content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
def get_pad_params(desired_size, cur_size):
"""
Get padding parameters for np.pad function
Args:
desired_size: int, Desired padded output size
cur_size: int, Current size. Should always be less than or equal to cur_size
Returns:
pad_params: tuple(int), Number of values padded to the edges (before, after)
"""
assert desired_size >= cur_size
# Calculate amount to pad
diff = desired_size - cur_size
pad_params = (0, diff)
return pad_params
|
d5e69bd9ac14f4b5240cbab3bfa5e66fcd11266a
| 421,619 |
def schedd_states(schedd_classad):
"""
Returns information about the number of jobs in each job state for a schedd
:param schedd_classad: classad for schedd to query
:return: a dictionary with job states as keys and number of jobs in
given state as a value
"""
return {'Running': schedd_classad['TotalRunningJobs'],
'Idle': schedd_classad['TotalIdleJobs'],
'Held': schedd_classad['TotalHeldJobs'],
'Removed': schedd_classad['TotalRemovedJobs']}
|
544ef96fa6e0e4d13d3972cca21e201e58292144
| 342,073 |
import fnmatch
def matchPattern(string, pattern):
"""
> matchPattern("nameTest1", "nameTest")
False
> matchPattern("nameTest1", "nameTest*")
True
"""
return fnmatch.fnmatch(string, pattern)
|
ff8bf4ee28af701139e9e4b900171338c6a354d1
| 692,816 |
import math
def divisors(n, non_trivial=False):
"""Return the set of divisors of n. Setting non_trivial=True, returns all
divisors except for 1 & n."""
result = set()
for i in range(1, int(math.sqrt(n)) + 1):
quot, rem = divmod(n, i)
if rem == 0:
result.update({i, quot})
res = sorted(list(result))
if non_trivial:
return res[1:-1]
else:
return res
|
a545540ca284427ed5a95b18ee7671e9f53aac85
| 273,292 |
def get_unique_level_values(index):
"""
Returns the unique values for all levels of an Index object, in the
correct order.
Parameters
----------
index : pandas.core.index/ pandas.core.index.MultiIndex
Index object
Returns
-------
list of lists
"""
return [
index.get_level_values(i).unique().tolist()
for i in range(len(index.levels))]
|
bf227be082ffd8c01355ddb319fc5c750968883a
| 159,754 |
def pt2mm(value):
"""Converts given value in points to millimeters.
Args:
value (int): value in points.
Returns:
(float): value, in millimeters.
"""
return value * 0.352777778
|
530078d1cae9bda7fc3cb2ddde3411346dae37d7
| 561,875 |
import hashlib
def get_hash_of(plain_text, algo):
""" Getting hash value of plain text with a specific hashing algo.
Args:
plain_text ([string]) : [word that was readed from the word list]
algo ([string]) : [hashing algorithm]
Returns:
hashed([string]) : [the hashed value of plain text with passed hashing algo.] """
hashed = hashlib.new(algo) # passing the hashing algo.
hashed.update(plain_text.encode()) # get the hash value with given hash algo.
return hashed.hexdigest()
|
e9ba9e1e6eed5ef3ce8c190e899f44c1c834e38e
| 454,118 |
def _change_dict_key(the_dict, old_key, new_key, default=None):
"""
Changes a dictionary key name from old_key to new_key.
If old_key doesn't exist the value of new_key becomes and empty dictionary
(or the value of `default`, if set).
"""
if default is None:
default = dict()
v = the_dict.get(old_key, default)
if new_key not in the_dict:
the_dict[new_key] = v
if old_key in the_dict:
del the_dict[old_key]
return the_dict
|
79dfe82bf7597e714d4a3234ff3694c194fd5726
| 273,431 |
def perform_column(args, src, target):
"""Execute xSniper in column mode.
In this mode, xSniper add a single or several columns to an existing
CSVFile (src) from another one (target).
Args:
args: docopt dictionnary.
src: CSVFile object containing <src.csv>.
target: CSVFile object containing <target.csv>
Returns:
src with some columns from target.
"""
if args['-a'] or args['--all']:
columns = target.df_content
elif len(args['<target-header>']) > 1:
columns = target.get_columns(args['<target-header>'])
else:
columns = target.get_single_column(args['<target-header>'])
src.add_columns(columns)
return src
|
c03bc081a7f71e7a2a12304ba9eb9271028865fb
| 148,288 |
def next_pow_two(max_sent_tokens):
"""
Next power of two for a given input, with a minimum of 16 and a
maximum of 512
Args:
max_sent_tokens (int): the integer
Returns:
int: the appropriate power of two
"""
pow_two = [16, 32, 64, 128, 256, 512]
if max_sent_tokens <= pow_two[0]:
return pow_two[0]
if max_sent_tokens >= pow_two[-1]:
return pow_two[-1]
check = [max_sent_tokens > j for j in pow_two]
idx = check.index(False)
return pow_two[idx]
|
65cbd30b270d976f8bbf1613582e2799169e26e8
| 251,518 |
def format_action(action):
"""Format request action."""
return '<name>{0}</name>'.format(action)
|
71871fa855310f7af5ca03f681917fa3962709e9
| 58,348 |
from datetime import datetime
def unrets_date(rets_date):
"""
Converts a RETS date (ISO 8601 format) into a Python datetime
:param rets_date: a RETS/ISO 8601 date
:type rets_date: str
:rtype: datetime.datetime
:return: rets_date as a Python datetime
"""
# For datetimes with microseconds
return datetime.strptime(rets_date, '%Y-%m-%dT%H:%M:%S.%f')
|
9f8cae6880ac4d2f285eff856db09da0a39ec4ee
| 17,946 |
def _get_all_cnames(gi):
"""
Returns a set of all constraints used by a given gi
(generator_info - represents a single NT)
"""
cnames = []
for rule in gi.parser_output.instructions:
cnames.extend(list(rule.xed3_constraints.keys()))
return set(cnames)
|
8235144d221aded5623b5b76a72b036f6f6082fd
| 307,502 |
from pathlib import Path
def read_python(path):
"""Read a Python file.
Parameters
----------
path : str or Path
Returns
-------
metadata : dict
A dictionary containing all variables defined in the Python file (with `exec()`).
"""
path = Path(path)
if not path.exists(): # pragma: no cover
raise IOError("Path %s does not exist.", path)
contents = path.read_text()
metadata = {}
exec(contents, {}, metadata)
metadata = {k.lower(): v for (k, v) in metadata.items()}
return metadata
|
6cac66e86a566b9181f1ae15be3c2eba879083d6
| 223,278 |
def htmlDataset(dataset = {}, title=""):
""" Utility function to generate HTML Table from a Dataset"""
content = "<TABLE cellpadding=5> <caption align=top>" + title + " </caption><TR></TR><TR></TR>"
for row in dataset['DATA']:
content += "<TR>"
for col in dataset['DATA'][row]:
if row==0:
content += "<TH align=left bgcolor=#BBDB88>"
else:
content += "<TD align=left bgcolor=#FFFAB2>"
content += col
if row==0:
content += "</TH>"
else:
content += "</TD>"
content += "</TR>"
content += "</TABLE>"
return content
|
871c44487fadacdb8c255389a57065b0887df1c6
| 49,075 |
def get_project_url(pk):
"""
Return project's page url.
"""
return "/projects/" + str(pk) + "/tasks"
|
753150730f07543d6be69da1356483097d9d395b
| 188,627 |
def nickname_commands(*command_list):
"""Decorate a function to trigger on lines starting with "$nickname: command".
:param str command_list: one or more command name(s) to match
(can be regular expressions)
This decorator can be used to add multiple commands to one callable in a
single line. The resulting match object will have the command as the first
group; the rest of the line, excluding leading whitespace, as the second
group; and parameters 1 through 4, separated by whitespace, as groups 3-6.
Example::
@nickname_commands("hello!")
# Would trigger on "$nickname: hello!", "$nickname, hello!",
# "$nickname hello!", "$nickname hello! parameter1" and
# "$nickname hello! p1 p2 p3 p4 p5 p6 p7 p8 p9".
@nickname_commands(".*")
# Would trigger on anything starting with "$nickname[:,]? ",
# and would never have any additional parameters, as the
# command would match the rest of the line.
"""
def add_attribute(function):
if not hasattr(function, 'nickname_commands'):
function.nickname_commands = []
for cmd in command_list:
if cmd not in function.nickname_commands:
function.nickname_commands.append(cmd)
return function
return add_attribute
|
8a11fcf36a8dfdda00edbe0014f662b7a3e0746c
| 520,777 |
def FlagIsExplicitlySet(args, flag):
"""Return True if --flag is explicitly passed by the user."""
# hasattr check is to allow the same code to work for release tracks that
# don't have the args at all yet.
return hasattr(args, flag) and args.IsSpecified(flag)
|
b6b75bfe4927bc0aa1cab2d6a755c310626ccbf3
| 489,058 |
def trim_exams(image_channels):
"""
Trims the larger exam to match length.
Receives arbitrary list of (num_frames, height, width) as input. The number
of frames between the exams will be trimmed to match the dimensionality
of the smallest exams.
"""
min_frames = min([channel.shape[0] for channel in image_channels])
return [channel[:min_frames] for channel in image_channels]
|
af466a19cae3ccf066ad5bb93dda112d81f19c6d
| 90,402 |
def ntToPosixSlashes(filepath):
"""
Replaces all occurrences of NT slashes (\) in provided
filepath with Posix ones (/)
>>> ntToPosixSlashes('C:\\Windows')
'C:/Windows'
"""
return filepath.replace('\\', '/') if filepath else filepath
|
528caf6ee8e1514fd73cd9b65006d797331eadd9
| 56,145 |
def percent_decrease(v1, v2):
"""Compute percent difference.
old_value (v1) - new_value (v2)
------------------------------- * 100%
| old_value (v1) |
"""
return (v2 - v1) / (abs(v1) + 1e-10) * 100
|
f21f4362e300dded9745597d9c2df005b9eea5fb
| 373,475 |
def is_java_file(file_name):
"""
Check if a file name has a .java ending
:param file_name: file name to check
:type file_name: str
:return: True if file has .java ending
:rtype bool
"""
return file_name.endswith(".java")
|
dac9d4a55934e172d602f79bfc108ffbf888ea1c
| 398,331 |
import json
def get_mass_calibration(calibration_file, volume):
"""
This function computes the mass given a calibration curve: mass = a / vol.
Parameters
----------
calibration_file: str
filename of the json file with the slope of the calibration curve
volume: float
volume of the blob from GC Image
Returns
--------
mass_IS: float
mass of the compound used as refernece.
"""
with open(calibration_file) as fp:
data = json.load(fp)
slope = float(data["slope"])
mass_IS = volume / slope
return mass_IS
|
ace1774f5c9adda33ceb9c1edfa1cb58a066ec8a
| 564,696 |
def strHypInd(i, j):
""" Returns string identifier for a hyperplane of ith and jth observation,
regardless of ordering.
"""
if i > j:
i, j = j, i
return str(i) + '-' + str(j)
|
f66c462d8ba0ca62878cfa92db7ce7d06bf47024
| 693,538 |
def split_duration(total_duration, target_duration, split_last=False):
"""
Splits total_duration into parts
:param total_duration: total duration of file
:param target_duration: target duration of parts
:param split_last: if True, last part may be less than others, otherwise it can be more that others
:return: array of object with fields
- start - start of part
- end - end of part
- duration - duration of part
Note that the last part's duration will probably be not equal target_duration
"""
res = []
start = 0
pre_end = total_duration - target_duration * 2
total_count = total_duration // target_duration
if split_last:
pre_end = pre_end + target_duration
while start < pre_end:
res.append({'start': start, 'end': start + target_duration, 'duration': target_duration})
start = start + target_duration
if split_last:
res.append({'start': start, 'end': start + target_duration, 'duration': target_duration})
res.append({'start': start + target_duration, 'end': total_duration,
'duration': total_duration - target_duration * (total_count - 1)})
else:
res.append({'start': start, 'end': total_duration,
'duration': total_duration - target_duration * (total_count - 2)})
return res
|
b07a264c79629e567947c1e1be4d598f1c274080
| 138,738 |
from typing import Sequence
from typing import Optional
def _cast_covariates(listlike: Sequence[str]) -> Optional[list]:
"""We are unsure if scVI works with duck typing, so we explicitly
want to cast a given sequence to a list (or None).
Moreover, scVI doesn't accept empty lists -- we need to cast empty
list to None.
Args:
listlike: None or anything that behaves like a list
(and can be explicitly casted)
Returns:
None, if `listlike` is None or is empty, or
a list with the same elements as `listlike`, if it's nonempty
"""
if listlike is None or len(listlike) == 0:
return None
else:
return list(listlike)
|
afaa40bc3cf8174733e0de6ad148e6099a60b345
| 267,406 |
def split_on_attributes(keys,rows):
"""
Given a tuple of column names 'keys', and a collection of dict-like
rows, returns a dictionary where every unique value as defined by keys
is a key in the dictionary, and the value under that key is a list
containing the corresponding rows.
"""
ret = {}
for row in rows:
key = tuple([row[k] for k in keys])
vals = ret.get(key)
if vals is None:
vals = []
ret[key] = vals
vals.append(row)
return ret
|
a4dd36dcec591ab77709678995f483a6e00e863e
| 507,856 |
def avg(num_1, num_2):
"""computes the average of two numbers"""
return (num_1 + num_2) / 2.0
|
b2ffc52e06f5b142d66aca7fe04cd89d81cfeb02
| 131,905 |
def start_stop_to_one_based(dictionary):
"""Convert start/stop indices given by the SNP metadata to int instead of str,
and add one to make them 1 based instead of 0 based"""
for lists in dictionary:
for each_list in range(len(dictionary[lists])):
for start_stop in range(0, 2):
dictionary[lists][each_list][start_stop] = (int(dictionary[lists][each_list][start_stop]))+1
return dictionary
|
add9e95db7bedb8e2f8bf334cbd4644a10fe043f
| 295,036 |
def split_network_line(line):
"""Parses line of /proc/virtual/<xid>/cacct for network usage.
The cacct file has a header followed by usage counts for multiple protocols.
Header (provided for context):
Type recv #/bytes send #/bytes fail #/bytes
Each protocol's usage counts are formatted like this example:
INET: 32/9909 43/253077 0/0
Args:
line: str, a line of text from cacct file.
Returns:
4-tuple of int: representing
('recv' syscalls, received octets, 'send' syscalls, sent octets).
"""
fields = line.strip().split()
receive_field = fields[1]
transmit_field = fields[2]
(recv_calls, rx_octets) = receive_field.split('/')
(send_calls, tx_octets) = transmit_field.split('/')
return (int(recv_calls), int(rx_octets), int(send_calls), int(tx_octets))
|
9f8899595da8aba6d4cd29ea2ada67cfeb6b5a14
| 606,721 |
def _summarize_accessible_fields(field_descriptions, width=40,
section_title='Accessible fields'):
"""
Create a summary string for the accessible fields in a model. Unlike
`_toolkit_repr_print`, this function does not look up the values of the
fields, it just formats the names and descriptions.
Parameters
----------
field_descriptions : dict{str: str}
Name of each field and its description, in a dictionary. Keys and
values should be strings.
width : int, optional
Width of the names. This is usually determined and passed by the
calling `__repr__` method.
section_title : str, optional
Name of the accessible fields section in the summary string.
Returns
-------
out : str
"""
key_str = "{:<{}}: {}"
items = []
items.append(section_title)
items.append("-" * len(section_title))
for field_name, field_desc in field_descriptions.items():
items.append(key_str.format(field_name, width, field_desc))
return "\n".join(items)
|
164e4bfc3fc1952bae8b3c80ca1fe738a6d53e14
| 351,125 |
def shorten_dfs(dfs, plot_start=None, plot_end=None):
"""Shorten all incidence DataFrames.
All DataFrames are shortened to the shortest. In addition, if plot_start is given
all DataFrames start at or after plot_start.
Args:
dfs (dict): keys are the names of the scenarios, values are the incidence
DataFrames.
plot_start (pd.Timestamp or None): earliest allowed start date for the plot
plot_start (pd.Timestamp or None): latest allowed end date for the plot
Returns:
shortened (dict): keys are the names of the scenarios, values are the shortened
DataFrames.
"""
shortened = {}
start_date = max(df.index.min() for df in dfs.values())
end_date = min(df.index.max() for df in dfs.values())
if plot_start is not None and plot_start < end_date:
start_date = max(plot_start, start_date)
if plot_end is not None and plot_end > start_date:
end_date = min(plot_end, end_date)
for name, df in dfs.items():
shortened[name] = df.loc[start_date:end_date].copy(deep=True)
return shortened
|
a059d0a27ec521d816679aeba1e5bf355cb5dc16
| 672,201 |
def _remove_trailing_nones(array):
""" Trim any trailing Nones from a list """
while array and array[-1] is None:
array.pop()
return array
|
f5f76c6d3ac2336c3345cfb20067882252ef19ae
| 276,320 |
def is_file(value: str):
""" Return True if value is an direction to a file. False otherwise. """
return value.startswith("file")
|
360ba82e8c4bb25bba2bee96f6ce205b231647f7
| 348,445 |
def bearing_flipped(dir1, dir2):
"""
direction-flipped check.
Return true if dir2 travels in opposite direction of dir1.
"""
return (0, 0) == (dir1.y + dir2.y, dir1.x + dir2.x)
|
ae13aab868e1a0cd61f6ed7b32803da63b0bb816
| 176,737 |
from typing import List
def build_graph(order: int, edges: List[List[int]]) -> List[List[int]]:
"""Builds an adjacency list from the edges of an undirected graph."""
adj = [[] for _ in range(order)]
for u, v in edges:
adj[u].append(v)
adj[v].append(u)
return adj
|
86bdd0d4314777ff59078b1c0f639e9439f0ac08
| 660 |
def xor(a, b):
"""Computes the exclusive or between two blocks of 16 bytes"""
s = []
for i in range(0, 16):
s.append(a[i] ^ b[i])
return s
|
ae5adba23df1b979ac6d69c436e6dd1ec527ab6a
| 97,864 |
def aspectRatio(size, maxsize=None, maxw=None, maxh=None):
"""scale a size tuple (w,h) to
- maxsize (max w or h)
- or max width maxw
- or max height maxh."""
w, h = size
denom = maxcurrent = 1
if maxsize:
maxcurrent = max(size)
denom = maxsize
elif maxw:
maxcurrent = w
denom = maxw
elif maxh:
maxcurrent = h
denom = maxh
if maxcurrent == denom:
return size
elif maxsize == 0:
return size
ratio = maxcurrent / float(denom)
neww = int(round(w / ratio))
newh = int(round(h / ratio))
return neww, newh
|
e537c02f4b1f413b7c7b17ec8108b1a6157c17fe
| 451,162 |
def calculate_number_of_validation_images(n):
"""
Calculate number of validation images that should be selected, given an image pool of size n
"""
return n // 6
|
7199acceca2c6026a926991871d52c6fc864d124
| 225,500 |
def test_chess_cell(x, y):
"""
Source https://pythontutor.ru/lessons/ifelse/problems/chess_board/
Condition
Two checkerboard squares are set. If they are painted the same color,
print the word YES, and if in different colors - then NO.
The program receives four numbers from 1 to 8 each, specifying the column number and
line number first for the first cell, then for the second cell.
"""
if x % 2 != 0 and y % 2 != 0: # False if cell white, True if cell black
return True
if x % 2 != 0 and y % 2 == 0:
return False
if x % 2 == 0 and y % 2 != 0:
return False
else:
return True
|
2f5d597fa869949ba0ca205c799aa3f98a2fa75d
| 683,330 |
async def resolve_user(_root, info, **args):
"""Resolver function for fetching a user object"""
return await info.context["registry"].get(args["id"])
|
ee01506eedae0c28a3ae6ae5df9593909f46c109
| 235,984 |
def trimMatch(x, n):
""" Trim the string x to be at most length n. Trimmed matches will be reported
with the syntax ACTG[a,b] where Ns are the beginning of x, a is the length of
the trimmed strng (e.g 4 here) and b is the full length of the match
EXAMPLE:
trimMatch('ACTGNNNN', 4)
>>>'ACTG[4,8]'
trimMatch('ACTGNNNN', 8)
>>>'ACTGNNNN'
"""
if len(x) > n and n is not None:
m= x[0:n] + '[' + str(n) + ',' + str(len(x)) + ']'
else:
m= x
return(m)
|
43bfbcfa0286646fae75c73bccb245a9f113131e
| 77,611 |
def translate_none_or_blank_to_empty(my_string):
"""
return "" if blank or empty or None, string otherwise
"""
if my_string and my_string.strip():
return my_string.strip()
return ""
|
84af4da22dbcdbacc0570d80563b36d024b63ffc
| 177,094 |
from typing import List
from pathlib import Path
from typing import Set
def get_cl_tags(files: List[Path]) -> List[str]:
"""
Come up with descriptive tags given a list of files changed.
For each path, use the first rule that applies in the following order:
1) Pick the path component right after the last "lib", "bin", "drivers",
or "devices".
2) If the path begins with "src", then
- if the third path component is "tests" then pick the fourth component
- pick the third path component, e.g. src/developer/shell -> shell
3) If the path begins with "zircon", then pick the path component after
either "ulib" or "utest", e.g.
zircon/system/ulib/fs-pty/test/service-test.cc -> fs-pty
Example:
get_cl_tags([
"src/lib/loader_service/loader_service_test.cc",
"src/lib/loader_service/loader_service_test_fixture.cc",
]) == ["loader_service"]
"""
def get_tag(p: Path) -> str:
tag: str = ""
for part, next_part in zip(p.parts, p.parts[1:]):
if (
part == "lib"
or part == "bin"
or part == "drivers"
or part == "devices"
):
if next_part != "tests" and not next_part.endswith(".cc"):
tag = next_part
if tag != "":
return tag
if p.parts[0] == "build":
return "build"
if p.parts[0] == "src":
if len(p.parts) >= 3:
if p.parts[2] == "tests" and not p.parts[3].endswith(".cc"):
return p.parts[3]
return p.parts[2]
if p.parts[0] == "zircon":
for part, next_part in zip(p.parts, p.parts[1:]):
if part == "ulib" or part == "utest":
return next_part
raise RuntimeError(f"Could not infer tags from path {p}")
tags: Set[str] = set()
for file in files:
tags.add(get_tag(file))
return sorted(list(tags))
|
bb274802e7e9f00af3c76c36b8ba48b085266db2
| 648,466 |
import torch
def rmsprop(opfunc, x, config, state=None):
""" An implementation of RMSprop
ARGS:
- 'opfunc' : a function that takes a single input (X), the point
of a evaluation, and returns f(X) and df/dX
- 'x' : the initial point
- 'config` : a table with configuration parameters for the optimizer
- 'config['learningRate']' : learning rate
- 'config['alpha']' : smoothing constant
- 'config['epsilon']' : value with which to initialise m
- 'config['weightDecay']' : weight decay
- 'state' : a table describing the state of the optimizer;
after each call the state is modified
- 'state['m']' : leaky sum of squares of parameter gradients,
- 'state['tmp']' : and the square root (with epsilon smoothing)
RETURN:
- `x` : the new x vector
- `f(x)` : the function, evaluated before the update
"""
# (0) get/update state
if config is None and state is None:
raise ValueError("rmsprop requires a dictionary to retain state between iterations")
state = state if state is not None else config
lr = config.get('learningRate', 1e-2)
alpha = config.get('alpha', 0.99)
epsilon = config.get('epsilon', 1e-8)
wd = config.get('weightDecay', 0)
# (1) evaluate f(x) and df/dx
fx, dfdx = opfunc(x)
# (2) weight decay
if wd != 0:
dfdx.add_(wd, x)
# (3) initialize mean square values and square gradient storage
if 'm' not in state:
state['m'] = x.new().resize_as_(dfdx).zero_()
state['tmp'] = x.new().resize_as_(dfdx)
# (4) calculate new (leaky) mean squared values
state['m'].mul_(alpha)
state['m'].addcmul_(1.0 - alpha, dfdx, dfdx)
# (5) perform update
torch.sqrt(state['m'], out=state['tmp']).add_(epsilon)
x.addcdiv_(-lr, dfdx, state['tmp'])
# return x*, f(x) before optimization
return x, fx
|
4b0dd89ed67cf6403178df13e0b3a0f51f8a7b4d
| 327,551 |
import asyncio
def async_return(result):
"""Mock a return from an async function."""
future = asyncio.Future()
future.set_result(result)
return future
|
8dcf55b5fc1ded019c9bec668d17f919215b09c7
| 680,251 |
import torch
def swish(x: torch.Tensor, beta: torch.Tensor) -> torch.Tensor:
"""Swish activation function
from arXiv:1710.05941
Args:
x (torch.Tensor): input tensors can be either 2D or 4D.
beta (torch.Tensor): swish-beta can be a constant or a trainable params.
Returns:
torch.Tensor: output tensors
"""
if len(x.size()) == 2:
return x * torch.sigmoid(beta[None, :] * x)
else:
return x * torch.sigmoid(beta[None, :, None, None] * x)
|
8fd639ad9e54394e1d1499bb2dc6385d843b87a2
| 577,548 |
import random
def single_point(parent1, parent2, locus=None):
"""Return a new chromosome created with single-point crossover.
This is suitable for use with list or value encoding, and will work with
chromosomes of heterogenous lengths.
Args:
parent1 (List): A parent chromosome.
parent2 (List): A parent chromosome.
locus (int): The locus at which to crossover or ``None`` for a randomly
selected locus.
Returns:
List[List]: Two new chromosomes descended from the given parents.
"""
if len(parent1) > len(parent2):
parent1, parent2 = parent2, parent1
if locus is None:
locus = int(random.triangular(1, len(parent1) / 2, len(parent1) - 2))
child1 = parent1[0:locus] + parent2[locus:]
child2 = parent2[0:locus] + parent1[locus:]
return [child1, child2]
|
ecd8cce55aaf6b10e445c36dfe052f1d00f22698
| 518,144 |
def number_to_binary_array(n, r):
"""
input integer
output binary representation of integer as values in an array that can hold numbers less than 2^r
"""
res = [int(i) for i in bin(n)[2:]]
while len(res) < r:
res = [0] + res
return res
|
2afbc382fc9ab5206527f4a2c8b7317f6177e7d5
| 386,518 |
def get_path(data, path):
"""
Fetch a value in a nested dict/list using a path of keys/indexes
If it fails at any point in the path, None is returned
example: get_path({'x': [1, {'y': 'result'}]}, ['x', 1, 'y'])
"""
current = data
for p in path:
try:
current = data[p]
except Exception:
return None
return current
|
e4c978b70dea9b8c291a9003a7e55bbd36616869
| 107,819 |
import json
def response(message, status_code):
"""
Shape a valid http response from a message and status code
"""
output = {
'statusCode': str(status_code),
'headers': {
'Content-Type': 'application/json',
'Access-Control-Allow-Origin': '*'
}
}
if message:
output['body'] = json.dumps(message)
return output
|
e8ddc944a17443401682c3cdebe7caa605ce25aa
| 338,070 |
def api_url(domain):
"""Returns the Freshbooks API URL for a given domain.
>>> api_url('billing.freshbooks.com')
'https://billing.freshbooks.com/api/2.1/xml-in'
"""
return "https://%s/api/2.1/xml-in" % (domain, )
|
4507564b1594e982963c80c27a55cafb4ae83652
| 522,025 |
def unique_colname(suggested, existing):
"""Given a suggested column name and a list of existing names, returns
a name that is not present at existing by prepending _ characters."""
while suggested in existing:
suggested = '_{0}'.format(suggested)
return suggested
|
21e722e0bb18991564a2e4fa6d9fb870166a24a3
| 377,834 |
import re
def regex_overlap(text, regex):
""" for a list of tokens in text and a regex, match it in the
tokens and return a list of booleans denoting which tokens are
a part of the match """
overlap = [False for t in text]
for m in re.finditer(regex, ' '.join(text)):
begin, end = m.span()
i = 0
for j, t in enumerate(text):
if begin <= i < end or begin <= i+len(t) < end:
overlap[j] = True
i += len(t) + 1
return overlap
|
77fbb138cb98f2e4f7a6d14c932c17666cac6c1e
| 688,024 |
from bs4 import BeautifulSoup
def read_xml_conf(filename):
"""
Read configuration file from local filesystem. The configuration file should be
in valid XML format.
:param filename: The XML file which has the configuration options.
:returns: Configuration loaded from XML configuration file.
:raises: None
"""
with open(filename) as f:
content = f.read()
conf = BeautifulSoup(content, features='lxml')
return conf
|
fca464152c1bd192ca4b5b578ddfb0c34f309e0a
| 311,175 |
import math
def _sine_sample(amp, freq, rate, i) -> float:
"""
Generates a single audio sample taken at the given sampling rate on
a sine wave oscillating at the given frequency at the given amplitude.
:param float amp The amplitude of the sine wave to sample
:param float freq The frequency of the sine wave to sample
:param int rate The sampling rate
:param int i The index of the sample to pull
:return float The audio sample as described above
"""
return float(amp) * math.sin(2.0 * math.pi * float(freq)
* (float(i) / float(rate)))
|
223a48fcbea6f9ef98418d9a3d161f37f64f2a05
| 129,029 |
import math
def compute_idfs(documents):
"""
Given a dictionary of `documents` that maps names of documents to a list
of words, return a dictionary that maps words to their IDF values.
Any word that appears in at least one of the documents should be in the
resulting dictionary.
"""
idfs = dict()
# Get unique vocabulary
unique = []
for vocab in documents.values():
unique.extend(set(vocab))
unique = set(unique)
# calculate idf's'
num_docs = len(documents)
for word in unique:
doc_count = 0
for vocab in documents.values():
if word in vocab:
doc_count += 1
idfs[word] = math.log(num_docs / doc_count)
return idfs
|
710b068c957c0ea662e84604d6008ac257c4079b
| 456,694 |
def get_tag(ec2_instance, tag_name):
"""
:param ec2_instance: a boto3 resource representing an Amazon EC2 Instance.
:param tag_name: A string of the key name you are searching for.
This method returns None if the ec2 instance currently has no tags
or if the tag is not found. If the tag is found, it returns the tag
value.
"""
if ec2_instance.tags is None:
return None
for tag in ec2_instance.tags:
if tag['Key'] == tag_name:
return tag['Value']
return None
|
481661a3fa14005b932d78c2065327e2edc3c7cf
| 288,688 |
import re
def format_date(date):
"""
format a date object in month/day/year format, but convert dates like:
01/02/2013
to:
1/2/2013
"""
return re.sub("\\b0(\\d)", "\\1", date.strftime("%m/%d/%Y"))
|
9a078220cb59aa33854c38ebe63a4c72ba7f7e57
| 359,392 |
def ask_user(question):
"""
Simple yes/no screen for user, where the "question" string is asked. Takes y(yes)/n(no)
as valid inputs. If no valid input is given, the question is asked again.
Args:
question (str): What question should be asked for the y/n menu
Returns:
(bool): true/false, answer to question
"""
check = str(input(f"{question} (Y/N): ")).lower().strip()
try:
if check[0] in ["y", "yes"]:
return True
elif check[0] in ["n", "no"]:
return False
else:
print('Invalid Input')
return ask_user(question)
except Exception as error:
print("Please enter valid inputs")
print(error)
return ask_user(question)
|
6c30dc5c3aed8a0e436bb1fd6e8ed6372c1ddb34
| 56,498 |
def build_reagent_vectors(portion_reagents, portion_chemicals):
"""Write the reagents in a vector form, where the vectors live in the complete portion basis
The basis is spanned by all chemicals in all reagents in the portion (sans solvent)
:param portion_reagents: a list of all reagents in the portion
:param portion_chemicals: a list of all chemical names in the poriton
:param rdict:
:return:
"""
# find the vector representation of the reagents in concentration space
reagent_vectors = {}
if isinstance(portion_reagents, dict):
portion_reagents = [v for v in portion_reagents.values()]
for reagent in portion_reagents:
name = 'Reagent{} (ul)'.format(reagent.name)
comp_dict = reagent.component_dict
vec = [comp_dict.get(elem, 0) for elem in portion_chemicals]
reagent_vectors[name] = vec
return reagent_vectors
|
f8d12ef19e84111dde7a40fa5d1113b4f423ab6f
| 639,745 |
def marathon_app_id_to_mesos_dns_subdomain(app_id):
"""Return app_id's subdomain as it would appear in a Mesos DNS A record.
>>> marathon_app_id_to_mesos_dns_subdomain('/app-1')
'app-1'
>>> marathon_app_id_to_mesos_dns_subdomain('app-1')
'app-1'
>>> marathon_app_id_to_mesos_dns_subdomain('/group-1/app-1')
'app-1-group-1'
"""
return '-'.join(reversed(app_id.strip('/').split('/')))
|
a0e9e755aa4987fa0e35dfc238f8018c2ee89e71
| 582,831 |
import time
import calendar
def utc2timestamp(utc_datetime=None):
"""
Convert utc datetime to seconds since epoch (UTC)
"""
if utc_datetime is None:
return int(time.time())
return calendar.timegm(utc_datetime.utctimetuple())
|
1ea1e512290a94937c047c35e1fa5b8f7242d358
| 329,557 |
from typing import Callable
def save_func_and_its_meta(func: Callable) -> Callable:
"""Decorator for a wrapper function.
Updates a wrapper function to look like the wrapped function (func).
To use:
add decorator @save_func_and_its_meta(func) before the wrapper
function declatation.
Args:
func: original function that we want to save.
Returns:
inner function that saves __name__ and __doc__ attributes of recieved func's
and func itself.
"""
def inner(wrapper: Callable) -> Callable:
"""Saves attributes __name__ and __doc__ of recieved func, saves this func in the
attribute __original_func of the wrapper function.
Args:
wrapper: the decorated wrapper function.
Returns:
wrapper function with changed attributes.
"""
wrapper.__doc__ = func.__doc__
wrapper.__name__ = func.__name__
wrapper.__original_func = func # type: ignore
return wrapper
return inner
|
85107e6dcd79ec576906d4e5390cf54ef11a5309
| 577,981 |
def hexd(n):
"""Return hex digits (strip '0x' at the beginning)."""
return hex(n)[2:]
|
7370225183ffb7ebcad1c2622917f06fdca83bbb
| 69,231 |
import json
def _get_session(gc, tale=None, version_id=None):
"""Returns the session for a tale or version"""
session = {'_id': None}
if tale is not None and tale.get('dataSet') is not None:
session = gc.post(
'/dm/session', parameters={'taleId': tale['_id']})
elif version_id is not None:
# Get the dataset for the version
dataset = gc.get('/version/{}/dataSet'.format(version_id))
if dataset is not None:
session = gc.post(
'/dm/session', parameters={'dataSet': json.dumps(dataset)})
return session
|
1de83816b4d8ca9b6a657de81fc5fa3e04d188df
| 136,145 |
def search_songs_db(term, db):
"""
Performs a search of the songs database. Searches all fields' values, as
well as all lyrics' values.
The search performed is strictly a sub-string search; capitalization must
match in order for the search to be done right.
:param term: Search term.
:type term: `str`
:param db: The database object to search. In this project, we use TinyDB
for simplicity and portability (it's very, very small).
:type db: `tinydb.TinyDB()`
:returns: one of `filtered_songs` or `all_songs`, the search results.
:rtype: `iterable(dict)`
"""
filtered_songs = list()
all_songs = db.all()
if term:
for song in all_songs:
for k, v in song.items():
if k == "lyrics":
for sec, txt in v.items():
if txt and term in txt and song not in filtered_songs:
filtered_songs.append(song)
else:
if v and term in v and song not in filtered_songs:
filtered_songs.append(song)
return filtered_songs
else:
return all_songs
|
cc73dd895e1088b403f1640347b0132d69862ee2
| 141,390 |
def _get_arg(a, x):
"""Get index of array a that has the closest value to x"""
return abs(a-x).argmin()
|
02efb8d6ca4ea46ea8bdc4cdcfcedc121b8ec2d7
| 166,022 |
def celsius_to_fahrenheit(celsius):
"""
Celsius to Fahrenheit
:param celsius: Degrees Celsius
:return: Fahrenheit
"""
return float(celsius) * 9.0/5.0 + 32
|
8ff05c95a1f8029a7fc73e5b834bcf9d614d7922
| 623,778 |
import requests
def download_url(url):
"""Downloads a URL file as a browser."""
headers = {'User-Agent': 'Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.0'}
r = requests.get(url, headers=headers, stream=False)
return r.content.decode("utf-8")
|
e62cf1016410fd103d027f423f0c42860d239133
| 405,108 |
import asyncio
def _async_callback(coro):
"""Wrap an asynchronous callback to be called from a synchronous context"""
return lambda val: asyncio.create_task(coro(val))
|
c19b9543711a7edfba70bc61abcf435e977f5486
| 128,831 |
import json
def to_pretty_json(obj):
"""Encode to pretty-looking JSON string"""
return json.dumps(obj, sort_keys=False,
indent=4, separators=(',', ': '))
|
b325c4e6e150e089da1d9027299831bd1576e57f
| 5,039 |
import csv
from io import StringIO
import requests
def csv_reader(url):
"""
Reads a remote CSV file.
"""
return csv.reader(StringIO(requests.get(url).text))
|
5d8113d19a7cc2e69c6fff7b483c44c8aad078d4
| 461,104 |
def Linspace(start, stop, n):
"""Makes a list of n floats from start to stop.
Similar to numpy.linspace()
"""
return [start + (stop-start) * float(i)/(n-1) for i in range(n)]
|
02caf1d688568c671464d8c562580f1f1976a4c3
| 320,967 |
import re
def create_word_tokens(expr):
"""
Take raw expr after input and create tokens for AST
:param expr: str
:return: [[]]
>>> create_word_tokens('a and (b xor x) or c')
['a', 'and', '(', 'b', 'xor', 'x', ')', 'or', 'c']
"""
def complex_repl(char):
"""char: re.Math object """
variants = {
'(': '( ',
')': ' )'
}
return variants[char.group()]
tokens = re.sub(r'[(]|[)]', complex_repl, expr).split()
return tokens
|
9fa802e02370dce0f9e965b703b301d223df8e08
| 344,118 |
def commute(A, B):
""" Return the commutator of two operators"""
return A*B - B*A
|
3edba7e68fe372bb619990b0b830d5e9f96e1e77
| 601,298 |
def add(num, hist):
"""
Добавление суммы покупки и ее наименования покупки
:param num: количество наличных денег
:param hist: список покупок
:return: измененное количество наличных денег и список покупок
"""
sale = input('Введите сумму покупки: ') # ввод суммы покупки
while not sale.replace('.', '', 1).isdigit(): # пока ввод пользователя с убиранием точек не цифры
sale = input('Введите сумму покупки: ') # снова ввести суммы
sale = float(sale) # перевод суммы в дробный тип данных
if sale > num: # если сумма покупки больше, чем сумма наличных денег
print('Сумма покупки больше наличных денег')
else: # иначе
name = input('Введите название покупки: ') # ввод название покупки
hist.append((name, sale)) # добавление названия и суммы покупки в архив истории
num -= sale # вычитание суммы покупки из наличных денег
return num, hist
|
94c6b4ed6db8cb7bf3bbba114453c67056c0b299
| 398,735 |
def get_reviews_for_business(bus_id, df):
"""
INPUT: business id, pandas DataFrame
OUTPUT: Series with only texts
For a given business id, return the review_id and
text of all reviews for that business.
"""
return df.text[df.business_id==bus_id]
|
f2f3f6188752d436b20337f5e299d070f590f496
| 312,245 |
def list2str(ll):
"""convert list into string with seperator ','
Parameters
----------
ll : list
the input list or numpy ndarray
"""
string = ''
for i in ll:
string += str(i)+','
return string[:-1]
|
adc9108529fefa68a7e4ec411825cde7b883f0d2
| 483,948 |
import torch
def box_iou(box_a, box_b):
"""
Arguments:
boxe_a (Tensor[N, 4])
boxe_b (Tensor[M, 4])
Returns:
iou (Tensor[N, M]): the NxM matrix containing the pairwise
IoU values for every element in box_a and box_b
"""
lt = torch.max(box_a[:, None, :2], box_b[:, :2])
rb = torch.min(box_a[:, None, 2:], box_b[:, 2:])
wh = (rb - lt).clamp(min=0)
inter = wh[:, :, 0] * wh[:, :, 1]
area_a = torch.prod(box_a[:, 2:] - box_a[:, :2], 1)
area_b = torch.prod(box_b[:, 2:] - box_b[:, :2], 1)
return inter / (area_a[:, None] + area_b - inter)
|
055b78b7e03e82fec4c901bd30875d689fcc4ae0
| 319,352 |
def get_fullurl_from_abbrev(name):
"""return the full url address from a abrev name
"""
return "http://www.aitaotu.com/guonei/%s.html" % name
pass
|
426300c73cb7ce5bcea0f5c27ed7f6faa41fd78d
| 120,937 |
def column_to_list(data, index):
"""
Função que retorna a coluna de uma lista de listas como uma lista
Argumentos:
data: lista de listas
index: posição (coluna) à ser acessada e retornada
Retorna:
Uma lista com os valores da coluna definida através do argumento index
"""
return [item[index] for item in data]
|
6fee91ff0130c6c3c1e8f90fb024537a04cce36c
| 101,242 |
def quoteStr(astr, escChar='\\', quoteChar='"'):
"""Escape all instances of quoteChar and escChar in astr
with a preceding escChar and surrounds the result with quoteChar.
Examples:
astr = 'foo" \bar'
quoteStr(astr) = '"foo\" \\bar"'
quoteStr(astr, escChar = '"') = '"foo"" \bar"'
This prepares a string for output.
"""
if escChar != quoteChar:
# escape escChar
astr = astr.replace(escChar, escChar + escChar)
# escape quoteChar and surround the result in quoteChar
return quoteChar + astr.replace(quoteChar, escChar + quoteChar) + quoteChar
|
aea3806ec79159905e9bc2775416f296bfb4583c
| 252,691 |
import torch
def cosine_similarity(x1, x2):
"""Calculates cosine similarity of two tensor."""
dist = torch.sum(torch.multiply(x1, x2), dim=-1)
dist = dist / (torch.linalg.norm(x1, dim=-1) * torch.linalg.norm(x2, dim=-1))
return dist
|
7506fd6379a7ba604852f4bd9f969c9dfb82f09a
| 687,333 |
from typing import List
def change_station_dropdown(order_list: List[dict], station_name: str) -> List[dict]:
"""
This function creates the dropdown options for the 'change station' window. It passes the list of orders and a name
of a station. Now a structured output is generated, in which all orders are contained, in which this station occurs.
The output has the following structure:
[{'label': 'order_name', 'value': 'order_name'}]
"""
dropdown_opt: List[dict] = []
for order in order_list:
if station_name in order['station']:
order_name: str = order['name']
dropdown_opt.append({'label': order_name, 'value': order_name})
return dropdown_opt
|
2018fbfce20d24a86ff3699c004507d1a844758f
| 425,556 |
def parse_reaction(line):
"""Parse line to tuple of product, amount of product and requirements."""
required, producing = line.split(' => ')
amount, product = [int(part) if part.isdigit() else part
for part in producing.split()]
requirements = {}
for requirement in required.split(', '):
needed, chemical = [int(part) if part.isdigit() else part
for part in requirement.split()]
requirements[chemical] = needed
return product, amount, requirements
|
a7c59f32ae0400aa043646bb847ec1b252cb62d4
| 322,849 |
import zipfile
import zlib
import logging
def create_lambda_deployment_package(srcfile, deployment_package):
"""Create a Lambda deployment package (ZIP file)
:param srcfile: Lambda function source file
:param deployment_package: Name of generated deployment package
:return: True if deployment package created. Otherwise, False.
"""
# Create the deployment package
with zipfile.ZipFile(deployment_package, mode='w',
compression=zipfile.ZIP_DEFLATED,
compresslevel=zlib.Z_DEFAULT_COMPRESSION) as deploy_pkg:
try:
deploy_pkg.write(srcfile)
except Exception as e:
logging.error(e)
return False
return True
|
78f8c55cbb1451cd7e1bdb153401e9326ec51d84
| 405,470 |
def _timestamps(soup):
"""
.. versionadded:: 0.3.0
'Publication' and 'last updated' are two available timestamps.
If only one timestamp is listed, the story's update and publication time
should be the same.
:param soup: Soup containing a page from FanFiction.Net
:type soup: bs4.BeautifulSoup class
:returns: Tuple where the first item is the publication time and the second
item is the update time.
:rtype: tuple
"""
metadata_html = soup.find('span', {'class': 'xgray xcontrast_txt'})
timestamps = metadata_html.find_all(attrs={'data-xutime': True})
# Logic for dealing with the possibility that only one timestamp exists.
if len(timestamps) == 1:
when_updated = timestamps[0]['data-xutime']
when_published = when_updated
else:
when_updated = timestamps[0]['data-xutime']
when_published = timestamps[1]['data-xutime']
return when_published, when_updated
|
5f73dc46fe1ffa60c1164276cc5b87e72c52a0d2
| 308,355 |
def run_dqm_and_collect_solutions(dqm, sampler):
""" Send the DQM to the sampler and return the best sample found."""
# Initialize the solver
print("\nSending to the solver...")
# Solve the DQM problem using the solver
sampleset = sampler.sample_dqm(dqm, label='Example - Immunization Strategy')
# Get the first solution
sample = sampleset.first.sample
return sample
|
6cd08620af1a5044570eb87fea105c6c8a532af8
| 82,750 |
def read_lines_decimal(read_file):
"""
Read all lines of a file that are decimal values into a list.
:param read_file: File handler for the file to read.
:return: List of decimal values.
"""
# Read all lines with decimal values into list.
data_list = []
for line in read_file:
# Strip whitespace from line
value = str.strip(line)
# Try converting to floating point. If successful, add to list of numbers.
try:
data_list.append(float(value))
# Do nothing if line is not decimal
except ValueError:
pass
return data_list
|
fbb0fd51b161bc2ec3cf38991b92d4bd55432b22
| 205,542 |
def remove_enclosing_dirs(full_path):
""" Remove any directories in a filepath
If you pass a filename to this function, meaning it doesn't
contain the "/" string, it will simply return the input back to you.
Args:
full_path (str): a Unix-based path to a file (with extension)
Returns:
filename (string): just the filename (with extension) from the path
"""
if full_path.find("/") != -1:
filename = full_path.split("/")[-1]
return filename
elif full_path.find("/") == -1:
filename = full_path
print(" ".join(["Your path", full_path, "is already a filename."]))
return filename
else:
print("Something went wrong. Your path isn't a path or a filename.")
|
9372a06b75936be39569d7476d59e53b021d7e17
| 303,793 |
def create_text(text, hashtags):
"""Returns a solid string containing the entire text of the posting
Parameters:
text (string): text of your posting
hashtags (list): list of hashtags e.g. from get_random_hashtags()
Returns:
string that contains the posting
"""
output = text + '\n.\n.\n.\n.\n' + ' '.join(map(str, hashtags))
return output
|
155f085ddbf195df6fcfa172eaacd8cd0a2e631f
| 182,425 |
def every_pred(*preds):
"""
Create a function that returns true if all ``preds`` return true against
the provided arguments.
:param *preds: Predicates.
:rtype: Callable[[Any], bool]
"""
return lambda *a, **kw: all(pred(*a, **kw) for pred in preds)
|
3a8c2a8738b05557c6a58f8d502c22f5eb8a4779
| 240,170 |
def from_gca_linestring(gca_obj):
"""
Converts LineString GCA to an EGF string.
Returns
-------
egf_str : str
LineString GCA as an EGF string
"""
if gca_obj.geometry_type != "LS":
raise ValueError(f"Expected geometry type to be 'LS' and got '{gca_obj.geometry_type}' instead")
features = gca_obj.features
egf_str = ""
egf_str += str(gca_obj.geometry_type)
egf_str += "\n" * 4
egf_str += ', '.join(str(i) for i in gca_obj.headers)
for ft in features:
egf_str += "\n" * 4
egf_str += ', '.join(str(i) for i in ft[0])
for coord_set in ft[1]:
lng, lat, elev = coord_set[:3]
egf_str += "\n"
egf_str += ', '.join(str(coord) for coord in [lat, lng, elev])
egf_str += "\n"
return egf_str
|
976b59d1cfd8d3ae4620416fcddf5104f8de83ba
| 632,026 |
def cleanup(run_dir):
"""
Cleans up the run directory.
"""
# Remove param_plots folder if empty
histo_dir = run_dir.joinpath('histogram_plots')
if histo_dir.is_dir() and not any(histo_dir.iterdir()):
histo_dir.rmdir()
# If run_dir is empty because there aren't enough good pixels, remove it
if run_dir.is_dir() and not any(run_dir.iterdir()):
run_dir.rmdir()
return None
|
6c180dc2a3125e2a8c5074e0a5aee42c3473f36d
| 644,766 |
def get_src(node):
"""
Returns src module of node, None if attr not defined
"""
return hasattr(node, "srcmodule") and getattr(node, "srcmodule") or None
|
28d37a39df61353eec31248da47572df5a5f2c75
| 32,781 |
def list_chunks(l, n):
"""
Return a list of chunks
:param l: List
:param n: int The number of items per chunk
:return: List
"""
if n < 1:
n = 1
return [l[i:i + n] for i in range(0, len(l), n)]
|
44ef7903dda3070b58f375f74fd19f2b12ed1455
| 380,446 |
def cleanup_frame(frame):
"""Make the columns have better names, and ordered in a better order."""
frame = frame.rename(columns={"Non- Hispanic white": "White"})
frame = frame.reindex(columns=["Asian", "White", "Hispanic", "Black"])
return frame
|
fb79f5d5161fe71e0ddc038caf095ecc0db69341
| 615,911 |
def _formatDict(d):
""" Returns dict as string with HTML new-line tags <br> between key-value pairs. """
s = ''
for key in d:
new_s = str(key) + ": " + str(d[key]) + "<br>"
s += new_s
return s[:-4]
|
be9749e5f69c604f3da95902b595f9086b01baa5
| 682,989 |
import torch
from typing import Tuple
from typing import Union
def _dtype_min_max(dtype: torch.dtype) -> Tuple[Union[float, int], Union[float, int]]:
"""Get the min and max values for a dtype"""
dinfo = torch.finfo(dtype) if dtype.is_floating_point else torch.iinfo(dtype)
return dinfo.min, dinfo.max
|
43e94545b785351460a18eeec8853473b6302b7c
| 403,668 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.