content
stringlengths
39
9.28k
sha1
stringlengths
40
40
id
int64
8
710k
import torch def zeros(shape): """Create zeros like shape.""" return torch.zeros(shape)
a71105b8a009ee297105770670a9f363fe0e2019
460,523
def oriented(square, desired): """ Return True if the given square is oriented as desired. """ success = True neighbors = square.neighbors for side,id_ in desired.items(): if id_ is None: success &= (side not in neighbors) else: success &= (side in neighbors and neighbors[side] == id_) if not success: return success return success
0734c5feed757b238ca748a88965e013b0d390aa
454,405
def _normalize_percent_rgb(value): """ Normalize ``value`` for use in a percentage ``rgb()`` triplet, as follows: * If ``value`` is less than 0%, convert to 0%. * If ``value`` is greater than 100%, convert to 100%. Examples: >>> _normalize_percent_rgb('0%') '0%' >>> _normalize_percent_rgb('100%') '100%' >>> _normalize_percent_rgb('62%') '62%' >>> _normalize_percent_rgb('-5%') '0%' >>> _normalize_percent_rgb('250%') '100%' >>> _normalize_percent_rgb('85.49%') '85.49%' """ percent = value.split('%')[0] percent = float(percent) if '.' in percent else int(percent) if 0 <= percent <= 100: return '%s%%' % percent if percent < 0: return '0%' if percent > 100: return '100%'
910da5cf9d270ef46e4ace3e53fd082763743191
282,124
def calculate_occlusion(ray, obj, light, objects): """ Calculate if there is an object between the light and object Args: ray: A ray starting in the hit point with direction to the light obj: The object where the hit point is light: A source of light to calculate if it's occluded objects: The objects in the scene Returns: bool: If there is an occlusion or not """ # Check for occlusion # 1. Shoot ray from point to light # 2. Check collision with other objects # 3. If there is one between the hit point and the light, there is occlusion light_distance = light.get_distance(ray.pr) for other_obj in objects: if other_obj == obj: continue shadow_t = ray.intersect(other_obj) if 0 < shadow_t <= light_distance: return True return False
c15acf785f8baf72da64307380cd36d7de6b6ef8
694,713
import tempfile import zipfile def decompress(zip_file, dir=None): """Decompress Zip file Decompress any zip file. For example, TOSCA CSAR inputs: zip_file: file in zip format dir: directory to decompress zip. If not provided an unique temporary directory will be generated and used. return: dir: absolute path to the decopressed directory """ if not dir: dir = tempfile.NamedTemporaryFile().name with zipfile.ZipFile(zip_file, "r") as zf: zf.extractall(dir) return dir
4a860d6b8a104d8325bd4fa83db6aa9b05a49f76
382,180
def build_index(interactors): """ Build the index (P x D) -> N for all interactors of the current protein. """ index = dict() # P x D -> N sorted_interactors = sorted(list(interactors)) for p, d in sorted_interactors: index[(p, d)] = sorted_interactors.index((p, d)) return index
44856b3dd98cb751d7da43f0952fe6a15e530886
375,006
import urllib3 import certifi def post_json(ctx, path, json): """ Make a POST request with a JSON payload to be sent to a NuvIoT endpoint. Parameters ---------- ctx: Context Object that defines how this method should call the server to include authentication. path: Path used to make the request, the auth and server information will be used from the ctx object. json: JSON object to be posted Returns ------- Will return any JSON returned from the server, if the response code is not a success code an exception will be raised. """ if ctx.auth_type == 'user': headers={'Authorization': 'Bearer ' + ctx.auth_token, 'Content-Type':'application/json'} else: headers={'Authorization': 'APIKey ' + ctx.client_id + ':' + ctx.client_token, 'Content-Type':'application/json'} url = ctx.url + path encoded_data = json.encode('utf-8') http = urllib3.PoolManager(cert_reqs='CERT_REQUIRED', ca_certs=certifi.where()) r = http.request('POST', url, headers=headers, preload_content=False, body=encoded_data) responseJSON = '' responseStatus = r.status for chunk in r.stream(32): responseJSON += chunk.decode("utf-8") r.release_conn() if responseStatus > 299: print('Failed http call, response code: ' + str(responseStatus)) print('Url: ' + url) print('Headers: ' + str(headers)) print(responseJSON) print('--------------------------------------------------------------------------------') print() raise Exception("Could not post JSON to %s" % url) return responseJSON
a6c1f49ce04d4f129d5fc8d180c2e460bbc825ac
585,558
import re def extract_energies(pdb_file): """ Extract energies from the header of the PDB file, according to HADDOCK formatting """ vdw = .0 elec = .0 desolv = .0 air = .0 bsa = .0 vdw_elec_air_regex = r"\s(\-?\d*\.?\d{1,}|0\b)" # Known error: 8.754077E-02 is matched as 8.754077 which is # not relevant for the I/O benchmark but should be taken into account desolv_regex = r"(\-?\d*\.?\d*)$" bsa_regex = r"(\-?\d*\.?\d*)$" f = open(pdb_file, 'r') for line in f: if 'REMARK energies' in line: # print(line) total, bonds, angles, improper, dihe, vdw, elec, air, cdih, coup, rdcs, vean, dani, xpcs, rg = re.findall( vdw_elec_air_regex, line) vdw = float(vdw) elec = float(elec) air = float(elec) if 'REMARK Desolvation' in line: # print(line) desolv = float(re.findall(desolv_regex, line)[0]) if 'REMARK buried surface area' in line: # print(line) bsa = float(re.findall(bsa_regex, line)[0]) break f.close() return vdw, elec, desolv, air, bsa
326aa323de92ef834365eb8b61eef3dc7b8fa97d
344,606
def camelify(s): """Helper function to convert a snake_case name to camelCase.""" start_index = len(s) - len(s.lstrip("_")) end_index = len(s.rstrip("_")) sub_strings = s[start_index:end_index].split("_") return (s[:start_index] + sub_strings[0] + "".join([w[0].upper() + w[1:] for w in sub_strings[1:]]) + s[end_index:])
84bed77f217b8af55b0bd2cca0d354f372ba9e3d
552,514
import cProfile def profiler_setup(config): """ Set up profiler based on config """ if not config["profile"]: return profiler = cProfile.Profile() profiler.enable() return profiler
bc67268533a87482a2735dbc57cfc7af64655605
387,040
def normalize(lst, maxval=1.): """ Normalizes a list of values with a specified value. **Parameters** lst: *list* List of values to be normalized maxval: *float*, optional The maximum value that the list will have after normalization. **Returns** normalized list: *list* A list of values normalized to the specified value. """ listmax = max(lst) for ind, val in enumerate(lst): lst[ind] = float(val) / float(listmax) * maxval return lst
9ae34b5b7a81d55de88c942806f0440040873165
27,682
from typing import Any def get_cls_name(obj: Any, package_name: bool = True) -> str: """ Get name of class from object Args: obj (Any): any object package_name (bool): append package origin at the beginning Returns: str: name of class """ cls_name = str(obj.__class__) # remove class prefix cls_name = cls_name.split('\'')[1] # split modules cls_split = cls_name.split('.') if len(cls_split) > 1: cls_name = cls_split[0] + '.' + cls_split[-1] if package_name else cls_split[-1] else: cls_name = cls_split[0] return cls_name
6eb9a5b8b2ac4b33b988a90ba5f1988633179295
44,624
def id_number_checksum(gd): """ Calculates a Swedish ID number checksum, using the Luhn algorithm """ n = s = 0 for c in (gd['year'] + gd['month'] + gd['day'] + gd['serial']): # Letter? It's an interimspersonnummer and we substitute the letter # with 1. if c.isalpha(): c = 1 tmp = ((n % 2) and 1 or 2) * int(c) if tmp > 9: tmp = sum([int(i) for i in str(tmp)]) s += tmp n += 1 if (s % 10) == 0: return 0 return (((s // 10) + 1) * 10) - s
bbf0a9fa7f6ed2c2bfc414173fd2ac9e9c1d8835
706,841
def case_sorting_key(e): """Sorting key for test case identifier.""" return tuple(map(lambda n: int(n), e[0].split('.')))
c6bb059b516b2fd2118caf117277d05fa1d44dfa
267,573
def get_active_intfs(host_ans): """ @Summary: Get the active interfaces of a DUT @param host_ans: Ansible host instance of this DUT @return: Return the list of active interfaces """ int_status = host_ans.show_interface(command="status")['ansible_facts']['int_status'] active_intfs = [] for intf in int_status: if int_status[intf]['admin_state'] == 'up' and \ int_status[intf]['oper_state'] == 'up': active_intfs.append(intf) return active_intfs
b5131862f6f8944dc908b1c1e245efaccce37bb1
220,292
def count_matches(a: str, b: str) -> int: """Returns the number of locations where the two strings are equal.""" assert len(a) == len(b) return sum(int(i == j) for i, j in zip(a, b))
9c901f8c8303f58989db466f0a728bac3f93eb67
610,859
def is_integer(s): """True if s in an integer.""" try: c = float(s) return int(c) == c except (ValueError, TypeError): return False
d24cc5f51fc44dd7fb19b9f1fdc430760ba66181
299,550
def binary_search(val, array): """ >>> binary_search(1, [1, 2, 3]) (0, 1) >>> binary_search(1.5, [1, 2, 3]) (1, 2) >>> binary_search(8, [1, 2, 3]) (None, None) >>> binary_search(3, [1, 2, 4]) (2, 4) """ # Trivial cases - out of array range. if len(array) == 0: return None, None if val > array[-1]: return None, None if val <= array[0]: return 0, array[0] low = 0 high = len(array) - 1 while high - low >= 2: mid = (high + low) // 2 if array[mid] >= val: high = mid else: low = mid + 1 if low == high: return low, array[low] if val > array[low]: return high, array[high] else: return low, array[low]
7e77f29945b3f4f579461d11acd334f288daa601
132,115
def report_writer(md): """ Reads meta data into function and makes txt message report. ---------- md : dict Contains meta data from experiment file Returns ------- message : string The text output for the report """ s_name = md["sample_meta_data"]["sample_name"] s_date = md["sample_meta_data"]["sample_date"] s_surface = md["sample_meta_data"]["sample_surface_area"] imp_mode = md["experiment_meta_data"]["impedance_mode"] meas_volt = md["experiment_meta_data"]["measurement_voltage"] vs = md["experiment_meta_data"]["vs"] pert_v = md["experiment_meta_data"]["pertubation_voltage"] sf = md["experiment_meta_data"]["starting_frequency"] ef = md["experiment_meta_data"]["ending_frequency"] ppi = md["experiment_meta_data"]["points_per_interval"] ig = md["experiment_meta_data"]["interval_group"] spacing = md["experiment_meta_data"]["spacing"] intro_line = "Report for "+str(s_name)+" experiment conducted on "+str(s_date)+".\n\n" imp_line = "A "+str(imp_mode)+" measurement was made with a "+str(pert_v)+"mV pertubation voltage at "+str(meas_volt)+"V vs. "+str(vs)+".\n\n" range_line = "Experiment conducted from "+str(sf)+"Hz to "+str(ef)+"Hz with "+str(ppi)+ " points "+str(ig)+" using "+str(spacing)+" spacing.\n\n" surface_line = "Sample has a surface area of "+str(s_surface)+"cm^2." message = intro_line+imp_line+range_line+surface_line return message
16d67de3ca6f858aeea1f1a652ab4946a6c60cc0
61,436
def list_contains_only_integers(lst): """Returns True if the input list contains only str representations of digits. Args: lst: A list. Elements must be strings, and if any element is not a string representation of a digit, the function returns False. """ if not isinstance(lst, list): raise TypeError(f"The given input {lst} is not a list") for elm in lst: if not isinstance(elm, str): raise TypeError(f"Element {elm} is not a string") if not elm.isdigit(): return False return True
06ac2b8b9867c651d501b5e3fee4e6452b77f5a0
219,237
def select_categorical_gmeta_fields(metabase_cur, column_id): """ Select Gmeta fields related to categorical columns. Note that the return value is different from other column types. Args: metabase_cur column_id Return: (Query result object fetched from psycopg2's DictCursor): Like a list of dictionaries with column names as keys. An empty list is returned if no record to fetch. """ metabase_cur.execute( """ SELECT code, frequency FROM metabase.code_frequency WHERE column_id = %(column_id)s ORDER BY frequency DESC LIMIT 20 -- Top-k """, { 'column_id': column_id, }, ) return metabase_cur.fetchall()
30fb4247bdbbdcd50e56065efec429a7a4a3a37e
407,928
import torch def kl_prox_softmin(ecost, a, b, eps, rho, rho2): """Prepares functions which perform updates of the Sikhorn algorithm in exponential scale. Parameters ---------- ecost: torch.Tensor of size [Batch, size_X, size_Y] Exponential of the cost. Kernel of Sinkhorn operator. a: torch.Tensor of size [Batch, size_X] Input measure of the first mm-space. b: torch.Tensor of size [Batch, size_Y] Input measure of the second mm-space. eps: float Strength of entropic regularization. rho: float Strength of penalty on the first marginal of pi. rho2: float Strength of penalty on the first marginal of pi. If set to None it is equal to rho. Returns ---------- s_x: callable function Map outputing updates of potential from Y to X. s_y: callable function Map outputing updates of potential from X to Y. """ tau = 1.0 / (1.0 + eps / rho) tau2 = 1.0 / (1.0 + eps / rho2) def s_y(v): return torch.einsum("ij,j->i", ecost, b * v) ** (-tau2) def s_x(u): return torch.einsum("ij,i->j", ecost, a * u) ** (-tau) return s_x, s_y
3572de47292e22cb64654d84c4845590a1000eab
474,497
def median_imputation(df): """Impute the missing numeric values with the median of that column after grouping by label""" imputed_df = df.copy() # get the numeric columns in the input df ("Label" and "struct_ordered" are excluded) numeric_cols = imputed_df.drop(columns=["Label", "struct_ordered"]).select_dtypes(include="number").columns # iterate over all the selected numeric columns and impute by median within each label group for numeric_col in numeric_cols: imputed_df[numeric_col] = imputed_df.groupby("Label")[numeric_col].apply(lambda x: x.fillna(x.median())) return imputed_df
1870b3e2b2204626983ac9ca2f0766d66251f9fb
491,975
def copy_or_set_(dest, source): """ A workaround to respect strides of :code:`dest` when copying :code:`source` (https://github.com/geoopt/geoopt/issues/70) Parameters ---------- dest : torch.Tensor Destination tensor where to store new data source : torch.Tensor Source data to put in the new tensor Returns ------- dest torch.Tensor, modified inplace """ if dest.stride() != source.stride(): return dest.copy_(source) else: return dest.set_(source)
d30b1e98da0ab2ef134173ad39a3e6e66e08c903
524,799
def get_shape(x, unknown_dim_size=1): """ Extract shape from onnxruntime input. Replace unknown dimension by default with 1. Parameters ---------- x: onnxruntime.capi.onnxruntime_pybind11_state.NodeArg unknown_dim_size: int Default: 1 """ shape = x.shape # replace unknown dimensions by default with 1 shape = [i if isinstance(i, int) else unknown_dim_size for i in shape] return shape
1c719191922a46b948fb567273e3a5152769e190
8,539
import hashlib def sha256_hash(b: bytes) -> bytes: """ sha256_hash hashes the given bytes with SHA256 Args: b (bytes): bytes to hash Returns: bytes: The hash result """ return hashlib.sha256(b).digest()
110367c664552fc068f1a1e0839fed0ae061d22f
256,139
def transform_dict(img): """ Take a raster data source and return a dictionary with geotranform values and keys that make sense. Parameters ---------- img : gdal.datasource The image datasource from which the GeoTransform will be retrieved. Returns ------- dict A dict with the geotransform values labeled. """ geotrans = img.GetGeoTransform() ret_dict = { 'originX': geotrans[0], 'pixWidth': geotrans[1], 'rotation1': geotrans[2], 'originY': geotrans[3], 'rotation2': geotrans[4], 'pixHeight': geotrans[5], } return ret_dict
8817028adfce28ae7f7ae787d4256d52fee095bc
15,933
def query_registry(model, registry): """Performs a lookup on a content type registry. Args: model: a Django model class registry: a python dictionary like ``` { "my_app_label": True, "my_other_model": { "my_model": True, }, } ``` The type of `<value>` is specific to each registry. A return value of `None` signals that nothing is registered for that `model`. """ app_label = model._meta.app_label model = model.__name__.lower() if app_label not in registry: return None if not isinstance(registry[app_label], dict): return registry[app_label] # subset specified if model not in registry[app_label]: return None return registry[app_label][model]
7c410c5baa8d20792ee7f49423da000fee34d001
669,370
def binary_search_recursive(lst, key, start=0, end=None): """ Performs binary search with recursion for the given key in iterable. Parameters ---------- lst : python iterable in which you want to search key key : value you want to search start : starting index end : ending index Returns ------- index (int): key's index if found else -1 """ if not end: end = len(lst) if not (start <= end): return -1 mid = (start+end)//2 if lst[mid] == key: return mid elif lst[mid] < key: return binary_search_recursive(lst, key, mid + 1, end) else: return binary_search_recursive(lst, key, start, mid-1)
70f464151c3357786308f2a0ea16e77c25382700
284,998
from typing import Any from pathlib import Path from typing import Tuple def lookup_path(context: Any, sub_paths: Path) -> Tuple[bool, Any]: """Lookup attributs in a context like dictionary. Arguments: context (Any): a dictionnary like structure with in and [] methods (support __contains__ or (__iter__ and __getitem__)). sub_paths (Path): a path (single string or an ordered tuple of string) Returns: (Tuple[bool, Any]): (True, attribut value ) or (False, None) if path not found Exceptions: (RuntimeError): if context did not compliant """ if not context: return (False, None) if not (hasattr(context, "__contains__") or (hasattr(context, "__iter__") and hasattr(context, "__getitem__"))): raise RuntimeError('Context must be dictionnary like') if isinstance(sub_paths, Tuple): if sub_paths: # len > 0 current = context i = 0 while i < len(sub_paths): p = sub_paths[i] if not current or p not in current: return (False, None) i += 1 current = current[p] return (True, current) return (False, None) # simple string match = sub_paths in context return (match, context[sub_paths] if match else None)
fd21a1f993d9596ff15420a6faa022b832b25b66
433,999
def indexPosition2D(i, j, N, M): """This function is a generic function which determines if for a grid of data NxM with index i going 0->N-1 and j going 0->M-1, it determines if i,j is on the interior, on an edge or on a corner The funtion return four values: type: this is 0 for interior, 1 for on an edge and 2 for on a corner edge: this is the edge number if type==1 node: this is the node number if type==2 index: this is the value index along the edge of interest -- only defined for edges""" if i > 0 and i < N - 1 and j > 0 and j < M - 1: # Interior return 0, None, None, None elif i > 0 and i < N - 1 and j == 0: # Edge 0 return 1, 0, None, i elif i > 0 and i < N - 1 and j == M - 1: # Edge 1 return 1, 1, None, i elif i == 0 and j > 0 and j < M - 1: # Edge 2 return 1, 2, None, j elif i == N - 1 and j > 0 and j < M - 1: # Edge 3 return 1, 3, None, j elif i == 0 and j == 0: # Node 0 return 2, None, 0, None elif i == N - 1 and j == 0: # Node 1 return 2, None, 1, None elif i == 0 and j == M - 1: # Node 2 return 2, None, 2, None elif i == N - 1 and j == M - 1: # Node 3 return 2, None, 3, None
3197313b6211e40e8b3bbde6e7eb18bdf15ee814
461,579
def GetErrorOutput(error, new_error=False): """Get a output line for an error in regular format.""" line = '' if error.token: line = 'Line %d, ' % error.token.line_number code = 'E:%04d' % error.code error_message = error.message if new_error: error_message = 'New Error ' + error_message return '%s%s: %s' % (line, code, error.message)
4661c74fcef9f13c0aad3d74e827d9eea20f86ef
12,861
def rev_comp(seq: str) -> str: """ Generates the reverse complement of a sequence. """ comp = { "A": "T", "C": "G", "G": "C", "T": "A", "B": "N", "N": "N", "R": "N", "M": "N", "Y": "N", "S": "N", "W": "N", "K": "N", "a": "t", "c": "g", "g": "c", "t": "a", "n": "n", " ": "", } rev_seq = "".join(comp.get(base, base) for base in reversed(seq)) return rev_seq
cb6b95d2d3f15910ff3ad793d99bb56de898026e
11,619
from typing import Optional def get_shelf_audience_code(location_code: str) -> Optional[str]: """ Parses audience code from given normalized location_code """ try: audn = location_code[2].strip() if audn: return audn else: return None except IndexError: return None
5aa9c32a186f1f8a111f8a50fbf2c05ea0fd6705
344,232
def are_relatively_prime(a, b): """Return ``True`` if ``a`` and ``b`` are two relatively prime numbers. Two numbers are relatively prime if they share no common factors, i.e. there is no integer (except 1) that divides both. """ for n in range(2, min(a, b) + 1): if a % n == b % n == 0: return False return True
f3f98b43a27f6da219e0c68f9da55df0a2774bde
616,781
def boolean(entry, option_key="True/False", **kwargs): """ Simplest check in computer logic, right? This will take user input to flick the switch on or off Args: entry (str): A value such as True, On, Enabled, Disabled, False, 0, or 1. option_key (str): What kind of Boolean we are setting. What Option is this for? Returns: Boolean """ error = f"Must enter 0 (false) or 1 (true) for {option_key}. Also accepts True, False, On, Off, Yes, No, Enabled, and Disabled" if not isinstance(entry, str): raise ValueError(error) entry = entry.upper() if entry in ("1", "TRUE", "ON", "ENABLED", "ENABLE", "YES"): return True if entry in ("0", "FALSE", "OFF", "DISABLED", "DISABLE", "NO"): return False raise ValueError(error)
d62b36d08651d02719b5866b7798c36efd2a018f
3,297
def primary_private_ip(ip_configs): """ This function extracts primary, private ipaddress """ return [ip['properties']['privateIPAddress'] for ip in ip_configs if ip['properties']['primary']][0]
281f25eecda0c477308d93376587875942b19993
516,169
def isInteger(n, epsilon=1e-6): """ Returns True if n is integer within error epsilon """ return (n - int(n)) < epsilon
8ef0960cffadc063317830dca77d1177569ad178
34,840
import pickle def save_pickle(value, filename): """ Save value to pickle file :param value: Value to save :param filename: Filename to save value as """ with open(filename, 'wb') as f: return pickle.dump(value, f)
70e8fbbf2420586127c2d0704243a227fe2c5d58
536,373
from typing import List from typing import Any def flatten(x: List[Any]) -> List[Any]: """Returns flattened list. Args: x (list): Nested Python list. Returns: list: Flattened Python list. """ return [i for sl in x for i in sl]
d9b24e63d75849bcf5f1538bbb3dcb44c4a64a5c
177,843
def uri_leaf(uri): """ Get the "leaf" - fragment id or last segment - of a URI. Useful e.g. for getting a term from a "namespace like" URI. Examples: >>> uri_leaf('http://example.org/ns/things#item') 'item' >>> uri_leaf('http://example.org/ns/stuff/item') 'item' >>> uri_leaf('http://example.org/ns/stuff/') '' """ return uri.rsplit('/', 1)[-1].rsplit('#', 1)[-1]
abbcc83543c5f20a93a59a94cc6c7e164ed70deb
169,223
def get_file_date_part(now, hour) -> str: """ Construct the part of the filename that contains the model run date """ if now.hour < hour: # if now (e.g. 10h00) is less than model run (e.g. 12), it means we have to look for yesterdays # model run. day = now.day - 1 else: day = now.day date = '{year}{month:02d}{day:02d}'.format( year=now.year, month=now.month, day=day) return date
42c2beddccba755f66061364463f8ad759d3c020
12,851
import zlib def inflate(data): """Returns uncompressed data.""" return zlib.decompress(data, -zlib.MAX_WBITS)
144ba727f93a79abec7880a2781ea9971a69d825
374,636
def merge_dict_of_lists(d1: dict, d2: dict) -> dict: """Merge two dicts of lists. Parameters ---------- d1 : dict The first dict to merge. d2 : dict The second dict to merge. Returns ------- dict The merged dict. """ ret = {k: list(v) for k, v in d1.items()} for k, _ in d1.items(): if k in d2.keys(): ret[k] += d2[k] else: ret[k] = d2[k] return ret
51c9c495c087c2d7fa1676800ab8223d1881308f
407,665
def calulate_loss_of_life(List_V, t): """ For list of V values, calculate loss of life in hours t = Time Interval (min) """ L = 0 for V in List_V: L += (V * t) # Sum loss of life in minutes for each interval LoL = L / 60 # Calculate loss of life in hours return LoL
ee2499af737cca764aad0a2f13794a925a172b9e
10,849
import random def encode_string(value): """ Encode a string into it's equivalent html entity. The tag will randomly choose to represent the character as a hex digit or decimal digit. """ e_string = "" for a in value: e_type = random.randint(0, 1) if e_type: en = "&#x%x;" % ord(a) else: en = "&#%d;" % ord(a) e_string += en return e_string
76af82e3495c605a5ddaf3df9bdd352749856c07
641,657
def mouse_within_existing_lines(self, mouse_y): """ Returns True if the given Y-coordinate is within the height of the text-editor's existing lines. Returns False if the coordinate is below existing lines or outside of the editor. """ return self.editor_offset_Y < mouse_y < self.editor_offset_Y + (self.lineHeight * self.maxLines)
f0446b9607119d2ad439cc1933ab1723a0381ec0
477,852
import math def euclidian(p1, p2): """Return euclidian distance between 2 points.""" return math.sqrt((p2[0] - p1[0])**2 + (p2[1] - p1[1])**2)
82c326077e8a90ed067e7d6cd2d5aabfd9745499
50,546
def curvature_from_fit(fit, y): """Compute curvature radius Args: fit (numpy.ndarray[3]<float>): polynomial regression fit coefficients y (float): point where curvature will be evaluated Returns: float: curvature radius """ if len(fit) != 3: raise AssertionError(f"expected fit coefficients to be of shape (3,), but received {fit.shape}") f_prime = 2 * fit[0] * y + fit[1] f_second = 2 * fit[0] return (1 + (f_prime ** 2)) ** 1.5 / abs(f_second)
e4122c06e7e91da03aef0cafd21399a049004e1d
496,389
def _rect(x: float, y: float, boxwidth: float, boxheight: float, fill: str = 'white', strokewidth: float = 1): """Draw an SVG <rect> rectangle.""" return f'<rect x="{x}" y="{y}" width="{boxwidth}" height="{boxheight}" ' \ f'stroke="black" fill="{fill}" stroke-width="{strokewidth}" />'
ce0b88a946dc1f1d65a3ffe5fa81920be06a294b
607,055
def is_within_region(readpos, contiglength, readlength, regionlength): """Checks if a read is within the given region.""" return readpos - readlength <= regionlength \ or readpos >= contiglength - regionlength
934ce7f066de80beb5d0f65bbe6eb6707fdfb39c
117,361
def load_stop_words(filename): """Load a set of stop words from a file. One word each line.""" # you are using CPython, don't you? # http://stackoverflow.com/a/11027437/1240620 stopwords = {w.strip() for w in open(filename)} return stopwords
e23ec9a1d20396a0694bdd366a283bfbafb66f2b
646,221
def to_unicode(obj): """Convert object to unicode""" if isinstance(obj, bytes): return obj.decode('utf-8', 'ignore') return str(obj)
e54c02e04109b8a99a7eb4e357e95ead89166137
8,536
def onlyunix(f): """ Decorator that indicates that the command cannot be run on windows """ f._onlyunix = True return f
935bfe9f5fbb4b2341f79b3d7a7736e8664549cc
408,338
def after_space(s): """ Returns a copy of s after the first space Parameter s: the string to slice Precondition: s is a string with at least one space """ return s[s.find(' ') + 1:]
d16fe547b562a7089a0babf9578e7a06f7a1f69e
671,077
def get_bytes(encoded: bytearray, idx: int, length: int) -> tuple: """ Returns the bytes with given length, and next to be read index :param encoded: bytearray :param idx: index to start read from :param length: length to be read :return: tuple of bytes read and next index """ return encoded[idx:idx + length], idx + length
08fc9023b93680306e9d1703790fb86b092060be
532,893
def strip_suffix(text, suffix): """ Cut a set of the last characters from a provided string :param text: Base string to cut :param suffix: String to remove if found at the end of text :return: text without the provided suffix """ if text is not None and text.endswith(suffix): return text[:len(text) - len(suffix)] else: return text
883ccee3bd3c48b80839d8ad4838a77720c28faf
88,568
def format_human_readable_time(seconds): """ format the number of seconds given as a human readable value """ if seconds < 60: return "%.0f seconds" % seconds if seconds < 60 * 60: minutes = seconds / 60 return "%.0f minutes" % minutes hour = seconds / 60 / 60 return "%.0f hours" % hour
fefde7d1b3e7bb8ba0c3db5a949a0d728d6790a1
415,297
def compute_node_degrees(ugraph): """ Returns a dictionary of degree number for all nodes in the undirected graph """ node_deg = {} # iterate over all dictionary keys to find size of # adjacency list for each node for node in ugraph: node_deg[node] = len(ugraph[node]) return node_deg
a6d2f2df91b8536eca7814d54376f8b7855c2e7b
44,379
import yaml def parse_config_file(config_file) -> dict: """Read config.yaml file with params. Returns ------- dict Dict of config """ with open(config_file, 'r') as stream: try: CONFIG = yaml.safe_load(stream) except yaml.YAMLError as exc: print(exc) exit(1) return CONFIG
8f1fb9bcda94ef5c21edbf5e5bf95b327efd8c96
8,673
def listify(argument) -> list: """ Turn `argument` into a list, if it is not already one. """ if argument is None: return [] if type(argument) is tuple: argument = list(argument) elif not type(argument) is list: argument = [argument] return argument
c0ec40c9b487028fa38d3023752107a12b7f18d0
456,467
def bytesToStr(s): """Force to unicode if bytes""" if type(s) == bytes: return s.decode('utf-8') else: return s
876e72d3b82c988edc92dce26969230cb04f17a8
207,022
def roots_linear(f): """Returns a list of roots of a linear polynomial.""" return [-f.coeff(0)/f.coeff(1)]
6fbd70139c0c90d8c9e4dc5f42cce64908716f4d
373,716
def _join_memory_tool_options(options): """Joins a dict holding memory tool options into a string that can be set in the environment.""" return ':'.join( '%s=%s' % (key, str(value)) for key, value in sorted(options.items()))
20f61a8ed622de2bbe12d14936669196c8a6be26
340,893
import re def strip_hive_comments(hive_query): """Strip the comments in a Hive query.""" regex = r'--.*' flags = re.MULTILINE | re.IGNORECASE return re.sub(regex, '', hive_query, flags)
09bb1172d3753f2fdc5d0100120b77f09ea3066f
365,188
import torch def reference_loss_func(loss_sum_or_avg: torch.Tensor, num_measurements: torch.Tensor, take_avg_loss: bool): """ Returns average loss for data from``loss_sum_or_avg``. This function sums all losses from ``loss_sum_or_avg`` and divides the sum by the sum of ``num_measurements`` elements. If ``take_avg_loss`` is ``True`` then ``loss_sum_or_avg[i]`` elements are mean values of ``num_measurements[i]`` losses. In that case before computing sum of losses each element of ``loss_sum_or_avg`` is multiplied by corresponding element of ``num_measurements``. If ``num_measurements`` sum is zero then the function returns NaN tensor. The function is used for testing ``nemo.collections.common.metrics.GlobalAverageLossMetric`` class. Args: loss_sum_or_avg: a one dimensional float ``torch.Tensor``. Sums or mean values of loss. num_measurements: a one dimensional integer ``torch.Tensor``. Number of values on which sums of means in ``loss_sum_or_avg`` are calculated. take_avg_loss: if ``True`` then ``loss_sum_or_avg`` contains mean losses else ``loss_sum_or_avg`` contains sums of losses. """ loss_sum_or_avg = loss_sum_or_avg.clone().detach() if take_avg_loss: loss_sum_or_avg *= num_measurements nm_sum = num_measurements.sum() if nm_sum.eq(0): return torch.tensor(float("nan")) return loss_sum_or_avg.sum() / nm_sum
11771a75f53d03ff767591a8a4884a3f61f4406a
437,967
def compute_number_of_clusters( eigenvalues, max_clusters=None, stop_eigenvalue=1e-2): """Compute number of clusters using EigenGap principle. Args: eigenvalues: sorted eigenvalues of the affinity matrix max_clusters: max number of clusters allowed stop_eigenvalue: we do not look at eigen values smaller than this Returns: number of clusters as an integer """ max_delta = 0 max_delta_index = 0 range_end = len(eigenvalues) if max_clusters and max_clusters + 1 < range_end: range_end = max_clusters + 1 for i in range(1, range_end): if eigenvalues[i - 1] < stop_eigenvalue: break delta = eigenvalues[i - 1] / eigenvalues[i] if delta > max_delta: max_delta = delta max_delta_index = i return max_delta_index
2d58a05c54ad0f178bba33ddfbc0c82cdb4fcfc3
454,822
def calculateSphereInertia(mass, r): """Returns upper diagonal of inertia tensor of a sphere as tuple. Args: mass(float): The spheres mass. r(float): The spheres radius. Returns: : tuple(6) """ i = 0.4 * mass * r ** 2 ixx = i ixy = 0 ixz = 0 iyy = i iyz = 0 izz = i return ixx, ixy, ixz, iyy, iyz, izz
324ddd5e9175971fbc45bf269118ce1a673718f6
410,115
def consolidate_grades(grade_decimals, n_expect=None): """ Consolidate several grade_decimals into one. Arguments: grade_decimals (list): A list of floats between 0 and 1 n_expect (int): expected number of answers, defaults to length of grade_decimals Returns: float, either: average of grade_decimals padded to length n_extra if necessary, and subtracting 1/n_extra for each extra, or zero whichever is larger. Usage: >>> consolidate_grades([1, 0, 0.5], 4) 0.375 >>> consolidate_grades([1, 0.5, 0], 2) 0.25 >>> consolidate_grades([1, 0.5, 0, 0, 0], 2) 0 """ if n_expect is None: n_expect = len(grade_decimals) n_extra = len(grade_decimals) - n_expect if n_extra > 0: grade_decimals += [-1] * n_extra elif n_extra < 0: grade_decimals += [0] * abs(n_extra) avg = sum(grade_decimals)/n_expect return max(0, avg)
2125a562d90dad50d56b077f7c4573870b77437c
266,677
import yaml def load_vasp_summary( filename ): """ Reads a `vasp_summary.yaml` format YAML file and returns a dictionary of dictionaries. Each YAML document in the file corresponds to one sub-dictionary, with the corresponding top-level key given by the `title` value. Example: The file:: --- title: foo data: foo_data --- title: bar data: bar_data is converted to the dictionary:: { 'foo': { 'title': 'foo', 'data': 'foo_data' }, 'bar': { 'title': 'bar', 'data': 'bar_data' } } Args: filename (str): File path for the `vasp_summary.yaml` file. Returns: (dict(dict,dict,...)): A dictionary of separate YAML documents, each as dictionaries.a """ with open( filename, 'r' ) as stream: docs = yaml.load_all( stream, Loader=yaml.SafeLoader ) data = { d['title']: d for d in docs } return data
236396afb16af6d30c5c39033e7efb122f25607b
536,956
def function_maker(func): """Wraps a function to return [params, f(params)]""" def f(params): try: r = func(**params) except Exception as e: r = e return [params, r] return f
ba1add09c09b924db27500f04c0c3938e3940e93
623,489
import re def _make_regex(pem_type): """ Dynamically generate a regex to match pem_type """ return re.compile( r"\s*(?P<pem_header>-----BEGIN {0}-----)\s+" r"(?:(?P<proc_type>Proc-Type: 4,ENCRYPTED)\s*)?" r"(?:(?P<dek_info>DEK-Info: (?:DES-[3A-Z\-]+,[0-9A-F]{{16}}|[0-9A-Z\-]+,[0-9A-F]{{32}}))\s*)?" r"(?P<pem_body>.+?)\s+(?P<pem_footer>" r"-----END {0}-----)\s*".format(pem_type), re.DOTALL, )
1c1345520e37bb6c7ab75ae5856177c745f9f0fd
177,306
def program(msg): """Returns the program value of a program change message.""" return msg[1]
24cc307630dfe783a9b9157623d636b873c944bc
463,037
def to_payload(aliases): """ Boxes a list of aliases into a JSON payload object expected by the server. """ return {"aliases": [{"value": alias} for alias in aliases]}
1950d4eac9fb6c9e211a7faafdea615a01179223
360,156
def compose(outer_function, inner_function): """ Utility function that returns the composition of two functions. Args: outer_function (function): A function that can take as input the output of `inner_function`. inner_function (function): Any function. Returns: function: The composition of `outer_function` with `inner_function`. """ return lambda *args, **kwargs: outer_function(inner_function(*args, **kwargs))
75243aed676f106c7dba575f9cedf2c72c8059d3
199,691
from typing import Any def flag(argument: Any) -> bool: """ Check for a valid flag option (no argument) and return :py:obj:`True`. Used in the ``option_spec`` of directives. .. seealso:: :class:`docutils.parsers.rst.directives.flag`, which returns :py:obj:`None` instead of :py:obj:`True`. :raises: :exc:`ValueError` if an argument is given. """ if argument and argument.strip(): raise ValueError(f"No argument is allowed; {argument!r} supplied") else: return True
7aeb0b0ddf5b98cafebf868adbc95204518513db
665,503
def escape_path(path): """ Adds " if the path contains whitespaces Parameters ---------- path: str A path to a file. Returns ------- an escaped path """ if ' ' in path and not (path.startswith('"') and path.endswith('"')): return '"' + path + '"' else: return path
6f3122532fa2590d43e9ad537d07f005d05c54fa
646,486
import random def make_n_length_integer(n1, n2, allow_negative=False): """Function that generates an integer with specified number of digits. Parameters ---------- n1 : int Lower boundary for the number of digits n2 : int Upper boundary for the number of digits allow_negative : boolean Specifies if resulting integer can be negative. Default: False Returns ------- int """ range_start = 10**(n1-1) range_end = (10**n2)-1 multiplier = random.choice((1, -1)) if allow_negative else 1 return random.randint(range_start, range_end) * multiplier
b277900036f30cefd5b2b5251320daa2fb4be139
504,328
def _ofc(id): """OFC ID converter.""" return "ofc-%s" % id
c31e2fb102c0238c943629de98cffeeac127cf29
628,111
def sieve_eratosthenes(range_to): """ A Very efficient way to generate all prime numbers upto a number. Space complexity: O(n) Time complexity: O(n * log(logn)) n = the number upto which prime numbers are to be generated. """ range_to=int(range_to) # creating a boolean list first prime = [True for i in range(range_to + 1)] p = 2 while (p * p <= range_to): # If prime[p] is not changed, then it is a prime if (prime[p] == True): # Update all multiples of p for i in range(p * 2, range_to + 1, p): prime[i] = False p += 1 # return the list of primes return [p for p in range(2, range_to + 1) if prime[p]]
b3f127295f988de6e0021d4137fc4e36290a5717
401,181
def _filter_features( example, feature_whitelist): """Remove features that are not whitelisted. Args: example: Input example. feature_whitelist: A list of feature names to whitelist. Returns: An example containing only the whitelisted features of the input example. """ return { feature_name: example[feature_name] for feature_name in feature_whitelist if feature_name in example }
26f4afd9297f1b678761646494ebb83d4724ca01
70,379
def make_urls_list(ids_list): """ Appends each video id to the base url and insert them into a list :param list ids_list: youtube video id list :return list: list of urls """ base_url = 'https://www.youtube.com/watch?v=' urls_list = [base_url + _id for _id in ids_list if _id is not None] return urls_list
8e682a2f8e5c2b815f112435b50b4925f2ed146b
203,879
def biggest_indices(items, n): """Return list of indices of n biggest elements in items""" with_indices = [(x, i) for i, x in enumerate(items)] ordered = sorted(with_indices) return [i for x, i in ordered[-n:]]
fc1faf2720f605cceb007925aa1d54dca2f793de
435,682
import re def format_author_name(author_name): """Format the author name (string) as N Benabderrazik. If there are multiple first names it would be: A B FamilyName where A and B are the first letters of the respective first names. """ # Keep only strings before an opening parenthesis (e.g. discard (Montpellier)) author_name = re.sub(r"\(.*$", "", author_name) # Keep only word characters author_name = re.findall(r"[\w']+", author_name) # Turn the first names to initials and keep the family name as is author_name = [author_name[i][0] if i < len(author_name)-1 else author_name[i] for i in range(len(author_name))] return " ".join(author_name)
040128f4249f261a73bcbb59c8c34bd6dff201db
302,893
def get_weights(model): """ Return weights of Keras model as a list of tuples (w, b), where w is a numpy array of weights and b is a numpy array of biases for a layer. The order of the list is the same as the layers in the model. :param model: Keras model :return: List of layer weights (w, b) """ weights = model.get_weights() assert len(weights) % 2 == 0 return list(zip(weights[0::2], weights[1::2]))
dcd18a9ffaa9afbb40b0df96cc98d1f9795d2431
224,385
def monthly_soil_heat_flux(t_month_prev, t_month_next): """ Estimates the monthly soil heat flux (Gmonth) [MJ m-2 day-1] assuming a grass crop from the mean air temperature of the previous month and the next month based on FAO equation (43). If the air temperature of the next month is not known use function monthly_soil_heat_flux2(). The resluting heat flux can be converted to equivalent evaporation [mm day-1] using the equiv_evap() function. Arguments: t_month_prev - mean air temperature of previous month [deg C] t_month2_next - mean air temperature of next month [deg C] """ # Raise exceptions if (t_month_prev < -95.0 or t_month_prev > 60.0): raise ValueError, 't_month_prev=%g is not in range -95 to +60' % t_month_prev elif (t_month_next < -95.0 or t_month_next > 60.0): raise ValueError, 't_month_next=%g is not in range -95 to +60' % t_month_next soil_heat_flux = 0.07 * (t_month_next - t_month_prev) return soil_heat_flux
fa2e19f5f9839f4c75fcfee15c10b5227e2e1d6b
238,263
def get_number_base(bitstring, base): """Transfer bitstring to a number in base `base`.""" nr = 0 for place, bit in enumerate(bitstring[::-1]): nr += base**place * int(bit) return nr
1a54f84dd67b245009831258b7e50a28924e7f5b
637,916
import re def install_package_family(pkg): """ :param: pkg ie asr900rsp2-universal.03.13.03.S.154-3.S3-ext.bin :return: device_type of the installed image ie asr900 """ img_dev = None m = re.search(r'(asr\d+)\w*', pkg) if m: img_dev = m.group(1) return img_dev
b344d51ae426e167dbd2397ab93cbf8707b01496
708,790
def expectationFromObservationDF1(observation): """Returns the expectation values for observation values, assuming a table of two columns and two rows represented in a value list observations. That is, the first two values are assumed to be row 1, the second two values are assumed to be row 2. A table like: ----------------------------------- | | class | not class | |-----------------------------------| | token | 34 | 4567 | | not token | 16356 | 34985737 | ----------------------------------- is mapped on a list like this, i.e. observations is ( 34, 4567, 16356, 34985737 ) the returned corresponding expected values would be: (2.15417057091995, 4598.84582942908, 16387.84582942908, 34985705.15417057) """ if len(observation) == 4: rowtotal1 = sum(observation[:2]) rowtotal2 = sum(observation[2:]) columntotal1 = sum(observation[::2]) columntotal2 = sum(observation[1::2]) total = sum(observation) return ( (rowtotal1 * columntotal1) / total, (rowtotal1 * columntotal2) / total, (rowtotal2 * columntotal1) / total, (rowtotal2 * columntotal2) / total ) return None
c8f62376eb70762f5e2def6b26a56e3677cedca8
137,690
import torch def h_inverse(x, epsilon=1.0): """Inverse if the above h-function, described in the paper [1]. If x > 0.0: h-1(x) = [2eps * x + (2eps + 1) - sqrt(4eps x + (2eps + 1)^2)] / (2 * eps^2) If x < 0.0: h-1(x) = [2eps * x + (2eps + 1) + sqrt(-4eps x + (2eps + 1)^2)] / (2 * eps^2) """ two_epsilon = epsilon * 2 if_x_pos = ( two_epsilon * x + (two_epsilon + 1.0) - torch.sqrt(4.0 * epsilon * x + (two_epsilon + 1.0) ** 2) ) / (2.0 * epsilon ** 2) if_x_neg = ( two_epsilon * x - (two_epsilon + 1.0) + torch.sqrt(-4.0 * epsilon * x + (two_epsilon + 1.0) ** 2) ) / (2.0 * epsilon ** 2) return torch.where(x < 0.0, if_x_neg, if_x_pos)
3fdf30e5b02550eadefd63e60d72794424a29202
270,061
def parse_header(line): """Parse output of tcpdump of pcap file, extract: time date ethernet_type protocol source ip source port (if it exists) destination ip destination port (if it exists) length of the data resolved addresses (if they exist, for dns traffic only) """ ret_dict = {} h = line.split() date = h[0] time = h[1] ret_dict['raw_header'] = line ret_dict['date'] = date ret_dict['time'] = time ret_dict['ethernet_type'] = h[2] if h[2] == 'IP6': """ Conditional formatting based on ethernet type. IPv4 format: 0.0.0.0.port IPv6 format (one of many): 0:0:0:0:0:0.port """ ret_dict['src_port'] = h[3].split('.')[-1] ret_dict['src_ip'] = h[3].split('.')[0] ret_dict['dest_port'] = h[5].split('.')[-1].split(':')[0] ret_dict['dest_ip'] = h[5].split('.')[0] else: if len(h[3].split('.')) > 4: ret_dict['src_port'] = h[3].split('.')[-1] ret_dict['src_ip'] = '.'.join(h[3].split('.')[:-1]) else: ret_dict['src_ip'] = h[3] if len(h[5].split('.')) > 4: ret_dict['dest_port'] = h[5].split('.')[-1].split(':')[0] ret_dict['dest_ip'] = '.'.join(h[5].split('.')[:-1]) else: ret_dict['dest_ip'] = h[5].split(':')[0] ret_dict['protocol'] = h[6] try: """ If the packet is a DNS request or response, parse it correctly for length and if response from DNS server then parse the addresses resolved, add to list, and enter in return directory. 'A' if for resolved IPv4, 'AAAA' for IPv6 """ if ret_dict['src_port'] == '53' or ret_dict['dst_port'] == '53': ret_dict['length'] = int(h[-1][1:-1]) if ret_dict['src_port'] == '53': resolved_addrs = [] if ' A ' in line: for addr in line.split(' A ')[1:]: clean_addr = addr.replace(',', '').split()[0] resolved_addrs.append(clean_addr) if ' AAAA ' in line: for addr in line.split(' AAAA ')[1:]: clean_addr = addr.replace(',', '').split()[0] resolved_addrs.append(clean_addr) if resolved_addrs: ret_dict['dns_resolved'] = resolved_addrs except: try: ret_dict['length'] = int(line.split(' length ')[1].split(':')[0]) except: ret_dict['length'] = 0 return ret_dict
3f2e84048f0e150e780752bec2bdb8897241275a
565,473
def calculate_IoU(geom, match): """Calculate intersection-over-union scores for a pair of boxes""" intersection = geom.intersection(match).area union = geom.union(match).area iou = intersection/float(union) return iou
92480c5cc7c1e3e99b6339a950256524a017ba3a
664,252
def number_of_lines(filename=""): """Returns the number of lines of a text file. Keyword Arguments: filename {str} -- file name (default: {""}) Returns: Int -- number of lines of a text file. """ with open(filename, mode="r", encoding="utf-8") as file: return len(file.readlines())
63ffab8fa133356354052591e8b29101ad267ad9
684,676
def parse_data_url(data_url): """ Parses a data URL and returns its components. Data URLs are defined as follows:: dataurl := "data:" [ mediatype ] [ ";base64" ] "," data mediatype := [ type "/" subtype ] *( ";" parameter ) data := *urlchar parameter := attribute "=" value This specific implementation is limited to data urls of the following format:: dataurl := "data:" type "/" subtype ";base64" "," data Here an example:: '...AUAFFABRQB//Z' References: - http://tools.ietf.org/html/rfc2397 - http://www.askapache.com/online-tools/base64-image-converter/ :param str data_url: A data URL. :return: Components of the data URL, e.g. ('image', 'png', 'base64', '/9j/4S') :rtype: tuple (datatype, subtype, encoding, data) :raises: ValueError if data URL doesn't follow spec. """ if not data_url.startswith('data:'): raise ValueError("Not a data URL: " + data_url[:40]) try: header, data = data_url.split(',') header = header.replace('data:', '') mediatype, encoding = header.rsplit(';', 1) datatype, subtype = mediatype.split('/') except BaseException: raise ValueError("Data URL not in correct format: " + data_url[:40]) return datatype, subtype, encoding, data
ebffe86b339ee7e00717842fea16ae33922becb1
216,918
def _wildcards(word, symbol="_"): """Return list of wildcards associated with word.""" res = [] for i in range(len(word)): res.append(word[:i] + symbol + word[i + 1 :]) # O(L) space return res
b12a7c530f7e937c1358bd2809e064419118f928
547,455
def getBuildStepVersion(step): """Return the unpickled builder's persistenceVersion. The version reported in buildstep.persistenceVersion is what the currently loaded version of buildbot expects a step to be (instead of what is pickled). This returns what has been pickled. """ return getattr(step, 'buildbot.status.builder.BuildStepStatus.persistenceVersion')
b2f9920a22108cc8c83fd657f81ed58779320f9f
510,801
import re def is_doi(doi: str) -> bool: """ check whether a string is a valid DOI :param doi: the string to be checked :return: True if a valid DOI, False otherwise """ if type(doi) is not str: raise TypeError("The method only takes str as its input") # prefix suffix separated by /, so split and expect two elements parts = doi.split('/') if len(parts) != 2: return False # the number after "10." starts from 1000, so \d{4,} pattern = re.compile(r"^(doi:)?10\.(\d{4,})(\.\d+)?$") # group(1) could be None m = re.search(pattern, parts[0]) if m: return True else: return False
70962bc4df333cb8c861eb37b58b049086a2d57d
387,349
def bounding_box_to_annotations(bbx): """Converts :any:`bob.ip.facedetect.BoundingBox` to dictionary annotations. Parameters ---------- bbx : :any:`bob.ip.facedetect.BoundingBox` The given bounding box. Returns ------- dict A dictionary with topleft and bottomright keys. """ landmarks = { 'topleft': bbx.topleft, 'bottomright': bbx.bottomright, } return landmarks
41b984e7824035ebda551712b5777c2aa4269de6
123,298
def mean(data): """ Get mean value of all list elements. """ return sum(data)/len(data)
32884e9f1a29b2a37422ec1da04d0c59b6b67d3c
38,651
from pathlib import Path import shutil def pwhich(command: str) -> Path: """Path to given command. shutil.which only returns a string. :returns: Path to command :rtype: pathlib.Path """ path_str = shutil.which(command) assert path_str, f"{command} not found" return Path(path_str)
a926850cab35bace6c2187933438c44001d01eeb
643,347