, list(stale))
|
6722c25bbe49c0e4718a17a001961ea0b1afad50
| 219,995 |
def get_attribute(attrs, name, default=None):
"""
Get div attribute
:param attrs: attribute dict
:param name: name field
:param default: default value
:return: value
"""
if 'data-'+name in attrs:
return attrs['data-'+name]
else:
return default
|
9f642ca6061037d2e7b922c26bce50180ee94e97
| 188,825 |
import math
def sizeof_fmt(num, suffix='B'):
"""Get human-readable file size
Args:
num (int): Number of unit size.
suffix (str): Unit of size (default: B).
"""
mag = int(math.floor(math.log(num, 1024)))
val = num / math.pow(1024, mag)
if mag > 7:
return f"{val:.1f}Y{suffix}"
else:
return f"{val:3.1f}{['','K','M','G','T','P','E','Z'][mag]}{suffix}"
|
f1ad8405c485a58dd3099f6fe4a6ca945b8c265f
| 190,176 |
def bytelen(a):
"""Determine the length of a in bytes."""
if hasattr(a, "nbytes"):
return a.nbytes
elif isinstance(a, (bytearray, bytes)):
return len(a)
else:
raise ValueError(a, "cannot determine nbytes")
|
131a7a43f74814a7fa1523cc086b21d9a6036884
| 536,925 |
def get_current_account_id(context):
"""
Get current account id.
@param context: the context of the event
@return: current account id
"""
return context.invoked_function_arn.split(":")[4]
|
d3f8fce71edf575af7aebd7c75a9cc71f2900f86
| 658,346 |
def nobind(func):
"""This function decorator will prevent the function from being bound."""
func.__qi_signature__ = "DONOTBIND"
return func
|
8db94178e6e51dd324607c57dbeb62380a9fc4ba
| 444,222 |
def calc_num_beats(peaks):
"""Calculate the number of beats in ECG recording
Args:
peaks (list[int]): list with indexes of peaks of QRS complexes
Returns:
int: the number of peaks
"""
num_beats = len(peaks)
return num_beats
|
46ca9bf1332bc5ec15505ddfb4577bd12aba27ae
| 251,975 |
def smallest_sums(partition:list, num_of_sums:int=1)->float:
"""
Given a partition, return the sum of the smallest k parts (k = num_of_sums)
>>> smallest_sums([[1,2],[3,4],[5,6]])
3
>>> smallest_sums([[1,2],[3,4],[5,6]], num_of_sums=2)
10
"""
sorted_sums = sorted([sum(part) for part in partition])
return sum(sorted_sums[:num_of_sums])
|
dda9b846dd772a08936b205bc22d6b274d978166
| 415,912 |
def is_par(comm):
"""Check if or not in parallel environment
"""
return comm and comm.size > 1
|
07459a11b5fa3850364f724d5acf9c7c66e3a003
| 503,739 |
def euler_richardson_method_2system_ode2(f, g, dt, x, y, xp, yp, range):
""" The Euler-Richardson method working on a two-coupled system. Required
for chapter 6, problem 5 in order to express two coupled parameterized
functions as a single output y(x).
:param f: The first second order diffeq expressed as a lambda.
:type f: lambda
:param g: The second second order diffeq expressed as a lambda.
:type g: lambda
:param dt: Step size. Smaller is better.
:type dt: float
:param x: The initial condition for x.
:type x: float,int
:param y: The initial condition for y.
:type y: float,int
:param xp: The initial condition for xp.
:type xp: float,int
:param yp: The initial condition for yp.
:type yp: float,int
:param range: A list which specifies the beginning and the ending of our domain.
:type range: list
:return: Returns a tuple for the t,x,y,xp,yp values as lists.
:rtype: 5-tuple(list)
"""
# f = x'' and g = y''
# both requires (t, x, y, x', y')
# get initial conditions and setup arrays
t = min(range)
t_space = [t]
x_space = [x]
y_space = [y]
xp_space = [xp]
yp_space = [yp]
while t <= max(range):
# find get midpoints
t_mid = t + (1/2)*dt
xp_mid = xp + 1/2*f(t, x, y, xp, yp)*dt
yp_mid = yp + 1/2*g(t, x, y, xp, yp)*dt
x_mid = x + (1/2)*xp*dt
y_mid = y + (1/2)*yp*dt
# get slopes
xp_s = f(t_mid, x_mid, y_mid, xp_mid, yp_mid)
yp_s = g(t_mid, x_mid, y_mid, xp_mid, yp_mid)
x_s = xp_mid
y_s = yp_mid
# update values
t += dt
x += x_s*dt
y += y_s*dt
xp += xp_s*dt
yp += yp_s*dt
# append values
t_space.append(t)
x_space.append(x)
xp_space.append(xp)
y_space.append(y)
yp_space.append(yp)
return (t_space, x_space, y_space, xp_space, yp_space)
|
93a49bd76a83694f918c6df3312a5a88b7f5f45f
| 514,829 |
def times_numeric(text):
"""
A function to convert timepoints encoded within the filename
into a float corresponding to the value in nanoseconds.
Parameters:
text (str): e.g. (100us)
Returns:
float: e.g. (100,000)
"""
number = float(text[:-2])
if text.endswith("ns"):
return number
elif text.endswith("us"):
return 1e3*number
elif text.endswith("ms"):
return 1e6*number
else:
print("scale could not be calculated")
|
c911ad104a72770318accce169657635db25c388
| 412,069 |
def make_tree(depth: int) -> tuple:
""" Trees or tuples, final leaves have None as values. """
return (None, None) if depth == 0 else (
make_tree(depth - 1), make_tree(depth - 1))
|
440100ade6695ce70e09ef5eabb3e45ee306986f
| 547,859 |
def filter_slaves(slaves, filters):
""" Filter slaves by attributes
:param slaves: list of slaves to filter
:param filters: list of functions that take a slave and return whether the
slave should be included
:returns: list of slaves that return true for all the filters
"""
if filters is None:
return slaves
return [s for s in slaves if all([f(s) for f in filters])]
|
a4e35d7dd56df233b009445493b9fe66fdb87160
| 280,024 |
def modNeg90To90(angle_deg):
"""Returns a modulo between -90 and 90"""
return (angle_deg + 90)%180-90
|
f79d6bb1cba93b0d4bbbfcf6fd3c581b14da518c
| 670,200 |
def get_generic_specific_genes(summary_data, generic_threshold):
"""
This function returns a dictionary of generic genes and other
(non-generic) genes, based on the statistics contained within the
summary dataframes
Here genes are determined as generic based on their
ranking across multiple simulated experiments (i.e. generic genes
are those that are high ranked = genes were found to be consistently
changed across multiple simulated experiments. All other genes
are 'other'
Arguments
---------
summary_data: df
Dataframe containing gene summary statistics
generic_threshold: int
Threshold to use to define generic genes
"""
print(summary_data.shape)
# Generic genes
ls_generic_genes = list(
(
summary_data[summary_data["Rank (simulated)"] >= generic_threshold]
.set_index("Gene ID")
.index
)
)
print(f"No. of generic genes: {len(ls_generic_genes)}")
# Other (non-generic) genes
ls_other_genes = list(
(
summary_data[summary_data["Rank (simulated)"] < generic_threshold]
.set_index("Gene ID")
.index
)
)
print(f"No. of other genes: {len(ls_other_genes)}")
# Create dictionary
dict_genes = {
"generic": ls_generic_genes,
"other": ls_other_genes,
}
return dict_genes
|
590d67ebc2acb0fe84301989d938f859c0b26f7b
| 515,005 |
from typing import Optional
def _serialize_comment(prefix: str, comment: Optional[str]) -> str: # pylint: disable=unsubscriptable-object
"""Serialize a comment, with an optional prefix."""
return "%s%s" % (prefix, comment) if comment else ""
|
99acb1b16f0f8628a516687cf88af8587c6d317c
| 640,259 |
def clean(var):
"""Removes tabs, newlines and trailing whitespace"""
if var is None:
return ''
return var.replace("\t", "").replace("\n", "").strip()
|
7fe7d3006cc632a71b8839106a5ea6da0a00ad2d
| 118,751 |
def bond_constraints(system):
"""For a openmm system, map constrained atom pairs to distances."""
# this is ok
bonds = {}
nc = system.getNumConstraints()
for c in range(nc):
prm = system.getConstraintParameters(c)
if len(prm) == 3:
ia, ib, dd = prm
ids = (ia, ib) if ib > ia else (ib, ia)
bonds[ids] = dd
return bonds
|
361bae83013217eb8bb1bbded8729c3f258615fb
| 527,135 |
def quoteattr(data):
"""Quote an attribute value.
Escape less then the obvious xml.saxutils.quoteattr,
e.g. do not convert `\n` to ` `.
"""
return '"%s"' % data.replace('"', """)
|
566e8abf3cb2a94f9ab48afa30b6b458d89f0f21
| 456,769 |
def num_to_note(note_int: int, custom_map=None) -> str:
"""
Convert a musical pitch from integer representation to a string.
"Merge" enharmonic equivalents, e.g. the integers for 'F#' and 'Gb'
just become the string 'F#'.
Args:
note_int: The integer representation of a musical pitch.
Returns:
The corresponding string for the pitch.
"""
octave = str(note_int // 12)
rev_note_map = {
0: 'C', 1: 'C#', 2: 'D',
3: 'D#', 4: 'E', 5: 'F',
6: 'F#', 7: 'G', 8: 'G#',
9: 'A', 10: 'A#', 11: 'B'
}
if custom_map is not None:
rev_note_map.update(custom_map)
note_str = rev_note_map[note_int % 12] + octave
return note_str
|
3ff3b7bb7578ae28ab6f27abc7e7a29001444bbe
| 463,462 |
def with_first_last(xs):
"""Return a generator which indicates whether the returned element is the first or
last.
Args:
xs: Generator to wrap.
Yields:
bool: Element is first.
bool: Element is last.
object: Element.
"""
state = {"first": True}
def first():
if state["first"]:
state["first"] = False
return True
else:
return False
prev = None
have_prev = False
cur = None
have_cur = False
for x in xs:
cur = x
have_cur = True
if not have_prev:
# We will need a `prev`, but there is no `prev` yet. Take the current one as
# `prev` and skip to the next iteration.
prev = cur
have_prev = True
continue
# We currently have available `prev` and `cur`. We will return `prev` and,
# after the loop has finished, return `cur` as the last one.
yield first(), False, prev
prev = cur
if have_cur:
yield first(), True, cur
|
2558b643e54388a35be01dbe2d1c3340f0667d35
| 294,577 |
def add_ner_prompts(df, prompt_config, sep):
"""
Combining sentences and entities to create prompts in Dataframe with 'sents' and 'entities' columns.
Adds 'prompts' and 'empty_prompts' (prompt without answer) columns to DataFrame
"""
prompts = []
empty_prompts = []
prompt_sample_structure = prompt_config['sent_intro'] + ' {}\n' + prompt_config['retrieval_message'] + ' {}'
empty_prompt_sample_structure = prompt_config['sent_intro'] + ' {}\n' + prompt_config['retrieval_message']
for i, row in df.iterrows():
sent = row['sents']
entities = sep.join(row['entities'])
prompt = prompt_sample_structure.format(sent, entities)
empty_prompt = empty_prompt_sample_structure.format(sent)
prompts.append(prompt)
empty_prompts.append(empty_prompt)
df['prompts'] = prompts
df['empty_prompts'] = empty_prompts
return df
|
a43f4f255872a139b3273ec3322699105d91806c
| 111,133 |
def get_db_syllable_side(node, matcher):
"""
Get which side is suitable according to syllable matching.
This function expect node to have both syllable neighbours.
Return minus int if char node should be added to left neighbour,
plus int if to right,
0 if not determined.
"""
if node.prev.syllable is None or node.next.syllable is None:
raise Exception('Char node does not have both syllable neighbours')
left_opt_sylls = node.prev.syllable.left_neighbours(node) + node.next.syllable.right_neighbours()
right_opt_sylls = node.prev.syllable.left_neighbours() + node.next.syllable.right_neighbours(node)
left_score = matcher.syllable_concord(left_opt_sylls)
right_score = matcher.syllable_concord(right_opt_sylls)
return right_score - left_score
|
5f08984b1805f3067b8e9483e0b33b3b19465ee7
| 595,589 |
def get_resources(data):
"""Gets resources from the input cloutformation file content."""
return data['Resources']
|
c5dc1e57fc88b2b0f95e055b2077422bee7935b1
| 380,957 |
def version_tuple_to_str(version, sep='.'):
"""Join the version components using '.' and return the string."""
return sep.join([str(x) for x in version])
|
2170b33a66762666e3e9e2ad2af3c5a5bec255e9
| 431,870 |
import sqlite3
def commit_data(conn):
"""Commit data to db"""
try:
conn.commit()
conn.close()
except sqlite3.Error as e:
print(e)
return None
|
5107563c659c0acdd9d2d59c526284ffe38a4740
| 679,763 |
import colorsys
def scale_lightness(rgb, scale_l):
"""
Scales the lightness of a color. Takes in a color defined in RGB, converts to HLS, lightens
by a factor, and then converts back to RGB.
"""
# converts rgb to hls
h, l, s = colorsys.rgb_to_hls(*rgb)
# manipulates h, l, s values and returns as rgb
return colorsys.hls_to_rgb(h, min(1, l * scale_l), s = s)
|
2fee635f26419cfe8abc21edb0092a8c916df6ef
| 13,661 |
from typing import Dict
from typing import Any
def convert_dict_to_yaml(input_dict: Dict[str, Any], indent_spaces: int = 4, indent_level: int = 0) -> str:
"""
The original yaml.dump needed improvements, this is a recursive re-implementation
yaml.dump(config_dict)
Args:
input_dict: Dict to be converted to yaml.
indent_spaces: How many spaces per indent level.
indent_level: Current indent level for the recursion.
Returns:
YAML string.
"""
# setup key-value collector and indent level
ret_list = []
indent = " " * (indent_level * indent_spaces)
# loop input dict
for key, value in input_dict.items():
# setup collector for single key-value pair
single_ret_list = [f"{indent}{key}:"]
# check type
if isinstance(value, bool):
# bools as lower-case
value_str = str(value).lower()
elif isinstance(value, (int, float)):
# leave float conversion to python
value_str = str(value)
elif isinstance(value, str):
# put quotes around strings
value_str = f"\"{value}\""
elif value is None:
# None is null in yaml
value_str = "null"
elif isinstance(value, dict):
# iterate dictionaries recursively
value_str = "\n" + convert_dict_to_yaml(value, indent_spaces=indent_spaces, indent_level=indent_level + 1)
else:
raise ValueError(f"dict to yaml, value type not understood: {value}")
# concatenate the single key-value pair and add it to the key-value collector
single_ret_list += [f" {value_str}"]
ret_list += ["".join(single_ret_list)]
# join the collected key-value pairs with newline
return "\n".join(ret_list)
|
7dff030116522084089c497cab82967bbaed8b5e
| 83,674 |
from urllib.parse import urljoin, urlsplit
def make_absolutizing_url_mutator(baseurl):
"""Return a function that makes relative URLs absolute.
Parameters
----------
baseurl : string, absolute URL
The absolute URL with which to combine relative URLs
Returns
-------
A mutator function suitable for use with :meth:`wwt_data_formats.abcs.UrlContainer.mutate_urls`.
Notes
-----
This function is designed for usage with :meth:`wwt_data_formats.abcs.UrlContainer.mutate_urls`.
It returns a mutator function that can be passed to this method. The mutator will take
relative URLs and make them absolute by combining them with the *baseurl* argument. Input URLs
that are already absolute will be unchanged.
"""
def mutator(url):
if not url:
return url
if urlsplit(url).netloc:
return url # this URL is absolute
return urljoin(baseurl, url)
return mutator
|
b0068a6fdc9784a3322b24f1835edb480f81a19d
| 572,542 |
def decode_input(input_: str) -> list[int]:
"""Decode the puzzle input
:param input_: puzzle input as a integer string
:return: list of digits
"""
cups = list(map(int, input_))
assert len(cups) == len(set(cups))
return cups
|
970291b63ae56e057ce16a2a79e4a18cd91fc0a9
| 289,262 |
def _is_mfa_admin_creds(section):
"""
Filter for ~/.aws/credentials profile section names.
"""
if not section.startswith('admin-'):
return False
if section.endswith('-long-term') or section.endswith('-root'):
return False
return True
|
0204bb51e39b7b38adcb576b00c429ab6cbea400
| 348,761 |
def decode_bytes(data: bytes) -> str:
"""
Takes a bytes object and return a decoded version of the data.
Must be reversible with `encode_string()`.
"""
return data.decode("utf-8")
|
01bde4df84f0020845910c406c383c79adabf633
| 200,985 |
def lzip(*args, **kwargs):
"""Take zip generator and make a list for Python 3 work"""
return list(zip(*args, **kwargs))
|
c1ee69397464e053bcc606d86beae4dfd9620691
| 219,362 |
def mapping_fields(mapping, parent=[]):
"""
reads an elasticsearh mapping dictionary and returns a list of fields
cojoined with a dot notation
args:
obj: the dictionary to parse
parent: name for a parent key. used with a recursive call
"""
rtn_obj = {}
for key, value in mapping.items():
new_key = parent + [key]
new_key = ".".join(new_key)
rtn_obj.update({new_key: value.get('type')})
if value.get('properties'):
rtn_obj.update(mapping_fields(value['properties'], [new_key]))
elif value.get('fields'):
rtn_obj.update(mapping_fields(value['fields'], [new_key]))
rtn_obj[new_key] = [rtn_obj[new_key]] + \
list(value['fields'].keys())
return rtn_obj
|
e196207b4f08dbb25adc92a0a4214804bb9827ce
| 317,051 |
def min_max(field, validator_class):
"""
Returns maximum minimum and minimum maximum value for given validator class
of given field.
:param field: WTForms Field object
:param validator_class: WTForms Validator class
Example::
class MyForm(Form):
some_integer_field = IntegerField(
validators=[Length(min=3, max=6), Length(min=4, max=7)]
)
form = MyForm()
min_max(form.some_integer_field, Length)
# {'min': 4, 'max': 6}
"""
min_values = []
max_values = []
for validator in field.validators:
if isinstance(validator, validator_class):
if validator.min is not None:
min_values.append(validator.min)
if validator.max is not None:
max_values.append(validator.max)
data = {}
if min_values:
data['min'] = max(min_values)
if max_values:
data['max'] = min(max_values)
return data
|
a0f70160346f929c6f4e0275570d6d65f2210c9b
| 421,434 |
def _s2_st_to_uv(component: float) -> float:
"""
Convert S2 ST to UV.
This is done using the quadratic projection that is used by default for S2. The C++ and Java S2
libraries use a different definition of the ST cell-space, but the end result in IJ is the same.
The below uses the C++ ST definition.
See s2geometry/blob/c59d0ca01ae3976db7f8abdc83fcc871a3a95186/src/s2/s2coords.h#L312-L315
"""
if component >= 0.5:
return (1.0 / 3.0) * (4.0 * component ** 2 - 1.0)
return (1.0 / 3.0) * (1.0 - 4.0 * (1.0 - component) ** 2)
|
a78fa1ac89f74b3aa9bfc0585d10f440e6392391
| 655,486 |
import calendar
def dt2unix(dto):
"""
dt2unix : Convert a datetime object to a UNIX time stamp
Usage: unixTS = dt2unix(dto)
Input:dto A datetime object
Output: a unix time stamp (int)
"""
return calendar.timegm(dto.utctimetuple())
|
26a0352b69d989824f906ff149f5ed50bbd91a0d
| 479,005 |
def relabel(score):
"""Extract centrality measure type"""
return score.split("_")[0]
|
3534c4485e08e94c81d6226b29727cf5a4a09b31
| 559,657 |
def maybe_num(x):
"""Converts string x to an int if possible, otherwise a float if possible,
otherwise returns it unchanged."""
x = x.strip('[').strip(']')
try: return int(x)
except ValueError:
try: return float(x)
except ValueError: return x
|
44f4e2cc765016521ff122462363aeef35433182
| 237,241 |
def greatest_subarray_sum(nums: list[int], inverse_mode: bool = False) -> int:
"""
Find the greatest subarray sum in nums,
or find the smallest subarray sum using the inverse_mode.
"""
def min_max_helper(x: list[int]) -> int:
return min(x) if inverse_mode else max(x)
result = nums[0]
last_total = nums[0]
for num in nums[1:]:
curr_total = min_max_helper([last_total + num, num])
result = min_max_helper([result, curr_total])
last_total = curr_total
return result
|
7be5e7bd81f52cb01b158ca05fa5b6fffbe238f5
| 99,217 |
def _get_proto_filename(src):
"""Assemble the filename for a proto
Args:
src: the .proto <File>
Returns:
<string> of the filename.
"""
parts = src.short_path.split("/")
if len(parts) > 1 and parts[0] == "..":
return "/".join(parts[2:])
return src.short_path
|
b8b775e8b3a2cad4fe908cb4e614213a4e78b336
| 137,044 |
from typing import List
from typing import Tuple
import re
def get_issues_in_text(repo_name: str, text: str) -> List[Tuple[str, int]]:
"""
See https://docs.github.com/en/free-pro-team@latest/github/writing-on-github/
autolinked-references-and-urls#issues-and-pull-requests
:param repo_name: full repo name like "username/repository_name"
:param text: the text to extract linked issues (e.g. commits)
:return: Tuples of (repo_name, issue_number)
"""
pattern = r"([\w\.\-_]+/[\w\.\-_]+)#(\d+)|#(\d+)|GH-(\d+)"
result = []
for match in re.finditer(pattern, text):
# print(match.string)
# print(text[match.start():match.end()])
# print(match.groups())
groups = match.groups()
if groups[0] is not None and groups[1] is not None:
result.append((groups[0], int(groups[1])))
elif groups[2] is not None:
result.append((repo_name, int(groups[2])))
elif groups[3] is not None:
result.append((repo_name, int(groups[3])))
url_pattern = r"https://github\.com/([\w\.\-_]+/[\w\.\-_]+)/(issues|pull)/(\d+)"
for match in re.finditer(url_pattern, text):
result.append((match.groups()[0], int(match.groups()[2])))
return result
|
23b3072b18b12db89682908b341b744817b5ddaf
| 415,218 |
import ast
from typing import Dict
def _get_keyword_args_by_names(
call: ast.Call,
*names: str,
) -> Dict[str, ast.expr]:
"""Returns keywords of ``call`` by specified ``names``."""
keyword_args = {}
for keyword in call.keywords:
if keyword.arg in names:
keyword_args[keyword.arg] = keyword.value
return keyword_args
|
98c2954bc0aefb933356760f8b0a36629bb07e71
| 122,409 |
def get_sample_count(profileDict):
"""
Gets the number of samples taken from a dictionary representing data from an
Arm MAP file
Args:
profileDict (dict): Dictionary from which to obtain the count of samples
Returns:
The number of samples taken (non-negative integer)
"""
assert isinstance(profileDict, dict)
return profileDict["samples"]["count"]
|
26d31dd6fae3e0c4adf567706387712397e7fd28
| 111,838 |
from typing import List
def _partition(nums: List[int], left: int, right: int) -> int:
"""
Helper function to partition the given sub-list.
:param nums: list[int]
:param left: int
:param right: int
:return: int
"""
# The pivot has already been moved to the left.
pivot = nums[left]
# Iterate over the sub-list, use a pointer to keep track of the smaller
# part, and swap the current number with the pointer as necessary
smaller_ptr = left + 1
i = left + 1
while True:
while i <= right and nums[i] > pivot:
i += 1
if i > right:
break
if i != smaller_ptr:
nums[smaller_ptr], nums[i] = nums[i], nums[smaller_ptr]
smaller_ptr += 1
i += 1
if left != smaller_ptr - 1:
nums[left], nums[smaller_ptr - 1] = nums[smaller_ptr - 1], nums[left]
return smaller_ptr - 1
|
5190a697c1a7412dc0dd13277a0ff48db348e82a
| 61,756 |
import toml
def data_from_toml_lines(lines):
"""
Return a mapping of data from an iterable of TOML text ``lines``.
For example::
>>> lines = ['[advisory]', 'id = "RUST1"', '', '[versions]', 'patch = [">= 1"]']
>>> data_from_toml_lines(lines)
{'advisory': {'id': 'RUST1'}, 'versions': {'patch': ['>= 1']}}
"""
return toml.loads("\n".join(lines))
|
a82020a5defea4356ece2f7d01ed754feafafeae
| 684,431 |
def name_to_stackdriver_type(name):
"""Stackdriver custom metric type name for the given metric name."""
return 'custom.googleapis.com/buildtool/{name}'.format(name=name)
|
a194ac748808391872d96242ca9c99bdd18b5cff
| 302,840 |
def parse_command_line_watch_list(watch_str):
"""Parse string that represents devices to watch.
Valid examples:
* aa:bb:cc:dd:ee:ff
- Threshold of 1 for the given MAC address
* aa:bb:cc:dd:ee:ff,11:22:33:44:55:66
- This means look for any traffic from either address
* aa:bb:cc:dd:ee:ff=1337, 11:22:33:44:55:66=1000
- This means look for 1337 bytes for the first address, and 1000 for the second
* my_ssid, 11:22:33:44:55:66=1000
- This means look for 1 byte from my_ssid or 1000 for the second
* 11:22:33:44:55:66=-30
- This means trigger if 11:22:33:44:55:66 is seen at a power level >= -30dBm (negative value implies power)
Returns dict in this format:
{'aa:bb:cc:dd:ee:ff': {'threshold': 100, 'power': None},
'11:22:33:44:55:66': {'threshold': None, 'power': -30}}
"""
watch_list = [i.strip() for i in watch_str.split(',')]
watch_dict = {}
for watch_part in watch_list:
power = None
threshold = None
if '=' in watch_part:
# dev_id is a MAC, BSSID, or SSID
dev_id, val = [i.strip() for i in watch_part.split('=')]
try:
val = int(val)
except ValueError:
# Can't parse with "dev_id=threshold" formula, so assume '=' sign was part of ssid
dev_id = watch_part
if val > 0:
threshold = val
else:
power = val
else:
dev_id = watch_part
watch_dict[dev_id] = {'threshold': threshold, 'power': power}
return watch_dict
|
283c8348e734aea896f58c26f688fc5b138e8534
| 291,619 |
import base64
def decode_base64(b64: str):
"""Decodes a base64 value with or without padding."""
# Accept unpadded base64 by appending padding; b64decode won't accept it otherwise
if 2 <= len(b64) % 4 <= 3 and not b64.endswith('='):
b64 += '=' * (4 - len(b64) % 4)
return base64.b64decode(b64, validate=True)
|
2e05bd8724108e0f7e1def89d05538275896d2df
| 596,509 |
def _is_for_synthesis(study_annotations):
"""checks if the study whose annotations are in study_annotations
is intended for synthesis (aka nominated)"""
for ann in study_annotations:
if '@property' in ann:
if ann['@property'] == 'ot:notIntendedForSynthesis':
val = ann['$']
if val is True:
return False
return True
|
9d2e2c9e85e127d3bff586e4d5c411b0f69607bc
| 378,611 |
def _convert_soap_method_args(*args):
"""Convert arguments to be consumed by a SoapClient method
Soap client required a list of named arguments:
>>> _convert_soap_method_args('a', 1)
[('arg0', 'a'), ('arg1', 1)]
"""
soap_args = []
for arg_n, arg in enumerate(args):
soap_args.append(('arg' + str(arg_n), arg))
return soap_args
|
a57c993c5bff622d52a5b8bb06259644e725ec6b
| 56,621 |
import time
import random
def _custom_libname(filetype, salt_len=2):
"""
Choose a custom name for library file
Format:
filetype: file extensiion
cur_time: current time
salt: salt_len number of digits
<cur_time>_<salt>.<filetype>
Args:
filetype: The extension the library filename will be saved as
salt_len: The length of the salt
salt is a sequence of random digit
default to 2
Returns:
Library file name string
"""
filetype = filetype or 'lib'
cur_time = time.time_ns()
salt = ''.join(str(d) for d in random.sample(range(10), salt_len))
return "%d_%s.%s" % (cur_time, salt, filetype)
|
f6edf0c0ced94a0e418519a353c96d521934b763
| 655,321 |
def intersection(lst1, lst2):
"""
Takes two lists and returns a list of the elements in common between the lists
:param lst1: list, any type
:param lst2: list, any type
:return: list, any type
"""
return list(set(lst1).intersection(lst2))
|
6b34ac896605cb0cbb9c7ee25b65cb9cdcded828
| 418,137 |
def format_bytes(bytes, unit, SI=False):
"""
Converts bytes to common units such as kb, kib, KB, mb, mib, MB
Parameters
---------
bytes: int
Number of bytes to be converted
unit: str
Desired unit of measure for output
SI: bool
True -> Use SI standard e.g. KB = 1000 bytes
False -> Use JEDEC standard e.g. KB = 1024 bytes
Returns
-------
str:
E.g. "7 MiB" where MiB is the original unit abbreviation supplied
"""
if unit.lower() in "b bit bits".split():
return f"{bytes*8} {unit}"
unitN = unit[0].upper()+unit[1:].replace("s","") # Normalised
reference = {"Kb Kib Kibibit Kilobit": (7, 1),
"KB KiB Kibibyte Kilobyte": (10, 1),
"Mb Mib Mebibit Megabit": (17, 2),
"MB MiB Mebibyte Megabyte": (20, 2),
"Gb Gib Gibibit Gigabit": (27, 3),
"GB GiB Gibibyte Gigabyte": (30, 3),
"Tb Tib Tebibit Terabit": (37, 4),
"TB TiB Tebibyte Terabyte": (40, 4),
"Pb Pib Pebibit Petabit": (47, 5),
"PB PiB Pebibyte Petabyte": (50, 5),
"Eb Eib Exbibit Exabit": (57, 6),
"EB EiB Exbibyte Exabyte": (60, 6),
"Zb Zib Zebibit Zettabit": (67, 7),
"ZB ZiB Zebibyte Zettabyte": (70, 7),
"Yb Yib Yobibit Yottabit": (77, 8),
"YB YiB Yobibyte Yottabyte": (80, 8),
}
key_list = '\n'.join([" b Bit"] + [x for x in reference.keys()]) +"\n"
if unitN not in key_list:
raise IndexError(f"\n\nConversion unit must be one of:\n\n{key_list}")
units, divisors = [(k,v) for k,v in reference.items() if unitN in k][0]
if SI:
divisor = 1000**divisors[1]/8 if "bit" in units else 1000**divisors[1]
else:
divisor = float(1 << divisors[0])
value = bytes / divisor
return f"{value:,.0f} {unitN}{(value != 1 and len(unitN) > 3)*'s'}"
|
19590cba4720cf0c3a8234f959d739522fd4ef5f
| 498,973 |
from typing import Dict
from typing import List
from typing import Tuple
def parse_flight_data() -> Dict[str, List[Tuple[str, str, int]]]:
"""Parse flight data and returns dictionary of flights by month/year
Returns:
Dict[str, List[str, str, int]]: d['mm-yy'] = [(origin_code, dest_code, aircraft_code), ...]
"""
data_paths = {
'test': 'data/test_flight_data.csv',
'11-19': 'data/Nov2019_flight_data.csv',
'12-19': 'data/Dec2019_flight_data.csv',
'01-20': 'data/Jan2020_flight_data.csv',
'02-19': 'data/Feb2019_flight_data.csv',
'03-19': 'data/Mar2019_flight_data.csv',
'04-19': 'data/Apr2019_flight_data.csv',
'05-19': 'data/May2019_flight_data.csv',
'06-19': 'data/Jun2019_flight_data.csv',
'07-19': 'data/Jul2019_flight_data.csv',
'08-19': 'data/Aug2019_flight_data.csv',
}
flight_data = dict()
for month_year, data_path in data_paths.items():
flight_data[month_year] = list()
with open(data_path) as f:
lines_to_skip = 1
i = 0
for line in f:
if i < lines_to_skip:
i += 1
continue
split_line = line.rstrip().split(',')
try:
int(split_line[11])
except:
raise Exception('Bad line: {}'.format(line))
flight_data[month_year].append((split_line[4], split_line[8], int(split_line[11])))
return flight_data
|
c9dbcdb70d5097b34c1e9c9f76128f583eb63102
| 84,417 |
def route(rule, **options):
"""Like :meth:`Flask.route` but for nereid.
.. versionadded:: 3.0.7.0
Unlike the implementation in flask and flask.blueprint route decorator does
not require an existing nereid application or a blueprint instance. Instead
the decorator adds an attribute to the method called `_url_rules`.
.. code-block:: python
:emphasize-lines: 1,7
from nereid import route
class Product:
__name__ = 'product.product'
@classmethod
@route('/product/<uri>')
def render_product(cls, uri):
...
return 'Product Information'
"""
def decorator(f):
if not hasattr(f, '_url_rules'):
f._url_rules = []
f._url_rules.append((rule, options))
return f
return decorator
|
c7f33af4e8fa10090e5b6a90532707fd59688885
| 28,755 |
def mask_size(classes):
"""Computes per-class segmentation mask size."""
return classes.sum(dim=-2)
|
9865d32118b8836a1694b2a40f8ae624cbca1a4e
| 563,135 |
def is_next_tile_trap(prev_tiles):
"""Check if next tile is trap."""
left, center, right = prev_tiles
return left != right
|
56168d12a41b5e4b3623cdd0e1985ef86757f35f
| 513,706 |
def _sparse_ftrs_indices1(ftr_name):
"""Returns the name of the 1st axis indices for `ftr_name`"""
return f"{ftr_name}_indices1"
|
6d9cbb3195493e99a9132427b85a3eecda89c442
| 75,421 |
def _GenDataArray(
resources, entry_pattern, array_name, array_type, data_getter):
"""Generates a C++ statement defining a literal array containing the hashes.
Args:
resources: A sorted list of |Resource| objects.
entry_pattern: A pattern to be used to generate each entry in the array. The
pattern is expected to have a place for data and one for a comment, in
that order.
array_name: The name of the array being generated.
array_type: The type of the array being generated.
data_getter: A function that gets the array data from a |Resource| object.
Returns:
A string containing a C++ statement defining the an array.
"""
lines = [entry_pattern % (data_getter(r), r.name) for r in resources]
pattern = """const %(type)s %(name)s[] = {
%(content)s
};
"""
return pattern % {'type': array_type,
'name': array_name,
'content': '\n'.join(lines)}
|
6050f6bc55ff83379f0ea368f36ea59543a45179
| 424,724 |
def save_nameserver_ip(instance, filepath="/etc/resolv.conf"):
""" Save ip in /etc/resolv.conf in a list """
nameservers_ip = []
nameservers = instance.execute(["cat", filepath]).stdout.split("\n")
for nameserver in nameservers:
nameserver = nameserver.split(" ")
if len(nameserver) == 2 and nameserver[0] == "nameserver":
nameservers_ip.append(nameserver[1])
return nameservers_ip
|
a6cb7c1658c7563fa75e95e75e394aa4398148ff
| 489,817 |
def extract_entities(openapi_str):
"""
Extract entities from an OpenAPI string, where entities are defines as anything within "```"
:param openapi_str: The OpenAPI str
:type openapi_str: ```str```
:return: Entities
:rtype: ```List[str]```
"""
entities, ticks, space, stack = [], 0, 0, []
def add_then_clear_stack():
"""
Join entity, if non empty add to entities. Clear stack.
"""
entity = "".join(stack)
if entity:
entities.append(entity)
stack.clear()
for idx, ch in enumerate(openapi_str):
if ch.isspace():
space += 1
add_then_clear_stack()
ticks = 0
elif ticks > 2:
ticks, space = 0, 0
stack and add_then_clear_stack()
stack.append(ch)
elif ch == "`":
ticks += 1
elif stack:
stack.append(ch)
add_then_clear_stack()
return entities
|
47f3b7ec9a9a282bcc90ca35669687e62fd031ea
| 620,889 |
def is_pgn(filename):
"""Tells if a filename is a pgn."""
return filename[-4:] == ".pgn"
|
a5250d765fe57f87eb295b88c0b899ac6f87b61e
| 396,568 |
def histogram(s):
"""
Returns a histogram (dictionary) of the # of letters
in string s.
The letters in s are keys, and the count of each letter
is the value. If the letter is not in s, then there is
NO KEY for it in the histogram.
Example: histogram('') returns {},
histogram('all') returns {'a':1,'l':2}
histogram('abracadabra') returns
{'a':5,'b':2,'c':1,'d':1,'r':2}
Parameter s: The string to analyze
Precondition: s is a string (possibly empty).
"""
# DICTIONARY COMPREHENSION
#return { x:s.count(x) for x in s }
# ACCUMULATOR PATTERN
result = {}
for x in s:
result[x] = s.count(x)
return result
|
2580040d031ae9520c458714787031cba17badd2
| 90,241 |
def macc_chardis(row):
"""Assigns an integer to distinguish rows of
charging cycles from those of discharging
cycles. -1 for discharging and +1 for charging."""
if row['Md'] == 'D':
return -1
else:
return 1
|
f83bdd0dbcdbdc09e9579b43a26b658d95e33701
| 393,959 |
from typing import Any
def _get_name(cls: Any) -> str:
"""
>>> from typing import Tuple, Callable, Any, List
>>> _get_name(int)
'int'
>>> _get_name(Any)
'Any'
>>> _get_name(List)
'List'
>>> _get_name(List[int])
'List'
>>> _get_name(List[Any])
'List'
>>> _get_name(Tuple)
'Tuple'
>>> _get_name(Tuple[int, float])
'Tuple'
>>> _get_name(Tuple[Any, ...])
'Tuple'
>>> _get_name(Callable)
'Callable'
"""
if hasattr(cls, '_name'):
return cls._name
elif hasattr(cls, '__name__'):
return cls.__name__
else:
return type(cls).__name__[1:]
|
8c1d1664ed0f5a20c9185d29dcc6c72f63f74e81
| 566,184 |
def searchForm(
buttonText="",
span=2,
inlineHelpText=False,
blockHelpText=False,
focusedInputText=False,
htmlId=False):
"""
*Generate a search-form - TBS style*
**Key Arguments:**
- ``buttonText`` -- the button text
- ``span`` -- column span
- ``inlineHelpText`` -- inline and block level support for help text that appears around form controls
- ``blockHelpText`` -- a longer block of help text that breaks onto a new line and may extend beyond one line
- ``focusedInputText`` -- make the input focused by providing some initial editable input text
- ``htmlId`` -- htmlId
**Return:**
- ``searchForm`` -- the search-form
"""
if span:
span = "span%(span)s" % locals()
else:
span = ""
if not focusedInputText:
focusedInputText = ""
focusId = ""
else:
focusId = "focusedInput"
if inlineHelpText:
inlineHelpText = """<span class="help-inline">%(inlineHelpText)s</span>""" % locals(
)
else:
inlineHelpText = ""
if blockHelpText:
blockHelpText = """<span class="help-block">%(blockHelpText)s</span>""" % locals(
)
else:
blockHelpText = ""
if not htmlId:
htmlId = ""
searchForm = """
<form class="form-search">
<div class="input-append">
<input type="text" class="search-query %(span)s" id="%(htmlId)s" id="%(focusId)s" value="%(focusedInputText)s">
<button type="submit" class="btn">%(buttonText)s</button>
%(inlineHelpText)s%(blockHelpText)s
</div>
</form>""" % locals()
return searchForm
|
5a980390e5742bb31fa280750b3d52f485f632b8
| 101,565 |
import re
def get_words_from_file(filepath):
"""Return the set of all words at least three letters
long from within a named file.
"""
with open(filepath) as f:
#
# re.findall returns a list of all instances matching a pattern
# The pattern \w{3,} matches a word at least three letters long
# f.read() reads the entire contents of a file into a string
# set() returns a unique set of the values in an iterator
#
# So we have:
# A unique set of
# All words at least three letters long within
# The contents of the file f
#
return set(re.findall(r"\w{3,}", f.read()))
|
7021e5c20b0a64ca07ca25cd20ff5e44373e8465
| 599,220 |
def mock_return_true(*args):
"""A mock function to return True"""
return True
|
dd577fb8afea07d1da480667d4c663073a428e52
| 375,018 |
def choose(docs):
"""Print line number, title and truncated description for
each tuple in :docs. Get the user to pick a line
number. If it's valid, return the first item in the
chosen tuple (the "identifier"). Otherwise, return None."""
last = len(docs) - 1
for num, doc in enumerate(docs):
print(f"{num}: ({doc[1]}) {doc[2][:30]}...")
index = input(f"Which would you like to see (0 to {last})? ")
try:
return docs[int(index)][0]
except:
return None
|
d1e7b88d478f8fba5aa9ab21ad82ce0b9b6a543d
| 112,627 |
def determine_keep_history(cursor, keep_history=None):
"""Determine whether the RelStorage databases is set to keep history.
"""
if keep_history is None:
# We don't know, so sniff
cursor.execute(
"select 1 from pg_catalog.pg_class "
"where relname = 'current_object'")
keep_history = bool(list(cursor))
return keep_history
|
21c7c6c280d7928186d9dfd750e535b2ab025af2
| 146,262 |
def prunejoin(dict_, list_, sep=", "):
"""Remove non-values from list and join it using sep."""
return sep.join([dict_.get(i) for i in list_ if dict_.get(i)])
|
c9232e97e24811053b4916ceee4ef6a2ff1f97fa
| 342,003 |
import torch
def points_to_cartesian(batch: torch.Tensor) -> torch.Tensor:
"""
Transforms a batch of points in homogeneous coordinates back to cartesian
coordinates.
Args:
batch: batch of points in homogeneous coordinates. Should be of shape
BATCHSIZE x NUMPOINTS x NDIM+1
Returns:
torch.Tensor: the batch of points in cartesian coordinates
"""
return batch[..., :-1] / batch[..., -1, None]
|
d2acca1df5deac28c4cb415a471e1eecadc2d2a9
| 646,749 |
def select_unit(unitsDF,name):
"""
Look for a unit in the unitsDF with a name exactly equal to name
If there is exacty one then return that row using transpose and squeeze
Otherwise get every unit with a naame that contains name
If there are none those check if the input was a key instead and raise
and error if it is not
If there is exactly one result give that
If there is more than one result go through the partial matches and return
both their name and key
"""
# Look for a unit with a name that matches exactly
# If we get exactly one match move on
# Otherwise
# look for every unit that includes that name
# if there is exactly one move on
# if there are zero matches then
# check if there is an exact match as a key value
# if not the input is invalid
# if there is then move on
# if there is more then one match print out all the possibilities along with their key
unit = unitsDF[unitsDF["name"] == name]
if len(unit) != 1:
unit = unitsDF[unitsDF["name"].str.contains(name)]
if len(unit) == 0:
unit = unitsDF[unitsDF["key"] == name]
if len(unit) == 0:
raise Exception(f"{name} is not a unit name or key")
if len(unit) == 1:
return unit.T.squeeze()
if len(unit) > 1:
helper = unit[["name","key"]]
S = ""
for line in helper.values:
S += f"{line[0]:<50} {line[1]}\n"
raise Exception(f"The name '{name}' is ambiguous. Please use one of these names or key values:\n{S}")
return unit.T.squeeze()
|
a6a22fbb4e5d00354cd8795220f38257671fb391
| 515,673 |
def split(input_file=""):
"""Read the SMILES into a list"""
input_list = []
with open(input_file, mode="r") as newfile:
for entry in newfile:
input_list.append(str(entry).strip())
return input_list
|
357b52b4faeed98603acc65c817eafd5da7d2ad0
| 156,209 |
def _getDct(dct, frame):
"""
Gets the dictionary for the frame.
Parameters
----------
dct: dictionary to use if non-None
frame: stack frame
Returns
-------
dict
"""
if dct is None:
#dct = frame.f_back.f_locals
dct = frame.f_back.f_globals
return dct
|
d561ae11bf4b68114c8981fca3c9aee8f95f70a3
| 250,713 |
import functools
def required_chromium_based_browser(func):
"""
A decorator to ensure that the client used is a chromium based browser.
"""
@functools.wraps(func)
def wrapper(self, *args, **kwargs):
assert self.caps["browserName"].lower() not in ["firefox", "safari"], "This only currently works in Chromium based browsers"
return func(self, *args, **kwargs)
return wrapper
|
129d037ecdc8adcc5f389c53d11ca75b8f1b1630
| 326,654 |
def get_ase(counts):
"""defined as abs(0.5-(a1_count/total_count))"""
return (0.5-counts['a1_count']/counts['total_count']).abs()
|
fe79a0fa3688cdfef6282dcd35551bf8bd20f8fc
| 379,983 |
def rearrange_matrix(m, indices):
"""Rearrange matrix `m` according to provided indices."""
# rearrange
i_rows, i_cols = indices
m = m[i_rows, :]
m = m[:, i_cols]
return m
|
93611769ceac431e1ee6cc8c7f8b47ae84c94332
| 413,935 |
import torch
def normalise_grad(grad: torch.Tensor) -> torch.Tensor:
"""Normalise and handle NaNs caused by norm division.
Args:
grad (torch.Tensor): Gradient to normalise
Returns:
torch.Tensor: Normalised gradient
"""
normed_grad = grad / torch.linalg.norm(grad, dim=1)[:, None]
if torch.isnan(normed_grad).any():
normed_grad = torch.where(
torch.isnan(normed_grad),
torch.zeros_like(normed_grad),
normed_grad,
)
return normed_grad
|
f33f2111dcf6235de7688413b71f0edd5694bdd2
| 135,540 |
def _is_boolish(b):
"""
Check if b is a 1, 0, True, or False.
"""
if (b == 1) or (b == 0) or (b == True) or (b == False):
return True
else:
return False
|
0da5c05ec2f7d748620906b8f49002d2984ccb24
| 139,910 |
def sort_ipv4_addresses_with_mask(ip_address_iterable):
"""
Sort IPv4 addresses in CIDR notation
| :param iter ip_address_iterable: An iterable container of IPv4 CIDR notated addresses
| :return list : A sorted list of IPv4 CIDR notated addresses
"""
return sorted(
ip_address_iterable,
key=lambda addr: (
int(addr.split('.')[0]),
int(addr.split('.')[1]),
int(addr.split('.')[2]),
int(addr.split('.')[3].split('/')[0]),
int(addr.split('.')[3].split('/')[1])
)
)
|
97517b2518b81cb8ce4cfca19c5512dae6bae686
| 3,864 |
import json
def load_pos(filepath):
"""Load pos dictionary from json."""
with open(filepath, 'r') as fp:
return json.load(fp)
|
9cb89039ac1d9755fd31e14e2fd4c09312ddc21a
| 247,175 |
import re
def valid_md5_str(md5_str):
""" 校验md5 字符
:param md5_str:
:return: bool
"""
str_list = md5_str.split('.')
n_len = len(str_list)
if n_len != 2:
return False
n_len_md5 = len(str_list[0])
if n_len_md5 != 32:
return False
find_str = re.findall('[^a-z0-9]+', str_list[0])
if find_str:
return False
return True
|
01e6de753dd4fc76f76b7e434c020d506e1d7c6f
| 105,959 |
def get_pr_reviews(pr):
"""Gets a list of all submitted reviews on a PR. Does not list requested
reviews."""
# Required to access the PR review API.
headers = {'Accept': 'application/vnd.github.black-cat-preview+json'}
reviews = pr.session.get(
'https://api.github.com/repos/{}/{}/pulls/{}/reviews'.format(
pr.repository[0], pr.repository[1], pr.number),
headers=headers).json()
return reviews
|
a62b0ca5059f318df1d1e355682cee31f4af4513
| 76,519 |
import re
def is_valid_file_category_id(category_id):
"""
Validates a file lifecycle category ID, also known as the categories "category-ext-name".
A valid category ID should look like: category-00000001 - It should
always start with "category-" and end with 8 hexadecimal characters in lower
case.
:type category_id: str
:param category_id: The file lifecycle category ID to be validated.
:rtype: bool
:return: True or False depending on whether category_id passes validation.
"""
if category_id is None:
return False
match = re.match(r'^category-[0-9a-f]{8}$', category_id)
if not match:
return False
return True
|
75b074120fbdd612814a140f056163486a09ade3
| 638,643 |
import asyncio
async def py_normal(title: str):
"""Normal exposed function
Enter -> async sleep 10sec -> Exit
Respond to calls from other clients, even if the call is from one client.
Parameters
----------
title: str
Characters to print out on the server
Returns
----------
True
"""
print(f'Enter py_normal: {title}')
await asyncio.sleep(10)
print(f'Exit py_normal: {title}')
return True
|
27c58d8906a344374f66ed7046385cf1c614063e
| 50,075 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.