content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
def suzuki_trotter(trotter_order, trotter_steps):
"""
Generate trotterization coefficients for a given number of Trotter steps.
U = exp(A + B) is approximated as exp(w1*o1)exp(w2*o2)... This method returns
a list [(w1, o1), (w2, o2), ... , (wm, om)] of tuples where o=0 corresponds
to the A operator, o=1 corresponds to the B operator, and w is the
coefficient in the exponential. For example, a second order Suzuki-Trotter
approximation to exp(A + B) results in the following
[(0.5/trotter_steps, 0), (1/trotteri_steps, 1),
(0.5/trotter_steps, 0)] * trotter_steps.
:param int trotter_order: order of Suzuki-Trotter approximation
:param int trotter_steps: number of steps in the approximation
:returns: List of tuples corresponding to the coefficient and operator
type: o=0 is A and o=1 is B.
:rtype: list
"""
p1 = p2 = p4 = p5 = 1.0 / (4 - (4 ** (1. / 3)))
p3 = 1 - 4 * p1
trotter_dict = {1: [(1, 0), (1, 1)],
2: [(0.5, 0), (1, 1), (0.5, 0)],
3: [(7.0 / 24, 0), (2.0 / 3.0, 1), (3.0 / 4.0, 0), (-2.0 / 3.0, 1),
(-1.0 / 24, 0), (1.0, 1)],
4: [(p5 / 2, 0), (p5, 1), (p5 / 2, 0),
(p4 / 2, 0), (p4, 1), (p4 / 2, 0),
(p3 / 2, 0), (p3, 1), (p3 / 2, 0),
(p2 / 2, 0), (p2, 1), (p2 / 2, 0),
(p1 / 2, 0), (p1, 1), (p1 / 2, 0)]}
order_slices = [(x0 / trotter_steps, x1) for x0, x1 in trotter_dict[trotter_order]]
order_slices = order_slices * trotter_steps
return order_slices
|
0d17a992e769eddaa52de3ce54dfabc2071581cb
| 289,241 |
def reverseComplement(read):
"""
Returns the reverse complemnt of read
:param read: a string consisting of only 'A', 'T', 'C', 'G's
"""
complementDict = {'A': 'T', 'T': 'A', 'C': 'G', 'G': 'C'}
return ''.join([complementDict[c] for c in read[::-1]])
|
d77836b5f75a70189303a1118a4c45493a9a2181
| 620,351 |
import importlib
def get_trainer(name, **trainer_args):
"""
Factory function for retrieving a trainer.
"""
module = importlib.import_module('.' + name, 'mldas.trainers')
return module.get_trainer(**trainer_args)
|
74542656c6f1f3a91c428aec77d575c8c6f57f7d
| 612,176 |
def get_text_by_tag(start, tagname, default=None):
"""Returns a text node from a tag"""
node_back = start.getElementsByTagName(tagname)[0]
for node in node_back.childNodes:
if node.nodeType == node.TEXT_NODE:
return node.data
return default
|
6763e94172fb06f117cd105dcf21c19132e85ead
| 183,008 |
def rhombus_area(diagonal_1, diagonal_2):
"""Returns the area of a rhombus"""
# You have to code here
# REMEMBER: Tests first!!!
return (diagonal_1 * diagonal_2)/2
|
4f424d4651d577609102fbcc0a7ab08c9b70e6e2
| 343,546 |
def Statsmodels_Std_Error_Params(name, results, Explanatory, NumDecimal):
"""
This function gives the Std Error of the of the Params from a statsmodels model results.
Arguments:
----------
- results: statsmodels result object of the model
The results object of the model
- Explanatory: Pandas DataFrame
The DataFrame with the explanatory series
- NumDecimal: int
Number of decimals for the numbers calculated
Return:
----------
- StErrParams: str
The Std Error of the Params
"""
StErrParams = results.bse
StErrParams = [str(round(item, NumDecimal)) for item in StErrParams]
for item in range(0, len(Explanatory.columns)):
StErrParams[item + 1] = str(StErrParams[item + 1]) + ' ' + str(Explanatory.columns[item])
StErrParams[0] = str(StErrParams[0])
StErrParams = ', '.join(StErrParams)
return StErrParams
|
514452cf0656654e2561199f51a4b02c9976c7df
| 278,223 |
def quat_real(x):
"""
real component of the quaternion
"""
return x[..., 3]
|
c59bc3bdea62b007626b7ed1ed52a798455fff0c
| 317,276 |
def format_url(df):
"""
Replace index column values with html anchor pointing at URL in URL column
then drop URL column
Parameters
----------
df : DataFrame
Data frame on which to perform replacment
Returns
-------
df : DataFrame
Data Frame with index column values turned into URLs
"""
ix_col = df.index.name
df = df.reset_index()
df[ix_col] = df.apply(
lambda x: f'<a href="{x["URL"]}">{x[ix_col]}</a>', axis=1
)
df = df.drop("URL", axis=1)
df = df.set_index(ix_col)
return df
|
ddd7fac090b16df4ba6eec899811b07a5f2bb2b7
| 260,170 |
def is_same(text0: str, text1: str, ignored: list):
"""Compare the content of two text. If there are different words in text0 and text1 and the word in text0
does not contain ignored substring, return False. Else return True."""
def should_ignore(word):
for w in ignored:
if w in word:
return True
return False
words0, words1 = text0.split(), text1.split()
if len(words0) != len(words1):
return False
for word0, word1 in zip(words0, words1):
if not should_ignore(word0) and word0 != word1:
return False
return True
|
870453a917f8e3a1eff3918f5c69662fde6b65d1
| 73,999 |
def show_hidden_word(secret_word, old_letters_guessed):
"""
this function shows the player his progress in the game
:param secret_word: the word the player has to guess
:param old_letters_guessed: all the characters the player has already guessed
:type secret_word: str
:type old_letters_guessed: list
:return: a string which consists of letters and underlines
the string displays the letters from the old_letters_guessed list that
are in the secret_word string in their appropriate position,
and the rest of the letters in the string (which the player has not yet guessed) as underlines
:rtype: str
"""
returned_string = ""
for char in secret_word:
if char in old_letters_guessed:
returned_string += char
else:
returned_string += "_"
return " ".join(returned_string)
|
32ae301bf70bde235642c34898e32b1e31f46992
| 93,824 |
def init_wiki(args):
"""
Initialize a WikiFetcher object according to arguments
:param args: Argument object from command line
:return: A dictionary of all arguments for WikiFetcher
"""
return {"lang": args.lang[0], "limit": args.nb_resp[0]}
|
f522d13ddab6f0e4f527cb00d39ccefd5080a7fc
| 592,044 |
from itertools import islice
def head(filename, lines=5):
"""
Returns the first few lines of a file.
filename: the name of the file to open
lines: the number of lines to include
return: A list of the first few lines from the file.
"""
with open(filename, "r") as f:
return list(islice(f, lines))
|
b81baad4ce9d0f6c7aa1dc50bc5222870176ea53
| 298,679 |
def identity(x):
"""Return exactly what was provided."""
return x
|
ee6152b046b55e2044b67c4afed07ccc7c6cc471
| 668,841 |
def send_to_device(tensor, device):
"""
Recursively sends the elements in a nested list/tuple/dictionary of tensors to a given device.
Args:
tensor (nested list/tuple/dictionary of :obj:`torch.Tensor`):
The data to send to a given device.
device (:obj:`torch.device`):
The device to send the data to
Returns:
The same data structure as :obj:`tensor` with all tensors sent to the proper device.
"""
if isinstance(tensor, (list, tuple)):
return type(tensor)(send_to_device(t, device) for t in tensor)
elif isinstance(tensor, dict):
return type(tensor)({k: send_to_device(v, device) for k, v in tensor.items()})
elif not hasattr(tensor, "to"): # hasattr() 函数用于判断对象是否包含对应的属性
return tensor
return tensor.to(device)
|
e82f9caaccaa0ef19335b1ed2216cbf8b2f5cded
| 339,120 |
def count_subset_sum_dp(arr, total):
"""Count subsets given sum by bottom-up dynamic programming.
Time complexity: O(nm).
Space complexity: O(nm).
"""
n = len(arr) - 1
T = [[0] * (total + 1) for _ in range(n + 1)]
for a in range(n + 1):
T[a][0] = 1
for a in range(n + 1):
for t in range(1, total + 1):
if t < arr[a]:
T[a][t] = T[a - 1][t]
else:
T[a][t] = T[a - 1][t] + T[a - 1][t - arr[a]]
return T[-1][-1]
|
fbcd618152b65f0e456a8f5ade8680e9a08d1d4e
| 81,014 |
def nodes(tree):
"""
Return a list of values at every node of a tree.
Parameters
----------
tree : BinaryTree
BinaryTree to extract nodes from.
Returns
-------
nodelist : list
List of values at tree nodes.
"""
nodelist = []
def _get_nodes(tree):
"""
Build up a list of nodes.
Parameters
----------
tree : BinaryTree
BinaryTree to extract nodes from.
Returns
-------
None
"""
nodelist.append(tree.val)
try:
_get_nodes(tree.left)
except AttributeError:
nodelist.append(tree.left)
try:
_get_nodes(tree.right)
except AttributeError:
nodelist.append(tree.right)
_get_nodes(tree)
return nodelist
|
c2d1ee03c9208bbb2cbdbc403f16376ad744ff71
| 260,427 |
def imc(peso: float, estatura: float) -> float:
"""Devuele el IMC
:param peso: Peso en kg
:peso type: float
:param estatura: Estatura en cm
:estatura type: float
:return: IMC
:rtype: float
>>> imc(78, 1.83)
23.29
"""
return round(peso/(estatura**2), 2)
|
19c3423342239831205ba234a9e0bc8045582a36
| 576,751 |
def asdf_version(request):
"""
The (old) version of the asdf library under test.
"""
return request.param
|
4bb1dfb8f0fc1882c93bd278e607fae46706852f
| 539,012 |
def hr_time(seconds):
"""Formats a given time interval for human readability."""
s = ''
if seconds >= 86400:
d = seconds // 86400
seconds -= d * 86400
s += f'{int(d)}d'
if seconds >= 3600:
h = seconds // 3600
seconds -= h * 3600
s += f'{int(h)}h'
if seconds >= 60:
m = seconds // 60
seconds -= m * 60
if 'd' not in s:
s += f'{int(m)}m'
if 'h' not in s and 'd' not in s:
s += f'{int(seconds)}s'
return s
|
5e852331df6db8b9aaa43fa49d709d2f93b68907
| 81,880 |
def _path_to_levels(path):
"""Convert distribcell path to list of levels
Parameters
----------
path : str
Distribcell path
Returns
-------
list
List of levels in path
"""
# Split path into universes/cells/lattices
path_items = path.split('->')
# Pair together universe and cell information from the same level
idx = [i for i, item in enumerate(path_items) if item.startswith('u')]
for i in reversed(idx):
univ_id = int(path_items.pop(i)[1:])
cell_id = int(path_items.pop(i)[1:])
path_items.insert(i, ('universe', univ_id, cell_id))
# Reformat lattice into tuple
idx = [i for i, item in enumerate(path_items) if isinstance(item, str)]
for i in idx:
item = path_items.pop(i)[1:-1]
lat_id, lat_xyz = item.split('(')
lat_id = int(lat_id)
lat_xyz = tuple(int(x) for x in lat_xyz.split(','))
path_items.insert(i, ('lattice', lat_id, lat_xyz))
return path_items
|
8f2c3c6bf17a307acafeb91dd9e25ae9a8d045eb
| 148,328 |
import re
def single_re_sub(text, repl_chars):
"""Replace specific characters with another character using a single regex."""
repl = re.compile("[{}]".format(repl_chars))
return repl.sub("a", text)
|
665dd75364ce2ac0cb03a0ef6f856ab0c03ce351
| 389,087 |
def NoShifter(*args, **kwargs):
"""
Dummy function to create an object that returns None
Args:
*args: will be ignored
*kwargs: will be ignored
Returns:
None
"""
return None
|
87c18ef0b4c0b4a17005c707ad17cd193ccd97b7
| 669,890 |
def construct_html(search_term, results):
"""
Given a list of results, construct the HTML page.
"""
link_format = '<a href="{0.img_url}"><img src="{0.thumb_url}" alt="{0.name}" title="{0.name}"></a>'
html_links = '\n'.join([link_format.format(result) for result in results])
html_output = (
'<html>'
'<head><title>{search_term} pictures</title></head>'
'<body>'
'<h1>“{search_term}” pictures</h1>'
'{html_links}'
'</body>'
'</html>'
).format(search_term=search_term, html_links=html_links)
return html_output
|
8e77abdf3d18fc8eeb9795847d5565c951762e24
| 676,137 |
def nueva_bodega(s:str) -> bool:
"""
Descripcion: Dado un string no vacio, devuelve True si y solo si dentro de esos string
se encuentran las palabras "nueva", "bodega", o "vino"
Pre: len(s) != 0
Post: Si "nueva", "bodega", o "vino" se encuentran en s devuelve True, de lo contrario False
"""
vr:bool = "nueva" in s or "bodega" in s or "vino" in s or "Nueva" in s or "Bodega" in s or "Vino" in s
return vr
|
040473e6ea4429516687649bab9dc130bd04e8e0
| 528,188 |
import json
def _(value: dict) -> str:
"""Convert ``dict`` to JSON string"""
return json.dumps(value)
|
e9e06adf99899c7d6991a74bf50fec4fbb7fd57f
| 527,074 |
def get_slice_name(index):
"""Gets the name of slice.
Args:
index: An int representing the index of the slice.
Returns:
A string representing the name of the slice.
"""
filename = 's{}.csv'.format(index)
return filename
|
4ad9e077d99fcfef99034376d0094aa8bdf5c3a7
| 430,498 |
def translate_coord_to_move(row, column):
"""
Translates a pair of board indices to a move on a board. For example: (0,0) ==> {'Row':A,'Column':1}
:param row: 1st index
:param column: 2nd index
:return: dict of the row and column.
"""
return {"Row": chr(row + 65), "Column": (column + 1)}
|
de2f0bba20549d5b480fa2552180caaaf26e36d1
| 146,657 |
from typing import Type
def _all_subclasses(cls: Type):
"""Get all explicit and implicit subclasses of a type."""
return set(cls.__subclasses__()).union([s for c in cls.__subclasses__() for s in _all_subclasses(c)])
|
1573cf26f4cac57f42fe946988f24fb270f6abba
| 384,422 |
def rgb2hex(tup, max=1):
""" convert an rgb tuple into a hex color string representation
Args:
tup: tuple: tuple of length 3 representing the color
max=1: the maximum value for the values in the tuple.
This will be used to scale the tuple values as integers between 0 and 255.
Returns:
color: str: hex color string representation (format "aaaaaa" - no "#")
"""
tup = [int(c * 255 / max) for c in tup]
color = ""
for c in tup:
if c < 16:
c = "0" + hex(c)[-1:]
else:
c = hex(c)[-2:]
color += c
return color.upper()
|
b8be88b335847218c469e26da2e73bf302428ed5
| 443,123 |
def table_col_info(c, table_name, print_out=False):
""" Returns a list of tuples with column informations:
(id, name, type, notnull, default_value, primary_key)
"""
c.execute('PRAGMA TABLE_INFO({})'.format(table_name))
info = c.fetchall()
if print_out:
print("\nColumn Info:\nID, Name, Type, NotNull, DefaultVal, PrimaryKey")
for col in info:
print(col)
return info
|
10b8cc09e490fdb47b07957a6f020e0f8c2d667b
| 392,160 |
def boolean(truth):
"""Convert truth to boolean."""
if str(truth).lower() in ['true', 'yes', '1', 'none']:
return True
else:
return False
|
4288efdfd92140d16ac01bc0291d627dcb1ed416
| 567,503 |
def following_mention_ids(api, ids):
"""
This function has the mention_ids and make sure if the account follow them
if not ... don't make sense to unfollow them
returns the ids list only with the ones that the account follow
"""
ids = list(set(ids))
following_mention_ids = []
for idt in ids:
if api.show_friendship(source_id=idt, target_id=api.me().id)[0].followed_by:
following_mention_ids.append(idt)
return following_mention_ids
|
508032d92b563e8776c736404d6465d76c20a4a8
| 673,897 |
def cli(ctx, name, owner):
"""Returns the ordered list of changeset revision hash strings that are associated with installable revisions. As in the changelog, the list is ordered oldest to newest.
Output:
List of changeset revision hash strings from oldest to newest
"""
return ctx.ti.repositories.get_ordered_installable_revisions(name, owner)
|
eb718c34e65ba38bb991c8e816d41312a5928ac6
| 68,537 |
def polyschedule(max_epochs, gamma=0.9):
"""Poly-learning rate policy popularised by DeepLab-v2: https://arxiv.org/abs/1606.00915
Args:
max_epochs (int): maximum number of epochs, at which the multiplier becomes zero.
gamma (float): decay factor.
Returns:
Callable that takes the current epoch as an argument and returns the learning rate multiplier.
"""
def polypolicy(epoch):
return (1.0 - 1.0 * epoch / max_epochs) ** gamma
return polypolicy
|
bb2fed780f69d83ff0a96cbe38361458e62ccaa8
| 112,978 |
def get_n_features(matrix, min_=2):
"""Get the number of features in a matrix.
Args:
matrix : ndarray
A numeric numpy array. Features are
assumed to be the columns.
min_ : int
The smallest number of features that
`matrix` is permitted to have.
Returns
n_features : int
The number of features in `matrix`.
Raises:
* if `matrix.shape[1] < min_`
"""
_, n_features = matrix.shape
if n_features < min_:
raise IndexError(
"less than {} features present.".format(min_)
)
return n_features
|
1d3a251d35a47fcf9148d340e05509966bf50398
| 399,290 |
def prefix_attrs(source, keys, prefix):
"""Rename some of the keys of a dictionary by adding a prefix.
Parameters
----------
source : dict
Source dictionary, for example data attributes.
keys : sequence
Names of keys to prefix.
prefix : str
Prefix to prepend to keys.
Returns
-------
dict
Dictionary of attributes with some keys prefixed.
"""
out = {}
for key, val in source.items():
if key in keys:
out[f"{prefix}{key}"] = val
else:
out[key] = val
return out
|
e1c8102fddf51cd7af620f9158419bff4b3f0c57
| 2,165 |
def zeroPad(n, l):
""" Add leading 0."""
return str(n).zfill(l)
|
2f8c6a9baf0dab2f41cad8d1c2bebb3d9166491e
| 276,928 |
def is_draft(request):
"""Check if the request is a draft (neither open nor closed)."""
return not request.is_open and not request.is_closed
|
bd6e30836a72f21426ca2430cb405cca96495c33
| 112,952 |
def override_arg(argname,value,args,kwargs,argspec):
"""overrides the given argname=value in args or kwargs as appropriate, returning (args, kwargs)"""
if argname in kwargs:
kwargs[argname] = value
return (args, kwargs)
regargs, varargs, varkwargs, defaults = argspec
if argname in regargs:
if isinstance(args, tuple):
args = list(args)
args[regargs.index(argname)] = value
else:
kwargs[argname] = value
return (args, kwargs)
|
c91ecef7e421ad86b9e4ffa4837d8cbb5783c667
| 491,945 |
import re
def remove_type_spaces(part):
"""
Trims whitespace from types that can have it. This will alter types, so the resulting strings shoudln't be used to deduce types. The results are intended to make it easier to parse out param names.
"""
ret = re.sub(r"func\(.*\)\s+", "func()_", part)
ret = re.sub(r"chan\s+", "chan_", ret)
return ret
|
9cc1bfe97ab97432475ce37beec3cd0da8d9ba94
| 600,396 |
def int_to_string(ints, inv_vocab):
"""
Output a machine readable list of characters based on a list of indexes in the machine's vocabulary
Arguments:
ints -- list of integers representing indexes in the machine's vocabulary
inv_vocab -- dictionary mapping machine readable indexes to machine readable characters
Returns:
l -- list of characters corresponding to the indexes of ints thanks to the inv_vocab mapping
"""
l = [inv_vocab[i] for i in ints]
return l
|
d4bc78b1aef35aeae5396b644d63c3ac71e41c02
| 408,663 |
def tuple_width(tup):
"""Returns the lengths of all the strings in a tuple."""
return tuple(len(i) for i in tup)
|
5770247f8692ca45b72b82d5ec39a5bbb583f952
| 214,336 |
def format_seconds(seconds):
"""Convert seconds to a formatted string
Convert seconds: 3661
To formatted: " 1:01:01"
"""
# ensure to show negative time frames correctly
hour_factor = 1
if seconds < 0 :
hour_factor = -1
seconds = - seconds
hours = seconds // 3600
minutes = seconds % 3600 // 60
seconds = seconds % 60
return "{:4d}:{:02d}:{:02d}".format(hour_factor * hours, minutes, seconds)
|
813f85919c1cab97425ee184f9fa610c8a8c008e
| 464,088 |
import re
def convert_to_tsquery(query):
"""
Converts multi-word phrases into AND boolean queries for postgresql.
Examples:
>>> convert_to_tsquery('interpretation')
'interpretation:*'
>>> convert_to_tsquery('interpretation services')
'interpretation:* & services:*'
"""
# remove all non-alphanumeric or whitespace chars
pattern = re.compile('[^a-zA-Z\s]')
query = pattern.sub('', query)
query_parts = query.split()
# remove empty strings and add :* to use prefix matching on each chunk
query_parts = ["%s:*" % s for s in query_parts if s]
tsquery = ' & '.join(query_parts)
return tsquery
|
41e4503e7f38cc122cebb80534e45b1cc1e6d6c9
| 529,939 |
def seq_encode(number, symbols):
"""
Encode a number using a sequence of symbols.
:param int number: number to encode
:param symbols: sequence key
:type symbols: str or list[char]
:returns: encoded value
:rtype: str
"""
d, m = divmod(number, len(symbols))
if d > 0:
return seq_encode(d, symbols) + symbols[m]
return symbols[m]
|
7ea12330ded9dd115f3c8f5d7bec838bad05852a
| 184,202 |
import binascii
def enhex(d, separator=''):
"""
Convert bytes to their hexadecimal representation, optionally joined by a
given separator.
Args:
d(bytes): The data to convert to hexadecimal representation.
separator(str): The separator to insert between hexadecimal tuples.
Returns:
str: The hexadecimal representation of ``d``.
Examples:
>>> from pwny import *
>>> enhex(b'pwnypack')
'70776e797061636b'
>>> enhex(b'pwnypack', separator=' ')
'70 77 6e 79 70 61 63 6b'
"""
v = binascii.hexlify(d).decode('ascii')
if separator:
return separator.join(
v[i:i+2]
for i in range(0, len(v), 2)
)
else:
return v
|
5516b306973719a1fd5c406a0bf7b7f5affa2a55
| 496,304 |
from datetime import datetime
def parse_due_date(line):
"""Parses due date from line.
:param line: Line string.
:type line: str
:return: datetime.date if successful, None otherwise.
:rtype: datetime.date or None
"""
try:
return datetime.strptime(line, '%d.%m.%Y').date()
except ValueError:
return None
|
6ffb4d275b0e4856478fd068468b5203c9c21d13
| 167,506 |
def shape(t):
"""Returns shape of tensor as list of ints."""
return [-1 if x is None else x for x in t.get_shape().as_list()]
|
01cb58d5b037a4275f50fc3a02b17b41b7d1cf11
| 418,542 |
def list_to_string(lst, det, det_type="a"):
""" Convert a list to a natural language string. """
string = ""
if len(lst) == 1:
return "{}{}".format(det_type + " " if det else "", lst[0])
for i in range(len(lst)):
if i >= (len(lst) - 1):
string = "{} and {}{}".format(string[:-2], "{} ".format(det_type) if det else "", lst[i])
else:
string += "{}{}, ".format("{} ".format(det_type) if det else "", lst[i])
return string
|
56de38dee6c5372e222fe95bc8325b65754d13ce
| 134,132 |
def row_col_indices_from_flattened_indices(indices, num_cols):
"""Computes row and column indices from flattened indices.
Args:
indices: An integer tensor of any shape holding the indices in the flattened
space.
num_cols: Number of columns in the image (width).
Returns:
row_indices: The row indices corresponding to each of the input indices.
Same shape as indices.
col_indices: The column indices corresponding to each of the input indices.
Same shape as indices.
"""
# Avoid using mod operator to make the ops more easy to be compatible with
# different environments, e.g. WASM.
row_indices = indices // num_cols
col_indices = indices - row_indices * num_cols
return row_indices, col_indices
|
8b56ab9a63a4edb929d5ba0a6bc0d52da61939f8
| 692,614 |
def is_palindrome(string):
"""
Checks the string for palindrome
:param string: string to check
:return: true if string is a palindrome false if not
"""
if string == string[::-1]:
return True
return False
|
fa891dbca523d9c257178356ba09d52d87777d1d
| 498,750 |
def stdlib(toolchain):
"""
Extract standard library file list and file path from toolchain
"""
stdlib = toolchain.ocaml_stdlib.files.to_list()
stdlib_path = stdlib[0].dirname
return (stdlib, stdlib_path)
|
59f75d3b220caa8d6ab5bc5d7e5f02b52c0d20b5
| 553,960 |
def boolean(obj):
"""
Convert obj to a boolean value.
If obj is string, obj will converted by case-insensitive way:
* convert `yes`, `y`, `on`, `true`, `t`, `1` to True
* convert `no`, `n`, `off`, `false`, `f`, `0` to False
* raising TypeError if other values passed
If obj is non-string, obj will converted by bool(obj).
"""
try:
text = obj.strip().lower()
except AttributeError:
return bool(obj)
if text in ('yes', 'y', 'on', 'true', 't', '1'):
return True
elif text in ('no', 'n', 'off', 'false', 'f', '0'):
return False
else:
raise ValueError("Unable to convert {!r} to a boolean value.".format(text))
|
f2172b0d4c5794425a11a28705de81871a6fbe36
| 629,111 |
def is_vertex_cover(G, vertex_cover):
"""Determines whether the given set of vertices is a vertex cover of graph G.
A vertex cover is a set of vertices such that each edge of the graph
is incident with at least one vertex in the set.
Parameters
----------
G : NetworkX graph
The graph on which to check the vertex cover.
vertex_cover :
Iterable of nodes.
Returns
-------
is_cover : bool
True if the given iterable forms a vertex cover.
Examples
--------
This example checks two covers for a graph, G, of a single Chimera
unit cell. The first uses the set of the four horizontal qubits, which
do constitute a cover; the second set removes one node.
>>> import dwave_networkx as dnx
>>> G = dnx.chimera_graph(1, 1, 4)
>>> cover = [0, 1, 2, 3]
>>> dnx.is_vertex_cover(G,cover)
True
>>> cover = [0, 1, 2]
>>> dnx.is_vertex_cover(G,cover)
False
"""
cover = set(vertex_cover)
return all(u in cover or v in cover for u, v in G.edges)
|
4213db1953ec976b1606c3756fa73ff0cae9f578
| 4,549 |
def assert_allclose(x, y, rtol=1.e-5, atol=1.e-5):
"""
Asserts if all numeric values from two arrays are close.
Parameters
----------
x: ndarray
Expected value.
y: ndarray
Actual value.
rtol: float (optional)
Relative tolerance on the error. Default is 1.e-5.
atol: float (optional)
Absolut tolerance on the error. Default is 1.e-5.
Returns
-------
None
"""
return (abs(x - y) <= atol + rtol * abs(y)).all()
|
ebf5191d3430e515c7ad1c0c63032ae38e92a509
| 582,719 |
def get_valid_messages(log, expiry):
"""
Return only the messages that haven't expired.
"""
valid = []
for message in log:
try:
timestamp = int(message.get('timestamp', 0))
if timestamp > expiry:
valid.append(message)
except ValueError:
continue
return valid
|
d24e9bc5e6d0a2c0efd9442f0d36f6e248b51137
| 15,750 |
from typing import Callable
from typing import Tuple
from typing import Any
from typing import Dict
from warnings import warn
def format_errwarn(func: Callable[[], Tuple[Any, Dict, Dict]]):
""" Wraps a function returning some result with dictionaries for errors and
warnings, then formats those errors and warnings as grouped warnings.
Used for analytical functions to skip errors (and warnings) while
providing
Args:
func (function): any function returning a tuple of format:
(result, error_dictionary, warning_dictionary). Note that
dictionaries should be of form {<column or id>:<message>}
Returns:
Any (result): the first member of the tuple returned by func
"""
def format_info(dict):
info_dict = {}
for colname, err_wrn in dict.items():
_ew = list(set(err_wrn)) if isinstance(err_wrn, list) else [err_wrn]
for m in _ew:
m = getattr(m, "message") if "message" in dir(m) else str(m)
if m in info_dict.keys():
info_dict[m].append(colname)
else:
info_dict[m] = [colname]
info_dict = {ew: list(set(c)) for ew, c in info_dict.items()}
return info_dict
def wrapper(*args, **kwargs):
res, errs, warns = func(*args, **kwargs)
if any(errs):
err_dict = format_info(errs)
for er, cols in err_dict.items():
warn(f"Error processing column(s) {cols}. {er}\n")
if any(warns):
warn_dict = format_info(warns)
for wr, cols in warn_dict.items():
warn(f"Possible error in column(s) {cols}. {wr}\n")
return res
return wrapper
|
d8dd854ca3ce3a45c07432a51a69ff78758a3da9
| 660,488 |
import requests
def get_response_json(url: str):
"""
Function get response json dictionary from url.
:param url: url address to get response json
:type url: str
:return: dictionary data
:rtype: json
:usage:
function calling
.. code:: python
get_response_json(url)
"""
response = requests.get(url)
response.raise_for_status()
return response.json()
|
dd209b1dba7f4320cd91addb1e49fa98bab0ae2b
| 10,124 |
def get_in(obj, lookup, default=None):
""" Walk obj via __getitem__ for each lookup,
returning the final value of the lookup or default.
"""
tmp = obj
for l in lookup:
try: # pragma: no cover
tmp = tmp[l]
except (KeyError, IndexError, TypeError): # pragma: no cover
return default
return tmp
|
73dfcaadb6936304baa3471f1d1e980f815a7057
| 708,346 |
def hk_accentuation(hk_syllab):
"""
Map accentuation of HK entry.
"""
hk_acc = []
hk_syllab_list = hk_syllab.split(".")
for syllabe in hk_syllab_list:
if "/" in syllabe:
hk_acc.append("U")
else:
hk_acc.append("B")
return "".join(hk_acc)
|
3347872f227e449b3cccdb4100f474f6e5d579b6
| 212,994 |
def evaluator_options_from_eval_config(eval_config):
"""Produces a dictionary of evaluation options for each eval metric.
Args:
eval_config: An `eval_pb2.EvalConfig`.
Returns:
evaluator_options: A dictionary of metric names (see
EVAL_METRICS_CLASS_DICT) to `DetectionEvaluator` initialization
keyword arguments. For example:
evalator_options = {
'coco_detection_metrics': {'include_metrics_per_category': True}
}
"""
eval_metric_fn_keys = eval_config.metrics_set
evaluator_options = {}
for eval_metric_fn_key in eval_metric_fn_keys:
if eval_metric_fn_key in (
'coco_detection_metrics', 'coco_mask_metrics', 'lvis_mask_metrics'):
evaluator_options[eval_metric_fn_key] = {
'include_metrics_per_category': (
eval_config.include_metrics_per_category)
}
# For coco detection eval, if the eval_config proto contains the
# "skip_predictions_for_unlabeled_class" field, include this field in
# evaluator_options.
if eval_metric_fn_key == 'coco_detection_metrics' and hasattr(
eval_config, 'skip_predictions_for_unlabeled_class'):
evaluator_options[eval_metric_fn_key].update({
'skip_predictions_for_unlabeled_class':
(eval_config.skip_predictions_for_unlabeled_class)
})
for super_category in eval_config.super_categories:
if 'super_categories' not in evaluator_options[eval_metric_fn_key]:
evaluator_options[eval_metric_fn_key]['super_categories'] = {}
key = super_category
value = eval_config.super_categories[key].split(',')
evaluator_options[eval_metric_fn_key]['super_categories'][key] = value
elif eval_metric_fn_key == 'precision_at_recall_detection_metrics':
evaluator_options[eval_metric_fn_key] = {
'recall_lower_bound': (eval_config.recall_lower_bound),
'recall_upper_bound': (eval_config.recall_upper_bound)
}
return evaluator_options
|
7a1f184427830c460d7a1909297e39e2cb56bb58
| 507,780 |
def is_legal_input(row):
"""
:param row: (string) input string from user
:return: (boolean) if legal input
"""
# check if over 4 char
if len(row.split()) != 4:
print('Illegal input')
return False
# check if each element only one character
else:
for char in row.split():
if len(char) != 1:
print('Illegal input')
return False
return True
|
ca9c79bb11a426bb604a10daf5755b30ad2a2adb
| 537,632 |
def get_ratings(labeled_df):
"""Returns list of possible ratings."""
return labeled_df.RATING.unique()
|
2b88b1703ad5b5b0a074ed7bc4591f0e88d97f92
| 706,048 |
def _remove_scripts(document_tree):
"""Removes any script tag from the tree"""
script_elements = document_tree.xpath('//script')
for script in script_elements:
script.getparent().remove(script)
return document_tree
|
21932697913fa7cd3ccc6b3841aaf9f430621f07
| 558,749 |
def sort_graded(task):
"""Sorts all tasks in the tasks_graded list,
where tasks with the highest score is placed last in the list """
return task['score']
|
0f962c87b1440a5fdc51b72de4ea546b64a6be08
| 259,983 |
from typing import Dict
from datetime import datetime
def inject_now() -> Dict:
"""Inject current datetime into request context."""
return dict(request_datetime=datetime.now())
|
e186d4b478a5da5bcdf83e2e34cd381de8d039be
| 697,860 |
def sanitize_line(line, commenter='#'):
"""Clean up input line."""
return line.split(commenter, 1)[0].strip()
|
ea537e479438058379bb4e1517e848252be9e408
| 468,972 |
import re
def spdx_search(searchstr,sbom, want_json = False):
"""
Return array of names and versions for matching entries in SPDX
JSON file.
"""
if not 'packages' in sbom:
return False
rets=[]
prog=re.compile(searchstr)
for entry in sbom['packages']:
if prog.match(entry['name']):
if want_json:
rets.append(entry)
else:
rets.append({'name': entry['name'], 'version': entry['versionInfo']})
if 'checksums' in entry:
for hash_entry in entry['checksums']:
if prog.match(hash_entry['checksumValue']):
if want_json:
rets.append(entry)
else:
rets.append({'name': entry['name'], 'version': entry['versionInfo']})
return rets
|
5e63c4b2502bc92cb9ee6f3dbb96516d949fb233
| 159,755 |
import crypt
def crypt_password(password):
"""Return hashed password, compatible with the vhost database."""
return crypt.crypt(password, salt=crypt.METHOD_SHA512)
|
f9c73b8a1ce908a6bf6d86c5d9e373362dfb2074
| 160,935 |
import torch
def count_conv_layer(model):
"""Count the number of Convolution layers exist in this model"""
conv_cnt = 0
for module in model.modules():
if type(module) == torch.nn.Conv2d:
conv_cnt += 1
return conv_cnt
|
e192772b891f1179deb0e765a4b1bea40c21a46f
| 441,983 |
def get_data_set_specs(data_set):
""" Get the OpenAPI specifications of a SED data set
Args:
data_set (:obj:`DataSet`): data set
Returns:
:obj:`dict` with schema `SedDataSet`
"""
specs = {
'_type': 'SedDataSet',
'id': data_set.id,
'dataGenerator': data_set.data_generator.id,
}
if data_set.name:
specs['name'] = data_set.name
if data_set.label:
specs['label'] = data_set.label
return specs
|
2e1f596e8d6fe29920a148a94aefeac8626f06e2
| 481,591 |
def chop(array, abs_tol=1E-12):
"""
Set to zero numerical zeros (values below abs_tol) in a np.array.
Acts in-place.
"""
array[abs(array) < abs_tol] = 0
return array
|
e06009d596ac9e510f41bf54553eb3bf87eda697
| 257,182 |
def FinishTarget_to_c(self):
"""Syntax for a target of a break."""
return f"break_{self.targetID}: break;"
|
2c05a3ec819cddf34c422301e25296074fbf534b
| 410,558 |
def question_3(df):
"""
This functions determines the average Medicare payments per DRG per
facility.
Parameters
------------
df : `pandas.DataFrame`
DataFrame containing the original information about DRG.
Returns
--------
medicare_pd : `pandas.DataFrame`
DataFrame containing information about the average Medicare
payments per DRG per facility
"""
# Columns to keep
disch_col = 'total_discharges'
prov_col = 'provider_name'
drg_col = 'drg_definition'
medi_col = 'average_medicare_payments'
cols_keep = [prov_col, disch_col, drg_col, medi_col]
# Creating sub-DataFrame
med_main_df = df.loc[:, cols_keep]
# Grouping by DRG and facility
medicare_pd = (med_main_df.groupby([drg_col, prov_col])
.mean()).drop(disch_col, axis=1)
return medicare_pd
|
8e510c9def715cbaa3d98f80b017626a8a8f1290
| 409,240 |
def create_dict(keys_list):
""" Creates a dictionary from a given list of keys """
dict_ = {}
for key_ in keys_list:
dict_[key_] = []
return dict_
|
33c4d0fbf389d4b968e68ad76406a169010b3db6
| 632,870 |
def false(*ignore, **everything):
"""Give False regardless of the input."""
return False
|
6cf9de4f3512723874614e01b0c68e3a618c36ac
| 154,697 |
from typing import Mapping
def make_dict(*args):
"""Combine all key/vals in *args into one dict with later values taking precedence
Yanked from prom.utils on 6-7-2021
https://docs.python.org/3/library/stdtypes.html#dict
:params *args: dictionaries, or tuples (key, val) or lists of tuples to be
combined into one dictionary
:returns: dict
"""
ret = {}
for d in args:
if isinstance(d, Mapping):
ret.update(d)
else:
try:
ret.update(dict(d))
except ValueError:
ret.update(dict([d]))
return ret
|
92b7e9cca75eea6154fc486abcf53c6165a8a8dc
| 500,610 |
def import_book(book_file, lowercase=True):
"""
Reads a text file (and optionally converts to lowercase),
returning a string with all the content.
"""
try:
with open(book_file, 'r') as book:
text = book.read()
text = text.lower()
return text
except (FileNotFoundError, PermissionError):
message = 'There was a problem importing the book.\n'
message += 'Please, check the path and permissions.'
raise UserWarning(message)
|
064ddf5e3a605be7692375d5b98893bd0ef36de8
| 536,662 |
def get_crop(mask_image, scale_ratio=1.2):
"""
Get bounding box of square encompassing all positive
values of the mask, with a margin according to scale_ratio
Args:
scale_ratio: final crop is obtained by taking the square
centered around the center of the tight bounding box
around the masked values, with a square size of
scale_ratio * size of largest bounding box dimension
"""
mask_image = mask_image.numpy()
xs, ys = (mask_image[:, :, ::3].sum(2) > 0).nonzero()
x_min = xs.min()
x_max = xs.max()
y_min = ys.min()
y_max = ys.max()
radius = max((x_max - x_min), (y_max - y_min)) // 2 * scale_ratio
x_c = (x_max + x_min) / 2
y_c = (y_max + y_min) / 2
x_min = max(int((x_c - radius).item()), 0)
y_min = max(int((y_c - radius).item()), 0)
x_max = int((x_c + radius).item())
y_max = int((y_c + radius).item())
return x_min, y_min, x_max, y_max
|
00c882abfb5ff0a461dc1d3b930471fc4c5ad2fe
| 56,612 |
def get_conditions(worksheet):
"""
Get the conditions displayed on a worksheet.
args:
worksheet (seeq.spy.workbooks._worksheet.AnalysisWorksheet): Worksheet
returns:
conditions (pandas.DataFrame): Displayed Conditions
"""
display_items = worksheet.display_items
if len(display_items) == 0:
raise ValueError('No items (signals, conditions, etc) are displayed in this worksheet.')
return display_items.query("Type == 'Condition'")
|
f3fe0bd58f9a0344f047e3ae6eef6bdefa325c21
| 29,534 |
def firstof(seq):
"""Return the first item that is truthy in a sequence.
Equivalent to Djangos' firstof.
Args:
seq (list): A list of values.
Returns:
value (mixed): The output, depending on the truthiness of the input.
"""
if not any(seq):
return ''
if all(seq):
return seq[0]
while seq:
item = seq.pop(0)
if item:
return item
return ''
|
539058665f4a9a2691b1cc3edec819e127857c04
| 247,738 |
def fib(n):
"""Returns a Fibonacii element by its index
Arguments:
n {integer} -- An index number
Returns:
integer -- A Fibonacci number at given index
"""
if n > 1:
return fib(n - 1) + fib(n - 2)
return n
|
9abc6497f29b8e9f3bfda5c6a613caa90d0da0ab
| 149,202 |
def fill_fuel_array_from_patch(fuelarray, patchmask, propertyvector, np, nx, ny):
"""Fill fuel array considering a mask
Parameters
----------
fuelarray : numpy.ndarray
Array to modify according to `propertyvector` and `patchmask`.
patchmask : numpy.ndarray
Mask array.
propertyvector : numpy.ndarray
Vector of properties to fill in the fuel array.
np : int
Property vector size
nx : int
Fire mesh size on x axis
ny : int
Fire mesh size on y axis
Returns
-------
fuelarray : numpy.ndarray
Modified array according to `propertyvector` and `patchmask`.
"""
# property loop
for k in range(np):
# y axis loop
for j in range(ny):
# x axis loop
for i in range(nx):
# check mask value
if patchmask[j, i] == 1:
fuelarray[k, j, i] = propertyvector[k]
return fuelarray
|
c77b9451fcdc4cd74dbd53ce45f8c89fdf1a0fb1
| 250,801 |
def text_objects(self, text, color, size):
"""Render font based on a choice of four different sizes.
Parameters for Render are: (text, antialias, color).
Args:
self (class App): Main game class.
text (str): Text to be rendered.
color (tuple): Color of text.
size (str): Size of text.
Returns:
tuple: [0]=Font to be blit to display; [1]=rectangle for button.
"""
text_surface = self.xs_font.render(text, True, color)
if size == "xs":
text_surface = self.xs_font.render(text, True, color)
elif size == "s":
text_surface = self.s_font.render(text, True, color)
elif size == "m":
text_surface = self.m_font.render(text, True, color)
elif size == "l":
text_surface = self.l_font.render(text, True, color)
return text_surface, text_surface.get_rect()
|
1aa96b708bb112f7fbf16f368608807efcd57611
| 252,499 |
def file_extensions_valid(ext_list):
"""Checks if file list contains only valid files
Notes:
Assumes all file extensions are equal! Only checks first file
Args:
ext_list (list): file extensions, eg ['.csv','.csv']
Returns:
bool: first element in list is one of ['.csv','.txt','.xls','.xlsx']?
"""
ext_list_valid = ['.csv','.txt','.xls','.xlsx']
return ext_list[0] in ext_list_valid
|
f1b131b3326e695422ad7c8df744f7cbb3ee8d9b
| 358,068 |
import time
def wait_for_joystick_or_menu(hardware, sleep_time=1 / 30):
"""Waits for either the joystick or the menu. Returns the buttons"""
while True:
buttons = hardware.get_buttons()
if buttons.menu_button or buttons.joy_button:
return buttons
time.sleep(sleep_time)
|
97c31991944ef098aa71c2ea249a3a46b35a1f80
| 395,898 |
def _proto_dataset_info(dataset):
"""Return information about proto dataset as a dict."""
# Analogous to dtool_info.inventory._dataset_info
info = {}
info['type'] = 'dtool-proto'
info['uri'] = dataset.uri
info['uuid'] = dataset.uuid
info["size_int"] = None
info["size_str"] = 'unknown'
info['creator'] = dataset._admin_metadata['creator_username']
info['name'] = dataset._admin_metadata['name']
info["date"] = 'not yet frozen'
info['readme_content'] = dataset.get_readme_content()
return info
|
6072f5f9222f88ea1e33971036bd13d65754f39a
| 686,420 |
def validate_string(string, min_len=5):
"""
Validates a string. Returns False if the string
is less than 'min_len' long.
"""
string = string.strip()
if len(string) < min_len:
return False
return True
|
4e424c1f1e8119f8d76582a1fc3d25b6f3854798
| 457,695 |
import itertools
def _expand(the_set, expand_fn):
"""Returns a concatenation of the expanded sets.
I.e.
Returns a set of all elements returned by the expand_fn function for all
elements in the_set.
E.g.
With expand_fn = lambda x: (10*x, 100*x) and the_set = set([1, 2, 3])
this function returns set([10, 100, 20, 200, 30, 300])
Args:
the_set: A set of elements.
expand_fn: Function returning an interable given some element in the_set.
Returns: a concatenation of the expanded sets.
"""
return set(itertools.chain(*[expand_fn(x) for x in the_set]))
|
694661c0cc6d2d09d72d65ea63cc1241fc32d4d5
| 22,198 |
def not_list_tuple(obj):
"""return False if obj is a list or a tuple"""
return not isinstance(obj, (list, tuple))
|
1d34f7eb53577277311d0afbc80a680da9f366fa
| 369,098 |
def next_generation(state,rules):
""" Return the string that results from applying RULES to STATE. """
next_state = ''
for i in range(2,len(state) - 2):
pattern = state[i - 2:i + 3]
if pattern in rules:
next_state += rules[pattern]
else:
next_state += '.'
return '..' + next_state + '..'
|
4e533079250bb2c812041cff27365dd014697cb1
| 553,863 |
def percentageDecrease(x, y):
"""Return the percentage decrease from x towards y
Args:
x: original value
y: changed value
Returns: percentage decrease from x towards y.
"""
return (float(x)-float(y))/float(x)
|
9c613f9d5f034b0448866580ac34f9fe989e6645
| 303,834 |
def _pretty_state_identifier(state):
""" returns 'off' for False and 'on' for True """
if state:
return 'on'
else:
return 'off'
|
a4383b7061e2da73a6faab4819b848bc1375e884
| 661,838 |
import logging
def threshold() :
"""Get current global threshold
"""
return logging.root.manager.disable
|
2b1c1abcd9cc22c4f5262f319c175e13bffd4263
| 383,118 |
import copy
def isolate_and_merge_station(inv, network_id, station_id):
"""
Takes an inventory object, isolates the given station and merged them.
Merging is sometimes necessary as many files have the same station
multiple times.
Returns the processed inventory object. The original one will not be
changed.
:param inv: The inventory.
:type inv: :class:`~obspy.core.inventory.inventory.Inventory`
:param network_id: The network id.
:type network_id: str
:param station_id: The station id.
:type station_id: str
"""
inv = copy.deepcopy(inv.select(network=network_id, station=station_id,
keep_empty=True))
# Merge networks if necessary.
if len(inv.networks) != 1:
network = inv.networks[0]
for other_network in inv.networks[1:]:
# Merge the stations.
network.stations.extend(other_network.stations)
# Update the times if necessary.
if other_network.start_date is not None:
if network.start_date is None or \
network.start_date > other_network.start_date:
network.start_date = other_network.start_date
# None is the "biggest" end_date.
if network.end_date is not None and other_network.end_date is \
not None:
if other_network.end_date > network.end_date:
network.end_date = other_network.end_date
elif other_network.end_date is None:
network.end_date = None
# Update comments.
network.comments = list(
set(network.comments).union(set(other_network.comments)))
# Update the number of stations.
if other_network.total_number_of_stations:
if network.total_number_of_stations or \
network.total_number_of_stations < \
other_network.total_number_of_stations:
network.total_number_of_stations = \
other_network.total_number_of_stations
# Update the other elements
network.alternate_code = (network.alternate_code or
other_network.alternate_code) or None
network.description = (network.description or
other_network.description) or None
network.historical_code = (network.historical_code or
other_network.historical_code) or None
network.restricted_status = network.restricted_status or \
other_network.restricted_status
inv.networks = [network]
# Merge stations if necessary.
if len(inv.networks[0].stations) != 1:
station = inv.networks[0].stations[0]
for other_station in inv.networks[0].stations[1:]:
# Merge the channels.
station.channels.extend(other_station.channels)
# Update the times if necessary.
if other_station.start_date is not None:
if station.start_date is None or \
station.start_date > other_station.start_date:
station.start_date = other_station.start_date
# None is the "biggest" end_date.
if station.end_date is not None and other_station.end_date is \
not None:
if other_station.end_date > station.end_date:
station.end_date = other_station.end_date
elif other_station.end_date is None:
station.end_date = None
# Update comments.
station.comments = list(
set(station.comments).union(set(other_station.comments)))
# Update the number of channels.
if other_station.total_number_of_channels:
if station.total_number_of_channels or \
station.total_number_of_channels < \
other_station.total_number_of_channels:
station.total_number_of_channels = \
other_station.total_number_of_channels
# Update the other elements
station.alternate_code = (station.alternate_code or
other_station.alternate_code) or None
station.description = (station.description or
other_station.description) or None
station.historical_code = (station.historical_code or
other_station.historical_code) or None
station.restricted_status = station.restricted_status or \
other_station.restricted_status
inv.networks[0].stations = [station]
# Last but not least, remove duplicate channels. This is done on the
# location and channel id, and the times, nothing else.
unique_channels = []
available_channel_hashes = []
for channel in inv[0][0]:
c_hash = hash((str(channel.start_date), str(channel.end_date),
channel.code, channel.location_code))
if c_hash in available_channel_hashes:
continue
else:
unique_channels.append(channel)
available_channel_hashes.append(c_hash)
inv[0][0].channels = unique_channels
# Update the selected number of stations and channels.
inv[0].selected_number_of_stations = 1
inv[0][0].selected_number_of_channels = len(inv[0][0].channels)
return inv
|
ce7756535f0fe95d411639e8e824975b384cbe9c
| 88,258 |
import six
def python_2_unicode_compatible(klass):
"""Fix __str__, __unicode__ and __repr__ methods under Python 2."""
if six.PY2:
if '__str__' not in klass.__dict__:
raise ValueError("Define __str__() on %s to use @python_2_unicode_compatible" % klass.__name__)
if '__repr__' not in klass.__dict__:
raise ValueError("Define __repr__() on %s to use @python_2_unicode_compatible" % klass.__name__)
klass.__unicode__ = klass.__str__
klass._unicode_repr = klass.__repr__
klass.__str__ = lambda self: self.__unicode__().encode('utf-8')
klass.__repr__ = lambda self: self._unicode_repr().encode('ascii', errors='backslashreplace')
return klass
|
89a928893a45b358f17d9a953aeb47ae7576e710
| 206,722 |
def get_isbn10_checksum(isbn):
"""
Args:
isbn (str/list): ISBN number as string or list of digits
Warning:
Function expects that `isbn` is only 9 digits long.
Returns:
int: Last (checksum) digit for given `isbn`.
"""
return sum([(i + 1) * x for i, x in enumerate(isbn)]) % 11
|
c57ca34d85b197cc7b94038259fd8c5df74efffe
| 264,251 |
from typing import Callable
from typing import List
import inspect
def get_arg_names(func: Callable) -> List[str]:
"""Get a list of all named arguments of a function (regular,
keyword-only).
func (Callable): The function
RETURNS (List[str]): The argument names.
"""
argspec = inspect.getfullargspec(func)
return list(set([*argspec.args, *argspec.kwonlyargs]))
|
2156c25ccdc9d325b2bad60311be5c1ecc726d3f
| 373,435 |
def server(app):
"""Return a test client to `app`."""
client = app.test_client()
return client
|
aeef67904f95d28356989ddbde49a43378fa096f
| 20,920 |
import re
def strip_spaces(string):
"""Remove white-space from a string
Parameters
----------
string: str
Returns
-------
str
"""
pattern = re.compile(r'\s+')
return re.sub(pattern, '', string)
|
d3f2767371b49e3c8adc64eac3f61aa790e3a430
| 683,541 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.