content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
def single_number(nums: list[int]) -> int:
"""Returns the only element in `nums` that appears exactly once
Better Space than hashtable (O(n/2) = O(n))
- in the worst case everything appears once before encountering duplicates
(since we could always delete entries from the hashtable once we encounter exactly 2)
Complexity:
n = len(nums)
Time: O(n)
Space: O(1)
Args:
nums: array of integers s.t. every element appears twice, except for one
Returns: the only element in `nums` that appears exactly once
Examples:
>>> single_number([2,2,1])
1
>>> single_number([4,1,2,1,2])
4
>>> single_number([1])
1
"""
"""ALGORITHM"""
## INITIALIZE VARS ##
single_num = 0
for num in nums:
single_num ^= num
return single_num
|
0967dd88e209d9a050b81e020616c07ef5334568
| 334,638 |
def get_odd_numbers(num_list: list) -> list:
"""Returns a list of odd numbers from a list."""
return [num for num in num_list if num % 2 != 0]
|
e7ff779e18b478bf1717912a1ad5b7130eed9b42
| 39,914 |
def _get_tissue(x):
"""
It extracts the tissue name from a filename.
"""
if x.endswith("-projection"):
return x.split("spredixcan-mashr-zscores-")[1].split("-projection")[0]
else:
return x.split("spredixcan-mashr-zscores-")[1].split("-data")[0]
|
3dfec961002039b777bc1cec09cc626ec499190d
| 356,748 |
def add_dicts_by_key(in_dict1, in_dict2):
"""
Combines two dictionaries and adds the values for those keys that are shared
"""
both = {}
for key1 in in_dict1:
for key2 in in_dict2:
if key1 == key2:
both[key1] = in_dict1[key1] + in_dict2[key2]
return both
|
9061e1abf09899e2f8a93c9c02899e2f8ba769a9
| 656,634 |
import torch
from typing import Tuple
def dummy_attention(key: torch.Tensor,
query: torch.Tensor,
value: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Create a dummy tensor which have the same inputs and outputs to nn.MultiHeadAttention().__call__()
Args:
key (T): inputs to be passed as output
query (T): dummy inputs
value (T): dummy inputs
Returns:
Tuple[T, T]: values = (key, dummy outputs = torch.Tensor([]))
"""
return key, torch.Tensor([])
|
2be97f984a6589798a3c88a2dbae6e2090b7f181
| 329,139 |
def make_variable_names_with_time_steps(number_of_lags, data_column_names):
"""
lagged W first, instantaneous W last, i.e.,
..., x1_{t-2}, x2_{t-2}, ..., x1_{t-1}, x2_{t-1}, ..., x1_{t}, x2_{t}, ...
"""
variable_names = []
for i in range(number_of_lags, 0, -1):
variable_names_lagged = [s + '(t-{})'.format(i) for s in data_column_names]
variable_names += variable_names_lagged
variable_names_t = [s + '(t)' for s in data_column_names]
variable_names += variable_names_t
return variable_names
|
6ca75ebafb84fe9640841478ddd06bd6557a3225
| 468,247 |
def ChromeOSTelemetryRemote(test_config):
"""Substitutes the correct CrOS remote Telemetry arguments.
VMs use a hard-coded remote address and port, while physical hardware use
a magic hostname.
Args:
test_config: A dict containing a configuration for a specific test on a
specific builder.
"""
def StringContainsSubstring(s, sub_strs):
for sub_str in sub_strs:
if sub_str in s:
return True
return False
VM_POOLS = [
'chromium.tests.cros.vm',
'chrome.tests.cros-vm',
]
HW_POOLS = [
'chrome-cros-dut',
'chrome.cros-dut',
]
dimensions = test_config.get('swarming', {}).get('dimension_sets', [])
assert len(dimensions)
pool = dimensions[0].get('pool')
if not pool:
raise RuntimeError(
'No pool set for CrOS test, unable to determine whether running on '
'a VM or physical hardware.')
if StringContainsSubstring(pool, VM_POOLS):
return [
'--remote=127.0.0.1',
# By default, CrOS VMs' ssh servers listen on local port 9222.
'--remote-ssh-port=9222',
]
if StringContainsSubstring(pool, HW_POOLS):
return [
# Magic hostname that resolves to a CrOS device in the test lab.
'--remote=variable_chromeos_device_hostname',
]
raise RuntimeError('Unknown CrOS pool %s' % pool)
|
623c37ed71e964ad0c0a7e8315216dbf3219696a
| 212,254 |
def setSourcesCategories(df):
"""
Return the DataFrame df with a renamed columns.
The renaming axes set the source's name to its category, i.e
Road traffic → Vehicular
VEH → Vehicular
Secondary bio → Secondary_bio
BB → Bio_burning
Biomass burning → Bio_burning
etc.
"""
possible_sources ={
"Vehicular": "Vehicular",
"VEH": "Vehicular",
"VEH ind": "Vehicular_ind",
"VEH dir": "Vehicular_dir",
"Oil/Vehicular": "Vehicular",
"Road traffic": "Vehicular",
"Bio. burning": "Bio_burning",
"Bio burning": "Bio_burning",
"BB": "Bio_burning",
"BB1": "Bio_burning1",
"BB2": "Bio_burning2",
"Sulfate-rich": "Sulfate_rich",
"Nitrate-rich": "Nitrate_rich",
"Sulfate rich": "Sulfate_rich",
"Nitrate rich": "Nitrate_rich",
"Secondaire": "Secondary_bio",
"Secondary bio": "Secondary_bio",
"Secondary biogenic": "Secondary_bio",
"Marine biogenic/HFO": "Marine_bio/HFO",
"Marine bio/HFO": "Marine_bio/HFO",
"Marin bio/HFO": "Marine_bio/HFO",
"Marine secondary": "Marine_bio",
"Marin secondaire": "Marine_bio",
"HFO": "HFO",
"Marin": "Marine",
"Sea/road salt": "Salt",
"Sea salt": "Salt",
"Aged sea salt": "Aged_salt",
"Aged seasalt": "Aged_salt",
"Primary bio": "Primary_bio",
"Primary biogenic": "Primary_bio",
"Biogenique": "Primary_bio",
"Biogenic": "Primary_bio",
"Mineral dust": "Dust",
"Resuspended dust": "Dust",
"Dust": "Dust",
"Dust (mineral)": "Dust",
"AOS/dust": "Dust",
"Industrial": "Industrial",
"Industry/vehicular": "Indus._veh.",
"Arcellor": "Industrial",
"Siderurgie": "Industrial",
"Débris végétaux": "Plant_debris",
"Chlorure": "Chloride",
"PM other": "Other"
}
return df.rename(columns=possible_sources)
|
42e762c2376fe408d11ba7483b80d1cad11acdde
| 568,466 |
def class_partition(cls, string):
"""Given a set of characters and a string, take the longest prefix made up of
the characters in the set, and return a tuple of (prefix, remainder).
"""
ns = string.lstrip(cls)
lc = len(string) - len(ns)
return (string[:lc], string[lc:])
|
cc38eac0560e289c8acaca77db6fc6203b5fb37b
| 177,335 |
import requests
import json
def shakespeare_api(text):
"""
Shakespeare API function to retrieve the translation.
"""
api_params = {"text" : text}
response = requests.post('https://api.funtranslations.com/translate/shakespeare.json', data=api_params) # headers=headers, data=data
# Check for errors in response
if "error" not in response.text.lower():
response_dict = json.loads(response.text)
shakespeare_description = response_dict["contents"]["translated"]
return shakespeare_description
else:
error_text = response.text
return error_text
|
f32f257ebb527895a68ab872eb2aed568bcbc111
| 493,666 |
def _convert_to_bool(value):
"""
If the value is `true` or `false`, return the boolean equivalent form of
the value. This method is case insensitive.
:param value: the string value
:type value: str
:return: the string value or the boolean value
:rtype: str or bool
"""
if isinstance(value, str):
lower_value = value.lower()
if lower_value == "true":
value = True
elif lower_value == "false":
value = False
return value
|
aded942831f3a2808d89c1a77b76952415f6eeab
| 469,907 |
def decode_response_version_from_config(confbytes: bytes) -> str:
"""Decode the string version from the bytearray response from Ledger device"""
return "{}.{}.{}".format(
confbytes[1],
confbytes[2],
confbytes[3],
)
|
66dc0b71b2c9a22ca8198fb2a5ecbe69a7a0871b
| 16,656 |
import string
import secrets
def generate_password(pass_len):
"""Creating a password of the specified length. """
chars_set = string.ascii_letters + string.digits
return ''.join(secrets.choice(chars_set) for _ in range(pass_len))
|
962e5b82f5fd32806597a61260903439d4f529f1
| 371,469 |
def area_to_capacity(statistical_roof_model_area_based, power_density_flat, power_density_tilted):
"""Maps area shares to capacity shares of statistical roof model.
The statistical roof model defines roof categories (e.g. south-facing with tilt 10°) and their
shares in a population of roofs. This function maps areas shares to shares of installable pv
capacity. It discriminates between flat and tilted roofs, i.e. the power density of flat roofs
can be different than the one from tilted roofs.
Parameters:
* statistical_roof_model_area_based: model as described above, values are shares of total roof area
* power_density_flat: power density of flat pv installations, unit must be consistent with next
* power_density_tilted: power density of tilted pv installations, unit must be consistent with previous
Returns:
* statistical_roof_model_cpacity_based: model as described above, values are shares of total
installable capacity
"""
cap_based = statistical_roof_model_area_based.copy()
flat_roofs = cap_based.index.get_level_values(0) == "flat"
tilted_roofs = cap_based.index.get_level_values(0) != "flat"
cap_based[flat_roofs] = cap_based[flat_roofs] * power_density_flat
cap_based[tilted_roofs] = cap_based[tilted_roofs] * power_density_tilted
return cap_based / cap_based.sum()
|
0e57c01bfa7c44743edb260b6a1b406ebf0fb82b
| 46,305 |
def getadjacent(graph, vertex):
"""
vertex is the node indexnumber i.e 1, 2, 3, ... or 8
and returns all adjacent nodes
For example:
getadjacent(1) -> [2, 4, 6]
getadjacent(2) -> [1, 3, 7]
getadjacent(3) -> [2, 4, 8]
....
"""
nodes = []
for n1, n2 in graph['edges']:
if n1 == vertex:
nodes.append(n2)
if n2 == vertex:
nodes.append(n1)
return sorted(nodes)
|
bb53103806daee7f641e1df31df8ad000ab10fde
| 90,284 |
import pathlib
def _profile_avatar_upload_path(instance, filename):
"""Provides a clean upload path for user avatar images
"""
file_extension = pathlib.Path(filename).suffix
return f'avatars/profiles/{instance.user.username}{file_extension}'
|
6b5ddea821f53825a51fb84c327686bc5044c86c
| 226,963 |
def force_list(obj):
"""Force object to be a list.
If ``obj`` is a scalar value then a list with that value as
sole element is returned, or
if ``obj`` is a tuple then it is coerced into a list.
"""
if isinstance(obj, tuple):
return list(obj)
elif not isinstance(obj, list):
return [obj]
return obj
|
25eecea6f5aee1dbd1f6ce23643079c16871f2a2
| 151,996 |
def is_casava_v180_or_later(header_line):
"""Check if the header looks like it is Illumina software post-casava v1.8
Parameters
----------
header_line : bytes
A header line
Returns
-------
bool
``True`` for if casava v1.8+, otherwise ``False``
Examples
--------
>>> from skbio.util import is_casava_v180_or_later
>>> is_casava_v180_or_later(b'@foo')
False
>>> id_ = b'@M00176:17:000000000-A0CNA:1:1:15487:1773 1:N:0:0'
>>> is_casava_v180_or_later(id_)
True
"""
if not header_line.startswith(b'@'):
raise ValueError("Non-header line passed in.")
fields = header_line.split(b':')
return len(fields) == 10 and fields[7] in b'YN'
|
da3c24ef74712590027ad238a2a871dcc10af913
| 261,209 |
def get_instance_pci_devs(inst, request_id=None):
"""Get the devices allocated to one or all requests for an instance.
- For generic PCI request, the request id is None.
- For sr-iov networking, the request id is a valid uuid
- There are a couple of cases where all the PCI devices allocated to an
instance need to be returned. Refer to libvirt driver that handles
soft_reboot and hard_boot of 'xen' instances.
"""
pci_devices = inst.pci_devices
if pci_devices is None:
return []
return [device for device in pci_devices if
device.request_id == request_id or request_id == 'all']
|
716ca1164e19f0ad052ebdaab38e603864e8ee10
| 395,610 |
def arity(argspec):
""" Determinal positional arity of argspec."""
args = argspec.args if argspec.args else []
defaults = argspec.defaults if argspec.defaults else []
return len(args) - len(defaults)
|
f19407943f92a2a4faa4735abf678467861153e7
| 694,257 |
import time
def timestamp(dt):
"""
Return a timestamp for a local, naive datetime instance.
"""
try:
return dt.timestamp()
except AttributeError:
# Python 3.2 and earlier
return time.mktime(dt.timetuple())
|
8d2b8dce2bde5ecaec4f196496e6e643f5b6d225
| 266,004 |
import re
def potcar_eatom_list_from_outcar( filename='OUTCAR' ):
"""
Returns a list of EATOM values for the pseudopotentials used.
Args:
filename (Str, optional): OUTCAR filename. Defaults to 'OUTCAR'.
Returns:
(List(Float)): A list of EATOM values, in the order they appear in the OUTCAR.
"""
with open( filename ) as f:
outcar = f.read()
eatom_re = re.compile(r"energy of atom\s+\d+\s+EATOM=\s*([-\d\.]+)")
eatom = [ float( e ) for e in eatom_re.findall( outcar ) ]
return eatom
|
895baa71772a196f2a34e6fe4d8bc4c846b27368
| 429,942 |
def _attrs_to_tuple(obj, attrs):
"""
Create a tuple of all values of *obj*'s *attrs*.
"""
return tuple(getattr(obj, a.name) for a in attrs)
|
3a38119b0f84a90bf42620d3fbcac1f37f59629c
| 154,389 |
import requests
def genderize(first_name):
""" Use genderize.io to return a dictionary with the result of the
probability of a first name being of a man or a woman.
Example: {'count': 5856,
'gender': 'male',
'name': 'Alex',
'probability': '0.87'}
Parameters
----------
first_name: str
Returns
-------
query_result: dict
"""
return requests.get("https://api.genderize.io/", params={"name": first_name}).json()
|
dd6d107ce28bec3a5149f815ae15865cf34205be
| 36,569 |
def make_id_filter(pdb_ids, pdb_chains):
"""
Generate a dataset filter only allowing specific PDB ID/Chains.
Parameters
----------
pdb_ids : list
List of PDB IDs to accept.
pdb_chains : list
List of PDB chains corresponding to the IDs in `pdb_ids`.
Returns
-------
Function
A function returning True for the given PDB ID/Chain and False otherwise.
"""
ids = set([f"{pid.upper()}_{chn}" for pid, chn in zip(pdb_ids, pdb_chains)])
def func(record):
return f"{record.pdb_id}_{record.pdb_chain}" in ids
return func
|
3ec14d143bbbfd5e872f684bea3c4fcb83d42b08
| 117,188 |
import torch
def top_n_probs(predictions, k):
"""Get the top k, then remove all that are less than .75x as high probability as the most probable"""
# Get the top k
topk_probs, topk_indices = torch.topk(predictions, k)
# Filter the top three to be only those that are at least .75x as likely as top1
top_n_indices = []
for prob, idx in zip(topk_probs, topk_indices):
if prob / topk_probs[0] >= 0.75:
top_n_indices.append(int(idx.detach().cpu().numpy()))
return top_n_indices
|
0677ee668a7e7a428a1e32ec83f717c0b3cbf800
| 509,570 |
def settings_outside_clinical_bounds(cir, isf, sbr):
"""
Identifies whether any of the settings are outside clinical bounds (based on medical advisory)
Parameters
----------
cir: float
carb to insulin ratio for the particular scenario
isf: float
insulin sensitivity factor for the particular scenario
sbr:float
scheduled basal rate for the particular scenario
Returns
-------
a boolean for whether any of the settings fall outside of the clinical bounds criteria as defined in the function
"""
return (
(float(isf) < 10)
| (float(isf) > 500)
| (float(cir) < 2)
| (float(cir) > 150)
| (float(sbr) < 0.05)
| (float(sbr) > 30)
)
|
7892624f56af40210684e345f84f45ec67e8a866
| 286,259 |
def encode_one_hot(target, num_classes):
"""Encode integer labels into one-hot vectors
Args:
target (torch.Tensor): (N,)
num_classes (int): the number of classes
Returns:
torch.FloatTensor: (N, C)
"""
one_hot = target.new_zeros(target.size(0), num_classes)
one_hot = one_hot.scatter(1, target.unsqueeze(1), 1)
return one_hot.float()
|
75236e32cd968c9af634a813ff98c86699a193b2
| 567,937 |
def compact(src):
"""Return a list of only truthy values in src."""
return [i for i in src if i]
|
20a3c52d2c6beea9a28ed42912162d58270ca62e
| 112,630 |
def _find_matching_edge(edge, graph):
"""
Retrieve an edge matching the edge inserted from the graph.
:param edge: The edge to find.
:param graph: The graph to find it in.
:return: The edge including attributes.
"""
edges_data = graph.out_edges([edge[0]], data=True)
edges = [edge_data[0:2] for edge_data in edges_data]
matching_edge_index = edges.index(edge)
return edges_data[matching_edge_index]
|
ad36b845c53af5e569ac19580788878d300ca957
| 373,081 |
import re
def is_email(email: str, only: bool = False) -> bool:
"""
check whether a string is a valid email address
:param email: the string to be checked
:param only: indicate whether to allow mailto: at the beginning
:return: True if a valid email, False otherwise
"""
if type(email) is not str:
raise TypeError("The method only take str as its first input")
# pattern = re.compile(
# "(?:[a-z0-9!#$%&'*+\/=?^_`{|}~-]+(?:\.[a-z0-9!#$%&'*+\/=?^_`{|}~-]+)*|\"(?:[\x01-\x08\x0b\x0c\x0e-\x1f\x21\x23-\x5b\x5d-\x7f]|\\[\x01-\x09\x0b\x0c\x0e-\x7f])*\")@(?:(?:[a-z0-9](?:[a-z0-9-]*[a-z0-9])?\.)+[a-z0-9](?:[a-z0-9-]*[a-z0-9])?|\[(?:(?:(2(5[0-5]|[0-4][0-9])|1[0-9][0-9]|[1-9]?[0-9]))\.){3}(?:(2(5[0-5]|[0-4][0-9])|1[0-9][0-9]|[1-9]?[0-9])|[a-z0-9-]*[a-z0-9]:(?:[\x01-\x08\x0b\x0c\x0e-\x1f\x21-\x5a\x53-\x7f]|\\[\x01-\x09\x0b\x0c\x0e-\x7f])+)\])")
# if only:
# pattern = re.compile(
# "^(?:[a-z0-9!#$%&'*+\/=?^_`{|}~-]+(?:\.[a-z0-9!#$%&'*+\/=?^_`{|}~-]+)*|\"(?:[\x01-\x08\x0b\x0c\x0e-\x1f\x21\x23-\x5b\x5d-\x7f]|\\[\x01-\x09\x0b\x0c\x0e-\x7f])*\")@(?:(?:[a-z0-9](?:[a-z0-9-]*[a-z0-9])?\.)+[a-z0-9](?:[a-z0-9-]*[a-z0-9])?|\[(?:(?:(2(5[0-5]|[0-4][0-9])|1[0-9][0-9]|[1-9]?[0-9]))\.){3}(?:(2(5[0-5]|[0-4][0-9])|1[0-9][0-9]|[1-9]?[0-9])|[a-z0-9-]*[a-z0-9]:(?:[\x01-\x08\x0b\x0c\x0e-\x1f\x21-\x5a\x53-\x7f]|\\[\x01-\x09\x0b\x0c\x0e-\x7f])+)\])$")
pattern = re.compile(r"^(mailto:)?[a-z0-9._%+-]+@[a-z0-9.-]+\.[a-z]{2,}$")
if only:
pattern = re.compile(r"^[a-z0-9._%+-]+@[a-z0-9.-]+\.[a-z]{2,}$")
m = re.search(pattern, email.lower())
if m:
return True
return False
|
36a4bfb46c197817e8effbd31c006c8b58651671
| 601,566 |
from pathlib import Path
def get_file_path(*, basedir, uid, suffix):
"""
Generates a standardised internal file path
"""
uid = str(uid)
return Path(basedir) / uid[:2] / str(uid + suffix)
|
7f22c9be859aaef645e83fa70560e7bb1a6c592d
| 177,720 |
def clean_popest(table):
"""Cleans the population estimate data"""
return table[["Code", "All ages"]].rename(
columns={"Code": "geo_code", "All ages": "pop_2020"}
)
|
ef0b7bb8d9a61709f03889833baba6e3b0ef7a00
| 29,067 |
def is_fixed_variable(config, variable):
"""Determine if a variable is listed in in the config as fixed.
Args:
config (dict): Configuration dictionary
variable (str): Variable name.
Returns:
bool: True if fixed, False otherwise.
"""
return variable in config['fixed_variables']
|
0285bd85a202eef2efecc5b0ec834a287fb32b28
| 461,953 |
def strip_enclosing_quotes(string: str) -> str:
"""Strip leading/trailing whitespace and remove any enclosing quotes"""
stripped = string.strip()
# Need to check double quotes again in case they're nested inside
# single quotes
for quote in ['"', "'", '"']:
if stripped.startswith(quote) and stripped.endswith(quote):
stripped = stripped[1:-1]
return stripped
|
712211d4a2044fd3c610ef7769ef73016c8569b9
| 573,696 |
def _covering_blocks(blocks, start, end=None):
"""Returns the blocks that includes the [start:end] portion."""
if end is None:
end = start
return [
block for block in blocks if block.start <= start and block.end >= end
]
|
96275c2d9a25ea8011412139db69401663add5ff
| 442,983 |
def get_doc_offset(offset, document):
"""
:type offset: list[str]
:type document: dict
>>> get_doc_offset(['a'], {'a': 4})
4
>>> get_doc_offset(['a', 'b'], {'a': {'b': 4}})
4
>>> get_doc_offset(['a'], {})
Traceback (most recent call last):
...
KeyError: 'a'
"""
value = document
for key in offset:
value = value[key]
return value
|
c0393a026831d669fadf9593dff4a6c96f80186f
| 588,541 |
async def edit_message(message, new_content):
""" Modify a message. Most tests and ``send_message`` return the ``discord.Message`` they sent, which can be
used here. **Helper Function**
:param discord.Message message: The target message. Must be a ``discord.Message``
:param str new_content: The text to change `message` to.
:returns: `message` after modification.
:rtype: discord.Message
"""
return await message.edit(content=new_content)
|
6c962c67562140ee9410504caec366bec845dbe8
| 622,184 |
def is_country_in_list(country, names):
"""Does country have any name from 'names' list among its name/name:en tags
of boundary/label.
"""
return any(
any(
country[property].get(name_tag) in names
for name_tag in ('name', 'name:en')
) for property in ('label', 'boundary') if country[property]
)
|
82d910d9b950bb03ca490636661b24259179cc0d
| 162,665 |
def apply_headers(response):
"""Tell receiving app that data is JSON via response header."""
response.headers['content-type'] = 'application/json'
return response
|
e0fc4fce8a862308fd4011948c1241c3c4b957cc
| 197,830 |
def _safe(key, dic):
"""Safe call to a dictionary. Returns value or None if key or dictionary does not exist"""
return dic[key] if dic and key in dic else None
|
30322ef32a5bed8a6184eff69fd8a938a64074e1
| 210,163 |
def is_nonce_too_low_exception(exception):
"""check if the error thrown by web3 is a 'nonce too low' error"""
if not isinstance(exception, ValueError) or not isinstance(exception.args[0], dict):
return False
message = exception.args[0].get("message", "")
return (
"There is another transaction with same nonce in the queue" in message
or "Transaction nonce is too low" in message
)
|
f4b465fc222eb68b59e5ea6fef410ac68485966e
| 694,446 |
import torch
def mulaw_decode(x_mu, quantization_channels, input_int=True):
"""Adapted from torchaudio
https://pytorch.org/audio/functional.html mu_law_encoding
Args:
x_mu (Tensor): Input tensor
quantization_channels (int): Number of channels
input_int: Bool
True: convert x_mu (int) from int to float, before mu-law decode
False: directly decode x_mu (float)
Returns:
Tensor: Input after mu-law decoding (float-value waveform (-1, 1))
"""
mu = quantization_channels - 1.0
if not x_mu.is_floating_point():
x_mu = x_mu.to(torch.float)
mu = torch.tensor(mu, dtype=x_mu.dtype, device=x_mu.device)
if input_int:
x = ((x_mu) / mu) * 2 - 1.0
else:
x = x_mu
x = torch.sign(x) * (torch.exp(torch.abs(x) * torch.log1p(mu)) - 1.0) / mu
return x
|
cdc4f5e35a132853c549ea56fdfc581c0f476a46
| 613,922 |
import itertools
def create_permutations(length):
"""
Create the list of permutations for a given length 'length'.
This makes combinations of the numbers in the list of 1 through 'length'.
(uses 'itertools' library)
"""
if length == 1:
return 1
else:
permutations_list = itertools.permutations(range(1,length+1))
return '\n'.join([' '.join(map(str, t)) for t in permutations_list])
|
44f0b7242c78288895881f3039ef7ac4a042d7d3
| 252,369 |
def ipv4_reassembly(frame):
"""Make data for IPv4 reassembly.
Args:
frame (pcapkit.protocols.pcap.frame.Frame): PCAP frame.
Returns:
Tuple[bool, Dict[str, Any]]: A tuple of data for IPv4 reassembly.
* If the ``frame`` can be used for IPv4 reassembly. A frame can be reassembled
if it contains IPv4 layer (:class:`pcapkit.protocols.internet.ipv4.IPv4`) and
the **DF** (:attr:`IPv4.flags.df <pcapkit.protocols.internet.ipv4.DataType_IPv4_Flags.df>`)
flag is :data:`False`.
* If the ``frame`` can be reassembled, then the :obj:`dict` mapping of data for IPv4
reassembly (c.f. :term:`ipv4.packet`) will be returned; otherwise, returns :data:`None`.
See Also:
:class:`~pcapkit.reassembly.ipv4.IPv4Reassembly`
"""
if 'IPv4' in frame:
ipv4 = frame['IPv4'].info
if ipv4.flags.df: # dismiss not fragmented frame
return False, None
data = dict(
bufid=(
ipv4.src, # source IP address
ipv4.dst, # destination IP address
ipv4.id, # identification
ipv4.proto.name, # payload protocol type
),
num=frame.info.number, # original packet range number
fo=ipv4.frag_offset, # fragment offset
ihl=ipv4.hdr_len, # internet header length
mf=ipv4.flags.mf, # more fragment flag
tl=ipv4.len, # total length, header includes
header=bytearray(ipv4.packet.header), # raw bytearray type header
payload=bytearray(ipv4.packet.payload or b''), # raw bytearray type payload
)
return True, data
return False, None
|
b55ac3f9caa0007dd8a70a56de704f25a403755c
| 33,971 |
def get_violating_args(contracts, params_args):
"""
Get all arguments that violate the contracts.
:param contracts: { string: (any) -> bool, ... }, contracts from parameters to qualifiers
:param params_args: { string: any, ... }, parameters to arguments
:return: { string: any, ... }, parameters to contract violating arguments
"""
error_params_args = {}
for param, arg in params_args.items():
# No contract for parameter
if param not in contracts:
continue
# Checking breaks
try:
valid = contracts[param](arg)
except:
error_params_args[param] = arg
continue
# Violate contract
if not valid:
error_params_args[param] = arg
return error_params_args
|
3e70df860bf1b66f6949b21e5a3dd478a36cf56d
| 458,814 |
import inspect
def is_class_attr(full_name, index):
"""Check if the object's parent is a class.
Args:
full_name: The full name of the object, like `tf.module.symbol`.
index: The {full_name:py_object} dictionary for the public API.
Returns:
True if the object is a class attribute.
"""
parent_name = full_name.rsplit('.', 1)[0]
if inspect.isclass(index[parent_name]):
return True
return False
|
80713ee209d3fa9282ec051779ed5b9ebdddb273
| 292,270 |
def split_headers_list(headers):
"""
Split the headers list into unique elements instead of 1 string.
Args:
headers (list): headers output from fasta_parser
Returns:
split_headers (list): headers list split into components.
no_chrom (list): all things that are not the chromosome.
"""
split_headers = [item.split(" ") for item in headers]
no_chrom = [item[1:] for item in split_headers]
return split_headers, no_chrom
|
9295c66bbd1e85a444447340c83835b4051798c3
| 209,749 |
def sparse_batch_mm(m1, m2):
"""
https://github.com/pytorch/pytorch/issues/14489
m1: sparse matrix of size N x M
m2: dense matrix of size B x M x K
returns m1@m2 matrix of size B x N x K
"""
batch_size = m2.shape[0]
# stack m2 into columns: (B x N x K) -> (N, B, K) -> (N, B * K)
m2_stack = m2.transpose(0, 1).reshape(m1.shape[1], -1)
result = m1.mm(m2_stack).reshape(m1.shape[0], batch_size, -1) \
.transpose(1, 0)
return result
|
6fe7a5f4b407d27b71b646872d43a78154c594e8
| 39,073 |
import re
def txt2list(txt_path=None):
"""
Load txt file and split the sentences into a list of strings
"""
if txt_path is None:
raise ValueError("txt_path must be specified as a named argument! \
E.g. txt_path=../dataset/yourfile.txt")
# Read input sequences from .txt file and put them in a list
with open(txt_path) as f:
text = f.read()
sentences = re.split(r'(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s', text)
try:
sentences.remove('') # remove possible empty strings
except:
None
return sentences
|
8fdb9ec2991f820fb58ee9706ff520c132b6ab3b
| 619,076 |
def cumulative_sum(v, cumulative):
""" This function is used to output a stream
where the n-th value on the output stream is
the cumulative sum of the first n values of the
input stream.
The state of the input stream is cumulative.
When used to create a stream, cumulative is
the sum of all the values in the input stream
received so far.
v is the next value received in the input stream.
"""
cumulative += v
return (cumulative, cumulative)
|
bcc7fbffb39fdb2186e81ef0e26bd42cfa684cd4
| 460,587 |
from datetime import datetime
def str_to_datetime(s):
"""
Parse ISO datetime string and return a datetime object
:param str s: date/time string
:return: datetime object, None if not a valid date/time string
:rtype: datetime.datetime | None
"""
t = None
for fmt in ('%Y-%m-%dT%H:%M:%S.%f', '%Y-%m-%dT%H:%M:%S',
'%Y-%m-%d %H:%M:%S.%f', '%Y-%m-%d %H:%M:%S', '%Y-%m-%d'):
try:
t = datetime.strptime(s, fmt)
except ValueError:
pass
else:
break
return t
|
0d250d19f88a74e1778dfc052e9638a15c5635b1
| 622,526 |
def pade_21(k, params):
""" Pade [2.1] eq.(2) """
l = params[0]
a = params[1]
b = params[2]
a4b2=a*a*a*a + b*b
aak2=a*a*k*2
return l*(k*k + aak2 + a4b2) / (a4b2 + aak2)
|
6137b7a39c45e092640738ca3f4180474a7e6043
| 229,290 |
def qualify(func: object) -> str:
"""Qualify a function."""
return ".".join((func.__module__, func.__qualname__))
|
bfda7050ff94f407a2a0d4b00b87ecb0370e9110
| 700,179 |
def _RemoveClone(name):
"""Return name up to the ".clone." marker."""
clone_index = name.find('.clone.')
if clone_index != -1:
return name[:clone_index]
return name
|
dc47efdf8dd35a7a7f5c75a0aa2697c01112f453
| 132,577 |
import re
def humanize(word):
"""
Capitalize the first word and turn underscores into spaces and strip a
trailing ``"_id"``, if any. Like :func:`titleize`, this is meant for
creating pretty output.
Examples::
>>> humanize("employee_salary")
"Employee salary"
>>> humanize("author_id")
"Author"
"""
word = re.sub(r"_id$", "", word)
word = word.replace("_", " ")
word = re.sub(r"(?i)([a-z\d]*)", lambda m: m.group(1).lower(), word)
word = re.sub(r"^\w", lambda m: m.group(0).upper(), word)
return word
|
22ef47a7112a2ac2b0ae14ce1822f3de3c3477c6
| 647,069 |
def divisors(n):
"""Return the integers that evenly divide n.
>>> divisors(1)
[1]
>>> divisors(4)
[1, 2]
>>> divisors(12)
[1, 2, 3, 4, 6]
>>> [n for n in range(1, 1000) if sum(divisors(n)) == n]
[1, 6, 28, 496]
"""
return [1] + [x for x in range(2, n) if n % x == 0]
|
ed8fe578580c1f2b5ceb76f669eacfd2913e894f
| 98,206 |
def word_splits(word, min_reminder=3, max_prefix_length=5):
"""
Return all splits of a word (taking in account min_reminder and
max_prefix_length).
"""
max_split = min(max_prefix_length, len(word)-min_reminder)
split_indexes = range(1, 1+max_split)
return [(word[:i], word[i:]) for i in split_indexes]
|
d9f93f58f419ab154c917d39708daee60b8ba51b
| 423,466 |
def read_BED(path, last_col=False):
"""
This function reads bed files.
last_col=True: If an extra column for a score (e.g. replication timing or gene expression) is given
This function returns a list of lists with the BED file information and the list of scores.
"""
if not last_col:
Data = []
with open(path) as f:
for line in f:
Data.append(line.strip().split()[:6])
return Data
elif last_col:
Data = []
Score = []
with open(path) as f:
for line in f:
Data.append(line.strip().split()[:6])
Score.append(float(line.strip().split()[-1]))
return Data, Score
else:
print("ERROR")
|
a991be939edbdc3ff4506a9d5afac6d9eeb12dc0
| 474,841 |
import re
def convert_to_snake_case(value: str) -> str:
"""
Convert the value from CamelCase to snake_case.
Regex from: https://github.com/jpvanhal/inflection/blob/0.5.1/inflection/__init__.py#L397
"""
value = re.sub(r"([A-Z]+)([A-Z][a-z])", r"\1_\2", value)
value = re.sub(r"([a-z\d])([A-Z])", r"\1_\2", value)
value = value.replace("-", "_")
return value.lower()
|
cec33de8ed5c0dc934ef965b5367fe25b6a01699
| 509,952 |
def getclosest_ij(lats,lons,latpt,lonpt):
"""Function to find the index of the closest point to a certain lon/lat value."""
dist_sq = (lats-latpt)**2 + (lons-lonpt)**2 # find squared distance of every point on grid
minindex_flattened = dist_sq.argmin()
#return np.unravel_index(minindex_flattened, lats.shape)
return minindex_flattened
|
860d10637dee2d694518da934c209eed08214c6d
| 617,484 |
import yaml
def loadfile(f):
"""Loads a YAML file containing several documents into a list of objects
:param f: string containing the path to the file to load
:return: list of loaded objects
"""
try:
return list(yaml.safe_load_all(open(f)))
except Exception as e:
print('Exception caught loading', f, e)
raise
|
804e2b24ef924f8f0ac076eba2b7f79330d1acee
| 386,186 |
def create_outname(options):
""" Creates filename for the output GTF that reflects the input options that
were used. """
outname = options.outprefix + "_talon_abundance"
if options.whitelist != None:
outname = "_".join([ outname, "filtered" ])
outname += ".tsv"
return outname
|
969357752e64da909e7dbe24b42847c3bf35efa1
| 558,336 |
def radio_button_message(n_clicks, value):
"""
Function that returns a message when the user selects a radio button.
Args:
n_clicks: Number of clicks registered by the submit button.
value: The radio button option selected by the user.
Returns:
A message to the user as a response to the radio button input.
"""
if value is None:
return 'Please select an option'
else:
return 'You have selected: ' + value
|
9a227348f6a72564491e5d8687627c6e88824350
| 334,135 |
def round(addr: int, align: int, up: bool = False) -> int:
"""Round an address up or down based on an alignment.
Args:
addr: the address
align: the alignment value
up: Whether to round up or not
Returns:
The aligned address
"""
if addr % align == 0:
return addr
else:
if up:
return (addr + (align - (addr % align)))
return (addr - (addr % align))
|
0b77bd25d66a5522fb3dd568cc6f6ce0fedbd59c
| 655,677 |
import base64
import zlib
def compress_text_to_b64(text):
"""Returns a compressed and b64 encoded string
"""
if isinstance(text, str):
text = text.encode()
return base64.b64encode(zlib.compress(text))
|
28446cc2b61414d63865347a2d31e3cfcc699778
| 481,265 |
def produceLTLStringMeaning(name, props_list):
"""
Produces a natural language explanation of the LTL
:param name: a string specifying the LTL template name
:param props_list: a list of list of strings indicating the propositions
:return: a string of natural language meaning of the LTL
"""
connector_str = ' AND '
template_map = {
"global": '("{}") is true throughout the entire trace',
"eventual": '("{}") eventually occurs (may later become false)',
"stability": '("{}") eventually occurs and stays true forever',
"response": 'If ("{}") occurs, ("{}") eventually follows',
"until": '("{}") has to be true until ("{}") eventually becomes true',
"atmostonce": 'Only one contiguous interval exists where ("{}") is true',
"sometime_before": 'If ("{}") occurs, ("{}") occured in the past'
}
str_template = template_map[name]
ltl_meaning = connector_str.join([str_template.format(*x) for x in props_list])
return ltl_meaning
|
e69ba2219a36981d2c5a3a3e58dfd733a5d18ea0
| 491,702 |
def _ag_checksum(data):
"""
Compute a telegram checksum.
"""
sum = 0
for c in data:
sum ^= c
return sum
|
32d1ef971fc1fb63fb0583c32c309de3de41f39d
| 690,351 |
import struct
def _decode_short(data):
"""Decodes two bytes of network data into an unsigned short."""
return struct.unpack('!H', data)[0]
|
c775ec423cadafc1b5a631eae12be60174f43101
| 174,323 |
def obtener_medallas_de_atleta(atletas: list, anio_0: int, anio_f: int, nombre_atleta: str) -> list:
"""
Función que genera una lista de las medallas de un atleta en cierto período de tiempo definido.
Parámetros:
atletas: list de diccionarios con la información de cada atleta.
anio_0: int año de inicio.
anio_f: int año final.
nombre_atleta: str
Retorna:
medallas_atleta: list con diccionarios de cada medalla.
diccionario de cada medalla: {'evento': str, 'anio': int, 'medalla': str}.
"""
# Inicializar lista de medallas.
medallas_atleta = []
# Inicio de recorrido por la lista de atletas.
for cada_atleta in atletas:
# Definición de variables del atleta actual.
anio_actual = cada_atleta['anio']
nombre_actual = cada_atleta['nombre']
evento_actual = cada_atleta['evento']
medalla_actual = cada_atleta['medalla']
# Verificación de nombre y rango de tiempo.
if nombre_actual == nombre_atleta:
if anio_0 <= anio_actual <= anio_f:
if medalla_actual != "na":
# Se añade el diccionario de medalla a la lista.
medallas_atleta.append({'evento': evento_actual, 'anio': anio_actual, 'medalla': medalla_actual})
return medallas_atleta
|
f48571b37d3363c20a4c4c64744cce120c36e278
| 597,132 |
def _get_test_methods(test_case_name, test_class_map):
"""Takes ``test_class_map`` or ``skip_class_map`` and returns the list of
methods for the test case or ``None`` if no methods were specified for it
:param test_case_name: Name of the test case to check
:param test_class_map: Dictionary mapping test names to a list of methods
:return: List of methods or ``None`` if not specified for this test case
"""
if test_class_map is None or test_case_name not in test_class_map:
return None
return test_class_map[test_case_name]
|
559792219dafda5b552033daee6756d5156b8969
| 231,149 |
def _input_V_calcs(input_V, A2, rho_amp):
"""Get the effective preamp input noise current (ENI) and the output
noise voltage from the noise voltage at the preamp input.
:return: output voltage, effective input current (ENI)
"""
output_V = A2 * input_V
eni = input_V / rho_amp
return output_V, eni
|
7a6ee4a79829b9ab96c6f90ab4b1297885d6c257
| 385,994 |
import torch
def _construct_empty_index(array: torch.Tensor) -> torch.Tensor:
"""
Constructs an empty array of indexes the same shape as ``array``.
Args:
array: The array to construct indexes for.
"""
temp = torch.arange(array.shape[-1], device=array.device)
return temp * torch.ones_like(array, dtype=temp.dtype)
|
b0d643260e769ed5f9709461e33abea5eec92e4f
| 423,590 |
import typing
def check_key_type(key: typing.Union[str, bytes]):
"""
Enforce the type of the key to bytes.
Parameters
----------
key: str | bytes
The key to check
Returns
-------
str
The key as bytes
"""
if isinstance(key, bytes):
return key
return str(key).encode("utf-8")
|
07da98b6d296b97d0e454668dc6da9f4840e2788
| 617,142 |
def anticodon(data):
"""
Get the anticodon of this entry.
"""
return data["metadata"]["anticodon"]
|
ca776d7bb3f642e837e1195483ac7ae57719b698
| 400,465 |
def generate_Q_data(Q):
"""
問題のテキストデータを生成する。改行コードはCR+LFとする。
Parameters
==========
Q : tuple
read_Q()の返り値
Returns
=======
txt : str
問題のテキストデータ
"""
crlf = '\r\n' # DOSの改行コード
size, block_num, block_size, block_data, block_type, num_lines = Q
txt = 'SIZE %dX%d%s' % (size[0], size[1], crlf)
txt += 'BLOCK_NUM %d%s' % (block_num, crlf)
for i in range(1, block_num+1):
txt += crlf
txt += 'BLOCK#%d %dX%d%s' % (i, block_size[i][0], block_size[i][1], crlf)
for row in block_data[i]:
txt += ','.join(['+' if n == -1 else str(n) for n in row]) + crlf
return txt
|
70c3c1c0b2550a6805b1b2abedf0e5b115377e05
| 41,977 |
def count(array):
"""
Returns the count of items in a in the list, dictionary or tuple.
This is a wrapper for the PHP count() function that returns the count of items in an array.
Parameters:
array (list, dict, tuple): A list or a dictionary or a tuple.
Returns:
int: Count of the items.
"""
if not isinstance(array, (list, dict, tuple)):
raise TypeError('Parameter must be an array or an object that implements Countable')
return len(array)
|
bad7ebcd195f32217befeab288942d1d38bce5bb
| 439,508 |
def PadBytes(byte_string, n):
"""Prepend a byte string with n zero bytes."""
return n * '\x00' + byte_string
|
07333437651a79c1c0a6dbd1e723ecda0bdae894
| 358,250 |
def sum_multiples(ceiling, *factors):
"""Find the sum of all multiples of the provided factors below the ceiling."""
multiples = []
for number in range(ceiling):
for factor in factors:
# Check if the current number is a multiple of the current factor.
if number % factor == 0:
multiples.append(number)
# Eliminate duplicate multiples by converting the list of multiples to a set.
multiple_sum = sum(set(multiples))
return multiple_sum
|
0352782c5f073efec74213a56491c2a8c7cebd62
| 446,382 |
def parse_sample_ids(sampleidfile):
"""
Read the sample ID file and return a hash
of SRS to list of SRR (SRS->[SRR])
"""
srs={}
with open(sampleidfile, 'r') as f:
for l in f:
p=l.strip().split("\t")
if p[1] not in srs:
srs[p[1]]=[]
srs[p[1]].append(p[0])
return srs
|
401e44c6bda2273ab8692f68570972ea06116223
| 84,702 |
def compute_spike_rate(spikes):
"""Estimate spike rate from a vector of spike times, in seconds.
Parameters
----------
spikes : 1d array
Spike times, in seconds.
Returns
-------
float
Average firing rate.
Examples
--------
Compute spike rate of 6 spikes
>>> spikes = [0.5, 1, 1.5, 2, 2.5, 3]
>>> compute_spike_rate(spikes)
2.4
"""
return len(spikes) / (spikes[-1] - spikes[0])
|
3c9ddb4b32f658dc6a375763a6df9f25b67bc51d
| 90,782 |
def multi_dict(input_pairs):
"""
Similar to casting pairs to a dictionary, except that repeated pairs
are allowed. To show the difference:
>>> dict( [('a', 1), ('b', 2), ('a', 3)] )
{'a': 3, 'b': 2}
>>> multi_dict( [('a', 1), ('b', 2), ('a', 3)] )
{'a': [1, 3], 'b': [2]}
:param input_pairs:
A list of (key, value) pairs.
:return:
A dictionary mapping keys to lists of values.
"""
output_dict = {}
for key, value in input_pairs:
existing_values = output_dict.get(key, [])
existing_values.append(value)
output_dict[key] = existing_values
return output_dict
|
5c94fbd92035f10bc6a1eb2016c48b61c41ed421
| 431,780 |
def z2a(z):
""" converts from redshift to scale factor """
return 1.0 / (1.0 + z)
|
5f2532e4bc92e43a1685d9dbacf375de1bebc759
| 429,192 |
def dmarc_find_organizational_domain(domain, public_suffix_list):
"""
Find the organizational domain of the given domain.
Uses mainly the algorithm found at https://publicsuffix.org/list/ to get
the organizational domain. Could return "" if none is found.
"""
# The algorithm could be more elaborate but this is simple and fast enough.
organizational_domain = ""
matching_rule = []
matching_count = 0
matching_exception = False
labels = domain.split(".")[::-1]
for rule, exception in public_suffix_list:
if matching_exception and not exception:
continue
# We always need to have the whole rule available. zip (later) will
# truncate to the shortest list.
if len(rule) > len(labels):
continue
matched = 0
for a, b in zip(rule, labels):
if a in ("*", b):
matched += 1
else:
break
# The whole rule needs to match.
if matched == len(rule):
if exception:
matching_rule = rule
matching_count = matched
matching_exception = exception
elif matched > matching_count:
matching_rule = rule
matching_count = matched
if matching_rule:
if matching_exception:
organizational_domain = ".".join(labels[:len(matching_rule)][::-1])
elif len(labels) > len(matching_rule):
organizational_domain = ".".join(labels[:matching_count+1][::-1])
# Default matching rule is "*"
elif len(labels) > 1:
organizational_domain = ".".join(labels[:2][::-1])
return organizational_domain
|
a6cf238765d19e578d366396358b0d35d6652f8c
| 593,901 |
def make_row(row, lens):
"""Create a single row for an ascii table."""
cells = ('{row:<{len}}'.format(row=str(row[i]), len=lens[i])
for i in range(len(row)))
return ' {0} '.format(' '.join(cells))
|
ba64a4d58f400b70e6b8411e1f25def3735e0e2a
| 440,668 |
def generate_labels_frii(train_i, test_i, labels):
"""Gets train and test labels for FRII vs Random classification.
# Arguments
train_i: Training indices. Output of get_random_data function.
Shape of [samples,].
test_i: Testing indices. Output of get_random_data function.
Shape of [samples,].
labels: label array. 'labels' dataset in data h5py file as
numpy array with shape [samples,]
# Returns
Training and testing labels, with FRII sources as True
and FRI and Random sources as False.
"""
train = labels[train_i]
test = labels[test_i]
train_y = train == 2
test_y = test == 2
return train_y, test_y
|
5005e4deadb68295299df963a7abc495fe2f0934
| 489,299 |
def format_avg_time(value):
"""
Formats a (hour, minute) tuple to 'hour:minute' string.
"""
if not isinstance(value, tuple):
return value if value is not None else ''
hour, minute = value
if hour is None or minute is None:
return ''
return '{:02}:{:02}'.format(hour, minute)
|
9738a78a7782aa3bd6578b127c7b53a575ea34bb
| 326,846 |
def get_data_mod(data_type, data_name):
"""Get the pythondata-{}-{} module or raise a useful error message."""
imp = "import pythondata_{}_{} as dm".format(data_type, data_name)
try:
l = {}
exec(imp, {}, l)
dm = l['dm']
return dm
except ImportError as e:
raise ImportError("""\
pythondata-{dt}-{dn} module not installed! Unable to use {dn} {dt}.
{e}
You can install this by running;
pip3 install git+https://github.com/litex-hub/pythondata-{dt}-{dn}.git
""".format(dt=data_type, dn=data_name, e=e))
|
9462d619007665f9e6e5bf0dae609003ef7e3d42
| 81,178 |
def recursive_levenshtein(string_1, string_2, len_1=None, len_2=None, offset_1=0, offset_2=0, memo=None) -> float:
"""
Calculates the Levenshtein distance between two strings.
Usage::
>>> recursive_levenshtein('kitten', 'sitting')
3
>>> recursive_levenshtein('kitten', 'kitten')
0
>>> recursive_levenshtein('', '')
0
"""
if len_1 is None:
len_1 = len(string_1)
if len_2 is None:
len_2 = len(string_2)
if memo is None:
memo = {}
key = ','.join([str(offset_1), str(len_1), str(offset_2), str(len_2)])
if memo.get(key) is not None:
return memo[key]
if len_1 == 0:
return len_2
elif len_2 == 0:
return len_1
cost = 0
if string_1[offset_1] != string_2[offset_2]:
cost = 1
dist = min(
recursive_levenshtein(string_1, string_2, len_1 - 1,
len_2, offset_1 + 1, offset_2, memo) + 1,
recursive_levenshtein(string_1, string_2, len_1,
len_2 - 1, offset_1, offset_2 + 1, memo) + 1,
recursive_levenshtein(string_1, string_2, len_1 - 1,
len_2 - 1, offset_1 + 1, offset_2 + 1, memo) + cost,
)
memo[key] = dist
return dist
|
2273b1300190b719ea126cb2d7e93ef389c4b609
| 354,927 |
from pathlib import Path
from typing import List
def get_acqui_id(mpath: Path, cam_folders: List[str], sync_folder: str) -> List[str]:
"""
Return the names of all acqusition ids within sync_dir across
both camera's
Parameters
----------
mpath : Path
The parent micasense data directory that contains the cam_folders
cam_folders : List[str]
A list of the camera folder names, e.g. ["red_cam", "blue_cam"]
sync_folder : str
The name of the "SYNCXXXXSET" folder
Returns
-------
acqi_ids : List[str]
List of acquisition id's, e.g.
["0000", "0001", "0002", ....., "XXXX"]
"""
acqi_ids = []
for cam in cam_folders:
# cam = "red_cam" or "blue_cam"
for f in (mpath / cam / sync_folder).glob("**/*.tif"):
acqi_ids.append(f.stem.split("_")[1])
return sorted(list(set(acqi_ids)))
|
d1a1fac85c75060855ccd4d9dabe0b5dcdf8197a
| 114,600 |
def label_clusters(target):
"""
This function will change the cluster labels
from numbers to the predetermined text labels.
Parameters:
target: The dataset target labels.
Returns:
target: The transformed dataset target labels.
"""
target['Target'] = target['Target'].apply(lambda x:
str("Product-interested "
"Traffic Type 20 "
"and/or Rare Browser "
"Users") if x == 1 else
(str("Browser 8 Users")
if x == 2 else "Others"))
return target
|
44ed6459cc4a66f6a982c92c9e77e709cc2176d7
| 557,437 |
def attr_superclass(type_, subname=''):
"""An `attr.s` validator for asserting the superclass of a value.
Args:
* type_ (object) - The python type object to validate `value` is a subclass
of.
* subname (str) - Some sub-element of attrib.name; e.g. if checking
a dictionary key, this might be ' keys'.
Returns a validator function which raises TypeError if the value doesn't match
the value.
"""
def inner(_self, attrib, value):
if not issubclass(type(value), type_):
raise TypeError(
"'{name}' must be a subclass of {type!r} (got {value!r} that is a "
"{actual!r}).".format(
name=attrib.name+subname,
type=type_,
actual=value.__class__,
value=value,
),
attrib,
value,
type_,
subname,
)
return inner
|
9468ea59fae0b9f162309259537c2a3f3efa8a3f
| 148,922 |
import yaml
def getfiles2dirs(files2dirs):
"""Returns dictionary (mapping files to destination directories) from YAML file."""
with open(files2dirs) as yamlfile:
config = yaml.safe_load(yamlfile)
return config
|
5e71a509915790195148b01b07292f71a614169b
| 296,313 |
def fixture_localhost(aiida_localhost):
"""Return a localhost ``Computer``."""
localhost = aiida_localhost
localhost.set_default_mpiprocs_per_machine(1)
return localhost
|
830db202d0752febd9358288752c2c80beaacf57
| 376,574 |
def cm2pt(cm=1):
"""2.54cm => 72pt (1 inch)"""
return float(cm) * 72.0 / 2.54
|
fd3aab678cf22e4799cd7d81c1867d912f11683f
| 608,842 |
def define_a_plot_name(plot_idx):
"""Define unique plot name"""
return f"PP" + str(plot_idx).zfill(8)
|
56a03d9b0a69f91b4d2c9322bf4405ad43ed9653
| 150,236 |
def split_comma_list(comma_str: str):
"""
Split a comma-separated list of values, stripping whitespace
"""
return [item.strip() for item in comma_str.split(',')]
|
85772bd27c88a83450b6f1fa2b9debe148151820
| 202,761 |
from typing import Counter
import math
def conditional_entropy(x_symbols, y_symbols):
"""
Computes the entropy of `x` given `y`.
:param list x_symbols: A list of all observed `x` symbols.
:param list y_symbols: A list of all observed `y` symbols.
:return float entropy: The conditional entropy of `x` given `y`.
"""
# Cache counters; while the xy_counter is already computed in other
# parts, particularly in the scorers, it is worth repeating the code
# here to have a more general function.
y_counter = Counter(y_symbols)
xy_counter = Counter(list(zip(x_symbols, y_symbols)))
population = sum(y_counter.values())
# Compute the entropy and return
entropy = 0
for xy_pair, xy_count in xy_counter.items():
p_xy = xy_count / population
p_y = y_counter[xy_pair[1]] / population
entropy += p_xy * math.log(p_y / p_xy)
return entropy
|
e6433e202b600d7518ee1255bd5f66a43b6781e8
| 66,545 |
def merge_two_dicts(x, y):
"""
Merges 2 dictionary.
Overrides values from x with values from y, if key is the same.
Needed for Python < 3.5
See: https://stackoverflow.com/a/26853961
:param x:
:param y:
:return:
"""
z = x.copy() # start with x's keys and values
z.update(y) # modifies z with y's keys and values & returns None
return z
|
1d79c0d3a59778b347a6eed4602116ea031cbeb0
| 612,134 |
def getStations(station = ''):
"""
Define SPARQL query to return a list of all known stations
at the Carbon Portal. This can include NON-ICOS stations.
Note: excluding WDGCC stations ( https://gaw.kishou.go.jp/ ),
which are visible in the data portal for historic reasons.
Parameters
----------
station : str, optional, case sensitive
DESCRIPTION. The default is '', and empyt string which returns ALL
stations. If you provide a station id, be aware, that it needs to be
exactly as provided from the Triple Store....case sensitive.
Returns
-------
query : str, valid sparql query to run against the Carbon Portal SPARQL endpoint.
"""
if station:
flt = 'FILTER(?id = "' + station + '") . '
else:
flt = station
query = """
prefix cpmeta: <http://meta.icos-cp.eu/ontologies/cpmeta/>
select *
from <http://meta.icos-cp.eu/resources/icos/>
from <http://meta.icos-cp.eu/resources/extrastations/>
where {
?uri cpmeta:hasStationId ?id .
%s
OPTIONAL {?uri cpmeta:hasName ?name } .
OPTIONAL {?uri cpmeta:countryCode ?country }.
OPTIONAL {?uri cpmeta:hasLatitude ?lat }.
OPTIONAL {?uri cpmeta:hasLongitude ?lon }.
OPTIONAL {?uri cpmeta:hasElevation ?elevation } .
}
""" %(flt)
return query
|
4fea5918dca13c7892fc426f9c20668e4f71d3d1
| 545,916 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.