content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
def unpack_tuple(f):
"""Return a unary function that calls `f` with its argument unpacked."""
return lambda args: f(*iter(args))
|
d3de9361020567d62b555d05f987741a27a92272
| 238,610 |
def time_to_mss(sectime):
"""
Converts a number of seconds to m:ss format
:param sectime: int, a number of seconds
:return: str, sectime in m:ss
"""
n_min = int(sectime / 60)
n_sec = int(sectime % 60)
if n_sec == 0:
return '{0:d}:00'.format(n_min)
elif n_sec < 10:
return '{0:d}:0{1:d}'.format(n_min, n_sec)
else:
return '{0:d}:{1:d}'.format(n_min, n_sec)
|
86d86ef386c4f1736ec5fd3d1711155b4c613bc0
| 589,991 |
import pickle
def read_sphinx_environment(pth):
"""
Read the sphinx environment.pickle file at path `pth`.
"""
with open(pth, 'rb') as fo:
env = pickle.load(fo)
return env
|
bf892fb7cc644854084f4a1d63ae052dc55d9bc5
| 435,046 |
def DeltaAngle(a, b):
"""
Calculates the shortest difference between
two given angles given in degrees.
Parameters
----------
a : float
Input a
b : float
Input b
"""
return abs(a - b) % 360
|
ac63837ad8150bc4c2aa92e03b0f301b903517f3
| 312,919 |
import math
def generate_sin_wave(sample_rate, frequency, duration, amplitude):
"""
Generate a sinusoidal wave based on `sample_rate`, `frequency`, `duration` and `amplitude`
`frequency` in Hertz, `duration` in seconds, the values of `amplitude` must be in range [0..1]
"""
data = []
samples_num = int(duration * sample_rate)
volume = amplitude * 32767
for n in range(samples_num):
value = math.sin(2 * math.pi * n * frequency / sample_rate)
data.append(int(value * volume))
return data
|
550f6514bbc6b0c1c3b754ad0d94ef05ef3060f3
| 182,533 |
def GetFunctionImageNames( baseName, funcNameList ):
"""Generate a list of FITS filenames as would be created by makeimage in "--output-functions"
mode.
"""
nImages = len(funcNameList)
imageNameList = [ "%s%d_%s.fits" % (baseName, i + 1, funcNameList[i]) for i in range(nImages) ]
return imageNameList
|
69da24936174b029a48307e9f933e1e1d5119aa9
| 429,961 |
def iroot(a, b):
"""Function to calculate a-th integer root from b. Example: iroot(2, 4) == 2
Parameters:
a: int
Root power
b: int
Number to calculate root from
Returns:
result: int
Integer a-th root of b
"""
if b < 2:
return b
a1 = a - 1
c = 1
d = (a1 * c + b // (c ** a1)) // a
e = (a1 * d + b // (d ** a1)) // a
while c not in (d, e):
c, d, e = d, e, (a1 * e + b // (e ** a1)) // a
return min(d, e)
|
6704b7d0b663008c5a4e9d235d90aabcc9ca063d
| 666,120 |
def get_client_browser(request):
"""
Returns client browser
"""
return request.META.get('HTTP_USER_AGENT')
|
9142f2a3331a8b6b8691aa932ff0d3631db00fcc
| 590,030 |
def get_volume_id_to_instance_id_map(volume_info):
"""Generate volume id to instance id map. Unattached volumes will be ignored."""
instance_id_to_volume_id_map = {}
for volume_id in volume_info:
volume = volume_info.get(volume_id)
if volume.get("Attachments"):
# Attached volumes
ec2_instance_id = volume.get("Attachments")[0].get("InstanceId")
instance_id_to_volume_id_map[volume_id] = ec2_instance_id
return instance_id_to_volume_id_map
|
a0c1e85739a154205a85c51f5eff8602178ebd57
| 401,418 |
def setDefaultVal(myDict, name, value):
""" checks if a value exists in the dictionary and returns it.
if there isn't a value for that property sets it to value and.
:param myDict: a dictionary we what to update
:param name: the name of the property
:param value: the default vale if it is not already set
:return: the value wither default or from myDict
"""
if name in myDict:
return myDict[name]
else:
myDict[name] = value
return value
|
531067276170d28ba1a3496ab9d955a3d9994b60
| 216,444 |
def daemon_launch_lock_path(root_path):
"""
A path to a file that is lock when a daemon is launching but not yet started.
This prevents multiple instances from launching.
"""
return root_path / "run" / "start-daemon.launching"
|
dec00a8a358132dc5e8dbb5084dbf118e9229ad0
| 52,872 |
def allowed_to_preview(user):
"""
Is the user allowed to view the preview?
Users are only allowed to view the preview if they are authenticated, active and staff.
:param user: A User object instance.
:return: Boolean.
"""
if (
user.is_authenticated and
user.is_active and
user.is_staff
):
return True
return False
|
3f628939f79ffcb7f0802b71a9433eaa58c48946
| 670,251 |
def keyword(name=None):
"""Decorator to set custom keyword names to functions and methods.
This decorator creates the ``robot_name`` attribute on the decorated
keyword method or function. Robot Framework checks for this attribute when
determining the keyword's name.
library.py::
@keyword(name='Login Via User Panel')
def login(username, password):
# ...
tests.robot::
Login Via User Panel myusername mypassword
If ``name`` is not given, the actual name of the keyword will not be
affected, but the ``robot_name`` attribute will still be created.
This can be useful for marking methods as keywords in a dynamic library.
In this usage it is possible to also omit parenthesis when using the
decorator::
@keyword
def func():
# ...
"""
if callable(name):
return keyword()(name)
def _method_wrapper(func):
func.robot_name = name
return func
return _method_wrapper
|
c6362611589a584bbb720693e54a969a863d43f0
| 572,320 |
from typing import OrderedDict
def dict_to_str(input_dict, indent=""):
"""Turn a dictionary of attributes/status values into a pretty-printed
string for use on the command line. Recursively pretty-prints dictionaries.
This function is most useful with OrderedDicts as it keeps the same
printing order.
"""
# Find minimum width that fits all names
min_width = 0
for n in input_dict:
min_width = max(min_width, len(str(n)))
# Build string
ret = ""
for n in input_dict:
if type(input_dict[n]) in (dict, OrderedDict):
ret += indent + str(n) + ' = '
ret += '\n' + dict_to_str(input_dict[n], indent+" ")
else:
ret += indent + str(n).ljust(min_width) + ' = '
ret += str(input_dict[n]) + '\n'
return ret
|
8ce711ecbaed54d618c3ca621229be789ef9b257
| 537,817 |
def find_index(token, low, high, features): # binary search to find element index in list
"""
# Binary search helper method
# helps finding token index
# with O(log n) time whereas
# np.where() will need O(n)
"""
if high >= low:
mid = int((high + low) / 2)
if features[mid] == token:
return mid
elif features[mid] > token:
return find_index(token, low, mid - 1, features)
else:
return find_index(token, mid + 1, high, features)
return -1
|
181443fa1a95419c28e357b646ecf98e00cdeeaf
| 687,875 |
def _find_or_create_output_view(window, target):
"""
Find or create a view in the current window for putting the lint output in.
This is used when lint_output_to_view is set to True to create the view for
the lint results to be displayed in.
"""
caption = {
"package": "HyperHelpAuthor Lint: {pkg}",
"single": "HyperHelpAuthor Lint: {target} ({pkg})"
}.get(target.target_type, "???").format(
target=target.files[0],
pkg=target.pkg_info.package)
for view in window.views():
if view.name().startswith("HyperHelpAuthor Lint"):
view.set_name(caption)
view.set_read_only(False)
view.run_command("select_all")
view.run_command("left_delete")
return view
view = window.new_file()
view.set_name(caption)
view.set_scratch(True)
return view
|
a7072c7d646df20b65f2acbe190693eba66721c9
| 534,662 |
def get_pkg_version(pkg_name):
""" Return package version for `pkg_name` if installed
Returns
-------
pkg_version : str or None
Return None if package not importable. Return 'unknown' if standard
``__version__`` string not present. Otherwise return version string.
"""
try:
pkg = __import__(pkg_name)
except ImportError:
return None
try:
return pkg.__version__
except AttributeError:
return 'unknown'
|
255393bba3982db044c199027da6966d4590221c
| 325,597 |
def str_location(loc):
"""
This function takes a location from a clingo AST and transforms it into a
readable format.
"""
begin = loc.begin
end = loc.end
ret = "{}:{}:{}".format(begin.filename, begin.line, begin.column)
dash = True
eq = begin.filename == end.filename
if not eq:
ret += "{}{}".format("-" if dash else ":", end.filename)
dash = False
eq = eq and begin.line == end.line
if not eq:
ret += "{}{}".format("-" if dash else ":", end.line)
dash = False
eq = eq and begin.column == end.column
if not eq:
ret += "{}{}".format("-" if dash else ":", end.column)
dash = False
return ret
|
a17d9e983ac60ee2382693c6ee2b0ef02c3b83b9
| 387,482 |
def read_results(results_filename):
"""Loads a GrowthRates results file.
Parameters
----------
results_filename : str
path to results file.
Returns
-------
pandas.DataFrame
Table of GrowthRates results.
"""
with open(results_filename) as f:
for line in f:
if line.startswith('*'):
break
return [line.strip() for line in f if line and line != '*' * 57]
|
bc82a0fce99a7a72ff461e765547fd9483cc8214
| 447,165 |
def has_passed_all_test_cases(report):
"""Check that all test cases passed."""
for case in report:
if case["result"] == "FAILED":
return False
return True
|
cc5e81cce2ffe6d57f77fe59afecbd6e1477fb45
| 313,593 |
import re
def get_version(string):
""" Retrieve the ``__version__`` attribute for Layabout. """
flags = re.S
pattern = r".*__version__ = '(.*?)'"
match = re.match(pattern=pattern, string=string, flags=flags)
if match:
return match.group(1)
raise RuntimeError('No version string could be matched')
|
36aa18a6750fc5d17e1da13ba6768afe7b52960d
| 636,376 |
def get_cv(word, vowels, sep=None):
"""
Calculate the consonant ("C") and vowel ("V") structure of the
given word. Returns a string of the characters "C" and "V"
corresponding to the characters in the word.
*vowels* -- A list of the characters representing vowels.
*sep* -- String used to separate phonemes (if the words are
phonological forms). To separate into individual characters, set to
`None` (default).
"""
wsplit = list(word) if not sep else word.split(sep)
pattern = ["C" if char not in vowels else "V" for char in wsplit]
return "".join(pattern)
|
fbfe1c11e2b21f51fcd95bff454edd295e502314
| 63,694 |
import decimal
def euro_to_cent(amount):
"""
Rechnet einen Cent-Betrag nach Euro um, inklusive Rundung
Es wird mit ROUND_HALF_DOWN gerundet.
>>> euro_to_cent(1)
Decimal('100')
>>> euro_to_cent('0.5')
Decimal('50')
>>> euro_to_cent('0.01')
Decimal('1')
>>> euro_to_cent('0.001')
Decimal('0')
"""
value = decimal.Decimal(amount) * 100
return value.quantize(decimal.Decimal('1'), rounding=decimal.ROUND_HALF_DOWN)
|
c888cf7cf9b8bc827f3bdeb069d1e99aa2d16a9b
| 558,424 |
def makeMove(column, board, myTurn):
"""
Input: column (int), whose turn (boolean), and the board (matrix)
What: insert your coin in the column you chose
How: find the first empty (0) spot in the column and replace with your number
Output: the new board
>>> makeMove(1, board, True)
[[0, 2, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]]
"""
# adapt the number of rows to the game
rows=board.shape[0]
# check if it is my turn
if myTurn == True: #bot = player 2
coin = 2
else: #human = player 1
coin = 1
board_temp = board.copy()
for row in reversed(range(rows)):
if board_temp[row, column] == 0:
board_temp[row, column] = coin
return board_temp
|
b6a520067d9e276111abd0cec9715adfba0fd173
| 495,243 |
def get_variables (phrase):
"""Get all variables from a phrase."""
for char in '()&~|<>':
phrase = phrase.replace(char,' ')
phrase = phrase.split(' ')
phrase = list(set([x for x in phrase if x and x!='!allnotes!']))
return phrase
|
fdb37313f4a5e2ca5d91ff2f4c6310f97f0548dc
| 590,010 |
def get_polysemy_class(num_senses):
"""
Converts the number of senses (integer) in several ranges
"""
polysemy_class = None
if num_senses == 0:
polysemy_class = '0'
elif num_senses == 1:
polysemy_class = 'mono'
elif num_senses < 5:
polysemy_class = 'low_polysemy'
elif num_senses < 15:
polysemy_class = 'medium_polysemy'
elif num_senses < 30:
polysemy_class = 'high_polysemy'
else:
polysemy_class = 'very_high_polysemy'
return polysemy_class
|
53f12a5054f8b37c0846332fd1f7f158ef030e5e
| 458,099 |
def count_measurements(report_uuid: str, database) -> int:
"""Return the number of measurements."""
return database.measurements.count_documents(filter={"report_uuid": report_uuid})
|
c9f20149ec975134ad7f0abab28a2c632f5295a1
| 697,115 |
def euler_bernoulli_beam(x, y, EI, f):
"""Euler-Bernoulli Beam Theory defining y'''' for Lu=f.
This form is used because it is expected for Scipy's solve_ivp method.
Keyword arguments:
x -- independent variable
y -- dependent variable
EI -- EI(x) parameter
f -- forcing function f(x)
"""
return [y[1], y[2], y[3], -1*f/EI]
|
461abaf13705ca835f036648d9252827401ffd12
| 155,262 |
def _pop(items: list[str], from_: dict) -> tuple:
"""Pop a value(s) off a dictionary and return them as a tuple. For example the following pop two
of the values from a dictionary, key'd 'key1' and 'key2':
>>> key1, key2 = _pop(
items=['key1', 'key2'],
from_={'key1': 'value1', 'key2': 'value2', 'key3': 'value3'}
)
>>> ('value1', 'value2')
:param items: A list of keys to pop off `from_`.
:type items: list[str]
:param from_: The dictionary to pop items off.
:type from_: dict
:return: A tuple of the values of the popped dictionary keys.
:rtype: tuple
"""
return tuple(from_.pop(key) for key in items)
|
b0fed3dde64006c6b39668c23f41d9d7a50bb9a4
| 183,237 |
import binascii
def bin2base64(bin_str):
""" Convert bytes to base64 """
return binascii.b2a_base64(bin_str)
|
0482412894d339b97517bf100dc159084f482238
| 63,774 |
def get_all_layers(layer):
"""
This function gathers all layers below one or more given :class:`Layer`
instances, including the given layer(s). Its main use is to collect all
layers of a network just given the output layer(s).
:usage:
>>> from lasagne.layers import InputLayer, DenseLayer
>>> l_in = InputLayer((100, 20))
>>> l1 = DenseLayer(l_in, num_units=50)
>>> all_layers = get_all_layers(l1)
>>> all_layers == [l1, l_in]
True
>>> l2 = DenseLayer(l_in, num_units=10)
>>> all_layers = get_all_layers([l2, l1])
>>> all_layers == [l2, l1, l_in]
True
:parameters:
- layer : Layer
the :class:`Layer` instance for which to gather all layers feeding
into it, or a list of :class:`Layer` instances.
:returns:
- layers : list
a list of :class:`Layer` instances feeding into the given
instance(s) either directly or indirectly, and the given
instance(s) themselves.
"""
if isinstance(layer, (list, tuple)):
layers = list(layer)
else:
layers = [layer]
layers_to_expand = list(layers)
while len(layers_to_expand) > 0:
current_layer = layers_to_expand.pop(0)
children = []
if hasattr(current_layer, 'input_layers'):
children = current_layer.input_layers
elif hasattr(current_layer, 'input_layer'):
children = [current_layer.input_layer]
# filter the layers that have already been visited, and remove None
# elements (for layers without incoming layers)
children = [child for child in children
if child not in layers and
child is not None]
layers_to_expand.extend(children)
layers.extend(children)
return layers
|
5864720fdd6131e0206d03b0b54a57732dfa175c
| 118,540 |
import json
def to_javascript(obj):
"""For when you want to inject an object into a <script> tag.
"""
return json.dumps(obj).replace('</', '<\\/')
|
2fba6a30eb19fd0b8fcc4295c3994ad6fa82b02f
| 25,324 |
from typing import Union
import shlex
def parse_code_package_config(config) -> Union[dict, bool]:
"""
Parse the code package options from a AWSBatchExecutor config.
"""
if not config.getboolean("code_package", fallback=True):
return False
include_config = config.get("code_includes", "**/*.py")
exclude_config = config.get("code_excludes", "")
return {"includes": shlex.split(include_config), "excludes": shlex.split(exclude_config)}
|
edfd952f9341d8a31e401559185f4c7876aa76e0
| 476,233 |
def reactions_to_user_lists(reaction_list):
"""Convert list of reactions from GitHub API into list of usernames for upvote and downvote"""
upvotes = []
downvotes = []
for r in reaction_list:
if r["content"] not in ["+1", "-1"] or r["user"]["type"] != "User":
continue
username = r["user"]["login"]
if r["content"] == "+1":
upvotes.append(username)
elif r["content"] == "-1":
downvotes.append(username)
upvotes.sort()
downvotes.sort()
return upvotes, downvotes
|
6f3355b92ddb230028e5b81a8c3dd4987ff4f235
| 138,725 |
def sort_uniq(l: list) -> list:
"""
1.1
Remove the duplicates in a sorted list
"""
if len(l) == 0: return l
i = 1
rst = [l[0]]
while i != len(l):
if l[i - 1] != l[i]:
rst.append(l[i])
i += 1
return rst
|
7daacf3544346c9dd0d473db4f10511d1bce1066
| 197,939 |
def check_filters(filters):
"""Checks that the filters are valid
:param filters: A string of filters
:returns: Nothing, but can modify ``filters`` in place, and raises ``ValueError``s if the filters are badly formatted.
This functions conducts minimal parsing, to make sure that the relationship exists, and that the filter is generally well formed.
The ``filters`` string is modified in place if it contains space.
"""
if not isinstance(filters, str):
raise TypeError("filters must be a string")
# We replace all spaces with %20
filters.replace(' ', '%20')
# These steps will check that the filters are correct
REL = ['startswith', 'endswith', 'exact', 'contains', 'range', 'gt', 'lt', 'gte', 'lte', 'in']
filters = filters.split('&')
for fi in filters:
if not '=' in fi:
raise ValueError("Filter "+fi+" is invalid (no =)")
if not '__' in fi:
raise ValueError("Filter "+fi+" is invalid (no __)")
splitted_filter = fi.split('=')
match = splitted_filter[0]
target = splitted_filter[1]
request = match.split('__')
relationship = request[len(request)-1]
if not relationship in REL:
raise ValueError("Filter "+fi+" is invalid ("+ relationship +" is not a valid relationship)")
if len(filters) == 1 :
return filters
else :
return '&'.join(filters)
|
724bfbce98c734fe253bb2e77100fb8588f6a3da
| 667,304 |
import re
def _get_summary(gh_issue):
"""
Return the JIRA summary corresponding to a given GitHub issue
Format is: GH/PR #<gh issue number>: <github title without any JIRA slug>
"""
is_pr = "pull_request" in gh_issue
result = "%s #%d: %s" % ("PR" if is_pr else "GH", gh_issue["number"], gh_issue["title"])
# don't mirror any existing JIRA slug-like pattern from GH title to JIRA summary
# (note we don't look for a particular pattern as the JIRA issue may have moved)
result = re.sub(r" \([\w]+-[\d]+\)", "", result)
return result
|
0f0bd2286cfb9f982505157ea34e87fed01efee1
| 461,047 |
import requests
import re
def check_tfchain_synced(prefab, height_threeshold=10):
"""
Check if the tfchain daemon is synced with the offical testnet
@param prefab: prefab of the TFT node
@param height_threeshold: The max difference between the testnet explorer and the local node to be considered in sync
"""
testnet_explorer = 'https://explorer.testnet.threefoldtoken.com/explorer'
res = requests.get(testnet_explorer)
if res.status_code == 200:
expected_height = res.json()['height']
_, out, err = prefab.core.run(cmd='tfchainc', showout=False)
out = '{}\n{}'.format(out, err)
match = re.search('^Synced:\s+(?P<synced>\w+)\n*.*\n*Height:\s*(?P<height>\d+)', out)
if match:
match_info = match.groupdict()
if match_info['synced'] == 'Yes' and expected_height - int(match_info['height']) <= height_threeshold:
return True
return False
|
64171c78e2a6dff99de691a37635cbf1db5b2fa7
| 378,550 |
def calc_death_rate(confirmed, deaths):
"""
Calculates the daily death rate in confirmed cases.
:param confirmed: DataFrame of confirmed cases
:param deaths: DataFrame of deaths
:return: DataFrame of daily death rate
"""
death_rate = (deaths / confirmed) * 100
death_rate = death_rate.fillna(0.0)
return death_rate
|
61f6e445d52b4495c3d07cf115692620c047fc75
| 659,405 |
def _(arg):
"""Converts numpy floats to python floats"""
return float(arg)
|
2da3c058bda920529ba14f2ad729388f95b90216
| 134,749 |
from typing import Dict
from typing import Any
from typing import Union
def get_mineral_name(mineral_dict: Dict[str, Any]) -> Union[str, None]:
"""Get the mineral name from a mineral dictionary.
Args:
mineral_dict: The mineral dictionary from the condensed description.
Returns:
If ``mineral_dict["type"]`` is set, the mineral name will be returned as
a string, else ``None`` will be returned.
"""
if mineral_dict['type']:
if not mineral_dict['n_species_type_match']:
suffix = "-derived"
elif mineral_dict['distance'] >= 0:
suffix = "-like"
else:
suffix = ""
return "{}{}".format(mineral_dict['type'], suffix)
else:
return None
|
98ebf7efa162bc68867c40483e01ad1eb8793715
| 352,939 |
def make_review(restaurant_name, rating):
"""Return a review data abstraction."""
return [restaurant_name, rating]
|
b1807917cf3ea790fb49617a5dd7a968353c22e2
| 500,486 |
import pickle
def load(filename):
"""
Loads an item from filename.
Returns the object that was saved in filename.
Throws IOError if File DNE.
Throws PickleError is file cannot be opened via pickle.
"""
obj = None
try:
with open(filename, 'rb') as reader:
obj = pickle.load(reader)
except IOError:
raise Exception("Exception while reading the file %s." % filename)
except pickle.PickleError:
raise Exception("Exception while loading pickle.")
return obj
|
ce44596732ff73d024f80694e9e5b21ac9f278f0
| 552,116 |
def is_custom_session(session):
"""Return if a ClientSession was created by pyatv."""
return hasattr(session, '_pyatv')
|
741057221f80f0285b8b744e635d419dd9a0a38b
| 666,663 |
import gzip
def open_file_for_reading(filename):
"""Open the file gunzipping it if it ends with .gz."""
if filename.lower().endswith(".gz"):
return gzip.open(filename, "rb")
else:
return open(filename, "rb")
|
55036422c55de278bf94fea13074bbe336f96489
| 118,686 |
def select_and_rename(self, name_dict=None, **names):
"""
Select and rename variables from this Dataset
Parameters
----------
name_dict, **names: dict
The keys or keyword arguments give the current names of the
variables that will be selected out of this Dataset. The values
give the new names of the same variables in the resulting Dataset.
Returns
-------
Dataset
"""
if name_dict is None:
name_dict = names
else:
name_dict.update(names)
return self[list(name_dict.keys())].rename(name_dict)
|
c7f33b1613b5037524aae0faf1a0af764e05a89a
| 558,515 |
def sklearn_model_2_file_name(result_dir):
"""Model file name for trained sklearn model"""
return '{0}/model_2.pkl'.format(result_dir)
|
4b397ef9d0169d4eb818e3a214849e10821fbcf6
| 334,315 |
import json
import six
def _get_manifest_body(context, prefix, path2info, put_headers):
"""
Returns body for manifest file and modifies put_headers.
path2info is a dict like {"path": (size, etag)}
"""
if context.static_segments:
body = json.dumps([
{'path': '/' + p, 'size_bytes': s, 'etag': e}
for p, (s, e) in sorted(six.iteritems(path2info))
])
put_headers['content-length'] = str(len(body))
context.query['multipart-manifest'] = 'put'
else:
body = ''
put_headers['content-length'] = '0'
put_headers['x-object-manifest'] = prefix
return body
|
20e9a3d038d135e59d2bfa6767f3260e81c0a534
| 383,046 |
def flatten_results(results: dict, derivation_config: dict) -> dict:
"""Flatten and simplify the results dict into <metric>:<result> format.
Args:
results (dict): The benchmark results dict, containing all info duch as
reduction types too
derivation_config (dict): The configuration defining how metrics are
derived from logs
Returns:
flat_results (dict): The flattened dict of all results in
<metric>:<result> format
"""
flat_results = {}
for metric, results_dict in results.items():
key = derivation_config.get(metric, {}).get("reduction_type", "mean")
flat_results[metric] = results_dict[key]
return flat_results
|
045c1e1d856c20b37d2d78d8dd6c3fd76cb91777
| 20,862 |
def comma_code(collection):
"""
Take an iterable collection and returns the collection as a string
formatted using the Oxford comma
:param collection: collection of values to convert to readable string
"""
if len(collection) == 0:
return ''
elif len(collection) == 1:
return str(collection[0])
# list comprehension used to explicitly cast items to str str() converts
# slice to list of chars, this implementation allows for a mixed list
return f"{', '.join([str(item) for item in collection[:-1]])}, and {collection[-1]}"
|
5953b6dbe09be8a5b9cb8f3d4e288f9160fdecb5
| 464,974 |
import re
def get_title(passenger: str) -> str:
"""Extracts the title (Mr, Ms, etc) from the name variable."""
line = passenger
if re.search("Mrs", line):
return "Mrs"
elif re.search("Mr", line):
return "Mr"
elif re.search("Miss", line):
return "Miss"
elif re.search("Master", line):
return "Master"
else:
return "Other"
|
8928d546e8cdc01a8a9330435c4e22ac0ecb8970
| 574,861 |
def population_filter(neighbors, min_population):
"""Drop key-index pairs with insufficient populations.
Parameters
----------
neighbors : dict
Key-index mappings.
min_population : int
Minimum number of items to keep, inclusive.
Returns
-------
filt_neighbors : dict
Population-filtered key-index mappings.
"""
nbs = {}
keys = list(neighbors.keys())
for k in keys:
if len(neighbors[k]) >= min_population:
nbs[k] = neighbors[k]
return nbs
|
b03803124164b2b65248c21e6426c0be4bfee7d4
| 287,393 |
import string
import random
def random_id(length=4):
"""
Generate a case sensitive random string.
"""
symbols = string.ascii_letters + string.digits
return ''.join(random.choice(symbols) for _ in range(length))
|
83566515661e768087e74c75fd7e5954d9b7c023
| 396,134 |
def uuid_prefix_len(uuids, step=4, maxlen=32):
"""Get smallest multiple of `step` len prefix that gives unique values.
The algorithm is not fancy, but good enough: build *sets* of
the ids at increasing prefix lengths until the set has all ids (no duplicates).
Experimentally this takes ~.1ms for 1000 duplicate ids (the worst case).
"""
full = set(uuids)
all_of_them = len(full)
for n in range(step, maxlen, step):
prefixes = {u[:n] for u in uuids}
if len(prefixes) == all_of_them:
return n
return maxlen
|
bea7e69cbd8cfa8b900df4475b0c60dc3874024b
| 378,562 |
import yaml
def extract_dict(yaml_filename, validate_only=False):
"""
Args:
yaml_filename: A YAML file.
validate_only: If True, returns only a boolean validation flag.
Returns:
The nested dictionary represented by the YAML source. (Unless validate_only
is True).
"""
data = None
with open(yaml_filename, 'rt') as file:
try:
data = yaml.load(file, Loader=yaml.FullLoader)
if validate_only and (not data is None):
return True
except Exception as e:
if validate_only:
return False
return data
|
c435df7f826b96fd29407441e8a84cb0eb76f8e5
| 425,661 |
import math
def munsell_value_mccamy1987(Y):
"""
Returns the *Munsell* value :math:`V` of given *luminance* :math:`Y` using
*McCamy (1987)* method.
Parameters
----------
Y : numeric
*luminance* :math:`Y`.
Returns
-------
numeric
*Munsell* value :math:`V`.
Notes
-----
- Input *Y* is in domain [0, 100].
- Output *V* is in domain [0, 10].
References
----------
.. [8] `Standard Test Method for Specifying Color by the Munsell System -
ASTM-D1535-1989
<https://law.resource.org/pub/us/cfr/ibr/003/astm.d1535.1989.pdf>`_, # noqa
DOI: http://dx.doi.org/10.1520/D1535-13
Examples
--------
>>> munsell_value_mccamy1987(10.08) # doctest: +ELLIPSIS
3.7347235...
"""
if Y <= 0.9:
V = 0.87445 * (Y ** 0.9967)
else:
V = (2.49268 * (Y ** (1 / 3)) - 1.5614 -
(0.985 / (((0.1073 * Y - 3.084) ** 2) + 7.54)) +
(0.0133 / (Y ** 2.3)) +
0.0084 * math.sin(4.1 * (Y ** (1 / 3)) + 1) +
(0.0221 / Y) * math.sin(0.39 * (Y - 2)) -
(0.0037 / (0.44 * Y)) * math.sin(1.28 * (Y - 0.53)))
return V
|
233e6e9a70699e40e23697457803f6af5c168b83
| 403,063 |
def _create_json(name, description, type, searchBaseDN, searchFilter,
searchTimeout, serverConnection, cacheSize, cacheLifetime,
attributeName, attributeSelector):
"""
Create a JSON to be used for the REST API call
"""
json = {
"name": name,
"description": description,
"type": "LDAP",
"properties": [
{"key": "searchBaseDN", "value": searchBaseDN, "datatype": "String",
"sensitive": False, "readOnly": False},
{"key": "searchFilter", "value": searchFilter,
"datatype": "String", "sensitive": False, "readOnly": False},
{"key": "searchTimeout", "value": searchTimeout, "datatype": "Integer",
"sensitive": False, "readOnly": False},
{"key": "dataSource", "value": serverConnection,
"datatype": "String", "sensitive": False, "readOnly": False},
{"key": "cacheSize", "value": cacheSize, "datatype": "Integer",
"sensitive": False, "readOnly": False},
{"key": "cacheLifetime", "value": cacheLifetime, "datatype": "Integer",
"sensitive": False, "readOnly": False}
],
"attributes": [
{"name": attributeName, "selector": attributeSelector}
]
}
return json
|
3474567527055afc6863cfc335e221e0fb103e37
| 330,463 |
import logging
def add_file_log_handler(formatter, log_file, level=logging.INFO):
"""Creates and returns a handler that streams to the file at the logging level specified"""
fh = logging.FileHandler(log_file, mode='w')
fh.setFormatter(formatter)
fh.setLevel(level)
return fh
|
a1718809800a25705a0b36faa05a91454dbb10a3
| 502,067 |
def pump(type_):
"""
Feed the generator into *type_* til exhaustion. Can be overridden by
setting exhaust=False.
"""
def _pump(f):
def fx(*args, **kwargs):
exhaust_gen = kwargs.pop("exhaust", True)
gen = f(*args, **kwargs)
if exhaust_gen:
return type_(gen)
return gen
return fx
return _pump
|
07a0247c49ace070106395a96b90870f9957275e
| 524,634 |
def make_index(it):
"""Create a dictionary mapping elements of an iterable to the index
position of that element
"""
return {b : a for a, b in enumerate(it)}
|
38efe39f69cc026aafa40107deff944c33afb8e1
| 141,543 |
import re
def pad_numbers(string):
"""Modify a string to make its numbers suitable for natural sorting."""
return re.sub(r'\d+', lambda m: m.group(0).rjust(16, '0'), string)
|
6c19c9d2691de87600d334bb42d39f95fbcf8669
| 320,920 |
from typing import List
from typing import Any
def read_keyword_list(keywords: List[Any], list_length: int) -> List[Any]:
"""Reads a number of tokens from a keyword list and returns as separate list"""
newlist = []
#Uses a loop like this to ensure the original list is modified when removing keywords, rather than a just this reference to the list updating
for _ in range(list_length):
newlist.append(keywords.pop(0))
return newlist
|
d9250fc3960cce0491a7b3d1861d0d116ec31ceb
| 642,690 |
def update_smag_metadata(col_name):
"""Update SuperMAG metadata
Parameters
-----------
col_name : (str)
Data column name
Returns
--------
col_dict : (dict)
Dictionary of strings detailing the units and long-form name of the data
"""
smag_units = {'IAGA': 'none', 'N': 'nT', 'E': 'nT', 'Z': 'nT',
'MLT': 'hours', 'MLAT': 'degrees', 'SZA': 'degrees',
'IGRF_DECL': 'degrees', 'SMU': 'none', 'SML': 'none',
'datetime': 'YYYY-MM-DD HH:MM:SS',
'GEOLON': 'degrees', 'GEOLAT': 'degrees',
'AACGMLON': 'degrees', 'AACGMLAT': 'degrees',
'STATION_NAME': 'none',
'OPERATOR_NUM': 'none', 'OPERATORS': 'none'}
smag_name = {'IAGA': 'Station Code',
'N': 'B along local magnetic North',
'E': 'B along local magnetic East',
'Z': 'B vertically downward',
'MLT': 'Magnetic Local Time',
'MLAT': 'Magnetic Latitude',
'SZA': 'Solar Zenith Angle',
'IGRF_DECL': 'IGRF magnetic declination',
'SMU': ' '.join(['Maximum eastward auroral electrojets',
'strength.\nUpper envelope of N-component',
'for stations between 40 and 80 degrees'
'magnetic north.']),
'SML': ' '.join(['Maximum westward auroral electrojets',
'strength.\nLower envelope of N-component',
'for stations between 40 and 80 degrees',
'magnetic north.']),
'datetime': 'UT date and time',
'GEOLON': 'geographic longitude',
'GEOLAT': 'geographic latitude',
'AACGMLON': ' '.join(['Altitude-Adjusted Corrected',
'Geomagnetic longitude']),
'AACGMLAT': ' '.join(['Altitude-Adjusted Corrected',
'Geomagnetic latitude']),
'STATION_NAME': 'Long form station name',
'OPERATOR_NUM': 'Number of station operators',
'OPERATORS': 'Station operator name(s)', }
ackn = "When using this data please include the following reference:\n"
ackn += "Gjerloev, J. W., The SuperMAG data processing technique, "
ackn += "Geophys. Res., 117, A09213, doi:10.1029/2012JA017683, 2012\n\n"
ackn += "For publications and presentations, please include the following"
ackn += "acknowledgement:\nFor the ground magnetometer data we gratefully "
ackn += "acknowledge: Intermagnet; USGS, Jeffrey J. Love; CARISMA, PI Ian "
ackn += "Mann; CANMOS; The S-RAMP Database, PI K. Yumoto and Dr. K. "
ackn += "Shiokawa; The SPIDR database; AARI, PI Oleg Troshichev; The "
ackn += "MACCS program, PI M. Engebretson, Geomagnetism Unit of the "
ackn += "Geological Survey of Canada; GIMA; MEASURE, UCLA IGPP and Florida"
ackn += " Institute of Technology; SAMBA, PI Eftyhia Zesta; 210 Chain, PI "
ackn += "K. Yumoto; SAMNET, PI Farideh Honary; The institutes who maintain"
ackn += " the IMAGE magnetometer array, PI Eija Tanskanen; PENGUIN; "
ackn += "AUTUMN, PI Martin Connors; DTU Space, PI Dr. Rico Behlke; South "
ackn += "Pole and McMurdo Magnetometer, PI's Louis J. Lanzarotti and Alan "
ackn += "T. Weatherwax; ICESTAR; RAPIDMAG; PENGUIn; British Artarctic "
ackn += "Survey; McMac, PI Dr. Peter Chi; BGS, PI Dr. Susan Macmillan; "
ackn += "Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio "
ackn += "Wave Propagation (IZMIRAN); GFZ, PI Dr. Juergen Matzka; MFGI, PI "
ackn += "B. Heilig; IGFPAS, PI J. Reda; University of L’Aquila, PI M. "
ackn += "Vellante; BCMT, V. Lesur and A. Chambodut; Data obtained in "
ackn += "cooperation with Geoscience Australia, PI Marina Costelloe; "
ackn += "SuperMAG, PI Jesper W. Gjerloev."
col_dict = {'units': smag_units[col_name],
'long_name': smag_name[col_name],
'acknowledgements': ackn}
return col_dict
|
8d39c0e1f9a719b4e80d72a612fc351be7cfe4d4
| 355,927 |
def transpose_pairs(tuple_list):
"""
For each tuple pair in the list, transpose. i.e. (a,b) => (b,a)
"""
a,b = [list(x) for x in zip(*tuple_list)]
return list(zip(b,a))
|
e7dd1dbfa8e1c73e84a88dbec44b08e86ff6c538
| 590,369 |
from typing import Union
def val_mb(valstr: Union[int, str]) -> str:
"""
Converts a value in bytes (in string format) to megabytes.
"""
try:
return "{:.3f}".format(int(valstr) / (1024 * 1024))
except (TypeError, ValueError):
return '?'
|
b4dfd67876e696e46727d1b66ca6f41cf9bf3829
| 231,738 |
def alpha_to_index(char):
"""Takes a single character and converts it to a number where A=0"""
translator = {
"A": 0, "B": 1, "C": 2, "D": 3, "E": 4, "F": 5, "G": 6, "H": 7,
"I": 8, "J": 9, "K": 10, "L": 11, "M": 12, "N": 13, "O": 14,
"P": 15, "Q": 16, "R": 17, "S": 18, "T": 19, "U": 20, "V": 21,
"W": 22, "X": 23, "Y": 24, "Z": 25,
}
return translator[char.upper()]
|
83bcc8f6ed93538ad90fe72cdf51e462f6b3c77e
| 393,808 |
from typing import Union
from typing import List
from typing import Dict
import time
import json
import requests
def download(url: str) -> Union[List, Dict]:
""" Download data from SRC API, with throttling """
print('[tools.py::download] Fetching', url)
time.sleep(1)
headers = {'user-agent': 'akleemans-gameboy-wr-bot/2.0'}
content = json.loads(requests.get(url, headers=headers).text)
data = content['data']
return data
|
c2ec21c2cd3e9f33ab113c9083ba394b4f018eb7
| 94,298 |
def get_max_sheet(book):
"""
Get the sheet in the workbook with the most rows of data
:param book: An xlrd book object
:return: Returns an xlrd sheet object
"""
row_counts = [s.nrows for s in book.sheets()] # list of row counts for each sheet
max_sheet_index = row_counts.index(max(row_counts)) # find list index for largest sheet
sheet = book.sheet_by_index(max_sheet_index) # return the sheet with the greatest number of rows
return sheet
|
ceb6a7b5b4a8592a22f9a707e1f098504069f98f
| 214,150 |
import torch
def pr(x, y):
""" Metrics calculation from: https://en.wikipedia.org/wiki/Confusion_matrix
Returns precision, recall, specificity and f1 (in that order)
"""
tp = ((x == y) * (x == 1)).sum().to(torch.float32)
tn = ((x == y) * (x == 0)).sum().to(torch.float32)
fp = ((x != y) * (x == 1)).sum().to(torch.float32)
fn = ((x != y) * (x == 0)).sum().to(torch.float32)
pr = tp / (tp + fp)
rc = tp / (tp + fn)
sp = tn / (tn + fp)
f1 = (2 * tp) / (2 * tp + fp + fn)
return pr, rc, sp, f1
|
b2095585e3283b8c301c992ea241158c612b4d3b
| 27,719 |
def load_statistics(log_dir, statistics_file_name):
"""
Loads the statistics in a dictionary.
:param log_dir: The directory in which the log is saved
:param statistics_file_name: The name of the statistics file
:return: A dict with the statistics
"""
data_dict = dict()
with open("{}/{}.csv".format(log_dir, statistics_file_name), 'r') as f:
lines = f.readlines()
data_labels = lines[0].replace("\n", "").replace("\r", "").split(",")
del lines[0]
for label in data_labels:
data_dict[label] = []
for line in lines:
data = line.replace("\n", "").replace("\r", "").split(",")
for key, item in zip(data_labels, data):
if item not in data_labels:
data_dict[key].append(item)
return data_dict
|
df1a51db9112d0aa65ff9a2b41c2d2420bb2b353
| 300,291 |
def vertical_flip(img):
"""Flip the image along the vertical axis."""
return img[:, :, ::-1]
|
d04f2175b106cd036cf5eb6701779782de8f1c8b
| 431,000 |
def query_dict(data, query_string, ret_default=None):
"""
Drill down into a dict using dot notation, e.g. query_dict({'this': {'that': 'other'}}, 'this.that'}).
:param dict data:
:param str query_string:
:param ret_default:
"""
_data = data.copy()
for q in query_string.split('.'):
d = _data.get(q)
if d is not None:
_data = d
else:
return ret_default
return _data
|
d4408c22e62372f0203579b07890f980b2bbe880
| 550,927 |
def raman_and_roa(values, *args, **kwargs):
"""Returns values as passed, ignoring any other args and kwargs.
Introduced for consistency of intensities calculation.
Parameters
----------
values: numpy.ndarray
Returns
-------
numpy.ndarray
Values passed to this function."""
return values
|
252bdce9e302e1d6c61575e74839867191c77db1
| 393,157 |
def hash_matches(doc, hash):
"""Check whether the hash of the passed doc matches the passed hash
"""
return doc["_input_hash"] == hash
|
f8068a06d1e4162bb07a19e6e8d6276420c74d28
| 413,352 |
import copy
def poly_diff(poly):
""" Differentiate a polynomial. """
newlist = copy.deepcopy(poly)
for term in newlist:
term[0] *= term[1]
term[1] -= 1
return newlist
|
79b0319edb1fda28110b643bc79d4772740371f5
| 467,386 |
def _nested_multiquestion_required(question):
"""Returns a list of required nested properties for the multiquestion.
`.required_form_fields` returns the top-level schema property name for the
nested multiquestion, since that's the part that's influenced by the question's
`optional` flag and it returns the key we need to add to the top-level schema's
'required' list.
Nested properties are always required if the nested question is mandatory, even
when multiquestion itself is optional, since they're part of the nested schema.
"""
required = []
followups = []
# Followup questions don't need to be in the 'required' properties list since even
# non-optional questions don't always have to be present if they're a followup.
# Both the question itself and the followups are covered by the oneOf subschemas.
for nested_question in question['questions']:
required.extend(nested_question.required_form_fields)
if nested_question.get('followup'):
followups.extend(nested_question['followup'].keys())
return sorted(set(required) - set(followups))
|
3e128c8637e6514e500d94794e2c76cd9068cba9
| 195,955 |
def run_program(program: list) -> int:
"""Execute an Intcode program
:param program: Intcode program
:return: Output of the Intcode program
"""
for i in range(len(program) // 4 + 1):
opcode = program[4 * i]
if opcode == 99:
break
pos1, pos2, pos3 = program[(4 * i + 1):(4 * i + 4)]
if opcode == 1:
program[pos3] = program[pos1] + program[pos2]
elif opcode == 2:
program[pos3] = program[pos1] * program[pos2]
else:
raise ValueError('Invalid opcode!')
return program[0]
|
7aa950fcecf6cac1115092c8c2e74888cd711108
| 559,938 |
import io
def image_to_bytes(image):
"""
Converts PIL image to bytes
:param image: PIL.Image
:return: bytes
"""
bytes_buffer = io.BytesIO()
image.save(bytes_buffer, format='PNG')
return bytes_buffer.getvalue()
|
b142fa512b3e7b7719772553b79eee01b33f40d1
| 72,706 |
def PyDateTime_TIME_GET_FOLD(space, w_obj):
"""Return the fold, either 0 or 1
"""
return space.int_w(space.getattr(w_obj, space.newtext("fold")))
|
aa46ad9e6163d7ade3da3269913b34fc0e419962
| 593,545 |
def update_dict_params_for_calibration(params):
"""
Update some specific parameters that are stored in a dictionary but are updated during calibration.
For example, we may want to update params['default']['compartment_periods']['incubation'] using the parameter
['default']['compartment_periods_incubation']
:param params: dict
contains the model parameters
:return: the updated dictionary
"""
if "n_imported_cases_final" in params:
params["data"]["n_imported_cases"][-1] = params["n_imported_cases_final"]
for location in ["school", "work", "home", "other_locations"]:
if "npi_effectiveness_" + location in params:
params["npi_effectiveness"][location] = params["npi_effectiveness_" + location]
for comp_type in [
"incubation",
"infectious",
"late",
"hospital_early",
"hospital_late",
"icu_early",
"icu_late",
]:
if "compartment_periods_" + comp_type in params:
params["compartment_periods"][comp_type] = params["compartment_periods_" + comp_type]
return params
|
8aaf9cb030076adfddb7c8d5740a2c8cc5c21c06
| 8,851 |
def choices_help_text(choices):
"""Return a clear text for choices.
Args:
choices: list of tuples (value, label)
Returns:
a text in the form:
enum1: label1
enum2: label2
"""
choises_str = ('{enum}: {label}'.format(enum=choice[0], label=choice[1]) for choice in choices)
return '\n'.join(choises_str)
|
67fd67f9e2af7d9ad96de4cea057ac2f992539b7
| 638,602 |
def ToHex(val):
"""Convert an integer value (or None) to a string
Returns:
hex value, or 'None' if the value is None
"""
return 'None' if val is None else '%#x' % val
|
c85c90f8d3b67e06acc54681dc74bf6240682c91
| 273,863 |
def load_vocabulary(fn):
"""Read the file fn and return a set containing all the words
of the vocabulary."""
vocabulary = set()
with open(fn) as f:
for line in f:
vocabulary.add(line.strip())
return vocabulary
|
45d7938177dbb3d0770e0d494cf5224a15f74c64
| 96,521 |
def inc(x):
"""Increments its argument"""
return x + 1
|
23b0c854dc3307fe6411174e9b9da39b0f0988d3
| 58,440 |
def _dfs_in(atom):
"""Traverse an Atom's incoming neighborhood iteratively with a depth-first search."""
atoms = [atom]
stack = list(atom.incoming)
while stack:
atom = stack.pop(0)
atoms.append(atom)
stack[0:0] = atom.incoming
return atoms
|
8e3557def098bdedea2507f298d781a3b51f7d3b
| 98,031 |
def get_camelcase_name_chunks(name):
"""
Given a name, get its parts.
E.g: maxCount -> ["max", "count"]
"""
out = []
out_str = ""
for c in name:
if c.isupper():
if out_str:
out.append(out_str)
out_str = c.lower()
else:
out_str += c
out.append(out_str)
return out
|
134a8b1d98af35f185b37c999fbf499d18bf76c5
| 709,760 |
def globs(test):
"""
Return the globals for *test*, which can be a `doctest`
or a regular `unittest.TestCase`.
"""
try:
return test.globs
except AttributeError:
return test.__dict__
|
ada66843770fe53f3a6880440b39121bf93f437a
| 505,272 |
from typing import Any
def overlaps(lhs: Any, rhs: Any) -> bool:
"""Indicates whether two time-spans/segments are overlapping or not."""
return lhs.start < rhs.end and rhs.start < lhs.end
|
a2b8e2ee71794c6627305118c65fe2de4dc141d1
| 130,783 |
from typing import List
def preprocess_list_query(queries: List[str]):
"""Preprocesses a list of provided conditions into what the REST api expects (comma separated string)"""
# Note: could use resolve_multiple_args but the same comprehension works for tuples
return ",".join([q.strip() for q in queries])
|
f80b86fd6c046f2557fffc859e81d1ea869c5bb5
| 116,702 |
def get_name(s, isconj=False):
"""Parse variable names of form 'var_' as 'var' + conjugation."""
if not type(s) is str:
if isconj:
return str(s), False
else:
return str(s)
if isconj:
return s.rstrip("_"), s.endswith("_") # tag names ending in '_' for conj
else:
return s.rstrip("_")
|
9648a8b206a107f91784bd2caea1f7b9d312c5e3
| 668,400 |
def as_path(*args: str) -> str:
"""Converts strings to lowercase path-like string
Take variable order of string inputs
:param args: variable-length of strings
:return: string
"""
strings = []
for arg in args:
if arg is None:
continue
strings.append(str(arg).strip().lower())
return "/".join(strings)
|
b58d0b06f57ec93549431c23be00498aaf3bf5e4
| 614,334 |
import html
def unescape_html(s: str):
"""
>>> unescape_html("<")
'<'
"""
return html.unescape(s)
|
9fcdcf54ad09674ae482c081ab65a74dade1864d
| 237,318 |
def distance(x1, x2):
"""Find distance between two points (made for use with numba)
Parameters
----------
x1 : float
3D position of first point of the form [x,y,z]
x2 : float
3D position of first point of the form [x,y,z]
Returns
-------
distance : float
distance between the two points
History
-------
2019 - Written - Webb (UofT)
"""
dx = x2[0] - x1[0]
dy = x2[1] - x1[1]
dz = x2[2] - x1[2]
r = (dx * dx + dy * dy + dz * dz) ** 0.5
return r
|
1596319d6929cd76e805c9fcd73dbaf26d35f763
| 445,155 |
def is_lambda(function):
"""
Checking function to be a lambda function.
:param function: function to be checked.
:returns: True when given function is a lambda function.
>>> square = lambda value: value**2
>>> is_lambda(square)
True
>>> def square2(value): return value**2
>>> is_lambda(square2)
False
>>> is_lambda("hello world")
False
"""
LAMBDA = lambda: 0
return isinstance(function, type(LAMBDA)) and function.__name__ == "<lambda>"
|
171d337c4827111a8d2ef4c678ae96ccf9b6360b
| 461,697 |
def links_for_distillations(num_distillations):
"""
Returns the number of links needed to perform num_distillations distillation operations
:param num_distillations: type int
The number of distillations to perform
:return: type int
The number of links required
"""
return num_distillations + 1
|
fd219d67cc9a2f7df5869c90ef8f7dc334accd69
| 324,647 |
def cast_contours(contours, x, y):
"""
Convenience function to cast contour(s) to a given x,y.
Parameters
----------
contours : list or ndarray
Contour(s) to cast.
x : int
x position to cast to.
y : int
y position to cast to.
Returns
-------
contours : list of ndarray
Contours casted to new coordinates.
See Also
--------
find_contours
draw_contours
"""
if isinstance(contours, list):
for i, c in enumerate(contours):
c[:, 0, 0] += x
c[:, 0, 1] += y
contours[i] = c
else:
contours[:, 0, 0] += x
contours[:, 0, 1] += y
return contours
|
cba16109552fb857211671f52908305c93bc8667
| 242,048 |
import requests
def exec_request(url, timeout):
"""Executes request given in url and returns a dictionary with content"""
data = requests.get(url, timeout=timeout)
data.raise_for_status() # Raise in case of failed status
return data.json()
|
63522420fe36e0e38c41c42b43a65208354bee1e
| 671,270 |
from typing import Dict
def prepare_top_level_args(d: Dict) -> Dict:
"""
Parse top-level configuration.
Parameters
----------
d: Dict
The configuration section from the transform/merge YAML
Returns
-------
Dict
A parsed dictionary with parameters from configuration
"""
args = {}
if 'checkpoint' in d and d['checkpoint'] is not None:
args['checkpoint'] = d['checkpoint']
else:
args['checkpoint'] = False
if 'node_property_predicates' in d and d['node_property_predicates']:
args['node_property_predicates'] = set(d['node_property_predicates'])
else:
args['node_property_predicates'] = set()
if 'predicate_mappings' in d and d['predicate_mappings']:
args['predicate_mappings'] = d['predicate_mappings']
else:
args['predicate_mappings'] = {}
if 'prefix_map' in d and d['prefix_map']:
args['prefix_map'] = d['prefix_map']
else:
args['prefix_map'] = {}
if 'reverse_prefix_map' in d and d['reverse_prefix_map'] is not None:
args['reverse_prefix_map'] = d['reverse_prefix_map']
else:
args['reverse_prefix_map'] = {}
if 'reverse_predicate_mappings' in d and d['reverse_predicate_mappings'] is not None:
args['reverse_predicate_mappings'] = d['reverse_predicate_mappings']
else:
args['reverse_predicate_mappings'] = {}
if 'property_types' in d and d['property_types']:
args['property_types'] = d['property_types']
else:
args['property_types'] = {}
return args
|
210540fe5200539fdccc3fea1c9cb4ac37beaa88
| 497,097 |
def freq_str_and_bar_count(history_spec):
"""
Helper for getting the frequency string and bar count from a history spec.
"""
return (history_spec.frequency.freq_str, history_spec.bar_count)
|
39476d54a4828a09a88707ef9128b52ff9ed34cf
| 538,050 |
def _find_comment_index(line):
"""
Finds the index of a ; denoting a comment.
Ignores escaped semicolons and semicolons inside quotes
"""
escape = False
quote = False
for i, char in enumerate(line):
if char == '\\':
escape = True
continue
elif char == '"':
if escape:
escape = False
continue
else:
quote = not quote
elif char == ';':
if quote:
escape = False
continue
elif escape:
escape = False
continue
else:
# comment denoting semicolon found
return i
else:
escape = False
continue
# no unquoted, unescaped ; found
return -1
|
fe09d041f67135304601d3c87a0926cfa4cf14dc
| 400,878 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.