content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
def get_matching_files(url, entry):
"""Given a search entry returned from PilotClient.get_search_entry, find
all of the partial matches in the entry. Partial matches can happen if
a base folder matches, but not the files below it. For example:
* A url: http://example.com/files/foo
* entry with files: http://example.com/files/foo/bar.txt
http://example.com/files/foo/moo.hdf5"""
if entry and entry.get('files'):
return [f for f in entry['files'] if url in f['url']]
return []
|
33c7a22dbd66934dd76ae522eade0e64d627fd8c
| 499,421 |
from pathlib import Path
def _template(name):
"""Read the specified template file."""
template = Path(__file__).parent / 'templates' / name
with open(template, 'r') as file:
return file.read().strip()
|
746ba2ae2be6b1abff14953a030e3e5393df1d7b
| 180,438 |
import click
def unstyle_output(msg: str) -> str:
"""
A thin wrapper around click.unstyle.
"""
s: str = click.unstyle(msg)
return s
|
f52dbf774c6d1567da4fb39468460e3197a1a821
| 456,050 |
def decode_ber(ber):
"""
Decodes a ber length byte array into an integer
return: (length, bytes_read) - a tuple of values
"""
ber = bytearray(ber)
length = ber[0]
bytes_read = 1
if length > 127:
bytes_read += length & 127 # Strip off the high bit
length = 0
for i in range(1, bytes_read):
length += ber[i] << (8 * (bytes_read - i - 1))
return length, bytes_read
|
3ed69a24e2ceef7e157ee2773d40bf1425b7ae99
| 406,275 |
def get_nested_attr(obj, attr, default=None):
"""Get nested attributes of an object."""
attrs = attr.split(".")
for a in attrs:
try:
obj = getattr(obj, a)
except AttributeError:
if default:
return default
else:
raise
return obj
|
7f8dc82f6d08a763a0a083967ef524acbba8e983
| 680,775 |
def base36encode(number):
"""Converts an integer into a base36 string."""
ALPHABET = "0123456789abcdefghijklmnopqrstuvwxyz"
base36 = ''
sign = ''
if number < 0:
sign = '-'
number = -number
if 0 <= number < len(ALPHABET):
return sign + ALPHABET[number]
while number != 0:
number, i = divmod(number, len(ALPHABET))
base36 = ALPHABET[i] + base36
return sign + base36
|
c69312809f15fc546823e54b33d4198aaa7b3149
| 394,609 |
def print_network(net, out_f=None):
"""
Prints the number of learnable parameters.
:param net: the network.
:type net:
:param out_f: file
:type out_f:
:return: number of learnable parameters.
:rtype: int
"""
num_params = 0
for param in net.parameters():
num_params += param.numel()
if out_f is not None:
out_f.write(net.__repr__() + "\n")
out_f.write('Total number of parameters: %d\n' % num_params)
out_f.flush()
return num_params
|
9dcfd7da51eab385dacb90d35bfeb139ed785be1
| 24,720 |
from datetime import datetime
def calculate_tz_offset(local_time_str, server_datetime_str):
"""Given a local_time without date and a server_datetime in UTC, calculate the user's
timezone offset in minutes. This is not accurate for all cases, but should be approximately
correct for the most common ones. It assumes all offsets are less than 12 hours magnitude.
A positive offset of 13 hours is assumed to be a negative offset of one hour.
"""
local_datetime = datetime.strptime(local_time_str, '%H:%M:%S')
server_datetime = datetime.strptime(server_datetime_str, '%Y-%m-%d %H:%M:%S')
# minutes since midnight
local_minutes = local_datetime.hour * 60 + local_datetime.minute
server_minutes = server_datetime.hour * 60 + server_datetime.minute
tz_offset = None
if local_minutes == server_minutes:
return 0 # local_timezone is same as utc
elif local_minutes > server_minutes:
minutes_difference = local_minutes - server_minutes
return minutes_difference * 1 if minutes_difference <= 12*60 else -1
else:
minutes_difference = server_minutes - local_minutes
return minutes_difference * -1 if minutes_difference <= 12*60 else 1
|
79b098ffd6427fc2d5263569e7647d7f4bae6d8b
| 584,036 |
def std_url(url):
"""
Standardizes urls by removing protocoll and final slash.
"""
if url:
url = url.split("//")[-1]
if url.endswith("/"):
url = url[:len(url)-1]
return url
|
4940052d2feebd92f9cb54e7cee57318445f86c2
| 603,993 |
def get_name(metadata):
"""Return the name of an object based on the dictionary metadata. By preference: long_name, short_name, 'Unnamed'
"""
name = metadata.get("long_name", None)
if name is not None:
return name
name = metadata.get("short_name", None)
if name is not None:
return name
return "Unnamed"
|
f01576f90cc37168009e30ee04283e7ff2a5e927
| 80,304 |
from typing import Tuple
def extract_entitlement(entitlement: str, text: str) -> Tuple[str, str, str, str]:
"""
Extracts entitlement components from an entitlement string
Args:
entitlement: The entitlement itself
text: The actual reply text
Returns:
Entitlement components
"""
parts = entitlement.split('@')
guid = parts[0]
id_and_task = parts[1].split('|')
incident_id = id_and_task[0]
task_id = ''
if len(id_and_task) > 1:
task_id = id_and_task[1]
content = text.replace(entitlement, '', 1)
return content, guid, incident_id, task_id
|
8ecee278f03535f0a3f6426cd400d76c08f8e544
| 641,460 |
def extract_name_and_id(user_input):
"""Determines if the string user_input is a name or an id.
:param user_input: (str): input string from user
:return: (name, id) pair
"""
name = id = None
if user_input.lower().startswith('id:'):
id = user_input[3:]
else:
name = user_input
return name, id
|
feb84b022e626bae091bb28e8d3f316bdbf1ba3d
| 675,496 |
def bytes2human(n, format='%(value).1f %(symbol)sB'):
"""
Convert n bytes into a human readable string based on format.
symbols can be either "customary", "customary_ext", "iec" or "iec_ext",
see: http://goo.gl/kTQMs
>>> from datalad.utils import bytes2human
>>> bytes2human(1)
'1.0 B'
>>> bytes2human(1024)
'1.0 KB'
>>> bytes2human(1048576)
'1.0 MB'
>>> bytes2human(1099511627776127398123789121)
'909.5 YB'
>>> bytes2human(10000, "%(value).1f %(symbol)s/sec")
'9.8 K/sec'
>>> # precision can be adjusted by playing with %f operator
>>> bytes2human(10000, format="%(value).5f %(symbol)s")
'9.76562 K'
Taken from: http://goo.gl/kTQMs and subsequently simplified
Original Author: Giampaolo Rodola' <g.rodola [AT] gmail [DOT] com>
License: MIT
"""
n = int(n)
if n < 0:
raise ValueError("n < 0")
symbols = ('', 'K', 'M', 'G', 'T', 'P', 'E', 'Z', 'Y')
prefix = {}
for i, s in enumerate(symbols[1:]):
prefix[s] = 1 << (i + 1) * 10
for symbol in reversed(symbols[1:]):
if n >= prefix[symbol]:
value = float(n) / prefix[symbol]
return format % locals()
return format % dict(symbol=symbols[0], value=n)
|
ffaa1c0d8672c92f9c854ae18bce0026dd38c0d7
| 488,563 |
def add_integers(a: int, b: int):
"""Sum two integers
Args:
a (int):
b (int):
Returns:
int: sum of the integer inputs a and b
"""
return a + b
|
3cdd1be6670a649b69f0eaa4a274ebd4029a6d64
| 634,390 |
def _card(item):
"""Handle card entries
Returns: title (append " - Card" to the name,
username (Card brand),
password (card number),
url (none),
notes (including all card info)
"""
notes = item.get('notes', "") or ""
# Add card info to the notes
notes = notes + ("\n".join([f"{i}: {j}" for i, j in item.get('card', "").items()]))
return f"{item['name']} - Card", \
item.get('card', {}).get('brand', '') or "", \
item.get('card', {}).get('number', "") or "", \
"", \
notes
|
fc7d5e4b960019b05ffe7ca02fd3d1a94d69b303
| 375 |
def ndbi(swir, red, nir, blue):
"""
Converts the swir, red, nir and blue band of Landsat scene to a
normalized difference bareness index.
Source: Zao and Chen, "Use of Normalized Difference Bareness Index
in Quickly Mapping Bare from TM/ETM+", IEEE Conference Paper, 2005
DOI: 10.1109/IGARSS.2005.1526319
:param swir: numpy.array, shortwave infrared band
:param red: numpy.array, red band
:param nir: numpy.array, near infrared band
:param blue: numpy.array, blue band
:return: normal difference bareness index
"""
# bareness index components
x = (swir + red) - (nir + blue)
y = (swir + red) + (nir + blue)
# prevent division by zero error
y[y == 0.0] = 1.0
# bareness index
img = x / y
img[y == 1.0] = 0.0
# clip range to normal difference
img[img < -1.0] = -1.0
img[img > 1.0] = 1.0
return img
|
5a79e2af482e56429cfe76d3ab12ae9e487573af
| 690,863 |
import click
def _log_status(count, model_label):
"""
Log the output of how many records were created.
:param count: Amount created
:type count: int
:param model_label: Name of the model
:type model_label: str
:return: None
"""
click.echo('Created {0} {1}'.format(count, model_label))
return None
|
c1d223b00451abd6cc980ec0b83224d73624f3e8
| 397,481 |
def s2time(
secs: float,
show_secs: bool = True,
show_fracs: bool = True
) -> str:
"""Convert seconds to time.
Args:
secs (float):
show_secs (bool):
Show seconds (default: True)
show_fracs (bool):
Show centiseconds (default: True)
Returns:
str:
`HH:MM` / `HH:MM:SS` / `HH:MM:SS.CS` string
"""
try:
secs = max(0, float(secs))
except ValueError:
placeholder = "--:--"
if show_secs:
placeholder += ":--"
if show_fracs:
placeholder += ".--"
return placeholder
wholesecs = int(secs)
centisecs = int((secs - wholesecs) * 100)
hh = int(wholesecs / 3600)
hd = int(hh % 24)
mm = int((wholesecs / 60) - (hh*60))
ss = int(wholesecs - (hh*3600) - (mm*60))
r = f"{hd:02d}:{mm:02d}"
if show_secs:
r += f":{ss:02d}"
if show_fracs:
r += f".{centisecs:02d}"
return r
|
cf15ae732ec0713ea181cfbbf05fba69206967a4
| 215,707 |
import tempfile
def get_spooled_file_object(s3_client, bucket, key):
"""Get a temporary spooled file object for an S3 object
:param s3_client Boto s3_client object to apply
:param bucket: Bucket to upload to
:param key: key identifying the object within the bucket
"""
result = tempfile.SpooledTemporaryFile()
s3_client.download_fileobj(bucket, key, result)
result.seek(0)
return result
|
51d3478d798fb0e3e6692ef304343f65ce1466a8
| 69,064 |
from typing import Dict
from typing import Optional
def get_new_name(attrs: Dict[str, str],
mark_name: str = '',
name_map: Optional[Dict[str, str]] = None) -> str:
"""Get new name for a node.
Args:
attrs (Dict[str, str]): A dict contains attributes of an ONNX node.
mark_name (str): The input mark op name. Default is ''.
name_map (Dict[str, str]): A mapping of node names, defaults to
`None`.
Returns:
str: The new node name.
"""
if 'name' in attrs:
new_name = attrs['name']
else:
new_name = '_'.join((attrs['func'], attrs['type'], str(attrs['id'])))
if name_map is not None:
if new_name in name_map:
return name_map[new_name]
if f'{mark_name}:{new_name}' in name_map:
return name_map[f'{mark_name}:{new_name}']
return new_name
|
a541b05a4cd0021815062698d48a2fb155d60f01
| 645,008 |
def unsigned_Q(num:int) -> int:
"""Returns unsigned value of signed (or unsigned) 64-bit integer (struct fmt 'Q')
"""
return num & 0xffffffffffffffff
|
623b3a41e44bb6f66551827a2ef2396650562d0c
| 230,896 |
from typing import List
import re
def parse_args(line: str) -> List[str]:
"""Parse the first line of the program for the command line.
This should have the form
# cmd: mypy <options>
For example:
# cmd: mypy pkg/
"""
m = re.match('# cmd: mypy (.*)$', line)
if not m:
return [] # No args; mypy will spit out an error.
return m.group(1).split()
|
d768b5faf2a03a643555f6e508327a45050fca46
| 481,969 |
import hashlib
import codecs
def hash256_twice(s):
"""
Hash input with sha256 twice, reverse, encode to hex.
"""
bh = hashlib.sha256(hashlib.sha256(s).digest()).digest()
hh = codecs.encode(bh[::-1], "hex")
return hh
|
3b55214077dcfd10b3ffdb28e578ada5e6b06604
| 379,378 |
def format_item(item, xmlns, key):
"""
Format a rss item and return data.
This properly format a rss item regarding the xmlns attribute and a key.
It returns the data of the item regarding it's key.
:param item: A rss item
:param xmlns: XML namespace of the rss feed
:param key: The key to format
:type item: WebDriver
:type xmlns: str
:type key: str
:return: The item content
:rtype: str
"""
formated_key = key
if xmlns:
formated_key = xmlns + key
data = item.find(formated_key)
if key == 'link' and xmlns:
return data.attrib.get('href')
else:
return ''.join(data.itertext())
|
10b50932eb71977b76bf4b968227b9d642ee89d5
| 88,152 |
import re
def cwb_escape(inname):
"""Replace dots with "-" for CWB compatibility."""
return re.sub(r"\.", "-", inname)
|
b552fc8a0ccf8d61c4febbc7617c4c0e3433f013
| 91,800 |
async def create_product(http_client, name="Product", description="Description") -> int:
"""
Create a new product, assert status code, and return product ID.
This is factored into a helper as many tests perform this operation.
"""
resp = await http_client.post("/products", json={"name": name, "description": description})
assert resp.status_code == 202
resp_payload = resp.json()
assert "id" in resp_payload
return resp_payload["id"]
|
557a054c8ee1dca54d51ce8f94c7b8b04b3d4f5c
| 209,842 |
def map_range(
value: float, in_min: float, in_max: float, out_min: float, out_max: float
) -> float:
"""Map a value in one range to another."""
if in_max - in_min <= 0.0:
raise ValueError("invalid input range")
if out_max - out_min <= 0.0:
raise ValueError("invalid output range")
if value < in_min or value > in_max:
raise ValueError("input value out of range")
return (value - in_min) * (out_max - out_min) / (in_max - in_min) + out_min
|
01e05906e32d070a39b202bce1bf3d6446286179
| 88,805 |
def view_capture_stream(telstate, capture_block_id, stream_name):
"""Create telstate view based on given capture block ID and stream name.
It constructs a view on `telstate` with at least the prefixes
- <capture_block_id>_<stream_name>
- <capture_block_id>
- <stream_name>
Additionally if there is a <stream_name>_inherit key, that stream is
added too (recursively).
Parameters
----------
telstate : :class:`katsdptelstate.TelescopeState` object
Original telescope state
capture_block_id : string
Capture block ID
stream_name : string
Stream name
Returns
-------
telstate : :class:`~katdal.sensordata.TelescopeState` object
Telstate with a view that incorporates capture block, stream and combo
"""
streams = [stream_name]
while True:
inherit = telstate.view(streams[-1], exclusive=True).get('inherit')
if inherit is None:
break
streams.append(inherit)
streams.reverse()
for stream in streams:
telstate = telstate.view(stream)
telstate = telstate.view(capture_block_id)
for stream in streams:
capture_stream = telstate.join(capture_block_id, stream)
telstate = telstate.view(capture_stream)
return telstate
|
ebad45cd567dee22f3f7117fffb0fd4b3d376ccc
| 501,806 |
import math
def calculate_angle(a, b, c):
"""
Returns angle (a-b-c), in degrees
All points are assumed to be locintel.core.datamodel.geo.GeoCoordinate objects
"""
b_c = math.sqrt((b.lng - c.lng) ** 2 + (b.lat - c.lat) ** 2)
a_c = math.sqrt((a.lng - c.lng) ** 2 + (a.lat - c.lat) ** 2)
a_b = math.sqrt((a.lng - b.lng) ** 2 + (a.lat - b.lat) ** 2)
formula = (b_c ** 2.0 + a_c ** 2.0 - a_b ** 2.0) / (2.0 * b_c * a_c)
formula = -1.0 if formula < -1.0 else formula
formula = 1.0 if formula > 1.0 else formula
return (math.acos(formula) * 180.0) / math.pi
|
8823e1a7d348ab05fd00ea4359ef04224c854fb6
| 186,957 |
def attr_proc_title( binary, attrs ):
"""
Make a process title that has attr:<k>=<v> for set of attributes.
"""
return "%s %s" % (binary, " ".join( ["attr:%s=%s" % (k, v) for (k, v) in attrs.items()] ))
|
3e4b28119898e5b868da678cec10637f2c6532ae
| 263,526 |
def warc_datetime_str(date):
"""Amendedment to warctools' function to fix non-ISO8601 output."""
iso = date.isoformat()
if "." in iso:
iso = iso[:iso.find(".")]
if "+" in iso:
iso = iso[:iso.find("+")]
return iso + "Z"
|
f5932bedd398ecd5c6f3e346b1fc2ccfc024eaa5
| 612,158 |
import json
def get_keys(path):
"""
Given a path to json file, returns the keys
Parameters
---------
path: path with file name of json file
Returns
-------
returns: dict of keys
"""
with open(path) as f:
return json.load(f)
|
7883661d799eca53a59e663b5248fa872189031c
| 171,595 |
def multiply_two_number(a, b):
""" Returns the result of multiplying two numbers """
# unused_var = 'blah'
return a * b
|
86637659dccdce4d83bdfec5c6bda6e2d922e826
| 466,462 |
def _find_tusd_object_name(params: list[dict]) -> str:
"""
Finds the tusd_objekt_navn from a list of parameters
:param params: list of workflow parameters
:return: tusd_objekt_navn
"""
for param in params:
if param['name'] == 'TUSD_OBJEKT_NAVN':
return param['value']
raise NotImplementedError("TUSD_OBJEKT_NAVN er eneste som er støttet")
|
5bd7dca4b1cc3ca8f109248f5e0d27f002056db3
| 491,282 |
def get_access_pdf(pdf_dir):
"""Gets a PDF file from a directory. Fails if there are multiple PDF files
Args:
pdf_dir (Path obj): directory containing PDF file
"""
pdf_files = [f for f in pdf_dir.iterdir() if f.is_file(
) and not f.name.startswith(".") and f.name.endswith(".pdf")]
if len(pdf_files) == 0:
raise Exception("No PDF file found")
elif len(pdf_files) > 1:
raise Exception("More than one PDF file found")
else:
return pdf_files[0]
|
7c2c661812e25d0024884aaf302312bde9fa86dc
| 155,759 |
def word_flipper(our_string):
"""
Flip the individual words in a sentence
Args:
our_string(string): Strings to have individual words flip
Returns:
string: String with words flipped
"""
word_list = our_string.split(" ")
for idx in range(len(word_list)):
word_list[idx] = word_list[idx][::-1] # [index1:index2:step]
return " ".join(word_list)
|
fd484079407342925fc13583fb1fbee9ee472b14
| 708,675 |
def basal_metabolic_rate(gender, weight, height, age):
"""Calculate and return a person's basal metabolic rate (bmr)
in calories per day. weight must be in kilograms, height must
be in centimeters, and age must be in years.
"""
if gender.upper() == "F":
bmr = 447.593 + 9.247 * weight + 3.098 * height - 4.330 * age
else:
bmr = 88.362 + 13.397 * weight + 4.799 * height - 5.677 * age
return bmr
|
d9a3cb99fbcfbfe4d43075392dfe45bc34d97f9b
| 415,216 |
def associative_backdate(now, backdate):
"""Correct non-associative relative-delta month math
:param now: datetime start point
:param backdate: relativedelta value to move back from now.
Asking for a relative delta back in time for a period of months and
then adding the same number of months does NOT always produce the
same starting value. For example May 30 - 3 months => Feb 28/29 depending
on leap year determination. Adding 3 months to Feb 28 always produces
May 28.
Work around this problem by returning a backdated datetime value, that is
by reducing now by the backdate, and also return a ``nowish`` datetime
value, either equal to now or adjusted to make the pair associative,
such that:
nowish - backdate == result + backdate == nowish
Therefore nowish will typically be equal to now, but altered in boundary
cases for tests needing this associative property.
:returns: backdated_datetime, nowish
"""
result = now - backdate
return result, result + backdate
|
8ba36900c06710e659f878e4bbc364caeb4eaf67
| 53,230 |
import base64
def base64_2_str(base64_encode):
"""
Args:
base64_encode: base64编码str
Returns: str(utf-8)
"""
base64_decode = base64.b64decode(base64_encode).decode('utf-8')
return base64_decode
|
0f9f520843122d25eae17f6167f589c8fdc81e5f
| 567,345 |
import json
def get_inline_policies(iam_client, role_arn):
"""
Get inline policies in for a role
"""
inline_policies = iam_client.list_role_policies(RoleName=role_arn)
return [
json.dumps(iam_client.get_role_policy(RoleName=role_arn, PolicyName=policy).get("PolicyDocument", ))
for policy in inline_policies.get("PolicyNames", [])
]
|
92f7985381f16c3224be6d3eb725b9772bdc7498
| 234,130 |
import re
def is_data_csv(fname):
"""Checks if a file is a data csv"""
return re.search(r"^iter_(\d+).csv$", fname) is not None
|
4f590d472ca1c0cf4bbdea6c8157b0b20d836c4a
| 505,093 |
from pathlib import Path
def AbsolutePath(*args, **kargs) -> Path:
"""Create an absolute path (useful as argument 'type')"""
return Path(*args, **kargs).absolute()
|
1bf531a2d845ce37e9b34471bc183dcb75369f33
| 500,248 |
def prepare_dict(hermes_dict):
"""
Prepare a rhasspy type like dict from a hermes intent dict
"""
intent = hermes_dict["intent"]["intentName"]
out_dict = {}
out_dict.update({"slots": {s["slotName"]:s["rawValue"] for s in hermes_dict["slots"]}})
out_dict["intent"] = {"name": intent}
return out_dict
|
64a48d88d7a713d3c58fe480632670ef9beb1676
| 187,151 |
def _merge_dicts(*dicts, **opts):
"""
The standard dictionary merge idiom, with a twist: an *opts*
keyword dictionary.
"""
target = opts
for d in dicts:
target.update(d)
return target
|
570224940ac697d532778f4140792af125f8bf35
| 526,371 |
def _find_AP_and_RL_diameter(major_axis, minor_axis, orientation, dim):
"""
This script checks the orientation of the and assigns the major/minor axis to the appropriate dimension, right-
left (RL) or antero-posterior (AP). It also multiplies by the pixel size in mm.
:param major_axis: major ellipse axis length calculated by regionprops
:param minor_axis: minor ellipse axis length calculated by regionprops
:param orientation: orientation in degree. Ranges between [0, 90]
:param dim: pixel size in mm.
:return: diameter_AP, diameter_RL
"""
if 0 <= orientation < 45.0:
diameter_AP = minor_axis
diameter_RL = major_axis
else:
diameter_AP = major_axis
diameter_RL = minor_axis
# Adjust with pixel size
diameter_AP *= dim[0]
diameter_RL *= dim[1]
return diameter_AP, diameter_RL
|
403c4c42c845e427422eef839d66323be6b12dba
| 551,458 |
def yesno(value):
"""Convert 0/1 or True/False to 'yes'/'no' strings.
Weka/LibSVM doesn't like labels that are numbers, so this is
helpful for that.
"""
if value == 1 or value == True:
return 'yes'
return 'no'
|
050baf0e4dd604644bd595a0432a7f031ef019dd
| 504,159 |
import collections
def GetTurnStats(game_results):
"""Returns a histogram of game lengths (in rounds played)."""
hist = collections.Counter()
for game_result in game_results:
hist[game_result.num_rounds_played] += 1
return hist
|
78a4980ffa3a71d0181499f6448c75fa7d56c422
| 689,213 |
def vcross(self, labxr="", labyr="", labzr="", labx1="", laby1="",
labz1="", labx2="", laby2="", labz2="", **kwargs):
"""Forms element table items from the cross product of two vectors.
APDL Command: VCROSS
Parameters
----------
labxr, labyr, labzr
Label assigned to X, Y, and Z-component of resultant vector.
labx1, laby1, labz1
X, Y, and Z-component of first vector label.
labx2, laby2, labz2
X, Y, and Z-component of second vector label.
Notes
-----
Forms labeled result items for the selected element from the cross
product of two vectors:
{LabXR, LabYR, LabZR} = {LabX1, LabY1, LabZ1} X {LabX2, LabY2, LabZ2}
Data must be in a consistent coordinate system. Labels are those
associated with the ETABLE command.
"""
command = f"VCROSS,{labxr},{labyr},{labzr},{labx1},{laby1},{labz1},{labx2},{laby2},{labz2}"
return self.run(command, **kwargs)
|
ed40fd87eebfae617c1a3406b07d0ec7261c83e5
| 665,295 |
def _GetWinLinkRuleNameSuffix(embed_manifest):
"""Returns the suffix used to select an appropriate linking rule depending on
whether the manifest embedding is enabled."""
return "_embed" if embed_manifest else ""
|
2cf42d4a22007baa648842975f61d36406bd84cb
| 585,008 |
def get_lname_for_statedict(lname):
"""
Convert layer name into the form used to address the weight tensor of the module through model_statedict().
"""
lname_bits= lname.split('_')
lname_bits.append('weight')
lname_for_statedict= '.'.join(lname_bits)
return lname_for_statedict
|
a68276712134ecfb6ca379ede68438c478cd6cb1
| 299,678 |
def find_command(command, all_commands):
"""
Looks up a command in a list of dictioraries, returns a dictionary from a list
:param command: Command to look up
:param all_commands: list of all commands
:return: dictionary
"""
for item in all_commands:
if item["command"] == command:
return item
|
c57590a52acc4698e98137915e8ff46002a2f739
| 254,169 |
import hashlib
def compute_md5_hex(data):
"""Return the hex MD5 of the data"""
h = hashlib.md5()
h.update(data)
return h.hexdigest()
|
a7b8bea7d8f396fb319ffff55dbc05ccf194e284
| 160,126 |
def field_to_list(row, key):
"""
Transforms key in row to a list. We split on semicolons if they exist in
the string, otherwise we use commas.
Args:
row: row of data
key: key for the field we want
Reutrns:
row: modified row
"""
if not row[key]:
return row
if ";" in row[key]:
row[key] = [c.strip() for c in row[key].split(";")]
elif "," in row[key]:
row[key] = [c.strip() for c in row[key].split(",")]
else:
row[key] = [row[key]]
return row
|
accc49cbb63a6262ed23ba5e144315fc2ac8517b
| 462,218 |
def active_queues(state):
"""List the task queues a worker is currently consuming from."""
if state.consumer.task_consumer:
return [dict(queue.as_dict(recurse=True))
for queue in state.consumer.task_consumer.queues]
return []
|
f699478913b8b259ebc881bd728a8f0cbd2bf458
| 615,011 |
def FindEndOfExpressionInLine(line, startpos, depth, startchar, endchar):
"""Find the position just after the matching endchar.
Args:
line: a CleansedLines line.
startpos: start searching at this position.
depth: nesting level at startpos.
startchar: expression opening character.
endchar: expression closing character.
Returns:
On finding matching endchar: (index just after matching endchar, 0)
Otherwise: (-1, new depth at end of this line)
"""
for i in range(startpos, len(line)):
if line[i] == startchar:
depth += 1
elif line[i] == endchar:
depth -= 1
if depth == 0:
return (i + 1, 0)
return (-1, depth)
|
97ea6f4347c21feb8287b70fbfe0935e9c2301b3
| 522,113 |
def alpha_waste(lyambda_cond_waste_avrg, rho_cond_waste_avrg, mu_cond_waste_avrg, W_mass, n_pipe_waste, L_waste):
"""
Calculates the coefficent of heat transfer(alpha) from steam to wall of pipe.
Parameters
----------
lyambda_cond_waste_avrg : float
The thermal conducivity of condensate, [W / (m * degrees celcium)]
rho_cond_waste_avrg : float
The destiny of condensate, [kg / m**3]
mu_cond_waste_avrg : float
The viscosity of condensate, [Pa / s]
W_mass : float
The flow rate steam of feed heat exchanger, [kg/s]
n_pipe_waste : float
The number of pipes in heat exchanger, [dimensionless]
L_waste : float
The length of tubes, [m]
Returns
-------
alpha_waste : float
The coefficent of heat transfer(alpha) from steam to wall of pipe, [W / (m**2 * degrees celcium)]
References
----------
Дытнерский, формула 2.24, стр.53
"""
return lyambda_cond_waste_avrg * 2.02 * ((rho_cond_waste_avrg**2)* L_waste * n_pipe_waste / (mu_cond_waste_avrg * W_mass))**(1/3)
|
b7e6ef03a8ebc62ebdae3dcd1ac196dfb80871da
| 508,732 |
import json
def post_to_query_string(dico):
""" Transform a dict to a query string
>>> post_to_query_string({'foo': 'bar', 'where': {'foo': 'bar'}})
?foo=bar&where={"foo": "bar"}
:params dico the dico to convert
"""
querystring = "?"
for key in dico:
querystring += "%s=" % key
if type(dico[key]) == dict:
querystring += json.dumps(dico[key])
else:
querystring += str(dico[key])
querystring += "&"
return querystring.rstrip('&')
|
21b2c43a948c148c37ba2649e8032b1f54f88926
| 586,726 |
def human_readable_resolution(r_ms: int) -> str:
""" Resolves a resolution in milliseconds to a human readable string
:param r_ms: resolution in milliseconds
:return: human readable resolution
"""
switcher = {
60000: '1 Minute',
180000: '3 Minutes',
300000: '5 Minutes',
600000: '10 Minutes',
900000: '15 Minutes',
1800000: '30 Minutes',
2700000: '45 Minutes',
3600000: '1 Hour',
7200000: '2 Hours',
10800000: '3 Hours',
14400000: '4 Hours',
21600000: '6 Hours',
43200000: '12 Hour',
86400000: '1 Day'
}
return switcher.get(r_ms, f"Undetectable resolution: {r_ms}")
|
bb11a0de6800d4b0b3c4f3eb848ce8764d36deea
| 205,443 |
def split_by_timestamp(xyzrph: dict):
"""
Takes a Kluster xyzrph (the dictionary object that stores uncertainty, offsets, angles, etc. settings) and returns
a new dictionary for each timestamped entry.
Parameters
----------
xyzrph
dict of offsets/angles/tpu parameters from the fqpr instance
Returns
-------
list
list of dictionaries, one for each timestamp entry in the base xyzrph
"""
first_sensor = list(xyzrph.keys())[0]
tstmps = list(xyzrph[first_sensor].keys())
split_data = [{} for t in tstmps]
for ky, dictdata in xyzrph.items():
for tstmp, val in dictdata.items():
tindex = tstmps.index(tstmp)
split_data[tindex][ky] = {tstmp: val}
return split_data
|
bd57217e82e92b8aa0ea30598426db36788a64b2
| 66,797 |
def ensure_overlap(lh, mor, expr):
""" ensures label overlap with weights and expression matrix
Args:
lh (pandas DataFrame): sparse DataFrame indicating likelihood for regulators
mor (pandas DataFrame): sparse DataFrame indicating mode or regulation for transcription factors
expr (:obj: `pandas DataFrame`): pandas DataFrame of shape [n_feats, n_samps]
Returns:
expression, mor, lh (pandas DataFrame): expression, mode of regulation, and likelihood frames, respectfully,
re-indexed to be concordant with weights associated with regulon
"""
expression = expr.reindex(mor.columns)
mor = mor.reindex(expression.index, axis=1)
lh = lh.reindex(expression.index, axis=1)
return expression, mor, lh
|
716e577a6748199ad9ef95e5b2fecacca0b24cf3
| 51,737 |
def clear_handlers(logger):
"""
Clear all handlers from logger
Parameters
----------
logger : logging.logger
Logger to remove all handlers from
Returns
-------
logger : logging.logger
Logger with all handlers removed
"""
handlers = logger.handlers.copy()
for handler in handlers:
# Copied from `logging.shutdown`.
try:
handler.acquire()
handler.flush()
handler.close()
except (OSError, ValueError):
pass
finally:
handler.release()
logger.removeHandler(handler)
logger.handlers.clear()
return logger
|
40e1d086df01c1afe4168165e7a59bc0110edef2
| 454,945 |
def google_api_query(query_dict: dict) -> str:
"""Join given query args into one string.
Return query string in format required by googlapis:
https://developers.google.com/books/docs/v1/using#WorkingVolumes
"""
if not query_dict:
return ""
def allowed_google_item():
if item[1] and item[0] in ["intitle", "inauthor"]:
return True
return False
query_string = f"q={query_dict.get('search', '')}"
for i, item in enumerate(query_dict.items()):
if allowed_google_item():
query_string = f"{query_string}+{item[0]}:{item[1]}"
return query_string
|
b169c0575874cf96b438d87d3e9305ffc917d96a
| 561,408 |
def accuracy(y_hat, y):
"""Get accuracy."""
return (y_hat.argmax(axis=1) == y).mean().asscalar()
|
9c63e1d8b7e06dc278b2965abb3931cd0f6208c7
| 691,321 |
def add_spaces(x):
"""Add four spaces to every line in x
This is needed to make html raw blocks in rst format correctly
"""
y = ''
if isinstance(x, str):
x = x.split('\n')
for q in x:
y += ' ' + q
return y
|
8443f4d019022b1e4705abbeca5bbd54bc94699d
| 691,179 |
def format_path(path):
"""
(str) -> str
Make sure that path ends with a backslash '/'
"""
return path if path.endswith('/') else path + '/'
|
286193e6a5e775651e241e83792cb17bd2575d27
| 439,928 |
def range_overlap(ranges):
"""Return common overlap among a set of [left, right] ranges."""
lefts = []
rights = []
if ranges:
for (left, right) in ranges:
lefts.append(left)
rights.append(right)
max_left = max(lefts)
min_right = min(rights)
if min_right - max_left >= 1:
return (max_left, min_right)
|
f8f8a907e6847dc308a537dab5033b8c49149674
| 651,142 |
import torch
def cr_matrix_vector_product(m: torch.Tensor, x: torch.Tensor) -> torch.Tensor:
"""Returns the product of a complex matrix and a real vector.
:param m: Matrix as ``(*, m, n, 2)`` tensor.
:param x: Vector as ``(*, n)`` tensor.
:return: Result as ``(*, m, 2)`` tensor.
"""
xr = x.unsqueeze(-1)
mr = m[..., 0]
mi = m[..., 1]
rr = torch.matmul(mr, xr)
ir = torch.matmul(mi, xr)
return torch.cat([rr, ir], dim=-1)
|
cafc5f19441fc1c47eb9f82d0ae8992918a8df72
| 664,232 |
def restrict_chains(data, k):
"""Restrict data to people with at least k rows.
Parameters
----------
data : pandas.DataFrame
The `data` from US to be subsetted.
k : int
The minimum number of measurements needed for a person to be kept.
Returns
-------
data : pandas.DataFrame
The subsetted data of people with at least k entires.
"""
# How many entries does each person have.
# Take Ids of anyone with at least k values.
# Subset the main data frame to remove anyone with less than k values.
id_counts = data["pidp"].value_counts()
trajectories_ids = list(id_counts.loc[id_counts >= k].index)
data = data.loc[data["pidp"].isin(trajectories_ids)]
return data
|
106fc9c43d12085392a84a188dcc8d40a89ae817
| 10,871 |
import math
def xy_yaw_from_quaternion(quat):
"""Calculate the yaw angle in the xy plane from a rotation quaternion.
:param quat: A unit quaternion representing the
:type quat: Any container that has numerical values in index 0, 1, 2 and 3
:return: The yaw angle in radians projected on the xy plane
:rtype: float
"""
x, y, z, w = quat[:4]
return math.atan2(2 * z * w + 2 * x * y, w**2 + x**2 - y**2 - z**2)
|
255225c80bba64f0d347871584db8a4138c199b8
| 669,832 |
import re
def compile_routes(dynamic_routes):
"""Compiles the regexes in the routes table."""
routes2 = []
for (verb, path_pattern, handler_func) in dynamic_routes:
compiled_path = re.compile("^" + path_pattern + "/*" + "$")
entry = (verb, path_pattern, compiled_path, handler_func)
routes2.append(entry)
continue
return routes2
|
e6d5445c222fe4320f3bcfb52f94b6f9d677e1e7
| 507,304 |
def path_string(obj, **kwargs):
"""return physical path as a string"""
return "/".join(obj.getPhysicalPath())
|
bae683d392b519f8c43f5e9d1415abb8cf8de636
| 20,865 |
def fancy_vector(v):
"""
Returns a given 3-vector or array in a cute way on the shell, if you
use 'print' on the return value.
"""
return "\n / %5.2F \\\n" % (v[0]) + \
" | %5.2F |\n" % (v[1]) + \
" \\ %5.2F /\n" % (v[2])
|
2340f22aa87da00abad30b9946c374f34b38496d
| 2,665 |
import math
def angle_trunc(the_angle):
"""
Truncate the angle between [0, 360)
Arguments:
the_angle {float} -- angle
Returns:
float -- Angle between [0,360)]
"""
while the_angle < 0.0:
the_angle += math.pi * 2
return the_angle
|
81eafdf106990a1c0921a840e1b746796fc7b8eb
| 538,129 |
def loadOutputList(expt_name,outputType):
"""Loads a file containing all file names with a specified output data into a local list
Args:
expt_name (String): Name of experiment (which contains how many ever simulation output files)
outputType (String): molpos or simtime. Determines which set of output filenames to load.
Returns:
TYPE: List
"""
datalist = []
if(outputType=='molpos'):
path='data/'+expt_name+'/outputMolposList.txt'
elif(outputType=='simtime'):
path='data/'+expt_name+'/outputSimtimeList.txt'
else:
raise Exception('outputType required to be either \'molpos\' or \'simtime\'')
with open(path) as f:
for outputfile in f:
datalist.append("data/"+expt_name+"/"+outputfile.rstrip())
return datalist
|
22f98f554b7cb6161a893a2f81cc4b916460ccc6
| 76,194 |
def _compose_middleware(method, middleware):
"""Apply the given ServiceMiddleware to the provided method and return
an InvocationHandler.
Args:
method: instance method
middleware: list of ServiceMiddleware
Returns:
InvocationHandler
"""
def base_handler(method, args):
return method(*args)
handler = base_handler
if middleware:
for m in middleware:
handler = m(handler)
return handler
|
79f6faa929cfbc5e8156f430bc22457cdeef6392
| 246,582 |
def remove_stopwords(df, file, path='', column = "Word"):
""" Remove stopwords from a dataframe choosing
a specific column in which to remove those words
Parameters:
-----------
df : pandas dataframe
Dataframe of counts per word per user
file : string
Name of file that contains the stopwords
path : string, default ''
Path of the file that contains the stopwords
column : string, default 'Word'
Column to clean
Returns:
--------
df : pandas dataframe
Dataframe of counts per word per user
excluding the stopwords
"""
# Remove stopwords
with open(path + file) as stopwords:
stopwords = stopwords.readlines()
stopwords = [word[:-1] for word in stopwords]
df = df[~df[column].isin(stopwords)]
return df
|
001cd22a8d62c53ea074ae0a290ce8974d857343
| 106,188 |
def fraunhofer_distance(d=1.0, wavelen=550e-6):
"""computes the Fraunhofer distance from a diffracting aperture. It is the
limit between the near and far field
Parameters
----------
d : float
largest dimension of the aperture. i.e. aperture width/diameter (in mm)
wl : float
wavelength of light (in mm)
Returns
-------
fdist : float
the Fraunhofer distance in mm
Notes
-----
This is the more stringent condition for the Fraunhofer Approximation.
Therefore the far-field is the region where ``z > fraunhofer_distance``
"""
return 2.0*d**2 / wavelen
|
07cac7ee31003c7f31c34209547ec9d845770fe7
| 490,973 |
def clean_keys_of_slashes(record):
"""
Replaces the slashes found in a dataset keys with underscores
:param record: list containing a couple of dictionaries
:return: record with keys without slashes
"""
for key in list(record):
value = record[key]
if '/' in key:
# replace with _
record[key.replace('/', '_')]\
= record.pop(key)
# Check if the value is a list containing nested dict and apply same
if value:
if isinstance(value, list) and isinstance(value[0], dict):
for v in value:
clean_keys_of_slashes(v)
return record
|
126fa995e0cc434365846e14834f8d7a03ca9ccc
| 521,060 |
def add(n1, n2):
"""Adds the 2 given numbers"""
return n1 + n2
|
ca670819dab8230e355e1b236d9cc74ed0b3b868
| 314 |
def remove_max_edge_from_cycle(tree, cycle):
"""
Remove the max-weighted edge from a *cycle* which is contained in the given *tree*.
"""
cycle = sorted(cycle, key=lambda edge: int(edge.weight), reverse=True)
return tree.remove(cycle[0])
|
0fc5b4b725e005f07441f18b7df6e22db06b3087
| 475,319 |
def _calculate_positives_negatives(target_details):
"""
Takes expected and actual target values, generating true and false positives and negatives,
including the actual correct # of positive and negative values.
"""
true_positive = 0
true_negative = 0
false_negative = 0
false_positive = 0
actual_positive = 0
actual_negative = 0
for idx in range(len(target_details)):
predicted_target = target_details[idx]["predicted_target"]
expected_target = target_details[idx]["expected_target"]
if expected_target == 1:
actual_positive = actual_positive + 1
else:
actual_negative = actual_negative + 1
if predicted_target == 1 and expected_target == 1:
true_positive = true_positive + 1
elif predicted_target == 0 and expected_target == 0:
true_negative = true_negative + 1
elif predicted_target == 1 and expected_target == 0:
false_positive = false_positive + 1
elif predicted_target == 0 and expected_target == 1:
false_negative = false_negative + 1
return {
"true_positive": float(true_positive),
"false_positive": float(false_positive),
"actual_positive": float(actual_positive),
"true_negative": float(true_negative),
"false_negative": float(false_negative),
"actual_negative": float(actual_negative),
}
|
43314d34e98c4e9fa959426666f17d1a7d71af44
| 104,269 |
def read_network(file):
"""
Read a (switched) Boolean network from a text file:
Line 1: number of state variables
Line 2: number of control inputs
Line 3: number of sub-networks
Line 4: transition matrix of the first sub-network (linear representation of a logical matrix)
line 5: transition matrix of the second sub-network (linear representation of a logical matrix)
...
:param file: a text file
:return: (n, m, w, Ls), where
n: number of state variables
m: number of control inputs
w: number of sub-systems
Ls: a list of transition matrices, each for one sub-system
"""
with open(file, 'r') as f:
n = int(f.readline().strip())
m = int(f.readline().strip())
w = int(f.readline().strip())
N = 2 ** n
M = 2 ** m
Ls = []
for _ in range(w):
line = f.readline().strip()
assert line, f'{w} transition matrices must be provided!'
numbers = line.split()
assert len(numbers) == M * N, f'The transition matrix must have {M * N} columns'
Ls.append([int(num) for num in numbers])
return n, m, w, Ls
|
76907cb8342e3f96b88f519cb09a2c28bc6e137e
| 78,297 |
def read_keywords(args):
"""This function reads the keywords from the input file and creates:
- a dictionary where the key is the old name and the value is the new name,
these keywords will be further processed.
- a list of keywords which will not be processed, typically keywords with
argument(s) in its names.
- a list of duplicates - duplicated keyword names or names which are parts
of another keyword name, they will not be processed.
:param args: Parsed arguments.
:type args: ArgumentParser
:returns: keyword names - dictionary where the key is the old name and the
value is the new name; ignored keyword names - list of keywords which will
not be processed; duplicates - duplicated keyword names or names which are
parts of another keyword name, they will not be processed.
:rtype: tuple(dict, list, list)
"""
kw_names = dict()
ignored_kw_names = list()
duplicates = list()
for line in args.input:
old_name, new_name = line.split(args.separator)
if '$' in old_name:
ignored_kw_names.append((old_name, new_name[:-1]))
elif old_name in kw_names.keys():
duplicates.append((old_name, new_name[:-1]))
else:
kw_names[old_name] = new_name[:-1]
# Remove duplicates:
for old_name, _ in duplicates:
new_name = kw_names.pop(old_name, None)
if new_name:
duplicates.append((old_name, new_name))
# Find KW names which are parts of other KW names:
for old_name in kw_names.keys():
count = 0
for key in kw_names.keys():
if old_name in key:
count += 1
if old_name in kw_names[key]:
if old_name != key:
count += 1
if count > 1:
duplicates.append((old_name, kw_names[old_name]))
kw_names.pop(old_name)
return kw_names, ignored_kw_names, duplicates
|
fd261c6819424e171776130e74538b05baf6e830
| 67,920 |
def _check_pixel(tup):
"""Check if a pixel is black, supports RGBA"""
return tup[0] == 0 and tup[1] == 0 and tup[2] == 0
|
a12b1a8ce51a59e37326ef8f7bc80a5e5a907a1a
| 679,629 |
def clean_sort_param(request, date_sort='created'):
"""
Handles empty and invalid values for sort and sort order.
'created' by ascending is the default ordering.
"""
sort = request.GET.get('sort', date_sort)
order = request.GET.get('order', 'asc')
if sort not in ('name', 'created', 'nomination'):
sort = date_sort
if order not in ('desc', 'asc'):
order = 'asc'
return sort, order
|
3292403c2c1b8b06c2cb8b32fa40ca06b835a1eb
| 354,778 |
def write_variable_length(value):
"""
Write a variable length variable.
Parameters
----------
value : bytearray
Value to be encoded as a variable of variable length.
Returns
-------
bytearray
Variable with variable length.
"""
result = bytearray()
result.insert(0, value & 0x7F)
value >>= 7
if value:
result.insert(0, (value & 0x7F) | 0x80)
value >>= 7
if value:
result.insert(0, (value & 0x7F) | 0x80)
value >>= 7
if value:
result.insert(0, (value & 0x7F) | 0x80)
return result
|
59683e3028c7de59c309e1eb17377b0207467834
| 328,512 |
def date_str2csv_date(date_str):
"""Utility function to convert a JSON date string into a date that
is consistent with the representation in the csv files we work with.
Args:
date_str - the Python date string
Returns:
A date string formatted for csv
"""
return ''.join([date_str[:4], date_str[5:7], date_str[8:10]])
|
8ea7aac0fba74c451e1b5b0775e1fa99bdec27a3
| 211,466 |
def affine_transformation(anchor_x, x0, x1, anchor_y, y0, y1):
"""Construct an affine coordinate transform and its inverse.
From a GDAL-style specification of the parameters of an affine
transformation, construct both the affine function that maps integer cell
indices to the center points of the corresponding cells, and points in a
cell to the cell they belong to. The point (anchor_x, anchor_y) is a corner
of the cell (0, 0).
Parameters
==========
anchor_x: X-Coordinate of a corner of the cell (0, 0)
x0: Increase in X-Coordinate between cells (0, 0) and (1, 0)
x1: Increase in X-Coordinate between cells (0, 0) and (0, 1)
anchor_y: Y-Coordinate of a corner of the cell (0, 0)
y0: Increase in Y-Coordinate between cells (0, 0) and (1, 0)
y1: Increase in Y-Coordinate between cells (0, 0) and (0, 1)
Returns
=======
coordinates_for_cell: Function mapping integer indices to coordinates
cell_for_coordinates: Function mapping coordinates to the cell they lie indices
Examples
========
>>> integer_grid_mids, integer_grid_cell = affine_transformation(0, 1, 0, 0, 0, 1)
>>> integer_grid_mids(0, 0)
(0.5, 0.5)
>>> integer_grid_cell((9.4, 2.1))
(9, 2)
>>> shifted_grid_mids, shifted_grid_cell = affine_transformation(5, 1, 0, 2, 0, 1)
>>> shifted_grid_mids(0, 0)
(5.5, 2.5)
>>> shifted_grid_cell((9.4, 2.1))
(4, 0)
>>> forward, back = affine_transformation(*numpy.random.normal(size=6))
>>> back(forward(0, 0))
(0, 0)
>>> back(forward(3, 4))
(3, 4)
"""
def coordinates_for_cell(col, row):
col += 0.5
row += 0.5
return (anchor_x + x0 * col + x1 * row,
anchor_y + y0 * col + y1 * row)
def cell_for_coordinates(coordinates):
coeff = 1 / (x0 * y1 - x1 * y0)
x_raw, y_raw = coordinates
x = x_raw - anchor_x
y = y_raw - anchor_y
col = coeff * (y1 * x - x1 * y)
row = coeff * (-y0 * x + x0 * y)
# int() truncates towards 0, so we have to use something else.
# Negative cell indices *should* not appear, but who knows what else this function will be used for!
return (int(col), int(row))
return coordinates_for_cell, cell_for_coordinates
|
e5b079add0655665b7f02a022993e8f6a5c6b255
| 530,121 |
import json
def get_json(file):
"""
Load JSON data into memory
file: the path to the data file
"""
with open(file) as json_file:
json_data = json.load(json_file)
json_file.close()
return json_data
|
e50656d07d199b607cb6fbf6053af7e7816f736a
| 89,567 |
def select_from_arxivcs_mag(sconn, scur, paper_id):
""" Queries the sqlite3 table unpaywall on paper_id, returns the pdf_url (can be None)"""
# cur = conn.cursor()
query = """
SELECT pdf_url
FROM arxivcs_mag WHERE paper_id = '{}'
""".format(paper_id)
scur.execute(query)
# Only get one row (there will only be 1 row in the result). Only 1 field present.
return scur.fetchone()[0]
|
5ba697f886a4366b9dd848d1c80b16dac61f255d
| 274,852 |
def cleanup_url(url: str) -> str:
"""Cleans up the text to be a valid URL.
Returns:
str: The cleaned up URL.
"""
url = url.replace(" ", "-")
if url.startswith("http://") or url.startswith("https://"):
return url
else:
return f"https://{url}"
|
b3eed31d45f7bfaa975c60212949dd8fe0e43729
| 640,985 |
def map_code_to_status(http_code: int):
"""Maps HTTP code to human-readable descriptive string"""
if 100 <= http_code <= 199:
return 'INFO'
elif 200 <= http_code <= 299:
return 'SUCCESS'
elif 300 <= http_code <= 399:
return 'REDIRECT'
elif 400 <= http_code <= 499:
return 'CLIENT_ERROR'
elif 500 <= http_code <= 599:
return 'SERVER_ERROR'
else:
return 'OTHER'
|
c14982cf8d239ca079a30e45b901472b05dca511
| 478,202 |
import time
def string_to_date(date_string):
""" Convert a formatted string into a date."""
return time.strptime(date_string, "%Y/%m/%d:%H:%M:%S")
|
1d6f15d1bed9b918be4449d8aad9577a0ab9bd87
| 186,021 |
def print_value(v):
"""double quote v if v is a string, return str(v) otherwise"""
if isinstance(v, str):
quoted = v.replace('"', r'\"')
return f'"{quoted}"'
else:
return str(v)
|
487305e17639a4fd7ce60870d186f50ef4598de2
| 198,598 |
def quadratic_probe(h, i, m):
"""
Finds a possible next position using quadratic probing
Note that there are many different ways of doing this, such as
with a formula in the form ai + bi^2. This is just a simple example
Quadratic hashing reduces primary clustering: linear probing may
lead to large chunks of values together, reducing efficiency
Quadratic hashing may lead to secondary clustering, although this
isn't as much of an issue. The bigger problem is skipping indices
(for example, we might only get to even indices in some cases); we
need a load factor of at most 1/2 and a prime sized table to ensure
that an empty cell will always be found
:param h: Computed hash value that has resulted in a collision
:param i: Offset
:param m: Size of the table
:return: The next index to be checked if it is open
"""
return (h + i*i) % m
|
3f202a892c2aa76077e79d365626e48b27c64462
| 300,749 |
import math
def translate_key(key):
""" Translate from MIDI coordinates to x/y coordinates. """
vertical = math.floor(key / 16)
horizontal = key - (vertical * 16)
return horizontal, vertical
|
1916fb2abc97f421494c3ced21d9f8ec05936845
| 675,354 |
def parse_email(ldap_entry):
"""
Returns the user's email address from an ldapentry
"""
if "mail" in ldap_entry:
email = ldap_entry['mail'][0]
else:
email = ldap_entry['uid'][0] + "@pdx.edu"
return email
|
fbd25b486aae71828b1e784b5f2b128b747ba3e7
| 244,532 |
def yes_or_no(question):
"""Prompt for yes/no question"""
while True:
reply = str(input(question+' (y/n): ')).lower().strip()
if reply in ['y', 'yes']:
return True
if reply in ['n', 'no']:
return False
|
72820ceef5730611e7ad11c8754581aae8e2c549
| 205,348 |
def filter_labels_by_class(obj_labels, classes):
"""Filters object labels by classes.
Args:
obj_labels: List of object labels
classes: List of classes to keep, e.g. ['Car', 'Pedestrian', 'Cyclist']
Returns:
obj_labels: List of filtered labels
class_mask: Mask of labels to keep
"""
class_mask = [(obj.type in classes) for obj in obj_labels]
return obj_labels[class_mask], class_mask
|
854a32da802c794b0622a0a36895590823b7c780
| 699,860 |
def extract_glob_pattern(path_arg: str) -> tuple:
"""Extract glob pattern from a path"""
if not path_arg: return None, None
base_path = pattern = None
if '*' in path_arg: # we have globbing in src path
path_components = path_arg.split("/")
base_path_arr = [] # let's establish the base path
for el in path_components:
if '*' not in el: base_path_arr.append(el)
else: break
for el in base_path_arr: path_components.remove(el) # remove the base path components (those without *) from full path components
base_path = '/'.join(base_path_arr) + '/' # rewrite the source path without the globbing part
pattern = '/'.join(path_components) # the globbing part is the rest of element that contain *
else:
base_path = path_arg
return (base_path, pattern)
|
abaa82b35dedd19e3c410a5612cdd7f30dc21b6c
| 465,713 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.